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Figure 6. Representation of X = (N(&(Tq) - N<&(Q))/(N(&(TOO)) - N(&(0)) as a function
of the reduced temperature TjToo^ for the system with or = 0.70(A)and* = 0.75(0).The
behaviour of x witn T* is compared with experimental values of V=(M s(7q) -
Mf )/(A/s(rDO,) - M*) corresponding to two Cu-Zn-AI alloys with Cu atomic fractions
of 0.619 (O) and 0.633 (A).

Forthe two alloys considered here, the composition is: 61.96 at.% Cu;28.09 at.% Zn
for alloy A, and 63.37 at.% Cu; 25.26 at.% Zn for alloy B. The corresponding order-
disorder temperatures are: rDO3 = 460 K and TB2 = 825 K for alloy A, and
rDo3 = 500 K and TB2 = 825 K for alloy B. Following the previous argument, the DO3-
B2 transition should then be suppressed by fast quenches from temperatures above
500 K. Consequently, the effect of the B2 ordering alone on the M% temperature can be
analysed after quenches from Ta temperatures ranging between 500 and 600 K. In figure
6 we have plotted (N<&(TJ - N<&(Tq = 0 K))/(A^(rq = rDO3) - N&(Tq = 0 K))
as a function of rq/rDOj obtained from Monte Carlo simulations for the alloy A^B^,
with x = 0.70 and 0.75. This quantity is compared with experimental values of
(Ms(7q) - M*)/(Ms(TDQ3) — A/s* ) as a function of rq/rDo3 corresponding to the Cu-
Zn-Al alloys considered. M* is the MPT temperature measured after air cooling from
rq = 1093 K and aging at room temperature. After this temperature treatment the
degree of atomic order is very close to the maximum at room temperature. Indeed, we
note that the two curves show the same qualitative behaviour. Up to rDO3, Afs decreases
as rq increases and remains practically constant for Tq above this temperature. This is
the expected behaviour in view of equation (15) and the behaviour of vV^B with tem-
perature ( figure 5). In addition, it is interesting to note that this decrease of both M% and
./V^B after quenches from Tq temperatures in the DO3 region enables us (taking into
account equation (14)) to conclude that C increases in this region. This result means
that for the class of alloy considered here, the term OJ2) > 0.

4. Conclusions

We have studied the atomic order dependence of elastic constants of BCC binary alloys
near the A3B composition. The elastic constants are obtained at T = 0 K for frozen-in
configurations quenched from different temperatures Tq across the stability regions of
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the three phases DO3, B2 and A2. At each temperature Tq, the equilibrium configuration
is obtained by means of Monte Carlo simulations of an Ising model for such an alloy.

Assuming central pairwise additive forces, we deduce that the shear moduli CM and
C" depends linearly on the number of NN (N(j&) and NNN (Nfy) AB pairs respectively,
whereas Cn depends on both N^ and N^. Given that in the DO3 region Nfy exhibits
a more remarkable variation with temperature than N*£b >we expect that C' will depend
more strongly on the state of order than CM. In the B2 and A2 regions N^ and N^
present comparable variations with temperature. Consequently, C' and CM should
exhibit relative variations with order of similar magnitude.

The results show important relative changes of the elastic constant C' with ordering
after quenches from 7q < rDO3, and a nearly constant value when Tq > TDOy This
behaviour is found to be in qualitative agreement with experimental data on the Ms

temperature of Cu-Zn-Al alloys, measured after quenches from temperatures Tq, and
it is independent of the fine detail of the interatomic potential.
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DIFFUSIONLESS FIRST ORDER PHASE TRANSITIONS IN SYSTEMS WITH FROZEN

CONFIGDRATIONAL DEGREES OF FREEDOM

ABSTRACT

Systems which can be described in terms of two kind of degrees

of freedom are considered. The corresponding ordering modes may,

under certain conditions, be coupled one to the other. We suppose

that the primary ordering mode gives rise to a diffusionless first-

order phase-transition. The change of its thermodynamic properties

as function of the secondary ordering-mode state is then analyzed.

Two specific examples are discussed.

First we study a three-state Potts model in a binary system.

Using mean-field techniques, we obtain the phase diagram and the

different properties of the system as a function of the

distribution of atoms on the different lattice sites.

In the second case, the properties of a displacive structural

phase transition of the martensitic type in a binary alloy are,as

a function of atomic order, studied. Because of the directional

character of the martensitic transition mechanism, we obtain that

the entropy dependence on atomic order is very small.

Both models are contrasted. Comparisons with experimental

results are in quite good agreement with theoretical predictions.
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1.- INTRODUCTION

The interplay between different ordering modes can strongly

modify the shape of phase diagrams. Typical examples of such a

situation are magnetic alloys [1,2], and liquids crystals [3], In

the former case the presence of magnetism can influence the atomic

distribution among the different lattice sites. In the second case

the interplay between translational and rotational ordering modes

can even change the order of the smectic-nematic phase transition

[4,5].

We consider the case of systems with two relevant kinds of

internal degrees of freedom, respectively associated with two

different ordering modes. Landau theories with two order parameters

are the natural way to deal with such problems and they have been

investigated during the last 20 years [5,6]. Different coupling

terms between the two order parameters can be included in the

expansion of the free energy depending on the symmetry properties

of each system [7]. The equilibrium values of the order parameter

are then found after minimization of the proposed free energy

functional. Generally speaking, equilibrium coupling effects appear

when the phase transitions associated with both ordering modes are

close one to the other [8].

In this paper we consider that both phase transitions take

place at very separated temperatures. The properties of the phase

transition associated to the primary ordering mode are then studied

assuming the secondary ordering mode can be externally controlled.

The experimental realization of this situation is for instance
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observed in metallic alloys undergoing an order-disorder transition

and a displacive structural transition at a much lower temperature

[9]. In this case the primary and secondary ordering modes are

respectively the deformation associated with the displacive

transition and the configurational atomic order. The interplay

between them comes from the fact that the atomic correlations

between the different kind of atoms can modify the characteristics

of the displacive transition. The configurational atomic order can

be externally controlled in the following way. It is first

established by annealing at a temperature TL and then retained by

quench to lower temperature T£ above the structural transition

temperature. If T£ is low enough to ensure that no diffusion takes

place in the system, by changing T£ in a suitable way, the

displacive structural transition can then be studied in systems

with different internal states [10,11].

We focus our attention in two particular cases. Firstly we

consider a three-state Potts model in a cubic,lattice with two kind

of atoms A and B. The mean-field approximation, allows us to study

how the first-order transition associated with the Potts variables,

is modified when the distribution of atoms over the lattice sites

is externally changed. The goal is then to obtain a complete mean-

field solution of the problem.

Secondly we consider, from a more phenomenological point of

view, the case of bcc alloys undergoing a structural transition of

the martensitic type. This problem has already been considered from

theoretical as well as from experimental point of view. Based on

the displacive character of the transition, it was suggested [11]
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that the entropy change is independent of the ordering state. In

addition, experiments seems to confirm this idea. Here we

reformulate the problem in a more general context and discuss the

results in the light of those obtained in the Potts model system

for which the transition is simple and well understood. We find

that, in general, the displacive character of the first-order phase

transition is not a definitive condition for the entropy change to

be independent on the internal state of the system. Symmetry

conditions play an important role as well and have to be considered

in the discussion. The main reason for the entropy change to be, in

the case of martensitic transitions, nearly independent of the

ordering state is the large elastic anisotropy. We finally compare

the theoretical predictions with available experimental results.
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2.- GENERAL CONSIDERATIONS

The equilibrium condition for a first-order phase transition

to occur is given by :

AP = 0 = AE - TO AS (1)

where AF, AE and AS are respectively the free energy/ energy and

entropy changes at the phase transition and T0 is the equilibrium

transition temperature. In writing equation (1) we have assumed

that the volume change at the phase transition is negligible. In

what follows we denote H-phase and L-phase respectively the high

(stable for T > T0) and low (stable for T < T0) temperature phases

and restrict ourselves to difussionless first-order transitions.

For a system of N atoms, we assume that the state of the

system, associated with externally controlled degrees of freedom,

can be characterized by a state vector a= (a1,a2,. . . .crN) where a¿

describes the internal state of the atom i. aL can be, for example,

a magnetic or an occupation variable. In these two cases, the

internal state is the magnetic or the atomic configurational order

state.

Associated with this internal state, we assume that the system

presents, at a certain temperature Tc far from T0, a secondary phase

transition. In a magnetic system, if Tc « T0, the application of

an external magnetic field provokes a change in the internal state

of the system. In a substitutional alloy, if Tc » T0, and T0 is low

enough, the internal state can be changed by means of a fast quench

as explained in the introduction.

Suppose we now change the internal state of our system from a
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to a+Sa. Then the transition temperature changes from T0 to T0+ST0

which is a solution of the equation:

S(AE) - TO 6(AS) - AS 6T0 = 0 (2)

equivalent to :

S(AE) 6 (AS) ST0
----- (3)

AE AS TO

where S(AE) = AE(a+Sa) - AE(a) and S(AS) = AS(a+Sa) - AS(a). In the

particular case 6(AS)=0, then :

6(AE) S(AE)
ST0 = TO - = - (4)

AE AS
Let us consider that both ordering modes can be described by

scalar magnitudes, and define i\ and Ç as respectively the primary

and secondary order parameters. The free-energy density f of the

system can be written as:

f = fi(il,T) + f2(£,T) + f12(r,,e, T) (5)

Where fl gives rise to a first-order transition associated to 11 . In

Landau theory f is, in the absence of external fields, usually

written as:

f = ai(T - Tcl)Ti
2 + iMl) + a2(T - TC2)E

2 + iME) + kiix*i2(̂ T) (6)

where the integer x and the functions ylt i|i2 and i|»12 depend on

symmetry properties of the system.

Suppose now that £ remains constant, AS is then given by:

- - _ . (-2 — 2} i2ai(T1 T1° ) ~~ tl° '

t] - îfo is the jump of the order parameter at the first-order

transition point. TJ and f)0 are solutions of the equations:
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2a1(r-reJ)
(8a)

(8b)

The first equation comes from the minimization condition df/di\ = 0,

and the second from the condition Af = 0 that determines the

position of the equilibrium first order transition. Multiplying

equation (8a) by (T\ + TJJ , equation (8b) by (-2) and taking into

account equation ( 7 ), one obtains that only when x = 2 and ty12 does

not show and explicit dependence on temperature, AS is independent

of Ç. This kind of coupling is merely energetic and its effect is

only to induce a shift on the transition temperature.
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3.- EXAMPLE: BINARY ALLOY WITH THREE-STATE POTTS MODEL VARIABLES

Let us consider a d-dimensional lattice with N sites and z

nearest-neighbours per site. On each site i = 1, fN, we define

two variables. A spin-like variable a¿ which takes value +!(-!)

when the site i is occupied by an atom A(B) and a three-state Potts

variable SL = (1,2,3) which describes the state of the particle

sitting on the site i.

We then consider the following hamiltonian:

n.n.

H- £0(5̂ -5.,.) [JMo (a -1)0(0 .,.-!) +

+ .7̂ 0(0 ,+1)0(0,,-!) + (9)
+ «7̂  (0̂ -1)0(0̂ +1) +

Where the summation extends over all nearest-neighbour (n.n) pairs.

S is the Kronecker delta function (S(0)=l, or 0 otherwise), and the

different pair interactions are Ĵ , Ĵ , and JBB

In the present work we restrict ourselves to the case of

stoichiometric composition NA/N = 1/2, being NA (NB=N-NA) the number

of A atoms. Given that NA is constant, we have the following

conservation condition:

(10)

Let be JAB< JAA^JBB
 anc* further assume that the geometry of the

lattice is such that the ground state of the system is formed by

two equivalent sublattices, called + and -, occupied by A and B
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atoms respectively, and with all the particles in the same Potts

state. The square, cubic and b.c.c. lattices apply to this case

with z = 4, 6 and 8 respectively. This ground state is six-fold

degenerated and its energy is E0 = J& z N/2.

We now introduce the occupation numbers N„+ and N0.~ defined

as the number of particles in sublattice +(-) of kind a (A or B) in

Potts state S (1,2 or 3).

In mean-field approximation the hamiltonian can be written as:

(11)
4 E (J*A *&Nfc + J*B (*£* + *£A) + JBB
« -

Let us choose one of the six ground states as the starting

point of our mean-field analysis. For instance the configuration

with: NA1
+ = N/2, NB1'=N/2 and all the other occupation numbers equal

to zero. Using symmetry considerations we can write: N̂ * = N̂ *,

NB2+=NB3*, NA2"=NA3' and NB2" = NB3'. This is equivalent to restrict the

study to only one branch in the full order-parameter space [12,13].

Provided that the configurational degrees of freedom (a) are

frozen, the entropy of the system can be written, except constants,

as:

where kB is the Boltzmann constant and;
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»f. 2 (13)

Let us define now the following four order parameters corresponding

to the Potts variables:

oí- *1"Jgr" (14)

The total number of A and B particles is constant and equal to

N/2. Therefore, we can define a unique quantity nip that controls

the amount of A and B atoms in each sublattice and that we consider

to be externally controlled. This parameter is the one that would

depend on the quenching conditions. It is defined as:

L-l (15)

nip = 0 corresponds to the case in which the A and B atoms are

randomly distributed on the lattice sites. The case mp = 1 means

that the A and B atoms are perfectly arranged in the + and -

sublattices respectively.

In order to simplify the solution of the problem let us

consider only the case JM = JBB = - J.J0 with JAB = - J0- J(<1) is a

parameter and J0 is a positive number that will be taken as unit of
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energy. With these definitions, the mean-field free-energy per

particle (in z J0 units) can be written as:

~(~h] \

(16a)

where T* - kBT / zJ0 and

On) = A <l+2jB)ln[| (l+2jn) ]+-| {l-jn)ln[-i (1-a)] (16b)

A minimization with respect to the four order parameters, defined

in (14), yields:

mo (mi) is the order parameter which informs about the Potts order

of the rich (poor) component. The temperature dependence of m0 and

m! is given by:

= 2 r in. (18)

2 r» Ini 1*2a>· ] (19)
V *~*i y
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We can now analyze some simple solutions :

i) Totally disordered alloy (mp = 0) with J = 0: In this case the

solution of equations (18) and (19) gives TOO = ir̂  = m. The

system shows a Potts-like first-order phase transition. The low

temperature limit of the coexistence region is T*]. = 1/6, while the

upper" one is T*u = 0.1821. A careful study of the stability of these

solutions gives an equilibrium transition temperature of T*. =

0.1803, with an entropy change of AS = 0.23105.

ii) l>nip>0 and J = 0: The case of J = 0 is, actually, a very

particular case because the Potts transition splits off in two

decoupled first order transitions respectively associated to the

order parameters mo and nij. The reason is the lack of interaction

between the AA and BB pairs.

iii) mp=l, J « 0: In the limiting case of mp=l, the order parameter

mj becomes meaningless because in the fully configurational ordered

case there are no misplaced atoms on the sublattices. The m<, order

parameter suffers a first-order phase transition similar to the one

described in i) but including a factor of two in the temperature

scale (T*. = 0.3607).

iv) In the case of 1>J>0 (J>1 is not considered because we are only

studying the case of small J^ and JBB) the two order parameters are

always coupled, and a unique first order phase transition occurs.

Fig 1 shows the phase transition line for different values of J. In

order to characterize better the transition is also useful to study

AS which is shown in Figure 2, for J=0.2, 0.5, and 1. It is

interesting to notice that as a consequence of the frozen

configurational order (controlled by mp) a minimum on AS appears.
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Only in the trivial limit J=l, where the distinction between A and

B atoms vanishes, there is no influence of the configurational

order on the phase transition point. Fig.3 shows the values of the

jump in the order parameters at the transition point. The

continuous line corresponds to rrio and the dashed line to n̂ .

In this example of diffusionless first-order transition, the

entropy change AS shows a dependence on the internal order state.

This dependence is non-monotonic and exhibits a minimum at a given

value of nip which in turn depends on the interaction.
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