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FIG. 4. Order parameters m * ( X ) , ma ( + ), and mp(») as a function of reduced temperature T* = ksT/(J0~Jq), with ./,=4,
J0 =0, Ka =Kq = — 1, and n =6. The positional transition (•) is second order, while the orientational transition is first order.

B. Maier-Saupe interaction

In order to apply our results to the study of the behav-
ior of liquid crystals and plastic crystals, a more realistic
interaction should be chosen. The Maier-Saupe interac-
tion was used extensively14 for this purpose. Originally15

it was defined as a function of the angle 6U between two
rodlike molecules of a liquid crystal as follows:

P(0 /y)=[3cos2(0 ;y)-l]/2 .

In our case we shall define { t , } as a set of unitary vectors
giving the discrete orientations that the molecules can
have in the space. The Maier-Saupe interaction can then
be written in a generalized way as

where a and b are constants that can be determined from
the normalization conditions (4) and will depend on n and
on how the set of directions have been chosen in the
space. Note that this interaction is nonpolar so that t,
and — t, represent the same orientational state.

This interaction has been studied in a previous paper6

in the particular case of having n =4 in a two-
dimensional square lattice. Moreover, these results were
compared with a Monte Carlo simulation and it was seen
that the liquid-crystal phase diagram was reproduced
qualitatively well. With our formalism we can now gen-
eralize to a d-dimensional lattice with n discrete orienta-
tions. We have studied two cases: (i) n =d orientations
along the perpendicular axis (this case includes d =2,
n =2 and d =3, n =3); and (ü) n =d +2d~l orientations
along the perpendicular axis and the bisectrices of the
quadrants. In both cases, when normalizing P, one finds

a=d/(d-l) and b =!/(!-</) and 22< .
=d/(d— 1). From these results one can study the
nematic-isotropic transition TN.¡ corresponding to
r„(mp-0),

Also, in both cases the order of the transition changes
from continuous to first order between d = 2 and 3. Of
course (32) cannot be extrapolated to the case d =3,
n —»• oo, because that formula has been obtained with con-
straints between n and d as specified in cases (i) and (ii).

VI. CONCLUSIONS

In this work we have studied the thermodynamics of
an antiferromagnetic lattice-gas model of particles with
orientational degrees of freedom with density c =0.5. At
low temperatures, positional interaction favors an or-
dered structure of alternating particles an vacancies. The
orientational interaction between particles has been intro-
duced as the slave of the positional one, in the sense that
the particles only interact orientationally when they are
interacting positionally. Physically, this means that the
orientational interaction is a perturbation, not necessarily
small, of the positional interaction.

The relative simplicity of the model allows the possibil-
ity of analyzing the interdependence of the orientational
and positional degrees of freedom and its influence on
phase diagrams for systems like liquid crystals, plastic
crystals, and magnetic binary alloys. The model has been
solved using a mean-field treatment for an arbitrary
orientational interaction, but we have focused our calcu-
lations (analytical and numerical) on two cases of interest
for PC and LC.
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A Potts-like interaction has been recently proposed as
useful for the study of PC's.16 Our model reproduces
qualitatively well the behavior of such materials. It pre-
dicts a first-order phase transition (T0) between the solid
phase (positional and orientational order) and the plastic
crystal phase (only positional order) as found experimen-
tally.9 Also we predict a second-order phase transition
(Tp) between the plastic crystal phase and the liquid
phase (no long-range order). Experimentally this transi-
tion seems to be first order, but the measured entropy
discontinuities are very small compared with the usual
entropy discontinuities associated with melting points.9

In Eq (30a) we have also proposed a dependence of the
solid-plastic crystal transition temperature with the posi-
tional order of the molecules T0(m*). This dependence
could be verified experimentally studying the transition
temperatures of diiferent PC's and measuring the posi-
tional order when the solid-plastic crystal transition
occurs.

It is also important to note that, with this simple
Potts-like interaction, our model also reproduces LC be-
havior. The phase with only orientational order is noth-
ing more than a nematic phase. Such a unified model
suggests that the differences between PC's and LC's are
only due to the diiferent values of the Hamiltonian pa-
rameters associated with orientational and positional in-
teraction. In mean-field approximation coupling effects
manifest only for the lowest of both T0 and Tp tempera-
tures. The coupling strength depends mainly on the
value of the long-range order parameter, which remains
finite at the temperature.

Nevertheless, if one wants to study LC's more realisti-
cally, it is better to use a Maier-Saupe15 orientational in-
teraction. This interaction is nearer to the real interac-
tion between LC molecules than the Potts-like interaction
considered above, and it is believed that it contains the

main physical features of real interaction.n In fact, a
two-dimensional version of the model proposed in this
paper with the Maier-Saupe interaction was recently
studied6 considering only four possible orientations of the
molecules. It was solved using mean-field and Monte
Carlo simulation and the results were in good qualitative
agreement with the LC phase diagram. We propose here
a generalization to d dimensions and n possible orienta-
tions. In the case d =3 the order of the nematic-liquid
transition is, as expected, first order, in agreement with
experiments.18 Better approximations, or Monte Carlo
simulations of the three-dimensional model, can help to
study details of the critical behavior of LC's that are not
well understood, such as the existence of tricritical
points,18 nonuniversal exponents,19 etc., that are closely
related to the coupling effects between the positional and
orientational order of the molecules.

The model could, in fact, be applied to other kinds of
systems. For instance, if we consider the empty sites as B
atoms and the full sites as A atoms, our model can also
be applied to the case of binary alloys AB (50%) with A
atoms having a magnetic moment. Recently, Dviweg and
Binder5 proposed a Hamiltonian with the same kind of
slave coupling for the case of a binary alloy A X B [ _ X with
A atoms having spins y, with NN magnetic interaction.
The solution of our model with an appropriate orienta-
tional interaction reproducing the magnetic one, will be a
first attempt to extend it to a general case with spin n /2
and also with a NNN magnetic interaction.
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Monte Carlo Study of the Critical Behaviour of a System with
Coupled Phase Transitions

Abstract

Using u 2-D lattice gas model of orientable molecules that exhibits two phase
transitions, we have performed Monte Carlo simulations in order to study
its critical behaviour. One of the phase transitions, associated wi th positional
degrees of freedom, has been found to be second order, while the other,
related to orientational degrees of freedom, is first order. Changing the
parameters of the hamiltonian we can vary the separation between the two
phase transition temperatures. When they are very close to each other the ß
critical exponent (or at least the effective ß critical exponent ) of the positional
transition varies continuously from the 2-D Ising value to zero when the two
transitions overlap. The model is also suitable for qualitatively explaining
some experimental results found in Liquid Crystals and other systems show-
ing coupling effects between orientational and positional degrees of freedom

1. Introduction

Coupling between phase transitions has been widely studied
in recent years, experimentally [1, 2], using computer simu-
lation [3] and by means of theoretical approaches [1, 4-6].
The coupling between orientational and positional degrees of
freedom is particularly very interesting because it is respon-
sible for the unusual phase diagram features of a great variety
of systems. For instance, these phenomena have been
observed not only in 3-D systems like Liquid Crystals (L.C.)
[7], Plastic Crystals (P.C.) [8]. Micellar solutions [9] and
microemulsions [10] but also in 2-D systems like adsorbed
molecules on crystal surfaces [11]. These coupling effects
appear when the system exhibits two phase transitions related
to positional and orientational degrees of freedom.

In Liquid Crystals, the smectic-nematic transition is a
positional transition that happens when some translat ionul
ordering mode of the molecules is lost, while the nematic-
isotropic transition is an orientational transition related* to
the orientational order of the molecule symmetry axes. When
these two transitions occur at very close temperatures
unusual phenomena can appear. Some authors [2, 12] have
reported changes in the critical exponents of the smectic-
nematic transition when the nematic-isotropic transition is
very close to it, or the existence of tricritical points. These
phenomena have also been found in micellar solutions [9] and
microemulsions [10].

In this paper we will analyze, using Monte Carlo simu-
lations dilferent coupling phenomena that appear in a 2-D
lattice model exhibiting two phase transitions related to pos-
it ional and orientational degrees of freedom, that can be
related to a solid-nematic and a nematic-isotropic phase
transition in a l iquid cr\stal film, as shown in a recent paper
(3).

The out l ine of the paper is as follows: in Section 2 we
briefly introduce the model, in Section 3 we discuss details of

the Monte Carlo simulation technique, in Section 4 we com-
ment on the main results, and finally in Section 5 we sum-
marize and conclude.

2. Model

The model is defined on a 2-D square lattice with TV, sites per
side, where rod-like molecules are placed parallel to the lat-
tice. On each site "/" (/' = 1. . . . , N; W = Nt x A", ) we
define two variables: S, that takes values 1 or 0 depending on
the presence or absence of a molecule in site "/" and c, that
represents the angular position of the symmetry axis of the
molecule. We allow a, to take only 4 different values associated
to the 4 directions schematized in Fig. 1.

The interaction energy is:

H = J X S,S, + K, X S,S,P(ff,. ff,) + A:, X S.SiPiï,. ff,)
un nn mm

(D

where y. K{ and K2 are constants. !„„ and !.„„„ are summations
over nearest neighbor and next-nearest neighbor pairs and
P(a,. a,) is the function:

P(a,a,) = 2 cos: (a, - a,) - 1 (2)

Note that with this definition the interaction is non-polar.
The total number of molecules in the system is kept

constant:

A' A'/2 (3)

In order to reduce the number of parameters we define
dimensionless quantities:

W* = HIJ. A',* = K, I J. K? = K:/J. T*

(4)

where A H is the Bohzmann constant.
When A':* < Oand -I < A',* < 0 the ground state of the

system exhibits long range positional and orientational order
as shown in [3] (see. Fig. 2 (A)). When increasing the tem-
perature two phase transitions can occur. A positional phase
transition (7~ p) when the long range positional order is lost
and .in orientational phase transition (T„) when the long
range orientational order disappears. In the case 7~0 > Tr we
have a L.C. behaviour (A -» B2 -> C) while in the case
rr > T„ a P.C. behaviour (A — B I -» C) is obtained.

The ground stale structure suggests that we can subdivide
the lattice into two sublatiices. ( + ) and (-). The( + ) subkit-
ticeis the one that is ful l of particles at the ground stale, u hi le
the (-) subladice is the empty one. The structure of the
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Fix. I Schema showing the J possible discrete orientations of the molecules
«i th raped to the lattice axis.

system at higher temperatures can be studied by means of the
following order parameters [3]:

the order parameters) not only on the u hole lattice (40 x 40)
but also on some subblocks (20 x 20. K) x 10. S x S.
4 x 4). Plot t ing ihe values of the variables in front of 11L (L
is the subblock l inear size) \\c can extrapolate these values to
the limit L -» v..

The magnitudes that were measured are:
(i) The energy, calculated as the average of equation ( I ) .
(ii) The specific heat C*. calculated from the energy fluc-

tuations. In some cases we performed a numerical smoothing
before the extrapolation to L -> oo in order to reduce the
noise, and measure in an easier way the position of the phase
transition peaks.

(iii) The positionalorder parameter. Due to the degener-
ation associated with the ( + ) and ( - ) sublattices, mp must be
measured as:

'»„

r„ 0)/7VP (6)

where I+ and Z. represent sums over all the ( + ) and ( — )
sublattice sites respectively.

3. Monte Carlo simulation

Monte Carlo simulations were performed on a 40 x 40 lat-
tice with 800 particles using the standard Metropolis pro-
cedure. We used a Kawasaki dynamic for the interchange of
n.n. particles and a Glauber dynamic changing the orien-
tations. In this case, because we are combining two dynamics,
the usual definition of the Monte Carlo step must be changed.
A Monte Carlo step (MSC) is. in our case, Nr trials of
changing orientations and Nf trials of exchanging two
particles.

Simulations were carried out on a CRAY-1. an IBM3090
and an IBM9375.

The averages of the magnitudes of interest were taken over
500 non-correlated equilibrium configurations obtained after
9000 MCS in order to be sure the system is in equilibrium.

We also used the subblock finite size scaling method in
order to extrapolate the values to the infinite size lattice [13].
This method consists of evaluating the variables (for instance

IB,)

N
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N
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1 1 /

\ — —
1 \ /

/ N 1
- 1 /

I .

1

/

1

\

1

1
1

1

1 1 1
1 1

I I I 1 1
1 , , 1

1 1 1
1 |

1 1 1 1
1 1

1

1

1

( B 2 >
Fig. ?. Structure of the phases exhibited by the model. A is the ground stale
w i t h or i en ia t i ona l and positional order. Bl is a phase wi th only posilional
urdcr B2 is a phase with only oncntalional order and C is a completely
disordered phase.

or as:

r if \2\~i"2

[<(?*-?*)>] (8)

(iv) The orientational order parameters. In that case m~
and w; are fourfold-degenerated because there are 4 possible
equivalent orientations on the lattice (see Fig. 1). We have
measured them taking as a reference direction the 4 possible
orientations A = {0. A/4, n/2, 3n/4} and then taking the
averases of the maximum values as:

= <maxQ{w0
+(n)}>

= <maxn {

or as:

(9)

(10)

( U )

(12)

4. Results

We studied the behaviour of the positional and orientational
order parameters and the specific heat for different values of
K* and K* and we have obtained the phase diagram of the
model.

10

08

I O

E 06
+ o

r?- O i >

tal (b)

01 0.2 0.3 O 01 02 03

i-l

f(l, j Order parameters calculated using (7). (9) and (10) vs. the inverse of
inc sunblock size. l/¿. For A"? = A* = -0.61 a corresponds lo T* =
0.625(phasowuhoricntj t ionalordcronly)and b corresponds to T* = 0.700
(completely disordered phase).
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4. l Order punimeU'rs

In l-'i«. .1 we rcprcscnl. as ;i function of \¡L. the positional and
oricnuilionul order parameters at two dil lcrent temperatures
for A',* = 0.61. Extrapolating their values to I/£. = O w e can
correct the f in i t e si/c effects. Fig. 3(a) correspond* to a phase
wi th orientat ionii l order but without positional order, while
Fig. 3(b) corresponds to a completely disordered phase.
Figure 4(a) displays the evolution of the extrapolated order
parameters against temperature for the same case as before.
Two phase transitions can be distinguished: the positional
phase transit ion 7"p corresponding to the />ip decay and the
orientational transition 7"„, corresponding to the m* and HI,;
decay. This behaviour may be qualitatively associated to a
L.C. behaviour and enables us to identify Tf with the smectic-
ncmatic transition and 7",, with the nematic-isotropic one. For
some cases (for instance A",* = A%* = -0.5) we found
Tp > 7"„. These cases correspond to a P.C. behaviour.

Note that the orientational order parameter has a hyster-
esis zone near T0. This fact indicates that this transition
should be first order.

4.2. Specific hear

Figure 4(b) shows the evolution of the specific heat calculated
from the energy fluctuations against temperature also for the
case Kf = Kf = -0.61. We also extrapolated to I/I = 0
after a numerical smoothing. We can clearly distinguish two
peaks corresponding to the two phase transitions 7"p and T0.

i.o

0 80

I o
£_ 0.60
* o

,-=• 0.1.0

0.20

aso 0.55 060 0.65 0.70

T'
t .O

0 8 0

U 0.60

O i.0

O 20
O.SO 0.55 0.60 0.65 0.70

Fix. •*. Order parameter (a) and Specific heal (b) evolution with tcmprralure
T' for the case K* = K.' = -O.f t l . In Fig. 4(a). the dols correspond lo the
positional order parameter calculated using (X). and the squares correspond
lo ihc oricntalional order parameters calculated usmj: (9) and (10). Tr is the
positional transition where the positional order parameter vanishes, and 7"„
is the first-order oricntalional transition. The noise is due to hysteresis
effects.
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Fig. 5. Section of the phase diagram of the model along the line A',* = K*
A is the phase with long-range positional and orientational order. B, is the
phase with only oriemational order. B, is the phase wi th only positional
order and C is the completely disordered phase. The dashed line corresponds
to first order phase transitions while the continuous line corresponds to
second order phase transitions.

4.3. Phase diagram

We carefully analyzed for 13 different cases with different
values of AT* and AT* the position of the two phase transitions.
In Fig. 5 a section of the phase diagram along the line
AT* = AT* is shown. Note that for sufficiently negative values
of the constants AT,* and AT? (i.e.. higher orientational energies)
we have a L.C. behaviour with 7"0 > 7"p, while for small
values of these constants we have a P.C. behaviour 7"p > 7",,.

All the results are consistent with the hypothesis that the
positional transition is second order while the orientational
transition is first order, at least in the studied cases. These
results are in agreement with other M.C. simulations and a
mean field approximate solution of the model [3. 14].

5. Critical behaviour

We analyzed the critical behaviour of the positional tran-
sition in the L.C. zone. We focused our attention on the ß
exponent of the evolution of the positional order parameter
near the second order phase transition 7"p:

r* - r (13)

7"p was measured from the position of the specific heat
peak extrapolated to L -* x. Then we have adjusted .-I and
ß using a logarithmic fitting to the H;p(7~*) data extrapolated
to L -» oo.

Measurements were made for different values of K* and
Kf on the section of the phase diagram plotted in Fig. 5. For
each case we have also measured the distance between the two
phase transitions 7"p and 7], using the so called McMillan
parameter [4] defined as:

= T„ITa (14)

Figure 6(a) shows the results of the fittings. Note thai
when the two transitions are separated enough we measure
the expected exponent corresponding to the 2-D Ising model,
while when the positional transit ion is closer, the behaviour
changes. Our data seem to indicate tha t the evolution is
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Fig. 6. The effective critical exponent ß against the McMillan parameter M.
(a) Monte Carlo simulation results using the 2-D model proposed in the text.
(b) Experimental values reported by different authors measured using pure
Liquid Crystals or mixtures, x nS5 [12]. + 40.8-40.7 [2]. m CBOOA [2, 15].
O 8OCB [2. 15], A 8CB [2], • 9CB-IOCB [12].

continuous but we cannot state if a uncritical point before
M = 1 exists or not.

Figure 6(b) shows a collection of experimental data from
different authors [2, 12, 15] of the measured (or calculated
from other critical exponents using scaling relations) ß
exponents for different L.C. mixtures against the distance
between the nematic-smectic and the nerr.atic-isotropic tran-
sition also measured using the McMillan parameter:

freedon. Our results indicate t h a t the positional t rans i t ion is
second order while the oricntutional transition is first order
The model allows the possibilit> of s tudy ing two di f ferent
behaviours corresponding to the cases T„ > 7~p and 7~r > T„
that can be quali tat ively compared to a L.C. and a P.C.
behaviour.

Changing some parameters of the humiltoman we can
change the distance between the two transitions and also
overlap them. In the case of the L.C behaviour ( T„ > 7 ~ r ) \ \ e
have measured the ß exponent of the second order positional
transition. We have found that th is exponent changes when
the transition becomes closer to the orientational first order
transition. This behaviour has also been found experiment-
ally in some L.C. mixtures [2, 12].

We suggest two possible explanations of these phenomena.
One explanation is that, in fact, the real ß exponent does not
change, and the exponents measured in our simulations and
even experimentally are only effective because the critical
region related to the positional transition becomes very
narrow when the first order orientational transition is near. A
second explanation is that, in fact, the critical exponents
change due to the coupling of the two phase transitions. This
second explanation has also been proposed in some exper-
imental works [2].

The existence of a uncritical point on the positional tran-
sition line before the point where the two transitions overlap,
observed in some experiments on Liquid Crystals [12], has
not been verified by our simulations. Nevertheless, this pos-
sibility cannot be excluded. More simulation work is needed
in order to resolve this last point.

7NS/rNI (15)

Some authors [12] report the existence of a uncritical point
before and very near M = 1.
Due to the error in the determination of the transition tem-
peratures, this region close to M = I is difficult to analyze
using Monte Carlo simulations.

The two figures 6(a) and 6(b) are not quantitatively com-
parable because they correspond to different physical sys-
tems. Our model is 2-dimensional and thepiitional transition
is associated with an Ising model, while the Nematic-Smectic
transition in L.C. is believed to belong to a 3D-XY model
universality class. In spite of the difference, we suspect that
Fig. 6(a) and 6(b) reflect the same coupling effect between a
positional and an orientational phase transition.

6. Summary and conclusions

We have studied a system exhibiting two phase transitions,
related to positional (Tp) and orientational (7"„) degrees of
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CRITICAL BEHAVIOUR OF A SYSTEM WITH ORIENTATIONAL

AND POSITIONAL DEGREES OF FREEDOM! A MONTE CARLO

SIMULATION STUDY.

ABSTRACT

The critical behaviour of a system constituted by molecules

with a preferred symmetry axis is studied by means of a Monte

Carlo simulation of a simplified two-dimensional model. The

system exhibits two phase transitions, associated with the

vanishing of the positional order of the center of mass of the

molecules and with the orientational order of the symmetry axis.

The evolution of the order parameters and the specific heat is

also studied. The transition associated with the positional

degrees of freedom is found to change from a second order to a

first order behaviour when the two phase transitions are close

enough, due to the coupling with the orientational degrees of

freedom. This fact is qualitatively compared with similar results

found in pure liquid crystals and liquid crystals mixtures.
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I. INTRODUCTION

Systems exhibiting coupling phenomena between different

kinds of degrees of freedom have been extensively studied in

recent years. Experimentally, it is known that such systems

display very rich phase diagrams due to the interplay of the

different degrees of freedom. Many models have been developed in

order to explain these phase diagrams, and have been solved using

mean-field approximations1 and computer simulations2.

In this paper, the focus is on systems with coupling between

orientational and positional degrees of freedom like Liquid

Crystals3, Plastic Crystals4 or some molecules adsorbed onto

surfaces3. These systems are basically constituted by molecules

with a preferred symmetry axis. The positional degrees of freedom

are associated with the movement of the centre of mass of the

molecules in a three-dimensional (or two-dimensional in the case

of Adsorbed Molecules) space, while the orientational degrees of

freedom are associated with the direction of the symmetry axis.

In principle these degrees of freedom are continuous but,

in order to simulate such systems, we will treat them as

discontinuous. Discretization of the position of the molecules

in the space is usually done by means of the so called Lattice-

Gas model6 which has been extensively used to describe Solid-

Liquid and Liquid-Gas phase transitions7. This discretization

allows the possibility of stabilizing long-range ordered phases

in two-dimensional systems8. Moreover, the discretization of the

orientational degrees of freedom has been used, not only on

systems where the symmetry of the interaction potentials clearly
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justify it, like some Plastic Crystals9, but also on Liquid

Crystals10 giving a good agreement with experiments.

One can classify the phases of these systems in four groups.

First, Solid phases (S) with long-range orientational and

positional order that usually appear at low temperatures.

Increasing the temperature, the positional or the orientational

long range order may disappear resulting in Liquid Crystalline

phases (LC) (no positional long range order) or Plastic

Crystalline phases (PC) (no orientational long-range order). At

high enough temperatures, all long range order disappears

resulting in an isotropic Liquid phase (L). We will call Tp (T0)

the temperature at which all the positional (orientational) long

range order vanishes.

In real systems the positional or orientational order

usually does not fully disappear at a given temperature. For

instance in Liquid Crystals between the fully S phase and the LC

phase also called the Nematic phase, there exists other

mesophases like Smectic phases with long-range positional order

in only one direction of the space forming, for example, layered

structures.

Critical behaviour of most of these phase transitions has

been individually studied by models taking into account only the

relevant degrees of freedom at that temperature (for instance the

positional degrees of freedom at Tp) and making some static

approximations on the others. The aim of this paper is to study

by means of U.C. simulation, and in a very simple case, the whole

phase diagram of such systems. The emphasis will be on the

coupling phenomena that appear in the critical behaviour of these
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systems, and which cannot be understood by a model for an

individual phase transition. For instance, some Liquid Crystals

exhibit a change in the behaviour of the Smectic-Nematic phase

transition (associated with the positional degrees of freedom)

from second order, when there is no coupling, to first order when

the orientational degrees of freedom begin to play an important

role11-12. Similar phenomena have been found in micellar

solutions13 and microemulsions14.

In section II we summarize a 2d model that reproduces the

four kinds of phases mentioned above. The phase diagram of this

model has been studied previously by the mean-field

approximation15 and qualitatively compared with the Liquid

Crystals and Plastic Crystals's phase diagrams. Also some Monte

Carlo simulations were performed in order to test the main

features of the phase diagram16. In section III we present the

raw Monte Carlo results. In section IV we focus our attention on

the critical behaviour of the positional transition occurring at

Tp. Our studies indicate that the behaviour of this phase

transition changes from second order to first order due to the

coupling with the orientational degrees of freedom. This fact is

qualitatively compared with existing experimental data of the

critical behaviour of Liquid Crystals found in

literature11«12-17. Finally, in section V we present the main

conclusions of the work.
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II. THE MODEL.

The model is defined on a 2d square lattice of N = LxL

sites. On each site i (i = 1,..,N) we define a scalar variable

SL which takes values 1 or 0 depending on the presence or absence

of a molecule on site i. The number of molecules in the system

is kept constant,

w

¿«i

where c = 0.5 is the coverage or density, and the summation

extends over all the lattice sites. If St = 1 we also define

another variable Rt that takes values among a set of unitary

vectors defining n possible directions in the space. We will

restrict to the case of non polar molecules and only n = 4

possible orientations equally distributed on the lattice plane

(see Fig.la).

This restriction of n = 4 is, of course, quite important and

is made in order to simplify the M.C. simulation of the model.

Nevertheless, a previous Mean Field solution of this model15

suggest that there are no qualitative changes for n>2. Also, the

Monte Carlo simulation of a more restricted but similar model (in

3 dimensions) largely used for the study of the Nematic-Isotropie

phase transition18'19, show that no big differences appear when the

number of directions changes from a continuous to a discrete

small value. It is also worth noting that as we are interested

in the study of the Smectic-Nematic phase transition, that

involves a change in the positional order of the molecules, a
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simplified treatment of the orientational degrees of freedom does

not represent a dramatic approximation.

The Hamiltonian of the system, including only pairwise

interactions , is written as :

n.n n.n a.n.n.

H = J^S^j H- K^SiSj PiR^Rj) + K2 £ SiSj P(Ri,Rj) (2)
i. j i,l i. J

where Zn<n> (En-n-n-) is a summation over all nearest-neighbour

(next-nearest-neighbour) bonds, and J17 K! and K2 are constants.

P is a scalar function of the directions R¿ and Rj defined as:

P(R1,Rj) = 2(cos
2(6i:,)-l)

where QL¡ is the angle between the two directions Rt and Rj.

This orientational interaction is the one proposed by Maier and

Saupe for the study of the order in Nematic phases20.

When Ji<0, the first term of (2) acts as a positional

repulsion between nearest-neighbours (n.n). The other two terms,

with K! and K2 negative, are orientational interaction terms

which favour parallel alignment of the molecules .

In order to simulate this system we will define reduced

units as,

u«_ H T*= if*-— L v •- *• iá\

where T is the thermodynamic temperature of the system and kB is

the Boltzmann constant. With these definitions the Hamiltonian

of the system can be written as,
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