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Abstract

This thesis is composed of two distinct but related research topics. In the
first one, a seemingly viable theoretical framework by which gravity emerges
dynamically using the mechanism of spontaneous symmetry breaking of
some more fundamental theory is developed. We start from a theory with-
out any predefined metric, only an affine connection is included from the
start. We demand invariance of the theory under a global SO(D) x GL(D)
symmetry. The relevant degrees of freedom are those of two non-standard
species of fermions coupled to the (spin) affine connection. We show that
whenever these fermions condensate in a bilinear acquiring a vacuum ex-
pectation value different from zero, the original symmetry of the theory
is spontaneously broken down to the diagonal subgroup SO(D) and Gold-
stone bosons appear as a result. The exact value of the vacuum is computed
for vanishing connection and the equations of motion investigated. Then
we allow small perturbations above this vacuum and calculate the effective
action induced by these perturbations. We show, both for two and four
dimensions, that the new degrees of freedom emerging in the effective the-
ory correspond precisely to those of the graviton. The relation between the
metric excitations and the spin connection appears as an equation of mo-
tion of the model, which is implemented perturbatively considering small

deviations with respect to a zero connection.

In the two-dimensional case a heat kernel calculation is attempted to derive
the effective action. The final result is proven to be covariant in spite of
the apparent loss of covariance in the intermediate steps. Nonetheless, a
concrete result cannot be obtained due to the fact that the expansion pa-
rameter used in the heat kernel calculation does not univocally correspond

to an expansion in derivatives of the fields involved. One would have to

iii



calculate the infinite series of terms to reconstruct the numerical factors
in front of each term in the effective action. In light of this, we turn to a
one-loop diagrammatic calculation assuming conformally flat perturbations
to obtain the final result which corresponds to the Einstein-Hilbert (EH)
theory with a cosmological constant plus higher dimensional operators. The
number of divergences appears to be very limited, presumably due to the
scarcity of counterterms one can write without making use of a metric. De-
spite not constituting a proof of renormalizability our results point towards

this possibility.

In the four-dimensional case, the diagrammatic calculation is extended us-
ing a more general perturbation with four degrees of freedom. Making the
assumption that divergences are independent of the precise realization of
the symmetry (i.e. whether the global symmetry is broken or unbroken in
the vacuum), the number of possible counterterms, despite growing with
the dimensionality, stays very limited due to the lack of a metric in the
unbroken phase. The number of divergences also grows but all of them can
still be identified and reabsorbed in the available counterterms. Although
the calculations are substantially more complicated in this case the nice
properties found in the two dimensional case seem to persist. The resulting
effective theory is again that of Einstein-Hilbert with a cosmological con-
stant A, the value of which is not determined a priori by the model, plus
higher dimensional operators. It would be natural to assume the value of A
to be related to the symmetry breaking scale, however the model possesses
enough freedom to fine-tune it to any observed value (the smallness problem
derived from the small value of A that is preferred by observations is there-
fore not solved). The divergent pieces combine themselves to reproduce the
volume form (as in D = 2) and also the curvature term, which in D = 4
is expressible entirely in terms of a differential form and hence requires no
metric. Thus the curvature term /gR can univocally be reconstructed.
Any other divergence found to the order calculated (that is O(R?)) can be

identified with particular pieces of the Gauss-Bonnet term.

The second topic of study is somehow motivated by the natural appearance
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of the cosmological constant in the effective theory. A non-zero cosmological
constant is a desirable thing from the observational point of view but its ori-
gin is still unclear. Its dynamical generation in models of emergent gravity,
in spite of some claims to the contrary, constitutes a hint that it could be an
intrinsic property of space-time itself rather than an effective description at
very large scales. Therefore we investigate the effect of A in the propagation
of gravitational waves (GW) and the possibility of detection of such effects
assuming its presence at any scale. We expose a complete study of the wave
equation and its solutions in the linearized theory of gravity for different
gauge choices when A is included. These coordinate choices are studied in
full detail. The importance of the number of terms retained in the lineariza-
tion process is also addressed. The final solutions are expressed in terms
of Friedmann-Robertson-Walker (FRW) cosmological coordinates, those in
which the universe is isotropic and homogeneous. These are the relevant
coordinates for observation. We show how the effects of the cosmological

constant, although being very small, are not totally negligible.

Pursuing this line of thought, we finally investigate the observational effects
of the cosmological constant in the detection of gravitational waves in pulsar
timing arrays (PTA). Using the wave solutions derived for de Sitter space-
time we compute the statistical significance of the timing residuals induced
by GW, originated in far away violent phenomena, in the measured periods
of an array of real pulsars. The results show a dependency of the significance
in the angle subtended by the line from the observer (Earth) to the pulsars
and the line from the observer to the source. A large enhancement is found
for a particular value of the angle in contraposition to the results in flat
space-time where no enhancement is observed. The position of this peak
depends strongly on the value of the cosmological constant and therefore,
although our results are very preliminary, could represent an alternative
way of determining the value of A while being a direct confirmation of the

‘local’ existence of the cosmological constant.
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Chapter 1

Introduction

Gravitation has ruled the development of the Universe since the very dawn of time.
Long before humankind started wondering about the apparent motion of the stars and
planets, its machinery was already keeping everything running as we observe it today.
The desire to understand the observed phenomena has been present in every generation
of mankind; there have always been great minds pushing the boundaries of what was
known. Probably among the first documented dissertations about gravity we find the
work of Aristotle in the 4th century BC [I]. For him the motion of bodies depended on
their composition in terms of the ‘elements’ and their position tended to the ‘natural
place’, reaching it without need of pull or push. His insight was literally centuries away
from our present knowledge but nonetheless it shows a remarkable will to make sense
of Nature. In the 7th Century the Indian mathematician Brahmagupta stated ‘Bodies
fall towards the earth as it is in the nature of the earth to attract bodies, just as it
is in the nature of water to flow’ [2]. This persistent will to understand Nature led
to the first modern attempts to find systematic explanations to the observed behavior
of bodies. Galileo Galilei was the first to assert that all bodies are accelerated in the
same manner towards the earth, contrary to Aristotelian thoughts [3]. That was the
early 16th century. His work was pointing towards the first true understanding of
gravitation. However, we had to wait almost a century for Isaac Newton to realize the
key was in the relation between the distances of the masses. With the inverse-square
law published in the Principia [4], Newton was the first man capable of translating into
a single solid mathematical description two apparently very different phenomena such

as the fact that apples fall to the ground as well as the fact that the Earth revolves



1. Introduction

around the Sun. This revolution in the understanding of gravity was bound to endure
more than two centuries.

When Albert Einstein wrote in 1915 the theory of General Relativity (GR) he not
only made a giant leap forward in the understanding of gravitation, he notoriously
changed the rules of the game. Two masses did not exert force on each other, the
concept of force being lost. They simply curved the space-time around them making
other masses ‘roll’ along these curves. The notion of space-time, with the inclusion of
time as just another dimension of the reality we perceive, was one of the most crucial
findings of the 20th century. This change of perspective was so deep and brilliantly
confirmed by early observations [5] that still nowadays GR, as originally formulated by
FEinstein, is the best and most complete description we have at hand of the gravita-
tional interaction. Some of its most striking predictions have been confirmed; no one
doubts about the existence of black holes for instance. Some other predictions such
as gravitational waves still await for experimental evidence to be confirmed (although
indirect evidence from energy balance in some neutron binaries exists [6]).

Of course Einstein did not solve all questions related to gravitation. At a time
where the quantum world was quickly unraveling, GR did not provide an easy way to
accommodate these new ideas into the gravitational scales. In fact every attempt to find
the true quantum nature of gravity has run into trouble. There is no explanation as for
why gravitation is so weak compared to the other fundamental interactions. There is
ambiguity on whether a cosmological constant, i.e. a vacuum energy, should be included
in the formulation and how to ultimately justify its value. And most importantly an
ultraviolet (UV) completion for most proposals has been lacking so far. Among these
proposals, probably the one that has drawn more attention, and in a way has been
the most successful, is string theory. A consistent quantum theory of gravity can be
constructed in its framework although at present it seems to be yielding more questions
than the ones it aims to answer.

It was the late sixties when physicists started considering the possibility that the
difficulties in quantizing gravity were in reality due to the lack of fundamental degrees
of freedom to quantize. That the gravitational interaction is not fundamental as such.
At the root of some proposals back at that time there was the idea that gravity emerges
as a low energy effective theory. Probably at the kick off of these theories we find the
work by Zel’dovich and a little later by Sakharov [7]. The first author worked out



the effect of the vacuum quantum fluctuations on the cosmological constant resulting
in a value different from zero for the latter, and the second one complemented this
work by assessing how quantum fluctuations above this non-trivial vacuum in a field
theory could in general yield the dynamics of Einstein-like effective theories. The
technical difficulties they encountered relented the progress of the field for some years.
Meanwhile, already in the early seventies, Salam and coworkers studied conformal group
symmetries in the framework of non-linear realizations [§]. Although they did not aim
at solving the Quantum Gravity problem, some insight was gained on regarding general
covariance as a spontaneously violated symmetry, and in the same sense gravitons as
Goldstone bosons. Ogievetsky and coworkers pursued the group theory approach a
little after [9]. Using already the analogy with quantum field theories (QFT) such as
the meson chiral theory, they were able to prove how theories invariant under certain
desirable symmetries (affine and conformal symmetries for instance) could result, after
undergoing a spontaneous symmetry breaking, in effective theories whose equations of
motion were those of Einstein theory.

The literature is extensive and quite some proposals have seen the light since the
seventies. Breaking of different symmetry groups (Lorentz, diffeomorphisms,...) has
been studied and the particle yield of the corresponding effectives theories worked out.
As common features for any well-behaved QFT following this program we find the
generation of a curvature-like term; this is, Einstein-Hilbert (EH); and a cosmological
term as well, although this is disputed by some authors (such as Tomboulis [10]).
Major stumbling blocks have to do with the interpretation of the theories before the
symmetry breaking and with the ultimate UV behavior of the effective theories. Since
the eighties, when the Weinberg-Witten theorem was published, even the generation of
massless spin-two bosons as Goldstone bosons was questioned as a matter of principle.

As mentioned, some of these proposals have gone so far as suggesting that there are
no fundamental degrees of freedom at all associated to the gravitational interaction,
gravity being a sort of ‘collective’ or ‘entropic’ effect. Some, if not all, of these proposals
fail to reproduce the known properties of gravity or to be specific enough to be falsified.

An issue one has to bear in mind is how to justify the inclusion of some predefined
metric structure before the symmetry breaking. Most proposals rely on a predefined
notion of geometry. Its inclusion eases the calculations and as a result one can obtain

effective metrics according to those in GR but the interpretation of this a prior: input
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is obscure given that the corresponding degrees of freedom should be available only
after the symmetry breaking. Apparently, only Russo and Amati [II] in the early
nineties, and also Wetterich [12], proposed a model in which the geometrical degrees
of freedom were generated dynamically from a theory without any predefined metric
structure. Their results were compelling and already pointed it should be possible to
reproduce in a renormalizable fashion the EH action from a fundamental theory with no
metric. Their proposals, however, lacked an extensive study of the symmetry breaking
mechanism and ultimately of the particular properties of the effective theory obtained,
mostly due to their technical complexity. Shortly after the publication of our model,
a proposal along these lines by Tumanov and Vladimirov [I3] appeared. In a way it is
the most similar proposal to ours in the literature, although they include explicitly a
vierbein from the start in the fundamental theory.

Following all this knowledge, the point of view adopted in this thesis is to work
out a mechanism by which gravity, understood as EH gravity, is consistently obtained
from a theory without any predefined metric structure. The real significance of the
fundamental theory that yields this result is unknown. As most proposals, we aim at
providing a plausible explanation to the ‘why’ admitting we do not understand or try
to make sense of the ‘where from’.

The line of thought we use is to exploit the present knowledge of effective quantum
field theories developed during decades in the field of particle physics. In particular,
we will construct an analog of Quantum Chromodynamics (QCD) and its effective low
energy modelization chiral theory. Looking closely at the properties of these theories
and studying the mechanism by which the effective action is obtained; that is, sponta-
neous symmetry breaking, we realize most of the key features present in particle physics
allow for an analog in gravitation. Exploiting this analogy to the end we will be able
to construct a fundamental theory that will be the equivalent of QCD for gravity, and
which yields as an effective theory nothing but EH gravitation (which would be the
analog of the effective chiral theory). The guiding principles to construct such a theory
will be covariance, locality and renormalization group (RG) relevance. Without the
first two no information can be extracted form the calculations and the third one is the
guide behind the perturbative calculation. Since we truly want gravity to emerge from
scratch, the fundamental theory will not contain a metric whatsoever. All the geomet-

rical degrees of freedom will be obtained dynamically. However, one needs to assume



some priors. An affine connection defining parallel transport of vectors on a manifold
will be included from the start and later determined via equations of motion in terms of
the spontaneously generated metric. This defines the differentiable pseudo-topological
manifold constituting our starting point.

A key feature of the program developed in this thesis relies in the impossibility of
constructing an unlimited number of counterterms in terms of the fundamental degrees
of freedom, which contain no metric before the breaking. This, unavoidably, limits
the number of divergences in the broken phase too. And gives a hint of the plausible
renormalizability of the theory.

With all these ingredients we carry out a one-loop perturbative calculation obtaining
as effective action, both in D = 2 and in D = 4, precisely EH plus a cosmological
constant. So not only GR with no divergences is obtained but also an adjustable
cosmological constant emerges in a natural way.

The question of whether the cosmological constant is a part of the Einstein equations
traces back to Einstein himself. He famously referred to its inclusion as the ‘biggest
blunder of my life’. Later on with the confirmation that the universe is exponentially
expanding, the presence of a vacuum energy (unavoidable if gravity is emergent) is a
convenient way to accommodate the observations.

This is the linking point between the first part of this thesis and the second. Since
we naturally generate a cosmological constant it is natural to interpret its presence as
something necessary and not merely optional. Under our point of view, the role of the
cosmological constant will be fundamental, meaning we will take it to be an intrinsic
property of space-time rather than an effective description only relevant at very large
scales.

In our work, we will be interested in the effect that A has in the propagation of
gravitational waves, an ingredient of Einstein theory that has eluded confirmation so
far, and in the possibility of assessing its influence in ‘local’ systems.

The study of the relevance of the cosmological constant in local measurements
(meaning measurements that involve sub-cosmological scales) has received growing at-
tention in the last decade. Sereno and Jetzer [14] in 2006 set a loose bound on the
value of A from the precession of a gyroscope, the change in the mean motion and the
periastron shift of a massive body and, finally, gravitational redshift within the solar

system. Although not being competitive with other cosmological estimations these
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bounds suggest the universality of the cosmological constant. Between 2007 and 2009
different groups investigated the influence of A in the bending of light from distant
objects. Very different results were obtained. First Khriplovich and Pomeransky [15]
found no indication of any influence, Sereno [16] concluded one year after that the
effect was very small while Rindler and Ishak [17] finally amended the previous work
by stating that, although small, the effect was appreciable. Bernabeu and coworkers
[18] in 2010 published a study of the linearized Einstein equations in the presence of A
finding some very interesting solutions that have motivated part of this thesis.

The inclusion of A in Einstein equations has an obvious and immediate consequence.
Even in the absence of a source it produces a non-trivial curvature of space-time (de
Sitter). Therefore, it is expectable that the propagation of waves differs form that of flat
space-time (Minkowski). The logic behind the usual treatment of gravitational waves
is to perform the study in the linearized version of Einstein equations. That is possible
since one considers waves to be a small perturbation above the background. Then one
is to make a coordinate choice and solve the equations, which in the linearized version
decouple and are easily solvable. When the cosmological constant is added, new terms
appear in the linearized equations. How many of this terms must be retained is one of
the questions answered in this work. We also perform a careful study of the importance
of the coordinate choice, crucial for the present discussion. A gauge choice is needed
to solve the equations but the meaning of the different coordinate frames is not always
clear. In fact, the only coordinate system we can make sense of is the cosmological
one, i.e. that one in which the Universe appears uniform and isotropic. However, this
particular choice makes it impossible to linearize the equations in the present set up.
The precise meaning of this linearization will be clear later. To solve the equations we
must resort to the usual choice, the Lorenz gauge. Or alternatively, to a gauge choice
we will name A gauge. In these choices the equations are closely related to those of flat
space-time and can be solved. It can be shown these coordinates correspond to nothing
but different parametrizations of a Schwarzschild-deSitter (SAS) space-time. Once the
wave functions are found one would like to transform them into FRW coordinates so we
can make observable predictions. The change of coordinates taking the solutions from
SdS to FRW is an intricate one but can be worked out nonetheless. The transformed
wave functions get modifications in their amplitude and in their arguments proportional

to fractional powers of A due to the change of coordinates and proportional to integer



powers of the cosmological constant due to the higher-order terms retained in the
equations. The dispersion relation of the waves is modified acquiring both an effective
frequency and an effective wave numbeif] Their amplitude grows with the distance and
they are redshifted as they move away from the source, but in a different way from the
usual gravitational redshift of electromagnetic radiation.

Finally we focus on pulsar timing arrays (PTA), one of the most promising methods
to obtain the first direct observations of gravitational waves. There are other possible
types of experiments capable of obtaining GW signals in the coming years. Ground
based GW detectors such as LIGO can reach sensitivities down to ~ 10723 with optimal
sensitivity in the region between 10 Hz and 10 Hz [19]. The space mission LISA will
reach a similar sensitivity in the range 1072 Hz to 102 Hz but will actually be able
to set relevant bounds on a more extended range of frequencies [20] (if this mission
eventually flies). The theoretical framework developed in this thesis, however, is aimed
to be useful for experiments such as the International Pulsar Timing Array project or
the Square Kilometer Array project [21, 22]. These are sensitive to lower frequencies
v < 107* Hz, and although for a time their sensitivities only reached ~ 107! going up
to ~ 10~ for v ~ 107'0 Hz, they are expected to have collected enough data in the
upcoming years to improve notoriously this sensitivity.

PTA are suitable detectors for very low frequency gravitational waves form different
sources, as super massive black hole binary (SMBHB) mergers or the relic gravitational
wave background. To obtain the signal a number of pulsars is simultaneously observed
recording the variations in the time of arrival (TOA) of the electromagnetic signal of
the pulsar, these are the timing residuals. These correlated signals are isolated and can
be compared to theoretical models to infer if they are caused by gravitational waves
passing through the whole system. In the present study we do not consider the timing
residuals in the periods caused by the Earth proper motion or any cause other than
that of gravitational radiation. The usual theoretical approach to calculate timing
residuals for waves is to use plane waves propagating in flat space-time in the models
and to include the effect of the expansion of the universe only through a redshift in
the frequency, that is, frequencies are redshifted ad hoc to account for the expansion

of the Universe. Our goal is to determine the changes that occur in the results when

*This is not saying the graviton has a mass, but it reflects the properties of its propagation as seen

by an observer equipped with a Lorentz metric.
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the more realistic wave front beforementioned, including the effect of A, is used. We
find notorious differences. In particular, the angular distribution of the pulsars with
respect to the source will be fundamental in the relevance of the observations. A great
enhancement is found for a particular value of the angle subtended by the line observer-
pulsar and the line observer-source when A is included. This peak depends noticeably on
the value of the cosmological constant. And, if observed, could represent an independent
measurement of the value of the cosmological constant at sub-cosmological scales. We
carry out a detailed study of the statistical significance of the timing residual caused
by GW in a real array of pulsars and determine its relevant dependencies concluding
that the cosmological constant has a clear effect on these observations. Its value could
eventually be ‘locally’ measured. In fact, this enhancement could enormously facilitate

the first direct measurement of GW.



Chapter 2

Gravity as an emergent

phenomenon

Einstein formulated General Relativity almost a century ago and we still have little or
no clue as to the true quantum nature of gravity.

String theory has been for many years one of the most prolific and promising pro-
posals to construct a consistent perturbative quantum theory of gravitation. The price
to pay, however, is a radical modification of quantum field theory, including the ac-
ceptance that we live in a world with more than four dimensions. String theory in its
present formulation is also incapable of selecting a unique vacuum, in particular it does
not shed light at present on the fact that we live in a world where (g,,) # 0. Other
modifications of gravity that include extra dimensions, although extremely interest-
ing from a conceptual and phenomenological point of view, typically lack a ultraviolet
completion and therefore should probably find their ultimate justification in specific
compactifications of string theory.

Less popular alternatives, but of considerable interest nonetheless, are the search for
non-trivial ultraviolet fixed points in gravity (asymptotic safety [23]) and the notion of
induced gravity [7]. The former approach is the one pursued by exact renormalization
group practitioners [24] and by lattice and numerical techniques such as Lorentzian
triangulation analysis [25]. Some problems at the root of these proposals are the lack
of an accurate derivation of the fixed points and the interpretation of the space-time
at sub-Planckian scales. Ultimately, some authors argue that any attempt to probe

the energy scales involved would lead to the formation of black holes (a sort of natural
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cut-off ) emptying these proposals of any falsifiability [26]. Lattice analysis only require
some pre-metric input, in particular a notion of causality (hence transport of a time-
like vector) in Lorentzian gravity formulation. These theories are discretized and their
continuum limit is not always straightforward. Lorentzian triangulation yielded very
interesting results in two dimensions [25]. Their extension to four dimensions is possible,
and although smooth manifolds can be obtained, there is still a long way to go before
safe conclusions can be drawn. Induced gravity advocates that a possible explanation of
the relative weakness of gravity as compared to other interactions is that it is a residual
or induced force, a subproduct of all the rest of matter and interaction fields. A usual
problem of this approach is the obtention of the wrong sing for Newton’s constant [7]
and it is unclear that it may yield massless gravitons at all. All these proposals also rely
on the introduction of a metric from the very beginning. How to justify its inclusion,
even if it is just a trivial metric, is an unresolved issue.

Another interesting proposal is to consider gravity as an entropic force caused by
changes in the information associated with the positions of material bodies [27]. This
is a bold proposal that deserves consideration, but seems at the moment far too spec-
ulative.

It has been pointed out several times in the literature (see e.g. [0, 28]) that
gravitons should perhaps be considered as Goldstone bosons of some broken symmetry.
This is exactly the point of view adopted in Chapters 3 and 4. This idea goes probably
back to early papers by Salam and coworkers [§], and Ogievetsky and coworkers [9], if
not earlier [29], but a concrete proposal has been lacking so far (see however [11],12],13]).
By concrete proposal we mean some field theory that does not contain the graviton field
as an elementary degree of freedom. Ideally it should not even contain the tensor 7,
as this already implies the use of some background metric. Indeed we would like to see
the metric degrees of freedom emerging dynamically, like the pions appear dynamically
after chiral symmetry breaking in QCD. Furthermore, if possible, we would like the
underlying theory to be in some sense ‘simpler’ than gravity, in particular it should
be renormalizable. One could then pose questions that are left unanswered in gravity,
such as the fate of black hole singularities and the counting of degrees of freedom.

The dynamical generation of geometry, combined with the usual renormalization
group arguments have rather interesting consequences. Geometry and distance are in-

duced rather than fundamental concepts. At sufficiently short scales, when the effective
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action does not make sense anymore, the fundamental degrees of freedom emerge. Be-
low that scale there is not even the notion of distance: in a sense that is the shortest
scale that can exist. This precludes the existence of an ultraviolet fixed point advo-
cated by some [23] but also indicates that at short distances gravity is non-Wilsonian

as suggested by others [30] in an holographic context.

2.1 The low-energy effective action of QCD

The four-dimensional chiral Lagrangian is a non-renormalizable theory describing ac-
curately pion physics at low energies. It has a long history, with the first formal studies
concerning renormalizability being due mostly to Weinberg [31] and later considerably
extended by Gasser and Leutwyler [32]. The chiral Lagrangian contains a (infinite)

number of operators
L= T o,U0"U" + a1 Tr 9,U8"UT9, U0 U + axTr 0, U, UTHUSUT + ..., (2.1)

U = expin/fr, T =7n%7/2,

organized according to the number of derivatives
L=0p*+00p") +01°% + ... (2.2)

Pions are the Goldstone bosons associated to the (global) symmetry breaking pattern
of QCD
SU(Q)L X SU(Q)R—)SU(Q)V. (23)

The above Lagrangian is the most general one compatible with the symmetries of QCD
and their breaking. Locality, symmetry and relevance (in the renormalization group
sense) are the guiding principles to construct £. Renormalizability is not; in fact if
we cut-off the derivative expansion at a given order the theory requires counterterms
beyond that order no matter how large the order is. Note that, although the symmetry
has been spontaneously broken, the effective Lagrangian still has the full symmetry
U — LUR' with L and R being SU(2) matrices belonging to the left and right groups
respectively.

The lowest order, tree level contribution to pion-pion scattering derived from the

previous Lagrangian is ~ p?/f2. Simple counting arguments show that the one-loop

11



2. Gravity as an emergent phenomenon

chiral corrections are ~ p*/(1672 f2). Thus the counting parameter in the loop (chiral)

expansion in D =4 is
2
p

— . 2.4
1672 f2 (24)
Each chiral loop gives an additional power of p?.

At each order in perturbation theory the divergences that arise can be eliminated

by redefining the coefficients in the higher order operators
Ci
o — o+ —. (2.5)
€

In addition to the pure pole in €, logarithmic non-local terms necessarily appear. For
instance in a two-point function they appear in the combination
2

% + log _Iu—];, (2.6)
p being the external momentum. Note that the cut provided by the log is actually
absolutely required by unitarity. All coefficients in the chiral Lagrangian are nominally
of O(N) (being N the number of fermions). Loops are automatically suppressed by
powers of N, because f2 ~ N appears in the denominator, but they are enhanced by
logs at low momenta.

We have also acquired experience from chiral Lagrangians in the use of the equations
of motion in an effective theory: at any order in the chiral expansion we can use the
equations of motion derived from previous orders. For instance, using that at the lowest
order UOUT — (OU)UT = 0 (from the O(p?) Lagrangian), one can reduce the number
of operators at O(p?).

2.2 Is gravity a Goldstone phenomenon?

The D = 4 Einstein-Hilbert action shares several remarkable aspects with the pion
chiral Lagrangian. It is a non-renormalizable theory as well as it is also described,
considering the most relevant operator (we ignore here for a moment the cosmological
constant), by a dimension-two operator containing in both cases two derivatives of the
dynamical variable. Both Lagrangians contain necessarily a dimensionful constant in
four dimensions: Mp, the Planck mass, is the counterpart of the constant f; in the

pion Lagrangian (of course the value of both constants is radically different). Both

12



2.2 Is gravity a Goldstone phenomenon?

theories are non-linear and, finally, both describe the interactions of massless quanta.

The Einstein-Hilbert action is

L= MJ%V —9gR + Lyatter, (27)

where as just mentioned R contains two derivatives of the dynamical variable which is

the metric g,,,,

Ry = 0,1, — 9,10, + rgarﬁy - gyrﬁa, (2.8)
1
Flg = 597P (659;)0: + 8agpﬂ - 8pgaﬁ) . (2-9)

In the chiral language, the Einstein-Hilbert action would be O(p?), i.e. most relevant,
if we omit the presence of the cosmological constant which accompanies the identity
operator. Arguably, locality, symmetry and relevance in the renormalization group
sense (and not renormalizability) are the ones that single out Einstein-Hilbert action
in front of e.g. R2.

Unlike the chiral Lagrangian, the Einstein-Hilbert Lagrangian, or extensions that
include higher derivative terms, has a local gauge symmetry. Indeed, gravity can be
(somewhat loosely) described as the result of promoting a global symmetry (Lorentz)
to a local one (for a detailed discussion on the gauge structure of gravity see e.g. [33]).
This means that the gauge symmetry that is present in gravity will in practice reduce
the number of degrees of freedom that are physically relevant.

Exactly like the chiral Lagrangian, the Einstein-Hilbert action requires an infinite

number of counterterms

L= Mz/—gR+ a1vV/—gR* + aov/—g(R)* + asvV/—g(Ruvap)* + - .. (2.10)

The divergences can be absorbed order by order by redefining the coefficients «; just
as done in the previous subsection for the pion effective Lagrangian. Power counting in
gravity appears, at least superficially, quite similar to the one that can be implemented
in pion physics. Of course, the natural expansion parameter is a tiny number in normal

circumstances, namely
p*/16m° M3 or V?/167*M3,  R/167°M3, (2.11)

making quantum effects usually quite negligible. There are some subtleties when matter

fields are included (see [34] for a discussion).
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2. Gravity as an emergent phenomenon

Like in the pion chiral Lagrangian non-local logarithmic pieces accompany the di-

vergences. In position space they look like

%—l—log Zj, (2.12)
where V is the covariant derivative on symmetry grounds, V? reducing to —p? in
flat space-time. These non-localities are due to the propagation of strictly massless
non-conformal modes, such as the graviton itself. Therefore they are unavoidable in
quantum gravity. Notice that the coefficients of these non-local terms are entirely
predictable from the universal properties of gravity.

Let us use ‘chiral counting’ arguments to derive the relevant quantum corrections
to Newton’s law (up to a constant). The propagator at tree level gets modified by
one-loop ‘chiral-like’ corrections
1

2

1 p? p? p? )
- = |14+4A=— +B==log . 2.13
p p? < M3 (2.13)

2 2
M2 °ME
Consider now the interaction of a point-like particle with an static source (p° = 0) and

let us Fourier transform the previous expression for the loop-corrected propagator in

order to get the potential in the non-relativistic limit. We recall that
3 gz L1 3. ipd - 3. ipE 2 1
d’z eP?* — ~ - A’z eP*1 ~ §(2), d’z e logp” ~ —, (2.14)
r r

with r = |Z|. Thus quantum corrections to Newton’s law are of the form

GMm

r

. Gh 1

We have restored for a moment i and ¢ to make evident that C is a pure number.
The contribution proportional to §(Z) is of course non-observable, even as a matter
of principle. It comes from the contact divergent term (that may eventually collect
contributions from arbitrarily high frequency modes). C, however, is calculable. It
depends only on the infrared properties of the theory.

A long controversy regarding the value of C' exists in the literature [35], 36, 37]. The
result now accepted as the correct one, C' = 41/107 [3§] is obtained by considering
the inclusion of quantum matter fields and considering the on shell scattering matrix.

Note that quantum corrections make gravity more attractive (by a really tiny amount)

14
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at long distances than predicted by Newton’s law. In addition to quantum corrections
there are post-newtonian classical corrections that are not discussed here (see [34]).
There are in the literature definitions of an ‘effective’ or ‘running’ Newton constant
[39]. A class of diagrams is identified that dresses up G and turns it into a distance (or
energy)-dependent constant G(r). Unfortunately it is not clear that these definitions are
gauge invariant; only physical observables (such as a scattering matrix) are guaranteed
to be. Nevertheless, the renormalization group analysis derived from this ‘running’
coupling constant are of course very interesting and may bear relevance to the issue of

asymptotic safety mentioned in the introduction of this chapter.

2.3 The model

We have given in the previous sections arguments why the Einstein-Hilbert action could
be viewed as the most relevant term, in the sense of the renormalization group, of an
effective theory describing the long distance behavior of some underlying dynamics.
Here we want to pursue this line of thought further. As a logical possibility, with-
out making any particularly strong claim of physical relevance, we shall investigate a
formulation inspired as much as possible in the chiral symmetry breaking of QCD. It

should have the following characteristics:

1. No a priori notion of metric should exist, only an affine connection defining parallel

transport of tangent vectors v® on a manifold.
2. The Lagrangian should be manifestly independent of the field g, (x).

3. The graviton field should appear as the Goldstone boson of a suitably broken
global symmetry.

4. The breaking should be triggered by a fermion condensate.

A model along these lines was considered some time ago by Russo and others [I1]
12], and more recently by Tumanov [13]. Our proposal appears to be perturbatively
renormalizable and leads to finite calculable predictions, unlike the ones in [111, 12, 13].

As announced, we seek inspiration in the effective Lagrangians of QCD at long

distances [40, [41], discussed in Section 2.1. Consider the matter part Lagrangian of
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2. Gravity as an emergent phenomenon

QCD with massless quarks (2 flavors)

L= P =ir Pbr + iR PUr. (2.16)

This theory has a global SU(2) x SU(2) symmetry that forbids a mass term M. However
after chiral symmetry breaking pions appear and they must be included in the effective

theory. Then it is possible to add the following term
— MpUsr — MrU vy, (2.17)

that is invariant under the full global symmetry 17 — Ltr, ¥r — Rir, U — LURT.

Chiral symmetry breaking is triggered by a non-zero fermion condensate (1)) # 0.
In order to determine the value of this condensate, and in particular whether it is
zero or not, one is to solve a ‘gap’-like equation in some modelization of QCD, or on
the lattice. The final step is to integrate out the fermions using the self-generated
effective mass as an infrared regulator. This reproduces the chiral effective Lagrangian
discussed in Section 2.1, although the low-energy constants «; obtained in this way are
not necessarily the real ones, as the chiral quark model is only a modelization of QCD.

The idea is now to find out a field theory with the characteristics outlined above
that can yield gravity as an effective theory. We shall use Euclidean conventions. There
is only one possible ‘kinetic’ term bilinear in fermions that is invariant under Lorentz

x Diff (actually SO(D) rather than Lorentz) and it is local and hermitianf] It is
Lo = i)aY*Vux" + ix*y*V 1. (2.18)
To define V, only an affine connection is needed
Vux* = 0ux" + wiloax™ + T4, x". (2.19)

Here a,b... are tangent space indices, while pu, v, ... are world indices. The coordinates
on the manifold shall be denoted by x* and of course there is no way of raising or
lowering indices because there is no metric. Only d,; as invariant tensor of the tangent
space is admissible. ¥, and x* are independent spinor fields. The field y* is expected
to have a spin 1/2 as well as 3/2 component. No attempt has been made to project

out the 1/2 component.

*Actually what we really should require is that the continuation to Minkowski space is hermitian.
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2.3 The model

Note that no metric is needed at all to define the action if we assume that x*

behaves as a contravariant spinorial vector density under Diff. Then, I'), does not

ab
n

connection fixed, i.e. we do not consider it to be a dynamical field for the time being,

enter in the covariant derivative, only the spin connection w?. If one keeps this spin
there is no invariance under general coordinate transformations, but only under the
global group G = SO(D) x GL(D). Notice once more that the spin connection is the
only geometrical quantity introduced.

We would like to find a non-zero value for the fermion condensate
(ax!" + XH1ha) ~ Al # 0. (2.20)

Because the broken theory has still the full global symmetry SO(D) x GL(D), it is
of course irrelevant in which direction the condensate points; all the vacua will be
equivalent. we can choose Al = §5 without loss of generality.

A large number of Goldstone bosons are produced in the breaking. The original
symmetry group G = SO(D) x GL(D) has w + D? generators. After the breaking
G — H, with H = SO(D) there are D? broken generators. It remains to be discussed
in the following chapters how many of those actually couple to physical states.

In order to trigger the appearance of a vacuum expectation value (v.e.v.) we have
to include some dynamics to induce the symmetry breaking. The model we propose is

to add the interaction piece
S = / dPaly — / 4P (iBY(aX" + X*a) + cdet(BY). (2.21)

Note that the interaction term also behaves as a density thanks to the covariant Levi-
Civita symbol hidden in the determinant of Bj; so no metric is needed. Note that (2.21)
is non-hermitian, but the continuation to Minkowski is: Bj; upon continuation changes
like an Euclidean mass does B, — iBj;. Since the field B}, is auxiliary, it is clear that
we are dealing with a four-fermion interaction; fermions are the only dynamical fields.

Upon use of the equations of motion for the auxiliary field B},

- 1
Yax" + x"tpa = —ic (€aas...ap € HP B2 BiD (2.22)

(D-1)! TTTRD
and thus
(BaX" + Xba) £ 0 = (BY) £0. (2.23)
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If a non-zero value for the fermion condensate appears then the field Bj; necessarily
acquires a non-zero expectation value B) (the reciprocal is not necessarily true, but it
will be true too in our case). As we will see such condensation will happen in D = 2

(in the large N limit) and it will be also present in D = 4 even for finite values of N.

2.4 Energy-momentum tensor and symmetries

Although the above theory is ‘topological’ inasmuch as it is described by an action that
does not contain a metric (albeit it depends on a connection), the energy-momentum

tensor understood as the Noether currents of translation invariance is non-vanishing
T# = i)zufyaaudja + i'(Za’Ya IIXH - 5,'le (2.24)

Note that no metric is needed to define T%. In the absence of the external connection
T} is traceless as expected given that the theory is formally conformal, but we will see
later that it will not remain so at the quantum level as anomalous dimensions develop.

Traditionally a major stumbling block in the program that will be developed in
Chapters 3 and 4 has been the so-called Weinberg-Witten theorem [42] (see also [43]).
The apparent pathology of theories intending to generate dynamically gauge bosons
(including gravitons in this category) lies in the fact that the energy-momentum tensor
has to be identically zero if massless particles with spin > 1 appear and one insists in
the energy momentum tensor being Lorentz covariant. However, our results, while not
constituting a mathematical proof, indicate that one can indeed get, both in D = 2
and in D = 4, an effective low-energy theory with massless composite gravitons, so it is
legitimate to ask why the Weinberg-Witten theorem would not apply. Note something
peculiar to this proposal; namely the energy-momentum tensor does not have
tangent (Lorentz) indices. In fact Lorentz indices are of an internal nature in the
present approach as we will see below. The connection between Lorentz and world
indices appears only after a vierbein is dynamically generated. But then one is exactly
in the same situation as General Relativity where the applicability of [42] is excluded.

The free action , without considering the interaction term, is also invariant

under the symmetry

1

Ya = 1 = (5 = 577" ). (2.25)
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Another invariance of the free action is provided by redefining, in Fourier space,
x"(k) = " = PIx"(k), (2.26)

where k, P}’ = 0. These two invariances difficult considerably the heat kernel derivation

of an effective action for the field Bj; that will be discussed for D = 2 in the next chapter.

2.5 Free propagator and renormalizability

Note the peculiar ‘free’ kinetic term v ® k,. It is of course reminiscent of the Dirac
equation, but it is not quite identical (Dirac needs a metric or a nbein to be defined).
Let us assume that after the introduction of the interaction term ~ detB, the field B}

indeed develops a v.e.v. that we conventionally take to be
(B) = Mgy, (2.27)

Any other direction would be equivalent. The only substantial fact is whether M is
zero or not. Via this v.e.v for B} translates into a v.e.v for Yax* + X*)q. From
(2.21)) we see that the scale M plays the role of a dynamically generated mass for the
fermions (not unlikely the ‘constituent mass’ in chiral dynamics, except that here it
will be possible, as we will see, to determine exactly its relation to the fundamental
parameters of the model).

Below we write explicitly the propagator of the fermion field. It can be written (in
any number of dimensions) as

with k2 = > kf In the previous expression we use a matrix notation since is
derived using the solution . For the free theory world and tangent indices can be
interchanged, as it befits a flat metric. The covariance of the results, not evident at all
from these expressions, will be discussed in the next chapter.

This is an appropriate point to discuss the renormalizability of the model. Naively,
because the coupling constant ¢ is dimensionless in D = 2, we would expect the model
to be renormalizable. However this expectation is jeopardized by the behavior of the

propagator. Indeed the diagonalization of ([2.28]) gives eigenvaules such as M, k + iM
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and k—tM. Therefore the propagator does not behave, in general, as 1/k and therefore
the usual counting rules simply do not apply.

There is however a further twist to the issue of renormalizability. The model pro-
posed does not contain a metric and therefore the number of counterterms that one
can write is extremely limited. For instance, a mass term for the B field is impossi-
ble. Higher dimensional operators would require powers of /g to preserve the Dif f
invariance that the model has (when w is a dynamical variable), but there is no metric.
In fact the metric will be generated after the breaking, but the counterterms of a field
theory do not depend on whether there is spontaneous breaking of a global symmetry
or not.

In the previous discussion we are not considering the divergences coming from gravi-
ton loops. These will be suppressed by powers of N, if N — oo. On the contrary, if
N — 0 those divergences will be relevant, but then there are no fermions and one is
left with gravity with all its usual UV problems. A deeper discussion on this issue can

be found in the following chapters.

2.6 Counterterms

To close this chapter let us review in detail what are the possible counterterms both
in two and in four dimensions that may appear upon quantization of the Lagrangian
formed by and . The only terms one can include in the action before the
symmetry breaking are those constructed without a metric. To illustrate them it will
be useful to resort to the language of differential forms.

In D = 2 two two-forms can be constructed with the ingredients we have at hand.
Since formally we do not have a nbein before the symmetry breaking we can only use
the auxiliary field B¢, understood as a 1-form, and the spin connection to construct

these terms. They read
Ly = B*A Bbeab; Lr= dwabeab. (2.29)

These two can be integrated without having to appeal to any metric. Although not
apparent at first sight, we will see in the following chapter they correspond to the

volume form and the curvature form. The first one will renormalize the cosmological
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constant and the second one Newtons constantf] Any other term would need a metric
to be constructed.

In D = 4 we can write analogous terms to (2.29))
Ly = B* A B® A B¢ A Blegpea Lr =Dw® A B¢ A Blegped, (2.30)

where D is the exterior derivative. Again, as we will see in Chapter 4, the first one
will renormalize the cosmological constant and the second one the curvature term,
which in this dimensionality will explicitly absorb divergences that are produced upon
integration of the fermionic degrees of freedom. One could also write the topological
term in four dimensions, the Gauss-Bonnet term, which is also a legitimate counterterm.
However, since it is not expected to play a significant role in the final action we will
not write it explicitly here.

In summary, the lack of counterterms makes us believe that the theory is renor-
malizable after all, at least in the large N limit. Indeed this expectation is supported
by the explicit one-loop calculation (see Chapters 3 and 4) where the only divergences
that appear can be absorbed by a very limited number of counterterms. We find this

quite remarkable.

*Although in D = 2 the curvature form is a total derivative and we do not expect to see it in the

calculations.
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Chapter 3

A two-dimensional toy model

We presented in Chapter 2 all the characteristics the model should have form the start.
Let us now particularize to the case D = 2 and 2N species of fermions. We shall
compute the exact value of the vacuum in this dimensionality and explore the possible
counterterms available. A heat kernel calculation of the effective action is attempted.
The case of two dimensions is a particularly simple one, the maximum number of
degrees of freedom for a perturbation above the vacuum is just one. In other words,
in two dimensions we can only have a conformally flat metric in the effective theory.
With such a perturbation we perform an explicit one-loop calculation of the effective

action obtaining Liouville theory plus a cosmological constant.

3.1 Gap equation

If w, = 0 then one can use homogeneity and isotropy arguments to look for constant
solutions of the gap equation associated to the following effective potential obtained

after integration of the fermions
Vespr = c det(B QN/ tr(log(v*ky +iBy)). (3.1)

Note that the 2N preceding the integral comes from the 2N species of fermions present.
As it is explained later on in this section and in Chapter 4, we consider 2N fermions
to be able to explore the properties of the effective theory in the different limits of the

value on N. As for the flat measure used for the integration, this corresponds to the
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functional trace of the differential operatoff] As such, the trace is independent of the
particular basis that is used to compute it. Any other basis, if used correctly, would
yield the same result.

Deriving with respect to B); we obtain

D D

(& ﬁeaag...ap

) d“k ay—
Euug‘..uDBng'”BZg — 9Nj tr/ W(’Yaku + ZBZ‘) 1|tg‘ =0. (32)

In D = 2 this equation is particularly simple
D

dvk
ceabe“”Bg — 2Ni tr /

(%)D(mkarlm =0. (3.3)

The ‘gap equation’ to solve for constant values of B;; is

N det B
A logarithmic divergence has been absorbed in c. Notice that the equations are invariant

under the permutation

Bij — Bo(i) )s ki — kg’(i)7 0€eSs. (3.5)

a(j

This equation has a non-trivial solution that we can always choose, as indicated before,
to be B;; ~ 6;5. We thus see that the dynamical mass for the fermions is indeed gen-
erated hence justifying a posteriori the propagator introduced in the previous chapter.

The solution for the dynamical mass is
M = pe~™eW/N, (3.6)

Plugging this back in the effective potential we obtain

MQ e—27rc(u)

-~ (3.7)

Verr=—

Upon continuation to Minkowski space-time this term is to be identified with the cos-
mological constant. At this level M is an observable and as such it should be a renor-
malization group invariant. This is guaranteed if ¢ runs according to the rather trivial
beta function

dec N

g 3.8
i (3.8)

ab

“Note that ‘plane waves’ are eigenmodes of the differential operator v*V,, if the connection wy;” is

set to zero. The connection itself is treated perturbatively in the subsequent.
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Note that the coefficient of this term is related to the coefficient of the logarithmic
divergence and hence it is universal. In the previous, we introduced the usual mass scale
1 to preserve the correct dimensionality of the D-dimensional integral as dimensional
regularization is used. For the solution to actually exist we have to require ¢ > 0 if
M > p. If p > M the solution exists only if ¢ < 0. Therefore ¢ > 0 will be the case we
are interested in on physical grounds.

The above effective potential and ensuing gap equation are exact in the limit where
the number of fermions, IV, is infinite. In fact we expect that it is exact only in this
limit, as in D = 2 the phenomenon of spontaneous breaking of a continuous symmetry
can take place only in the N — oo limit.

For non-zero connection (w, # 0) the gap equation is not applicable and one needs
to derive the full effective action. Then one would minimize the fields B}, as a function

of w,. This is discussed in Sections 3.3 and 3.4.

3.2 Possible counterterms in D = 2

Before tackling the perturbative derivation of the effective action it is important to list
the possible invariants one can write in this theory without making use of a metric, as
discussed in Section 2.6. In D = 2 we have two invariants that could be constructed
without having to appeal to a metric, namely Lg and Ly . The latter, upon

use of the parametrization By, = M (526_%, reduces to

1
o BB eq, d’x = M? / Vg d*r, (3.9)

i.e. is the cosmological term. In addition, there is the curvature term which in D = 2,
and in terms of the connection, is simply [ dw, thus purely topological; therefore we
do not expect it to appear in the perturbative calculation. Then, apart from the free
kinetic term for the fermions, there is only one invariant term that can be written down
without a metric. Or what it is tantamount, only one possible counterterm remains to
absorb any divergence appearing in the perturbative calculation after integrating out
the fermions. This fact enforces the renormalizability of the D = 2 model in the large
N limit in spite of the bad ultraviolet behavior of the integrals. This argument will be

supported by the explicit calculations presented in the subsequent sections.
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3. A two-dimensional toy model

3.3 Heat kernel derivation of the effective action

Let us now attempt to derive the effective action for the fields Bj; and the external
affine connection w,, that eventually we will allow to become a dynamical variable too.
Hereafter we want to perform a double minimization with respect to these fields. This
will be an exact procedure for N = oo and provide a guidance in the general case. Of
course the really interesting question is what happens for D > 2.

We would expect that this double minimization will provide us with two equations
whose meaning would be schematically the following: One of them would provide a
relation between the field Bf} (associated to the zweibein) and the affine connection
wy,. If the present model is to describe in its broken phase D = 2 gravity, this relation
would be analogous to the relation of compatibility between the metric and the connec-
tion that appears when the Palatini formalism [44] is used in General Relativity and
the equations of motion for the connection w, are derived. The remaining equation,
after imposition of the previous compatibility condition, should then be equivalent to
Einstein’s equations.

However, in D = 2 gravity is rather peculiar and indeed the condition

wit = el0, B’ + el E7'TY | (3.10)

where E! is the inverse zweibein EY ez = 52, holding in any number of dimensions,
does not follow from any variational principle (see e.g. [45]). There are several ways to
understand this fact, but perhaps the simplest one is to realize that Einstein-Hilbert
in D = 2 depends on w, only through the two-form dw which is linear in the affine
connection wy,. In fact the scalar curvature term ,/gR does not contain in D = 2 any
coupling between g, and w,. Adding higher derivatives does not really help as the
Riemann tensor contains only an independent component that can be ultimately related
to the scalar curvature. We shall see below that this peculiarity of two-dimensional
gravity is faithfully reproduced in our proposal.

The starting point of the derivation of the effective action in two dimensions is the
differential operator

D}, = v*(0y + wyo3) + By, (3.11)

We consider the expansion around a fixed background preserving SO(2) but not the

full symmetry group G. We will take Bj; = Md,; where M will be determined via the
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3.3 Heat kernel derivation of the effective action

gap equation discussed in the previous section, which corresponds to a solution of the
equation of motion at the lowest order in a weak field and derivative expansion, in the
spirit of effective Lagrangians. To go beyond this approximation we have to consider
z-dependent fluctuations around this vacuum and include the external field w,. We
shall decompose

B = &1, Blg'y, (3.12)

where &1, € SO(2), £g € GL(2) and Bﬁ is a solution of the gap equation, Mdj, in our
case. It is technically advantageous to absorb the matrices {7, and £g in the fermion
fields (in QCD this is the so-called ‘constituent’ quark basis [40] [41]). Then the differ-

ential operator to deal with will be
Db = Tb“@—l— 03)e%  + B 3.13
yz fla’y ( P wp 3)£R " 7 ( . )

To evaluate the effective action generated by the integration of the fermion fields

one possibility is to write the log of the fermion determinant as

W = —% /000 %tr (zle”|z), (3.14)
where
X, = MM, (3.15)
with
M=D) M =-Dy, (3.16)
and

Db = & 27" (0p + wp03)€R , + By Dty = 5 (05 — we03)Valt y — B (3.17)

X, has both world and Dirac indices (the latter not explicitly written). Note that
as previously discussed M is not hermitian, but of course X, = MM is. We could
have also considered the determinant of MM which is of course identical, but it is
important to maintain a covariant appearance as long as possible (note that there is
no metric so far and no way of lowering or raising indices). The final result has to be
of course covariant, since our starting point is, but using, as we shall do, a plane basis
to evaluate the traces in the heat kernel expansion breaks in principle this covariance

in intermediate steps.
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3. A two-dimensional toy model

Once W (w, B) is known we can differentiate with respect w, and obtain the rela-
tion between the zweibein and the spin connection using the logic behind the Palatini
formalism.

The starting point of the heat kernel derivation is the evaluation of

D
tr(z|e X |z) = LD/ d kD tr el DERL € ko kot iVIDEL Y ko€, iV R, Roval L DY, —tX )]
ts J (2m)
(3.18)
in D = 2 — ¢, where for convenience we have rescaled k, and a plane wave basis

resolution of the identity has been used. For simplicity let us call the exponent on the
right-hand side of the previous equation X (y/¢). Then the way to proceed is to expand
the exponential e (VD) in powers of v/t. Only even powers of v/t (and thus of k) will
contribute at the end to the series, so the first non-trivial term will be of order . We

define
dm

: ; _ XD
B (X0 X(0).X0)) = om0 i (3.19)

then
tr (zle” " m|z) o tr ZFn (\{j)n =Fy+ %Fg + ;ZE; +O(th). (3.20)

n

This expansion is quite tedious and to perform it we used repeatedly the well-known

formula

d A /1 (1—a)A@) A1)
¢ = ; da e T . (3.21)

Note that the invariances discussed in the previous section introduce zero modes in the
exponent and hence integrals that are not damped for large values of the momentum
k. Of course they are no true zero modes of the full theory, just of the kinetic term,
but the technical complications that they bring about are notable.

However, it is pleasant to see that a formally covariant result emerges. If we neglect
w,, and we take the matrices £ to be constant it is not difficult to see that the lowest

non-trivial order of the heat kernel calculation gives

302
W= Tor /dzx\/Det[(fﬁ’mﬁEL)‘lL (3.22)

where a summation over p is to be understood and where M? is the dynamically
generated mass. This is just a cosmological term with ¢g7” = Eu R ug};f)u' One can

likewise verify that other pieces in the effective action are covariant. The coefficient of
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3.3 Heat kernel derivation of the effective action

the cosmological constant term obtained at the lowest order in the heat kernel expansion
does not agree with the one obtained through the gap equation. We shall see later why
this is so.

Since the most general metric in two dimensions is conformally flat we can recon-
struct the full covariant action from this particular choice. This simplifies notably the
derivation of the effective action. We take B9, (z) = §%bBbp§1;1p#(a;) = Md)‘léz. The
expressions that follow are specific to this gauge.

At second order in the heat kernel expansion (order (v/#)?) the corresponding piece

of the effective action reads

2 2
w® = /d2x 2 {31](& <i — v —log (%) + log(87) + 4>

PO (2 g (M g -5)

2 42 2
+w4:i> <§ —~v —log <J\52> + log(87r)>} .

We can take one step further and calculate the contribution to order t2

2 2
w = /d2:1; 2 [—W (2 + log (87) — log <]\42> -y + 5>
€ f

327 18
. ¢4(a/fwu)2 + ¢3 (2?1}”6“(258“11)” - 3wuau¢auwu)
A7 M2 3rM?
¢* (0u0)* w*  wuw, 0,90,
67TM2 7TM2 (324)
LP st 5(0,00,0)
8T A7 M? 487
i 8,u¢8u¢8ual/¢ + i aﬂ¢8u¢au8u¢
M? 37 M? 157
76 0,0,0,000  0u00,60,60,0
M?2 607 5w M2

The calculation of the fourth-order coefficients in the heat kernel expansion just shown
is already a formidable task and we will not attempt to go beyond.

If we look at the results of the expansion at second order it is interesting to see
that the terms that are generated are the ones expected from the point of view of
general relativity. There is a cosmological term (proportional to ¢ 2, which in covariant
form corresponds to ,/g), and a Liouville term (proportional to ¢_2(8Md>)2, which in
covariant form is non-local: /gR V‘z\/ﬁR). In addition there is a term proportional
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3. A two-dimensional toy model

to w? (which once written in a covariant form would be \/gg"”w,w,). Note that the
Einstein term itself is topological in D = 2 and it is not expected to show up. However,
in spite of these satisfactory results, we notice that the cosmological term does not quite
coincide with the one previously derived, via the gap equation, and the Liouville term
is apparently divergent casting doubts on the renormalizability of the model. We note
that like in the chiral Lagrangian, the effective theory still possesses the full symmetry
group G.

Yet it is easy to see that the above results are by necessity incomplete. For instance,
the same operator ¢—2 gets a contribution from the terms of order ¢ and from ¢2, ditto
for Liouville. This comes from the fact that because the operator X (v/t) contains terms
linear in M and the heat kernel expansion is effectively an expansion in inverse powers
of M, a given order in t does not correspond to a given order in derivatives or external
fields. Therefore although the heat kernel calculation gives an interesting guidance to
the form of the effective action and it shows the reappearance of covariance, the precise
values of the coefficients of the different operators cannot be extracted from it. To solve

this difficulty we turn to a diagrammatic calculation.

3.4 Diagrammatic calculation

Let us recapitulate. The heat-kernel calculation is plagued by two problems. The first
one is related to the zero modes of the kinetic term, which increase considerably the
difficulty of the calculations. The other one lies in the fact that the expansion is ill-
defined in the sense of relevance of the subsequent orders. In a way, the heat-kernel fails
to provide exact coefficients for the different operators but gives an accurate catalogue
of the possible terms one could expect.

In this section we derive the Feynman rules of our toy model and proceed to calculate
the exact contributions of the zero-, one- and two-point functions. As will be shown,
we obtain finite contributions except for the cosmological term which nevertheless can
be renormalized. The theory appears to be perfectly renormalizable in spite of the

apparent bad power counting (due to the zero modes of the propagator).
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3.4 Diagrammatic calculation

3.4.1 Feynman rules

We start by writing the generating functional of the theory in the conformal gauge
and in Euclidean space. From it, we can read off the Feynman rules for the one- and
two-point functions we are interested in. We know that the diagrammatic expansion
is not covariant, but once we have convinced ourselves that covariance is recovered, we
can use this method to identify specific coefficients. In this section it will be convenient

to express the conformal gauge in the form
Bi(z) = Me7@)/25¢. (3.25)

The first term in the expansion of the exponential provides the dynamically generated
mass for the fermions. Incidentally, this formalism is clearly quite reminiscent of chiral
dynamics.

The interaction vertices are

1
o --——--&a, [ 25M5Z
o
\
\
AN A
& ap —ngéu (3.26)
//
/
a
w a, —1v%03

3.4.2 Zero-, one- and two-point functions

With the rules described in the previous subsection and the propagator derived in
Section 2.5 we can calculate the exact contributions of the zero-, one- and two-point
functions of the theory. Since the theory is non-standard, and it has a non-familiar set

of Feynman rules, we will provide below the diagrams, after transcribing the Feynman
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3. A two-dimensional toy model

rules, and the final result. Note that because there are two species of fermions the result
from the Feynman diagrams has to be multiplied by a factor 2. Let us first consider

one-point irreducible diagrams containing the o field as external one

k
dPk
=-T AT (k)R8
iM (2 M?
:g (6 -7 — IOg <M2> + 10g(47T)> y
k
dPk i
=— A~ (k) =M,
e r U enpt Wy “]
(3.27)
M?1 2
== ——(-=7-1 — log(4
27T2< ot og<u2>+ og( 7T)>,
o k
\
N dPk i
\ 1 -
=—Tr AT (k) — M
; | e s
/
/7
o
M?1 (2 M?
There is another diagram with two external scalar legs
k+p
=—Tr /deiM(sa AL (k) % st A~k +p)
o == o= 2P b0 P)a
k

M?%1[2 M? 1 5
= [ —~ —log </12) + log(4m) — 2] T
(3.28)
from the M2-terms in (3.27) and (3.28) we can already infer the total contribution to

the cosmological term

M2 -0 /9 M2 —0o
¢ < — v —log < :2 ) + log(4m) + 1) . (3.29)

27 €
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3.4 Diagrammatic calculation

The divergence can be absorbed in the redefinition of the coupling constant, c. This
result fully agrees with the one derived via the gap equation previously. In addition we
observe that the p? piece in the last diagram will correspond in position space to the
Liouville term. As it can be seen it is finite.

Next we look at the two-point function that mixes a o-field with w-field. This could
yield a R-type term but since in two dimensions gravity is topological we do not expect

to see such term. Indeed, the diagram gives zero

k+p

Ty /dD“Maa AN (k)" (—inbos) AL (k + p)”
o - w o= a3 1A () (=" 2

= 0.
(3.30)

Finally we calculate the last of the two-point functions possible. Again we obtain a

finite result

kE+p
__T de’ . a A_l A% - b A_l k v
w w =—1Ir W(—Z’Y 03) (k)" (=ivo3) (k+p)%
k
o
2r 6mM?

(3.31)
We see with relief that even if the ultraviolet behavior of each and one of the inte-
grals is very bad, the final result hints to the renormalizability of the theory. After
renormalizing the only coupling constant ¢ of the theory the final result is perfectly

finite.

3.4.3 Effective action

Let us now put all the pieces together and use the lowest order equations of motion for
the field Bjj; or what is tantamount, for the dynamically generated mass M, to write
the effective action. The result is

M? 1 (Ow,)?  w?
wi= [ Pz |-—e T+ — R — 32
Seft / x [ 5 € + 487r8”03“0 + G2 o +..., (3.32)
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3. A two-dimensional toy model

with M given by (3.6). This is the final result of this chapter. Now comparing this

action with two-dimensional EH action in Euclidian conventions

S = —/dzx\/§(—2A), (3.33)

we see that the cosmological term has the ‘wrong’ sign.

Several comments are in order. First we recall that the effective action is written
in the conformal gauge for the metric, but it is trivial to recover a full covariant form.
Secondly, we note that there is no coupling between metric and connection, as befits
the Palatini formalism in two dimensions where, exceptionally, metric and connection
are unrelated. One can apply a variational principle to the affine connection w,, in the
above effective action, obtaining some equations of motion at O(p?), but in D = 2 they
do not provide any information on the conformal factor o.

One is then left with a cosmological and a Liouville term, as corresponds to two-
dimensional gravity [46]. The dots in correspond to higher curvatures that we
have not attempted to compute. In general they will be non-zero. Notice that the
expansion is valid as long as the characteristic momenta fulfill ¥ < M. Since M is the
mass scale related to the two-dimensional cosmological constant, this would correspond

to scales larger than the horizon.
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Chapter 4

Extension of the model to four

dimensions

We turn now to the far more interesting case of D = 4. We proceed to compute the
vacuum of the theory and investigate the possible counterterms again. This time we
skip the heat kernel calculation and focus in the diagrammatic approach. The number
of possible degrees of freedom in this dimensionality grows up to six. A symmetric per-
turbation will, in general, have up to ten but we have at our hand the gauge condition
allowing us to reduce the number to six. We shall consider only four of them to keep
the calculations manageable; i.e. we use a general diagonal perturbation to perform
most computations. However, we will resort to the far less general case of a conformal
parametrization of the perturbation to compute some higher n-point function diagrams.
In this dimensionality it is possible to work out the explicit relation between the con-
nection and the vierbein after the breaking. Not surprisingly, we obtain precisely the
usual relation of General Relativity. As we will see, in four dimensions one can write
only one more counterterm than in D = 2 without making use of a metric, therefore the
number of divergences is still under control and all the divergent terms can be identified,
after the use of the equations of motion, with known objects in GR. We relegate to the
Appendix the explicit calculation of the divergent term corresponding to the Gauss-
Bonnet topological term, or at least to the part of it that can be reconstructed at the
order we compute. Since covariance must be preserved no other divergence is expected
to appear, even in higher dimensional terms we have not attempted to compute. The

long distance effective theory possesses two free parameters which in principle could be
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4. Extension of the model to four dimensions

adjusted to the values of M, and Newton’s constant via fine-tuning.

4.1 Gap equation

It was shown in the previous chapter that a consistent and apparently renormalizable
model reproducing gravity at long distances could be built in D = 2. The same model

can be considered in D = 4. Recall the free Lagrangian density is
Lo = ithgy" (au n iwffabc> X 4 il (8M + z‘wffo—bc> ba, (4.1)

where 9, and x* are two species of fermions transforming, respectively, under Lorentz
(a,b... are the tangent indices, which can be considered internal ones for our purposes)
and diffeomorphisms (u,v... are world indices labeling the manifold coordinates z#,
globally defined on the manifold, with tangent vectors taken to be orthonormal with
respect to the tangent space SO(D) metric). A spin connection is added to the deriva-
tive to preserve the Lorentzx Diff symmetryff| under local coordinate transformations.
It is important to notice that again there is no need to have a metric defined on the

manifold as long as x* transforms as a spinorial density because then I'), does not

enter the covariant derivative, only wzb. If we keep this spin connection fixed there
is no invariance under general coordinate transformations, but only under the global
group G = SO(D) x GL(D). Notice once more that the spin connection is the only
geometrical quantity introduced.

The interaction term in the model, in Euclidean conventions, is provided by
L; = iBj(ax" + X"a) + ¢ det (B}) (4.2)

which obviously does not require any metric to be formulated either. We will assume
that we have 2N species of the previous fermions but we will not add an additional
index to avoid complicating the notation. We emphasize that Lorentz symmetry acts

as an internal symmetry at this point.

*We actually use Euclidean conventions but still refer to SO(D) as Lorentz symmetry. Note that
(4.1) is not the usual Dirac coupling of fermions to a connection (that requires a metric). The field
x* has a spin 1/2 and 3/2 components in general, although this statement makes little sense unless a

metric in the manifold is defined.
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4.1 Gap equation

The object of the interaction (4.2)) is to trigger the spontaneous breaking of the
global symmetry via fermion condensation. Repeating the procedure in Chapter 3 we

use the equations of motion for the auxiliary field By,

_ . 1
VX" + XM'ba = —ic meaag...anwmquBzg"'Bzg (4.3)

and thus
(aXx" + XM 1ba) # 0 = (Bg) # 0. (4.4)

A non-trivial vacuum is assured. Small perturbations above this vacuum will yield the
effective theory of the quantum excitations of the theory. We will use a perturbative
approach corresponding to a weak field expansion around the solution for wzb = 0; the
value of the connection appears implicitly on the left-hand side of . We shall first
consider the case wzb = 0.

If wgb = 0 the vacuum of the theory is expected to be translational invariant, i.e. we
should obtain a constant value for By, possibly zero. This constant value is obtained

from the gap equation derived from the effective potential
Vesp = c det(B —QN/ tr(log(v*ky +iB))). (4.5)

Deriving (4.5) with respect to By, we obtain

D

c ﬁfaag...ap

, dPk . ay—
eth2ip Baz BAb — 2N tr/ W('y“k# +iBg) "k =0. (4.6)

This equation has a general non-trivial solution corresponding to Bj, = Mdj (or any
SO(D) x GL(D) global transformations of this). This is analogous to the more familiar
phenomenon of chiral symmetry breaking in strong interactions and any value of By
in the SO(D) x GL(D) orbit is equivalent. For simplicity we will take Bj, = M}, and

then the gap equation reduces to an equation for M. In D =4

D
M
cM32N/(dk —0

" e (47
eM? + Nes <6 — log proroiell + 1) =0,
whose formal solution is
M? = ,LLQGSWQC(“)/N, (4.8)
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4. Extension of the model to four dimensions

N
T An2>

we introduced the usual mass scale p to preserve the correct dimensionality of the D-

where Mg—ﬁ = making M a renormalization group invariant. In the previous,
dimensional integral as dimensional regularization is used. Again for the solution to
actually exist we have to require ¢ > 0 if M > u. If p > M the solution exists only if
¢ < 0. Therefore ¢ > 0 will be the case we are interested in on physical grounds.

Note that B}, has the right structure to be identified as the vierbein, and as it was
shown in Chapter 3, it consistently reemerges in the D = 2 effective theory to form the
determinant of the spontaneously generated metric.

The free fermion propagator of the theory in the broken phase can then be easily

found after replacing By by its vacuum expectation value. With a D = 4 matrix

o =i YK —iM)k;
ATk = o <5lj - W) . (4.9)

A particularity of D = 2 was that the most general form for B} (in Euclidean

notation

conventions) is a conformal factor times a scale M times a d;;. This means that per-
turbations around the minimum of the potential can only have one physical degree
of freedom, the conformal parameter. The other degrees of freedom in Bj; can be re-
moved by suitable coordinate transformations and are thus unphysical (recall that the
microscopic theory is fully generally covariant —even without a metric).

The main difference of the D = 4 case with respect to the D = 2 case is that the
maximum number of possible physical degrees of freedom for a perturbation around
the value B} = Mj, grows up to six instead of one, making the calculation much more
complex. Clearly, considering a uni-parametric family of perturbations is far too simple
in D = 4 and does not yield enough information to find the long distance effective action
unambiguously. To by-pass this difficulty, but still keeping the calculation manageable,

we have chosen to restrict our considerations to diagonal perturbations, where

o;(z)

B;(x) = Méj-e_ 2 ( no sum over i). (4.10)

This form contains four degrees of freedom (rather than six) but is rich enough for our
purposes’} The validity of our conclusions rely on the assumption that the effective

action should be covariant (exactly as the microscopic theory is). This was actually

*Note that these perturbations do not correspond to pure gauge degrees of freedom as they lead
to non-zero values for the curvature, which is gauge invariant; i.e. they necessarily involve physical

degrees of freedom

38



4.2 Possible counterterms in D =4

checked in the D = 2 case using heat kernel techniques. Here we have performed partial

checks but we have to assume that covariance holds to draw our conclusions.

a
"

M zﬁanX“, where ej; would correspond the vierbein. A large number of Goldstone

- _ 4(4-1)
bosons are produced. The original symmetry group G = SO(4) x GL(4) has ==~ +4?
generators. After the breaking G — H, with H = SO(4), there are sixteen broken

Note that once a dynamical value for e? is generated we can write terms such as

generators, as expected. Since the metric must be symmetric, at most ten Goldstone
bosons can enter the perturbation. Four of those can be removed by a gauge choice,
leaving the before mentioned six. Finally within each gauge choice a residual gauge
freedom will in general allow for the removal of four more. In this respect our counting
is analogous to the one in General Relativity. The final number of physical degrees of
freedom will be two.

Another difference with respect to the D = 2 case is that the integrals involved
in the perturbative calculation have potentially a much worse ultraviolet behavior in
D = 4. We postpone to Sections 4.4 and 4.5 the explicit calculations that indicate
that the nice characteristics found in the D = 2 model, in particular renormalizability,
seem to persist in the D = 4 case. However the ultimate reason for the apparent
renormalizability lies in the very limited number of counterterms that can be written
without a metric (and the usual assumption that the ultraviolet behavior is unaltered

by the phenomenon of spontaneous symmetry breaking).

4.2 Possible counterterms in D =4

Now in D = 4 we can write, in addition to £y and £, one more counterterm

1 anb _pvpo 4
Sr = 2/R[W}abeBoe” P drx (4.11)

where R0 = [Vijaes Vies]- After integrating the fermion fields only
1
Sp = / BB BSBlegyeac"” d'z, (4.12)

which was already in present in £, and Sk can appear as genuine divergences if general
covariance is preserved. We will denote by L£Lp and Lp the respective Lagrangian

densities.
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4. Extension of the model to four dimensions

There is another counterterm one could write without making use of a metric,
namely the Gauss-Bonnet topological invariant in D = 4, which is of O(p*) in the
usual momentum counting.

We did not include the term Sgr in our action to start with because it does not
contain the fermionic fields. It does not modify the equation of motion for the
auxiliary field By or the gap equation either, if the connection w, is set to zero
as we did in the previous section (recall that we use a weak field expansion and w, = 0
is used to determine the vacuum). However, we see that Sg is an allowed counterterm
in D = 4 and therefore it needs to be included in the initial action. In fact, any
divergence in the theory must be reabsorbable in the two terms Sp and Sg, as they are
the only local counterterms one can write before the symmetry breaking, i.e. before
the generation of the metric.

When the auxiliary field Bjj is identified with the vierbein, the parametrization

(4.10) and the equations of motion are used the two counterterms reduce to

M* / Vg dtz,  M? / VIR d*z, (4.13)

respectively; i.e. the familiar cosmological and Einstein terms. This will be explained

in more detail in the next section.

4.3 Equations of motion in four dimensions

Let us write explicitly what the D = 4 counterterms look like once we replace B} by its
vacuum expectation value plus perturbations around it. To keep the notation simple,
let us consider the case in (4.10) when o;(x) = o(x) (conformally flat metric). After

substituting the solution Bj; = Mej, = Me_"/QcSZ we have
1
Lp = 5 BuBL By Bycapae"”” = M'e™* (4.14)
and
1 a pRb _uvpo 1 1% uv ue, . cv ue, v\, —o 12
§R[W]abeBo€ = 5(8Mwl, =t +w /[ w,” —w/w,M)e” M. (4.15)

Note that because in the vacuum solution ej; = d;; we can use indistinctively greek and

latin indices; they are lowered and raised with a metric proportional to the identity.
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4.3 Equations of motion in four dimensions

Let us now work out the equations of motion for the full Lagrangian Lo+ L;+Lpg. In
Section 4.1 we already discussed the equations of motion for the field Bj; when wzb =0.

In addition we have

0L o (8(Lo+ L+ Lr)\ 8(Lo+Li+LR) _
Jw,ab P 30w, ab S, =
1
=5 (—0a00) + 008k — S,y — 0w,y +wy, +wyy) e (4.16)

1 - _
B W(¢chgabX“ + XMVCUabd}J =0.

To solve (4.16) we will only consider the lowest order term in the 1/M? expansion,
following the usual counting rules in effective Lagrangians based on a momentum ex-

pansion. The solution for the connection in a conformally flat metric is then

1
w, ! = (900, — 'ody). (4.17)

This is the relation one obtains from the usual condition between the spin connection
and the vierbein in General Relativity (4.18)), characteristic of the Palatini formalism
[44]

wil = e, BV + el EFTY (4.18)

particularized to a conformally flat metric given by e, = 526_% (EP? is the inverse
vierbein). Making use of (4.17) in (4.15)), that is on shell, we are now allowed to

identify the curvature in terms of the scalar field o
3 1
LR (on sheny = M?/gR = 3 (DG - 2%08*‘0—) e 7M. (4.19)

Note that in the particular case of a vierbein corresponding to a conformally flat metric
one can integrate by parts either of the terms in (4.19)) to obtain the other one

3 2 g3

VIR = §M2(DO' - %8”0’0M0')€_0 = ZMQ(DJ)(l —o+ % % + ... (4.20)
This term plus a constant times are the only divergences that should appear
in the final effective theory upon integration of the fermionic fields for this particular
type of perturbations above the vacuum (i.e. those interpretable as a conformally flat
metric).

As previously mentioned we shall consider a more general type of perturbations;
namely, we will use the diagonal parametrization of the perturbations around the vac-

uum solution given by (4.10]). This is not the most general one in D = 4, but it is enough
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4. Extension of the model to four dimensions

for our purposes. After the identification of B, with the vierbein, this corresponds to

a metric
e o1() 0 0 0
0 e—o2(w) 0 0
Guv = 0 0 o—03(2) 0 (4.21)
0 0 0 )

This parametrization provides enough generality to the calculation. We can now derive

the equivalent expression to (4.17)) for the general diagonal perturbation using (4.18)
to obtain [

o o b
e 0 0 0\ (007 0 0 0
w 1[0 e 0 o 0 8,00 7 0 0
wp, -y 23 _93
0 0 e2 0 0 0 8p03(3 2 0
0 0 0 ez 0 0 0 dpo0e” 7
o1 bp o a
ez 0 0 0 dpo1e” 2 0 0 0
o eF 0 o0 0 Dpooe” % 0 0
0 0 ez 0 0 0 d,03¢" % 0
0 0 0 ez 0 0 0 D007

(4.22)
Making use of the equations of motion one can compute the corresponding Lz for the

general case and expand it in the ¢ fields. The result up to two sigma fields reads
LR(on shetny =M?V/gR = M? [0504 + 0304 + 0io4 + D303 + D303 + 0703
+0309 + 0309 + 0o + O0j01 + 0301 + D501
—% (03010309 + 04010402 + 02010203 + 04010403 + 02010204 + 03010304
+01020103 + 04020403 + 01020104 + 03020304 + 01030104 + 02030204)

+(’)(03)} :
(4.23)
More details on the calculation of can be found in the Appendix. Ignoring
for a moment the Gauss-Bonnet invariant, the divergent terms from the perturbative
calculation for the general perturbation should match on shell either with or
with

i
2 .

£D|(on shell) — M4\/§ = M%e~ (424)

*Again we emphasize that although it may seem strange to see latin indices in the derivatives this

should not confuse the reader. After the symmetry breaking a vierbein is generated relating world
indices with tangent space ones through ¢;;. In expression l} we have compiled the entries for wﬁb

in a bi-matrix form, but they should not be multiplied; only the index p is summed up.
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4.4 One-loop structure for a general diagonal perturbation

An extension to the most general perturbation with the full six degrees of freedom
should be possible but would require much more effort, which we consider unnecessary
at this point as the above parametrization provides enough redundancy. Since the
coefficients for the terms in the effective action are universal there should be no loss of
generality in the present approach. This of course assumes that general covariance is
kept all along the derivation of the effective action and by the regulator, as it should
be the case in dimensional regularization.

So far we have explained how the D = 2 model can be consistently extended to
D = 4 preserving the key features. We study small perturbations around a constant

vacuum expectation value for the field Bj; (which does not need to be small itself)

a
I

can write a limited number of counterterms without making use of a metric. These

corresponding to the solution of the gap equation for w® = 0. In such a theory one
counterterms are consistent with the usual terms of GR once used the equations of
motion. With all these ingredients we are ready to move to the actual perturbative

derivation of the effective action.

4.4 One-loop structure for a general diagonal perturba-

tion
The effective action that describes perturbations above the trivial vacuum
b
w? =0, BZ = M(Sfj, (4.25)

will be given by a polynomial expansion in powers of w,, (), o;(x) and their derivatives
obtained after integration of the fundamental degrees of freedom. In this section we
will derive this effective action diagrammatically.

We shall use the diagonal perturbation with four degrees of freedom for the
vierbein perturbations. For simplicity, we will calculate only the one-point and two-
point functions for this rather general case and then particularize to the conformal case
(0i(x) = o(x)) to compute some three-point functions.

Since perturbation theory in this model has some peculiar features (note in partic-
ular the behavior of the fermion propagator) in what follows we shall provide enough

details so that the diagrammatic calculation can be reproduced.
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4. Extension of the model to four dimensions

Starting from the Lagrangian density £y + £ described in Section 4.1 (note that
L r plays no role whatsoever in the integration of the 2V species of fermions), and using

a parametrization of By, given by (4.10), the interaction vertices are

I
Of ===-— ZiMle
o
\
\\
1 ,
> —i=M&,
/ 8 (4.26)
/
/
o
o
\
\\
\ 1 .
0i - i M,
/
/
/
0

4.4.1 One-point and two-point functions for the fields o;

With the rules described above and using the propagator (4.9 we can calculate the first
one-loop diagrams for D = 4 —e. We will not include the factor IV in the diagrammatic

results presented below. The vacuum bubble diagram is

k k

(4.27)

_ om U (;i:)kDAl(k)#a(—i)(sau] _ _;‘ﬁ (f —log (4]7\52) —7+ 1> .
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4.4 One-loop structure for a general diagonal perturbation

We also compute the one-point function for the different vertices

k

O'] - +U] -

de o M* (2 M?
=— T K MJ = J _— — 1
ZU]Q r[/ 7r) k) ’ Z 1672 (6 o8 (47w2> i >

7j=1
O'] ]’C
\
\
\
\
/
/
/
21 2 dPk ,
2 -1 I .
Zaj L r[/ Gy (k)j(—z)M(SJu]

4

B Z o M* (2 O M? 1
- i 3972 C\gmpz) 7 '

Let us, for this particular diagram, clarify what the origin of the numerical factor is.

(4.28)

(4.29)

In the numerator, the 2! comes from the combinatorial possible connections of the
external fields o;. The other 2 is due to the two species of fermions and it is present
in all diagrams. In the denominator, 2!2 - 2 comes from the vertex. Since it is a
one-point function there are no additional factors, however for n-point functions the

corresponding n! will be present in the denominator.

g3 k g3 k
\ \
\ \
) \ ) \
05 -- + 05 --
! !
/ !
/ /
(o] g

4

312 0% RPN
_ 23'2 —_ [/ Sy 1(lc)j(z)M6M]

oM (2 1 M 1
_Z 6ar2 \e °® 472 )

J=1

(4.30)
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4. Extension of the model to four dimensions

Next diagram is the two-point function

k+p k+p
7j -—Q- 0140 —-O- ol
k k
4
212 dPk 1 Al v
__;;(73012!.2.2'1}[/(QW)DzMéuA (k)";iM &, A (k + p) l}
Ly oy [t 2 g (AR 2 ogewtM 2y (MY
_jzll . 16m2  \ e & 4 T3 4872 € & 4 173
L4

S
2
—

Loo@i A )M (2 M2 1
4872 € & 42 T3

274 2772,2 27002,2
+0jM +(TjMp _O'jij

4
3972 ' 3272 sz | oW

(4.31)
The numerical factor in this case is composed by 2! 2 in the numerator from the
possible contractions of external fields times the two species of fermions. And 2! in
the denominator from the diagram being a two-point function and finally the 1/2 from
each vertex. We will not elaborate on the combinatorial factors anymore but we write
all factors explicitly, even if the notation may be a bit cumbersome, in order to facilitate

the check of our results. By O(p*) we mean finite higher order in p? contributions.

4.4.2 Diagrams with wfjb

a

Mb. The corresponding vertex is

Now we turn to the diagrams that contain a field w

: o
w, iy Wi oy = o e el (4.32)
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4.4 One-loop structure for a general diagonal perturbation

The one- and two-point functions yield
k k
Wy, ‘\/\Q + wy N\O
(4.33)
then

(4.34)

k+p k+p
wy, V\O— 05 4+ Wy V\O— 0
k k
4

:—ZO" 2 Tr / a7k iV op AT (R ML AT (R +p)Y, | =0
"ol 2 (2m)D 1 b 0w af =

Suggesting that diagrams containing only one field wzb are zero. For two wzb fields we

k+p k+p
w#AIQ\/va—Fw#N\Ohwu
k k

2.2 dPk
= — T, T sA A_l o d A_l v
21 r [/ (27T)DZ’Y Obe (k) at Oef (k +p) a

have

2 M? 1\ [M? . . . .
= ( - log (47TM2> - "}/ + 4) |:47'['2(6b650 (S}L - (5b6(56f(5“ + (5bf5ce(5'u — (Sbffsc (55

€

M2
v n o sV 12
F0}0es 0 = 0400c)| + 1o

LR—
+ EFM bcef(p2) + (’)(pQ)

2 M? 1 M?2 M2 1
=(=Z-1 — - DM ol Z 2 2y
<€ o8 <47w2> i 4) [47r2 bcef] tlem2t beer T bees () + O7)
(4.35)

Where F* ”b cef is a complicated structure composed of external momenta and Kronecker

(5bf5é/5ét — 51)65(’;5; + 555665; — 5£5Z5cf)

deltas of order O(p?). This divergence is of higher order, in the 1/M? expansion, than

the one of owcef' Now, taking into account that wzc = —wab, we can show that
b b, ub be, b . b _ b, b
D”Vbcefwlfwf,f = 4w wh’ — 2w w, = 0; Elwbcefwucwgf — dwtbu (4.36)
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4. Extension of the model to four dimensions

More details can be found in the Appendix where we will show how the combination of
the divergences proportional to F***, | s appearing in this diagram combine to reproduce

exactly the O(p?) terms of the Gauss-Bonnet invariant.

4.4.3 Other two-point and three-point functions

a(

z)
In order to keep the calculations simple, we particularize to the case Bj, = Me™ "2 0.
The previous results, (4.27H4.36) are all valid taking o; = o, i = 1,2,3,4. With this

simplification we can easily further compute more diagrams. For the field o we have

T+pta Tty k+p+ga k+p+gg
O OO
- o0+ - 0o+4+0 -- +0o -- +....
/ / \ \
/ /
Ik ok oY ooV
g g g g

__ 222 T—/ Ak o Mst AR M A kt p + )
T arar2.2.2 ) oY 0m b1 0y PTd)a

o222 4, / a7k (=) M52, A" (K + p)* iM s A~k + p + )"
2021.2.2.2 (2m)D " Prpt ey P4

o222 ﬁ_/ POk o MS Ak + gy M A (k4 p o+ 0)"
or2l2.2.2 | @np' " n q) Mo, P+a),

owtqr (AR 1
T 1672 \ € & A7 p? 773

LM+ 0+ @) + ) (2 _1Og( M ) oy 2) + O,

3272 € Ay 3
(4.37)
And also
o o
‘o k+pt+q O
B S
/ k /
7 /7
o (o2
R /dez‘MAl(k)“iM(Sb ANk +p+ )i M8 ATk + p)”
312.9.9 (27T)D b v d p a
_ 32 g /de'MA—l(k)“iM(sb A7k +p+q) MO AT (K + q)"
312.9.9 (27T)D b v d p a
3M4 /2 M2 2 P (+e®, &
A (2 ()1 ) (o ) o

(4.38)
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4.5 Summary of divergences

On the other hand, for the field wzb we can compute

g g
k+p+q
k+p I>-w Wy + I>\~ Wy,
/ k /
/ /7
g g
_ 22 [ TR e AR ML Ak p o+ q)iMEE A (4 p)?
— 3'22 (QTI')D’Y be d v p q) e P P)a
212 / Ak o ATV ML ATk +p + q)iM&C Ak + )P, | =0
— T - .
3192.9 (QTF)DZ’Y Obc dat v pTq)et p q)"q
(4.39)
And finally
Wy
k+p+q k+p+q
k+p c + k+p J>\»~
3 2‘ 2
= [/ =1 oA “Lk)* a7 JefA Yk +p+q)"iM%,A" Yk -I-p)
3 2' 2 i d -1 v -1
Z’)/ ope AT (E) Y ot AT (k+p+q) iMoo, AT (k + q)”,
2 M? 3 M?% M?
<610 <4 > W4>[ 2P bcef:|16ﬂ_2E Yheey T OWP).
(4.40)

With D“Vbcef and E“Vbcef being the same as in 1}

4.5 Summary of divergences

In the previous section we obtained the results of the one-, two- and three-point func-
tions for a general diagonal perturbation, sometimes particularizing to a conformally
flat metric to ease the notation. Let us now summarize the results.
The divergent part of diagrams (4.27H4.30) together with the M* piece of diagram
add up in the effective action t
M4e 5%

M (2 ().

*Note that factors 1/n!, where n is the number of identical external legs, and a sign flip, are needed

to reconstruct the term in the effective action from the diagrammatic calculation.
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4. Extension of the model to four dimensions

Note that the dimensionality of this term matches . Furthermore, it can be
proved that the divergent terms in proportional to M?p? are precisely those
corresponding to in momentum space, thus allowing us to recover the first orders
of Lg for the general diagonal perturbation, which on shell correspond to ,/gR.
Diagram has one divergent term proportional to F*”
order, i.e. (’)(\/§R2). Before addressing this apparent new divergence let us particu-

f which is of higher

bee,

larize to the case of a conformally flat perturbation above the vacuum. Taking o; = o,

(4.27H4.30) plus (4.31) add up in the effective action to

M4e=20 (2 | M?Z2e—° N 3 Mie=20t5¢ /9 | M? N 3
— | ——log| —— | — —|=—7\|—-——1o — - .
82 € & 472 Ty 82 € & 472 T

(4.42)

—20’+%€,

An important remark is in order at this point. Note the peculiar form of e
this factor corresponds to the determinant of a conformally flat metric in D = 4 — ¢
dimensions and it is a remanent of the fact that we used dimensional regularization
to calculate the momentum integrals. Of course lim.o/9p = /9 (where gp is the
determinant of the D-dimensional metric), but this is telling us that in order to regu-
larize our integrals it is not enough to add a mass scale to match the dimensionality;
an € power of the determinant of the metric is also needed to ensure diffeomorphism
invariance. That is u?> — p?e~%. Then would read

M*e=27 (2 M? 3
—— | - —1 — =1. 4.43
872 (e ©8 <47Tu2> vt 2) (4.43)

Continuing with the divergences, diagrams (4.37) and (4.38)) contain terms of order M*
that are the subsequent orders of the expansion of (4.42)) in terms of 0. As for the

terms of order p?, one has to express them in position space. The result of diagram

(4.31) for instance is

2 12 2
opoM* (2 M 2
- = =1 e e 4.44
1672 <6 8 < 4 ) 773 (4.44)
that in position space reads
oOoM? (2 M? 2
— - -1 — ) —r—=. 4.45
1672 (6 °8 ( 47 > 7 3) (4.45)
The next diagrams we consider are (4.37)) plus (4.38))
M202(p2 2, 2 9 M2 5
3272 € 4 3
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4.6 Effective action and physical constants

or in position space

3M?0200 (2 M? 5
S T 02 g () =y = 2. 4.4
3272 (e o8 ( in > 7 3) (4.47)

Now it is clear that the full calculation at order M?p? resums to the following term in

M?0oe=° (2 M? 1
9.2 <€ —log <47TM2> -7+ 3> . (4.48)

Note that this term has the same structure that ,/gR for a conformally flat metric.

the effective action

This divergence can be absorbed by redefining £r and using the equations of motion.

This is already telling us that the theory is renormalizable only on shellf] Namely

ab
o

identification is forced by the use of the equations of motion.

when the spin connection w®’ corresponds to the Levi-Civita one. In our approach this

For a general diagonal perturbation one has to consider the momentum dependent
O(p?) divergent pieces in and similar diagrams with more external scalar legs. As
a check we can see that the momentum dependent terms with two o; fields faithfully
reproduce the O(c?) piece in the curvature term thus confirming the general
covariance of the effective action. Details are relegated to the Appendix.

Let us now retake the issue of the apparent new divergences emerging from .
To see if they really contribute to the final effective action we have to express them in
terms of the o fields using the available equations of motion. Then in principle, they
must either vanish or correspond to a valid counterterm. We argued in Section 4.1 that
there is a third possible counterterm in D = 4, the Gauss-Bonnet term, which is a total
derivative and should not contribute to the dynamics. In the Appendix it is shown how
the lower order divergence vanishes and how the higher order term indeed corresponds

to a piece of the Gauss-Bonnet term.

4.6 Effective action and physical constants

We are now ready to write the effective action we obtain on shell; that is once the spin

connection is set to the value obtained after use of the equations of motion and the

*Please note that this is quite unrelated to the well-known fact that pure gravity at one-loop is
finite on shell. The latter result corresponds to performing a one-loop calculation with gravitons. Here
instead we integrate the microscopic degrees of freedom that supposedly generate the gravitons after

spontaneous symmetry breaking and generation of the metric degrees of freedom.
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4. Extension of the model to four dimensions

gap equation is used. We shall present details only for a vierbein corresponding to a
conformally flat metric but as previously discussed we have a good check of its validity
for the divergent parts of a general diagonal perturbation above the vacuum.

We recall our conventions. We have used Euclidean conventions so that the (emerg-
ing) metric has signature (+,4,+,+). The effective action at long distances is defined

by the functional integral

[1aslexp (=sig). (4.49)

where
— ape%el, = 1, BUB" 4.50
Guv = Nab€, €y = W”ab uLuv» (4.50)

according to our discussion in Section 4.1.
The effective action obtained after the diagrammatic calculation of the previous

sections is

M* M? 3
_ 4 / 4 -2 -2
S’eff—/dzx <cMe U—Nwe U<log<u2>—2>

A2 N 08 (4.51)
+A'M?*0oe™® — N Ooe™? (log <2> — >) + ..,
L

3272 3

where ¢ = ¢+ 8% (2 4+ logdr — ) and A’ = A+ 8% (2 4 log 4m — 7) are renormalized
coupling constants that have absorbed the divergences. The M.S subtraction scheme
is assumed. Note that the finite part of the term proportional to M? has received a
contribution from the diagrams containing only wfjb fields, see the Appendix. Making

use of the solution (4.8]) of the gap equation we can write the previous expression as

Sers = /d% (N4re2 + ADoe " M? — N 35 T0c (log (47) = ) + ..,
(4.52)
The resulting effective theory thus describes a geometry with a cosmological term.
Sometimes it is stated in the literature, see the first reference of [10], that if gravity is
an emergent phenomenon and gravitons are Goldstone bosons all interactions should
be of a derivative nature and the cosmological constant problem would be in a sense
solved. This is not so, as we see a cosmological terms is generated necessarily (both in
D =2 and D = 4), at least in the present approach.
The previous result is not exact of course. The effective action is in fact an infinite
series containing higher order derivatives, starting with terms of O(\/§R2) and so on,

which are represented by the dots in the previous expression. In fact, as we have
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4.6 Effective action and physical constants

seen, a counterterm proportional to Gauss-Bonnet (of order O(,/gR?)) is required;
finite terms will appear too. The effective action should also contain a non-local finite
piece corresponding to the conformal anomaly (of dimension four in D = 4 [47]). The
conformal anomaly was indeed reproduced in the previous chapter in D = 2 [4§]. Note
that any dimension four term that is generated will be accompanied by a factor of V.
The dimension six terms will be of O(N/M?) and so forth. It would be natural to
redefine the constant A’ to include this factor of N in order to keep the counting of
powers of N homogeneous.

Appealing to covariance arguments we can now express ([4.51]) in terms of invariants

N N M? 28
= 4 M* Al — log [ — )| — =) | M2
Sefr /dm |:167T2 Vg + 1872 og 2 3 VIR +
(4.53)

Next we recall that the classical Einstein action corresponding to the Euclidean

conventions is [49]

Mg
Now identifying
N i M]%
16027 732
4.55
0 (- N (o (M) YY) M2 )
4872 w2 3 327’
we indeed obtain
Mg 4 4
Seff = —% d X \/E(R — 2A) =+ O(p ) (456)

As we see from the previous discussion, the integration of the fermions (assumed to
be the fundamental degrees of freedom in the theory) yields a positive cosmological
constant. As for the value of MI%, the Planck mass squared, the sign is not really

automatically defined. More on this later.

4.6.1 Fine-tuning and running of the constants

To ensure that the action is renormalization group invariant, thus observable, the fol-

lowing beta function for each free constant in the theory must be obeyed

,udc, N
Pl

d//; N (4.57)
Wap =  24x2
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4. Extension of the model to four dimensions

This running has nothing to do with the one generated by graviton exchange and it
is thus unrelated to the presence or absence of asymptotic safety that some authors
advocate for gravity. At scales y > M the relevant degrees of freedom are not gravitons,
but the 2N fermions appearing in the microscopic Lagrangian. On the other hand, at
the moment that fermions become the relevant degrees of freedom, geometry loses its
meaning. There is then no ‘shorter’ distance than M !, or at the very least this regime
cannot be probed. Note that to realize our physical assumption of having the fermions
as fundamental degrees of freedom we should have ¢ > 0 as discussed in Section 4.1.

These equations do not reflect the complete running of the dimensionless couplings
associated to Lp and Lg, i.e. the constants associated to the cosmological and Einstein-
Hilbert terms, but only the one obtained at leading order in N. That is, the ‘graviton’
loops are not included here; they are suppressed by one power of N if N is large. To
see this last statement we recall that the usual power counting rules show that the
exchange of the vierbein degrees of freedom would be accompanied by a factor of M52,
suppressed by 1/N. Leaving these corrections aside, we note that the two free couplings
of the theory have a running that is opposed in sign to the one found in D = 2.

It is probably useful to appeal to the QCD analogy. At long distances strong
interactions are well described by the pion chiral Lagrangian, parametrized by f. or
the O(p*) coefficients, generically named low energy constants (LEC). The LEC are
a complicated function of ay, the coupling constant of QCD. The microscopic theory
proposed in this thesis is the analogous of QCD, while the resulting effective theory
is the counterpart of the chiral effective Lagrangian. Then Mp and A are the
LEC of the present theory. The running of as does not have an immediate translation
on the LEC while in the present model, because of its simplicity, the consequences of
the running in the microscopic particle reflects directly in A and Mp. But in addition
these constants have an additional running (analogous to doing pion loops in the chiral
Lagrangian). The counting of powers of N disentangles both types of running.

At some scale, k ~ M the effective theory stops making sense. At that moment
the relevant degrees of freedom change and, as a result, the metric disappears. Exactly
in the same way as for large momentum transfers we do not see pions but quarks.
Of course, if there is no metric there is no geometry and, in particular, the notion of
distance disappears altogether at length scales below M ~!. From this point of view,

gravity is non-Wilsonian.
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4.6 Effective action and physical constants

Let us now try to make contact with the value that the LEC take in gravity. Clearly,
there is enough freedom in the theory (by adjusting A’ and M) to reproduce any values
of A and Mp. But we also want higher order terms to be small for the effective theory
to make sense in a reasonable range of momenta. We may even get rid of all of the high
order (O(p*) and beyond) if we take M — oo and at the same time we take N — 0
in a prescribed form. Then, in the actual limit, which corresponds to a ‘quenched’
approximation, we exactly reproduce Einstein-Hilbert Lagrangian, with a cosmological
constant, and nothing else. Of course in this limit, the presumed fundamental degrees
of freedom disappear completely and we have all the way up to u = oo Einstein’s
theory —with all its ultraviolet problems; there are no fundamental degrees of freedom
providing form factors to cut off the offending divergent integrald’]

Of course the N — 0 limit is just the opposite one to the one we have used. All
our diagrammatic results are exact in the N — oo limit and presumably get large
corrections as IN approaches zero, but the general features of the model should survive.

Note that M is a fixed quantity in the model and if M% increases, A decreases.
Taking the actual observed or estimated values of these two parameters we get the value
NM* ~ 10" m~*, which is a very low scale. One may think that this may already
represent unacceptably large corrections from higher order operators. However, this is
not necessarily so because the bounds on R? terms are very weak. For instance, the
bound k < 107 has been quoted for a generic coefficient [50] & of the O(p*) terms.
Thus, a relatively low scale for M cannot be really excluded observationally by studying
gravitational effects alone and one should be aware of this. However, our own intuition
tells us that M should be much larger than the value quoted above as the notion of
metric certainly makes sense at much shorter distances. We can increase the value of
M as much as we want by decreasing the value of IV, as previously indicated. We shall
not elaborate further on this as it seems too premature a speculation.

Finally we note that the sign of Newton’s constant is not determined a priori in this
theory due to the subtraction required from the counterterm in L. This ties nicely

with some of the early discussions on induced gravity [7].

*Note that resolving the vertices singularities is not enough to mitigate the divergences of gravity
as a loop of e.g. Dirac fermions generates itself new divergences of O(p*). It is the combination of
this with the absence of a metric tensor in the unbroken phase that might help, as in the mechanism

proposed here.
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Chapter 5

Gravitational waves in the
presence of a cosmological

constant

This chapter and the following one constitute the second part of this thesis. After
setting a theoretical framework by means of which one obtains gravity equipped with
a microscopic cosmological constant, it is only sensible to try to investigate its implica-
tions. In fact, as it is well-known, cosmological observations [51] indicate that we live
in a Universe that is de Sitter, at least at very large scales, with A # 0. What is not
so clear is whether A # 0 is an effective property valid only at very large scales or, on
the contrary, a fundamental property of space-time. In this respect, recall we argued
in the previous chapters that A could very well be an intrinsic property of space-time,
and as such, its effects should be observable, as a matter of principle, at any scale.

In practice, the smallness of the cosmological constant obtained from fits to the
current ACDM cosmological models [51] (A ~ 107°? m~2) may lead us to believe that
it is totally unobservable except at the largest distances. However, the issue of the
relevance of the cosmological constant in local measurements (meaning measurements
that involve sub-cosmological scales, such as for instance galaxy clusters) has received
growing attention [14] (I8]. One interesting possibility is assessing the influence of A on
the bending of light from distant objects. At present there are rather diverging results
on the subject giving rather different results concerning the relevance of A ranging

from zero [15] or very small [16] to appreciable ones [17]. The effect of A on the photon
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5. Gravitational waves in the presence of a cosmological constant

propagation, including frequency shift, Shapiro time delay and deflection of light, is
currently under consideration [52].

The importance of these studies cannot be overemphasized. The presence of a non-
zero cosmological constant contributing around 70% to the energy and matter budget
of the universe, seemingly making the Universe globally a de Sitter space-time, is one
of the intriguing puzzles of Physics in our time. Observations capable of confirming or
refuting the relevance of A at redshift z < 1 are clearly of utmost importance.

The studies of what has been termed ‘local gravity with a cosmological constant’
rely on an approximate solution, valid at first order in A, obtained after linearizing
Einstein equations. These solutions have recently been studied in detail in [I8] using
different gauge choices. It has been found that in the Lorenz gauge one can in addition
require time independence of the metric solutions. After an additional coordinate
transformation these solutions correspond to the linearized version of the Schwarzschild-
de Sitter exact solution of Einstein equations. The modification to the Newtonian limit
in such coordinates was also discussed in detail [18]. There are some subtleties related
to the physical interpretation of the different coordinate systems that we shall review
below.

Here we propose to study a different problem. Namely, how A influences the proper-
ties of gravitational waves (GW). As of today, gravitational waves are an unambiguous
prediction of General Relativity that has not been tested directly. They are ‘observed’
indirectly as they are the missing ingredient needed to restore the energy balance of
some astrophysical binary systems [6]. There are three types of experiments poten-
tially capable of yielding a non-zero signal in the coming years. Let us summarize their
physical and astrophysical reach here:

Ground based GW detectors such as LIGO [I9] can reach sensitivities down to
~ 10723 with optimal sensitivity in the region between 10 Hz and 103 Hz. The space
mission LISA [20] will reach a similar sensitivity in the range 1072 Hz to 1073 Hz but
will actually be able to set relevant bounds on a more extended range of frequencies.
Finally the International Pulsar Timing Array project [21] or the Square Kilometer
Array project [22] are sensitive to lower frequencies v < 10~* Hz but reach only a
sensitivity of ~ 10710 going up to ~ 1071 for v ~ 107!° Hz. These sensitivity ranges
are targeted to specific astrophysical phenomena and are expected to provide detectable

signals to confirm the existence of GW in the coming decades.
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Given the present difficulties in asserting the very existence of GW it may seem
academic to try to find modifications due to the presence of a cosmological constant
that is small today. However, it should be borne in mind that in the inflationary epoch
the value of A was much larger than at present so these effects might be of relevance
for primordial GW. As we will discuss in this chapter the effect of A could also be
of some relevance for GW traveling very long distances and for pulsar timing array
projects. On the other hand, some of the results presented here we believe are of
interest to understand the issue of the gauge choice in the presence of A for the linear
theory. Finally, it seems interesting in its own right to attempt to understand wave
propagation in de Sitter space-time if A is indeed a fundamental parameter of nature.

Understanding the choice of coordinates throughout this program will prove to be
essential in order to make sense of the solutions found for the GW. Some coordinates
are suitable for the resolution of the wave equations while some others do not even
lead to a wave equation linearized in A. Moreover, the only coordinate frame in which
we can make predictions that can be compared to observations is the one where the
Universe appears isotropic and homogeneous. Any solution considered has to be ulti-
mately transformed into these coordinates to make observable predictions. We proceed
first by solving Einstein equation in a frame that has spherical symmetry and hence is
adequate to describe local astrophysical phenomena such as central forces, gravitational
collapse, etc. We will make the approximation that waves coming from far away violent
phenomena such as super massive black hole binary mergers or supernovae are nearly
spherical in these coordinates. In this frame, the wave equation (containing modifica-
tions due to A) is well defined and the modified linearized wave solutions easily found.
In fact, we show that these coordinates are related by a time independent coordinate
transformation to those corresponding to a linearized version of the Schwarzschild-de
Sitter metric, which in virtue of Birkhoff’s theorem is unique. On the other hand,
the relevant coordinates for observation are the FRW coordinates. We work out the
transformation of the solutions from one coordinate frame to the other one in order
to extract the possible observational consequences caused the modified GW. These
subtleties obviously appear only if A # 0

This chapter is organized as follows. In Section 5.1 we discuss the linearization of

Einstein equations, including a discussion on different gauges and how they affect the
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5. Gravitational waves in the presence of a cosmological constant

wave equation for the gravitational field h,,. In Section 5.2 we discuss different coordi-
nate realizations of de Sitter space-time and their relation. In Section 5.3 we construct
background solutions retaining terms of order Ah,,. This discussion is extended in
Section 5.4 to include GW solutions that ‘feel’ the presence of A. In Section 5.5 we
analyze the detectability of the effects previously calculated.

Some of the subjects discussed here appear to have received little attention in the
past although there is an extensive literature on gravitational waves [53]. The effect of
A on GW has been considered in [54], [55]. Physical consequences appear to have been
extracted in the context of primordial gravitational waves [56] and only indirectly in

what concerns the evolution of the modes and the power spectrum.

5.1 Linearization in the presence of A
FEinstein equations, derived from the Einstein-Hilbert action, read
1
R, — §guuR + Ag,uy =~k (5.1)

where R, is the Ricci tensor for g,,, A > 0 is the cosmological constant and x7},, is
the source term. T}, is the usual stress-energy tensor of matter in the gravitational
field generated by g, and & is the dimensionful constant coupling matter and gravity.
However, throughout this chapter we will consider 7,,, = 0. The inclusion of the

cosmological constant term leads to curvature even in the absence of any source
R =4A. (5.2)
We consider the linearized theory where the metric is written as
v = M + Ny, (5.3)

N being the Minkowski metric and h,,, << 1. The Ricci tensor to first order in the

small perturbation h,, reads
1 A A
By = 5 (D + By =10 = s ) (5.4)

indices being lowered and raised with 7,, and h = n*”h,,. The theory is invariant
under coordinate transformations z# — z# + £#(z). For infinitesimal transformations

the perturbation metric hy, transforms as h,, — h;ﬂ, = hu + 0,8 + 0,€,. A gauge
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5.1 Linearization in the presence of A

choice is possible, amounting to selecting a particular class of coordinates, and in fact
such a choice is necessary if the perturbation A, is to be quantized. In order to discuss

GW two different gauge choices are particularly appropriate.

5.1.1 Lorenz gauge

In order to describe perturbations around flat space-time it is customary to employ the

Lorenz gauge.

Dt — %a,,h, (5.5)
or
8t =0, (5.6)
where
Py = s — %nu,,h (5.7)

is the trace reversed version of h, .

In this gauge, expression ([5.4)) is simplified
1
R/U/ — iljh'th (58)
and we obtain the equation of motion
1
O (h/w — 277th> + 2Ahy, = —2An,, (5.9)

which has always to be considered together with the Lorenz gauge condition .
Whether the term of order O(hA) has to be considered or not depends on the
relative magnitude of h and A. There will be situations where the inclusion of this
term is justified and may lead to observable consequences. We shall postpone the rest
of the discussion on this issue to Sections 5.3 and 5.4. Note, nonetheless, that if the
Ah,,, term on the left-hand side is omitted there is a residual gauge freedom within the

Lorenz gauge. If we perform a linear coordinate transformation
ot — 't = gh (5.10)

Equation is fulfilled as long as £* is an harmonic function, i.e. [IE# = 0. These
residual coordinate transformations are sometimes termed ‘coordinate waves’ for rather
obvious reasons. Note also that whether this is a symmetry of the equations of motion
or not, depends on the terms retained in the linearization; the term Ah,, breaks this

residual coordinate invariance.
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5. Gravitational waves in the presence of a cosmological constant

5.1.2 A gauge

It will be useful to consider an alternative gauge choice [57], which we will term A

gauge. This is given by the gauge condition
Dbt = —An, . (5.11)
In this gauge the linearized equations of motion look slightly different
1
O (hW - 2nwh> — 2Ahy,, = 0. (5.12)

In particular we note that the term independent of h,, on the right-hand side of (5.9)
is absent. There is a set of coordinate transformations that can be performed without

leaving the gauge orbit (5.11)); these are transformations z'# = x# + £# with
Oeh = —AgH, (5.13)

Note that again in the A gauge this set of residual coordinate transformations allows
for the removal of the unphysical degrees of freedom.

The connection between the two gauge choices in the linear theory is easily made
when the terms Ah,, are omitted. It is implemented via the following change of coor-
dinates

ot — g =gh ¢ = <1 — 1A2£L‘2> xh. (5.14)

This change of coordinates transforms a solution of DiLW = 0 in the A gauge (coordi-
nates x) to a solution of [lh,, = —2An,, in Lorenz gauge (coordinates 2’). Note the
simplicity of the equation for linear perturbations in the A gauge if the term of order
Ahy, is omitted. All reference to the cosmological constant is eliminated.

Summing up, whenever the linear term in A is dropped from the equations of motion
one has enough freedom to eliminate up to eight degrees of freedom from the solutions
being ultimately left with the usual two physical ones, regardless of the gauge choice.

However, if the term of order Ah,, is retained, i.e. in the Lorenz gauge the term
2Ah,, on the left-hand side of or the analogous —2Ah,,, in the A gauge are kept,
there is no residual symmetry whatsoever. Let us take for example in the Lorenz
gauge; as we will see in detail in Section 5.4 this generates a mass term and therefore
apparently more physical degrees of freedom appear associated to hy,. This is not a

gauge artifact, as we will see it is an artifact of the linearization process.
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5.2 De Sitter space-time

5.2 De Sitter space-time

De Sitter space-time can be described by many coordinate systems. A convenient choice
of coordinates is Schwarzschild-de Sitter (SdS). These provide a time-independent met-

ric in a gauge that is none of the two previously discussed
A Aot
ds* = [1 — 3722} dt* — [1 — 3722] %+ #2dQ2. (5.15)

and clearly shows the presence of the de Sitter horizon. We note that this metric admits
an expansion in integer powers of A. Note also that in this metric the spatial part does
not quite correspond to spherical coordinates.

At the opposite extreme, one can select a metric that depends only on time and is

position independent. It is the Friedmann-Robertson-Walker (FRW) metric

TN
ds® = dT? — exp(2 §T)dXQ. (5.16)

This metric incorporates the physical principles of cosmological homogeneity and isotropy
as it does not depend on the position. The coordinates X* have a clear physical mean-
ing, they are comoving coordinates anchored in space that expand with the universe.
These are the natural coordinates where our world appears homogeneous and isotropic.
It is easy to see that the FRW metric does not fulfill any linearized Einstein equation,
even for very early times t << 1/ VA when is very close to the Minkowski metric. In
fact, no metric that depends only on time can be a solution of the linearized Einstein
equations; incompatibilities appear immediately for any gauge choice.

One should therefore accept that the linearized Einstein equations in the presence
of A cannot be imposed in the physically relevant comoving coordinate systenff} This
of course has implications on GW as the very concept of ‘wave’ does require a wave
equation, which is just impossible in linearized FRW coordinates. On the other hand,
the wave equation DiLw, = 0 found in the A gauge is expressed in a set of coordinates
whose meaning is yet to be interpreted. Therefore the simplicity of this equation is

deceiving.

*Note we mean that 7, + hﬁy being a linearized version of the FRW metric will never be a solution
of any linearized Einstein equations. Nonetheless, some authors [58] study small perturbations above
the exact FRW background, which is an entirely different program.
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5. Gravitational waves in the presence of a cosmological constant

We will argue in the next section that the coordinates implied by the choice of the
A gauge or of Lorenz gauge are closely related to SAS coordinates. Then the way to
proceed is to find a solution for GW in the Lorenz gauge, a coordinate system where
linearization of the Einstein equations is consistent, and then transform the solution to
FRW coordinates in order to extract observable consequences.

Both the SdS metric and the FRW metric are valid (but rather different) descrip-
tions of de Sitter geometry. One can work out the exact transformation between the

two coordinate systems

i =eTVABR

. 5.17
t :\/i log V3 +T ( )
N

where T" and R are respectively the cosmological time and comoving coordinates whose

physical realization is clear. This transformation is valid inside the cosmological hori-

zon, i.e. R < ﬁ Applying 1' to 1' we obtain

A .
ds* = dT? — exp(Z\/;T)dX2. (5.18)

Now it is immediate to see that the FRW metric does not fulfill any linearized Einstein
equation, even if t << 1/ VA as it is not expandable in integer powers of A. The same
transformations for the linearized version of the metrics gives
A A
ds* = [1 - 3f2] dt* — [1 + 3f2] 72+ F2d02.
+ (5.19)

[A A
ds®> =dT? — |1+2 3 T+ 23T2] (dR? + R%d0?).

which will only reasonably approximate the expansion of FRW for values of R ~ T <<
ﬁ. Note that, although the last metric in is linearized, it does not fulfill any
linearized Einstein equations.

The previous transformation provides the relationship between a framework where
the Einstein equations can be consistently linearized and the actual coordinate system

in which we observe. The solutions easily found in the linearized theory have to be
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5.3 Background solutions

transformed to the physically meaningful coordinate system in order to make predic-
tions. It is at this point that non-trivial effects related to A will appear. They are
discussed in Section 5.4. Of course, given the current value of A, these effects will be
small. We believe nonetheless, that these corrections are conceptually important. Note
also that involves v/A and not A, yielding corrections that are potentially much
more relevant for observation than those of order O(A).

Equation is just one of the many possible cosmological FRW metrics. Other
possibilities such as a power law cosmological scale factor do not correspond to a de
Sitter space-time and therefore there is no obvious change of coordinates that allows
to reexpress a GW, i.e. a solution to a wave equation, in that physically meaningful

coordinate system.

5.3 Background solutions

We shall work consistently in the linearized approximation both for the background
modification hﬁy and for gravitational wave perturbations h}fl/,. Namely, the metric
can be written as g,, = M + hﬁy + h}%, where hﬁ{,w < 1. To keep the notation
simple we shall only use the superscript A when confusion with wave perturbations h}f{,
is possible. In this section we will be concerned with background linearized solutions
when the cosmological constant A is present.

The value of the cosmological constant has presumably not been the same through-
out the history of the universe. In early epochs, perhaps following an inflationary
period, its value is believed to have been much larger [59]. This fact suggests that it
may be necessary in some circumstances to retain the term Ahﬁy. Likewise it will be
necessary for consistency to keep terms of order Ahm as the magnitudes of hlvfl/, and A
are unrelated.

In what follows we proceed without making any assumptions on the value of A; we
will just assume that the perturbation that induces on the background metric Ay, is

small enough for the linearized approximation to be meaningful.

5.3.1 Lowest order solutions

First we turn to the lowest order solutions already discussed in [I8], which correspond to

neglecting terms of O(Ah,,,). In the Lorenz gauge this amounts to solving the following
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equation )
Ohy = — 2An,,

- (5.20)
duhl; =0.
Linearization limits the validity of the solution to values of the coordinates such that
r? << 1/A.
Before discussing the solutions to we take a look at the equations in the A
gauge 3
Ohy =0
. (5.21)
Ouhl = — Any .
Note once more that the linearized equations are not invariant under gauge transfor-
mations. In the Lorenz gauge the cosmological constant is regarded as a gravitational
source, it appears in the equations of motion, whereas in the A gauge all dependency in
the cosmological constant at this order appears through the gauge condition only and in
a way it can be interpreted as a consequence of the coordinate choicd”} The connection
between the two gauge choices in the linear theory has already been discussed.
We can easily solve Equations to find the traceless solution
~ A 9
hyw = s (43:Ma:y — N ® ) . (5.22)
If we require that the solution is proportional to A and involves only the coordinates
z# this is the unique solution. In addition, is the only one that is Lorentz-
covariant (note that 7, is the underlying metric and there is no other four-vector at
our disposal).
It is worth noticing that although there is a residual freedom in this gauge, no
transformation can turn this solution into a static metric: The A gauge is explicitly

incompatible with the solutions being static.

We now transform the solution back to the Lorenz gauge using (5.14). We find
A 2
hyw = 9 (zpzy + 2na”) . (5.23)

Without the Ah,, term the equation of motion is actually invariant under residual
transformations. The number of physical degrees of freedom therefore is reduced to

two. This is the only covariant-looking solution in the Lorenz gauge but only one of

* This of course does not mean that the consequences of A can be removed by a wise coordinate

transformation but it does mean that it disappears from the equations of motion themselves.
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the infinite number of solutions reachable by non-covariant residual transformations.

The most general form of such transformations is

At +r?

¢ — (B1t? + Baa? + B
(B1t? + Bay? + Bs

(BltZ + 3222 + B3

t

y?+2%))

x? +z2))y ’
%+ y2)) z

(5.24)

N N AN

where 2B1 — 6By — 4B3 = 0. In particular we find the values of these constants that

allow us to reproduce the static solution of [I§].

A:—%, B, :—%, B2:—A B;;:A; (5.25)
One should ask at this point what are these coordinates. We already know that they
cannot correspond to cosmological coordinates. In fact the resulting metric is neither
homogeneous nor isotropic although it preserves the symmetry among the three axes.
The answer becomes obvious once one discovers that one of the possible residual gauge
transformations eliminates the time dependence of the metric. A generalization of
Birkhoft’s theorem [60] states that there is a unique static solution with spherical
symmetry which is the Schwarzschild-de Sitter metric previously discussed, or more
precisely the first order of it in the A expansion. Since Schwarzschild-de Sitter does
not fulfill the Lorenz gauge condition, a time-independent coordinate transformation
must also be involved. Let us explicitly show this point using a succession of coordinate
transformations linear in A.

The first step is to transform (5.23) to a static solution. We start from

A A ) .
ds® = |1+ 5(?nf,2 - 27«2)] dt* — [1 — 5(—2752 +2r2 + mlz)] da’®

oA oA (5.26)
— S—taldt do' + =—a' 27 da’ da?
9 9
where ¢ = 1,2,3 and ¢ # j. After the following change of coordinates
A x/2 (y/2 +Z/2)
0 . _ 12 _ = N 7T /
T = + 9 ( t 5 + 1 )ZL’
y:y/+g <_t/2_y;2_|_(x,24+2,2)> y’
2 ( /2 /2) (5'27)
A z e +y
Y 2 2 /
z =z + 9 < t 5 + 1 )z

A
t :t/ . 178(7,;/2 +T/2)t/
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the metric transforms into the static solution to order A found in [18],
A A
ds? = [1 — 37“’2] dt”? — [1 — g(r’2 + 322 | dal? (5.28)

Note that this solution is still in the Lorenz gauge; we only performed a residual gauge
transformation that is allowed in this gauge. Since our starting solution is only valid
to order A, in any change of coordinates, either exact or linear, we only keep terms
linear in the cosmological constant. We can further transform to obtain a fully

spherically symmetric solution. Under the following change

A
PN A 3
r =z + 121:
A
N s on3
V=YY (5.29)
r___n A _n3
Z =z + 12z
t/ :t”,
we obtain
A A
d.5'2 — [1 o 37‘”2] dt//z - [1 o 67,//2:| (dr”2 + T”2d92), (5'30)

which does not obey (5.20) anymore. We can now perform another coordinate trans-

formation to obtain the SAdS metric to order A

A
A - |
T (5.31)
t// :i‘
A A
ds? = [1 — 3722] di? — [1 + 37*2} di® 4 7202, (5.32)

This is the linearized Schwarzschild-de Sitter metric. Essentially the background solu-
tion ([5.23)) is the SAS metric in a set of coordinates related to SAS by time independent

transformations.

5.3.2 Next-order solutions

Let us now relax the approximation of the previous section and retain terms propor-
tional to Ahy,. In particular we will be interested later in terms of order Ah/‘f,/j that
will influence the propagation of gravitational waves.

In the Lorenz gauge this requires the simultaneous fulfillment of the two sets of
Equations and . We note that because of the dimensionality of A any solution
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of the previous equations containing A and constructed with the only available (Lorentz-
)Jeovariant vector z* must necessarily be even under a change of sign of all coordinates
x#* — —xt. Solutions odd in z* exist but they require the involvement of parameters
other than the coordinates and A (a wave vector, for instance, see Section 5.3).

The most general solution of this equation can be written as a superposition of both

complex and real exponentials

4

By = / (37:6)46(/{2 —2A) (E/w coskx + Dy, sinkx + % (Acoshkz + Bsinh kx)) — N,
(5.33)

with E,,, and D,,, traceless, i.e. E}, = DY, = 0. In the previous expression E,,,, D,,,

A and B are in principle all independent functions of k£ provided that the two following

gauge conditions are met

4
/ (‘217:“)45%2 —2A) <kuE{,‘ sin kx + %Asinh k:x) =0 (5.34)
&'k ky
W(S(k —2A) ( kDY cos kx — ZB coshkz | = 0. (5.35)
T

Clearly the integrands involved have to fall off sufficiently fast for large values of &k for
the integrals to exist.

This solution has ten degrees of freedom to start with. Nine come from F,, and
D, after removal of the trace. Another one comes from the coefficients A, B. Note
that both A and B are needed to provide a full degree of freedom and likewise for
E,, and D,,. Using the gauge condition we can eliminate four of them, leaving six
independent degrees of freedom. Unlike , the above solution does not admit any
residual gauge transformation to further eliminate degrees of freedom. Any attempt
to perform a residual gauge transformation would take the solution ‘off shell’, i.e. the
equations of motion would not be obeyed.

On the other hand we have to ensure that h,, << 1; However, in general this does
not eliminate any degree of freedom, it is just a requirement of the linearized theory.
This translates in requiring the first term in the expansion of the hyperbolic cosine to

cancel the —n,, piece in (5.33)), or in other words

/ g:fyﬁ(kQ —2M)A(k) = 4. (5.36)
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Since is the most general solution to the equations we must be able to recover
the solutions in the previous section by performing an expansion in A. To do so we
only have to choose the right form for E,, (k), D, (k), A(k) and B(k). As mentioned
previously, to reach a Lorentz-covariant formulation such as in the Lorenz gauge
we can safely assume that D,, and B are zero as the resulting metric must satisfy

hyw(x) = huw(—x), as discussed. In addition A(k) can only be a constant on Lorentz

covariance grounds. We will take it to be A(k) = %/ = %. Also E,, needs to

be a (traceless) Lorentz-covariant tensor, namely E,, (k) = & (kuk, — 222A). The

proportionality coefficient between E and A’ comes from the gauge condition .
Finally, as also indicated previously, the integrals require a finite support to be well
defined and this should be implemented in a Lorentz-invariant way too; a sharp cut-off
will be used below, although this is not crucial at all. Expanding ,

d4k 2 T]MV
hyw _/(27r)45(k —2A) (Ew,(k) coskx + TA(k) cosh k:a:) — Nuw

- / (der’;@(k? —2A) (E/w(k) (1 & '2”“’)2 ¥ ) (5.37)

+%A(k) <1 L ';)2 ¥ >> — Ty

and using the definitions given above,

Bk 1 E o (k- 2)?
h“”_/(27r)3 A+ K2 <2A (k by _7A> <1_ 2 )

o A (1 G 'Qx) >> — -

(5.38)

Now we introduce the cut-off, /2 Already condition - dictates the value for
A= 32” , where C' = % fo d\k| \/7 Then the solution reads

X N/mdu%’\ 2 E(kk "“”A) (k-x)2+77ﬂ167r2(k:-x)2
Mo 2mt o on k2 \ 2A 2 2 4 AC 2

"o 2o or 4 e o1 (e + 22020) = Je Tt

_AC A 2 A 9 27T2
=12 ( E <24 (ﬁuu:c + ZxMxy) T6n“Vx ) + N o)
(5.39)
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The value of E is fixed via the gauge condition |i to E = —éﬁc—ﬂi, leaving the

perturbation in the form

A
Py = 9 ( uy + 277,“,:62) , (5.40)

which is precisely ([5.23]).

5.4 Wave-like solutions

In this section we will finally investigate the effects of the cosmological constant in the

propagation of GW in the appropriate coordinate system.

5.4.1 Lowest order solutions

We write hy, = hﬁy + hm. The term hﬁ,/ is the solution we just found, h}f{, will be a
perturbation on the metric induced by some source of GW. The same decomposition
holds for the trace reversed metric lNLW. Wayves are usually considered in the transverse

traceless gauge [61]
Wi =pWe =0, 9" =9, " = 0. (5.41)

This is compatible with the A gauge condition as the right-hand side of is un-
changed when considering izﬁ,, + BZ‘Z provided that is fulfilled by hf}w This also
makes clear that, at this order, the gauge condition involves the perturbation associated
to the background and not the metric perturbation associated to a gravitational wave.
Since the proper equations of motion in the Lorenz gauge at this order, neglect-
ing O(Ahy,), are just Ohy,, = Dhﬁu + Dh}f{, = 0, being the latter an independent

perturbation, it is obvious that
Oh,y, =0, (5.42)

and the gravitational wave solutions are in these coordinate systems functionally iden-
tical to those existing in flat space.
Note that because the Ahﬁy has been neglected, the remaining residual gauge invari-

W

ance allows for a removal of four of the six degrees of freedom in h, and the analogy

with wave propagation in Minkowski space is complete.
In the case of the lowest order equations the full solution of ([5.20) is

A
hyar = P, + sy = o (0 + 22®) + By cos ki + Dy sin ki (5.43)
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where EW = DV =0, k, E£" =k, DE" = 0 and k2 = 0.

We want to see now how plane waves such as the ones in look like in the new
coordinate system. Transformation acts both on the polarization tensors and on
the arguments of the sine and cosine. For the polarization tensors we can always cut the
expansion in A and keep terms only up to a certain order. However, the transformation
on the arguments yields terms of the type Z3wA which in general can be relevant. The
sine and cosine can not be expanded, we have to transform the argument exactly; we
shall later evaluate the error caused by retaining only the lowest order terms in the
arguments.

For the polarization tensors, since we transform them independently of the argu-
ments, it is easy to see qualitatively what the corrections to the polarization tensors
will be. On dimensional grounds alone, all corrections will be of order O(v/AZ) or at
most O(AZ?), being these quantities in the region of validity of the approximation very
small.

Nonetheless, the transformed wave-like solution to order VA is

0 0 0 0
. 0 Bn(1+2/47) En (1 +2\/§T> 0 )
0 Bn(1+2/37) ~En <1 +2\/§T) 0
0 0 0 0
cos (w(T - Z)+ w\/§ <Z22 - TZ) + (’)(A)) +0(A)
N . . ; (5.44)
0 Dy (1+42/47T D12<1+2 2r) o0

0 0 0 0

sin <w(T ~ )+ w\/§ <Z; - TZ) + (’)(A)> +O(A)

The term w(T — Z) dominates the argument of the trigonometric functions and it can
be checked numerically that the error made by omitting terms of order A or higher is

< 1073 for the purposes of next section.
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5.4 Wave-like solutions

5.4.2 Next-order solutions

As we have argued before, it is not justified to neglect the term of order Ahm in this
case, as unlike for the case of the background, the magnitude of the two quantities is
unrelated. We can add a wave-like piece to the solution ([5.33))
huw =Ry, + hiY,
d4k 2 . T]ul/ .
= W&(k —2A) (E;w cos kx + D, sin kx + v (A cosh kx + Bsinh kx)) — N
+ EEZ/, cos kx + Dz[l/, sin k.
(5.45)

This will always be a solution of and as long as E = DV =0, k”EKV“ =
kuDIf,V“ = 0 and k% = 2A. However, now we are not allowed to perform any gauge
transformation, at least at the next-order level. We can still use the gauge condition
and the traceless condition to eliminate five degrees of freedom from the wave. We
are left with a massive wave with five degrees of freedom. The polarization vectors of

which, for a wave propagating in the z direction (k; = ky = 0), can be written as

Eo V=2 g 2N By Var=an Loo
EW — @EB En Fhs E1s (5.46)
- @EQS Enp ~En — Eoo s s
2
V= oo Er3 a3 w2 Eoo

And a similar expression for DZ‘;. At the exact level this is as far as one can go but in
order to understand the meaning of these massive waves we turn again to an expansion
in powers of A. We will proceed in two steps. First we expand the solution in powers
of A and collect terms order by order. Then, using the same reasoning in the equations
of motion, we can use an approximate residual invariance to rewrite the polarization
tensors as the usual GW in Minkowski space-time plus an order A contribution with
the extra degrees of freedom.

The polarization vectors ([5.46|) can then be written as

Eoo Ei13  E23  Eno AO ~L5F3 —&Fs 4 Ey
Ei3 En Eip Eis —22En3 0 0 0 2
BV = + +O(A
a Eys Ei1p —En Egs — o Eas 0 Ew2 0 (4%
Eo Ei3  Ezs  Ego -z Eoo 0 0 28 Eoo
_ (0 1 2
=B + EQY) + 0(A?).
(5.47)
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5. Gravitational waves in the presence of a cosmological constant

o . . W . . . . .
The same decomposition applies to D;,. This expansion makes explicit the contribu-

tions of A at a given order. We want to expand
W _ 1(0 1 2
hiv, = b + B + O(A?), (5.48)

where the superscript refers to the order in A. The functions sine and cosine can also

be expanded around a massless wave with coordinate-dependent amplitudes [55]

W o_ oW W
hy, = E;, coskx + D), sinkx

A A 5.49
~ [(EEI/, - ;D%) cosw(t — z) + <DE,/, + ;EZ‘;) sinw(t — z)] (5.49)
or what is tantamount
Az
hEl/, = [(E/(f,),) + E/(j,) — waP)) cosw(t — z)
(5.50)

Az
(0 1 22 0(0) ) _
+ <DW) + D;(w) + " E/(w> sin w(t z)}
+ O(A?).
We see that the massive wave we started with can be written at linear order in the

cosmological constant in terms of a massless wave where all dependency in A appears

only through the polarization tensors
h}f{, = EMWV cosw(t — z) +DE£ sinw(t — z) + O(A?), (5.51)

where EEI/, and DZ[,// can be read from (|5.50). The above is a valid solution of Dh}f{, +
2Ah/‘f,// = 0 only to order A (included), which means we can expand the equations of

motion to the same order without loss of validity

DA + 0 + 2000 + O(A%) =0 (5.52)

v

Now we can split the problem and solve order by order
0r0 =0
" (5.53)
Oh() +2ARQ) =0

Due to the fact that (5.52) is not exact, the solution to it can admit a residual gauge
transformation that will take the solution ‘off shell’ some order beyond the order we

consider. For the transformed solution
1(0) __
OhQ =0

(5.54)
ORY + 2AR9) = 0.

74



5.4 Wave-like solutions

The first equation in is analogous to , i.e. residual transformations on h,(PV)
are not restricted. To order zero we obtain GW analogous to the ones in flat space (in
the present set of coordinates, that is). But in this case the transformation propagates
to the following order through the second equation in making necessary to find
the transformed hﬁi).

It is not difficult to see that the following polarization tensor fulfills the necessary

requirements of tracelessness as well as the gauge condition (kuE‘,ﬁV“ = kuD‘,iV“ =0)

£ Ego ~ AP — A Foy £ Ego
EW — ~AFB3 Bu-2Dy Eip—-2Dy —AFE; (5.55)
v ~ LBy Bio—22D1y —En +22Dyy — 5By '
HTKZEOD ~A By — A B Sz oo

D, is similarly obtained from . Notice the presence of the usual components (of
O(1)) in the polarization tensor in the x,y entries of the metric.

To this order in A we obtain massless waves with coordinate-dependent modified
amplitudes which depend on A. We can see that the extra degrees of freedom due to
the form of the linearized equations of motion for non-zero A will only couple to matter
fields proportionally to A thanks to the coupling hfg,T’“’ and thus will be irrelevant in

practice.

5.4.3 Transformed next-order solutions

Now we are ready to apply the series of coordinate transformations (5.27} [5.29] [5.31]
5.17)) to the wave-like solution (5.51]) that we found in the previous subsection in order

to obtain a physical expression in FRW coordinates. Recall the waves in the general

Lorenz gauge read
w _ oW w .
by = Ej (A z) cosw(t — 2) + D (A, 2) sinw(t — 2), (5.56)

where EZ[Z/, can be read off from 1) From 1} it is clear the only modification
with respect to the plane waves of the lower order is in the polarization tensors, being
already of order A. This suggests that all the new modifications to order A of the next-

order waves are due to the change of coordinates. Explicitly the transformed waves to
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order A read

WWrrwW —
iz
[ [ 2 Eqo —A B — 4 g & Eoo
~AE3 En-22Dy Ep- ATXZDQ ~A Eys n
~ A FEy Eip—22Dyy —Fu+252Dyy —245 B
Sz Eoo -A P — A Fos Sz Eoo
0 0 0 0 i
0 En(2/4T+ 272+ 822) By (2\/§T + 272 4 f;gz2> 0 o
+O(AY?)] x
0 Bo(2/3T+2121822) By, (2\/§T 422y 51322) 0
0

2
cos <w(T —-Z)+ w\/§ <Z2 - TZ> - %wA (T + T°Z — 5TZ* +22%) + (’)(A3/2)>

£ Do —2 D13 — 4 Dys £ Do
n ~ADis D +22E; D+ %Eu —-22D13 n

~ & Doy Dio+22E1y —Dyy—42E —2 Do

£D00 —4A Dy — 4 Doy 2 Doo
0 0 0 0 ]
0 Dy 2\/§T +272 480 72) D, (2\/§T + 272y igZ?) 0

+O(A?)| x
0 Di(2\/47+%712+342°) -Dy (2\/§T + 272 4 ﬁgZ?> 0
0

2
sin (w(T - 7))+ w\/§ <Z2 - TZ) — %SwA (T3 +T%Z - 5TZ% + 223) + O(AY?) ).

(5.57)

5.5 Detectability

Let us now do some order of magnitude estimates to evaluate the effect of the corrections
induced by A # 0 on the propagation of gravitational waves.

For the polarization tensors we have not attempted to derive the A-order corrections
in full detail, although this is possible, because already the most relevant correction, i.e.
VAZ E,(f,)), has to be some orders of magnitude smaller than Efg,) for the approximation
to be valid. For example for a coordinate value of the order of a typical distance to
a supernova, 10%* m, the quantity vVAZ ~ 1073 (A ~ 107°2 m~2 ~ 1073% s~2). This
already means a small correction to an amplitude that has so far escaped detection and

which presumably will not be measured with sufficient precision to discern the effect of
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5.5 Detectability

the A-order effects in the foreseeable future. However, conceptually it is an interesting
result.

It is more interesting to work out the corrections to the dispersion relation for
. As previously, let us consider waves that propagate in the Z direction and are

monochromatic. The maxima of the wave will be reached when

2
w(T —2Z)+w /; (Z2 — TZ) = nm, (5.58)

Zmax(n,T) =T — @ - \/7 o \/7 (5.59)

From (5.59) we can also calculate the phase velocity of the wave which is defined as

or

op(T) = dfl“:;ax - T\/§ + O, (5.60)

We see that in comoving coordinates the phase velocity is smaller than 1. This does
not mean that the waves slow down. We can calculate the velocity in ‘ruler’ distance.

For a fixed time we have

—di? = — (1 +T\/§> dz?

dT —dT
It is also interesting to rewrite the trigonometric functions of the wave defining

wet(Z) = w <1 - Z\/g) and keg(Z) = w (1 — g\/§> The cosine then reads
A Z A
Tw|l—Z\=|—-Zw|l1——=1/=

Note that the transformed wave corresponds to a usual wave with an effective frequency

(5.61)
=1.

cos = cos (WetT — ket Z). (5.62)

dependent on the coordinate Z. The wave becomes redshifted as it propagates away
from the source.

To see explicitly the effect of A in the propagation of a wave described in comoving
coordinates we plot (Figure 1) one of the h components of the wave for a given instant
(T = 0 for simplicity). A wave with a physical frequency ranging 103Hz < w < 10~ !0Hz

cannot be practically plotted in the relevant Z-range. To see the effect in a few cycles
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5. Gravitational waves in the presence of a cosmological constant

we take w = 4-107'Hz, which does not affect the overall magnitude of the correction.
We plot the wave for A = 107°2m =2 and for A = 107°%m 2 to assess the influence of A

on the wave propagation. Then we plot hy4 ~ (1 + %AZ2) cos [—Zw (1 — % é\)]

h++

~15}

Figure 5.1: Dependency of the amplitude and wavelength on the coordinate distance Z
(expressed in meters) for a constant value of T" and for different values of A: The dashed line
corresponds to A = 0, the dotted line to A = 107°2m~2 and the solid line to A = 10~°!m =2,

From these results we can already draw some conclusions. The genuine corrections
due to the mass-like term in remain unchanged in the transformed waves if we
cut the expansion to order O(A). Moreover they are of order %, which is in practice
irrelevant unless the value of A is much greater than the current value. However,
transformation induces modifications to the wave, both in the amplitude and
the phase, of order v/A and A. This modifications result in a simultaneous increase of
the wavelength and of the amplitude with the coordinate Z. As shown in Figure 1, the
most interesting region for detection would be that of events (supernovae and black
hole mergers for example) happening at a distance Z ~ 10%* — 10%°m away, for which

the correction \/gZ ~ 107! — 1073 is not negligible and is well within the validity
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5.5 Detectability

range of the approximation. In fact to have this type of correction into account seems
probably essential to properly account for the measurements of this type of phenomena

in pulsar arrays.
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Chapter 6

Local measurement of A using

pulsar timing arrays

Pulsar timing arrays (PTA) are one of the most promising candidates to offer the
first direct detection of gravitational waves. They have been collecting data already
for almost a decade and they are expected to obtain signals in the next years. The
idea behind PTA is to detect the correlated disruption of the periods measured for a
significant number of pulsars due to the passing of a gravitational wave through the
system [62] 63} 64, [65]. The frequency range sensitive to this method is 1079571 < w <
10~7s~! [62], and the timing residual is expected to follow a power law [63, 66]. A key
problem in making predictions for these signals is modeling in a realistic way the wave
functions produced in the different sources, in particular the value of the amplitude of
the metric perturbation h is a free parameter in principle. Some bounds in the range
of 10717 < h < 107!° have been set already [66].

If A # 0 gravitational waves (GW) propagate in a de Sitter space-time not in flat
Minkowskian space-time. The general practice is simply to account for the expansion
of the universe by using a redshifted frequency according to the distance of the source
[65]. In this work we go beyond this exceedingly simple approximation and use an
approximate solution of the GW equation in de Sitter previously derived [67] and see
that the conclusions change.

We assume that A is somehow an intrinsic property of space-time rather than an
effective description valid at extremely large scales. If so, it is expected to be present at

virtually all scales, with the exception of gravitationally bound objects such as galaxies
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6. Local measurement of A using pulsar timing arrays

or local groups of galaxies. If A is a fundamental constant of nature surely there
should be a way of determining locally its value. By ‘locally’ here we mean at redshifts
z << 1. This question has been addressed in [14], 18]. We will see that GW may open
a nice window to realize this program. In fact, our results suggests that the currently
observed value of A may actually facilitate the first direct detection of GW under some
circumstances.

This chapter is organized as follows. In Section 6.1 the wave functions used are
presented, the way in which the timing residuals are calculated is defined and a brief
explanation of the coordinate systems involved is included. Section 6.2 is devoted to
present our numerical analysis. In Section 6.3 we discuss the possibility of using this

method to get some results on the value of the cosmological constant.

6.1 Gravitational waves and timing residuals with A # 0

In Minkowski space-time, gravitational waves obey the simple wave equation [(1h = 0.
It is possible to show [67] that in de Sitter space-time with A # 0 and within the
linearized approximation one can find solutions of the linearized Einstein equations in

the traceless Lorenz gauge (TT gauge [61]) which obey the same equation of motion
Ohsd® = 0. (6.1)
Spherical massless waves are solution of this equation away from the source
B5dS = % (B cosfu(t — )] + Dy sinfw(t — r)]). (6.2)

However, as shown in [67], this simple linearized solution only holds in a specific set
of coordinates, the Schwarzschild-de Sitter (SdS) coordinates. This is easily seen by
considering a linearized background solution (rather than wave-like solutions) and real-
izing that their unique static solution is the (linearized) Schwarzschild-de Sitter metric
167].

Although constituting a perfectly valid solution for gravitational waves, SAS coor-
dinates are not adequate to make observational predictions. The proper isotropic and

homogeneous coordinates are the Friedmann-Robertson-Walker (FRW) one and the

*Note that the FRW metric cannot be approximated to obey any linearized Einstein equation, see

[67] for a detailed discussion.
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6.1 Gravitational waves and timing residuals with A # 0

solution (6.2)) in such coordinates, neglecting O(A) and higher, reads

E A A (R?
FRW _ KV (1 44 /=T T — Vel = -1
Py 7 < + 3 )cos w( R) +w 33 R

DﬂV A . A R2
+ 7 <1+\/3T>sm w(T—R)—I—w“g(2 —TR

where R is the usual radial FRW comoving coordinate and 7" is cosmological time. Note

9

that the linearization process that has been used makes sense as long as AT?, AR? << 1
and also that in the TT gauge the only spatial components of the metric that are
different from zero are the X, Y entries of the polarization tensors E,,,,, D,,. Although
some temporal components of E,,, and D, are also non-zero in these coordinates, they
are several orders of magnitude smaller than the spatial ones and therefore will not be
relevant for the present study.

We note that the phase velocity of propagation of the GW in such coordinates is
not v, = 1 but v, ~ 1 — \/gT + O(A) [67]. On the other hand, with respect to the
ruler distance travelled (computed with g;;) the velocity is still 1 (up to terms in A of
higher order to those considered).

Consider the set up depicted in Figure describing the relative situation of a GW

source (possibly a very massive black hole binary), the Earth and a nearby pulsar

Source

ZE
Pulsar

L

Earth

Figure 6.1: Relative coordinates of the GW source (R=0), the Earth (located at Z = Zg)
with respect to the GW source and the pulsar located at a coordinates P= (Px, Py, Py)
referred to the source. The Z direction is chosen to be defined by the source-Earth axis.

Angles « and 8 are the polar and azimuthal angles of the pulsar with respect to this axis.
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6. Local measurement of A using pulsar timing arrays

The timing residual [68] induced by (6.3 will be given by
L f° FRW L 5 .
H(Tg,L,a, B, Zp,w,e,\) = —5a 7’ dz hi;™" (Tg + —x, P+ L(1 +z)n) (6.4)
C -1 C

along the null geodesic from the pulsar to the earth, where we assumd|e ~ | Ej;| ~ | Dy,
i,7 = X,Y and the unit vector n is given by (—sinacosf, —sinasinf,cosa). In
deriving the previous timing residual we have neglected the (non-zero) time components
of K, D, that, as previously indicated, are several orders of magnitude smaller. The
speed of light has been restored. We have assumed that from the pulsar to the Earth
the electromagnetic signal follows the trajectory given by the line of sight E(x) =
P + L(1 + x)a. Since we assume that within the Galaxy A = 0, L is also the ruler

distance. Explicitly
R(z) = P4+ L(1 + 2)i = (—zLsin acos 8, —zLsin asin B, Zp + =L cos av) (6.5)

or in modulus

R(z) = \/Z?E +2xLZpcosa+ x2L? ~ Zp + xLcos a, (6.6)

since we are considering L. << Zg. This approximation does not affect in any signif-
icant way the results below. We do not consider here the known contribution to the
timing residual H from the Earth’s peculiar motion either. The integral is of course
independent of the angle 8 for any single pulsar but it will depend on the relative angles
when several pulsars are averaged.

Let us consider the arguments of the trigonometric functions in (3) and define

L Z L
O(z,Tg, Lo, B, Zg,w,\) = w(Tg + —x — ZE 22 cos )
c c c

A Ze L 2
+wi/ = (CF +agcosa) - TE+£I @—l—xécosa .
3 2 c c c

Then

1L
H(TE,L,O&,B,ZE,’(U,&,A) = _5 c (Sl 2
C

0 1 A L :
/1 dac(ZE —2Lcosa) (1 + \/;(TE + Cm)) (cos© +sinO) .
(6.8)

acos® B+ 2sin asin B cos® B — sin? asin? B)

*This approximation is unessential and can be easily removed.
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6.1 Gravitational waves and timing residuals with A # 0

At this point one should ask whether the observationally preferred exceedingly small
value of the cosmological constant [51] affects the timing residuals from a pulsar at all.
To answer this question we take reasonable values of the parameters both for the GW
and one pulsar location and plot the resulting timing residuals as a function of the angle

. The comparison is shown in Figure [6.2l The figure speaks by itself and it strongly

2.x 10’71_! 2% 1077"!
L.x107F W' | Lx1077F
|
il i1 Y T — | MH‘\W .
7l,><10’7*\ / _Lx10f
-2.x1077 _2.x107f
| |
-3.x107F h J _3.x107f

Figure 6.2: On the left the raw timing residual for A = 1073572 as a function of the
angle a subtended by the source and the measured pulsar as seen from the observer. On
the right the same timing residual for A = 0. In both cases we take ¢ = 1.2 x 109m and
Tp = ZEs for Zp = 3 x 10%*m; with these values |h| ~ £ ~ 107'5 which is within the

expected accuracy of PTA [66].

suggests that the angular dependency of the timing residual is somehow influenced by
the value of the cosmological constant, in spite of its small value. Another feature that
catches the eye immediately is an enhancement of the signal for a specific small angle «
(corresponding generally to a source of low galactic latitude, or a pulsar nearly aligned
(but not quite as otherwise E;;A'n/ is zero for TT waves) with the source.

To understand this enhancement let us analyze the behavior of the integral
0
I= / dz(cos © + sin ©), (6.9)
-1

with © defined in as the prefactors in are not relevant for the discussion. The
result can be expressed as a combination of Fresnel functions, and sines and cosines.
In the limit where A — 0 the Fresnel functions go to a constant and the behavior is the
usual for trigonometric functions. In this respect, the Fresnel functions are responsible
for the position and magnitude of the enhancement. This is clearly seen when I? is

plotted® as a function of the angular separation a between the source and the pulsar.

*We plot I? rather than I to deal with a positive quantity.
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I? always shows a maximum, the position of which is quite stable under changes of
most of the parameters involved. It turns out to only depend strongly on the value of
A and on the distance to the source. It actually depends on the time scales involved
rather than on the distance to the source but since the time of arrival of the wave to
the local system is directly related to the distance, the dependency is correlated. This
is evidenced in Figure which shows plots of I? for different values of the frequency,
distance to the pulsar, distance to the source and cosmological constant. In Figure
Ma the following reasonable values, Zp = 3 x 10%*m, w = 1078571, Tp = Z?Es and
L = 10m are used. In b) there is a change in the distance to the pulsar. In c)
we change the frequency. In d) we keep the distance to the source fixed and use the
time at the end of an hypothetical 3 year observation. In e) we change the distance
to the source one order of magnitude (therefore time also changes). Finally in f) the
cosmological constant is changed. It is clear that the most dramatic changes occur
when either the distance to the source or the value of the cosmological constant are

modified.

6.2 Significance of the timing residuals

Now we would like to make a more detailed study of this possible signal. For that
we use the ATNF pulsar catalogue [69]. As it is well-known pulsars are remarkably
stable clocks whose periods are known to a very high accuracy, up to 10~ s in some
cases. However to achieve this extreme precision requires some hypothesis that are not
appropriate for the physical situation we are considering and we will assume the more
modest precision of 1077s that we take as observational uncertainty.

For each pulsar we have the galactic latitude (¢), the galactic longitude () and the
distance (L). We transform these coordinates to (o), where « as already explained is
the angular separation between the line Earth-GW source and the line Earth-pulsar.
B corresponds to the azimuthal angle of the pulsar referred to the plane perpendicular
to the line Earth-source.

The statistical significance of the timing residual will be

N, N .. 2
1 o H(TZJvL'aa'aﬁ'aZanaE?A)
o= ZZ( Eoh P (6.10)

Ot
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6.2 Significance of the timing residuals

where o0y is the accuracy with which we are able to measure the pulsar signal period.
We take oy = 10~ "s as mentioned. The index i running from 1 to N, labels the pulsars
included in the average.

In the statistical average we assume an observation time span of approximately
three years, starting at the time the signal is 10'%s old (time of arrival at our Galaxy).
We assume that we perform observations every eleven days. That is N; = 101; 10'6s <
Tr < 1.00000001 x 10's. Since the coalescence times of super massive black hole
binaries (SMBHB) can be of the order of 107s [70] (that is a much shorter time scale
than the time of arrival of the perturbation to the local system) it is justified to use
Ty = ZTE Form Figure one can also see that the position of the enhancement is
not significantly altered in the time span on observation.

We turn to the angular dependence of the significance. In the following o(«) is
plotted keeping « as a free parameter (note that it is not summed up), that is, using
a set of 5 fixed pulsars supposed to be exactly at the same angular separation from a
source the position of which we vary 0 < a < 27 (in this respect this is still a theoretical
exercise). This could be done for any set of five pulsars, since, as shown in the previous
section, the position of the peak does not depend on the values L; and ;. However,
we used the following set of real pulsars which are all close to each other at a distance

L ~ 10%°m. Since there are over 600 pulsars it is not difficult to find clusters with a

Pulsars from the ATNF Catalogue
J0024-7204E
J0024-7204D
J0024-7204M
J0024-7204G

J0024-72041

Table 6.1: List of pulsars whose L; and ; we used to calculate o(«) for an hypothetical

source at angular separation «.

similar «, albeit possibly with very different values of L and £.

5 101 .7 2
1 H(TE’], Li,a, 5;,10%4,10-8,1.2 x 109,10-35)
= . 6.11
R EE s ( L1 .11

1

Length units are given in meters, frequencies in s™". We observe a huge peak at
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6. Local measurement of A using pulsar timing arrays

a ~ 0.19rad (see Figure [6.4). If a source is located at such angular separation from
the average angular position of the five pulsars chosen for observation, the significance
could be boosted some 50 times. Let us compare it to the same calculation taking

A = 0 and redshifted frequency wesy = z ~ 0.008, which is the corresponding

w__.
T+2)”
redshift for an object 10%4m away calculaitzd)using both matter and energy densities.
No peak is observed.

Now we take a list of observed pulsars well distributed in the galaxy. The angles
(a, B) are calculated for all of them considering two hypothetical sources of GW. One
located at galactic coordinates g1 = 300°, ¢51 = —35° and another located at g2 = 4°,
¢s2 = 10°. We order them from the lowest a to the largest. We group them in sets of

five pulsars. We consider 27 sets of 5 pulsars; that is a list of 135 pulsars. For each set

we calculate the significance

5, 101 ij _ _ 2
1 H(TE’J,Li,ai,BZ-,IOM,lO 8,1.2 X 109,10 35)
= E E 6.12
ok 5101 4~ ¢4 < 107 ( )
i=1 j=1
and plot it as a function of the average angle of the set, a; = 1521 & with 1 <k <27.

Note this is different from ; here we choose two hypothetical fixed sources and a
long list of pulsars grouped by their angular separation « to these sources. This could
be a realistic calculation once real sources are considered.

The results obtained are plotted in Figure In both cases a very noticeable peak
is observed at the expected angle.

The reason why the peak for Source 2 is lower than the peak for Source 1 is that
Source 2 is located close but not at the precise angular separation of a real cluster of
pulsars. This is meant to illustrate that even in that case a significant enhancement of
the signal can be achieved.

Finally, the dependency of o on the frequency

Np 101 i 2
1 2 H(TEJ,LZ‘,O(Z‘,,BZ‘,1024,71),1.2 X 109,10_35)
_ 1
U(w) Np -101 ; jz—; ( 1077 7 (6 3)

has also been investigated. Some of our preliminary checks indicated that no differences
at all were observed in the power spectrum when the value of A was changed and that, as
expected [63, 164}, [66], the signal follows a power law o ~ % However, let us take a closer

look at the dependency on the frequency for a short list of pulsars located at the right
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angular separation to observe the peak. We have already seen the significance grows
notoriously in this angular region. Figure (middle) shows the frequency dependence
of the signal for fifteen pulsars at the right spot with respect to Source 1. As it can
be clearly seen, the signal significance grows enormously again for A = 1073%s72 and
apparently does not follow a power law. For the same short list of pulsars and for A = 0
the signal falls back to smaller values and its envelope shapes towards a power law. In
Figure (top) we also present the same plot for fifteen pulsars located at an angular
separation of around « ~ 1.1rad, that is away from the peak. In this case we see no
differences between the different values of the cosmological constant as well as a clear
power law behavior. The magnitude of the signal is compatible with that of the fifteen

pulsars at the peak separation when A = 0.

6.3 Measuring the cosmological constant

We have seen in the previous that there is an enhancement in the timing residual for
a particular value of the angle @ when GW propagating in de Sitter space-time are
measured. Among all the dependencies, and when the distance to the source is well-
known, the most relevant appears to be the one related to the value of the cosmological
constant A. The position of the peak depends strongly on the value of A. It moves
towards the central values of the angle for larger values of the cosmological constant.

The values of A as a function of the position at which the peak would be found are
plotted in Figure (dots) using the positions found in the plots for o(«) for
different values of the cosmological constant. This calculation was carried out using
two independent numerical methods in order to make sure that one is free of numerical
instabilities (this is a necessary precaution as large numbers are involved).

We argued in Section 2 that the position of the peak is determined by the Fresnel
functions one obtains when calculating the timing residuals. Indeed the integral I in
, which captures the crucial effect, gives a prefactor times a combination of Fresnel
functions times a combination of trigonometric functions. The latter are featureless;
however the prefactor becomes quite large for a specific value of the parameters involved.
This particular value renders the Fresnel function close to zero and the product is a

number close to 2. Away from this point the net result is small.
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Using the series expansion of the Fresnel functions at first order we are able to
obtain an approximate analytical expression for the relation A(«a); that is for the value
of the cosmological constant that (all other parameters being fixed) gives a strong

enhancement of the significance o at a given angle «

12¢? sin* ($ 12¢? sin* (§
Ala) = c” sin (2) S c 81121 (2)7 (6.14)
((cTg — Zg) cosa + Zg) Zy

which is also shown in Figure (line). We have used the fact that, taking into account
the duration of a black-hole merger, cI'r >~ Zg. Equation is a clear prediction
that could be eventually tested. In fact, this effect could also facilitate enormously
the detection of GW coming from massive binary black holes by carefully selecting
and binning groups of pulsars, although the possibility of measuring A locally certainly
looks to us more exciting.

Throughout this work we have considered only the effect of A on GW and the way
they affect pulsar timing residuals and we have neglected the effect of matter or matter
density. In fact, the main effect of the latter would be through the familiar redshift in
the frequency of GW. Frequency does not play a crucial role in the previous discussion
provided that is low enough to be detectable in PTA. It is probably useful to remind
the reader once more that A is assumed to be an intrinsic property of space-time,
present to all scales, except close to the Galaxy. It would be easy to implement more
realistic models in our study, if reasonably well-defined ones were available. In fact,

these uncertainties constitute strong reasons to try to measure A locally.
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Figure 6.3: Integral I? plotted for different values of the parameters involved. a) Corre-
sponds to the reasonable values w = 1078571, L = 109, Zg = 3 x 10%*m, A = 10735572
and T = 10'%s. b) Change in pulsar distance to L = 10?'m. c) Change in frequency to
w = 1077571, d) Change in time to T = (10'6 4- 10%)s. e¢) Change in time and distance
to the source to Zg = 3 x 102>m and Tr = 10'%s. f) Change in the cosmological constant
to A = 10736572,
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Figure 6.4: o(a) for A = 1072%s~2 (Top). Zoom on the lower values for A = 10735572

(middle), and comparison to A = 0 (bottom).

92



6.3 Measuring the cosmological constant

30r

25+

20+

0.5F

0.0

O O
Ooad gOD@DD%@%OO

1.5¢

0.5F

0.0

e

s O
DD%D [@CQEDO (%@%O O

@%@Q

0.0

: a
0.5 1.0 1.5

Figure 6.5: Plot of oj(ay), k = 1,27. A = 10735572, Circles correspond to Source

1 and squares to

Source 2. Full range is showed on top, zoom on the lower values for

A =107%%572 and comparison to A = 0 show on middle and bottom respectively.

93



6. Local measurement of A using pulsar timing

arrays

03k

w2
i

02F -

0.1 s bk 1o .
r PR P ISR i el o
* ; 0. > N‘"‘)"‘v‘h ";" S ),‘ 'hq“m“"’l ‘\“ ',. AN he
%%t o of .. A el i el X
2.x1078 4.x1078 6.x1078 8.x1078 1.x1077
I L w
0 2.x1078 4.x107% 6.x107% 8.x107% 1.x1077
(o
0.3
0.21]
0.1H
‘ ‘ ‘ ‘ Low
2.x1078 4.%x1078 6.x1078 8.x107% 1.x1077

Figure 6.6: o(w) for 15 pulsars away from the peak angular region for Source 1 (top),

the solid line corresponds to A = 1073572 and dots correspond to A = 0. o(w) for 15

pulsars at the peak angular region for the same source (middle). Solid line corresponds to

A =1073%572 and the data close to the horizontal axis correspond to A = 0. Zoom on the

A =0 case (bottom).

94



6.3 Measuring the cosmological constant

A
1.8 x 10—35;
1.6 x 10-35;
1.4 x 10—35;
1.2x 10—35;

1.x 10735}

8.x 10736}

L [ L Ly L L - L L L L L L - L Lo | L L@
./0.17 0.18 0.19 0.20 0.21 0.22

Figure 6.7: A(«) obtained numerically from the positions of the peaks in the o(«) plots
for different values of the cosmological constant (dots) and obtained analytically from an

approximation of the Fresnel functions involved in the timing residual (line).
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Chapter 7

Summary and Outlook

This chapter is devoted to sum up the main results and conclusions of this thesis.
In Chapters 2, 3 and 4 we propose a model where gravity emerges from a theory
without any predefined metric. The minimal input is provided by assuming a differential
manifold structure endowed with an affine connection. Nothing more. The Lagrangian
can be defined without having to appeal to a particular metric or vierbein.

Gravity and distance are induced rather than fundamental concepts in our proposal.
At sufficiently short scales, when the effective action does not make sense anymore, the
physical degrees of freedom are fermionic. At such short scales there is not even the
notion of distance and hence the scale at which the symmetry is restored is the shortest
distance there can be.

The relative technical simplicity of this proposal constitutes its main virtue when
compared with previous proposals [111 12} 13], where even semiquantitative discussions
appear impossible. We have been able to derive in full detail the effective action and
in the case of D = 4 make predictions such as the existence of a cosmological constant,
A # 0, the value of which is not fixed by the calculations but could, in principle, be
adjusted to any observed value. Also the obtention of Einstein-Hilbert theory, free of
divergences at the classical level, as the low energy effective theory of the model. And
more importantly, the fact that it is possible to start from a theory with no metric
whatsoever and obtain at the end unambiguous consistent results.

The usual obstruction to emergent gravity due to the Weinberg-Witten theorem
can be circumvented in the present proposal thanks to the particular structure of the

model. Lorentz indices are of an internal nature in our approach, therefore the energy
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momentum tensor associated to the Lagrangian of the fundamental theory is not a
Lorentz covariant rank-two tensor and falls out of the assumptions of the theorem.
After the breaking one is in the same situation of GR where the applicability of the
theorem is excluded.

A very important aspect of the model is the apparent improvement of the ultraviolet
behavior. After integration of the fundamental degrees of freedom all the divergences
that appear to the order we have computed in the external fields can be absorbed in the
redefinition of the cosmological constant (in D = 2 and D = 4) and the Planck mass
(in D = 4; as seen from the effective theory point of view, even though the respective
counterterms do not have this meaning in the underlying theory). With the running
dictated by the corresponding beta functions, both quantities are renormalization group
invariant. In addition, in the four dimensional case, the Gauss-Bonnet invariant is
renormalized too. This mitigation of the short-distance divergences happens in spite
of the bad ultraviolet behavior of the propagator and the ultimate reason, we think,
is that these are the only counterterms that can be written without having to assume
an underlying metric that does not exist before spontaneous symmetry breaking takes
place.

At long distances the fluctuations around the broken vacuum are the relevant de-
grees of freedom and are described by an effective theory whose lowest dimensional op-
erators are just those of ordinary, either D = 2 or D = 4, gravity. They of course exhibit
the usual divergences of quantum gravity but this now poses in principle no problem as
we know that at very high energies this is not the right theory. For & ~ M one starts
seeing the fundamental degrees of freedom. Gravitons are the Goldstone bosons of a
broken global symmetry. We already argued how the barrier of the Weinberg-Witten
no-go theorem could be overcome.

In a sense the fundamental fermions resolve the point-like 3-graviton, 4-graviton,
etc. interactions into extended form factors and this is the reason for the mitigation of
the terrible ultraviolet behavior of quantum gravity. However this is only part of the
story, because the resolution of the vertices could be equally achieved by using Dirac
fermions coupled to gravity (or any other field for that matter). This would in fact be
just a reproduction of the old program of induced gravity [7] and therefore not that
interesting. The really novel point in this proposal is that the microscopic fermion

action does not contain any metric tensor at all. Then not only is the metric and its
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fluctuations —the gravitons— spontaneously generated, but the possible counterterms
are severely limited in number.

We stop short of making any strong claims about the renormalizability of the model.
We can just say that, from our calculations and our experience with the model, renor-
malizability is a plausible hypothesis (our results actually amount to an heuristic proof
in the large N limit). Likewise we do not insist in that the one presented is the sole
possibility to carry out the present program, although it looks fairly unique. Clearly a
number of issues need further study before the present proposal can be taken seriously
but we think that the results presented here are interesting enough.

A number of extensions and possible applications come to our mind. Perhaps the
most intriguing one from a physical point of view would be to investigate in this frame-
work singular solutions in GR such as black holes. A more in-depth study of the
renormalizability issue is certainly required too as there are issues related to the renor-
malization group to be addressed in the present setting. The issue of the minimal
distance at which gravity looses its meaning is one of the most interesting. Obser-
vationally, the validity of GR is tested to some scale of the order of the millimeter
[71]. From there to the Plank scale there is an enormous room where modifications of
gravity might eventually be envisaged. The inclusion of matter fields in the model is
also an appealing topic, and certainly, trying to make contact with other interactions
could yield interesting results. The relation between our results and Lorentzian tri-
angulation analysis is an attractive possible line of study too. Even more exotic ideas
such as tunneling between geometries or higher dimensional realizations could be worth
investigating.

In Chapter 5 we investigate the effect of the cosmological constant in the propaga-
tion of gravitational waves in a linearized theory of gravity. The presence of A leads
unavoidably to the curvature of the background space-time in which the waves propa-
gate. Within the linearized approximation (which is the only framework where one can
properly speak of ‘waves’) this leads to a decomposition g, ~ 1., + hi}y + hm, includ-
ing a modification of the background (corresponding to the curvature) and a wave-like
perturbation.

To see the way the propagation of the waves is affected, one has first to under-

stand the implications that the different coordinate choices (gauge choices) have in the
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resolution of the equations of motion as well as the importance of the terms of differ-
ent order retained in the linearization. One is free to choose any particular gauge to
solve the equations, however since the linearized Einstein equations are not invariant
under general coordinate transformations their form will depend on the gauge choice.
We argue that the above procedure of linearization is consistent in some coordinate
systems but not in others. In particular, it is inconsistent to linearize the equations
in the familiar Friedmann-Robertson-Walker cosmological coordinates (the metric only
depends on time). Note here that by inconsistency of the linearization in FRW we
mean that g, = 7., + hf}y being a linearized version of the FRW metric will never
fulfill any linearized Einstein equations. However, some authors [58] have studied small

perturbations above the exact FRW background, which is a linearization process with

w
2]

ent from ours. That is, appropriate to discuss cosmological metric perturbations but

respect to the small perturbation h;’,, but constitutes an approach completely differ-
useless to describe local perturbations such as black hole collapse for instance.
Finstein equations can however be consistently linearized in certain coordinates
(those of the Lorenz gauge for instance) where the calculations are notoriously easier;
after studying the symmetries of these coordinates and the relation between the different
gauge choices used in this thesis, one reaches the conclusions that, in virtue of Birkhoff’s
theorem, they are all different parametrizations of a linearized version of the SdS metric,
expanded to first order in A. For these coordinates the analysis of gravitational waves
follows a pattern very similar to the one in Minkowski space-time. In the case where
the Ah,, term is dropped the residual gauge freedom allows for the removal of four
additional degrees of freedom in the general solution, leaving the wave-like component
with the usual two physical degrees of freedom of waves propagating in flat space-time.
On the contrary, if the term Ah,,, is retained in the equations of motion the situation
changes. Even in the Lorenz gauge the invariance under residual gauge transformations
is lost. Again it is not hard to find the most general solution to the linearized equations
composed of a background and a wave-like components. We prove the background
solution to be consistent with the result previously found if A is small. Since there is
no residual invariance, the wave-like solution has to be interpreted as a ‘massive’ wave
with five degrees of freedom (the gauge condition and the trace condition amount to
five constraints as seen by a Minkowski observer). However, we can make use of the

approximate residual invariance at the leading order in A to rewrite the solution as
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massless gravitational waves with position-dependent modified amplitudes that change
very slowly given the current values of A. There are only two O(1) polarizations; the
remaining degrees of freedom (up to the five independent ones required for a massive
spin two wave) are of O(A) and couple extremely weakly to matter sources. Of course
we are not saying that gravitons are physically massive, they do have five degrees of
freedom when their propagation is studied in a Minkowski frame, but one has to bear
in mind this is just an artifact of the linearization process in which the residual gauge
freedom is lost.

Finally, one has to transform these solutions to the physically significant FRW co-
ordinates in order to extract observable consequences. At this point modifications of
O( \/K) appear. Numerically these can be quite relevant for certain gravitational waves
traveling from far away sources and the effect of A can absolutely have a detectable
impact on pulsar timing arrays. Waves are modified both in the phase and the am-
plitude; in cosmological coordinates they are redshifted in a prescribed way and their
amplitude grows as they move away from the source.

To close this thesis, in Chapter 6 we investigate the local effects of the cosmolog-
ical constant for the detection of gravitational waves in PTA. The gravitational wave
function is usually modeled as a massless, either plane or spherical, wave traveling in
flat space-time. The expansion of the universe is accounted for by including a redshift
in the frequency. Major problems are related to modeling the source and assessing
the strain of the amplitudes of the waves. Here we obviate these by just assuming a
spherical wave and focus in the fact that the waves propagate in a de Sitter space-time
rather than in flat space-time.

We use a wave solution derived in FRW coordinates, which we expect to be consider-
ably more realistic than the redshifted usual waves. With this, we calculate the timing
residuals induced in the signal of known pulsars in our Galaxy, predicting a particular
value of the angle subtended between the source and the pulsar where an enhanced
significance of the timing residual is observed. We argue that the position of this peak
depends strongly on the value of the cosmological constant. This peak is absent when
the calculations are carried out with usual, Minkowski solution, redshifted waves. We
propose two hypothetical sources at two distinct positions for which we calculate the
timing residuals significance using a real set of pulsars. The peak is observed at the

predicted angular position. Finally we obtain the angular dependency of the value of
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the cosmological constant using the position of the peak for different values of A and
analytically from the Fresnel functions involved in the calculation. This method could
represent an independent way to determine the value of the cosmological constant.

Although being very compelling, these results are preliminary. Further study is
needed to assess the feasibility of detection of GW using this theoretical framework.
The usage of even more realistic wave fronts, if available, could help confirming the
results obtained here. Identifying real sources that could meet the requirements of our
model would also lead to more realistic results.

Overall, this thesis deals with the fact that gravity, understood as Einstein Hilbert
gravity, may very well be just an effective description valid for phenomena relevant at
very different scales. From the very large structure of the Universe to the Solar system;
and perhaps to the scale of the more elusive quantum nature of the interactions. On the
other hand, gravitational waves are an unambiguous prediction of GR. If one is capable
of carrying out a program by which GR is obtained as the low energy effective theory
of some more fundamental theory and this effective theory comes naturally equipped
with a cosmological constant, it is just natural to try to make sense of the effects that
the cosmological constant has in the propagation of waves.

Let us emphasize the dual relevance of the results related to PTA. They would
not only constitute, if observed, an indication that the cosmological constant is indeed
an intrinsic property of space-time but, since the statistical significance of the signal
is apparently boosted, they could facilitate greatly the first detection of gravitational
waves. This is a relevant result on its own.

Although this thesis does not provide definite answers as of the true quantum nature
of gravity or to the issue of gravitational radiation within strong gravitational fields;
hopefully it takes us closer to a deeper understanding of the effective description of the
most elusive of the fundamental interactions. And hopefully it also provides us with a
more realistic modeling of one of its untested predictions, that might even lead to the

first detection of gravitational waves.
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Chapter 8

Resum en catala

8.1 Introduccio

La gravitacié ha governat el desenvolupament de I’Univers des del principi dels temps.
Molt abans que I’ésser huma comencés a preguntar-se pel moviment aparent de les
estrelles, la seva maquinaria ja dictava, impassible, el moviment dels cosos tal i com
I’observem avui dia. El desig d’entendre els fenomens naturals ha acompanyat totes i
cadascuna de les generacions de ’home; sempre hi ha hagut ments brillants empenyent
els limits del coneixement. Probablement entre les primeres dissertacions documentades
sobre la gravitacié trobem el treball d’Aristotil al segle quart aC [I]. Per ell, el moviment
dels cossos depenia de la seva composicid en termes dels ‘elements’ i les seves posicions
tendien al ‘lloc natural’ sense necessitat de forces. La seva visié estava literalment segles
enlla del coneixement actual, perd tanmateix il-lustra una forta determinacio per donar
explicacio als fenomens de la Natura. Al segle sete dC, el matematic indi Brahmagupta
deixa escrit que ‘els cossos cauen cap a la terra perque és en la natura de la terra atraure
els cossos, de la mateixa manera que fluir és en la natura de I'aigua’ [2]. Aquest desig
persistent d’entendre la Natura va portar fins als primers intents de trobar explicacions
sistematiques a la fenomenologia dels cosos. Galileu Galilei va ser el primer d’adonar-se
que tots els cosos sén accelerats de la mateixa manera cap a la terra, contrariament als
pensaments Aristotelics [3]. Aix0 passava al segle setze. Els seus treballs comengaven a
representar un enteniment més profund de la materia. Amb tot, no va ser fins un segle
més tard, amb la publicacié del Principa [4], que Newton va materialitzar la primera

formulaci6 consistent de la gravitacié. Newton s’adona que el secret estava en la relacié
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entre les masses i la seva distancia. Amb la llei de l'invers del quadrat va ser el primer
d’unificar en una sola descripcié matematica, fenomens aparentment tan diferents com
el moviment dels astres o com el fet que una poma caigui a terra del pomer. Aquesta
revolucié en la comprensié de la gravetat va ser prou significativa com per durar més
de dos segles.

Quan Albert Einstein va escriure la teoria de la Relativitat General el 1915, no
només va donar un pas de gegant en la comprensio de la gravetat, va canviar significa-
tivament les regles del joc. Dues masses deixaven d’exercir forga 'una sobre laltre, el
concepte de forca estava perdut. Els cossos massius simplement corben I’espai-temps al
seu voltant fent que altres cosos ‘rodolin’ per aquestes corbes. La nocié d’espai-temps,
amb la inclusié del temps com una dimensié més de la realitat que percebem va suposar
un dels canvis conceptuals més profunds del segle vint. Aquest canvi de perspectiva va
ser tan notable i brillantment provat amb experiments primerencs [5], que encara avui
dia la teoria de la Relativitat General, formulada com Einstein ho va fer originalment,
és la més completa descripcié de la interaccié gravitatoria de la que disposem. Algunes
de les seves prediccions han sigut provades; ningi dubta avui dia de 'existencia dels
forats negres. En canvi altres, com les ones gravitatories, esperen pacients la confir-
macié experimental, tot i que en el cas de les ones hi ha evidencies indirectes de la seva
existéncia en el balang energetic de sistemes binaris d’estrelles de neutrons [6].

Es clar que Einstein no va donar resposta a totes les preguntes relacionades amb la
gravitacid. En un temps en que el mon quantic s’estava desenvolupant a gran velocitat,
la Relativitat General no proporcionava una manera intuitiva i natural d’incorporar
les idees quantiques a la interaccié gravitatoria. De fet, qualsevol intent de trobar
la verdadera naturalesa quantica de la gravetat ha acabat sempre en carrers sense
sortida. No hi ha una explicacié a per que la gravetat és tan més feble que qualsevol de
les altres interaccions fonamentals. Hi ha ambigtiitat respecte a la necessitat d’incloure
una constant cosmologica o energia del buit en la formulacié i de com justificar-ho
en cas d’incloure-la. I més fonamentalment, no hi ha hagut cap proposta que donés
una solucié al problema de ’estructura ultraviolada de la teoria. En aquest sentit,
probablement la proposta que ha cridat més I’atencié de la comunitat, i d’alguna manera
ha tingut més exit, és la teoria de cordes. En la seva formulacié és possible construir
una teoria quantica de la gravitacié consistent, tanmateix, a dia d’avui sembla generar

més preguntes que respostes a les preguntes que originalment pretenia respondre.
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Cap al final dels anys seixanta els fisics varen comengar a considerar la possibilitat
que les dificultats per quantitzar la gravetat tal vegada eren degudes en realitat a la
manca de graus de llibertat fonamentals per quantitzar associats a la gravetat. Que
la interaccié gravitatoria no és fonamental com a tal. A Darrel d’algunes propostes
d’aquella epoca hi ha la idea que la gravetat no és més que una descripcié efectiva
valida a baixes energies. Probablement els primers en treballar en aquesta linia foren
Zel’dovich i una mica més tard Sakharov [7]. El primer va estudiar l'efecte de les
fluctuacions quantiques en la constant cosmologica i com aquestes fluctuacions produien
que la constant adquiris un valor diferent de zero. El segon va complementar aquesta
feina estudiant com fluctuacions quantiques sobre aquest valor diferent de zero produien
en general teories efectives de l’estil de la d’Einstein. Les dificultats tecniques que van
trobar van alentir el desenvolupament del camp durant alguns anys. Tan sols una mica
més tard, a l'inici dels setanta, Salam i col-laboradors van estudiar el grup de simetria
conforme en el marc de realitzacions no lineals [§]. Tot i que la seva idea no era atacar el
problema de la gravetat quantica, van acabar contribuint en la comprensié del fenomen
de ruptura espontania de simetria de la covariancia general, i en aquest sentit com els
gravitons es podien interpretar com bosons de Goldstone. Ogievetsky i col-laboradors
van prosseguir la investigacié des del punt de vista de la teoria de grups una mica
més tard [9]. Fent I’analogia amb la teoria quiral van provar que teories invariants sota
certs grups de simetria desitjables (simetria afi o grup conforme per exemple) produien,
després de patir trencaments espontanis de simetria, teories efectives les equacions del
moviment de les quals eren precisament les mateixes que les de la teoria d’Einstein.

La literatura és extensa i forca propostes han vist la llum des dels setanta. El
trencament de diferents grups de simetria (Lorentz, difeomorfismes...) s’ha estudiat, i
els productes d’aquests diferents trencaments en les teories efectives s’han investigat.
Com a caracteristiques comunes a totes aquestes propostes trobem que per qualsevol
teoria quantica de camps ben comportada es genera un terme tipus curvatura i un de
tipus cosmologic després del trencament espontani de simetria. Alguns dels problemes,
pero, tenen a veure amb la interpretacié de les teories fonamentals abans del trencament,
amb el comportament a l'ultraviolat de les teories efectives, i des dels vuitanta, quan es
va publicar el teorema de Weinberg-Witten, fins i tot la generacié dinamica de bosons

de Goldstone d’espi igual a dos esta sota sospita.
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Com ja s’ha dit, algunes propostes han arribat al punt de dubtar de 'existéncia
de graus de llibertat fonamentals associats amb la gravetat, interpretant aquesta com
un fenomen ‘col-lectiu’ o ‘entropic’. La majoria d’aquestes propostes sén incapaces
de reproduir les propietats conegudes de la gravetat i sén en general suficientment
ambigiies per no poder ser falsades.

Una altra qiiestié que s’ha de tenir present és la dificultat de justificar la inclusié
d’una metrica en la teoria fonamental abans del trencament de simetria. El funciona-
ment de la majoria de propostes rau en la inclusié de certa nocié de geometria des del
principi. Aquesta simplifica els calculs per obtenir metriques efectives més complexes
pero es fa dificil d’entendre si els corresponents graus de llibertat només han d’estar
disponibles després del trencament de simetria. Aparentment només Russo i Amati
[11], i també Wetterich [12], al principi dels noranta van proposar un model on tots
els graus de llibertat geometrics apareixen dinamicament. Sense assumir cap mena de
metrica obtenen interessants resultats pero la complicacié técnica dels seus models els
fan inviables a I'hora de fer prediccions concretes. Un model de Tumanov i Vladimirov
[13] amb aquestes caracteristiques va ser publicat poc després que el nostre model.
D’alguna manera és la proposta més similar a la nostra que hem trobat a la literatura
tot i que ells inclouen explicitament a la teoria fonamental el concepte de vierbein.

Amb tot el coneixement acumulat durant aquests anys, el punt de vista adoptat en
aquesta tesi és el de treballar el mecanisme de trencament espontani de simetria per
obtenir de manera consistent la teoria d’Einstein-Hilbert d’una teoria més fonamental
que no inclou de partida cap nocié de metrica o geometria. El significat dltim d’aquesta
teoria fonamental ens és desconegut. Admetem que com la majoria de propostes,
apuntem a donar una explicacié al ‘per que’ sense pretendre entendre el ‘d’on’.

Seguint aquesta linia de pensament, utilitzem el coneixement existent sobre teories
efectives en el camp de la teoria quantica de camps de particules. En particular busquem
trobar una analogia entre la teoria de Cromodinamica Quantica, amb la seva teoria
efectiva de baixes energies la teoria Quiral, i la gravetat que ens permeti obtenir la
teoria d’Einstein com a teoria valida a baixes energies. Repassant les propietats de
la Cromodinamica Quantica un s’adona que les caracteristiques fonamentals tenen un
clar analeg en termes de gravetat. Explotant aquestes analogies serem capagos de
construir I'equivalent gravitatori de la Cromodinamica Quantica, i de trobar, a través

del mecanisme de ruptura espontania de simetria, 'equivalent gravitatori del model
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quiral, que no sera més que la gravetat d’Einstein. Els principis que ens guiaran per
construir la teoria seran la covariancia, la localitat i la rellevancia, en el sentit del grup
de renormalitzacid. Sense els dos primeres no es pot extreure informacié rellevant dels
calculs i el tercer sera la guia al darrere del calcul pertorbatiu. Com que realment
volem veure com emergeixen tots els graus de llibertat de manera dinamica, la teoria
de partida no contindra cap tipus de metrica. Tanmateix, alguna informacié de partida
és necessaria. Inclourem al model una connexié afi que definira el transport paral-lel
dels vectors en la varietat diferencial que considerarem de partida. D’aquesta manera
definim una varietat pseudotopologica diferenciable com a punt de partida.

Una de les caracteristiques claus del programa que desenvoluparem en aquesta tesi
recau en la impossibilitat de construir un nombre il-limitat de contratermes en termes
dels graus de llibertat fonamentals, degut al fet que no disposem abans del trencament
d’una metrica per fer-ho. Aquest fet, inevitablement, limita enormement el nombre
de divergéncies que es poden generar en els calculs. De fet aquest és el punt clau que
indica que la teoria podria ser renormalitzable.

Amb tots aquests ingredients durem a terme un calcul pertorbatiu a un loop obtenint
com a accié efectiva, tant en dues com en quatre dimensions, precisament la teoria
d’Einstein-Hilbert equipada de manera natural amb una constant cosmologica.

La qiiestio de si s’ha d’incloure una constant cosmologica en les equacions d’Einstein
és una incognita que arriba al mateix Einstein, que la considera ‘el major error de la
meva vida’. Més tard, amb la confirmacié observacional que 1’Univers s’expandeix
exponencialment, la preséncia d’una energia del buit és una manera molt convenient
d’acomodar les observacions.

Aquest és precisament el punt d’'unié entre la primera part de la tesi i la segona. El
fet de generar de manera natural una constant cosmologica ens fa pensar que la seva
inclusié és un fet necessari i no opcional. Des del nostre punt de vista, el paper de
la constant cosmologica és fonamental en el sentit que no és tan sols una descripcié
efectiva valida a molt grans escales, aquelles cosmologiques, siné un part intrinseca
de Vestructura de l’espai-temps. Com a tal, els seus efectes han de ser rellevants a
qualsevol escala.

En aquesta segona part ens centrarem en l’estudi de I'efecte que té la constant

cosmologica en la propagacié d’ones gravitatories, un ingredient de la teoria general de
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la relativitat que ha escapat de moment la confirmacié empirica. I en la possibilitat de
determinar el seu efecte en sistemes ‘locals’.

L’estudi de la rellevancia de la constant cosmologica en sistemes locals (per locals
volem dir que involucrin escales sub-cosmologiques) ha rebut una creixent atencié en
els dltims anys. Sereno i Jetzer [14] el 2006 van determinar, sense massa precisio, el
valor de la constant cosmologica a partir de 'estudi de la precessié de giroscopis i del
corriment al roig gravitatori dins el sistema solar. Entre el 2007 i el 2009 diferents
grups van investigar la influencia de la constant cosmologica en la curvatura de la llum
procedent d’objectes llunyans. Resultats molt dispars foren obtinguts, des de zero fins a
clarament apreciable. Primer Khriplovich i Pomeransky [I5] van determinar que no hi
havia cap efecte. Sereno [16] més tard va arribar a la conclusié que efecte existia pero
era infim. Finalment Rindler i Ishak [17] van concloure que tot i que lefecte era petit
podia ser apreciable, en principi, en les observacions. Bernabeu i col-laboradors [1§], el
2010, publicaren un estudi de les equacions d’Einstein linealitzades en la presencia de
la constant cosmologica obtenint resultats molt interessants, que en part han motivat
un capitol d’aquesta tesi.

La inclusié de A en les equacions d’Einstein té una conseqiiencia immediata i dObvia.
Fins i tot en absencia de cap font produeix una curvatura de I’espai-temps (de Sitter).
Per tant és d’esperar que la propagacié d’ones gravitatories en aquest cas difereixi
del cas d’un espai-temps pla (Minkowski). La logica al darrere del tractament usual
de les ones gravitatories és el de tractar-les com a petites pertorbacions sobre I'espai-
temps de fons pla. Per trobar les seves funcions d’ona s’utilitza la versié linealitzada
de les equacions d’Einstein. Per poder resoldre aquestes, hom ha de fer una tria de
coordenades (o tria de gauge). Quan la constant cosmologica es té en compte, nous
termes apareixen a les equacions linealitzades. Quants i quins d’aquests termes s’han
de retenir a I’hora de resoldre les equacions és una de les qiiestions que responem
en aquesta tesi. També farem un estudi extensiu de la importancia de les diferents
tries de coordenades i la seva relacid. La tria de coordenades, o el que és el mateix,
la tria d’'un gauge és obligatoria per poder trobar les solucions pero la interpretacié
fisica d’aquestes coordenades no és sempre clara. De fet, I'inic sistema de coordenades
que sabem interpretar és el cosmologic, aquell en que ’Univers és isotrop i homogeni.
Tanmateix, en aquest particular sistema de coordenades és impossible linealitzar les

equacions d’Einstein sobre la metrica plana. Per resoldre les equacions usarem la tria de
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gauge habitual, el gauge de Lorentz, o alternativament un altre gauge que anomenem el
gauge A. Es pot demostrar que les coordenades corresponents a questes tries de gauge
no sén més que reparametritzacions d’un espai-temps d’Scharzschild-deSitter (SdS).
Una vegada obtingudes les funcions d’ona haurem de transformar-les a coordenades
FRW per poder-ne extreure prediccions observacionals. El canvi de coordenades de
SdS a FRW és complicat, pero es pot derivar analiticament. Les ones transformades
adquireixen modificacions tant en la seva amplitud com en la seva relacié de dispersid}
La seva amplitud creix amb la distancia i pateixen un corriment al roig (diferent al
corriment al roig gravitatori usual de l'electromagnetisme) a mesura que s’allunyen de
la font.

Finalment ens centrem en la mesura dels periodes de cadenes de pulsars (PTA en
angles), un dels metodes de deteccié d’ones gravitatories més prometedor per obtenir la
primera mesura directa de les ones. Hi ha altres metodes de deteccié capagos de donar
la primera deteccié. Alguns d’ells sén: detectors situats a terra com LIGO, que poden
arribar a sensibilitats de 10723 amb una franja optima de freqiiencies de 10Hz <
v < 10°Hz [19]. La missié espacial LISA n’és un altre. S’espera que aconsegueixi
sensibilitats semblants a les anteriors pero en el rang de freqiiencies 1072Hz < v <
1073Hz [20] (si mai arriba a volar). Tanmateix, I'enfoc d’aquesta darrera part de la
tesi és el de proporcionar un marc teoric que pugui ser d’utilitat per experiments com
el International Pulsar Timing Array [21] o el Square Kilometer Array project [22].
Aquests sén sensibles en un rang de freqiiencies més baix, v < 1074Hz, i tot i que de
moment les seves sensibilitats estan a I'ordre de 107'0 (107'® per v 107'°Hz) s’espera
que amb 'acumulacié d’estadistica puguin millorar substancialment aquests valors en
els propers anys.

Els PTA sén detectors adequats per ones gravitatories de freqiiencies molt baixes.
Aquestes poden provenir de fenomens llunyans tan diferents com la fusié de forats
negres super massius o el fons de radiacié gravitatoria primordial. Per obtenir el senyal
és monitoritza el periode d’un nombre adequat de pilsars durant un cert temps i
se n’estudien les petites variacions. Aquests senyals correlats sén aillats i comparats
als models teorics per veure si sén producte del pas d’ones gravitatories per tot el

sistema. En aquesta tesi només considerarem els efectes deguts a les ones gravitatories,

*Amb aixd no volem dir que el gravité sigui massiu, pero reflecteix les propietats de la seva propa-

gacié vistes per un observador Lorentzia.
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sense tenir en compte altres distorsions com les degudes al moviment peculiar de la
terra. L’enfoc teoric habitual a la literatura és el de considerar ones propagant-se
en un espai-temps pla i afegir a ma 'efecte de 'expansié de I’Univers a traves d’una
freqiiencia efectiva correguda al roig. La nostra proposta és la d’usar les funcions d’ona
obtingudes en el Capitol 5, que incorporen de manera més realista ’efecte de A, per
determinar els efectes de la constant cosmologica en la deteccié d’ones en els PTA.
La conclusié és que hi ha notables diferéncies quan es té en compte correctament la
constant cosmologica. En particular, la distribucié angular dels pilsars respecte de
la font sera clau en la rellevancia de les observacions. S’observa un important repunt
de la significacié estadistica per un determinat valor de I’angle entre els pulsars i la
font. Aquest augment en la significacié podira representar una manera alternativa de
mesurar no tan sols el valor de la constant cosmologica, siné tembé les ones gravitatories

en si mateixes, que recordem no han sigut detectades encara.

8.2 Conclusions i perspectives futures

En aquesta seccié es recullen els resultats i conclusions d’aquesta tesi. Als Capitols 2,
3 i 4 proposem un model on la gravetat emergeix dinamicament d’una teoria sense cap
mena de metrica predefinida. Els ingredients de partida sén una varietat diferenciable
equipada amb una connexié afi i 2N fermions. Res més. El Lagrangia pot ésser definit
sense necessitat de cap metrica.

La gravetat i la distancia sén induits i no fonamentals en el model. A escales
suficientment petites, quan la teoria efectiva perd el sentit, els graus de llibertat sén
aquells dels fermions. La distancia on la simetria es restaura és fonamentalment la
distancia més petita on es pot parlar de geometria.

La relativa simplicitat del nostre model constitueix la seva gran virtut en com-
paracié amb propostes com [I1], 12}, 3], on qualsevol mena de resultat quantitatiu es
feia impossible. En canvi nosaltres hem pogut derivar en tot detall I’accié efectiva. En
el cas de D = 4 podem predir sense ambigiiitat I’existéncia d’una constant cosmologica,
el valor de la qual no ve prefixat pel model pero és ajustable al qualsevol valor obser-
vacional. I 'existencia d’un terme de curvatura d’Einstein-Hilbert obtingut lliure de

divergencies. La realitzacié del nostre programa teoric demostra que és possible obtenir
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una teoria efectiva consistent i amb poder predictiu sense haver d’introduir d’entrada
cap mena de nocié de metrica.

Una de les obstruccions habituals per als programes de gravetat emergent és el
teorema de Weinberg-Witten. Tot i no constituir una prova formal, creiem que el fet
que els indexs Lorentz siguin de natura interna en la nostra teoria fa que quedem fora
de les assumpcions del teorema. Aquest prohibeix I'aparicié de bosons sense massa
d’espi dos en teories emergents si el tensor energia moment és covariantment conservat.
En el nostre cas no ho és, perque ni tan sols és un tensor Lorentz de rang dos.

Un aspecte important del model és I’aparent millora del comportament de la teoria
a l'ultraviolat. Un cop integrats els graus de llibertat fonamentals, totes les divergencies
que apareixen fins a ’ordre que hem calculat poden ser absorbides tan sols redefinint la
constant cosmologica i la constant de Planck (la curvatura). Tal com dicta el grup de
renormailtzacio, els resultats sén invariants sota aquest, sempre i quan es respectin les
corresponents funcions beta que han sigut calculades. En el cas de quatre dimensions,
a més de les divergencies corresponents al terme cosmologic i a la constant de Newton,
hem trobat divergeéncies que poden ser associades a peces determinades del terme de
Gauss-Bonnet, que també és un contraterme valid. Aquesta notable millora del com-
portament a altres energies es deu al fet que el nombre de contratermes que és possible
escriure sense fer is de cap metrica és molt limitat.

Tot i que és temptador, no declarem obertament la teoria com a normalitzable. Tan
sols podem dir que la nostra experiéncia amb el model i els calculs realitzats semblen
indicar que efectivament ho és. Tampoc podem dir que aquest és I'inic Lagrangia de
partida que permet portar a terme aquest programa, tot i que veiem dificil construir-ne
cap altre.

Se’ns ocorren un bon nombre d’extensions i possibles aplicacions. Tal vegada la
més interessant seria la investigacié de solucions singulars, tipus forat negre, en el marc
de la teoria. També caldria un estudi més detallat de la renormalizabilitat de model.
El tema de la distancia més curta permesa per la restauracié de la simetria és sens
dubte una linia de recerca molt interessant. La Relativitat General ha sigut provada
empiricament fins a escales de I'ordre del mil-limetre [71], d’alla fins a 1’escala de Planck
hi ha una immensitat d’espai on modificacions de la gravetat podrien ser, siné testades,
intuides. També pensem en la inclusié de camps de materia ordinaris en el model i com

fer contacte amb les altres interaccions fonamentals. La relacié entre el nostre model i
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propostes com les triangulacions Lorentzianes serien, sens dubte, de gran interes. Fins
i tot idees més exotiques com l’extensié del model a dimensions més altes o l'efecte
tunel entre geometries podrien ser investigades.

Respecte a la segona part de la tesi, en el Capitol 5 investiguem ’efecte de la constant
cosmologica en la propagacié d’ones gravitatories en el marc de la teoria linealitzada
d’Einstein. La presencia de A porta inevitablement a la curvatura de l’espai-temps

en que les ones es propaguen. En la teoria linealitzada d’Einstein aix0 porta a una

w

u» que inclou una

descomposicié de la metrica en termes de g, = 7M. + hﬁy + h
modificacié de la metrica de fons i una pertorbacié deguda a les ones gravitatories.

Per veure de quina manera es veuen afectades les ones, hom primer ha d’entendre
les implicacions que tenen els diferents sistemes de coordenades (tries de gauge) en la
resolucié de les equacions linealitzades. La tria de gauge és lliure en principi, tanmateix,
algunes tries simplifiquen enormement la resolucié de les equacions ja que aquestes
en depenen explicitament. Argumentem que el procediment de linealitzacié només
és consistent en alguns sistemes de coordenades perd no en altres. En particular,
G = Nuw + h,’}u sent una versio linealitzada de la metrica de FRW mai sera solucié
de cap linealitzaci6 de les equacions d’Einstein. Notis que aix0 no és el mateix que fer
petites pertorbacions (quedant-se a ordre lineal) sobre una metrica FRW exacte, cosa
que és possible pero un programa totalment diferent al que portem a terme en aquesta
tesi.

Les equacions d’Einstein les linealitzem en el gauge de Lorentz, on l'analisi de
les ones gravitatories és molt similar al de ’espai Minkowskia. Després d’'un detallat
estudi tant d’aquestes coordenades com de les corresponents al gauge de A, concloem
que ambdues sén diferents parametritzacions de les coordenades d’SdS. Tan sols cal
una transformacié de coordenades que no depén del temps per relacionar-les. En virtut
del teorema de Birkhoff’s esta garantit que aquestes coordenades sén les iniques que
posseeixen una simetria esferica i no depenen del temps. En el cas d’ometre termes del
tipus AhEl//, la llibertat residual dintre del gauge de Lorentz en permet eliminar tots els
graus de llibertat no fisics fins a deixar-ne tan sols dos, els usuals d’una ona gravitatoria.
En el cas de retenir el terme Ah}f{,, aquesta invariancia residual es perd i 'ona s’ha
d’interpretar com a ‘massiva’ en el sentit d’un observador Lorentzia. FEn realitat aquest

fet és un artefacte de I’aproximacio lineal i els gravitons acabaran tenint tan sols els

dos graus de llibertat fisics. Les ones modificades adquireixen modificacions tant els
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tensors de polaritzacié com el la seva relacié de dispersié. Aquestes modificacions sén
d’ordre O(A).

També demostrem com les solucions per la metrica de fons en el cas de retenir
el terme Ahm corresponen precisament, després d’una expansié en la constant cos-
mologica, a les solucions trobades quan el terme era omes.

Tot i poder obtenir facilment les equacions d’ona en SdS el problema rau en la
interpretacié de les coordenades. Les uniques que entenem, com ja hem dit, sén les
de FRW. Per tant treballem el canvi de coordenades entre SdS i FRW i transformem
les solucions trobades. En la transformacié noves modificacions s’afegeixen a les an-
teriors, altra vegada tant en els tensors de polaritzacié com en la relacié de dispersio,
en aquest cas les modificacions sén d’ordre O(v/A). Aquestes modificacions poden ser
numericament prou importants per ones viatjant grans distancies a I’Univers.

L’efecte de A és definitivament rellevant per observacions en PTA. Les solucions
finals, expressades en FRW, es veuen modificades tant en 'amplitud, que creix amb
la distancia a la font, com en la freqiiéncia, que corre al roig de manera prescrita pels
resultats, a mida que s’allunya de la font.

Finalment, per tancar la tesi, en el Capitol 6 investiguem els efectes locals de la
constant cosmologica en la deteccidé d’ones gravitatories en els PTA. Utilitzem les solu-
cions que acabem de mencionar per modelitzar les desviacions en la recepcié del senyal
dels pilsars. Fins ara els especialistes en el camp ha utilitzat ones planes per mod-
elitzar aquest efecte, incloent a ma ’efecte de la constant cosmologica a traves d’un
corriment al roig de les freqiiencies. Veiem que en utilitzar les funcions d’ona més re-
alistes els resultats canvien dramaticament. En particular trobem un pic molt notable
en la significacid estadistica del senyal representada en funcié de ’angle entre la linia
que defineixen la terra i el pulsar i la linia entre la terra i la font. Finalment trobem
la relacié entre la posicié angular del pic i el valor de la constant cosmologica. Aquest
metode podria representar una manera alternativa de determinar el valor de A.

Tot i ser prometedors, aquests resultats son forga preliminars. Es requereix un estudi
més profund per determinar les possibilitats reals de deteccié d’ones gravitatories usant
aquest model teoric. L’is de fronts d’ona encara més realistes, si n’hi ha de disponibles,
podria ajudar a confirmar els resultats aqui obtinguts. La identificacié de fonts d’ones
reals que compleixin els requeriments del nostre model també aportarien resultats més

acurafts.
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En resum aquesta tesi tracta del fet que la gravetat, entesa com la gravetat d’Einstein,
podria ben bé ser una descripcié efectiva, valida només a baixes energies, pero tan-
mateix capag¢ de descriure fenomens rellevants a escales tan diverses com la gran es-
tructura de l'univers, com el sistema solar, i tal vegada també en el limit en que les
interaccions quantiques prenen la batuta. D’altra banda, les ones gravitatories sén una
prediccié inequivoca de la teoria d’Einstein. Si som capacos d’obtenir, de la manera
que ho fem, una teoria emergent que correspon a la d’Einstein i que a més ve equipada
de manera natural amb la constant cosmologica, és natural que ens preguntem quina
és lefecte de la seva presencia en les equacions i, ultimament, en la propagacié de les
ones gravitatories en I’Univers que ens envolta.

Volem emfatitzar la doble rellevancia dels resultats relacionats amb les observacions
als PTA. No només representen una oportunitat de mesurar de manera alternativa el
valor de la constant cosmologica. També poden representar una ajuda definitiva per
detectar les ones gravitatories en si. Aquest és un resultat que mereix mencié per si
sol.

Tot i que aquesta tesi no déna respostes definitives al problema de la gravetat
quantica, ni a que passa amb la radiacié gravitatoria en presencia de camps gravitatoris
forts, pensem que ens apropa una mica més a un coneixement més profund de la més
esquiva de les interaccions fonamentals. I tan de bo ens proveeixi amb una modelitzacio
més realista d’'una de les seves prediccions, les ones, que ens porti a la seva primera

deteccid.
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La feina original continguda en aquesta tesi esta basada en les segiients publicacions

de 'autor:

e Local measurement of A using pulsar timing arrays, (amb D. Espriu), e-Print:
arXiv:1209.3724 [gr-qc| (2012).

e Spontaneous generation of geometry in four dimensions, (amb J. Alfaro i D.
Espriu), Phys. Rev. D 86, 025015 (2012).

e Gravitational waves in the presence of a cosmological constant, (amb J. Bernabeu
i D. Espriu), Phys. Rev. D 84, 063523 (2011).

e The emergence of geometry: a two-dimensional toy model, (amb J. Alfaro i D.
Espriu), Phys. Rev. D 82, 045018 (2010).

e Gravity as an Effective theory, (amb D. Espriu), Acta Physica Polonica B, 40, 12
(2009).
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Appendix A

Explicit calculations of Chapter 4

In this appendix we include the explicit calculation of the different terms appearing in
showing how they correspond on shell to different terms in the action. We also
include, for completeness, how the result of in the diagonal parametrization of
the metric used in the text yields precisely .

A1 DV beef? E" beey AN F’ul/bcef

We saw in Section 4.2 that diagram (4.35)) contains three different terms, two of them
being divergent, let us show how they either cancel or can be accommodated in the

available counterterms. Let us write them down together with the wzb fields.

D“”bcefwffwgf =dwPwh — 2wbwb® = 2(wi?)? — 2(wi')? + 2(wi?)? — 2(wi')?

+ 2(wih? = 2(wih)? + ... 4+ 2(wih? — 2(wi®)? = 0.
(A.1.1)

So this divergence cancels regardless of the parametrization we choose.
Let us write the second one now considering a conformally flat parametrization of

the metric
Guv = eig(x)(s;w- (A.1.2)

Then we have

B e sl = dwlPwl (A.1.3)

Making use of Equation (4.17)), that is

@ Lgoosh — obose), (A.1.4)

’U)‘LL B
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A. Explicit calculations of Chapter 4

we obtain

be, ef _

7%
E bee f Wy Wy

—9[(010)? + (020)* + (030)? + (040)?] = —90,00,,0. (A.1.5)

Recall this term appeared both in (4.35) and in (4.40). Summing their contributions

in the way we did to reconstruct the effective action for the o field diagrams we obtain
9M? 9M? e . 9M?
8uaaua(1—a+) — ?Q?auaauae o — 327‘(‘2

This is just a finite contribution to ,/gR and it is reflected in (4.51))

The Gauss-Bonnet term corresponding to such a metric perturbation reads

3272

e~ (A.1.6)

Lap = G(R? + 4R R"™ — Ry pe R*P7)

= 40304003040 + 4030030 — 40204005040 + 4050030 — 40203002030 + 4030030

— 40,0,001040 + 4030020 — 40102001090 + 4030030 — 40103001030 + 4020070

— 3040040020 — 20030030 — 404003003040 — 040040950 — 3030030930 — D30020D00

— 8%0820820 — 404002009040 — 403009005030 — 3408408%0 — 3308308%0 — 38208208%0

— 000010 — 030010010 — 030010010 — 404001001040 — 403001001030 — 402001001090

— 8406408%0 — 6300308%0 - 0208208%0 — 38108108120.

(A.1.7)

The last term we have to explore is the piece %F H Vb cef” Let us explicitly write this term
together with the wff fields

EF,UJ/ be, ef _1 . &w(sbepcpf 6lwébfpepc 6uyécepbpf B 5“V5cfpbpe 65655610172
€

beef n Wy = 1272 1272 1272 1272 12#2
Speps Oy 00l Oy 0%pepe  OMOyp pe  OHpeps
1272 1272 1272 1272 1272
OLS¥pepy | OOyp'py | OEOVOW D SESYpipy 0L 0f0bep?
1272 1272 1272 1272 1272
0¢0%pppe  0%0bep"pe  00ypepe  OfOLpbpe 0§ 0cep” Py
1272 1272 1272 1272 12x2
L 000Dy ObelesP"P”  Obg0cp"Pe | ObpOcePD” Oy 0ceP"py
1272 1272 1272 1272 1272
8V, 1pHpe
= 1?521) } wz !
11

— - be be pue ve _ pue ve be pe

=32 [807% Oew,; + wy, Twy® — Oewy,“Oew,” — Oew, Dewy
1

+8cwch)”w{,‘b + 3“w2”86wfjb + iaﬂwffav whe| .

(A.L8)
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A.2 \/gR for the general diagonal parametrization of the metric

EFWM surcws) = 762 E [~0}00%0 + 0104001040 — 030030 + 0304005040
€ =€
— 030020 + 0204002040 — 030030 + 203005050 (A-1.9)

—6%08%0 + 0103001030 — 82208%0 + 81620'81820] .

Now it is easy to see that corresponds to the second and third lines in .
This divergent contribution is part of the Gauss-Bonnet term, which, although being a
total derivative, is a valid counterterm. The rest of contains three sigma fields
and is not present in as it should be the case. These remaining terms would
be generated in the triangular diagram with three external w,‘jb fields and would come
with a divergent coefficient (we have not computed such diagram). Note also that both
and the first two lines of can be integrated by parts to make them
vanish. This happens because in the conformally flat metric perturbations terms from
the diagrams with two and three external w fields can not be related to each other
integrating by parts. Therefore, they must vanish independently as the Gauss-Bonnet
term is a total derivative after all.

This is a particularity of the conformally flat parametrization of the metric pertur-
bation and would not hold for a generally diagonal parametrization. In that case terms
generated in the two point function can be transformed into the terms appearing in the
three point function by integration by parts and one would require a full calculation to

show there is a match with an independent calculation of the Gauss-Bonnet term.

A.2 /gR for the general diagonal parametrization of the

metric

Let us consider a generally diagonal metric with four degrees of freedom

e—o1@) 0 0 0
0 e—o2(2) 0 0
Juv = 0 0 6_03(x) 0 (A21)
0 0 0 e o4(@)
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A. Explicit calculations of Chapter 4

We saw that the corresponding expression for the curvature is Equation (4.23))

'CR’(on shell) :Mz\/gR = M? [03?04 + (9%0‘4 + (9%0‘4 + 320‘3 + 82203 + 3%0‘3
+0309 + 309 + 0oy + Doy + D301 + D50

1
—3 (03010309 4 04010409 + 02010203 + 04010403 + 02010204 + 03010304

+01020103 + 04020403 + 01020104 + 03020504 + 01030104 + 02030204)

+0(c?)].

We consider now the divergent part proportional to M? of the result of (4.31)

4

4872 4872

i _ajop*M? ojou(p; + pi)M?
J -1

Ly
l
2 M?
€ 4872

+o102(p
(

RIS

J

—

2
—p* (0102 + 0103 + 0104 + 0203 + 0204 + 0304)

1+ p3) + o1os(pi + p3) + o104(pT + p3) + 0203(p3 + P3)
+0204p§

—gﬁ[—aa(Q—i— 2)_0.0(2+ 2)_0_0(2+ 2)_0_0(2+ 2)
= 1872 102(P3 T Py 103(P2 T Py 104(P3 T P3 203(P1 1 Py

—o204(p} + p3) — o304(p} + p3)] -

+p2) + a304(p3 + p2)]

(A.2.3)

This last expression, when expressed in position space, corresponds exactly to (|A.2.2))

except for a numerical factor and minus the second derivatives of the fields which are

total derivatives and do not appear in the perturbative calculation.
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