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valuós l’aprenentatge en l’escriptura de treballs cient́ıfics, asseguts un al costat de

l’altre al seu despatx, i sens dubte la correcció d’aquest mateix manuscrit.
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Outline of the Thesis

The goal of this Thesis is to study the oscillatory pipe flow of wormlike micellar

solutions. We analyze the laminar oscillatory flow of viscoelastic fluids using

the Maxwell and Oldroyd-B models. The theoretical predictions obtained for the

laminar velocity profiles are validated by carrying out time-resolved Particle Image

Velocimetry (PIV) experiments in a vertical pipe at small driving amplitudes.

Increasing the amplitude of the oscillations the laminar flow evolves towards more

complex flows, both in space and time. We study experimentally the transition

from laminar to vortical flows, in which axisymmetric vortex rings are formed,

and the transition to non-axisymmetric flows, observed at even larger driving

amplitudes.

The Thesis is organized as follows. We first review in Chap. 1 some of the basic

concepts needed to understand the research undertaken. In Sec. 1.1 we present the

main properties of complex fluids and in particular of wormlike micellar solutions.

In Sec. 1.3 basic notions of rheology are introduced, including well-known con-

stitutive models for viscoelastic fluids, rheometric tests that are commonly used

to characterize the linear and non-linear rheology of these fluids, as well as flow

visualization techniques required to gain spatial information of the flow. We end

this first chapter by reviewing in Sec. 1.4 previous theoretical and experimental

work on wall-bounded oscillatory flows, both for Newtonian and complex fluids.

An important part of the work developed in this Thesis has been the design,

construction and calibration of the system that generates the oscillatory motion

of the fluid, as well as the implementation of the PIV technique used to measure

the fluid velocity in a meridional plane of the tube. An extensive description of

the experimental setup and the measuring method is provided in Chap. 2.

The rheological characterization of the micellar solutions used in the experi-

ments is presented in Chap. 3.

Chapter 4 is devoted to the characterization of the laminar oscillatory flow

of wormlike micellar fluids in a vertical pipe. This problem is addressed theoreti-

cally in Sec. 4.1. We focus in two different ideal situations: the laminar oscillatory

flow generated by the synchronous oscillation of two infinite parallel plates, and

1
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the laminar flow in an infinitely long vertical pipe when the oscillatory motion

is induced by the synchronous oscillation of the top and bottom ends. In order

to describe the viscoelastic properties of the fluid we use the upper-convected

Maxwell and the Oldroyd-B constitutive equations. In Sec. 4.2 we do a quantita-

tive comparison of our theoretical predictions with the experimental results of the

piston-driven laminar oscillatory flow of a CPyCl/NaSal [100:60] mM solution in

a vertical cylinder of large aspect ratio.

In Chaps. 5 and 6 we focus on the transition from laminar to more complex

flows at controlled forcings.

We first analyze the flow behavior at local scale. We construct an stability

phase diagram (Sec. 5.1) for thew whole range of accessible driving parameters.

In Sec. 5.3 we characterize the onset of the hydrodynamic instability that gives rise

to the generation of vortex rings and perform a quantitative analysis of the vortical

flow. In Sec. 5.4 we extend the analysis to non-axisymmetric flows generated at

larger forcings.

The vortical flow presents a large scale spatial organization all over the tube

length (Sec. 6.1) as well as interesting dynamic flow behavior at long time scales

(Sec. 6.2). Chapter 6 ends with a discussion of potential instability mechanisms

that may be responsible for the instability of the laminar flow.

The conclusions of the Thesis are drawn in Chap. 7.

Finally, to fulfill the requirements of the University of Barcelona, in Chap. 8

we enclose a summary of the Thesis in Catalan. In this summary we briefly review

the introductory concepts, describe the experimental setup, and report the most

relevant results.

This document includes also a list of the publications produced during the The-

sis, and three Appendices that provide useful additional information. In Appx. A

we present a detailed derivation of the tensors required for the theoretical anal-

ysis of the laminar oscillatory flow addressed in Sec. 4.1. In Appx. B we report

on the Stereo-PIV system that is currently being implemented in the laboratory.

And in Appx. C we provide complementary results, obtained in Prof. McKinley’s

laboratory at MIT, on the transient shear flow of wormlike micellar solutions in a

cone-plate geometry.



Chapter 1

Introduction

The study of fluid mechanics received a growing interest by the end of the XVIIth

century. At that time Newton wrote the Principia (1687), in which he regarded

fluids as continuous media and stated that the resistance arising from the want of

slipperiness in the parts of a fluid is, other things being equal, proportional to the

velocity with which the parts of the fluid separate from one another. Nowadays, this

relation is known as the Newtonian equation, and the constant of proportionality

is the shear viscosity. Some decades later Bernouilli devoted himself to the study of

flow in tubes, and developed Bernoulli’s theorem about the conservation of living

forces, which first appeared in his Hydrodynamica in 1738. His contemporary

d’Alembert also did a great contribution to the field, developing mathematical

equations governing irrotational flows of incompressible fluids as well as a field

description of media in motion. Euler pursued the study of fluid motion. He

published several articles within 1752 and 1761 in which he presented the equation

of continuity, introduced the concept of fluid pressure, and derived the dynamical

equations for ideal fluids. It was not until 1820, when Navier established the

dynamical equations which govern the motion of incompressible viscous fluids,

that a resistance force accounting for the internal friction of fluids was again

introduced. Navier interpreted the shear viscosity in terms of the intermolecular

forces. In 1845 the publication of Stokes contributions promoted the usage of the

general equations for viscous fluids in England (Truesdell, 1953).

In this early stage most of the research was conducted from a mathematical

point of view. It was difficult to obtain reliable experimental data, which was

sometimes incomplete or obscure, as stated by Euler (Truesdell, 1953). These

problems were largely overcome during the XXth century (Raffel et al., 2007)

with the development of visualization techniques and the fast improvement of the

required computational tools (Guyon et al., 2001). Nowadays there is indeed an

enormous amount of accessible, accurate experimental and numerical data that

3



4 Chapter 1. Introduction

enables a continuously increasing understanding of flow behavior. Fluid mechanics

embraces at present the study of many different problems that encompass aerody-

namics, meteorological phenomena, ocean dynamics, turbulence, hydrodynamic

instabilities and rheology, among others. Not surprisingly, these research areas

attract the attention of applied mathematicians as well as mechanical and chemi-

cal engineers, who have addressed fluid mechanics problems from a more practical

perspective.

The physical approach on which this Thesis is rooted possibly lies halfway

between mathematical and engineering approaches. The research accomplished

during the Thesis, presented in this manuscript, has been developed as rigorously

and systematically as possible but special attention has been paid also to a physical

interpretation of the observed flow phenomena.

1.1 Complex fluids

Early observations of unusual flow behavior started at the beginning of the XXth

century, with the emergence of chemical industry and polymer processing (Bird

et al., 1987). The Navier-Stokes equations were not capable to predict the motion

of these unusual fluids. Even the ordinary division of the states of matter in solid

- liquid - gas, according to which a liquid should take the shape of the container

in which it resides, was not either so well suited for these materials. In general, we

can call complex fluids to all thick, rubbery, gooey and pasty substances that defy

the classical definitions of solids and liquids (Larson, 1999). Complex fluids may

exhibit an intermediate viscoelastic behavior between solids and liquids, since they

can maintain its shape at short timescales but flow at longer times. In opposition

to Newtonian fluids, which have constant viscosity, complex fluids usually exhibit

a non-Newtonian response with a rate-dependent shear viscosity. In most cases

the viscosity decreases with increasing shear rates (shear-thinning fluids), but it

can also increase, which is the case of shear-thickening fluids. Yield stress fluids

also show non-Newtonian properties since they do not flow below a minimum

applied stress, and thixotropic fluids exhibit a time-dependent viscosity.

An additional important feature of complex fluids is the existence of normal

stress differences: under shear flow the fluid responds with an additional force

normal to the shearing direction. They are responsible for the striking rod climbing

effect, Fig. 1.1(a), in which a fluid rises up a rotating rod that is placed inside

a fluid container, instead of moving to the edges as would be expected for a

Newtonian fluid. They also give rise to the die swell effect (Fig. 1.1(b)) which

occurs in polymer extrusion when a polymeric fluid increases the diameter of the

jet after exiting a die end.



1.1. Complex fluids 5

Figure 1.1: Anomalous flow behavior exhibited by complex fluids. (a): Rod-climbing;
(b): Tubeless siphon; (c): Die swell (source: http://web.mit.edu/nnf).

Other amazing phenomena of complex fluids include the tubeless siphon effect,

shown in Fig. 1.1(b), where the fluid is aspirated even when the syringe nozzle is

above the free surface of the fluid container, the appearance of recirculation zones

in contraction flows, elastic recoil, the formation of stable long filaments, or drag

reduction in turbulent flows (Bird et al., 1987).

There is a large variety of different complex fluids which vastly include poly-

meric liquids and melts, particle suspensions, foams and emulsions, liquid crystals,

and surfactant solutions. We can find them in numerous industrial applications.

They are common in foodstuffs, like cheese, ice-cream and chocolate. They are

also relevant for pharmaceuticals, cosmetics and personal care products. Sham-

poo, nail polish, lipstick or toothpaste have rheological properties that have been

fine-tuned for precise final product performance. Molten polymers are involved in

many different manufacturing processes like extruded polyethylene cable jacketing

or injection-molded polyurethane car bumpers. Other fluids relevant for industrial

purposes with complex rheological properties are oil-field fluids like drilling muds,

waxy crude oils and paints (Larson, 1999).

Many biofluids present in living systems also show interesting complex features.

Their particular rheological properties are linked to the physiological function they

have to perform. Blood is a suspension of red blood cells dispersed in plasma. The

ability of red blood cells to deform, which allows them to pass through narrow

capillaries, is directly related to blood viscoelasticity. Another example is given

by synovial fluid localized in joints. It acts as lubricant by reducing the friction

between cartilage and the surrounding tissue, which is achieved partly thanks to

its shear-thinning properties. Polymeric solutions of intermediate filaments, actin,

peptide fibrils or microtubules of eukaryotic cells also exhibit complex features.

And in particular nucleic acid is an interesting example because, thanks to its

large size, it can be used to do rheological experiments of single molecules (Waigh,

2007).
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Figure 1.2: Schematic view of self-assembled surfactants.

1.1.1 Wormlike micellar solutions

Surfactant solutions are a particular example of complex fluids (Cates and Field-

ing, 2006). Surfactant molecules are amphiphilic, with a hydrophylic head and a

hydrophobic tail (Fig. 1.2). When solved in water, the formation of micelles is

energetically favorable above a critical micellar concentration (CMC), being typi-

cally low in wormlike micelles (e.g. of the order of 10−4 M for CTAB/KBr, Cates

and Fielding (2006)). The ionic strength of the hydrophilic head sets the shape

of the amphiphilic molecule. For big heads the electromagnetic repulsive forces

lead to conic-like molecules that arrange forming spherical micelles. As the ionic

strength is weakened, for example by the addition of a counter-ion, the size of

the head decreases and induces the formation of cylindrical (or wormlike) micelles

(Fig. 1.2), in which we are mainly interested. For even smaller head sizes the

amphiphilic molecules look cylindrical and can form bilayers.

Cylindrical ’giant’ micelles can easily exceed their persistence length (which

is the length over which substantial bending occurs (de Gennes, 1979)) and be-

have as a polymer flexible chain. Common values of the persistence length for

giant micelles range between 10 to 20 nm (Cates and Fielding, 2006). This re-

semblance between flexible polymers and cylindrical micelles enables to use argu-

ments developed for polymeric solutions to wormlike micellar solutions. In this

sense we can define the dilute regime as the concentration range where micelles

rarely overlap between each other, and slightly viscoelastic properties are only

given by the behavior of individual micelles in solution. Above the overlap con-

centration the wormlike micelles start to overlap forming entanglements, which is

known as the semi-dilute regime, or concentrated regime for higher micellar con-

centrations (Bird et al., 1987). In the semi-dilute regime entanglements between

flexible wormlike micelles form a mesoscopic network which is mainly responsible

for the viscoelastic response of the fluid. Wormlike micelles are also known as

living polymers because, unlike polymeric solutions, they have the ability to re-
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assemble after breakage (Cates and Fielding, 2006). The characteristic relaxation

time of the fluid can be interpreted in terms of the reptation-reaction model,

trelax = (tbtR)
1/2, (1.1)

where tb is the breakage time of the micelles and tR is the reptation time (being the

reptation mode the sliding motion of one micelle on top of another one without

breakage being involved). In the limit of fast breakage time compared to the

reptation time, the overall kinetic process is dominated by the rapid breakage

which leads to a dominant average micellar size and a mono-exponential stress

relaxation, which coincides with the relaxation time of the Maxwell model (Sec.

1.3.1).

Micellar solutions are used in different practical applications like detergents,

emulsifiers, encapsulants or lubricants (Larson, 1999). More importantly, they

have been extensively employed during the last decades for scientific purposes since

Rehage and Hoffmann (1991) realized that these fluids nicely behave according

to the Maxwell constitutive equation with a single relaxation time, at small shear

rates. At larger shear rates they typically exhibit strong shear-thinning. Wormlike

micellelar solutions constitute nowadays a canonical fluid for the study of experi-

mental and theoretical rheology and fluid dynamics (Olmsted, 2008). Some of the

most commonly used species of wormlike micelles that are formed by the combi-

nation of a surfactant with a strongly binding counterion (that is normally a salt),

at suitable concentrations and temperature, are CPyCl/NaSal (Rehage and Hoff-

mann, 1991; Berret et al., 1994; Grand et al., 1997; Britton and Callaghan, 1997;

Porte et al., 1997; Méndez-Sánchez et al., 2003), CTAB/NaNO3 (Cappelaere and

Cressely, 1997; Lerouge and Decruppe, 2000; Lerouge et al., 2006, 2008; Masselon

et al., 2008; Fardin et al., 2009), CTAB/NaSal (Shikata et al., 1988; Azzouzi et al.,

2005; Decruppe et al., 2001), CTAB/KBr (Radulescu et al., 2003), among others.

A comprehensive list of wormlike micellar solutions exhibiting different rheological

behaviors is provided in Lerouge and Berret (2009). The time-dependent flow of

micellar solutions has been extensively studied by different authors. The pioneer-

ing work of Rehage and Hoffmann (1991) focused on the oscillatory shear flow

and start-up shear flow of CPyCl/NaSal solutions in a cone plate geometry. The

oscillatory flow of micellar solutions was further investigated by Fischer and Re-

hage (1997), Méndez-Sánchez et al. (2003), Hu and Lips (2005) and in particular

experiments under large amplitude oscillatory shear flows (LAOS) were performed

by Ewoldt et al. (2008), Boukany and Wang (2008) and Dimitriou et al. (2012).

Start-up flows have also been widely studied in different geometries by Grand

et al. (1997), Lerouge and Decruppe (2000), Decruppe et al. (2001), Bécu et al.

(2004), Hu and Lips (2005), Lerouge et al. (2008), and Pipe et al. (2010).
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Figure 1.3: Schematic diagram of a non-monotonic flow curve, typical of a fluid exhibit-
ing shear banding.

1.1.2 Shear banding

A broad range of complex fluids may respond to shear by separating in two or

more coexisting macroscopic bands with markedly different viscosities. This phe-

nomenon is known as shear banding. Complex fluids with slow relaxation time

scales are likely to exhibit shear banding (Olmsted, 2008). Few examples of shear-

banding fluids include polymer solutions and melts (Tapadia et al., 2006; Hu,

2010), granular suspensions (Fall et al., 2009), foams (Krishan and Dennin, 2008),

and yielding fluids (Møller et al., 2008; Divoux et al., 2010). But more specifically

several species of wormlike micelles (obtained for a precise range of surfactant

concentration and temperatures) have been extensively studied during the last

decades and have emerged as a model system to understand shear-banding phe-

nomena (Olmsted, 2008; Manneville, 2008; Lerouge and Berret, 2009).

Shear-banding fluids display a nonmonotonic stress vs. shear rate curve, shown

schematically in Fig. 1.3. The flow curve exhibits a linear viscoelastic regime at

small shear rates, but it becomes unstable above a critical shear rate, γ̇c. In

the unstable region (and under imposed shear rates) the homogeneous state be-

comes unstable and the fluid reorganizes in a new heterogeneous configuration

with different stable shear bands. Different bands have different microstructural

organization, corresponding to different degrees of alignment of the wormlike mi-

celles under shear, that can be detected using birefringence measurements (Berret,

1997; Ober et al., 2011). Different bands support different local shear rates: a low

shear rate, γ̇1, and a high shear rate, γ̇2 (both at a common shear stress). The

average (imposed) shear rate of the fluid is given by the lever rule as

γ̇ = (1− f)γ̇1 + fγ̇2, (1.2)

where f and (1 − f) are the volume fractions of the highly and lowly sheared

bands. Following the lever rule, f increases from 0 to 1 as the applied shear rate
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Figure 1.4: Experimental evidence of shear banding formation in wormlike micellar
solutions under steady shear flow. (a): Cone-plate geometry (Britton and Callaghan,
1997). (b): Cylindrical-Couette geometry (Salmon et al., 2003).

γ̇ is increased. Britton and Callaghan (1997) first observed the formation of shear

bands using Nuclear Magnetic Resonance (NMR) in a cone and plate geometry

under steady shear for a wormlike micellar solution of CPyCl/NaSal [100:60] mM

(Fig. 1.4(a)). Three different shear bands were arranged normal to the velocity

gradient direction, with one high-shear-rate band at the center of the gap and

two bands with low shear rate at the boundaries. Subsequent steady experiments

were performed by Salmon et al. (2003) and Lettinga and Manneville (2009) with

comparable wormlike micellar solutions in a cylindrical Couette geometry, using

dynamic light scattering and ultrasonic velocimetry (Fig. 1.4(b)). They showed

that in this geometry only two different shear bands form, with a high-shear-

rate band next to the moving cylinder and a low-shear-rate band next to the

stationary one. These different behaviors observed in different devices presumably

arise from the different interplay between boundary conditions and the intrinsic

stress gradient imposed by the flow geometry (Adams et al., 2008).

During my research stay in the Hatsopoulos Microfluids Laboratory at MIT we

showed that micellar solutions in a cone-plate geometry also exhibit shear band

formation under oscillatory shear flows when the applied deformation exceeds

a shearing threshold, typically Wi > 1 (Dimitriou et al., 2012). We observed

the transition from linear velocity profiles at small deformations (Wi < 1) to

three banded velocity profiles at larger deformations (coincident with the results

of Britton and Callaghan (1997) obtained for the same geometry) with a rather

smooth variation of the shear rate along the gap (Fig. 1.5).

Some wormlike micellar solutions only exhibit transient shear banding in which

the shear bands are not steady but display a substantial spatio-temporal evolution,

and in some cases vanish after a certain time, typically larger than the relaxation

time of the fluid (López-González et al., 2004; Bécu et al., 2004; Hu and Lips,

2005; Miller and Rothstein, 2007; Hu et al., 2008). An extensive review of shear

banding transitions in semidilute and concentrated giant micelles is provided in

Lerouge and Berret (2009).
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(b)

Figure 1.5: Linear (a) and shear banded (b) velocity profiles for a CPyCl/NaSal [100:60]
mM wormlike micellar solution under oscillatory shear flow in a cone-plate geometry
(Dimitriou et al., 2012).

1.2 Elastic instabilities

Laminar flows become unstable after the rapid increase of small perturbations that

result from an imbalance between stabilizing and destabilizing effects. In Newto-

nian fluids the instability can be induced by inertia, surface tension or buoyancy

forces, among other effects (Drazin, 2002). The Kelvin - Helmoltz instability, for

example, is generated by a vorticity gradient that tends to destabilize the inter-

face between two fluids and manifests with the formation of waves (Fig. 1.6(a)).

The onset of an instability can be monitored in terms of particular parameters

or dimensionless numbers that naturally arise from the governing equations of

the flow. In Newtonian fluids different flow regimes can be achieved by continu-

ously increasing the dimensionless Reynolds number (Re), that sets the relative

importance of inertia to the damping viscous force. A nice example appears in

the wake of a vertical cylinder transverse to the flow direction inside a Newtonian

fluid moving at constant velocity along the horizontal coordinate. The Reynolds

number is defined as Re = UL/ν, where U is the typical flow velocity, L is the

characteristic length of the geometry, and ν is the kinematic viscosity of the fluid.

At Re ≪ 1 the flow is laminar everywhere. As Re ≥ 1 the laminar flow becomes

unstable and a pair of steady vortices form at the rear of the cylinder. At larger

Re numbers beautiful time dependent vortices form downstream (also known as

von Kármán vortex street), Fig. 1.6(b), and at even larger Re the flow eventually

becomes turbulent (Guyon et al., 2001).

In polymeric fluids hydrodynamic instabilities have been reported in the range

of Re≪ 1 (the viscosity of these fluids is usually large), where inertial forces are

negligible. In the inertialess regime the nonlinearities required to trigger the flow
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Figure 1.6: Experimental observation of hydrodynamic instabilities. (a): Kelvin-
Helmholtz instability visible by clouds in Mount Duval in Australia (source:
http://en.wikipedia.org); (b): von Kármán street observed in the Juan Fernández Is-
lands off the Chilean coast (source: http://en.wikipedia.org); (c): Elastic instability of
PIB/PB Boger fluid in a plate-plate geometry. The formation of outward-propagating
Archimedean spirals is observed (Byars et al., 1994); (d): Elastic turbulence of Boger
fluids in a plate-plate geometry under steady shear (Groisman and Steinberg, 2000).

instability come from the complex stress-strain relation of the polymeric fluid. The

relevant dimensionless numbers in viscoelastic fluids are the Deborah (De) and

the Weissemberg (Wi) numbers (Morozov and van Saarloos, 2007). The Deborah

number sets the interplay between the characteristic relaxation time of the fluid

λ and the time scale of the flow,

De = λ/tflow. (1.3)

In oscillatory flows the time scale of the flow can be defined as the inverse of the

oscillation frequency, ω0. In the limit of De→ 0 the fluid relaxes much faster than

the typical time scale of the flow and Newtonian flow behavior is recovered. For

De > 1 the relaxation time of the fluid is larger than the time scale of the flow

and fluid elasticity dominates the flow behavior. The Wi number sets the relative

importance of the fluid relaxation time to the local deformation time scale for a

fluid element, tdef ≃ 1/γ̇, so that

Wi = λγ̇. (1.4)
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In oscillatory flows the amplitude of the applied shear rate is given by γ̇0 = γ0ω0,

where γ0 is the dimensionless amplitude of the deformation. The Weissemberg

number reads then, Wi = λγ0ω0, which can be rewritten in terms of the Deborah

number as Wi = γ0De. The Weissemberg number can also be expressed as a

function of the first normal stress difference N1 (the expression for the N1 is pro-

vided in Sec. 4.1), and the shear stress τ , as Wi = N1/τ (Bird et al., 1987) . This

definition highlights the importance of normal stress differences in setting in the

nonlinearities of the fluid response. Analogously to the Re number in Newtonian

fluids, asWi is increased we can explore different flow regimes in viscoelastic fluids

(Morozov and van Saarloos, 2007). For Wi < 1 the fluid response is expected to

be linear and at Wi > 1 nonlinearities start to become manifest. In this regime

elastic instabilities are likely to appear.

Pakdel and McKinley (1996) established a criterion for the onset of elastic

instabilities, based on the curvature of the flow streamlines and fluid elasticity, as

(l/R)Wi ≥M2 (1.5)

where R is the radius of curvature of the streamlines, l gives a measure of the

distance over which perturbations relax along a streamline and M is the threshold

value that depends on the particular flow geometry. This criterion can be inferred

for any unidirectional flow with curved streamlines, like the cone-plate, plate-plate

or the Taylor-Couette geometries. When the streamlines are straight the radius

of curvature tends to infinity and the Pakdel-McKinley criterion predicts the base

flow to be linearly stable under any flow conditions.

Experimental evidence of elastic instabilities has been reported in several vis-

cometric flows (Shaqfeh, 1996). Usually Boger fluids (Boger, 1977) are used for

this kind of experiments because they are highly elastic and have a shear viscosity

that remains constant for a large range of shear rates. Boger fluids are obtained

by dissolving a small amount of a high molecular weight polymer within a very

viscous Newtonian fluid. Common examples are polyisobutylene in polybutene

(PIB/PB), polystyrene in low molecular weight polystyrene (PS/PS), or poly-

acrylamide (PAA) in corn syrup (which was the original recipe of D. Boger). In a

cylindrical Couette cell, Larson et al. (1990) observed for a PIB/PB solution the

formation of rolls stacked along the gap between concentric cylinders accompanied

by a simultaneous increase of the measured torque. The triggering mechanism for

this instability was not the centrifugal force responsible for the inertial Taylor-

Couette instability, since Re ≃ 10−3, but the elasticity of the fluid. In the cone-

plate geometry, Magda and Larson (1988) and McKinley et al. (1991) observed

the appearance of an elastic instability, and McKinley et al. (1991) and Byars

et al. (1994) observed the formation of spirals distributed along the radial coordi-
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nate, for a similar PIB/PB solution (Fig. 1.6(c)). Some years later Groisman and

Steinberg (2000) showed that a Boger fluid placed in a plate-plate geometry could

eventually become elastically turbulent at even larger Wi numbers (Fig. 1.6(d)),

showing all characteristic features of fully developed turbulence. Wormlike micel-

lar solutions in curved flows are also likely to exhibit hydrodynamic instabilities

induced by fluid elasticity. Fardin et al. (2010) studied the Taylor-Couette flow of

a shear banding wormlike micellar solution, CTAB/NaNO3. They observed that

for large enough Wi, and within the high shear rate branch of the flow curve, the

flow undergoes a subcritical instability which leads to a random flow state that

presents features typical of elastic turbulence. And Majumdar and Sood (2011)

reported a purely elastic turbulence for a non-shear-banding surfactant system,

CTAT.

Morozov and van Saarloos (2005) proposed an extension of the Pakdel - McKin-

ley criterion for parallel shear flows with straight streamlines. Parallel shear flow

is known to be linearly stable to perturbations of infinitesimal amplitude. How-

ever Morozov argued that the stable laminar flow might undergo a subcritical

(nonlinear) instability. Finite perturbations would curve the straight streamlines

of the base flow, and for large enough amplitudes the perturbed flow should be-

come unstable for large Wi numbers. The threshold for the nonlinear transition

is predicted to decrease for increasing Wi numbers as 1/Wi2. Recent experiments

carried out by Pan et al. (2012) with a polymeric solution provide experimental

verification for the existence of such nonlinear instabilities in parallel shear flows.

Using a straight microfluidic channel where the flow was perturbed by placing

a number of obstacles at the entrance of the channel they showed that above a

critical flow rate and a critical size of the perturbation, a sudden onset of large

velocity fluctuations occurred, indicating presence of a subcritical instability.

1.3 Rheology

In 1920, Bingham proposed the new term rheology, derived from the Greek word,

ρǫιν, to flow (Macosko, 1994). Generally speaking, rheology studies the fluid flow

behavior. In particular rheology focuses on the constitutive equations that relate

the stress and strain experienced by a material. And a more practical side of

rheology deals with rheometric tests used to characterize the material functions

of fluids, whose constitutive equations are unknown.
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1.3.1 Constitutive models for viscoelastic fluids

Viscoelastic fluids exhibit an intermediate flow behavior between ideal solids and

liquids. At small time scales they behave as elastic solids, but at larger time

scales (typically larger than a characteristic relaxation time of the fluid) they

flow as ordinary dissipative fluids. Constitutive equations for complex fluids are

intended to reproduce this intermediate viscoelastic behavior, as well as other

non-Newtonian effects (such as shear-thinning and thickening, yield-stress, etc.)

described so far.

Complex fluids have a precise microstructure, that typically ranges from 100

µm to 10 nm, which is mainly responsible for the striking observed phenomena

(Larson, 1999). Microscopic models look at this molecular microstructure and

establish relations between the bulk flow behavior and fluid structure using statis-

tical mechanics methods. The simplest microscopic model describes the polymeric

(or micellar) fluid as an ensemble of elastic dumbbells formed by two beads con-

nected by an elastic spring. When the elastic spring is considered to be Hookean

the model provides, on the one hand, shear material properties that are indepen-

dent of the applied shear rate, and on the other hand an extensional viscosity

that infinitely increases at finite elongational rate. This model has the same form

as the Oldroyd-B constitutive equation obtained in continuum mechanics (and

discussed in more detail below in this section), so that it allows to infer differ-

ent microscopic properties from results obtained in continuum mechanics (Bird

et al., 1987). A more realistic elastic dumbbell behavior is achieved with the so-

called FENE model (Finite Extensible Nonlinear Elastic), which considers nonlin-

ear springs with a finite extensibility. Dumbbell models can be further improved

by taking into account the hydrodynamic interaction between the dumbbell beads

with the surrounding fluid. And a step forward can be achieved by replacing the

oversimplified elastic dumbbells by elastic chains with multiple beads intercon-

nected by springs, such as the Rouse model (for Hookean springs) or the Zimm

model (when hydrodynamic interactions are incorporated).

From the point of view of an experimentalist macroscopic constitutive equa-

tions are more useful in the sense that they allow a direct comparison with exper-

imental data, typically obtained with a rheometer. These models are empirical

approximations that do not look into the molecular structure but reproduce the

macroscopic rheological fluid behavior.

One of the simplest shear flow experiments can be performed in a plate-plate

geometry. In this configuration the fluid is contained between two parallel plates

and the flow is generated by moving the upper plate at constant speed u along

the x direction while the bottom one is at rest (Fig. 1.7). The resulting shear rate
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Figure 1.7: Simple shear flow generated in a plate-plate geometry. An external velocity
u is applied to the upper plate while the lower one is at rest.

in the cell is given by the velocity gradient along the vertical direction,

γ̇xy =
∂ux
∂y

. (1.6)

And the general expression for the reate-of-strain tensor reads (tensors and vectors

are depicted in bold symbols)

γ̇ = (∇u) + (∇u)† . (1.7)

The fluid responds to the applied shear rate with the generation of a shear stress.

The total stress tensor, σ, which is defined as the force per unit area, contains an

isotropic and an anisotropic part:

σ = τ − pδ =





τxx − p τxy τxz
τyx τyy − p τyz
τzx τzy τzz − p



 . (1.8)

The hydrostatic pressure, p, only takes part in the isotropic part of the stress

tensor. The anisotropic one, that we call for simplicity and from now on stress,

corresponds to the shear stress (Larson, 1999). Newtonian fluids never exhibit

the diagonal terms (τxx, τyy, τzz) in the stress response. In the previous example

of the plate-plate geometry the only non-vanishing terms of the tensor τ are the

cross-terms τxy and τyx (which are identical since the tensor is symmetric). We

can define the normal stress differences N1 and N2 as

N1 = τxx − τyy,

N2 = τyy − τzz. (1.9)

In Newtonian fluids both N1 and N2 are identically zero. However, this is not the

case for viscoelastic fluids where particularly N1 can be very significant.

Stress and shear rate in Newtonian fluids are found in a linear relation, where
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the viscosity η is the constant of proportionality:

τ = ηγ̇. (1.10)

This is the simplest macroscopic constitutive equation that relates the shear rate

with the stress response.

The macroscopic description for viscoelastic fluids combines the elastic behav-

ior, represented by an elastic spring, with the viscous behavior represented by a

dissipative dashpot. Depending on the precise configuration of these primary el-

ements we obtain different constitutive equations (Maxwell model, Kelvin-Voigt,

generalized Maxwell, Burgers model, ...).

The Maxwell model is obtained by considering an elastic spring and a dissipa-

tive dashpot connected in series. It is the simplest linear model that can success-

fully predict the stress relaxation of viscoelastic fluids. The Maxwell model reads

(Bird et al., 1987),

τ + λ
∂τ

∂t
= η0γ̇ (1.11)

where τ is the shear stress, γ̇ is the rate of shear deformation, and η0 and λ are

the zero-shear viscosity and characteristic relaxation time of the fluid. The upper-

convected Maxwell model (UCM) is the frame invariant version of the Maxwell

model. It requires the replacement of partial temporal derivatives for upper-

convected derivatives which are frame invariant (depicted with the subscript (1)),

and the usage of the tensorial notation for the stress and rate of deformation

(depicted in bold symbols),

τ + λτ(1) = η0γ(1). (1.12)

The upper-convected derivative for the stress tensor reads

τ(1) =
D

Dt
τ −

{

(∇u)† · τ + τ · (∇u)
}

, (1.13)

where the total time derivative can be expressed as D
Dt
τ = ∂τ

∂t
+u ·∇τ . And the

upper-convected derivative for the rate-of-strain tensor is just

γ(1) = γ̇. (1.14)

An important feature of both the Maxwell and UCM models is that they have a

single relaxation time. These models successfully reproduce the shear rheology of

wormlike micelles at low shear rates.

The Oldroyd-B constitutive equation (also known as Convected Jeffreys model)

introduces a second relaxation time also known as retardation time (Bird et al.,
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1987). The Oldroyd-B model represents a solution of a Maxwellian viscoelastic

fluid (which is typically a polymeric fluid), with a single relaxation time λ and a

rate independent viscosity ηp, solved in a Newtonian solvent with constant viscos-

ity ηs. The Oldroyd-B constitutive equation reads:

τ = τs + τp (1.15a)

τs = ηsγ(1) (1.15b)

τp + λτp(1) = ηpγ(1). (1.15c)

The stress tensor τ is the sum of the solvent and polymeric contributions (denoted

by the subindex s and p, respectively). γ is the rate-of-strain tensor. The viscosity

of the solution is given by the sum of the solvent and polymeric contributions,

η = ηs+ηp. The fraction ηs/η is called the viscosity ratio, denoted in the following

by X . The retardation time can be expressed in terms of the viscosity ratio as

λ2 = λX . It is worth noting that the Oldroyd-B constitutive equation interpolates

between two limiting behaviors. For X = 0 the Newtonian contribution of the

solvent vanishes, and the UCM constitutive equation is recovered. The other

limiting behavior is attained for X = 1, when the elastic contribution of the

polymer vanishes and the Newtonian relation is recovered. The Oldroyd-B model

is well realized experimentally by Boger fluids in shear flow. Both the UCM and

Oldroyd-B models are called quasi-linear models. Although these models have

a shear stress equation for unidirectional flow that is linear, the upper convected

derivatives introduce nonlinearities that brings about first normal stress difference,

N1 = τxx − τyy, different from zero. However, these models cannot predict non

zero second normal stress differences (Bird et al., 1987).

All models presented so far fail in predicting common nonlinear features ob-

served in wormlike micellar solutions that appear at considerably large shear rates.

Specifically, the shear-thinning behavior and the decrease of the first normal stress

coefficient, ψ = N1/γ̇
2, with increasing shear rates (Bird et al., 1987). The single-

mode Giesekus model (Bird et al., 1987) is an extension of the Oldroyd-B model

which introduces the first quadratic term in shear stress:

τ = τs + τp (1.16a)

τs = ηsγ(1) (1.16b)

τp + λτp(1) − α
λ

ηp
{τp · τp} = ηpγ(1). (1.16c)

The model has an additional parameter α or mobility factor, that typically ranges

from zero to one, which can be associated with the anisotropic hydrodynamic
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drag exerted on the polymer molecules. The Giesekus model can predict a large

decrease of both the viscosity and first normal stress coefficient with the shear

rate, as well as non-zero second normal stress coefficient. And in particular this

model successfully reproduces the nonlinear shear banding flow of semi-dilute

wormlike micelles (Larson, 1999; Yesilata et al., 2006). More recently, Vasquez

et al. (2007) have proposed the VCM model that aims to capture the relevant

physical interactions of the fluid. It describes the fluid microstructure as the

ensemble of two different species of long and short micelles that mutually break

and recombine. This model provides a good understanding of inhomogeneous

flows and is able to capture transient features of these flows.

1.3.2 Rheometric tests

A rheometer is the required apparatus to do the rheometric tests and get the

stress-strain data of the fluid to be characterized. Depending on the kind of

flow that the instrument generates, we can broadly separate between rheometers

that produce a shear flow, in which we are interested, and those that create an

extensional flow. Shear flows can be achieved between a moving and a fixed

surface (known as drag flows) or driven by a pressure difference between two

different locations (pressure driven flows). In drag flows the stress-strain data

is inferred from deformation-torque measurements, while in pressure driven flows

it is obtained from the pressure drop and flux measurements. In both cases the

velocity gradient that appears within the sample is perpendicular to the flow

direction.

In homogeneous flows stress and strain are independent of the position in the

sample, which makes them very convenient for rheometric measurements. The

cone-plate geometry, in the limit of small cone angles, is the most extensively used

geometry to experimentally achieve homogeneous drag flows. Since it provides a

constant shear rate along the radial coordinate, and allows to obtain N1 measure-

ments directly from the total thrust, it is particularly convenient for the study of

non-Newtonian fluids (Macosko, 1994). Capillary flows are pressure driven flows

that provide non-homogeneous deformations (the shear rate is always maximum

close to the walls and zero at the center). A main advantage of capillaries is that

they generate flows with no free surface and thus they avoid possible edge failure

of the sample (thus allowing a considerably larger accessible range of shear rates)

and sample evaporation.
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Figure 1.8: Reproduction of the water tunnel exhibited in the German Aerospace Center
DLR, Göttingen (Germany).

1.3.3 Flow visualization techniques

Visualization techniques allow to spatially resolve the velocity field and gain in-

formation of the fluid flow organization. While a standard rheometer allows to

distinguish a linear regime from a nonlinear one, using visualization techniques

we may be able to identify the mechanism responsible for the nonlinear response

of the fluid. In shear banding fluids, some of these techniques allow to visualize

the formation of different shear bands. In particular these techniques allow to dis-

criminate shear banding from other nonlinear effects such as wall slip. They are

also very convenient in characterizing the emergence of secondary flows at large

Re or Wi numbers.

Pioneering experiments on flow visualization were first done by Prandtl in

1904, who added a suspension of mica particles on the surface of water, to char-

acterize the flow pattern generated in a water tunnel after different model objects

like cylinders, prisms or wings (Fig. 1.8). Particle Tracking Velocimetry (PTV)

and Particle Image Velocimetry (PIV) are very commonly used visualization tech-

niques (Adrian, 1991; Raffel et al., 2007) based on particle tracking methods. PTV

uses low seeding densities and individual particles are tracked. This leads to non-

homogeneous measurements of the velocity field. PIV, instead, uses higher particle

densities which allow to extract the local mean velocity of the flow with a high

spatial resolution (PIV will be discussed in detail in Sec. 2.2). One drawback of

these techniques is that they are restricted to transparent fluids. Nuclear Mag-
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netic Resonance (NMR) (Callaghan, 2008), ultrasonic velocimetry (Lettinga and

Manneville, 2009), and dynamic light scattering (Salmon et al., 2003) are other

techniques that have also been extensively used for flow visualization of wormlike

micellar solutions (Manneville, 2008).

1.4 Wall-bounded oscillatory flows

Wall-bounded oscillatory flows of Newtonian and complex fluids are found in many

practical situations. Oscillatory pipe flows are specially important in physiology

in connection with the circulatory and respiratory systems of human beings, as

well as in industrial processes such as fluid pumping, secondary oil recovery or

filtration, and in acoustics. Pulsating flows are of particular interest also in the

rheological characterization of complex fluids.

1.4.1 Newtonian fluids

The oscillatory flow of Newtonian fluids is governed by the Reynolds number

Re = U0a/ν (where U0 is the amplitude of cross-sectional mean velocity, a is the

distance from the symmetry axis of the geometry to the sidewalls, and ν is the fluid

kinematic viscosity) and the Stokes parameter, Λ = a/δ, where δ = (2ν/ω0)
1/2

is the thickness of the boundary layer at the sidewalls, and ω0 is the frequency

of oscillation (Crandall, 1926). Using the Stokes parameter we can distinguish

’narrow’ (Λ < 1) from ’wide’ configurations (Λ > 1). In ’narrow’ settings viscous

damping dominates over inertia and the laminar flow is lamellar, while in ’wide’

systems the viscous boundary layer is confined next to the walls and an inviscid

core moves in the center.

Crandall (1926) derived the first analytical solution of the velocity profile of a

Newtonian fluid in a straight cylinder, in an oscillatory flow induced by a harmonic

pressure gradient. Wall-bounded oscillatory flows were later extensively studied

by Lambossy (1952) and Womersley (1955). The latter expressed the velocity

profile in terms of modulus and phase. He also noted that the degree of departure

from the normal parabolic form (the Poiseuille profile corresponding to a steady

pressure gradient) increased with driving frequency and that the phase lag varied

across the pipe. He also computed the rate of flow (the quantity of liquid passing

through any cross-section per unit time) in terms of the imposed pressure gradient,

a relationship that is useful to make contact with most experiments in which the

rate of flow rather than the pressure gradient is imposed (e.g. by the harmonic

motion of the endwalls). The experimental work of Müller (1954) provided a

verification of the velocity profiles predicted theoretically.
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The transition from laminar to turbulent flow of Newtonian fluids in zero-

mean oscillatory pipe flow was also investigated experimentally (Sergeev, 1966;

Merkli and Thomann, 1975; Hino et al., 1976; Ohmi et al., 1982; Eckmann and

Grotberg, 1991; Akhavan et al., 1991). Four main regimes were identified by

Ohmi et al. (1982) and Akhavan et al. (1991) in the Re− Λ parameter space: (I)

laminar flow - (II) disturbed laminar flow (small amplitude perturbations appear

during the acceleration phase of the cycle) - (III) intermittently turbulent flow

(turbulent bursts appear in the deceleration phase of the cycle) - (IV) and fully

turbulent flow. As discussed by Akhavan et al. (1991), flows of type (IV) have

not actually been observed experimentally, but it has been observed that flows

of type (III) remain turbulent for increasingly larger portions of the cycle as Re

increases. Ohmi et al. (1982) compiled the experimental data available at the

time and sketched an approximate phase diagram of these different types of flow

in the Re − Λ parameter space. The diagram shows that for small values of Λ

(≃ 1) the flow is laminar up to Re ≃ 103 and becomes intermittently turbulent at

larger Reynolds numbers. Weakly turbulent or intermittent flow at low Reynolds

number is only observed for very wide systems, Λ ≥ 5.

1.4.2 Viscoelastic fluids

Time-dependent flows of viscoelastic liquids, in the range of De > 1, exhibit many

interesting features that are absent in corresponding flows of Newtonian liquids.

Thurston studied the laminar oscillatory flow of viscoelastic fluids driven by a si-

nusoidal pressure gradient, both between infinitely large parallel plates (Thurston,

1959) and in a rigid tube of infinite length and circular cross-section (Thurston,

1960). Using a complex, constant shear viscosity, needed to capture the viscoelas-

tic properties of the fluid, he obtained the equation for the velocity profiles in

the rectilinear oscillatory flow in the two geometries. He also made a great ef-

fort in measuring the flow properties of blood when oscillated in small rigid tubes

(Thurston, 1975). He realized that the pressure gradient could be resolved into a

dissipative component in phase with the volume flow, and another one in quadra-

ture, and that at high frequencies the two components showed nonlinear effects.

In particular, the component in quadrature became inertial-like due to the shear

degradation of the inner blood structure made of aggregates of red blood cells.

Theoretical attempts to model the blood flow have also been performed. Recently

Moyers-González et al. (2009) used a complex hemorheological constitutive model,

based on blood non-homogeneous microstructure, to calculate pressure gradient

vs. flow rate in an oscillatory flow of healthy human blood for a wide range of

oscillatory frequencies. At low frequencies the flow behavior could be interpreted

by a simple linear viscoelastic model and the predictions were found to be in close



22 Chapter 1. Introduction

agreement with the experimental results obtained by Thurston (1976). At larger

frequencies a ‘resonance’ frequency was found at which the flow rate amplitude

showed an enhancement. And at even larger frequencies, the pressure gradient

amplitude needed to maintain a constant flow rate amplitude was found to increase

with the oscillatory frequency.

Barnes et al. (1969) investigated the effect of an oscillatory pressure gradient

around a nonzero mean in straight cylinders. The experimental results obtained

for dilute aqueous solutions of polyacrylamide showed a dramatic mean flow rate

enhancement at particular values of the mean pressure gradient, as a result of

a ‘resonance’ effect between the fluid elasticity and the oscillatory driving. The

enhancement was shown to be of practical significance: the peak value of the fluc-

tuating pressure gradient was lower than the constant pressure gradient needed

to produce the same mean flow rate. Their observations were in qualitative agree-

ment with their own theoretical predictions based on a power series expansion of

the velocity and shear rate of a fluid characterized by an apparent viscosity η(γ̇).

The mechanisms for flow enhancement, using different fluid models, were subse-

quently studied by several authors including Barnes et al. (1971), Davies et al.

(1978), Phan-Thien and coworkers (Phan-Thien, 1978, 1980, 1981; Phan-Thien

and Dudek, 1982a,b; Huilgol and Phan-Thien, 1986), Manero and Walters (1980),

Herrera (2010), and Siginer (1991). Andrienko et al. (2000) stated that one of

the leading mechanisms of mean flow rate enhancement is a coupling between the

shear rate-dependent viscosity, when the fluid is described using a nonlinear con-

stitutive equation, and the increase of shear rate due to the oscillatory part of the

pressure gradient. The increase of shear rate caused by the oscillations causes a

decrease of apparent viscosity if the fluid is shear-thinning wich produces in turn

an enhancement in the mean flow rate.

Although both the upper-convected Maxwell and the Oldroyd-B models have

a shear stress equation for unidirectional flow that is linear, and thus unable to

produce mean flow rate enhancement, they are still capable to predict dramatic

deviations of the flow field of viscoelastic fluids from that of a purely viscous

fluid. In particular, the instantaneous flow velocities of viscoelastic fluids show an

interesting enhancement at certain frequencies. This resonance behavior has been

predicted theoretically by several authors (del Rı́o et al., 1998, 2001; Andrienko

et al., 2000; Tsiklauri and Beresnev, 2001a,b) and demonstrated experimentally

by Castrejón-Pita et al. (2003) for an aqueous micellar solution.

In the theoretical work of del Rı́o et al. (1998, 2001) the zero mean oscilla-

tory flow of a Maxwell fluid in a tube of circular cross-section was analyzed in

the inertialess regime by Fourier transformation of the time variable. Assuming

laminar flow directed along the axis of the tube, an expression of the radial profile

of the fluid velocity was derived, in agreement with Thurston’s original derivation
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(Thurston, 1960). Defining the dynamic permeability of the tube as the ratio of

the average over the tube cross-section of the fluid velocity to the driving pressure

gradient, the authors showed that the dynamic permeability is strongly peaked at

particular resonant frequencies, dependent on fluid parameters and tube radius.

Andrienko et al. (2000) studied the resonance behavior of a fluid described by

the upper-convected Maxwell model with a discrete spectrum of relaxation times.

This model includes the single relaxation time UCM and the Oldroyd-B consti-

tutive equations as particular cases. They showed again that instantaneous flow

velocities drastically increase at certain (resonant) frequencies of the oscillating

pressure gradient, and noticed that the effect becomes more pronounced as the

tube radius gets smaller. The resonance behavior persisted when a simple non-

linear constitutive equation (a Tanner model with a single relaxation time) was

considered, and for this model the authors showed that the phenomenon of mean

flow-rate enhancement is most efficient at the resonance frequencies.

Experimental evidence of the different dynamic responses of Newtonian and

viscoelastic fluids in zero-mean oscillatory flow in a vertical pipe was provided

by Castrejón-Pita et al. (2003), using laser Doppler anemometry. They observed

that while the motion of glycerol at the symmetry axis of the tube showed the

purely dissipative response expected for a Newtonian fluid, a wormlike micellar

solution showed a resonant dynamic response at particular frequencies. Further

experiments (Torralba et al., 2005), using Particle Image Velocimetry, provided the

radial velocity profiles of the laminar oscillatory flow of the micellar fluid. More

recently, Torralba et al. (2007) studied the stability of the laminar oscillatory

flow. They showed that a secondary flow develops in the inertialess regime at

high enough drivings, consisting of toroidal vortices stacked along the tube axis.

At even higher drivings this vortex structure became itself unstable, and complex

nonsymmetric flows developed along the tube.
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Experimental setup

The experimental setup we used consisted on a column of fluid, contained in a

vertical transparent cylinder, that was forced to oscillate periodically in time,

thanks to the sinusoidal motion of a piston placed at the bottom end of the tube.

This setup was the first of this kind ever implemented in the Laboratori de F́ısica

no Lineal, of the University of Barcelona. Our setup was based on the original

setup that operated in the UNAM (Castrejón-Pita et al., 2003; Torralba et al.,

2005, 2007), but incorporated several important new features, to be discussed in

Sec. 2.3.

During the first stage of the Thesis, the design of the experimental setup

was completed. In particular, the mechanism used to generate the oscillatory

motion of the piston (Sec. 2.1) was redesigned. Important modifications had to

be implemented to guarantee that the oscillations were indeed sinusoidal. The

acquisition of an AC motor an reductor in the laboratory also made possible to

expand the range of accessible drivings to lower frequencies of oscillation. The

setup was completed with the incorporation of a device that enabled to track the

piston position in time by means of a Linear Variable Differential Transformer.

With the calibration of both the amplitude and oscillation frequency we verified

that indeed the setup was able to generate an almost perfect sinusoidal oscillatory

motion for a large range of amplitudes and frequencies.

The implementation of a Particle Image Velocimetry system was also accom-

plished, which made possible the characterization of the fluid velocity field in a

meridional plane of the tube with high spatial and temporal resolution (Sec. 2.2).

A detailed description of the different parts of the setup is provided in the

following sections.
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2.1 Experimental apparatus

The experimental setup that was used to perform all the experiments reported in

this Thesis is shown in Figs. 2.1, 2.2, and 2.3. The fluid to study was placed in

a vertical rigid tube (a) of transparent methacrylate of circular cross section and

5 cm inner diameter, 60 cm length and 5 mm thickness. The fluid motion was

driven by the oscillatory motion of a Teflon piston (c) of the same diameter placed

at the bottom end of the cylinder. The top surface of the fluid was covered with

a freely moving plastic lid (e), to avoid free interface effects that might interfere

with the flow in the bulk. In order to minimize the optical aberrations produced

by the curved surface, the tube was contained in a transparent tank (b) built

in polycarbonate and filled with glycerol, that matches quite well the refractive

index of the methacrylate walls. Possible remaining aberrations were corrected in

the post-processing of the images.

2.1.1 Driving the oscillatory motion

Our setup allowed to control both the frequency (ν0) and amplitude (z0) of the

vertical oscillatory motion of the driving piston. Experimentally accessible fre-

quencies and amplitudes lied within the range 1.0 to 12.0 Hz (±0.1 Hz) and 0.20

to 6.00 mm (±0.02 mm) respectively.

Figures 2.1, 2.2, and 2.3(left panel) show that the motion was set by a crankshaft

(f) that converts the rotational motion of an AC motor (p) and reductor (n), with

final angular frequency ω0 = 2πν0, into the linear vertical oscillatory motion of

one end of a metallic lever (h) which pivoted around a fixed shaft at the opposite

end (g). The reductor was required for the lowest driving frequencies. Crankshaft,

lever and AC motor were mounted on a translational stage (k) that could move

horizontally, operated by a DC motor. The vertical cylinder was attached to a

rigid metallic framework (j). The connecting rod of the piston (d) ended in a

ball bearing that slided on a rectangular opening machined all along the lever,

in such a way that the piston followed the oscillations of the lever. The whole

device stood on a sturdy horizontal table. The amplitude of the piston oscillation

was determined by both the eccentricity of the crankshaft and the distance of the

ball bearing to the pivoting end of the lever, which could be modified using an

external controller. Hence the amplitude z0 varied from zero, at the pivoting end,

to its maximum, at the crankshaft.
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Figure 2.1: Front view of the experimental setup (the sketch is not to scale). The most
relevant dimensions (mm) are specified.
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Figure 2.2: Side view of the experimental setup (the sketch is not to scale). The most
relevant dimensions (mm) are specified.
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Figure 2.3: Pictures of the actual experimental setup placed in the Laboratori de F́ısica

no Lineal. Left: generation of the oscillatory motion; Right: general view of the exper-
imental setup.

2.1.2 Monitoring the piston position

The vertical position of the piston was tracked in time using a Linear Variable

Differential Transformer (LVDT) with a resolution of 0.03 mm. We performed an

harmonic analysis of the LVDT signal using the Fast Fourier Transform and ver-

ified that the oscillations of the piston (in the presence of the fluid column) were

indeed harmonic. Although the principal harmonic (ω0) was always clearly dom-

inant, there were however small contributions from the second and occasionally

the third harmonics (2ω0 and 3ω0). The amplitudes of these additional harmonics

were more important at the lowest driving frequencies and amplitudes, but they

never exceeded 7% of the amplitude of the main frequency component. Never-

theless we found that the presence of these additional harmonics in the driving

could not always be disregarded. They are relevant, for example, when comparing

laminar velocity profiles to their theoretical predictions (Sec. 4.2).

In Fig. 2.4 we show a reconstruction of the LVDT signal obtained from the

sum of all relevant contributions to its frequency spectrum (solid line). In panel

(a), which corresponds to the smallest driving amplitude achievable with the ex-

perimental setup (z0 = 0.20 mm), deviations from a pure sinusoidal were notable

since the relative contributions of the second and third harmonics were 5% and

7% respectively. However, for larger amplitudes the contribution of higher har-

monics decreased. In panel (b) we show an example of the LVDT signal obtained
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Figure 2.4: LVDT signal measured for two complete periods of oscillation. The solid
line is the reconstruction of the LVDT signal based on its spectral contents (see text for
details). The time phase ω0t is shown in the top horizontal axis. Panel (a) corresponds
to ω0 = 37.1 rad/s, z0 = 0.20 mm, and (b) to ω0 = 47.1 rad/s, z0 = 0.50 mm.

for z0 = 0.50 mm, for which the contribution of 2ω0 and 3ω0 were only 3% of the

amplitude of the main frequency.

2.1.3 Temperature control

Although the temperature of the fluid in the cylinder could not be modified, we

could control the temperature of the laboratory up to ±1◦C. We measured the

fluid temperature in every experiment with a digital thermometer, and verified

that most of the experiments had been performed at temperatures within the

range 24 ± 1◦C. We checked also that the temperature variation during a single

experiment never exceeded 0.2◦C.

We actually do not expect the oscillatory flow of the wormlike micellar fluid

to be sensitive to slight variations in temperature. Even though η0 and λ of

wormlike micellar solutions depend strongly on temperature (Chap. 3), we will

show theoretically in Sec. 4.1 that the oscillatory flows of Maxwell and Oldroyd-

B fluids depend on η0 and λ mainly through their ratio, which is known to be

roughly independent of temperature (Fischer and Rehage, 1997).
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Figure 2.5: Schematic view of the experimental device, including the elements required
for Particle Image Velocimetry.

2.2 Time resolved Particle Image Velocimetry

We used a 2D time-resolved PIV technique (Adrian, 1991; Raffel et al., 2007) to

measure the velocity field of the oscillatory flow. In Fig. 2.3(right panel) and 2.5

we show a picture and a schematic representation of the PIV system implemented

in the laboratory. We measured the two components of the fluid velocity (ur, uz)

within a meridional plane r− z of the tube. In order to measure the velocity field

of the fluid, we had to seed previously the fluid with a small amount of very small,

neutrally buoyant particles. We used polyamide particles of 57 µm of diameter

and density ρ = 1016 kg/m3 in a volume fraction of 3.5× 10−5. We checked that

the fluid rheology was not significantly modified for this particle concentration.

2.2.1 Image acquisition

In order to measure the velocity field, an interrogation region of the meridional

plane of the tube was illuminated with a pulsed laser sheet of about 1 mm thickness

(Diode Laser HSI5000 from Oxford Lasers) and a pulse duration of 50 µs. By

placing the laser at the closest possible position to the tube axis (15 cm from

the end of the laser head to the tube axis) we ensured that the images were

as bright as possible and showed a sharp contrast of the seeding particles with
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Figure 2.6: PIV image of a meridional plane of the tube (rotated by 90◦). The seeding
particles correspond to the bright dots. Small reflections are observed next to the tube
walls.

respect to the surrounding fluid (which is essential for the post-processing of the

images). An example of a PIV image is provided in Fig. 2.6. The light scattered

by the particles was recorded with a high speed and high resolution CMOS camera

(MotionPro-X3Plus from IDT, 1280×1024 pixels) equipped with a lens of 28 mm

and F1.8 (Sigma). We placed the camera again at the closest possible position to

the tube axis (25 cm from the CCD sensor to the tube axis) in order to maximize

the spatial resolution of the images. In this first configuration, the field of view

was a square of about 5×5 cm2, and the spatial resolution along the z coordinate

was 16 pix/mm.

An additional divergent lens (f = −75.0 mm, ThorLabs) could be added in the

laser path so that the laser sheet was expanded and the illuminated area increased

up to approximately 10×5 cm2 (vertical×horizontal). This was convenient to

characterize the unstable flow because it allowed to record a larger tube area and

thus gain spatial information about the velocity field. However, in this second

configuration we had to place the camera further apart from the tube axis, to be

able to capture all the illuminated area, which slightly reduced the vertical spatial

resolution to 13 pix/mm.

An external program controlled the shooting parameters of the camera. Both

the frame rate and the number of frames (NF ) to record could be controlled.

The exposure time was given by the inverse of the frame rate, which in all cases

was much larger than the shutter time of the camera of about 1 µs. When we

performed ramps of the oscillation amplitude (discussed in more detail in Sec.

6.1) this program allowed to control the waiting time between steps (tw). The

camera had an internal trigger that controlled the laser shooting so that the cam-

era recorded only when the light pulses were emitted. The acquired images were

equally separated in time. The time interval was chosen such that we recorded
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Figure 2.7: Left: sketch of the cross-correlation method used to determine the average
displacement of the particles. Filled and empty dots correspond to the particle positions
in two consecutive frames. The arrows indicate all the possible displacements of an
individual particle between consecutives frames. Right: example of the maximization of
the cross-correlation function for a particular position in the meridional plane, provided
by the software.

a fixed number of frames per oscillation cycle (NP ) at any imposed driving fre-

quency. In the laminar flow regime we used NP = 20, and in more complex flows

NP = 40.

The setup described allowed measurements of the in-plane components of the

velocity field in the interrogation region within the meridional plane of the tube.

A new stereo-PIV setup (Appx. B) that is currently being implemented in the

laboratory will allow to measure also the azimuthal (out-of-plane) component of

the velocity field.

2.2.2 PIV post-processing

A commercial PIV Software from Intelligent Laser Applications was used to per-

form the final post-processing of the images. In order to compute the mean velocity

field the interrogation region was divided in square cells. As shown schematically

in Fig. 2.7, the software evaluated the mean velocity field in each cell by (i)

computing the statistical correlation of the displacements of the seeding particles

between consecutive images and (ii) selecting the displacement for which the cross-

correlation function was maximum. The overlap between adjoining square cells

was set to 50% in both z and r directions. The size of the cell was chosen such

that the displacement of the particles between consecutive images was roughly

0.25 times the size of the cell. In the laminar flow regime it was sufficient to use

a constant cell size. For applied amplitudes z0 ≤ 1.0 mm we normally used a cell

of 48 × 48 pix2. For larger driving amplitudes the typical displacements of the
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Figure 2.8: Example of the adaptative cross-correlation method. (a) The interrogation
size is 128 × 128 pix2; (b) 80 × 80 pix2; (c) 64 × 64 pix2; (d) 48 × 48 pix2. The valid
PIV velocity vectors are shown in red and the interpolated vectors in green.

particles increased and we chose the cell size accordingly so that it could increase

up to 128× 128 pix2 (which is the maximum cell size available in the software).

However, this procedure did not allow to resolve strong local velocity gradi-

ents that appeared in non-laminar, more complex flows. An adaptative cross-

correlation method allowed to overcome this difficulty by iteratively computing

the cross-correlation function several times with decreasing cell sizes. We started

with the largest cell size, 128 × 128 pix2, and continuously reduced it down to

48 × 48 pix2 (Fig. 2.8). The overlap between adjoining square cells was set to

50% regardless of the cell size. In order to eliminate spurious velocity vectors that

might result from the cross-correlation process we applied velocity filters. First,

a global velocity filter eliminated vectors that were far from the global mean ve-

locity, and next a local velocity filter eliminated velocity vectors in terms of the

local mean of the velocity field. At the end we applied an interpolation step that

replaced the eliminated spurious vectors by the interpolated values computed by

linear interpolation from their nearest neighbors.

A final calibration was required in order to determine the spatial dimensions of

the PIV images. We used a hand-made calibration plate in which we had drawn

a grid of dots separated by well-known distances. We placed the grid inside the

fluid making sure that it was placed in the same meridional plane of the tube

where the PIV images were recorded. A calibration image is provided in Fig.
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Figure 2.9: Calibration grid used to determine the spatial dimensions of the PIV images.
The dimensions of the grid are provided both in mm (real dimensions) and in pixels
(after image acquisition).

2.9. We noted that the magnification along the radial and vertical directions was

not exactly the same, due to residual cylindrical aberrations that had not been

eliminated with the glycerine outer tank. The vertical magnification was larger

than the horizontal magnification by a factor F = 1.1.

At the end of the entire cross-correlation process, the software provided the

in-plane velocity field in a square grid of known distances, for each frame. The

azimuthal vorticity field was computed after the velocity field (using a Matlab

routine) as

w = ∇‖ × u =

(

∂ur
∂z

−
∂uz
∂r

)

êθ. (2.1)

The uncertainty in the velocity and vorticity measurements was about ±3% and

±5%, respectively.

Our experimental setup did not allow to measure the out-of-plane component

of the velocity. By computing the local divergence of the in-plane velocity field,

∇‖ · u =
∂ur
∂r

+
∂uz
∂z

, (2.2)

we could gain additional information on uθ. If ∇‖ ·u 6= 0 (clearly above the noise

background) it is certain that uθ 6= 0. I.e. ∇‖ ·u should be negligible when uθ ≃ 0.

Conversely, ∇‖ · u = 0 only implies that uθ 6= uθ(θ) but does not rule out the

existence of uθ 6= 0.
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2.3 Relevant features of the experimental setup

Our setup in Barcelona presented several new performances, compared to the pre-

vious setup available in the UNAM in Mexico. First, instead of fixed values of

the driving amplitude (0.8, 1.2, 1.6, 2.0, 2.5 mm), our setup allowed to ramp the

amplitude quasi-continuously, in fine steps of 0.02 mm. This allowed to study

deviations from linearity of the velocity profiles in the laminar regime. More-

over, the accessible range of driving amplitudes was extended up to 6.00 mm, so

that transitions to more complex flows arising at large drivings were accessible to

study. Performing ramps of increasing and decreasing amplitude of the applied

oscillations allowed us to measure the hysteresis of these transitions.

Second, progress in high speed imaging made possible to carry out time-

resolved Particle Image Velocimetry measurements. We could measure up to 200

2D instantaneous velocity fields per second, in a relatively large region of the

meridional plane of the cylinder. This fast imaging system allowed us to study

the time dependence or the velocity field during an oscillation period with great

detail.

Finally, synchronous measurements of the piston position in time allowed to

determine the time phase of every acquired image, with a precision of 0.16 rad.

The extraction of the time phases enabled to compute the phase lag of the velocity

at the tube axis with respect to the piston position, and thus decompose the fluid

velocity in magnitude and phase (Sec. 4.2). It made also possible a quantitative

comparison of the measured laminar velocity field to theoretical predictions.
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Fluid Rheology

The fluid used to perform the experiments was a surfactant solution made of

cetylpiridinium chloride (CPyCl from Sigma Aldrich,m0 = 358 g/mol) and sodium

salycilate (NaSal from Sigma Aldrich, m0 = 160.1 g/mol) solved in distilled water,

in a concentration [100:60] mM. The solution was prepared by adding weighted

amounts of the two chemicals to distilled water. It was shaken vigorously and let

it rest for about four days to let the entrained air to leave. The solution was stored

in a dark chamber to avoid any possible damage caused by ambient light (Fardin

et al., 2012). The surfactant concentration used was above the CMC, and thus

the amphiphilic molecules rearranged forming cylindrical (wormlike) micelles. At

this surfactant concentration the micelles were found in the semi-dilute regime.

The density of the solution was ρ = 1050 kg/m3. We were particularly interested

in this wormlike micellar solution, at this precise surfactant and salt concentra-

tion, because it was well known to exhibit a Maxwellian behavior at small shear

rates, after the work of Rehage and Hoffmann (1991), Berret et al. (1994), and

Méndez-Sánchez et al. (2003).

In order to do the rheological characterization of the fluid we used a controlled

stress rheometer RheoStress 1 (Thermo Haake), with a cone-plate fixture (a tita-

nium cone of 1◦ and 60 mm diameter) that is available in our laboratory. Although

the rheometer had a controlled-stress design, it enabled to perform experiments

controlling either the stress (CS) or the shear rate (CR), for which it used an in-

ternal feedback loop. The temperature was controlled using a thermal bath (K15,

Thermo Haake) with a resolution of ±0.1◦C. All the experiments shown in this

section were performed at T = 25.0◦C.

Part of the measurements presented in this section were performed also at the

Hatsopoulos Microfluids Laboratory, of the Massachusetts Institute of Technol-

ogy, during my two research stays in the Non-Newtonian Fluid Dynamics (NNF)

research group, lead by Prof. G.H. McKinley. This laboratory is equipped with

37
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two different controlled-stress rheometers, AR-G2 and DHR-3 (both from TA In-

struments). The main advantage of using the AR-G2 is that a PIV setup can be

coupled to it, which allows to do Rheo-PIV experiments under steady or transient

shear. The DHR-3 is the latest acquisition of the NNF group. This instrument al-

lows to measure normal forces very accurately. In all rheometers the temperature

control is achieved with a Peltier plate that is implemented in the bottom fixture.

A microfluidic rheometer, Viscometer/Rheometer-On-a-Chip (VROC, RheoSense

Inc.) is also available. This capillary rheometer allows to perform experiments at

large shear rates. The temperature inside the channel is controlled by means of

a thermal jacket. We conveniently chose the rheometer (and the corresponding

geometry) depending on the rheological properties that were to be tested.

We noted slight differences in the absolute value of the rheological properties

obtained for the micellar solution when using the Rheostress 1, the AR-G2 and

the DHR-3. We presume that these variations appeared as a consequence of the

different materials used in the fixtures of the different rheometers. The fixture

used with the Haake rheometer was a cone made of titanium. The cone used with

the DHR, instead, was made of aluminum. For the AR-G2 we used a transparent

quartz plate (to which we attached a thin film on the surface to prevent slip).

Differences in surface roughness of these materials (Dimitriou et al., 2012) might

lead to distinct wetting properties, which in particular might cause a slight degree

of slip on the surface of the fixture and a reduction of the measured apparent

viscosity (Lettinga and Manneville, 2009). In the following sections the rheometer

and fixture employed in each experiment will be specified.

3.1 Linear viscoelasticity

In order to test the linear viscoelastic response of the fluid we performed small

amplitude oscillatory shear experiments (Wi < 1). In this regime there is no

significant damage of the fluid microstructure.

In oscillatory experiments a sinusoidal shear strain is applied and the resulting

shear stress is measured (the reverse situation is also possible under CS condi-

tions). The oscillatory strain applied by the rheometer is given by (Bird et al.,

1987)

γ(t) = γ0 sin (ωt) , (3.1)

where γ0 is the amplitude of the dimensionless deformation and ω is the frequency

of oscillation. The resulting rate of shear deformation reads

γ̇(t) = γ̇0 cos (ωt) (3.2)
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Figure 3.1: Viscoelastic moduli (G′, G′′) measured at ω = 0.1, 1.0, 10.0 rad/s (T =
25.0◦C). We used the RheoStress 1 rheometer with cone-plate geometry (titanium cone
of 1◦ and 60 mm diameter). The dashed line is drawn at τ = 1 Pa.

with γ̇0 = γ0ω. The shear stress of the fluid response can be expressed as

τ = γ0 [G
′(ω) sinωt+G′′(ω) cosωt] . (3.3)

In terms of the complex viscosity η∗ = η′′ + ıη′ this expression is equivalent to:

τ = γ̇0 [η
′(ω) cosωt+ η′′(ω) sinωt] . (3.4)

The term in phase with the applied deformation (G′) is called storage modulus

and accounts for the elastic response of the fluid. The term in quadrature (G′′) is

the loss modulus and accounts for the dissipative behavior of the fluid.

The expressions for the linear viscoelastic moduli given by the single mode

Maxwell model are the following (Bird et al., 1987):

G′ = G0
ω2λ2

1 + ω2λ2
, G′′ = G0

ωλ

1 + ω2λ2
. (3.5)

G0 is the shear modulus and λ is the relaxation time of the fluid. In the linear

viscoelastic regime the viscoelastic moduli are constant and do not depend on the

applied strain or stress.

In order to determine experimentally the extent of the linear viscoelastic regime

we performed a stress (or strain) sweep at different constant frequencies. The

results are shown in Fig. 3.1. We chose τ = 1 Pa as a suitable stress value to study

the linear viscoelastic response of the fluid, since it lies within the linear regime

for all explored frequencies. The linear rheology was characterized by performing
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Figure 3.2: Left: Storage and loss moduli versus angular frequency for a CPyCl/NaSal
[100:60] mM solution, at T = 25◦C. We used the RheoStress 1 rheometer with cone-
plate geometry (titanium cone of 1◦ and 60 mm diameter). Experimental results (dots)
and analytical fitting curves (solid lines). Right: Cole-Cole plot.

an oscillatory frequency sweep (at a constant stress of 1 Pa) and quantifying the

elastic and dissipative response of the fluid at each oscillation frequency. In Fig. 3.2

we show the storage and loss moduli obtained at T = 25.0◦C. At low frequencies,

λω < 1, both moduli are well described by a single mode Maxwell model (Eqs.

(3.5)), represented in solid lines in the figure. The resulting fitting parameters are

G0 = 37± 1 Pa and λ = 1.6± 0.1 s. The viscoelastic data can also be represented

in a Cole-Cole plot, G′′ versus G′. Data for an ideal Maxwell fluid should lie on a

semicircle of radius G0/2 centered at (0, G0/2), according to

(

G′(ω)−
G0

2

)2

+ (G′′(ω))
2
=

(

G0

2

)

. (3.6)

Figure 3.2 shows the Cole-Cole plot for our experimental data, and the theoretical

prediction for a Maxwell model (solid line). We observe that the wormlike micellar

solution exhibits indeed a linear viscoelastic response close to the Maxwell behav-

ior, particularly at low frequencies. Note however that substantial deviations from

this linear behavior are observed at large enough frequencies.

3.2 Non-linear viscoelasticity

For larger amplitudes of the applied oscillations (Wi > 1) the response of the

micellar fluid becomes nonlinear, which results from the reorganization of the

fluid microstructure. The Lissajous figures are parametric plots of stress vs. shear

strain which are very useful in visually distinguishing the linear and non-linear

viscoelastic regimes. When the fluid response is linear the Lissajous figures are

elliptical, whereas in the non-linear regime the orbits are still periodic but not
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elliptical (Ewoldt et al., 2008). The non-linear viscoelastic stress response of the

fluid can be completely represented by a Fourier series as:

τ = γ0
∑

n odd

{G′
n(ω, γ0) sinnωt+G′′

n(ω, γ0) cosnωt} . (3.7)

In the linear regime this series is restricted to the first harmonic n = 1, but

higher order harmonics contribute in the nonlinear regime. Experimentally it is

thus not sufficient to measure the first-harmonic viscoelastic coefficients G′ and

G′′ if we aim to fully characterize the non-linear viscoelastic response of the fluid.

Ewoldt et al. (2008) showed that the elastic (τ ′) and viscous (τ ′′) response can be

decomposed in terms of the (orthogonal) Chebyshev polynomials of the first kind,

Tn(x), as

τ ′(x) = γ0
∑

n odd

en(ω, γ0)Tn(x), (3.8)

τ ′′(y) = γ̇0
∑

n odd

νn(ω, γ0)Tn(y). (3.9)

where x = γ/γ0 and y = γ̇/γ̇0 are the normalized deformation and shear rate. We

refer to en(ω, γ0) and νn(ω, γ0) as the elastic and viscous Chebyshev coefficients.

Higher-order Fourier terms can be conveniently expressed in terms of en and νn,

which provide a physically meaningful interpretation. In the limit of e3/e1 ≪

1 and ν3/ν1 ≪ 1 we recover the linear viscoelastic response. Deviations from

linearity can be interpreted in terms of the third harmonic (n = 3). For e3 > 0 the

fluid experiences an intra-cycle strain stiffening (the elastic stress is higher than

the stress corresponding to the first-order contribution alone) while for e3 < 0

the fluid exhibits an intra-cycle strain-softening. Similarly, ν3 > 0 or ν3 < 0

correspond to intra-cycle shear-thickening or intra-cycle shear-thinning.

Figure 3.3 shows the Lissajous plots obtained for the micellar solution. The

frequency of oscillation was kept constant at ω0 = 0.5 rad/s and the strain ampli-

tude ranged from 0.2 < γ0 < 5.2 (in dimensionless units). This single experiment

was performed at T = 22.0◦C. Thus this figure is only intended to report infor-

mation about the shape of the curves and not to provide the actual values of the

stress response. It is clear from the figure that the Lissajous plots indeed evolve

from ellipses for small strain amplitudes to just periodic orbits at larger ampli-

tudes. Dimitriou et al. (2012) computed the Chebyshev coefficients for the same

micellar solution and observed that the nonlinear response of the micellar solution

was strain-stiffening (e.g. e3/e1 = 0.22 for Wi = 2.73 and T = 22.0◦C).
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Figure 3.3: Amplitude sweep obtained at ω0 = 0.5 rad/s, with the AR-G2 and cone-
plate geometry (top transparent quartz plate of 50 mm diameter and bottom aluminum
cone of 4◦), at T = 22.0◦C).

3.3 Steady shear rheology

We measured the steady shear rheology of the micellar solution at 25.0◦C using

the Rheostress 1 rheometer with the cone-plate geometry. We performed a shear

rate sweep in the direction of increasing shear rate and waited long enough at each

shearing value to make sure that the fluid response was steady (a maximum time

of 60 s was allowed at each point). Figure 3.4 shows that the solution exhibits an

initial linear regime at small shear rates with constant viscosity, η0 = 52± 1 Pa·s.

This result is in good agreement with the value predicted using the Cox-Merz

rule, η0 ≃ G0λ. This rule is an empirical relation that allows to relate complex

properties obtained under oscillatory shear experiments with steady shear flow

measurements at corresponding values of frequency and shear rate (Bird et al.,

1987). It states that

η(γ̇) = |η∗(ω)|

∣

∣

∣

∣

ω=γ̇

. (3.10)

At shear rates larger than a critical shear rate γ̇c ≃ 0.5 s−1 (γ̇c ≃ 1/λ) the so-

lution strongly shear thins and the flow curve exhibits a pronounced shear stress

plateau, τplateau ≃ 18 Pa. These results are consistent with previous studies that

used identical or similar wormlike micellar solutions (Rehage and Hoffmann, 1991;

Berret, 1997; Méndez-Sánchez et al., 2003; Pipe et al., 2010; Ober et al., 2011).

Above this critical shear rate the fluid flow becomes unstable against the for-

mation of different shear bands that support different effective viscosities (Cates

and Fielding, 2006; Manneville, 2008; Olmsted, 2008; Fardin et al., 2010). The

strong shear-thinning behavior can be approximately captured with the non-linear

Giesekus model (Eq. (1.16)), as shown in Fig. 3.4 (solid line). The value obtained
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Figure 3.4: Left: Steady flow curve measured at T = 25.0◦C, using the Rheostress
1 with a cone-plate fixture (titanium cone of 1◦ and 60 mm diameter). Right: The
viscosity is displayed as a function of the applied shear rate. The solid line is the fit
obtained for the Giesekus equation.

for the mobility factor is α ≃ 0.83.

We can extend the range of applied shear rates using the microfluidic rheometer

Viscometer/Rheometer-On-a-Chip (Pipe and McKinley, 2008). The VROC is a

capillary rheometer consisting on a high-aspect-ratio rectangular slit of length

l =8.8 mm, width w =3.2 mm, and height h =99.6 µm. The flow rate is imposed

using a syringe pump and the pressure drop (∆P ) is measured by four in-line

pressure transducers distributed along the centerline. The shear stress at the

walls (τw) can be inferred from the pressure drop using the relation

τw =
w

2l
∆P. (3.11)

For a Newtonian fluid, the shear rate at the walls can be determined from the

imposed volumetric fluid rate (Q) as

γ̇w−N =
6Q

hw2
. (3.12)

In order to take into account the shear-thinning of the micellar fluid and derive

the true shear rate at the walls we applied the Weissenberg-Rabinowitsch-Mooney

correction (Pipe and McKinley, 2008),

γ̇true−w =
γ̇w−N

3

(

2 +
d ln γ̇w−N

d ln τw

)

. (3.13)

We show in Fig. 3.5 both the data obtained with the VROC, at large shear rates,

and the data obtained with the AR-G2 at smaller shear rates. We observe that
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Figure 3.5: Extended flow curve measured at T = 25.0◦C. At low shear rates we used
the AR-G2 (quartz plate of 50 mm diameter with a thin film attached to the surface,
and aluminum cone of 4◦) and at large shear rates the VROC.

the stress plateau extends over three decades in shear rate, from 0.3 s−1 up to

approximately 103 s−1. Note however that there is a considerable reduction of

the value of the stress plateau from that measured at the macroscale with the

AR-G2 rheometer (τplateau ≃ 15 Pa) or using the microfluidic device (τplateau ≃ 10

Pa). This difference of about 30% might be caused by slip, but it could also be

caused by non-local effects, mainly via stress difusion (Cromer et al., 2011; Ober

et al., 2011). The relevant lengthscale of the microfluidic device (96 µm) was much

smaller than the gap size of the cone-plate fixture (1.75 mm). Brownian motion

is thus relatively much more important in the microfluidic device and might have

promoted coupling between stress and fluid microstructure.

The steady shear flow curve exhibits an interesting hysteretic behavior when

ramping up and down the applied shear rate (Fig. 3.6). For increasing shear rates

the flow curve exhibits a bump in stress just above the critical shear rate. This

bump in stress is only observed under Controlled Rate conditions and reflects the

metastability of this region of the flow curve. This bump softens and eventually

disappears for infinitely slow curves. For decreasing shear rates, instead, there

is no sign of stress bump but a constant stress value is observed all along the

unstable region of the flow curve. This hysteretic behavior, together with the

nonmonotonicity of the steady flow curve, are two signatures of the underlying

shear banding of the solution.
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Figure 3.6: Left: Flow curves measured measured at T = 25.0◦C, at increasing and
decreasing shear rates using the DHR-3 (aluminum cone of 2 ◦ and 60 mm diameter).
Both the shear stress and the first normal stress difference are depicted. Right: Zoom
in of the hysteretic region.

3.3.1 Normal stress differences

An important feature of wormlike micellar solutions is the existence of first nor-

mal stress differences (N1) under steady shear. The measurements of the normal

differences are shown in Fig. 3.6. They were done in the DHR-3 rheometer (which

has an axial force transducer required for these measurements) with a cone-plate

fixture.

At small shear rates N1 seemed to exhibit a quadratic dependence with the

applied shear rate, N1 = Ψ1γ̇
2, with a constant stress coefficient Ψ1 (Pipe et al.,

2010). Unfortunately we obtained only two data points belonging to this initial

linear viscoelastic regime. Although the DHR-3 has a large sensitivity to normal

forces, the normal stress values corresponding to smaller shear rates were too low

to be resolved by the rheometer. In the nonlinear regime N1 showed an almost

linear dependence with the shear rate.

This wormlike micellar solution is known to exhibit also non-zero second nor-

mal stress differences, N2. However they are much more difficult to measure ex-

perimentally. Previous work of Pipe et al. (2010) reported values of Ψ2/Ψ1 = −0.4

up to shear rates of γ̇ = 50 s−1.

3.4 Temperature dependence

The rheological characterization of the fluid presented so far in this chapter was

performed at T = 25.0◦C. However, the rheological properties of this fluid are very

sensitive to temperature changes (Fischer and Rehage, 1997; Ober et al., 2011).



46 Chapter 3. Fluid Rheology

Temperature (◦C) λ (s) η0 (Pa·s) G0 (Pa) γ̇c (s
−1)

22.0 2.8 ± 0.1 109 ± 5 35 ± 1 0.3
23.0 2.4 ± 0.1 80 ± 4 38 ± 1 0.4
24.0 1.9 ± 0.1 65 ± 2 35 ± 1 0.4
25.0 1.6 ± 0.1 52 ± 2 37 ± 1 0.5

Table 3.1: Linear viscoelastic properties of the wormlike micellar solution CPyCl/NaSal
[100 : 60] mM at different temperatures in the range 20.0 − 25.0◦C.

In Table 3.1 we provide the rheological properties for the range of temperatures

T = 20.0 − 25.0◦C. We observe that both the relaxation time and zero-shear

viscosity rapidly decrease with increasing temperature. Note however that the

shear modulus is less sensitive to temperature and remains roughly constant within

the range of explored temperatures (Fischer and Rehage, 1997).

3.5 Concentrated versus diluted solution

We were also interested in a second solution of CPyCl/NaSal with a considerably

lower concentration of surfactant and salt [66:40] mM (the relative amount of

CPyCl to NaSal is the same for the two solutions: 1.7). This diluted solution was

prepared following the same procedure described at the beginning of this section.

Its concentration was still above the CMC so that wormlike micelles formed, and

at this concentration the solution was within the semi-dilute regime as well. As

described by Haward and McKinley (2012), as the surfactant concentration is re-

duced the viscoelasticity of the solution diminishes: both the relaxation time and

zero-shear viscosity rapidly decrease. On the other hand as the concentration of

micelles is decreased the linear viscoelastic behavior of the solution progressively

deviates from a purely Maxwellian behavior. Figure 3.7 shows the linear vis-

coelastic characterization obtained with the DHR-3 and cone-plate geometry. In

the first panel we show the viscoelastic moduli G′ and G′′ obtained by performing

a frequency sweep at a constant deformation of γ0 = 10% (which was first checked

to lie within the linear regime). The solid line is the fit to the experimental data

using the single-mode Maxwell model. In the second panel the corresponding Cole-

Cole plot is shown, with the Maxwell fit obtained in the first panel. Although the

solution exhibited a manifest viscoelastic behavior, the Maxwell model was not

able to accurately reproduce the experimental data obtained for this solution, as

shown in the figure. We thus obtained the relaxation time directly from the cross-

ing point ωc of G
′ and G′′, as λ = 1/ωc = 0.3±0.1 s. The shear modulus provided

by the Maxwell fit for the diluted solution is G0 = 5± 1 Pa.
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Figure 3.7: Left: Storage and loss moduli versus angular frequency for a CPyCl/NaSal
[66:40] mM solution, measured with the DHR-3 rheometer with a cone-plate geometry
(aluminum cone of 2◦ and 50 mm diameter), at T = 25.0◦C. Experimental results (dots)
and analytical fitting curves (solid lines) based on a single mode Maxwell model. Right:
Cole-Cole plot.

Concentration (mM) Temperature (◦C) λ (s) G0 (Pa) η0 (Pa·s)
[100 : 60] 25.0 1.6± 0.1 37 ± 1 52± 1
[66 : 40] 25.0 0.3± 0.1 5 ± 1 3± 1

Table 3.2: Rheological properties of the wormlike micellar solution CPyCl/NaSal at two
different surfactant concentrations, [100 : 60] mM and [66:40] mM, at 25.0◦C.

The steady flow curve measured using the DHR rheometer and the microfluidic

VROC rheometer is shown in Fig. 3.8. This solution exhibits a linear response for

shear rates lower than γ̇c . 2 s−1, with a constant shear viscosity of η0 = 3 ± 1

Pa·s. Note that for this diluted solution the Cox-Merz rule does not accurately

predict the value of η0 found experimentally. Above the critical shear rate the

fluid strongly shear thins.

A fundamental difference between the two solutions is that the steady flow

curve for the diluted solution is monotonic, whereas the flow curve for the concen-

trated one is clearly nonmonotonic. This monotonicity would imply that, despite

exhibiting a pronounced nonlinear shear-thinning response, the diluted solution

does not shear band.

Alternatively, we also measured the flow curve at increasing and decreasing

shear rates. Fig. 3.8 shows the absence of hysteresis between the two trajectories.

There is indeed a perfect overlap in both the shear stress and normal stress differ-

ences when ramping up and down the applied shear rate. The absence of hysteresis

for the dilute solution is another signature of the absence of shear banding. We

further confirmed that the diluted solution does not shear band by performing di-

rect visualization experiments under steady shear flows in a cone-plate geometry.
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Figure 3.8: Left: Extended flow curve for the dilute solution [66:40] mM, measured at
T=25.0◦C. At low shear rates we have used the DHR-3 (aluminum cone of 2◦ and 50
mm diameter) and at large shear rates the VROC. Right: Flow curve and normal stress
differences measured at increasing and decreasing shear rates using the DHR-3 (same
fixture).

In Appx. C we report the experiments done using a Rheo-PIV setup that allowed

to obtain rheological (stress-strain) data and simultaneous information about the

velocity profiles inside the sample. We observed that the velocity profiles were

linear for small applied shear rates (Wi < 1). But more importantly, they re-

mained linear for applied shear rates within the shear-thinning regime (Wi > 1).

At comparable shear rates the concentrated solution ([100:60] mM) exhibited pro-

nounced nonlinear velocity profiles with three distinct shear bands. These results

highlight the crucial influence that the surfactant concentration has on the non-

linear response of the fluid.

In Table 3.2 we present a summary of the main linear viscoelastic proper-

ties obtained for both the concentrated, [100:60] mM, and diluted, [66:40] mM,

wormlike micellar solutions. Since the rheological response of the two solutions

is qualitatively different, we will conveniently use each solution to study different

flow behaviors. The concentrated solution will be very convenient for the study

of the laminar oscillatory flow in the vertical pipe (Sec. 4.2), since it exhibits a

nearly Maxwellian response. On the other hand, the diluted solution will be use-

ful in elucidating the importance of shear banding in triggering the viscoelastic

instability observed in oscillatory pipe flow (Sec. 6.3).



Chapter 4

Laminar regime

This chapter is devoted to the study of the laminar oscillatory pipe flow of sim-

ple viscoelastic fluids. The laminar regime is achieved by applying small driv-

ings (Wi < 1), which correspond to small amplitudes and low frequencies of

the imposed oscillatory motion. This regime can be considered to be inertialess

(Re≪ 1), since the characteristic velocities of the fluid are typically small and the

shear viscosity very large. The study of the laminar oscillatory flow is performed

at De > 1, so that most of the interesting observed flow phenomena presented in

this section result from fluid elasticity.

We first address the problem of the laminar oscillatory flow from a theoretical

perspective (Sec. 4.1). Next, in Sec. 4.2, we test the validity of our theoretical

predictions by performing experiments with a wormlike micellar solution.

4.1 Theoretical analysis

We revisit in this section the generic problem of wall-bounded oscillatory flows of

viscoelastic liquids. The two ideal basic geometries in which oscillatory flows can

be studied consider the fluid confined either between two infinitely large parallel

plates or within an infinitely long tube of circular cross-section. In both cases

the flow can be induced by the (synchronous) harmonic oscillatory motion of the

sidewalls or by a harmonically oscillating pressure gradient applied in the direction

of the sidewalls. We analyze the problem of wall-bounded oscillatory flow from an

original perspective. We regard the flow as the result of the interference in time

and space of the Ferry shear waves generated either by the moving sidewalls or

by the oscillatory pressure gradient. This perspective brings new physical insight

that is useful to understand the dramatic deviations of the velocity profiles of

viscoelastic liquids from those of Newtonian liquids.

49
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We focus on the periodic steady state of laminar flow that corresponds to small

amplitudes and low frequencies of the forcing. In this regime the flow is parallel

to the walls, the advective term in the momentum equation vanishes, and the

governing equations are linear and therefore accessible to analytical treatment.

Furthermore we consider as constitutive equations the upper-convected Maxwell

model (UCM) and the Oldroyd-B model. The fact that for both models the shear-

stress equation for unidirectional flow is also linear allows to solve the problem of

laminar flow analytically.

In Sec. 4.1.1 we first consider Stokes’ problem of the flow induced by an infinite

oscillatory wall, and obtain expressions for the damping and wavelength of the

shear waves generated at the wall. Next, we show that the presence of a second wall

parallel to the first one and oscillating synchronously with it leads to resonances

at well defined driving frequencies. In Sec. 4.1.2 we consider the oscillatory flow

within a straight cylinder of very large aspect ratio induced by the oscillatory

motion of the top and bottom endwalls. We derive the expression for the velocity

profile in terms of the characteristic lengths of the corresponding shear waves.

The relevant features of this velocity profile are studied in Sec. 4.1.3. We identify

the conditions for having a resonant response of the velocity field, and study how

it disappears with the addition of a Newtonian solvent.

4.1.1 Flow induced by oscillatory plates

A single oscillatory plate

Let us recall in the first place Stokes’ problem of an infinite plate that oscillates

harmonically in its own plane y–z, along the z axis, with angular frequency ω0 and

oscillation amplitude z0. The fluid occupies the semi-infinite domain (x, y, z) ∈

[0,∞)× (−∞,∞)× (−∞,∞) at one side of the wall. Fluid motion is driven by

the wall oscillation, through the no-slip velocity boundary condition:

u(0, y, z, t) = (0, 0, z0ω0 cos(ω0t)), (4.1)

where u = (ux, uy, uz) is the velocity field in Cartesian coordinates. In the steady

state, when start-up transients have disappeared, the solution for a Newtonian

fluid of density ρ and dynamic viscosity η describes an oscillatory boundary layer

whose thickness scales with the square root of the oscillation period (Stokes, 1851;

Batchelor, 1967):

u(x, y, z, t) = (0, 0, z0ω0e
−x/x0 cos(ω0t−

2π

λ0
x)). (4.2)
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The solution satisfies the far-field boundary condition limx→∞ u = (0, 0, 0), and

x0 =
λ0
2π

=

√

2η

ρω0
. (4.3)

The length scales x0 (damping length of the oscillation amplitude) and λ0 (wave-

length of the oscillation) are both given by the thickness of the Stokes boundary

layer, since this is the only length scale that can be built from the variables of

the problem for a Newtonian fluid. Transverse oscillations are thus overdamped

(cannot propagate into the fluid).

Things are different for viscoelastic fluids, which behave as elastic solids on

short time scales. Ferry (1942a) showed that Stokes’ second problem for a Maxwell

fluid (for which stress relaxation is described by a single time constant λ) has also

a solution of the form given by (4.2), for which x0 and λ0 do not coincide anymore

but are related by:

x0 =
λ0
2π

[

ω0λ+
√

1 + (ω0λ)2
]

. (4.4)

The difference between x0 and λ0 depends only on the Deborah number (De =

ω0λ). It is clear that fluid elasticity (De > 0) makes x0 > λ0/(2π), so that

transverse oscillations can propagate effectively before they are attenuated. Mea-

surement of the unidirectional propagation of the underdamped, transverse shear

waves induced by an oscillating plate (known as Ferry waves (Ferry, 1941, 1942a,b;

Adler et al., 1949)) has become a classical method for linear rheological charac-

terization of gels and polymers (Ferry, 1980; Joseph et al., 1986a,b; Bird et al.,

1987; Mitran et al., 2008).

Stokes’ second problem can be solved analytically also for a viscoelastic fluid

described by the Oldroyd-B constitutive equation (Eqs. (1.15)). At small driving

amplitudes and low frequencies the flow is laminar. Oscillatory motion of the wall

sets the fluid in motion in the direction z and, because of translational invariance

along y and z, the base flow is u = (0, 0, uz(x, t)). The flow is governed by the

Navier–Stokes equation and the continuity equation for an incompressible fluid:

ρ

(

∂

∂t
+ u · ∇

)

u = −∇p−∇ · τ , (4.5a)

∇ · u = 0, (4.5b)

where p is the dynamic pressure and τ the deviatoric part of the stress tensor. A

detailed derivation of the stress and strain tensors is provided in Appx. A. In the

same Appendix we show also that the convective nonlinearity of the Navier–Stokes

equation for this velocity field is identically zero. Using Oldroyd-B Eqs. (1.15) for



52 Chapter 4. Laminar regime

the stress tensor, we get

ρ
∂u

∂t
= −∇p + ηs∇

2u−∇ ·
(

−ηpγ(1) − λτp(1)
)

. (4.6)

For uz (which is the only non-zero component of the velocity field) this equation

reads

ρ
∂uz
∂t

= −
∂p

∂z
+ ηs

∂2uz
∂x2

+ ηp
∂2uz
∂x2

+ λ
∂

∂t

∂(τp)zx
∂x

. (4.7)

The last term can be written again in terms of uz using the Navier–Stokes equation.

After some algebra we end up with an equation for uz(x, t) which couples spatial

and temporal derivatives:

ρ

(

1 + λ
∂

∂t

)

∂uz
∂t

− η

(

1 + λ2
∂

∂t

)

∂2uz
∂x2

= −

(

1 + λ
∂

∂t

)

∂p

∂z
, (4.8)

where the relationship ληs = λ2η has been used. Since fluid motion is driven

solely by the oscillation of the wall at x = 0, we set ∂p/∂z = 0 and seek a solution

of the form of Eq. (4.2). Recall that this solution satisfies the no-slip boundary

condition at the wall and the condition of zero velocity far away from the wall.

The transverse wave that satisfies the equation of motion (4.8) has damping length

x0 and wavelength λ0 given by:

x0 =

√

2ηλ

ρDe

√

√

√

√

1 + De2X2

De (X − 1) +
√

[

1 + De2
] [

1 + De2X2
]

, (4.9a)

λ0
2π

=

√

2ηλ

ρDe

√

√

√

√

1 + De2X2

De (1−X) +
√

[

1 + De2
] [

1 + De2X2
]

, (4.9b)

in terms of the Deborah number De = ω0λ and the viscosity ratio X = ηs/η =

λ2/λ. To our knowledge these two expressions have not been obtained in the

literature before. For X = 0 they reproduce the results of Mitran et al. (2008) for

an UCM fluid. The relation between these two length scales reads:

x0 =
λ0
2π

De(1−X) +
√

[

1 + De2
] [

1 + De2X2
]

1 + De2X
. (4.10)

It reduces to Ferry’s result for a Maxwell fluid (Eq. (4.4)) for X = 0, and to

the Newtonian result x0 = λ0/(2π) for X = 1. Figure 4.1(a) shows a plot of

the damping length x0 in units of the thickness of the viscous boundary layer

δ =
√

2ηλ/(ρDe), as a function of De and for different values of X . For X = 0

the ratio x0/δ grows monotonously with De, showing that the extension of the
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Figure 4.1: Damping length (a) and wavelength (b), in units of the thickness of the
viscous boundary layer, as functions of De, for different values of the viscosity ratio X.
The last panel (c) shows the ratio of these two length scales.

shear waves is much larger than the purely viscous boundary layer for De > 0. It is

worth mentioning that in this particular case, and for De > 1, the damping length

rapidly tends to the finite value 2
√

ηλ/ρ. As the Newtonian contribution of the

solvent is included, X > 0, we see that the ratio x0/δ goes through a maximum

as a function of De and decays to zero, so that we can distinguish a range of De

where the extension of the viscoelastic shear waves exceeds δ and another one

at larger De where it disappears in practice. Finally, in the Newtonian case we

recover x0/δ = 1.

The second relevant length scale is the wavelength of the shear waves generated

at the wall, λ0. Figure 4.1(b) shows an equivalent plot for λ0/(2π) in units of the

thickness of the viscous boundary layer, δ. It is remarkable that the wavelength

of the viscoelastic shear waves (X < 1) falls very quickly below the Newtonian

value δ for De > 0, and recovers only this value for the Newtonian case X = 1.

Finally, Fig. 4.1(c) shows the ratio x0/(λ0/(2π)). It is important to note that

this ratio is larger than one for all X < 1, revealing that viscoelastic shear waves

are always underdamped. In particular for UCM we have x0 ∼ 2De[λ0/(2π)]

as De > 1. The ratio of the two length scales decreases monotonously to the

Newtonian result x0 = λ0/(2π) for all De as X approaches 1.
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Two synchronous parallel oscillatory plates

We extend Stokes’ second problem by adding a second infinite plate, parallel to

the previous one, at a distance 2a in the x direction. The fluid occupies now the

domain (x, y, z) ∈ [−a, a] × (−∞,∞) × (−∞,∞). The second plate oscillates

along the z coordinate synchronously with the first one with the same amplitude

(z0) and frequency (ω0). The introduction of a setup length allows us to define a

viscous time scale, tv = a2ρ/η. A third dimensionless parameter can be introduced

now as the ratio of the viscous time to the viscoelastic relaxation time, tv/λ. The

oscillatory flow behaviour can be completely characterized then in terms of the

three dimensionless variables introduced so far: De, X and tv/λ.

At this point it is useful to define also a viscoelastic Stokes parameter as

Λve = a/x0. It is related to the (Newtonian) Stokes parameter Λ by Λ/Λve = x0/δ.

In analogy to Λ, the parameter Λve is the ratio of the transverse size of the system

to the extension of the shear waves generated by the moving walls. ‘Narrow’

systems correspond to Λve < 1, when viscoelastic shear waves extend through the

whole system, and ‘wide’ systems to Λve > 1, when an inviscid core is present

at the center. The ratio x0/δ shown in Fig. 4.1(a) represents also Λ/Λve and

therefore can be interpreted as the deviation of the viscoelastic Stokes parameter

from the Newtonian one for an Oldroyd-B fluid.

The solution for the fluid velocity results from the composition of the oscilla-

tory boundary layers generated at the two plates (Mitran et al., 2008):

u(x, y, z, t) =

(

0, 0, z0ω0Re

{

cosh(κx)

cosh(κa)
eiw0t

})

, (4.11)

where

κ =
1

x0
+ i

2π

λ0
, (4.12)

and the length scales x0 and λ0/(2π) are given by Eqs. (4.9). The vertical velocity

can be rewritten in terms of a dimensionless velocity amplitude ũ(x) and the phase

lag φ(x) between the velocity of the fluid and the pressure gradient (which is given

by −ρz0ω
2
0 sin(ω0t)):

uz(x, t) = −z0ω0ũ(x) sin (ω0t− φ(x)) . (4.13)

Notice that ũ(x) and φ(x) are independent of time. For small plate separation

(Λve < 1) the boundary layers formed at both plates superpose themselves and

originate an interference pattern inside the fluid domain. This leads to a resonant

behavior with a huge increase of the velocity amplitude at particular frequencies,
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Figure 4.2: Velocity amplitude (a) and phase lag (b) at the midpoint between the walls
vs. a/(λ0/(2π)), for three different tv/λ values and for X = 0.

when the interference condition

4a

λ0
= (1 + 2n), n = 0, 1, 2, . . . (4.14)

is satisfied. In Fig. 4.2 we show the velocity amplitude at the center of the domain,

ũ(0), as a function of the ratio of the distance a to the shear wavelength λ0/(2π).

We focus the analysis here on a fluid described by the UCM model (X = 0). When

the interference condition is satisfied, the velocity at the center becomes resonant.

The periodicity of the interference condition (4.14) leads to equidistant peaks on

the horizontal axis, placed at a/(λ0/(2π)) = π/2, 3π/2, . . .. It is worth noting

that the choice of a/(λ0/(2π)) for the horizontal axis makes the position of the

resonant peaks universal (independent of fluid parameters and setup dimensions).

Naturally, for constant tv/λ (constant fluid parameters and setup dimensions) this

axis is a monotonically increasing function of De, i.e. of the dimensionless driving

frequency.

Figure 4.2(a) shows ũ(0) for three different values of tv/λ. Notice that the

viscoelastic Stokes parameter can be rewritten in terms of the ratio of the viscous

time to the relaxation time, tv/λ, as Λve =
√

tv/λ f(De, X = 0), where f(De, X)

is a function of De and X only. Thus, for given De and X , increasing tv/λ by a

factor of 100 as in the figure is equivalent to increase Λve by a factor of 10. For

tv/λ ≪ 1 the resonant behavior is manifest. At tv/λ = 1 the velocity magnitude

at the center has already strongly decreased. And for tv/λ ≫ 1 the resonances

completely disappear and the velocity amplitude tends rapidly to zero for De > 1.
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Figure 4.3: Vertical velocity profiles vs. dimensionless transverse coordinate x/a at two
time phases ω0t = 0 (the velocity at the walls is z0ω0), and ω0t = π/2 (the velocity at
the walls is 0), for three different tv/λ values. The velocity is measured in units of z0ω0,
and X = 0 (UCM). In (a) a/(λ0/(2π)) = 2π and in (b) a/(λ0/(2π)) = 5π/2.

For a fixed De and fluid rheology the progressive disappearance of the resonances

is associated with the transition from a ‘narrow’ system (Λve < 1) to a ‘wide’

system (Λve > 1).

An alternative strategy to determine the location of the resonant peaks is

to compute φ(0), the phase lag between the velocity at the symmetry axis and

the pressure gradient, as a function of a/(λ0/(2π)) (Fig. 4.2(b)). As a result of

constructive interferences, at resonances the fluid in the center moves in phase

(or in phase opposition) with the driving pressure gradient, giving rise to the

described magnification of the velocity amplitude. Out of the resonances the

phase lag approaches abruptly either π/2 or 3π/2 and the fluid at the center

moves out of phase with respect to the driving pressure gradient. Destructive

interferences result in very low values of the velocity magnitude. For tv/λ ≥ 1,

even though φ = 0 or π at the resonant peaks again, the phase lag varies smoothly

through the whole phase range.

Our study of the oscillatory flow between two parallel plates ends by analyzing

the velocity profile in the fluid domain. We show in Fig. 4.3 the curves of uz(x, t) in

units of the amplitude of the plate velocity z0ω0. In panel (a) we show the velocity

profile corresponding to a/(λ0/(2π)) = 2π, which is a minimum of the velocity

amplitude in Fig. 4.2(a). It is clear that for tv/λ ≪ 1 (‘narrow’ system) the

oscillating profile is maintained from plate to plate, as a result of the large damping

wavelength. In this situation the fluid flow organizes in several parallel layers,

with alternating upward/downward motion, that oscillate with the periodicity

of the moving walls. As tv/λ increases (wide ‘systems’) the shear waves cannot
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Figure 4.4: Sketch of the problem setup. Shown are the top and bottom lids that
oscillate synchronously with amplitude z0 and angular frequency ω0, and the vertical
and radial coordinates.

propagate through the entire geometry and the velocity magnitude flattens at the

center. Finally, for tv/λ≫ 1 the velocity at the center is zero. A similar behavior

is shown in Fig. 4.3(b) for a resonance peak at a/(λ0/(2π)) = 5π/2. Note however

the different scale in the vertical axis, as a result of the constructive interference

of the shear waves.

4.1.2 Zero-mean oscillatory flow in an infinite cylinder

Motivated by the simplicity of its mathematical treatment, we have studied in the

previous section the oscillatory flow in a rectangular geometry. However, most

wall-bounded oscillatory flows of physiological interest and industrial applications

involving fluid pumping or oil recovery take place in cylindrical tubes. Typically a

cylindrical geometry is more accessible experimentally than a parallel-plate geom-

etry. The idealized boundary conditions can be satisfied in tubes of large aspect

ratio. Gerrard and Hughes (1971) have shown that for a Newtonian fluid the recir-

culation induced by the presence of the top and bottom endwalls has no influence

on the flow in the middle of the tube for aspect ratios above 20.

We consider a fluid contained in an infinitely long cylinder of radius a. The flow

is induced by a pressure gradient in the axial direction that varies harmonically in

time. In practice, as shown in Fig. 4.4, the pressure gradient is usually produced by

the oscillatory motion of the top and bottom lids according to z(t) = z0 sin (ω0t).

The velocity field u is now given in cylindrical coordinates (r, θ, z) ∈ [0, a] ×

[0, 2π] × (−∞,∞). The flow is governed by the Navier–Stokes equations and

the condition of incompressibility, and no-slip velocity boundary conditions are

imposed on all walls. The velocity is zero on the cylindrical wall and the z-

component at the two endwalls oscillates in time as z0ω0 cos (ω0t). At sufficiently
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low Re the flow is laminar. Because of the spatial symmetries of the equations of

motion and of the boundary conditions this basic flow is axisymmetric, follows the

direction of the cylinder axis z and is translationally invariant along this direction.

The velocity field reduces then to u = (0, 0, uz(r, t)).

Our purpose is to obtain the base flow uz(r, t) for an Oldroyd-B fluid. We

follow the same procedure that led to Eq. (4.8) for Stokes’ second problem, now

in cylindrical coordinates, and we get

ρ

(

1 + λ
∂

∂t

)

∂uz
∂t

− η

(

1 + λ2
∂

∂t

)(

1

r

∂uz
∂r

+
∂2uz
∂r2

)

= −

(

1 + λ
∂

∂t

)

∂p

∂z
. (4.15)

The steady-state response of uz to a harmonically varying ∂p/∂z can be obtained

by a Fourier transform method. In the frequency domain the equation for the

mode of frequency ω0 is a Bessel equation of the first kind, whose general solution

is

U(βr) = C1J0(βr) + C2Y0(βr) + Up. (4.16)

J0 and Y0 are zero-order Bessel functions of the first and second kind respectively,

and Up is a particular solution. This general solution is well known. The novelty

of our approach is to identify the reciprocal length β with

β =
2π

λ0
+ i

1

x0
, (4.17)

where λ0 and x0 are precisely the wavelength and damping length of the ‘Ferry’

waves for an Oldroyd-B fluid, given by Eqs. (4.9).

The oscillatory flow induced in a cylinder at rest by the motion of the endwalls

is equivalent to the flow that would result from oscillating the cylinder sidewall

with the endwalls at rest, observed in the reference frame of the sidewall. As

discussed by Panadès et al. (2011) the oscillating reference frame is not an inertial

frame of reference. For an incompressible flow in which the density ρ is a constant

the inertial body force term that must be included in the Navier–Stokes equations

is a gradient that can be incorporated in the pressure term, thereby recovering

exactly the same formulation as in the case of a fixed sidewall.

Since the motion of the cylinder sidewall induces radially propagating ‘Ferry’

shear waves, the parameter β, that sets the length scale in the argument of the two

Bessel functions, can be expressed directly in terms of x0 and λ0. The condition

that the velocity remains finite imposes C2 = 0. For the flow to be translationally

invariant along z the pressure gradient must be homogeneous along the tube (in-

dependent of z) and, because the acceleration of the endwalls is −z0ω0
2 sin (ω0t),
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the pressure gradient must take the form

∂p

∂z
= −ρω0

2Im
{

∆eiω0t
}

, (4.18)

where ρ is the density of the fluid and ∆ is a coefficient proportional to z0 that

must be determined by continuity at either of the two endwalls. The pressure

gradient can be expressed also in terms of amplitude and phase as:

∂p

∂z
= −ρz0ω0

2p̃ sin (ω0t− ϕ), (4.19)

where ϕ is the phase lag between pressure gradient and piston acceleration. Taking

these conditions into account we end up with the following expression for the z

component of the fluid velocity in the tube:

uz(r, t) = ω0Re

{

∆

[

1−
J0(βr)

J0(βa)

]

eiω0t

}

. (4.20)

In order to determine the factor ∆ we impose continuity, by assuming that the

volume scanned by the piston in one quarter of the oscillation coincides with the

volume of liquid displaced in this same time interval, computed by integration of

Eq. (4.20) in space and time (Eckmann and Grotberg, 1991). This leads to the

following expression for ∆:

∆ = −z0
J0(βa)

J2(βa)
, (4.21)

where J0 and J2 are zero and second-order Bessel functions of the first kind re-

spectively. The final expression for the velocity reads:

uz(r, t) = −z0ω0Re

{

J0(βa)

J2(βa)

[

1−
J0(βr)

J0(βa)

]

eiω0t

}

, (4.22)

which constitutes a main original result of our analysis. It is worth noting that

the same result has been obtained by Blennerhassett and Bassom (2006) for a

Newtonian fluid. This expression can also be rewritten in terms of amplitude and

phase as:

uz(r, t) = −z0ω0ũ(r) sin (ω0t− ϕ− φ(r)) (4.23)

where φ(r) is the phase lag between the velocity and the pressure gradient.

Our expression (4.22) for the fluid velocity recovers the behavior of a Maxwell

fluid when the limit X = 0 for the damping length and wavelength is taken in

Eqs. (4.9). The fact that this expression for uz(r, t) does not coincide exactly

with similar results obtained for a Maxwell fluid by del Rı́o et al. (1998), An-

drienko et al. (2000), and Tsiklauri and Beresnev (2001a) is due to the fact that
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these authors did not impose the condition of continuity (Eq. (4.21)). Their re-

sult applies to a pressure-gradient-controlled oscillatory flow, while ours applies

to a volume-controlled oscillatory flow. When we discuss the resonant behaviour

of this system we will see that these two different control modes lead to qualita-

tively and quantitatively different results for uz(r, t). This difference is important

when trying to compare theoretical predictions to experimental results, which are

usually performed under volume-controlled conditions.

The velocity profile for a Newtonian fluid is also given by Eq. (4.22), but now

x0 and λ0/(2π) of Eq. (4.17) are equal to
√

2η/ (ρω0), so that β2 = iω0ρ/η and

Eq. (4.22) reduces to the result of Blennerhassett and Bassom (2006).

4.1.3 Flow behavior

This section is devoted to analyze the flow behavior and the properties of the

vertical velocity profiles described by Eq. (4.22) with the value β given by Eq.

(4.17). To carry out the analysis in increasing order of complexity we start by

revising the Newtonian behavior, examine next the case of a fluid described by

the UCM model, and discuss finally the results for the Oldroyd-B model.

Newtonian fluid

The laminar oscillatory flow of a Newtonian fluid contained in a straight cylin-

der is well documented after the work of Lambossy (1952), Müller (1954) and

Womersley (1955), reviewed in Chap. 1. The velocity profile in the radial direc-

tion, given by Eq. (4.22), is governed solely by the Stokes parameter, Λ = a/δ,

with δ =
√

2η/(ρω0). Figure 4.5 shows the dimensionless vertical velocity profiles

uz(r, t)/(z0ω0) as functions of the dimensionless radial coordinate r/a, for two

time phases ω0t = 0, π/2 and three different values of Λ. For Λ < 1 (‘narrow’

systems) the instantaneous velocity profile recovers the parabolic Poiseuille form

that would correspond to a steady pressure gradient. This limit can be obtained

for vanishing βa (long driving period in comparison to the viscous time a2ρ/η) in

Eq. (4.22), and the expression of the velocity profile reads

uz(r, t) = 2z0ω0

(

1− r2/a2
)

cos (ω0t). (4.24)

For larger Λ the velocity profile departs from the Poiseuille-like form. The velocity

magnitude at the tube axis decreases, and the possibility of a reversal of the flow

becomes more apparent. For Λ > 1 (‘wide’ systems) the boundary layer localizes

near the tube walls and a central inviscid core dominates the flow.
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Figure 4.5: Dimensionless vertical velocity profiles along the radial coordinate r/a,
at two time phases ω0t = 0 (profiles of large amplitude) and ω0t = π/2 (profiles of
small amplitude) and for three different values of Λ. The fluid considered is Newtonian
(X = 1).

Upper-Convected Maxwell fluid

We consider now a viscoelastic fluid described by the UCM constitutive equation.

The flow behavior is governed by the dimensionless parameters tv/λ and De.

Magnitude and phase lag of the velocity at the tube axis

From Eq. (4.22), the velocity at the tube axis is given by:

uz(0, t) = −z0ω0Re

{[

J0(βa)− 1

J2(βa)

]

eiω0t

}

. (4.25)

This equation predicts a resonant behavior, comparable to the one that we ob-

tained in Sec. 4.1.1 for the rectangular geometry. However, the cylindrical sym-

metry of the equations brings about interesting features in the resonant pattern.

Figure 4.6 shows the influence of the setup dimensions on the formation of res-

onances inside the tube. It is clear that the resonant behavior only occurs for

tv/λ ≤ 1. The position of the resonant peaks is, again, universal in the axis

a/(λ0/(2π)). For De > 1 (and X = 0) this axis can be rewritten as De
√

tv/λ,

which coincides with the empirical choice made by del Rı́o et al. (1998, 2001). In

Fig. 4.6, therefore, increasing values of a/λ0 for a given tv/λ correspond to increas-

ing De. In the cylindrical geometry the resonant peaks are no longer equidistant

along the horizontal axis, but appear at the positions where the modulus of J2(βa)
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Figure 4.6: (a): Magnitude of the vertical velocity at the cylinder axis in units of z0ω0,
vs. the non-dimensional ratio a/(λ0/(2π)), for an UCM fluid (X = 0). (b): Phase lag
between the fluid velocity at the tube axis and the oscillating pressure gradient. Both
panels show the curves for three different values of tv/λ.

is minimum, as follows from Eq. (4.25). And, also differently from the rectangu-

lar geometry, the velocity magnitude of the resonant peaks (measured in units of

the piston velocity) is larger for increasing De. Remarkably, the inclusion of the

continuity condition (4.21) suppresses a first resonant peak at a/(λ0/(2π)) ≃ 2.5

reported by del Rı́o et al. (1998, 2001), and makes the first resonance to appear

at higher De. As predicted for the rectangular geometry, the resonant behavior

becomes much weaker for tv/λ ≥ 1, and disappears for ‘wide’ tubes (tv/λ≫ 1).

The phase lag φ(0) between the velocity at the tube axis and the pressure

gradient is shown in Fig. 4.6(b). In contrast with the rectangular case, φ(0) = π

at De = 0 because of the continuity condition. In ‘narrow’ tubes the phase lag

abruptly changes from φ = 0, π (the velocity is in phase with the driving pressure

gradient) near the resonant peaks, to φ = π/2, 3π/2 far from the resonances. This

abrupt change of phase is slightly shifted from the resonance peak for the first

resonance, due to the non-zero phase lag ϕ between the pressure gradient and the

piston acceleration imposed by the continuity condition. This shift however grad-

ually disappears at larger De. On the other hand, as the viscous time dominates

over the viscoelastic relaxation time the resonances fade out and the phase lag

smoothly varies between 0 and 2π for the whole range of De. For tv/λ ≫ 1 the

interferences have disappeared completely and the velocity at the center of the

tube moves nearly in quadrature with the oscillatory pressure gradient for all De.
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Figure 4.7: Dimensionless velocity profiles for a/(λ0/(2π)) = 5.13 (a), 8.42 (b), 11.62 (c), and 14.79 (d); and a/(λ0/(2π)) = 6.80 (e),
9.91 (f ), 13.20 (g), and 16.31 (h). The four profiles shown in each panel correspond to the time phases ω0t = 0, π/4, π/2, 3π/4, numbered
as 1, 2, 3, 4. The plot is for an UCM fluid (X = 0) and a ‘narrow’ tube (tv/λ = 0.01).
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Figure 4.8: Radial position of quiescent points at time phases ω0t that span half an
oscillation period. Panel (a) corresponds to a/(λ0/(2π)) = 5.13 and panel (b) to
a/(λ0/(2π)) = 6.80. The plot is for an UCM fluid (X = 0) and a ‘narrow’ tube
(tv/λ = 0.01).

Velocity profiles under resonant conditions

We focus now on flow conditions such that tv/λ < 1, so that the mutual inter-

action of the underdamped shear waves results in a rich flow behavior. In the

cylindrical geometry the fluid flow organizes forming concentric cylindrical layers

of alternating upward/downward motion that oscillate with the periodicity of the

piston. Figure 4.7 shows the instantaneous velocity profiles corresponding to the

first four maxima (top) and minima (bottom) of the resonance curve of Fig. 4.6

for tv/λ = 0.01. Since the same velocity profile (with reversed sign) is recovered

every half-driving period, we show only time phases ω0t in the interval [0, π). At

the resonances (panels a–d) the velocity is in phase with the sinusoidal piston

acceleration. For this reason the velocity is minimum at ω0t = 0 and maximum

at ω0t = π/2. Conversely, out of the resonances (panels e–h) the velocity is

nearly in quadrature with the piston acceleration, and the behaviour is reversed.

At the minima of the resonance curve, in particular, the velocity is minimum at

ω0t = π/2 and maximum at ω0t = 0. It is also apparent from Fig. 4.7 that for

large De (large a/λ0 for given fluid parameters and tube radius) the flow becomes

more inflectional, i.e. an increasing number of cylindrical layers inside the tube

move with opposite velocity. Adjacent layers are separated by quiescent surfaces

of zero velocity (quiescent points in the two-dimensional representation of the ve-

locity profile). It is worth noting however that these surfaces are not steady in

time. Figure 4.8 shows the radial position of the axisymmetric pair of quiescent

points that appear inside the tube at all time phases within half a driving period.

The quiescent points remain at fixed positions for almost the whole oscillation.

However, in the short period of time when the velocity magnitude is very small
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Figure 4.9: Radial position of quiescent points at ω0t = 0 for increasing a/(λ0/(2π)).
The plot is for an UCM fluid (X = 0) and a ‘narrow’ tube (tv/λ = 0.01).

everywhere across the tube these points rapidly move towards the tube walls. At

the resonances (panel a) this time phase is ω0t = 0, while out of the resonances

(panel b) it is ω0t = π/2. Plotting the radial position of the quiescent points at

ω0t = 0 for increasing a/λ0 (increasing De) (Fig. 4.9) we see that the quiescent

points delocalize exactly at resonances. This plot therefore provides an alternative

way to determine the resonances of the system. The fact that for increasing De

the flow behavior becomes more and more inflectional is also apparent from this

figure. At low De the flow is quiescent only at the tube walls. As De increases a

pair of axisymmetric quiescent points appears close to the tube walls, and progres-

sively detaches from the walls and approaches the tube axis, until a new pair of

quiescent points appears on the walls. This process is repeated once and again for

increasing De, leading to a flow highly organized in multiple regions of alternate

upward/downward motion. This increasingly inflectional flow structure, and the

fact that the velocity magnitude is proportional to the frequency of oscillation

ω0, make that the local rate of shear deformation inside the tube increases very

rapidly with De.

Oldroyd-B fluid

We analyze here the oscillatory flow of an Oldroyd-B fluid Eq. (4.22) in terms

of the viscosity ratio X = ηs/η, always for ‘narrow’ systems tv/λ < 1. This

investigation is related to the work of Andrienko et al. (2000), who considered
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to different values of the viscosity ratio X.

a fluid model with a discrete spectrum of relaxation times in a cylindrical tube

under an oscillatory pressure gradient.

The dramatic influence of X on the magnitude of the velocity at the center

of the tube is shown in Fig. 4.10(a). For the limiting case X = 0 we recover

the resonant behavior of the UCM model described in the previous section. As

a Newtonian contribution is added to the model (X > 0) it is evident from the

figure that resonances progressively disappear. This happens already for extremely

small viscosity ratios, showing that only very special fluids (like wormlike micellar

solutions) are expected to exhibit velocity resonances. For experimentally relevant

values ofX (0.1−0.9) for Boger fluids (James, 2009), the result is indistinguishable

from the Newtonian result. The reason must be found in the behaviour of the two

characteristic lengths, λ0/(2π) and x0. These two lengths quickly approach each

other as X departs from zero (Fig. 4.1(a)), progressively changing underdamped

shear oscillations into overdamped oscillations.

The tendency of x0 and λ0/(2π) to take the same value, and hence the dis-

appearance of resonances, is more pronounced at large values of De. These same

features are found also in the rectangular geometry discussed in Sec. 4.1.1. Making

X & 0 has a similar effect on the phase lag at the center of the tube, φ(0), as shown

in Fig. 4.10(b). The sharp transitions from φ = 0, π observed near resonances to

φ = π/2, 3π/2 only occur for X = 0. As X & 0 the phase-lag curve quickly

smooths and the fluid just oscillates in quadrature with the piston acceleration.
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Figure 4.11: Dimensionless velocity profiles of Oldroyd-B fluids (tv/λ = 0.01) of dif-
ferent viscosity ratios X, computed at the second resonance, a/(λ0/(2π)) = 8.42. The
profiles are shown at four different time phases (ω0t = 0, π/4, π/2, 3π/4) spanning half
an oscillation period.

This translates into a phase lag φ(0) that approaches π/2 at large De. Oldroyd-B

fluids of different X also display a different flow structure. Figure 4.11(a–e) shows

indeed that for X & 0 the flow progressively becomes less inflectional (the number

of concentric layers with upward/downward motion decreases) and the magnitude

of the velocity is drastically reduced throughout the tube diameter. As a result

of both the loss of flow structure and the decrease of the velocity magnitude, the

rate of shear deformation also experiences a dramatic decrease for X & 0. The

local shear rate can be derived analytically from Eq. (4.22) as:

γ̇(r, t) =
∂uz(r, t)

∂r
= −z0ω0Re

{

β
J1(βr)

J2(βa)
eiω0t

}

. (4.26)

Since u = (0, 0, uz(r, t)), in this problem the shear rate coincides with the magni-

tude of the vorticity in the azimuthal direction. Figure 4.12 shows the maximum

value of the shear rate vs. a/(λ0/(2π)) for different values of X . The vertical axis

is drawn in logarithmic scale to emphasize the abrupt decrease of the shear rate

with X .

The laminar periodic flows analyzed in this section constitute basic flows on

which more complex situations can be studied. Most notably, features arising

from nonlinearities in the constitutive equations accounting for the shear rate

dependence of viscosity of viscoelastic fluids. A Floquet stability analysis of the

flows studied here can also reveal the possibility of instabilities and bifurcations

to more complex flows.

The next Sec. (4.2) is aimed at testing experimentally in a systematic way

the theoretical predictions developed in this section. As described in Chap. 3,

solutions of wormlike micelles behave according to the Maxwell model at low

shear rates. Thus, they are good candidates for this purpose.
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4.2 Experiments

In this section we report a series of experiments of the oscillatory flow of a micellar

solution (CPyCl/NaSal [100 : 60] mM) in a vertical rigid cylinder of large aspect

ratio. The experiments were carried out in the Laboratori de F́ısica no Lineal

of the University of Barcelona, in the context of the present Thesis. A detailed

description of the experimental setup and fluid rheology was provided in Chaps. 2,

3. The flow was driven by the harmonic motion of a piston at the bottom end of

the cylinder. We focus here on a range of small amplitudes and low frequencies of

the forcing (Re≪ 1, Wi . 1), for which translationally invariant, rectilinear fluid

motion was established in the whole cylinder –except in the vicinity of the top

and bottom lids. We make a quantitative comparison of the measured flow fields

to the theoretical predictions obtained in Sec. 4.1, based on the Upper Convected

Maxwell (UCM) and Oldroyd-B constitutive equations, and discuss the origin of

the observed similarities and discrepancies.

This section is organized as follows. First in Sec. 4.2.1 we evaluate the effect of

the finite length of the cylinder used in our experiments on the laminar oscillatory

flow. In Sec. 4.2.2 we characterize the frequency response of the fluid for the

whole range of accessible driving frequencies, decomposed in terms of velocity

magnitude and phase lag. Next, in Sec. 4.2.3, the temporal dynamics of the

velocity field within an oscillation period is studied, both for resonant and non-
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resonant frequencies. Finally, in Sec. 4.2.4, the importance of nonlinearities of the

fluid response in the experimental results is analyzed.

In the work presented in this section the setup geometry and the rheological

properties of the CPyCl/NaSal solution ensure that the flow is always in the

inertialess regime. The Reynolds number, defined as Re = ρUa/η0, where U

is the maximum velocity in the flow, ranges from 5 × 10−3 to 0.1 for the largest

characteristic velocities. The setup configuration is ‘narrow’, with tv/λ ≃ 5×10−3.

And elasticity is dominant sinceDe goes from 12 to 143. Ideally X should be equal

to zero for a wormlike micellar solution. However, values of X ≃ 10−3−10−4 have

also been reported in the literature (Yesilata et al., 2006). The solvent viscosity

would partially account here for the residual viscosity of the solution at the largest

shear rates, when all the micelles would have been completely disentangled and

ruptured.

4.2.1 Finite length of the cylinder

The laminar oscillatory flow in an infinite cylinder should be translationally in-

variant along the vertical axis. However, the finite length of the actual tube used

in the experiments causes fluid recirculation at the top and bottom ends. Our

results show nevertheless that the distortion of the laminar flow is confined to a

small region. We will show in Sec. 6.3 that it is smaller than 20 mm in length

from both the top and bottom ends (about a 3% of the tube length). In Fig.

4.13 we show the measured laminar velocity profile at ω0 = 44.0 rad/s, at 5 dif-

ferent vertical positions, 17, 24, 33, 40 and 48 cm from the piston, covering most

of the tube length. A slight decrease of the peak velocity is observed only for

the positions closer to the top and bottom ends. Remarkably, in all positions the

no-slip condition is well satisfied at the tube walls. Note that in the figure the

radial coordinate takes negative and positive values, to represent symbolically the

right and left sides of the tube diameter (this same notation will be used in all

remaining sections).

Since the flow in the laminar regime is translationally invariant in the vertical

direction for most of the tube length, it is sufficient to characterize the velocity

field in a particular region. The results for the laminar regime presented in this

section are recorded in a fixed region of 5× 5 cm2, in the middle part of the tube

(33 cm from the bottom piston). Radial velocity profiles are obtained by averaging

typically 20 different profiles measured simultaneously, spanning a total of 35 mm

in the vertical direction.
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Figure 4.13: Velocity profiles measured at five different vertical positions. The amplitude
of oscillation is z0 = 0.50 mm, the frequency ω0 = 44.0 rad/s, and the time phase is
ω0t = π in all profiles.

4.2.2 Frequency response

The experimental setup allows to decompose the fluid velocity of the laminar

oscillatory flow, uz(r, t), in velocity magnitude, uz(r), and phase, Ψ(r), as

uz(r, t) = uz(r) sin (ω0t−Ψ(r)) . (4.27)

Ψ(r) is the phase lag of the fluid velocity with respect to the piston position.

Notice that this phase lag is different from the phase lag between fluid velocity

and pressure gradient (φ(r)) and also different from the phase lag between pressure

gradient and piston acceleration (ϕ), which arise more naturally in the theoretical

analysis developed in Sec. 4.1. They are all related by

Ψ(r) = φ(r) + ϕ+ π. (4.28)

Since both the magnitude and phase varies along the radial coordinate, we restrict

our analysis to the tube axis (r = 0). We compute the phase lag Ψ(0) between

the fluid velocity and the piston position by comparing the temporal LVDT signal

that tracks the piston position, zp(t), with the velocity of the fluid at the tube

axis, uz(0, t).

Figure 4.14 shows, for example, the fluid velocity uz(0, t) and the piston po-

sition zp(t) for two driving frequencies, ω0 = 37.1 rad/s (a) and ω0 = 47.1 rad/s

(b). The phase lag, represented by the arrow spanning the shaded area in the fig-

ure, is determined from the zero-crossings with positive slope of these two signals.

Besides, the zero-crossing for zp is used to reset the time phase ω0t to zero on each

oscillation, so that the phase lag range is 0 ≤ Ψ(0) < 2π.
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Figure 4.14: Measured velocity at the tube axis (uz(0, t), blue squares) for two complete
periods of oscillation. The experimental error in the velocity is smaller than the symbol
size. The LVDT signal (zp(t), black dots) that tracks the piston position is also shown
as a reference, with the scale on the right. The solid line is the reconstruction of the
LVDT signal based on its spectral contents. The time phase ω0t is shown in the top
horizontal axis. The shaded areas represent the phase lag Ψ(0) of uz(0) with respect
to zp. Panel (a) corresponds to ω0 = 37.1 rad/s, z0 = 0.20 mm, and (b) to ω0 = 47.1
rad/s, z0 = 0.50 mm.

Velocity magnitude

The magnitude of the velocity at the tube axis has been determined from the

velocity fields measured by PIV. In Fig. 4.15(a) we show the magnitude of this

velocity as a function of ω0 for the whole range of accessible driving frequencies.

The velocity has been made dimensionless by measuring it in units of z0ω0 (the

amplitude of the driving velocity). The values plotted are the amplitudes of

the dominant spectral contribution (at ω0) to the measured velocities. A strong

resonant behavior appears at particular frequencies, with a remarkable increase

of the velocity magnitude.

We have also rewritten the horizontal axis as a/(λ0/(2π)) (top axis), where

λ0/(2π) is the wavelength of the Ferry waves, because this dimensionless variable

has been shown in Sec. 4.1 to make the position of the resonant peaks universal,

i.e. independent of fluid properties and setup geometry. Even though we use only

one fluid and one pipe radius, it is remarkable that the measured values for the

resonant peaks coincide with the theoretically predicted values derived in Sec. 4.1.
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Figure 4.15: Modulus (a) and phase (b) of the first harmonic contribution to the dimen-
sionless velocity at the tube axis, as a function of driving frequency and for three different
driving amplitudes. The frequency axis can be defined either in terms of ω0 (bottom
axis) or in terms of the dimensionless ratio a/(λ0/(2π)) (top axis). The solid line is the
theoretical prediction computed for the UCM model, without fitting parameters, and
the dashed line the corresponding one for the Oldroyd-B model for X = 1.6 × 10−3.

At this point it is important to recall that these experimental results corre-

spond to a piston-driven flow. In such conditions the two first resonant peaks

appear at a/(λ0/(2π)) = 5.1 and 8.6, in excellent agreement with the values 5.13

and 8.41 predicted theoretically (Sec. 4.1). Our experimental observation is also

in fairly good agreement with the result obtained by Castrejón-Pita et al. (2003)

for the same micellar solution, using Laser Doppler Anemometry.

Different symbols in Fig. 4.15(a) correspond to three small amplitudes of os-

cillation, z0 = 0.20, 0.50 and 0.80 mm. We can define a dimensionless driv-

ing amplitude γ0, as γ0 = z0/a. These three amplitudes correspond then to

γ0 = 8 × 10−3, 2 × 10−2, 3.2 × 10−2, in this geometry. Comparison between the

three data sets is possible because the vertical axis has been made dimensionless.

At low frequencies (ω0 ≤ 31 rad/s) the fluid response is not sensitive to the ampli-

tude of oscillation, as expected for a linear response. Indeed, the results for 0.20,

0.50 and 0.80 mm in Fig. 4.15(a) are nearly identical at low frequencies. However,

close to resonances and at larger driving frequencies (ω0 & 50 rad/s) the response
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is not linear anymore and smaller values of the dimensionless velocity are obtained

at larger driving amplitudes.

The lines represent the theoretical predictions obtained with the UCM model

(X = 0, solid line) and the Oldroyd-B model (X = 1.6 × 10−3, dashed line)

using the rheological values given in Chap. 3. Note that the UCM curve has

been computed without fitting parameters, and that only the value of X has been

adjusted to obtain the best qualitative agreement between the Oldroyd-B curve

and the small amplitude data. The agreement between experimental data and

theoretical curves is excellent at low frequencies up to the first resonance. The

discrepancies between experimental and the theoretical curve become more evident

at resonances. The UCM model largely overestimates the velocity magnitude at

these frequencies. Although the Oldroyd-B model is in better agreement, it does

not capture all the observed trends in the measured frequency response.

Phase lag

Measurements of the phase lag as a function of driving frequency provides us with

an independent and new method to identify the resonances.

An example of the frequency dependence of the phase lag was already provided

in Fig. 4.14. In panel (a), which corresponds to a resonant frequency, the piston

and the fluid velocity are in phase. In panel (b), which corresponds to a non-

resonant frequency, the two signals are nearly in quadrature.

The results for all explored frequencies are shown in Fig. 4.15(b). For most

of the explored frequencies the fluid velocity measured at the tube axis and the

piston position are nearly in quadrature, Ψ(0) ≃ π/2 or 3π/2, which is the result

expected for a purely viscous fluid. Close to resonances, though, there is an abrupt

change in phase behavior and, at resonance, the two signals move in phase (Ψ = 0

at ω0 = 37.1 rad/s), or in phase opposition (Ψ(0) = π at ω0 = 61.6 rad/s),

reflecting the viscoelastic properties of the micellar solution. Measurements of

the phase lag therefore corroborate our results for the location of the resonances

reported in the previous section.

The theoretical prediction for the phase lag based on the UCM model is in

good agreement with the experimental results. The agreement even improves

when the model includes the small solvent contribution that was found useful to

fit the velocity magnitude (Oldroyd-B model with X = 1.6× 10−3).
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4.2.3 Velocity profiles

Figure 4.16 shows the radial velocity profiles measured by PIV at equally spaced

time intervals within an oscillation period, and for three driving frequencies:

ω0 = 22.0 rad/s (left panels), 37.1 rad/s (middle panels), and 47.1 rad/s (right

panels). For the three frequencies the relaxation time of the fluid is larger than

the characteristic timescale of the driving, i.e. De = λω > 1. This means that the

elasticity of the solution is dominant in the organization of the flow in all three

cases.

At the lowest frequency all the fluid moves in the same direction (upward or

downward) for most of the oscillation period, and local reversal of the flow occurs

only at the time phases where the velocity nearly vanishes. It is worth noting also

that the phase lag depends on the radial position and thus gives rise to profiles of

different shapes at different time phases. The axisymmetry of the laminar flow is

well accomplished by the measured profiles, and the no-slip condition at the tube

walls is well satisfied too.

At a higher frequency that corresponds to the first resonance (ω0 = 37.1 rad/s)

the flow organizes in three concentric layers with alternating sign of the velocity.

Thus the velocity is zero at the walls and at the quiescent points in the bulk

separating adjacent layers. The peak velocity is about four times larger than for

ω0 = 22.0 rad/s, as expected at resonance. The error bars represent the rms

dispersion of the ensemble of velocity profiles, measured at the same time but at

slightly different heights, and used to determine the mean profiles shown in the

figure.

The panels on the right shows the results for an even higher frequency, ω0 =

47.1 rad/s, past the first resonance. The organization of the flow in three layers

is also apparent here, but the magnitude of the peak velocity is smaller because

the flow is non resonant. While at resonance the largest measured velocities are

localized at the tube axis, at ω0 = 47.1 rad/s the velocity takes similar peak values

for the different concentric layers.

Quiescent points

We have tracked the evolution in time of the quiescent points in the flow. This

provides additional interesting information about the velocity profiles. Figure 4.17

shows the radial position of the quiescent points in an oscillation period for the

driving frequencies ω0 = 37.1 rad/s (a) and ω0 = 47.1 rad/s (b). The quiescent

points are almost steady in time within the whole oscillation. However, at the

particular time phases when the velocity is very small everywhere they rapidly

move and relocate towards the tube walls. The relocation of the quiescent points
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Figure 4.16: Radial velocity profiles measured at three driving frequencies and small amplitudes: ω0 = 22.0 rad/s, z0 = 0.50 mm (left);
ω0 = 37.1 rad/s, z0 = 0.20 mm (middle); ω0 = 47.1 rad/s, z0 = 0.50 mm (right). The profiles are equally separated in time and span a
complete oscillation period. The vertical arrows indicate the temporal ordering of the profiles. The lines are the corresponding theoretical
predictions of the Oldroyd-B model with X = 1.6 × 10−3.
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Figure 4.17: Radial location of the quiescent points for ω0 = 37.1 rad/s, z0 = 0.20 mm
(a), and ω0 = 47.1 rad/s, z0 = 0.50 mm (b). The error bars account for the lateral size
of the PIV grid. The lines are the theoretical predictions of the UCM model (solid) and
the Oldroyd-B model with X = 1.6 × 10−3 (dashed). They have been plotted only on
half of the vertical tube section for clarity.

occurs at ω0t ≃ 0, π at the resonant frequency (panel a), and at ω0t ≃ π/2, 3π/2 at

the higher, non-resonant frequency (panel b). These observations are in excellent

agreement with the theoretical predictions of Sec. 4.1.

The number of quiescent points increases with driving frequency. Figure 4.18

displays the measured radial position of the quiescent points in the whole range

of explored frequencies, at a fixed time phase ω0t = 0. In this figure we have

included also the dimensionless frequency axis a/(λ0/(2π)) to make contact with

the theoretical analysis of Sec. 4.1. It is clear from the figure that the flow becomes

more inflectional as we increase the driving frequency: at low frequencies the flow

is quiescent only at the walls; above ω0 = 31.4 rad/s, though, two symmetric

additional quiescent points appear in the bulk; and at ω0 = 50.3 rad/s another

symmetric pair comes in. It is also worth noting that exactly at the resonant

frequencies the quiescent points in the bulk relocate towards the tube walls, as

discussed in the context of the previous figure.

The dashed lines in Figs. 4.16, 4.17 and 4.18 are the theoretical predictions of

the Oldroyd-B model with the convenient solvent viscosity ratio X = 1.6 × 10−3

determined in Fig. 4.15. The solid lines are the ones obtained for the UCM

model. To compute these curves we have used the most relevant contributions

to the frequency spectrum of the imposed driving, namely the one corresponding



4.2. Experiments 77

−20 −10 0 10 20
0

15

30

45

60

75

r (mm)

ω
0

(r
ad

/s
)

0

2

4

6

8

10

a
/(

λ
0
/
(2

π
))

Figure 4.18: Radial location of the quiescent points at the time phase ω0t = 0 for
z0 = 0.50 mm and the whole range of driving frequencies. The error bars account for
the lateral size of the PIV grid. The lines are the theoretical predictions of the UCM
model (solid) and the Oldroyd-B model with X = 1.6× 10−3 (dashed). They have been
plotted only on half of the vertical tube section for clarity.

to the nominal driving frequency ω0 plus the much smaller components of higher

harmonics (2ω0, 3ω0) with their own amplitudes. We have evaluated the profiles

at the time phases of the measured profiles.

The overall temporal evolution of the velocity profiles, Fig. 4.16, is very well

reproduced by the Oldroyd-B predictions. In every single profile the magnitude

of the velocity and the flow structure are well captured, and also there is a good

matching of the time phase. In the left and right panels (non-resonant driving

frequencies) the theoretical profiles that would have been obtained using the UCM

model would be almost indistinguishable from the ones presented. However, at

resonance (middle panel) the UCM model would largely overestimate the fluid

velocities; introducing an adjustable small solvent contribution provides excellent

agreement of the Oldroyd-B model with the measured data.

In what concerns the theoretical prediction of the location of the quiescent

points, the lines in Figs. 4.17 and 4.18 show remarkable agreement with the mea-

sured data. In both figures the theoretical curves have been computed from the

fundamental harmonic only, because higher harmonics of the driving do not mod-

ify the result appreciably. In Fig. 4.17 the temporal evolution of the nodes is

smooth at resonance (panel a), and very well described by the Oldroyd-B model

using the value of X determined from the resonance curve of Fig. 4.15. Out

of resonance (panel b), instead, the evolution of the nodes is more abrupt and
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better reproduced by the UCM model. Figure 4.18 shows that the frequencies

at which the quiescent points relocate, coincident with the resonance frequen-

cies, are predicted very precisely by both the UCM and the Oldroyd-B models.

The UCM model reproduces the general trends, with sharper boundaries close to

the resonances, while the Oldroyd-B model gives boundaries smoother than the

experimental results.

4.2.4 Nonlinearities

Local and apparent shear rates

If we compute the local shear rate as the velocity gradient, γ̇loc = ∂vz/∂r (Eq.

4.26), undoubtedly the largest shear rates are experienced at resonances. In Fig.

4.19 we show γ̇max, the maximum local shear rate along the tube radius and

in a complete oscillation period, for the whole range of driving frequencies and

for z0 = 0.20, 0.50, and 0.80 mm. Above ω0 & 10 rad/s and z0 = 0.20 mm

the maximum local shear rate already exceeds the critical shear rate for shear-

thinning, γ̇c ∼ 0.4 s−1 (or Wi ≥ 1). Above this shear rate the response of the

micellar solution is not reproduced by the linear Maxwell model. This implies

that, occasionally, at the radial positions where γ̇loc > γ̇c nonlinear features might

be observed in the measured velocity profiles. Notice that γ̇loc increases with z0,

since in the linear regime the fluid velocity is proportional to z0. And γ̇loc increases

also with ω0: the velocity profile becomes more inflectional at larger frequencies,

with an increasing number of alternating velocity layers, leading to larger velocity

gradients in the radial direction.

We can also define an apparent (or global) shear rate as γ̇app = z0ω0/a. It

corresponds to the mean shear rate imposed by the forcing. In Fig. 4.19 it is

represented by the solid lines. The apparent shear rate increases linearly with the

amplitude and frequency of the driving. It is worth mentioning that an average

of the absolute value of the local shear rate along the tube radius in a complete

oscillation reproduces γ̇app and its linear dependence on ω0 up to frequencies about

2.5× 101 rad/s; above this frequency the average still grows with ω0 but displays

the same peak structure than γ̇max.

When γ̇app > γ̇c nonlinear effects start becoming important and influence the

overall flow behavior. It is reasonable thus that discrepancies between experiments

and linear theoretical predictions become larger for higher frequencies, and even

more evident at resonances. Linear theories for the uniaxial flow, like those that

can be derived from the UCM or Oldroyd-B models, are not able to capture all

the observed features in this regime.
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Figure 4.19: Maximum local shear rate experienced by the fluid (symbols) and apparent
shear rate (solid lines of corresponding color) as a function of driving frequency and for
three different driving amplitudes. The horizontal dashed line is the critical shear rate
of the wormlike micellar solution.

Observed anomalies of the velocity profiles

Several other specific features of the velocity profiles are not reproduced by the

linear models either. In particular in the left panels of Fig. 4.16 some velocity

profiles display an anomalous flat shape in the central region, at the time phases

when the velocity magnitude takes largest values. For these particular profiles

we have checked that the theoretical predictions would partially account for this

tendency of the profiles to flatten if the response of the third harmonic, 3ω0,

would be included. Another anomalous feature is observed next to the tube walls,

where the measured profiles display a region of almost zero velocity larger than

the theoretical counterparts. These unusual features are also observed in the right

panel of this same figure, but in this case we have checked that the contribution

of a third harmonic is negligible.

This kind of plug-like profiles has been observed already in other rectilinear

shear flows of similar wormlike micellar solutions, and have been attributed to

shear banding. Typically a transition from a parabolic profile, characteristic of

Newtonian fluids, to a plug-like velocity profile with distinct shear bands close

to the walls, has been observed as the flow rate is increased. These results have

been obtained for cross-rectangular channels of millimetric and micrometric di-

mensions, using PIV (Nghe et al., 2008; Ober et al., 2011), and for axisymmetric

capillary channels of millimetric dimensions using PIV (Yamamoto et al., 2008)

or NMR (Mair and Callaghan, 1997). There is a fundamental difference, though,
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between previous experiments and the present work. Our study is focused on an

oscillatory (non-steady) flow, which induces highly inflectional velocity profiles.

On the one hand, this makes difficult to predict the spatial organization of any

possible shear bands that might form inside the cylinder. On the other hand, the

temporal dependence imposed by the driving frequency introduces an extra time

scale related to the periodic destabilization and reformation of the hypothetic

shear bands. It is known that shear bands take a certain time to develop (Pipe

et al., 2010; Miller and Rothstein, 2007), typically larger than the relaxation time

of the fluid. In this sense the experiments carried out here at the lowest driving

frequencies would be the only suitable candidates to exhibit shear banding. At

larger frequencies the fluid would be subjected locally to unidirectional shear for

times too short to form stable bands.

Moderate driving amplitudes

As we increase the driving amplitude the shear rates experienced by the fluid

become larger and nonlinearities are likely to appear. This tendency, already

discussed in the context of Fig. 4.19, is studied systematically in Fig. 4.20. We

show the dependence on oscillation amplitude of the dimensionless velocity profiles

measured at ω0t = π for a large set of amplitudes (0.20 mm ≤ z0 ≤ 2.40 mm,

i.e. 8 × 10−3 ≤ γ0 ≤ 9.6 × 10−2) and two forcing frequencies: ω0 = 37.1 rad/s

(resonant frequency) and ω0 = 44.0 rad/s (non-resonant frequency). At ω0 = 37.1

rad/s (panel a) the nonlinearities in the fluid response are already manifest at very

small amplitudes, around z0 = 0.40 mm. Since at resonances the local shear rates

are much larger than for other frequencies, nonlinearities appear first. Above this

amplitude the linearity of the flow is not preserved anymore. Conversely, out of

resonance (panel b) the fluid response keeps linear with the driving for a much

larger range of amplitudes, z0 ≤ 2.40 mm. The measured velocity profiles scale

with z0ω0 for all this range of driving amplitudes.

In order to account for the imposed deformation we define a Weissenberg

number based on the local shear rate, Wiloc = λγ̇loc, and another one based on

the apparent shear rate, Wiapp = λγ̇app. The latter coincides with the definition

provided in Chap. 1, Eq. (1.4). Notice that Wiapp = γ0De, where γ0 is the

dimensionless strain amplitude z0/a. For most of the explored range of driving

frequencies and amplitudes Wiloc ≫ 1. The fluid experiences shear rates that

locally exceed γ̇c. However Wiapp remains smaller than 1 for a considerable range

of driving frequencies. In particular at the smallest amplitude, z0 = 0.20 mm,

Wiapp < 1 until ω0 ≃ 50 rad/s. This is the reason why a linear theory based on

the UCM or Oldroyd-B models is able to reproduce many features of the observed

flow behavior.
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Figure 4.20: Dimensionless velocity profiles measured for a set of driving amplitudes
and two driving frequencies, ω0 = 37.1 rad/s (a) and ω0 = 44.0 rad/s (b), at the time
phase ω0t = π.

In order to capture the nonlinearities revealed by our experimental data a con-

stitutive equation with a nonlinear equation for the shear stress, to account for

the nonmonotonicity of the viscometric flow curve of micellar solutions, would be

required. The semiempirical single-mode Giesekus model (Bird et al., 1987) is

well known to describe the nonlinear shear flow of semi-dilute wormlike micelles

successfully (Yesilata et al., 2006; Larson, 1999). The Johnson-Segalman equation

(Cates and Fielding, 2006) has also been extensively used to model the material

instability of wormlike micellar solutions and the formation of shear bands. The

VCM model proposed by Vasquez and coworkers (Vasquez et al., 2007) can also

predict the behavior of inhomogeneous flows. These models might be good candi-

dates to reproduce the nonlinear effects observed in our experiments, that cannot

be captured by constitutive models with a linear equation for the shear stress. The

experiments reported in this section have been performed with a canonical worm-

like micellar solution under well controlled flow conditions, different from more

traditional rheometric flows. Hence, they provide original experimental data that

could be useful to test the success of nonlinear constitutive equations in predicting

complex non-steady flows. However, a nonlinearity of the constitutive equation

makes analytical calculations of the oscillatory flow not feasible, and accessible

only via numerical calculations. This approach, currently in progress, falls be-
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yond the scope of the present work.

Finally, we have observed that at slightly larger amplitudes than 0.40 mm for

ω0 = 37.1 rad/s, and 2.40 mm for ω0 = 44.0 rad/s, the laminar oscillatory flow

eventually becomes unstable. The transition to more complex flows is addressed

in the next two chapters.



Chapter 5

Hydrodynamic instabilities:

local scale

5.1 Stability phase diagram

We explored the flow behavior exhibited by the micellar solution for the whole

range of experimentally accessible forcings: 6.0 ≤ ω0 ≤ 75.0 rad/s and 0.20 ≤ z0 ≤

6.00 mm. In terms of dimensionless numbers, it corresponds to 12 ≤ De ≤ 143

and 0.1 ≤ Wi ≤ 34.0. In Fig. 5.1 we show the stability phase diagram of the

laminar base flow measured at the mid-position of the tube plotted as a Pipkin

diagram (amplitude vs. frequency, or alternatively, Wi vs. De). The mid-position

is placed at 33 cm from the bottom piston and corresponds to Region 4, in the

tube division that will be made in Sec. 6.1. In order to cover the entire range

of accessible parameters we performed ramps of increasing driving amplitudes at

every oscillation frequency. The experimental protocol is described in detail in

Sec. 5.2.

Three main regions can be distinguished (depicted in different colors in the

figure):

• Laminar base flow: It is found at small amplitudes and frequencies of the

forcing. Note that for ω0 < 25 rad/s the laminar base flow is preserved

for the whole range of accessible driving amplitudes. This regime has been

studied in detail in Chap. 4. The laminar oscillatory flow preserves both the

translational and axial symmetry, and follows the periodicity of the forcing.

Only small recirculation zones are located close to the top and bottom ends

of the cylinder.

• Axisymmetric vortical flow: Above a critical driving the translational sym-

metry of the laminar flow along the vertical coordinate is broken, whereas the

83



84 Chapter 5. Hydrodynamic instabilities: local scale

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

Figure 5.1: Stability phase diagram represented in terms of the (dimensionless) driving
amplitude z0/a vs. driving frequency ω0 (left), or Wi vs. De (right), measured in the
central region of the tube (Reg. 4). The laminar base flow is represented in pale blue,
the vortical flow in orange and the non-symmetric vortical flow in red. The error bars
for z0/a are given by the dimensionless step size ±0.004 used to perform the ramps.

axial symmetry remains unaltered. The flow organizes forming quasi-steady

toroidal vortices, around the vertical symmetry axis, that are found stacked

all along the tube. These vortex rings rotate following the periodicity of the

driving. They appear as a pair of counter-rotating vortices when the flow

field is measured in a meridional plane of the tube. The threshold for this

first instability is not constant. When depicted in terms of amplitude and

frequency (Fig. 5.1) it exhibits an interesting frequency dependence that is

clearly related to the frequency response of the fluid in the laminar regime.

Since in the laminar regime the velocity magnitude at the tube axis peaks at

particular driving frequencies, ω0 = 37.1, 62.8 rad/s, it is not surprising that

the instability threshold observed at resonances is considerably smaller than

for the rest of the frequency spectrum. In Sec. 5.3 we will characterize in

detail the onset of this hydrodynamic instability, and a thorough description

of the vortical flow will also be addressed.

• Non-axisymmetric vortical flow: At even larger drivings the vortical flow

loses the axial symmetry. The threshold for this second instability decreases

for increasing driving frequencies (Fig. 5.1), although it does not exhibit

a well-defined frequency dependence. When depicted in terms of Wi, it

appears that this second instability occurs in the range Wi = 10 ± 2 for

all De. In this regime the oscillatory flow has lost both the vertical trans-

lational symmetry and the axial symmetry. The flow organizes forming

non-symmetric, deformed vortex rings. Both the onset of this second hydro-

dynamic instability and the structure of the secondary flow will be studied

in Sec. 5.4.
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Figure 5.2: Scheme of the experimental protocol used for ramping up/down the driving
amplitude.

5.2 Experimental protocol for ramping the

driving amplitude

The transition from laminar to more complex flows was studied by performing

ramps of increasing/decreasing driving amplitudes at fixed frequency of oscillation

(Fig. 5.2). The step amplitude used was typically ∆z0 = 0.10 mm. We also used

∆z0 = 0.05 mm or even ∆z0 = 0.02 mm when a particular range of amplitudes

was explored in detail. To ensure that the flow was quasi-steady every time that

the driving amplitude was changed, the fluid was allowed to oscillate for a certain

waiting time (tw) before recording the images. Typically tw ≃ 30 s, which is more

than 15 times the relaxation time of the viscoelastic fluid. The measuring time

(tm) required to record the images as well as the time spent to ramp the amplitude

up and down (tr) were both much shorter than the waiting time. We defined the

velocity of the ramp (vramp) as the step in amplitude divided by the waiting time

(in which both tm and tr have been disregarded). Most of the experiments were

performed at a common velocity, vramp = ∆z0/tw ≃ 3.3 × 10−3 mm/s, for both

upward and downward amplitude excursions.

5.3 First instability: loss of vertical translational

symmetry

In the first part of this section we perform a quantitative analysis of the onset of

the first hydrodynamic instability. For the sake of concretion we focus the analysis

on a particular driving frequency, ω0 = 31.4 rad/s. This frequency is smaller than
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the first resonance frequency, but large enough to provide an interesting route

from laminar to more complex flows as the driving amplitude is increased. In the

second part we describe the vortical flow structure (Sec. 5.3.3), and quantify the

vortex dynamics using a set of defined properties (Sec. 5.3.4). In the last part

(Sec. 5.3.5) we extend the study of the vortical flow to larger driving frequencies,

ω0 = 37.1, 44.0, 56.5 rad/s, in order to understand the influence of the imposed

timescale on the vortical flow behavior.

We restrict the study of the vortical flow behavior to the central region of the

vertical cylinder (Reg. 4). In next chapter a study of the large scale flow structure

covering the entire tube length will be addressed.

5.3.1 Onset of the instability

In order to do a quantitative characterization of the transition from laminar to

vortical flow, we compute the root-mean-square (rms) fluctuations of the vertical

and radial components of the velocity field, uz, ur, along the vertical coordinate z.

We make the rms fluctuations dimensionless by dividing them by the amplitude

of the driving, z0ω0, so that a quantitative comparison at different drivings is

possible. The expression used for the rms velocity fluctuations averaged in time,

over a complete time period, is

〈

σuz,r
(r, t)

〉

t
=

1

z0ω0

〈
√

1

N

∑

i

[uz,r(r, zi, t)− uz,r(r, t)]2

〉

t

. (5.1)

And the expression for the rms velocity fluctuations averaged in space, over the

tube diameter, is

〈

σuz,r
(r, t)

〉

r
=

1

z0ω0

〈

√

1

N

∑

i

[uz,r(r, zi, t)− uz,r(r, t)]2

〉

r

, (5.2)

where uz,r(r, t) is the mean velocity obtained from averaging N velocity profiles

(typically 40) measured within the interrogation region along the vertical direction

z.

Time averaged RMS fluctuations

In Fig. 5.3 (top panels) we show the time averaged rms fluctuations of the two

in-plane components of the velocity, measured at ω0 = 31.4 rad/s and increasing

driving amplitudes.
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Figure 5.3: Top panels: time averaged rms fluctuations exhibited by the vertical (a) and
radial (b) components of the velocity. Bottom panels: radially averaged rms fluctuations
exhibited by the vertical (c) and radial (d) components of the velocity. Different symbols
correspond to increasing driving amplitudes. The frequency is kept constant at ω0 =
31.4 rad/s (De = 59.6).

In the laminar regime the magnitude of the rms fluctuations should be negli-

gible, since we verified in Sec. 4.2 that in this regime there is no variation of the

velocity profiles along the vertical direction in the interrogation region. Non-zero

values of the velocity fluctuations thus account for the experimental uncertainty

intrinsic to the velocity measurements. Indeed, the fluctuations exhibited by ur
(panel b) show no-well defined structure along the radial coordinate at small am-

plitudes, z0 = 1.50, 1.60 mm. Similarly, the small peaks exhibited by uz(r) in

panel (a) at symmetric positions, r/a ≃ ±0.3, at these same amplitudes corre-

spond to the uncertainty in this velocity component. Although small, the peaks

appear at the radial positions where the vorticity field takes largest values (Fig.

5.9). However, assuming that uθ = 0 in the laminar regime, the incompressibility

condition ∇‖ ·u = 0 does not admit a variation of uz with z simultaneously with

ur = 0, as our measurements of Fig. 5.3 seem to indicate. This reinforces the idea

that the small peaks observed for the rms fluctuations of uz indeed account for the

experimental uncertainty that results from the cross-correlation PIV process. The
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Figure 5.4: Laminar velocity profiles (left) and radial position of the quiescent points
(right) obtained at ω0 = 31.4 rad/s and z0 = 1.46 mm for a complete time period (Reg.
4).

PIV software fails in resolving the average velocity field in the presence of large

velocity gradients and hence the largest uncertainties are found at these radial

positions where the vorticity is more pronounced.

At the particular critical amplitude z∗1−up = 1.62 ± 0.02 mm (Wi∗1−up = 3.9)

there is an abrupt increase of the velocity fluctuations that corresponds to the

breakage of the vertical translational symmetry and the onset of the vortical flow.

This sudden increment of the fluctuations occurs at a common driving amplitude

for both the radial and vertical components of the velocity.

In the vortical flow, the fluctuations of uz exhibit a symmetric bell-shaped

profile along the radial coordinate, with the largest fluctuations found at the

symmetry axis (Fig. 5.3(a)). Besides, they present two secondary peaks located

at symmetric radial positions r/a ≃ ±0.7, and two minima at r/a ≃ ±0.5. The

location of the peaks fairly coincides with the radial position of the quiescent points

of the laminar flow observed for most of the oscillation period. We report in Fig.

5.4 the velocity profiles (left panel) and the location of the quiescent points (right

panel) for a complete time period, at ω0 = 31.4 rad/s and z0 = 1.46 mm (laminar

flow). As discussed in Sec. 4.2 the position of the quiescent points is not constant

in time, but for most of the oscillation period it is placed at r/a ≃ ±0.7. The

position of the minima of the vertical velocity fluctuations matches the position

of the geometric center of the vortices, that will be described in Sec. 5.3.4. At

the geometric center of the vortices the fluid is locally at rest (Fig. 5.10). Just

above and below the vortex centers uz is nearly zero (but not ur). Besides, in the

adjacent laminar regions uz is also small. Hence, the fluctuations of the vertical

velocity are small at these radial locations.

The fluctuations of ur depict a symmetric M-shape with marked peaks at
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r ≃ ±0.3 (Fig. 5.3(b)). We will show in Sec. 5.3.4 that these locations correspond

to the radial positions of the center of vorticity defined for the vortices.

Close to the tube walls the fluctuations drop to zero. This corroborates that

the no-slip condition at the boundaries applies also to the vortical flow.

For increasingly larger amplitudes the dimensionless fluctuations change in

magnitude. These variations may result from changes in the vortex strength.

However, the location of the vortex at given time phase can considerably change

at increasing driving amplitudes, leading to a different vortical flow structure

in the interrogation region which may also cause substantial differences in the

magnitude of the velocity fluctuations. Nevertheless, the qualitative features of

the fluctuations in both uz and ur remain unaltered in the vortical flow regime

regardless of the driving amplitude.

Radially averaged RMS fluctuations

When averaged over the tube radius, the rms fluctuations of uz, ur exhibit a pe-

riodicity in time that is twice the periodicity of the imposed driving. In Fig. 5.3

(bottom panels) we show the velocity fluctuations, averaged over the tube diam-

eter, for a complete time period at ω0 = 31.4 rad/s. At small driving amplitudes

(z0 < z∗1−up) the magnitude of the fluctuations of ur is negligible. The fluctua-

tions of uz reflect the experimental uncertainty. They exhibit the periodicity of

the laminar oscillatory flow: the maximum values are found precisely at the time

phases ω0t = 0 and π, where the velocity magnitude at the tube axis is largest

(and accordingly the experimental uncertainty is also largest), and values close

to zero are found at the time phases ω0t = π/2 and 3π/2, where the velocity is

minimum.

At this point it is worth recalling that the driving piston moves as zp =

z0 sin(ω0t). At the time phases ω0t = 0 and π the piston position and piston accel-

eration are zero, and the modulus of the velocity of the piston, vp = z0ω0 cos(ω0t),

is maximum. Conversely at ω0t = π/2 and 3π/2 the piston is at one end of its

course, and its velocity is zero.

Above z∗1−up there is an abrupt increase of the velocity fluctuations for both

components of the velocity. It is accompanied by a sudden qualitative change in

the temporal behavior of the fluctuations with respect to those of the laminar flow.

In the vortical flow, the rms fluctuations still follow twice the periodicity of the

driving. The maximum values of the fluctuations are found now at ω0t ≃ π/2 +

0.2π and 3π/2+0.2π. Conversely, the minimum values are at the complementary

time phases ω0t ≃ 0.2π and π + 0.2π. Since the increase of the fluctuations

accounts for the vortex formation, it implies that the vortices are fully developed
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at the time phases that maximize the rms fluctuations (see Figs. 5.10 and 5.11).

Conversely, the vortices vanish and the fluid flow resembles the flow observed in

the laminar regime at the time phases that minimize the rms fluctuations.

Both the fluctuations for uz and for ur exhibit a systematic shift of about

ω0t ≃ 0.2π, with respect to the oscillatory motion of the piston, that reaches

the largest displacement (and largest absolute piston acceleration) precisely at

ω0t = π/2 and 3π/2. We attribute this temporal shift to a latency time that

would be required for the vortex to form in the central region of the tube. Note

that there is no qualitative difference in the rms fluctuations observed in the first

and second half period of the oscillation. Accordingly, no differences are found

between the first and second half period of the velocity and vorticity fields (top

and bottom panels in Figs. 5.10, 5.11), except for their sign.

5.3.2 Hysteresis and bifurcation diagram

When the amplitude of the oscillations is ramped down, the reverse transition from

vortical to laminar flow occurs at a lower critical driving amplitude z∗1−down =

1.35 ± 0.02 mm (the smallest amplitude at which the flow is vortical). Again

this critical amplitude is the same for the vertical and radial components of the

velocity, as shown in Fig. 5.5(a,b).

All the features observed for the time-averaged rms fluctuations of the velocity

when ramping up the driving amplitude are preserved for downward excursions

of the amplitude. The magnitude of the fluctuations is also comparable between

upward and downwards ramps. One difference is found for the fluctuations of

the vertical velocity once the laminar regime is recovered. The small peaks near

r/a ≃ ±0.3 are absent now.

The temporal periodicity of the spatially averaged rms fluctuations is also pre-

served. Interestingly, the temporal shift described for the rms fluctuations mea-

sured for ramps of increasing driving amplitudes is again observed. The latency

time appears now in the reverse temporal direction so that the rms fluctuations

peak at ω0t ≃ π/2 − 0.2π and 3π/2 − 0.2π. An intermediate stage has been

captured at the critical driving amplitude z∗1−down = 1.35 ± 0.02 mm. At this

amplitude the rms fluctuations of ur exhibit an intermediate temporal behavior:

the fluctuations depict the same periodicity described for larger amplitudes, but

at the acceleration phases of the piston (π/2 < ω0t < π and 3π/2 < ω0t < 2π)

they drop to zero. This would correspond to the premature relaminarization of

the oscillatory flow at these time intervals.
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Figure 5.5: Top panels: time-averaged rms fluctuations exhibited by the vertical (a) and
radial (b) components of the velocity. Bottom panels: radially averaged rms fluctuations
exhibited by the vertical (c) and radial (d) components of the velocity. Different symbols
correspond to decreasing driving amplitudes. The frequency is kept constant at ω0 =
31.4 rad/s (De = 59.6).

Hysteresis of the stability phase diagram

The bifurcation from laminar to vortical flow presents hysteresis. The onset of the

vortical flow, when ramping up the forcing amplitude z0, takes place at a larger

forcing amplitude than the recovery of the laminar flow when ramping down z0. A

quantitative estimation of the hysteresis can be defined as the difference between

the two critical amplitudes:

H = z∗1−up − z∗1−down. (5.3)

The hysteresis measured for ω0 = 31.4 rad/s is H = 0.27 ± 0.03 mm, which is

much larger than the step size used in the ramps of increasing and decreasing

amplitude (∆z0 = 0.02 mm). The existence of this marked hysteresis makes us

presume that this first instability, from laminar to vortical flow, is subcritical.

A hysteretic behavior of this first hydrodynamic instability has been observed

in the whole range of explored frequencies. The hysteretic region is represented

in blue in the Pipkin diagrams (z0/a vs. ω0 and Wi vs. De) shown in Fig. 5.6.
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Figure 5.6: Stability phase diagram represented in terms of the (dimensionless) driving
amplitude z0/a vs. driving frequency ω0 (left), or Wi vs. De (right), measured in the
central region of the tube (Reg. 4). The laminar base flow is represented in pale blue,
the vortical flow in orange and the non-symmetric vortical flow in red. The hysteretic
regions for the first and second instabilities are depicted in blue and green.

The amount of hysteresis varies with driving frequency, being smallest close to

the resonant frequencies.

Bifurcation diagram

A global order parameter,
〈

σuz,r

〉

t,r
, can be obtained by averaging the velocity

fluctuations both in time (in one oscillation period) and in space (over the tube

diameter). In Fig. 5.7 we draw the bifurcation diagram,
〈

σuz,r

〉

t,r
vs. z0, obtained

at ω0 = 31.4 rad/s, in the central region of the tube, for the vertical and radial

components of the velocity when ramping up and down the driving amplitude. At

the critical driving amplitudes z∗1−up and z
∗
1−down of the first instability there is an

abrupt increase (or decrease) of the global order parameter that accounts for the

onset (or disappearance) of the vortical flow. The diagram reveals the asymmetry

of the global order parameter below and above the transition, and the hysteresis

in the forcing amplitude.

5.3.3 Local structure of the secondary flow

We study in detail the structure of the secondary flow exhibited by the micellar

solution at ω0 = 31.4 rad/s. In Figs. 5.8 and 5.9 we show the temporal evolution,

over a complete time period, of the in-plane velocity and azimuthal vorticity fields

of the laminar flow obtained at z0 = 1.46 mm, below the critical driving amplitude

z∗1−up.
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Figure 5.7: Bifurcation diagram obtained at ω0 = 31.4 rad/s (Reg. 4). Time and space
averages

〈

σuz,r

〉

t,r
have been used as control parameters.

As expected for the laminar regime, the velocity and vorticity fields are trans-

lationally invariant along the vertical coordinate, within experimental resolution.

Fluctuations of these fields are not significant. They account for the uncertainty

in the velocity measurements that results from the PIV cross-correlation method.

The fluid velocity follows the periodicity of the imposed driving. The largest

axial velocity magnitudes, of about 300 mm/s, are found at ω0t = 0, π. The

maximum values of the vorticity do not exceed 50 s−1, and are also found at these

time phases, with the sign of the vorticity reversed every half period.

At this frequency the vorticity field exhibits four different vertical bands of

alternated sign. The number of vorticity bands coincides with the number of

concentric cylindrical layers of the laminar flow, plus one. The additional band

results from the change of sign of the radial coordinate at the tube axis. For larger

driving frequencies we expect the number of vorticity layers to increase.

Above the critical driving amplitude z∗1−up the fluid flow drastically changes its

spatio-temporal structure. Figures 5.10 and 5.11 show the velocity and vorticity

fields of the secondary flow, measured at z0 = 1.62 mm.

The secondary flow has been obtained in the following way: the laminar base

flow measured at the same driving frequency and an equivalent time phase ω0t,

but at a smaller amplitude zlam, has been rescaled by the proportionality factor

z0/zlam and subtracted from the vortical flow. The secondary flow is therefore

obtained as:

ũ(r, z, t) = u(r, z, t)−
z0
zlam

ulam(r, z, t). (5.4)

This approximate procedure eliminates most of the flow structure of the oscillatory
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Figure 5.8: Velocity field obtained at ω0 = 31.4 rad/s and z0 = 1.46 mm, in the
meridional plane of the tube corresponding to (Reg. 4). Eight different equispaced time
phases are shown, covering a complete oscillation period. The color bar corresponds to
the magnitude of the velocity. The arrows (on a different scale in each panel) indicate
the local direction and relative magnitude of the velocity field.
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Figure 5.9: Vorticity field obtained at ω0 = 31.4 rad/s and z0 = 1.46 mm, in the
meridional plane of the tube corresponding to (Reg. 4). Eight different equispaced time
phases are shown, covering a complete oscillation period. The colorbar corresponds to
the vorticity field. The arrows (on a different scale in each panel) indicate the local
direction and relative magnitude of the velocity field.
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Figure 5.10: Velocity field of the secondary flow (see text for details) obtained at ω0 =
31.4 rad/s and z0 = 1.62 mm, in Reg. 4. Eight different equispaced time phases are
shown, covering a complete oscillation period. The colorbar corresponds to the velocity
magnitude. The arrows (on a different scale in each panel) indicate the local direction
and relative magnitude of the velocity field.
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Figure 5.11: Vorticity field of the secondary flow (see text for details) obtained at
ω0 = 31.4 rad/s and z0 = 1.62 mm, in Reg. 4. Eight different equispaced time phases
are shown, covering a complete oscillation period. The color bar corresponds to the
vorticity field. The arrows (on a different scale in each panel) indicate the local direction
and relative magnitude of the velocity field.
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laminar flow, organized in several concentric layers, and isolates the secondary

vortical flow.

As shown in Figs. 5.10 and 5.11, in the vortical flow regime the structure of the

secondary fluid flow consists on pairs of counter-rotating elongated vortices that

extend over approximately 50 mm along the axial direction. The largest values

of the velocity field are found along the tube axis |r| . 8 mm. The vorticity field

presents isolated domains of large vorticity values. Although the rescaled laminar

flow has been subtracted, the largest values of the velocity and vorticity of the

vortical secondary flow are more than two times larger than the values that would

correspond to a laminar flow at the same driving amplitudes.

As in the laminar flow, both the velocity and vorticity fields follow the peri-

odicity of the driving. After every half period the sign of both fields is reversed

while the vortices keep counter-rotating. The two fields change sensibly within

every half period, with the largest vorticity values found at the time intervals

π/2 . ω0t . π and 3π/2 . ω0t . 2π. These two time intervals correspond to

the acceleration phases of the piston (the phases when the modulus of the piston

velocity increases in time).

From these observations we infer that the laminar flow is more likely to be-

come unstable at the acceleration phases of the cycle, leading to a fully developed

vortical flow at these lapses of time.

We can compare our results with early observations made by Hino et al. (1976)

of the oscillatory pipe flow of a Newtonian fluid, discussed in Chap. 1. They also

reported a temporal dependence of the fluid response: for disturbed laminar flows,

only small amplitude perturbations appeared during the acceleration phases of the

fluid. And conversely, for intermittently turbulent flows the turbulent bursts ap-

peared in the deceleration phase of the cycle. It seems therefore that there exists

an intrinsic similarity between the onset of weakly turbulent flows in Newtonian

fluids and the onset of vortical flows in viscoelastic fluids, that favors the hydrody-

namic instabilities to occur during particular time phases of the oscillatory cycle.

This in spite of the fact that in Newtonian fluids the instabilities have their origin

on fluid inertia (Re & 103) while in viscoelastic fluids they are possibly triggered

by fluid elasticity (Re ≃ 0.3, Wi ≃ 4).

5.3.4 Vortex properties

The vortices present an interesting spatio-temporal dynamics within one time

period. Following the work of Jespersen et al. (2004) on the vortex dynamics

around a solid ripple in oscillatory flow, we have defined a set of vortex properties

that allows a quantitative characterization of the vortex dynamics: vortex size,
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vortex intensity, and vortex position. We have computed these vortex properties

for the secondary flow obtained by subtracting the oscillatory laminar base flow

at corresponding time phases. We focus our analysis of the vortex dynamics on

the central region of the tube (Reg. 4). The global spatio-temporal organization

of the vortical flow in the whole tube length will be studied in Chap. 6.

Size of large vorticity regions. In order to quantify the extension of the

regions with large vorticity values, we count the number of interrogation cells

that present a vorticity above a threshold. Each interrogation cell has a size of

24×24 pixels, as explained in Sec. 2.2. We use a common threshold value of

wthreshold = 40 s−1, for all experiments performed at different driving amplitudes,

that guarantees that most spurious fluctuations of the vorticity field are excluded

from the count. The vortex size is rescaled by the total number of cells contained

in the interrogation region, Nreg, so that the vortex size ranges from 0 to 1.

Vortex intensity. The vortex intensity is obtained by summing the absolute

value of the vorticity of all the cells included in the regions with large vorticity

values (i.e. above threshold):

Ireg =

∑

i∈vortex ωi

Nreg
. (5.5)

The vortex intensity is again rescaled by the total number of cells contained in

the interrogation region.

Vortex position. In order to be able to locate the position of the vortices we

define a center of vorticity, analogous to a center of mass, as

zcv =

∑

i∈vortex ωizi
∑

i∈vortex ωi
, (5.6)

and

rcv =

∑

i∈vortex ωiri
∑

i∈vortex ωi

. (5.7)

Since we are interested in identifying domains of strong vorticity, and disregard

remaining spurious fluctuations of the vorticity around these domains, we define

the center of vorticity only for regions with a local vortex intensity larger than a

threshold value. We have verified that setting the threshold to the heuristic value

Ithreshold = 2.0 s−1 most of the unwanted small vorticity domains are excluded.

Again this same threshold value is used for experiments performed at different

driving amplitudes.
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Figure 5.12: Vortex properties (vortex size (a), vortex intensity (b), vertical cv position
(c), radial cv position (d)) computed for increasing driving amplitudes z0 (Reg. 4). The
color code is the same used in Fig. 5.3. Filled and empty symbols correspond to right
and left sides of the tube axis, respectively.

Note that the center of vorticity does not coincide with the geometric center

of the vortex (zcenter, rcenter), the point of zero velocity around which the fluid is

rotating. In particular, the vertical location of the geometric center zcenter fairly

coincides with zcv but rcv is typically closer to the tube axis than the geometric

center, rcenter. These differences appear because, even though the laminar flow

has been subtracted, the velocity reaches the largest magnitudes at the tube axis.

Large velocity gradients generate large values of the local vorticity. Conversely,

close to the geometric center the magnitude of the velocity and the velocity gradi-

ents are small, leading to a weak local vorticity. However, it is still more convenient

to use the definition of the center of vorticity than the geometric center of the vor-

tex because it is less sensitive to experimental noise and small flow distortions.

In axisymmetric flows the results obtained for the left and right side of the

tube axis within the meridional plane should display a mirror-symmetry. We have

considered both sides independently to check that the symmetry of the flow is

indeed preserved, and to improve the statistics of the analysis.

As shown in Fig. 5.12 (z0 = 1.50 mm and 1.60 mm) in the laminar regime
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both vortex size and intensity are close to zero for most of the cycle. Only at

the time phases where the velocity magnitude is largest (ω0t = 0 and π) they

show slightly non-zero values due to random fluctuations distributed all around

the interrogation region that have remained even after the laminar base flow has

been subtracted. Nevertheless, at these driving amplitudes no important isolated

vorticity domains have been detected, and it is not possible to define the center

of vorticity.

Vortex size and intensity in the vortical flow are periodic in time, with half the

driving period. The largest values of size and intensity are found at time phases

slightly shifted from ω0t ≃ π/2 and 3π/2. These same temporal trends were

described for the radially averaged rms fluctuations. It is thus indubitable that the

increase of the velocity fluctuations reflects the formation of local vorticity domains

in the meridional plane of the tube, that we call vortices. The appearance of these

vortices can also be observed in Fig. 5.11 where the vorticity field is depicted for

an oscillation cycle. The presence of a temporal shift was also observed for the

radially averaged rms fluctuations, and it was attributed to a latency time for

generation of the vortices.

We can make connection with the flow structure observed in the laminar regime

at the same driving frequency (Figs. 5.4, 5.8) to realize that precisely at the time

phases ω0t = π/2 and 3π/2 the velocity magnitude is very small along the whole

tube diameter and the quiescent points tend to rapidly move toward the tube

axis. Therefore, it seems plausible to infer that from these time phases onwards

the laminar flow is more likely to become unstable and induce the formation of the

vortices. These time periods coincide with the time periods where largest values

of the secondary vorticity field were observed (π/2 . ω0t . π, 3π/2 . ω0t . 2π).

As the driving amplitude is ramped up, vortex size and intensity tend to de-

crease. At this point it is difficult to discern whether this effect is due to an actual

decrease of the size of the regions with large vorticity values. The position of the

vortices shifts slightly upward or downward in the interrogation region when the

driving amplitude is modified (Fig. 5.12(c)). Since the vortex domains extend over

approximately 50 mm in the vertical direction, their relative vertical position in

the interrogation region (of size about 100 mm) may induce considerable changes

in the vortical flow structure, and consequently in the computed vortex properties.

For this reason a more comprehensive analysis of the vortex properties, including

all seven vertical regions, will be addressed in Sec. 6.1.

In Fig. 5.12(c,d) the position of the center of vorticity (cv) is tracked along

a complete period, for z0 > z∗1 . The vortices are present at well defined time

intervals, π/4 . ω0t . π and 5π/4 . ω0t . 2π, and vanish at the remaining lapses

of time. The vertical motion displayed by the cv during an oscillation period is
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similar at different z0, although the precise vertical position of the cv does not

coincide. The vortices move upward during the first half period, making a vertical

translational displacement of about 20 mm, and go downward in the second half

period, covering the same distance and recovering their initial vertical position

after a complete period. Notice that the displacement is one order of magnitude

larger than the amplitude of oscillation of the piston, z0. The vertical position of

the geometric center of the vortices, zcenter, displays a temporal behavior analogous

to zcv, with upward/downward motion over a complete period.

The radial position of the cv remains constant around a fixed position, rCV =

8 ± 3 mm, and does not significantly change with z0 for all explored driving

amplitudes. This position coincides with the location of the peak observed for

the time averaged rms fluctuations of ur (Fig. 5.3(b)). The radial position of the

geometric center of the vortices remains constant over a time period and does not

change appreciably with z0. It is placed at rcenter = 13 ± 2 mm, which is slightly

further away from the tube axis than the radial position of the cv. We can make

connection with the radial profile of the time averaged rms velocity fluctuations

to realize that rcenter corresponds to the minima of the rms fluctuations of uz.

Finally, by comparing filled and empty symbols in Fig. 5.12, we check that

the axial symmetry is preserved for the defined vortex properties at all driving

amplitudes in the range 0.20 − 2.00 mm. We can conclude that the vortical flow

is indeed axisymmetric.

5.3.5 Large driving frequencies

We extend the study at local scale of the first hydrodynamic instability of the

laminar oscillatory flow to larger driving frequencies. We have observed that the

route from laminar to vortical flow exhibits qualitative differences as the charac-

teristic timescale of the oscillatory driving increases. In analogy to the laminar

flow, the structure of the vortical flow also becomes more complex at larger driving

frequencies. We study the onset of the instability and the structure of the vortical

flow at the following driving frequencies: ω0 = 37.1, 44.0, 56.5 rad/s.

First resonance frequency

We first focus on the driving frequency of the first resonance, ω0 = 37.1 rad/s

(De = 70.4). At this resonant frequency the critical amplitude for the laminar

flow to become unstable is z∗1−up = 1.25± 0.05 mm.

In Fig. 5.13 (a,b) we show the time averaged velocity fluctuations obtained

when ramping up the driving amplitude. The dimensionless rms velocity fluctua-

tions computed for this frequency show very similar features to those for ω0 = 34.1



5.3. First instability: loss of vertical translational symmetry 103

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

r/a

〈σ
u

z
〉 t

 

 

z0 = 0.45 mm

1.10
1.20
1.25
1.30
1.45

(a)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

r/a

〈σ
u

r
〉 t

(b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ω0t

〈σ
u

z
〉 r

 

 

(×π)

(c)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

ω0t

〈σ
u

r
〉 r

 

 

(×π)

(d)

Figure 5.13: Time averaged (a,b) and spatially averaged (c,d) dimensionless rms fluctu-
ations exhibited by the vertical and radial components of the velocity. Different symbols
correspond to increasing driving amplitudes. The driving frequency is ω0 = 37.1 rad/s
(De = 70.4).

rad/s. The time-averaged fluctuations of uz and ur increase very abruptly at z∗1−up;

the fluctuations of uz display an M-shape within the laminar regime (z0 = 0.45,

1.10, 1.20, 1.25 mm) and transition towards a bell-shape with two symmetric sec-

ondary peaks in the vortical flow (z0 = 1.30, 1.45 mm); the fluctuations of ur are

nearly zero in the laminar regime but exhibit a neat M-shape in the vortical flow.

Regarding the temporal behavior, in Sec. 4.1 we found that resonant and non-

resonant frequencies behaved very differently in the laminar regime: the velocity

at the tube axis for the resonant frequencies was in phase (or in phase opposi-

tion) with the piston position, whereas for non-resonant frequencies velocity and

piston position were in quadrature. We want to explore whether these temporal

differences also manifest themselves in the vortical flow.

In Fig. 5.13(c,d) we show the velocity fluctuations averaged over the radial

coordinate for ω0 = 37.1 rad/s. The fluctuations exhibit indeed a qualitative dif-

ference with respect to the results obtained at ω0 = 34.1 rad/s, that matches our

expectations. The spatially-averaged fluctuations of uz in the laminar flow are

qualitatively similar to those measured at 34.1 rad/s but appear shifted by a time

phase of about π/2 (their largest values are found now close to ω0t ≃ π/2, 3π/2,
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and their minima at ω0t ≃ 0, π). As the instability threshold is crossed the am-

plitude of the fluctuations does not change significantly but the time phase shifts

progressively up to about π/2. This shift of the time phase of the rms fluctua-

tions by π/2when the vortical flow sets in is much more clear for the fluctuations

of ur. Whereas in the laminar regime they are nearly 0, above the critical driving

amplitude they reach their largest value at ω0t = 0 and π. At ω0t = π/2 and 3π/2

the fluctuations decrease and the vortices fade away.

Larger non-resonant frequencies

At driving frequencies moderately larger than the first resonant frequency, e.g.

ω0 = 44.0 rad/s (De = 83.5), the laminar velocity profile is still very similar to

the laminar profile obtained at ω0 = 31.4 rad/s and ω0 = 37.1 rad/s. It is formed

by three concentric layers that oscillate with the periodicity of the driving (see

Sec. 4.2, Figs. 4.16, 4.18).

Remarkably, however, a qualitatively different route from laminar to vortical

flow has been observed at ω0 = 44.0 rad/s. At this frequency, the critical am-

plitude at which the laminar flow becomes unstable is z∗1−up = 2.6 ± 0.1 mm.

The destabilization of the laminar regime is particularly difficult to follow experi-

mentally because the translational vertical symmetry and the axial symmetry are

broken almost at the same critical driving amplitude. This is shown in the Pipkin

diagram of Fig. 5.1.

The main new features of the rms velocity fluctuations measured at ω0 = 44.0

rad/s lie on the time-averaged fluctuations of ur (Fig. 5.14(b)). They do not show

the M-shape observed at ω0 = 31.4 rad/s. Instead, a prominent peak appears at

the tube axis as the unstable flow sets in. This abrupt increase of the fluctuations

at the symmetry axis accounts for the early breakage of the axial symmetry at

z∗2−up = 2.7 mm. Thus at this driving frequency the fluid flow loses the vertical

translational and axial symmetry almost at a the same critical amplitude (z∗1−up ≃

z∗2−up). Only for z0 = 2.6 mm large fluctuations are observed for uz but not yet

for ur.

The radially-averaged fluctuations of uz (Fig. 5.14(c)) show a complicated

temporal dependence in the unstable flow, with no prevailing periodicity. The

corresponding fluctuations of ur are largest at ω0t ≃ π/2 and 3π/2, similarly to

the results reported for the lower non-resonant frequency ω0 = 31.4 rad/s.

We finally study an even larger non-resonant frequency, ω0 = 56.5 rad/s (De =

107.4). This particular driving frequency is analogous to the frequency ω0 =

31.4 rad/s that we have studied in great detail in Sec. 5.3.1, in the sense that

it is slightly smaller than a resonant frequency (in this case the second resonant
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Figure 5.14: Time averaged (a,b) and spatially averaged (c,d) dimensionless rms fluctu-
ations exhibited by the vertical and radial components of the velocity. Different symbols
correspond to increasing driving amplitudes. The driving frequency is ω0 = 44.0 rad/s
(De = 83.5).

frequency). The study of the flow behavior at this driving frequency will help

in elucidating the influence that the structure of the laminar flow has on the

spatio-temporal dynamics of the vortical flow.

The laminar velocity profile at ω0 = 56.5 rad/s consists of five concentric

layers (Fig. 4.18). The time-averaged rms velocity fluctuations in the laminar flow,

shown in Fig. 5.15(a,b), exhibit a qualitatively similar radial dependence with four

symmetric peaks. Despite this additional spatial complexity, the overall trends of

the velocity fluctuations at this frequency are comparable to those observed at

ω0 = 31.4 rad/s. In particular, as the driving amplitude is ramped up the time-

averaged fluctuations show an abrupt increase, now at z∗1−up = 0.7 ± 0.1 mm. In

the vortical flow, the fluctuations of uz display a central peak with two additional

smaller symmetric elbows found at r/a = ±0.5 and ±0.75. The fluctuations

of ur exhibit a symmetric double peak with acute minima at the axis and at

r/a = ±0.40. This structure reveals the formation of two toroidal vortices (or two

symmetric pairs of vortices if measured in the meridional plane of the tube). We

can tell from the magnitude of the time-averaged fluctuations that the inner pair

of vortices is more intense. The temporal dependence of the fluctuations displays
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Figure 5.15: Time averaged (a,b) and spatially averaged (c,d) dimensionless rms fluctu-
ations exhibited by the vertical and radial components of the velocity. Different symbols
correspond to increasing driving amplitudes. The driving frequency is ω0 = 56.5 rad/s
(De = 107).

also similar trends to those observed at ω0 = 31.4 rad/s. The largest fluctuations

of uz and ur in the vortical flow occur at ω0t . π/2 and 3π/2.

Figures 5.16 and 5.17 show the velocity and vorticity fields of the oscillatory

vortical flow at ω0 = 56.5 rad/s and z0 = 1.30 mm (vortical flow), for a complete

time period. And in Fig. 5.18 we depict the corresponding vortex properties for

this same driving amplitude. Vortex size and intensity (panels (a,b)) follow the

periodicity of the driving and exhibit comparable temporal trends as described for

ω0t = 31.4 rad/s (Fig. 5.12). From panels (c), (d) we observe that, regarding the

radial location of the two vortices on each side of the axis, they remain nearly fixed

at radial positions rcv ≃ 4 and 15 mm. Around ω0t ≃ π, 2π the outer vortices

vanish and the inner ones move slightly outward. Regarding their vertical position,

the two vortices on each side keep moving up and down, following a complex

temporal evolution.
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Figure 5.16: Velocity field obtained at ω0 = 56.5 rad/s and z0 = 1.30 mm, in Reg. 4.
Eight different equispaced time phases are shown, covering a complete oscillation period.
The colorbar corresponds to the magnitude of the velocity. The arrows (on a different
scale in each panel) indicate the direction and relative magnitude of the velocity field.
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Figure 5.18: Vortex properties (vortex size (a), vortex intensity (b), vertical cv position
(c), radial cv position (d)) computed for ω0 = 56.5 rad/s and z0 = 1.30 mm (Reg. 4).
Filled and empty symbols correspond to right and left sides of the tube axis, respectively.

5.4 Second instability: loss of axial symmetry

This section is devoted to the study of the transition from axisymmetric to non-

axisymmetric vortical flows. We use the statistical methods described in Sec. 5.3 to

identify the threshold for the onset of this second instability and to characterize

the structure of the resulting secondary flow. We focus the analysis again on

the central region of the cylinder (Reg. 4) and the particular driving frequency

ω0 = 31.4 rad/s.

5.4.1 Onset of the non-axisymmetric vortical flow

The onset of the second instability can be identified by analysing the shape of

the rms velocity fluctuations. In Fig. 5.19 we show the fluctuations measured at

increasing driving amplitudes, z0 > z∗1 , for the two components of the velocity,

averaged in time (top panels) and over the radial coordinate (bottom panels). The

radial profile of the time-averaged fluctuations of both uz and ur systematically

decreases as the driving amplitude is ramped up beyond z0 = 2.00 mm. The

symmetric bell shape and the M-shape with a marked minima at the tube axis



5.4. Second instability: loss of axial symmetry 109

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

r/a

〈σ
u

z
〉 t

 

 

z0 = 2.00 mm

2.44
2.90
3.00
3.10
3.90
4.88
5.36

(a)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

r/a

〈σ
u

r
〉 t

 

 (b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω0t

〈σ
u

z
〉 r

 

 

(×π)

(c)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

ω0t

〈σ
u

r
〉 r

(d)

(×π)

Figure 5.19: Time averaged (a,b) and spatially averaged (c,d) dimensionless rms fluctua-
tions exhibited by the vertical and radial components of the velocity. Different symbols
correspond to increasing driving amplitudes (z0 ≤ 2.00 mm). The frequency is kept
constant at ω0 = 31.4 rad/s (De = 59.7).

observed, respectively, for the fluctuations of uz and ur in the vortical flow, are

both preserved up to z∗up−2 = 3.10 ± 0.10 mm. Above this critical amplitude the

uz fluctuations lose their axial symmetry and peak a bit to the left side of the

tube. Simultaneously, the fluctuations of ur loose the M-shape and increase at

the tube axis. Thus, above this driving amplitude the axisymmetric vortical flow

gets distorted and evolves towards a complex non-axisymmetric vortical flow, that

is described in detail in Sec. 5.4.2.

Regarding the spatially averaged rms fluctuations, the well-defined temporal

periodicity exhibited by the fluctuations in the axisymmetric vortical flow pro-

gressively vanishes as the driving amplitude is increased above 2.00 mm. Once

the non-axisymmetric vortical flow sets in, the rms fluctuations of both uz and ur
become featureless and follow with difficulty the periodicity of the driving.

Hysteresis

By ramping down the driving amplitude, we have found that this second hydro-

dynamic instability also presents hysteresis. At this particular frequency and in-
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terrogation region the hysteresis in z0 is H = 0.35±0.10 mm. Again, the presence

of hysteresis implies that the transition from axisymmetric to non-axisymmetric

vortical flow is also subcritical.

The hysteretic region observed for this second hydrodynamic instability for all

the explored range of driving frequencies is depicted, in green, in Fig. 5.6. Note

that the amount of hysteresis measured for this second instability is typically much

larger than the hysteresis determined for the first instability. No clear trends are

observed in terms of the driving frequency (or De).

5.4.2 Local structure of the non-axisymmetric vortical flow

Although the spatial organization of the flow is much more complex in the non-

axisymmetric vortical regime, the flow still follows the periodicity of the applied

driving. In Figs. 5.20 to 5.25 we show the velocity and vorticity fields, and the

velocity divergence, in a complete period measured at z0 = 3.10 and 4.88 mm and

at ω0 = 31.4 rad/s.

As shown in Figs. 5.20, 5.21 the onset of vortical flow distortions occurs at

time phases close to ω0t ≃ π/4 and 5π/4. At z0 = 3.10 mm the vortices are

still symmetric and resemble the structure of the vortices observed in the vortical

flow regime. However at time phases close to ω0t = π/4 and 5π/4 the velocity

field looses the axial symmetry. In particular some velocity vectors cross the

symmetry axis, moving toward a preferred direction. Note that, although the

rescaled laminar flow has been subtracted, the values of the velocity magnitude

and vorticity (color bars) have considerably increased with respect to those of the

axisymmetric vortical flow.

At z0 = 4.88 mm the axial symmetry is perpetually broken. As shown in Figs.

5.23, 5.24, the velocity and vorticity fields show a clear asymmetry with respect

to the tube axis. Remarkably, the periodicity is still preserved in average.

We have computed the divergence of the in-plane components of the velocity

field, ∇‖ · u, to detect the possible existence of an out-of-plane component of the

velocity, uθ. At the onset of the non-axisymmetric vortical flow, the divergence

field is still fairly isotropic (Fig. 5.22). However, the typical values of the diver-

gence are considerably larger here than for the axisymmetric vortical flow, where

they were generally below 100 s−1. When the flow is non-axisymmetric over the

complete oscillation period ∇‖ · u (Fig. 5.25) exhibits some heterogeneities that

reveal the presence of a non negligible uθ in some parts of the interrogation region.
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Figure 5.20: Velocity field obtained at ω0 = 31.4 rad/s and z0 = 3.10 mm, in Reg.

4. Eight different equispaced time phases are shown, covering a complete oscillation
period. The colorbar corresponds to the velocity magnitude. The arrows (on a different
scale in each panel) indicate the direction and relative magnitude of the velocity field.
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Figure 5.21: Vorticity field obtained at ω0 = 31.4 rad/s and z0 = 3.10 mm, in Reg.

4. Eight different equispaced time phases are shown, covering a complete oscillation
period. The colorbar corresponds to the vorticity field. The arrows (on a different scale
in each panel) indicate the direction and relative magnitude of the velocity field.
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Figure 5.22: Divergence field obtained at ω0 = 31.4 rad/s and z0 = 3.10 mm, in Reg.

4. Eight different equispaced time phases are shown, covering a complete oscillation
period. The colorbar corresponds to the divergence field. The arrows (on a different
scale in each panel) indicate the direction and relative magnitude of the velocity field.
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Figure 5.23: Velocity field obtained at ω0 = 31.4 rad/s and z0 = 4.88 mm, in Reg.

4. Eight different equispaced time phases are shown, covering a complete oscillation
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scale in each panel) indicate the direction and relative magnitude of the velocity field.
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Figure 5.24: Vorticity field obtained at ω0 = 31.4 rad/s and z0 = 4.88 mm, in Reg.

4. Eight different equispaced time phases are shown, covering a complete oscillation
period. The colorbar corresponds to the vorticity field. The arrows (on a different scale
in each panel) indicate the direction and relative magnitude of the velocity field.
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Figure 5.25: Divergence field obtained at ω0 = 31.4 rad/s and z0 = 4.88 mm, in Reg.

4. Eight different equispaced time phases are shown, covering a complete oscillation
period. The colorbar corresponds to the divergence field. The arrows (on a different
scale in each panel) indicate the direction and relative magnitude of the velocity field.



Chapter 6

Large scale spatio-temporal

flow organization and

instability mechanisms

In the previous chapter the transition from laminar to more complex flows was

analyzed at the central region of the tube. The critical amplitudes for the onset

of the axisymmetric and non-axisymmetric vortical flows were determined in the

whole range of applied forcing frequencies, and the spatio-temporal flow structure

in this particular region was characterized for some particular frequencies. How-

ever, the fluid flow also presents a large scale spatio-temporal organization, which

is studied in the present chapter.

In Sec. 6.1 we study the organization of the flow and its dynamics on short

time scales (of the order of a few oscillation periods) in seven different regions of

the tube covering the whole tube length.

A slow temporal evolution of the flow behavior at long time scales (much

longer than the relaxation time of the fluid) has also been detected, specially in

tube regions close to the driving piston. A characterization of the flow dynamics

at long time scales in two different tube regions is addressed in Sec. 6.2.

Finally in Sec. 6.3 we discuss about possible mechanisms responsible for the

onset of the observed hydrodynamic instabilities.

6.1 Spatial organization of the flow over the tube

length on short time scales

As described in Sec. 4.2, the laminar flow is invariant along the vertical coordi-

nate, except for the vicinity of the top and bottom ends. It thus suffices to analyze

117
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Figure 6.1: Sketch of the seven different regions chosen to characterize the velocity field
over the entire tube length.

the flow organization in a fixed central tube region. However, in more complex

flows the vertical translational invariance is not preserved. Therefore, it is conve-

nient to measure the velocity field over the whole tube length to get a complete

characterization of the flow.

6.1.1 Vertical reconstruction of the flow

In order to experimentally measure the fluid velocity in the entire tube, we first

added a divergent lens in the laser path (Sec. 2.2) to make the interrogation region

of the largest possible size, 10×5 cm2. Next, as shown in Fig. 6.1, the tube length

was virtually divided in seven regions (Region 1 was located at the bottom end

of the tube and Region 7 at the top) of 100 mm length each, with an overlap

of about 25 mm between consecutive regions. Using this method we could cover

most of the tube length, 85 mm from the bottom piston and up to 555 mm (5

mm from the top lid). The region next to the driving piston (z < 85 mm) was not

accessible with the camera and could not be characterized. A detailed study of

the oscillatory flow in this region, addressed in Sec. 6.3.1, was possible thanks to a

modification of the original piston. The velocity field in each region was measured

independently. We made sure that the flow history was identical in equivalent

experiments (Sec. 5.2), so that quantitative comparison between measurements in
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Figure 6.2: Reconstructed velocity field (ω0 = 31.4 rad/s, z0 = 1.66 mm) obtained by
matching regions 3 and 4, at a common time phase ω0t ≃ 0.51π.

different regions was meaningful.

In the post-processing of the images the entire velocity field was reconstructed

by spatially matching consecutive regions obtained at equivalent time phases. Oc-

casionally, in order to improve the continuity of the velocity field between consecu-

tive regions, a small spatial shift (±5 mm) was allowed in the matching process. In

Fig. 6.2 we show an example of the reconstructed velocity field obtained by joining

Regs. 3 and 4. However, this reconstruction process has been found particularly

challenging at large driving amplitudes and specially in the regions close to the

bottom piston. In these particular cases there is a remarkable lack of continuity

of the velocity field between images in adjacent regions. It cannot be eliminated

even by allowing a small spatial shift. Possible reasons for these difficulties are

discussed in Sec. 6.2.

6.1.2 Shift of the onset of the instability

An analysis of the flow structure over the entire tube length reveals that close

to the bottom piston the laminar flow becomes unstable at considerably smaller

driving amplitudes than in other regions. We have determined the critical driving

amplitude, z∗1−up, at ω0 = 31.4 rad/s in all seven regions. It is clear from Fig. 6.3
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Figure 6.3: Stability phase diagram obtained for all seven regions at ω0 = 31.4 rad/s.
The laminar base flow is represented in pale blue, the axisymmetric vortical flow in
orange and the hysteretic region in dark blue.

that there is indeed a systematic shift of the critical amplitude as we move away

from the driving piston. The lowest critical amplitude is obtained in Reg. 1, 2, 3,

for which z∗1−up = 1.50 ± 0.02 mm. At this driving amplitude the flow is vortical

in these bottom regions, but remains laminar in the upper regions (Reg. 4, 5, 6,

7). At the larger amplitude z0 = 1.62 ± 0.02 mm the vortical flow expands up

to Reg. 4 (in agreement with the results described in Sec. 5.3), while the flow in

upper regions remains laminar. The fluid flow is vortical over the whole tube only

above z0 = 1.80± 0.02 mm.

Figures 6.4, 6.5 and 6.6 exemplify this progressive onset of the instability. The

figures show the velocity and vorticity fields obtained at a meridional plane of the

tube at z0 = 1.40, z0 = 1.66, and z0 = 1.82 mm, and two given time phases, ω0t =

π and 3π/2. In the laminar regime the reconstruction of the velocity and vorticity

fields between consecutives regions is satisfactory. Vertical translational invariance

is verified. Only a small recirculation zone of about 20 mm height is detected next

to the top end of the tube, at the time phase ω0t = π corresponding to the largest

velocity magnitudes in the oscillation (the extent of the fluid recirculation zone

next to the bottom piston will be determined in Sec. 6.3.1).

At larger amplitudes (z0 = 1.66 and 1.82 mm), the matching process for the

secondary flow between interrogation regions works well in most cases. However,

note that some particular regions have needed a slight vertical shift upwards or

downwards in order to improve the agreement. We have distinguished them with

a dashed line contour. Unfortunately in particular regions, specially close to the

bottom piston, the match is not feasible. This is marked in red in the figures.
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Figure 6.4: Velocity (arrows, a slightly different scale on each region) and vorticity (color
code) fields measured at ω0 = 31.4 rad/s and z0 = 1.40 mm in all seven tube regions
(left: ω0t = π, right: ω0t = 3π/2).
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Figure 6.5: Velocity (arrows, a slightly different scale on each region) and vorticity (color
code) fields of the secondary vortical flow measured at ω0 = 31.4 rad/s and z0 = 1.66
mm in all seven tube regions (left: ω0t = π, right: ω0t = 3π/2).
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Figure 6.6: Velocity (arrows, a slightly different scale on each region) and vorticity (color
code) fields of the secondary vortical flow measured at ω0 = 31.4 rad/s and z0 = 1.82
mm in all seven tube regions (left: ω0t = π, right: ω0t = 3π/2).
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At z0 = 1.66 mm (Fig. 6.5) the secondary vortical flow extends up to Reg. 4.

It displays four pairs of symmetric vortices stacked along the tube, and separated

by a distance similar to the tube diameter. In the upper regions the flow looks

featureless because the rescaled laminar base flow has been previously subtracted.

The axial symmetry of the vortical flow is preserved all along the tube, except in

the vicinity of the top lid, as discussed earlier.

At the largest driving amplitude, z0 = 1.82 mm (Fig. 6.6), the secondary

vortical flow reaches the entire tube length. Six pairs of vortices are formed, that

present remarkable differences in morphology. In particular some vortices are very

elongated and extend over approximately 70 mm (observed in Regs. 2, 5), whereas

other vortices extend only over approximately 40 mm (observed in Reg. 3, 4, 6).

In the following, a quantitative analysis of the diversity of morphologies ex-

hibited by the vortices is performed in terms of the vortex properties (vortex size

and vortex position) previously defined in Sec. 5.3.4.

6.1.3 Large scale spatio-temporal vortex properties

The size of the large vorticity regions of the vortical flow generated at ω0 = 31.4

rad/s, z0 = 1.82 mm, and computed in all regions is shown in Fig. 6.7. The

vortex size obtained for Regs. 2 and 5 is considerably larger than for the other

regions. The vortex intensity, not shown, presents similar trends. These results

are in agreement with previous observations done in the context of Fig. 6.6, where

lengthened vortices were detected precisely in these regions. The vortex size seems

therefore a good marker to track the vortex morphology of the vortical flow along

the tube length. The temporal evolution of the vortices on short time scales follows

the same trends as those described for Reg. 4 (Sec. 5.3.4).

The morphology of the vortices can also be studied in terms of the magni-

tude of the rms velocity fluctuations. In Fig. 6.8 we show the time-averaged rms

fluctuations of the vertical and radial components of the velocity, measured in all

regions. In general, regions with a large vortex size (and lengthened vortices),

Regs. 1-2-5, exhibit small values of the fluctuations for both uz and ur. Since

the vortices extend over most of the interrogation region, the velocity field does

not greatly change along the vertical coordinate, which results in small values of

the fluctuations. Conversely, the regions with small vortex sizes (and localized

vortices), Regs. 3-4-6, exhibit larger velocity fluctuations. In these regions the

vortices cover a rather small portion of the interrogation region, and the velocity

field shows therefore a manifest vertical dependence.

The radial and horizontal position of the vortices in the tube is shown in Fig.

6.7(b,c). While the radial position of the cv in all regions remains constant over
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Figure 6.7: Vortex properties (vortex size (a), radial cv position (b), vertical cv position
(c), vortex trajectories (d)) computed in the seven tube regions at ω0 = 31.4 rad/s and
driving amplitude z0 = 1.82 mm. Filled and empty symbols correspond to right and
left sides of the tube axis.

a complete period at rCV = 8 ± 3 mm, the vertical position exhibits a periodic

translational motion. As described for Reg. 4 (Sec. 5.3.4) the vortices move upward

in the first half period and downward in the second half, and at time phases ω0t & 0

and π the large vorticity domains vanish. All vortices move synchronously along

the vertical axis, displaying a similar temporal evolution over a complete period.

We finally depict the vortex trajectories in a r − z plot (Fig. 6.7(d)). The

mean vertical separation between consecutive vortices is not constant over the

tube length. However, in the upper regions (Regs. 4-7), where the matching of

the velocity field of adjacent regions is more satisfactory, this distance is typically

50 mm. It coincides with the diameter of the cylinder.
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Figure 6.8: Rms of the time averaged fluctuations of the vertical (left) and radial (right)
components of the velocity measured at ω0 = 31.4 rad/s and z0 = 1.82 mm. Different
colors correspond to different interrogation regions.

6.2 Flow on long time scales

In all the flow regimes investigated so far (laminar, axisymmetric vortical, non-

axisymmetric vortical) the fluid flow follows the periodicity of the imposed driving

at time scales comparable to the period of the oscillations, T0 = 2π/ω0. At

ω0 = 31.4 rad/s for instance, the time period is T0 = 0.2 s, which is about ten times

shorter than the characteristic relaxation time of the fluid (λ = 1.9 s). On these

short time scales the flow is quasi-steady, in the sense that velocity and vorticity

fields repeat themselves almost identically every time period. Accordingly, the

vortices observed in the vortical regimes are also quasi-steady.

However, at much longer time scales (typically t ≥ 25λ), although the flow

follows the driving, an additional slow spatio-temporal evolution of the vortical

flow is observed. This effect is more pronounced in the regions next to the driving

piston.

Figure 6.9 shows the temporal evolution of the velocity and vorticity fields in

the bottom and central regions (Regs. 1 and 4) at different time windows separated

by lapses of time of 45 s each. Before recording the temporal sequence we let the

fluid oscillate a time t0 = 75 s, similar to the waiting time (tw) that was spent in

the experiments reported in previous sections. Comparing the flow organization

measured at an equivalent time phase (ω0t = 3π/2) we can visualize the evolution

of the fluid flow on long time scales.

In the central region of the tube the vortical flow is steady, also on these long

timescales. The vorticity field shows no significant differences and recovers an

equivalent spatial structure after every lapse of 45 s, up to a total of 135 s, which

is the longest time explored.
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Conversely, the flow measured in the bottom region preserves its spatial struc-

ture unaltered only over the first time interval of 45 s. In the following time window

(t0 + 90 s) the position of the pair of vortices has moved upwards a distance of

about 20 mm. At t0 + 135 s the vortices are no longer within the interrogation

region. We presume that they have eventually moved upwards. And a new pair

of vortices has emerged in the bottom part of the region. Thus, in the vicinity

of the driving piston the spatio-temporal dynamics of the flow is more complex.

The flow organization follows the periodicity of the driving on short time scales,

a few periods T0, but it becomes non-periodic at longer time scales. This slow

evolution of the flow is less noticeable in regions placed further apart from the

piston. Nevertheless, we have checked that at large enough driving amplitudes or

long enough times it eventually affects the entire tube length.

This long time scale dynamics is surely responsible for the lack of continuity

observed in the reconstructed velocity field in the regions of the tube near the

piston (Sec. 6.1).

6.3 Instability mechanisms

This section presents a discussion of mechanisms that can be responsible for the

onset of the laminar to vortical flow hydrodynamic instability uncovered and in-

vestigated in detail in previous sections.

It is clear that fluid elasticity plays a major role, since experiments performed

by Torralba et al. (2007) with a Newtonian oil of similar density and shear viscosity

at comparable drivings did not exhibit such instability. However, the instability

may be not purely elastic. Additional factors may also contribute to make the

laminar flow unstable. In the sequel, we evaluate in particular the influence of the

finite length of the tube, by quantifying the fluid recirculation close to the driving

piston and its propagation towards the bulk flow. The role of shear banding is

also investigated, by performing experiments with a diluted non-shear-banding

wormlike micellar solution. This section ends with a discussion on other potential

triggering mechanisms.

6.3.1 Fluid recirculation

The finite length of the tube used in the experiments (L = 60 cm, aspect ratio

L/2a = 12) causes unavoidably a fluid recirculation at the top and bottom ends.

Since the oscillatory motion is generated by the piston motion at the bottom end,

the recirculation zone is presumably more important in this region.
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Figure 6.10: Velocity (arrows, a slightly different scale on each panel) and vorticity
(color code) fields, measured at ω0 = 31.4 rad/s in Reg. 0, at two given time phases
ω0t = π, 3π/2 and three different driving amplitudes: (a) z0 = 1.13 mm; (b) z0 = 1.60
mm; (c) z0 = 2.35 mm. The temporal evolution of the height of the recirculation zone
(Recirc) has been evaluated for the different amplitudes.

In order to study the fluid flow in the region adjacent to the piston we in-

troduced a modification of the original setup consisting of enlarging the piston

length. As described in Sec. 6.1 in the original setup the region of the tube close

to the piston was not accessible with the camera (Fig. 6.1). In particular we could

not measure the velocity field in a distance less than 85 mm from the piston end.

A new cylindrical piece of 90 mm length, made of Teflon, carefully adjusted to the

diameter of the tube, was attached to the original piston so that the end of the

enlarged piston was now accessible with the camera. Note that with this setup

modification the length of the fluid column was reduced by a 15%. The length

of the fluid column might in turn modify slightly the spatial flow organization,

but this study falls beyond the scope of the Thesis. We call Region 0 the tube

region next to the enlarged piston. In the following, we present a detailed study

of fluid recirculation in this region. The area of fluid recirculation has been identi-

fied with the area where the radial component of the velocity obtained from PIV

measurements is non zero. In Fig. 6.10 the velocity and vorticity fields measured

in Reg. 0, at ω0 = 31.4 rad/s and increasing driving amplitudes, are shown. In
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the laminar regime the recirculation zone is confined to a very small region next

to the tube end. As described in Sec. 4.2, it does not affect the bulk flow in the

upper regions. At z0 = 1.13 mm (panel a) the recirculation area extends up to 20

mm from the piston (about 4% the length of the fluid column). The size of the

recirculation area follows the periodicity of the driving, being more pronounced

at the time phases where the velocity and vorticity fields are largest (ω0t ≃ 0 and

π) and nearly zero at the time phases where the velocity magnitude is smallest

(ω0t ≃ π/2 and 3π/2).

When the vortical flow sets in (z∗Reg0 = 1.60 mm, panel (b)), the extent of

the fluid recirculation enlarges up to 30 mm (about 6% the length of the fluid

column). It is interesting to note that the first pair of vortices appears at the top

part of the interrogation region (zcv > 75 mm). They are not in contact with the

recirculation zone. Vortices and recirculation zone are separated by a region where

the flow is laminar. Besides, the vortices are more pronounced at the time phases

where the size of the recirculation zone is nearly zero (ω0t ≃ π/2 and 3π/2).

At larger driving amplitudes, although the size of the recirculation region does

not change appreciably, the vortices appear closer to the bottom piston. Above

z0 = 2.35 mm, as shown in Fig. 6.10 (panel c), the vortices eventually merge with

the recirculation region.

We have observed in Sec. 6.1 that the laminar flow becomes unstable earlier

(i.e. at smaller forcings) in the vicinity of the piston. It could be arqued therefore

that fluid recirculation favors the foramtion of vortex rings. The detailed obser-

vations presented in this section, however, show that vortical structures and fluid

recirculation do not overlap at the onset of instability. This prompts us to ex-

clude fluid recirculation as the triggering mechanism for the onset of the laminar

to vortical flow instability.

6.3.2 Role of shear banding

The viscoelastic fluid used in the experiments exhibits a nonlinear rheological

response for Wi > λγ̇c ≃ 1, followed by the formation of shear bands (Sec. 3.2).

In the vortical flow, where the typical applied driving amplitudes are large, the

mean shear rate of the fluid largely overtakes the critical shear rate (γ̇c). For

instance, close to the first resonant frequency (ω0 = 34.6 rad/s) where the critical

dimensionless driving for the first instability is smallest, Wi∗1−up = 1.8 > 1. It is

difficult therefore to isolate shear banding from fluid elasticity, and to elucidate

the possible influence of shear banding in triggering the instability.

In order to clarify the latter, we performed experiments with a more diluted

wormlike micellar solution, CPyCl/NaSal [66:40] mM. This solution is still elastic

but does not exhibit shear banding (Sec. 3.5).
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Figure 6.11: Dimensionless velocity magnitude at the tube axis vs. driving frequency.
Different lines correspond to different rheological values, and a = 25 mm (cylinder
radius).

Laminar oscillatory flow of the diluted wormlike micellar solution

We studied the laminar oscillatory pipe flow of the diluted wormlike micellar

solution. The theoretical frequency response predicted using the Maxwell model

is shown in Fig. 6.11. Although the linear viscoelasticity of this solution deviates

from the behavior described by the Maxwell model, this ideal frequency spectrum

is still useful to discuss the relevant driving frequencies for this fluid.

In the range of driving frequencies experimentally accessible, the fluid response

exhibits a larger number of resonant frequencies than the original concentrated

solution (Sec. 4.2). Since both the zero-shear viscosity and relaxation time of the

diluted solution are small, these material parameters are subjected to large exper-

imental relative errors (η0 = 3±1 Pa·s, λ = 0.3±0.1 s). The frequency response of

the diluted solution is very sensitive to small changes in the rheological properties,

as shown in Fig. 6.11. This makes it difficult to predict the actual structure of

the laminar flow, and make connection between experimental measurements and

theoretical predictions.

As shown in Fig. 6.12, the theoretical predictions based on the UCM model

lead to a number of concentric layers in the laminar flow that rapidly increases

with driving frequency. Up to nine domains are expected at ω0 = 75 rad/s.

Experimentally, at low driving frequencies (ω0 = 14.2 rad/s in the figure), the
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Figure 6.12: Experimental (left) and theoretical (right) velocity profiles obtained for
the diluted micellar solution at z0 = 1.00 mm and increasing driving frequencies: 14.2,
23.2, 40.5, 49.6 rad/s. The theoretical profiles have been obtained with η0 = 3 Pa·s and
λ = 0.3 s, using the UCM model predictions for the laminar flow.

velocity profiles follow the trends predicted theoretically with the Maxwell model:

no inner quiescent points are detected at this frequency, and the no slip condition

is accomplished at the boundaries. This is also true at slightly higher frequencies,

such as 23.2 rad/s, for which one pair of inner quiescent points is already present.

However, at larger frequencies (ω0 = 40.5 and 49.6 rad/s in the figure) the fluid

response starts to deviate from the theoretical predictions. In particular the ex-

perimental profiles exhibit a smaller number of concentric layers, and the velocity

magnitude is considerably smaller. The reason is that the linear rheological be-

havior of the diluted solution is not well described by the Maxwell model. We

did not carry out a detailed investigation of the frequency response of the diluted

solution in laminar flow. It is worth noting however that the determination of the

frequencies of resonance, through the measurement of velocity and phase lag at

the tube axis, could provide an accurate value of the main relaxation time of the

fluid, which is largely undetermined from linear rheological measurements.
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Flow stability

The laminar oscillatory flow of the diluted solution did not become unstable in

any of the experiments that were performed scanning the whole range of accessible

driving amplitudes and frequencies. In terms of dimensionless parameters for this

solution, this range corresponds to maximum values De ≃ 22 and Wi ≃ 5.4.

Note that the largest De experimentally accessible for the diluted ([66:40] mM)

micellar solution is much smaller than the critical De at which the concentrated

micellar solution ([100:60] mM) exhibited the onset of the laminar to vortex flow

instability, De & 45 (Sec. 5.3). On the other hand, the critical dimensionless

driving (Wi∗1−up) measured for the onset of the instability of the concentrated

solution exhibited a complicated frequency dependence. It oscillated in the range

1.8 < Wi∗1−up < 8.5. Consequently, it is difficult to judge whether the maximum

Wi experimentally accessible for the diluted solution was large enough to trigger

the flow instability.

Although the onset of a hydrodynamic instability has been observed for the

concentrated solution, which exhibits shear banding, and not for the diluted so-

lution, which does not shear band, it is not clear to us that shear banding is the

triggering mechanism of the instability. It is known after the work of Hu and Lips

(2005), Miller and Rothstein (2007), and Pipe et al. (2010) that shear bands take

a certain time, typically t & λ, to develop. The results provided in Appx. C for a

steady shear flow also point towards the same direction. Besides, in recent exper-

iments performed by Dimitriou et al. (2012) of large amplitude oscillatory shear

flows of the same concentrated micellar solution (CPyCl/NaSal [100:60] mM), the

formation of distinct shear bands was observed at time ratios De ≃ 1. In our

experiments the transition to vortical flow has been observed at 45 < De < 143,

corresponding to timescales of flow much shorter than the results previously re-

ported in the literature. We presume that these time scales are in fact too short

to form stable shear bands in the oscillatory flow.

6.3.3 Other potential mechanisms

The underlying mechanism for the onset of an oscillatory vortical flow in the

cylinder remains unsolved. But other possible triggering mechanisms could be

further investigated.

In the laminar flow regime the vorticity field organizes in well defined vortex

sheets, with alternate sign of the vorticity (Sec. 5.3). This flow organization results

in large vorticity gradients in the radial direction.

The presence of these large vorticity gradients in the laminar flow, and the

spatial structure of the toroidal vortices formed in the instability from laminar
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to vortical oscillatory flow, are both highly reminiscent of the characteristic flow

features accompanying the formation of vortex rings in Newtonian fluids.

In many flow configurations vortices form by rolling-up of vortex sheets which

separate at the edge of a body (Didden, 1979). Vortex formation also occurs in

impulsively-started flows around sharp edges. In the laboratory, vortex rings have

been produced by ejecting fluid from an orifice or nozzle of diameter D by the

motion of a piston pushing a column of fluid of length L (Didden, 1979; Glezer,

1988; Gharib et al., 1998). This results in the separation of a boundary layer

at the edge of the orifice or nozzle, the formation of a cylindrical vortex sheet,

and its subsequent spiral roll-up into a vortex ring, which moves downstream.

The trailing jet behind the vortex ring may eventually pinch-off, leading to an

isolated vortex ring moving downstream with a particular translational velocity.

The dimensionless piston displacement x(t)/D at which pinch-off occurs is known

as the formation number. This number for water lies typically in the range from

3.5 to 4.5 for a broad range of flow conditions (Gharib et al., 1998). The large

body of research carried out on the generation, formation and evolution of vortex

rings in Newtonian fluids has been reviewed by Shariff (1987).

While the formation of vortex rings in Newtonian fluids was observed for L/D

ratios larger than 1, vortex rings in the oscillatory pipe flow studied in this Thesis

were generated much more easily, at forcing amplitudes as low as 1.0 mm, i.e.

L/D ≃ 1.0/50 = 0.02. We argue that the structure of the flow of the micellar

solution, consisting of coaxial layers in alternating upward/downward motion,

results in cylindrical vortex sheets that are already detached from the cylindrical

lateral wall in the laminar flow and hence can roll-up into a vortex ring much more

easily. In support of this argument, Rosenfeld et al. (1998) showed numerically

for a Newtonian fluid that blunting the jet velocity profile at the nozzle exit plane

to a parabolic profile could reduce the formation number to approximately 1.

Another observation relevant to our work was made by Didden (1979), who

showed that in general the vorticity flux provided by the separated shear layer

is the main source of vorticity for the forming vortex ring. A termination of

the piston motion should inhibit the flow of shear layer vorticity and thus its

accumulation in the core region of the vortex ring. This being the case, the

circulation in the fully-formed vortex ring should be approximately equal to the

discharged circulation from the nozzle or orifice, a relation that was experimentally

verified by Gharib et al. (1998) for vortex rings in water.

In our setup the driving piston moves periodically forward and backward in

excursions of amplitude z0. The onset of vortical flow would be given, in this

framework, by a driving amplitude z0 equal to the formation number that would

correspond to that particular structure of the laminar flow, which is determined
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by the setup dimensions, fluid rheological parameters and, more importantly, by

the driving frequency ω0.

If this picture applies, many interesting questions will ensue. One of the most

relevant will be to unveil the mechanism by which the periodic motion of the

driving piston is able to stabilize an ensemble of isolated vortex rings, stacked

along the tube axis and displaying a time-periodic vorticity synchronized to the

oscillatory forcing. To the best of our knowledge such a fascinating spatiotemporal

arrangement of vortex rings has not been observed in any other flow.





Chapter 7

Conclusions

The subject of study of the present Thesis has been the oscillatory pipe flow of

viscoelastic fluids.

We have first studied the laminar flow, from a theoretical perspective, using

the Upper-Convected Maxwell and Oldroyd-B models. The validity of several

theoretical predictions has been checked experimentally using wormlike micellar

solutions.

For this purpose an experimental setup, consisting on a fluid-filled vertical

pipe on which a piston driven oscillatory flow is induced, has been designed and

assembled. The implementation of a time-resolved PIV technique with very good

spatial and temporal resolution has allowed to measure the 2D velocity field in

a meridional plane of the tube, and to characterize from it the response of the

fluid to the oscillatory forcing in a large range of accessible driving frequencies

and amplitudes.

We have studied, in second place, the onset of hydrodynamic instabilities in the

oscillatory pipe flow. We have observed that the laminar flow becomes unstable,

and evolves towards complex vortical flows, at increasing driving amplitudes. The

spatio-temporal dynamics of these complex flows has been studied experimentally.

The main results obtained can be summarized as follows:

Laminar oscillatory flow

Theoretical approach

In wall-bounded oscillatory flows of viscoelastic fluids the two characteristic lengths

of the Ferry waves, x0 (damping length) and λ0 (wavelength), together with the

137
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characteristic separation of the walls, a, define all the flow properties for fluid

models with a linear shear-stress equation in unidirectional flow. For fluids with a

single relaxation time, and in the inertialess regime (Re ≪ 1), the dependence on

x0, λ0 and a can be expressed in terms of three independent dimensionless groups,

tv/λ (viscous to relaxation time), De (relaxation time to driving period) and X

(viscosity ratio).

We have shown that in wall-bounded settings the possibility that shear waves

generated at different locations superpose themselves before decaying depends on

whether the system can be regarded as ’wide’ or ’narrow’, a property that can be

characterized by the dimensionless number Λve ≡ a/x0, the analogue of the Stokes

ratio for viscoelastic fluids. In ’wide’ systems (Λve > 1) the shear waves remain

localized near the walls, and the flow in the central core of the system is inviscid.

In ’narrow’ systems (Λve < 1) the shear waves interfere, giving rise to a resonant

flow at well defined frequencies of driving. In parallel plate geometry and tube

geometry resonances occur at universal values of the dimensionless ratio a/λ0.

At resonances the velocity at the center of the system is in phase with the

acceleration of the moving walls and its magnitude becomes strongly peaked.

Plotted as functions of a/λ0, magnitude and phase depend on Λve only through

tv/λ, the ratio of viscous to relaxation time.

Studying the Oldroyd-B constitutive equation has enabled us to show that a

Newtonian solvent contribution –even for extremely small ratios of the solvent

to the solution viscosity, X– makes the resonances to fade out, particularly as

the driving frequency increases. For realistic values of X (0.1 and above) the

oscillatory flow becomes nearly identical to the Newtonian one. We conclude

therefore that only special fluids such as wormlike micellar solutions (for which

X ≃ 0) are expected to exhibit velocity resonances. Moreover, since local values

of the shear rate drastically decrease above X = 0 we expect that Oldroyd-B fluids

with a realistic solvent contribution will remain laminar for a much larger range

of De, provided that Re remains small.

Experiments

We have presented an experimental investigation of the oscillatory piston driven

flow of a wormlike micellar solution (CPyCl/NaSal [100:60]mM) in the laminar

flow regime. The location of resonant peaks in the frequency response of the flow

has been determined very precisely using two independent approaches. First, reso-

nances have been identified by a huge increase of the velocity magnitude measured

at the tube axis. Second, at resonances the phase lag between the fluid velocity

at the tube axis and the piston position changes abruptly.
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The measured frequency response of the velocity in the tube axis, conveniently

decomposed in modulus and phase, is in quantitative agreement with linear theo-

retical predictions based on the UCM and Oldroyd-B models of the fluid rheology.

At small forcings these models reproduce the experimental data with great ac-

curacy. At resonances, however, the UCM model largely overestimates the fluid

response. The Oldroyd-B model can better reproduce the data at larger forcings

if a small newtonian solvent is included in a phenomenological way.

We have presented an accurate study of the laminar flow structure at resonant

and non-resonant frequencies. The shape of the radial velocity profiles has been

found to strongly depend on driving frequency. While at low frequencies all the

fluid moves in the same direction, the flow becomes much more inflectional as

the driving frequency increases and organizes in several concentric layers of up-

ward/downward motion. The no-slip condition at the walls is well satisfied in all

cases. We have tracked the quiescent points in the flow. The way they change

their location in time within an oscillation, and their dependence on frequency,

are both in good agreement with the theoretical predictions.

Finally, we have verified that the fluid response easily becomes nonlinear with

the driving amplitude as this amplitude increases. This effect is very prominent

at resonances. In order to capture the nonlinearities revealed by our experimental

data, a constitutive equation with a nonlinear equation for the shear stress would

be required, that could account for the nonmonotonicity of the shear flow curve

of micellar solutions.

Hydrodynamic instabilities

From laminar to complex spatio-temporal vortical flows

The oscillatory pipe flow has been investigated in the whole range of experimen-

tally accessible driving frequencies and amplitudes, and classified in three main

flow regimes: laminar, axisymmetric vortical, and non-axisymmetric vortical. By

ramping up and down the driving amplitude at constant frequency we have been

able to characterize the transition from laminar to more complex flows, under

controlled driving conditions.

The first hydrodynamic instability occurs when the laminar base flow becomes

unstable against the formation of axisymmetric toroidal vortices (vortex rings)

that appear distributed along the cylinder. The calculation of root-mean-square

fluctuations in the vertical direction of the vertical and radial components of the

velocity (averaged in time or over the tube diameter) has allowed to determine the

critical amplitude at which the instability sets in, in the central region of the tube,
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with high accuracy. In the laminar flow regime the velocity fluctuations are small

and correspond to the experimental uncertainties in the velocity measurements.

In the vortical flow, instead, an abrupt increase of the fluctuations is observed,

that accounts for the loss of the vertical translational symmetry and the formation

of vortices in the flow.

This transition exhibits hysteresis when the driving amplitude is ramped up

and down, which makes us presume that the bifurcation from the laminar flow

has a subcritical nature.

At progressively larger driving frequencies the route from laminar to axisym-

metric vortical flow presents qualitative differences. At resonances, differences in

the temporal behavior have been observed, similar to the temporal differences be-

tween the velocity profiles of the resonant and non-resonant frequencies predicted

and observed for the laminar oscillatory flow.

A second hydrodynamic instability occurs at even larger driving amplitudes,

when the vortical flow loses the axial symmetry. In this flow regime the vortices

are heavily distorted and no longer axisymmetric. Non-negligible values of the

divergence of the in-plane velocity field reveal the presence of non-zero azimuthal

velocity components (perpendicular to the interrogation plane). Since this transi-

tion also presents hysteresis when ramping the driving amplitude up and down, we

suggest that this second transition is also subcritical. When the fluid is oscillated

at frequencies slightly larger than the first resonant frequency, the laminar flow

evolves almost directly towards this non-axisymmetric vortical flow.

Flow organization at large scales

The velocity and vorticity maps of the vortical flow measured in a meridional

plane of the tube appear periodic in time, on time scales comparable to the driving

period. Interestingly, the vortex formation is favored in the acceleration phases of

the piston oscillation. Besides, we have uncovered an spatio-temporal dynamics

on long time scales (t≫ λ) that substantially modifies the flow organization. This

slow dynamics is more effective in the bottom half of the cylinder, specially next

to the driving piston.

A global inspection of the vortical flow along the tube length reveals that the

instability takes place earlier in the bottom part of the tube, in the vicinity of

the driving piston. Upon increasing the driving amplitude the boundary between

laminar and vortical flow progressively raises towards the top regions. And above

a critical driving amplitude the entire fluid flow is vortical.

The vortical flow organizes forming a set of toroidal vortices that are dis-

tributed along the cylinder. The vortex properties (size, intensity, position) have
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been tracked over a time period and over the tube length, for a driving frequency

just below the first resonance. Size and intensity of the vortices follow the period-

icity of the driving: the vortices are fully developed at the time phases where the

corresponding laminar flow exhibits the smallest velocity magnitude, and vanish

at the complementary time phases. The radial location of the vortices remains

fixed. However, the vortices display a periodic vertical motion synchronously in

all regions. The distance between vortices is not very systematic but in general it

is similar to the tube diameter.

At larger driving frequencies the structure of the vortical flow becomes more

complicated. It exhibits an increasing number of concentric vortex rings, of dif-

ferent radii, in accordance with the structure of the laminar flow.

Instability mechanisms

The mechanism triggering the hydrodynamic instability from the laminar to the

axisymmetric vortical flow is not yet clear. Fluid recirculation is present at the

tube ends, and extends with increasing driving amplitude. However, we have

observed that in the vortical flow the vortices appear first in a region separated

from the recirculation zone by an intermediate laminar flow region. Therefore,

although fluid recirculation surely modifies the flow organization, it does not seem

to be the triggering mechanism of the instability.

In order to elucidate the relevance of shear banding on the instability we

have performed experiments with a second wormlike micellar solution, with lower

surfactant concentration, that does not shear band. The laminar flow of the

diluted solution does not become unstable for any of the experimentally accessible

driving amplitudes and frequencies.

These observations do not necessarily imply that shear banding is responsible

for the onset of the instability in the concentrated solution. First, in terms of

the dimensionless driving frequency (De) the range of accessible frequencies for

the diluted solution is well below the critical De at which the laminar flow of

the concentrated solution becomes first unstable. And, moreover, the formation

of stable shear bands has been previously reported to require much longer time

scales, typically larger than λ. Thus, we believe that shear banding is not the

mechanism responsible for the observed instability, since the timescales at which

the concentrated solution has been oscillated in the vertical pipe are too short to

form stable bands.

The morphology of the toroidal vortices in the axisymmetric vortical flow is

very reminiscent of that of vortex rings formed in Newtonian fluids by the roll-up

of cylindrical vortex sheets. The velocity profiles observed in our setting for the
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viscoelastic laminar flow are highly inflectional and generate a cylindrical vortex

sheet already detached from the tube walls, that could favor the formation of

vortex rings. The oscillatory forcing could prevent the vortex rings to vanish and,

instead, stabilize them dinamically leading to the observed spatio-temporal pat-

tern, with a number of vortex rings stacked along the cylinder and periodically

oscillating with the driving. This fascinating scenario deserves further investiga-

tion.



Chapter 8

Resum en català

L’objectiu d’aquesta Tesi és estudiar el flux oscil.latori vertical en fluids micel-

lars. Primer encarem el problema des d’una perspectiva teòrica i analitzem el

flux laminar oscil.latori de fluids viscoelàstics utilitzant els models de Maxwell i

Oldroyd-B. Les prediccions teòriques obtingudes pel flux laminar són validades

duent a terme experiments de Velocimetria d’Imatges de Part́ıcules (PIV) en un

tub vertical, per amplituds petites del forçament oscil.latori. Quan s’incrementa

l’amplitud de l’oscil.lació el flux laminar evoluciona cap a fluxos que presenten una

dependència espacio-temporal més complexa. Estudiem en detall la transició del

flux laminar al flux vortical, en el qual es formen anells de vorticitat distribuits

a través del tub. També caracteritzem una segona inestabilitat que esdevé a

amplituds del forçament encara més grans, per la qual el flux vortical perd la

simetria axial.

8.1 Breu introducció

A començaments del segle XX, moment en què la indústria qúımica aix́ı com la

śıntesi industrial de poĺımers rebé un fort impuls, es van començar a observar

comportaments poc usuals en determinats fluids. L’equació de Newton per a la

viscositat, juntament amb les equacions de Navier-Stokes no eren capaces de predir

el moviment inusual d’aquest fluids. Fins i tot la divisió ordinària de la matèria

en sòlid - ĺıquid - gas, segons la qual un ĺıquid manté la forma del recipient que

el conté, tampoc es satisfeia per aquests materials. En general podem anomenar

fluids complexos a totes les substàncies espesses, gomoses o enganxifoses que de-

safien la definició clàssica de sòlids i ĺıquids (Larson, 1999). Els fluids complexos

poden mostrar un comportament viscoelàstic intermig entre els sòlids i els ĺıquids

ja que poden mantenir la seva forma a escales de temps curtes però fluir a escales

de temps més llargues. En contraposició als fluids Newtonians, que tenen una

viscositat constant, els fluids complexos mostren un comportament no-Newtonià,
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amb una viscositat que depèn del ritme de deformació. En la majoria dels casos la

viscositat decreix quan augmenta el ritme de deformació (a la literatura aquests

fluids es coneixen com fluids shear-thinning), tot i que en alguns casos la viscositat

pot augmentar (fluids shear-thickening). Els fluids yield-stress també presenten

propietats no-Newtonianes perquè no flueixen per sota d’un esforç mı́nim aplicat.

Una caracteŕıstica important dels fluids complexos és la presència d’esforços nor-

mals: sota un flux de cisalla el fluid respon amb una força addicional normal a la

direcció del a cisalla.

Hi ha una gran varietat de fluids complexos, com per exemple els fluids polimè-

rics, pastes, suspensions de part́ıcules, espumes, emulsions, cristall ĺıquids o solu-

cions de tensioactius (en els quals nosaltres estem especialment interessats). Les

molècules tensioactives són amfif́ıliques, i per tant tenen una part hidrof́ılica i

una hidrofòbica. Quan es dissolen en aigua la formació de micel.les és favorable

energèticament per concentracions per sobre d’una concentració micel.lar cŕıtica.

Les molècules que tenen una força iònica de la part hidrof́ılica més aviat feble ten-

deixen a agrupar-se formant micel.les ciĺındriques amb forma de cuc (en anglès se

les anomena wormlike micelles). En el règim semi-dilüıt de concentracions de ten-

sioactiu en què nosaltres treballem les micel.les tipus cuc se sobreposen establint

connexions entre elles, i formant una xarxa mesoscòpica que és responsable de

la resposta viscoelàstica del fluid. Les micel.les tipus cuc també es coneixen com

poĺımers vivents perquè, a diferència de les solucions polimèriques, tenen l’habilitat

de reensemblar-se després d’haver-se trencat, per exemple degut a l’aplicació d’un

esforç de cisalla. Els fluids micel.lars tipus cuc tenen diverses aplicacions indus-

trials. S’utilitzen en la fabricació de detergents, emulsificants, encapsulants o

lubricants. I en particular, aquests fluids han estat extensament utilitzats durant

les darreres dècades amb finalitats cient́ıfiques, des que Rehage i Hoffmann (1991)

van mostrar que es comporten d’acord amb el model de Maxwell, amb un sol

temps de relaxació, a ritmes de deformació lents. A ritmes de deformació més

alts, en canvi, mostren normalment una viscositat fortament decreixent amb el

ritme de cisalla.

Els fluxos oscil.latoris de fluids Newtonians o complexos en geometries confi-

nades per parets han merescut força atenció tant des d’un punt de vista tèoric

com experimentalment durant les darreres dècades. El fluxos oscil.latoris són

especialment importants en fisiologia, en relació amb el sistema circulatori i respi-

ratori d’éssers humans, i també en processos industrials com el bombejat de fluids,

l’extracció de petroli o en acústica, i en particular són interessants en la carac-

terització reològica de fluids complexos. Els fluxos amb una certa dependència

temporal (com per exemple els fluxos oscil.latoris) de fluids viscoelàstics mostren

caracteŕıstiques molt interessants que són absents en els corresponents fluxos de

fluids Newtonians.
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8.2 Sistema experimental

Una contribució important de la Tesi ha estat la posta a punt del sistema expe-

rimental, incloent el disseny, implementació i cal.libracions de les diferents parts.

El sistema experimental que hem utilitzat consisteix en una columna de fluid,

continguda en un tub vertical transparent, que oscil.la periòdicament, gràcies al

moviment sinusöıdal d’un pistó situat a la part inferior del tub. També s’ha

implementat un sistema de PIV que ha fet possible la caracterització del camp

de velocitats i vorticitats en un pla meridional del tub, amb una gran resolució

espacial i temporal.

Aquest sistema és el primer d’aquest tipus que ha estat mai implementat al

Laboratori de F́ısica no Lineal de la Universitat de Barcelona. El nostre sistema es

basa en un disseny original que es troba a la UNAM (Mèxic) però conté un seguit

de noves implementacions que el milloren considerablement, ampliant els rangs de

mesures i resolució i permetent aix́ı un gran ventall de mesures a realitzar.

El fluid que hem utilitzat en els experiments és una solució tensioactiva de

clorur de cetilpiridini (CPyCl) i salicilat de sodi (NaSal) dilüıts en aigua, en una

concentració [100:60] mM. Aquesta dissolució és particularment interessant perquè

presenta una reologia a ritmes de deformacions petits que segueix molt bé el

model de Maxwell. A ritmes de deformació més grans la corba de flux lineal

esdevé inestable i el fluid s’estructura formant diferents bandes de cisalla amb una

viscositat efectiva ben diferenciada.

8.3 Principals resultats

Estudi teòric

L’estudi teòric de fluxos oscil.latoris confinats de fluids viscoelàstics mostra que les

propietats del flux depenen exclusivament de les dues longituds caracteŕıstiques

de les ones de Ferry generades a l’interior del tub, longitud d’esmortëıment i

longitud d’ona, aix́ı com la separació caracteŕıstica entre les parets. Això, per

models teòrics que presenten una relació esforç-ritme de cisalla lineal en fluxos

unidireccionals, com el model de Maxwell.

Hem mostrat que en fluxos confinats existeix la possibilitat que les ones de

cisalla generades a diferents posicions se sobreposin abans d’esmortëır-se i even-

tualment donin lloc a un fenomen de ressonància. Pel cas d’un tub vertical, a les

ressonàncies la velocitat al centre del tub es troba en fase amb l’acceleració del

pistó, i el mòdul de la velocitat és màxim.
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Amb l’equació constitutiva d’Oldroyd-B hem mostrat que l’addició d’un dis-

solvent Newtonià (per petita que sigui) fa que les ressonàncies desapareguin. Tan

sols esperem observar aquest fenomen ressonant per fluids molt especials, com les

solucions micel.lars de tipus cuc.

Experiments: règim laminar

Hem dut a terme una investigació experimental fent servir el fluid micel.lar des-

crit anteriorment. Hem fet experiments del flux oscil.latori per tot el rang de

freqüències i amplituds petites del forçament i hem determinat amb gran precisió

la posició dels pics de ressonància. Els resultats experimentals mostren un bon

acord quantitatiu amb les prediccions teòriques.

Hem realitzat un estudi acurat de l’estructura del flux laminar a freqüències

de ressonància i fora de les ressonàncies. La forma dels perfils de velocitat depèn

fortament de la freqüència d’oscil.lació. A freqüències petites tot el fluid es mou

en la mateixa direcció, però el flux esdevé molt més infleccional a mesura que la

freqüència d’oscil.lació augmenta i el flux s’organitza en diferents regions concèn-

triques que es mouen amunt i avall. La condició de no-lliscament se satisfà a les

parets del tub.

Finalment hem verificat que quan incrementem l’amplitud de les oscil.lacions

la resposta del fluid esdevé fàcilment no-lineal. Per tal de capturar teòricament

les no-linealitats presents en les nostres dades experimentals, caldria utilitzar una

equació constitutiva amb un terme no-lineal per l’esforç de cisalla, que tingués en

compte la no-monotonicitat de la corba de flux de les solucions micel.lars.

Experiments: inestabilitats hidrodinàmiques

Hem explorat el flux oscil.latori en un tub vertical per tot el rang de freqüèn-

cies i amplituds del forçament accessibles experimentalment, i classificat el flux

en tres règims ben diferenciats: laminar, vortical i vortical no-axisimètric. Fent

rampes d’amplitud creixent a una freqüència fixada hem pogut caracteritzar la

transició del flux laminar a fluxos més complexos, sota condicions de forçament

ben controlades.

La primera inestabilitat apareix quan el flux laminar esdevé inestable amb la

corresponent formació d’anells de vorticitat apilats al llarg del tub. Per tal de

determinar amb gran precisió l’amplitud cŕıtica a la qual el flux laminar esdevé

vortical hem calculat la desviació t́ıpica de les fluctuacions de la component ver-

tical i radial de la velocitat en la direcció vertical. A l’amplitud cŕıtica en què la

inestabilitat es manifesta s’observa un increment sobtat de les fluctuacions. Fent
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rampes d’amplitud creixent i decreixent hem observat que aquesta primera bi-

furcació presenta histerèsi, de manera que la bifurcació del flux laminar al flux

vortical és subcŕıtica.

Encara es manifesta una segona inestabilitat per amplituds del forçament més

grans, per la qual el flux vortical perd la simetria axial. En aquest nou règim

els vòrtex estan fortament distorsionats i no són axisimètrics. Aquesta segona

transició també presenta histèresi i per tant també creiem que és de caràcter

subcŕıtic.

Una inspecció global de tot el tub ha permès elucidar que la inestabilitat

apareix a forçaments més petits a les regions del tub més properes al pistó. D’altra

banda hem descobert l’existència d’una dinàmica espacio-temporal que apareix a

escales de temps llargues (molt més llargues que el temps de relaxació del fluid)

que modifiquen substancialment l’organització del flux. Aquesta dinàmica lenta

és més efectiva a les regions inferiors del tub.

El mecanisme desencadenant de les inestabilitats hidrodinàmiques que hem

caracteritzat encara no és clar. La viscoelasticitat del fluid utilitzat juga un paper

innegable ja que experiments previs fets per (Torralba et al., 2007) amb un oli

Newtonià de densitat i viscositat similars a la solució micel.lar, i per forçaments

comparables, no mostraven la inestabilitat. De tota manera, pot ser que la in-

estabilitat no sigui purament d’origen elàstic i que altres factors contribueixin a

desencadenar-la. En particular hem avaluat la influència que pot tenir la recir-

culació de fluid prop del pistó (i que apareix com a conseqüència de la longitud

finita del tub). I també hem mirat la possible influència de la inestabilitat de

shear banding de la solució micel.lar (segons la qual el fluid es pot estructurar en

diferents bandes de cisalla). Cap dels dos factors, però, sembla ser el causant de

l’aparició del flux vortical.
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Appendix A

Tensors

We provide in this Appendix the expressions for the stress and rate-of-strain ten-

sors in the laminar flow, in a cylindrical geometry (and thus in cylindrical co-

ordinates). An analogous derivation would apply for a rectangular geometry (in

Cartesian coordinates). We also provide the expressions for their upper-convected

derivatives, required for the UCM and Oldroyd-B constitutive equations (Eqs.

(1.12), (1.13), (1.14)).

The fluid velocity, in the laminar flow, is restricted to the vertical direction

and exhibits only a dependence on the radial coordinate, as u = (0, 0, uz(r)) (and

in the case of a rectangular geometry u = (0, 0, uz(x)), Sec. 4.1.1). The stress

tensor reads:

τ =





τrr 0 τzr
0 τθθ 0

τzr 0 τzz



 , (A.1)

where we have used that τ is symmetric (Bird et al., 1987). The matrix elements

involving the azimuthal direction, τθr and τθz (and their symmetric counterparts),

are zero in this configuration. The upper-convected derivative of the stress tensor

(Eq. 1.13) reads,

τ(1) =
∂τ

∂t
+ (u ·∇) τ −

{

(∇u)† · τ + τ · (∇u)
}

. (A.2)

The nonlinear advective term in this geometry is identically zero, because the

elements of the stress matrix, τij , do not depend on the vertical coordinate z:

(u ·∇)τ = uz
∂

∂z





τrr 0 τzr
0 τθθ 0

τzr 0 τzz



 = 0. (A.3)
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And the computation of the last term in the r.h.s of Eq. (A.2) leads to

(∇u)† · τ + τ · (∇u) = (τ ·∇u)† + τ ·∇u (A.4)

=
∂uz
∂r





0 0 τrr
0 0 0

τrr 0 2τzr



 . (A.5)

The upper-convected derivative for the (symmetric) rate-of-strain tensor reads:

γ(1) = γ̇ = ∇u+ (∇u)† =





0 0 ∂uz

∂r

0 0 0
∂uz

∂r
0 0



 , (A.6)

where the non-zero deviatoric terms account for the shear flow that is imposed.

We can write the Upper-Convected Maxwell constitutive equation (Eq.(1.12))

for each non-zero component of the stress tensor as

(1 + λ
∂

∂t
)τrr = 0, (A.7)

(1 + λ
∂

∂t
)τθθ = 0, (A.8)

(1 + λ
∂

∂t
)τzz − 2λτzr

∂uz
∂r

= 0, (A.9)

(1 + λ
∂

∂t
)τzr − λτrr

∂uz
∂r

= ηp
∂uz
∂r

. (A.10)

This set of equations can be used to estimate the normal stress differences τzz−τrr
in the cylindrical geometry and for specific shear flows. Note that both τrr and

τθθ decay exponentially in time (Eqs. (A.7) and (A.8)) so that we can assume that

these two terms are zero. Using this simplification we arrive to the final equation

for the deviatoric terms of the UCM constitutive equation

(1 + λ
∂

∂t
)τzr = ηp

∂uz
∂r

. (A.11)

This is the expression used in the calculations developed in Sec. 4.1.



Appendix B

Stereo PIV

A new Stereo PIV system is currently being implemented in the Laboratori de

F́ısica no Lineal in Barcelona. This system will bring information about the out-

of-plane component of the velocity, uθ, and allow to completely characterize the

velocity field (ur, uθ, uz) in a 2D meridional plane of the tube. A second high speed

camera is required for the stereo configuration. Also, the thickness of the laser

sheet needs to be broadened, using an additional divergent lens placed within the

laser path. The precise thickness of the laser sheet that is required depends on

the magnitude of the out-of-plane component.

Figure B.1: Left: The different elements required for Stereo PIV (cameras, laser, outer
tank, rotatory plates) and the accomplishment of the Scheimpflug condition are in-
cluded. Right: Scheimpflug adapters and sliding plate implemented in the laboratory
for the stereo PIV experiments.
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Figure B.1 shows the arrangement of the two cameras and the laser light

sheet. The cameras are placed at an angle of 90◦, each one on a different side of

the laser sheet. The measurement precision of uθ increases with the opening angle

between the two cameras and is maximum when this angle reaches 90◦ (Raffel

et al., 2007; Hof et al., 2004). Thus, the proposed configuration should be optimal

in resolving the azimuthal component of the velocity field. However, this recording

configuration makes it more difficult to focus the image plane entirely. In order

to partially solve this problem a Scheimpflug adapter is mounted on each camera,

allowing the objective lens of each camera to rotate with respect to its own optical

axis. The Scheimpflug condition states that the image plane, the lens plane and

the object plane must intersect in a common line. This condition improves the

focus of the seeding particles in the meridional plane of the tube, i.e. image

plane (Prasad, 1995). On the other hand we have chosen to place the cameras

at the back side of the tube, with respect to the laser beam. According to the

Mie theory, the light scattered by the seeding particles is not homogeneous and

it is significantly larger at the back. Hence, this recording configuration should

maximize the brightness of the PIV images.

A final calibration, using a commercial Stereo PIV software, is needed to per-

form the geometric reconstruction of the complete velocity field, from the two

projected planar displacement fields captured simultaneously by the two cameras.

A mechanical framework has also been implemented in the laboratory, to en-

able the rotation of the two cameras independently as well as their vertical and

horizontal motion.

A new outer tank, built in polycarbonate, has been designed and fabricated

with a convenient geometry for the stereo configuration. When filled with glycerine

it should avoid most of the optical aberrations caused by the cylindrical surface of

the tube. Two rear sides of the tank, through which the cameras record the fluid

flow, form an angle of 90◦, whereas the front one, through which the laser shines

the fluid, is at 45◦ from them.



Appendix C

Spatiotemporal dynamics of

multiple shear banding under

imposed steady shear flow

The aim of this Appendix is to report the main results obtained during my second

research stay at the Hatsopoulos Microfluids Laboratory at MIT, from April 1st

to June 30th 2012. We studied the spatiotemporal dynamics of shear banding

under an imposed steady shear flow.

In this work we used the same wormlike micellar solutions that have been

described in Chap. 3, CPyCl/NaSal at [100:60] mM (concentrated solution) and

[66:40] mM (diluted solution). As described in this previous chapter, the bulk

rheology of the concentrated micellar solution has been extensively studied by

many authors in the last decades (Rehage and Hoffmann, 1991; Berret et al., 1994;

Grand et al., 1997; Porte et al., 1997; Pipe et al., 2010). However, the number

of experiments on flow visualization using this micellar solution is more reduced.

Britton and Callaghan (1997) performed the first visualization experiments using

Nuclear Magnetic Resonance and unraveled the formation of shear bands under

steady shear, in a cone-plate geometry. Their technique did not enable to visualize

fast transients in the fluid response, becasue long times were required to process

the NMR images. Most of the visualization experiments performed subsequently

were realized on a Taylor-Couette flow (Sec. 1.1). Flow visualitzation of time

dependent flows under steady shear was also studied by Miller and Rothstein

(2007) and López-Gónzalez et al. (2006). The latter reported spatiotemporal

fluctuations in shear-banded velocity profiles seen by NMR. The work by Hu

et al. (2008) and Hu (2010) studied the kinetics and mechanism of shear banding

for different surfactant concentrations using Particle Tracking Velocimetry, but

also focused mainly on Taylor-Couette and plate-plate geometries.
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The aim of our set of experiments was to characterize the transient response

of wormlike micellar solutions under an imposed steady shear flow, in a cone-

plate geometry. We combined conventional rheometry with a PIV visualization

technique, which enabled to simultaneously couple the temporal stress response

with the temporal evolution of the velocity field inside the sample. We used a well

defined protocol, consisting on a stepped applied shear rate for increasing shear

rate values, and explored both the linear and nonlinear response of the fluid.

The two different micellar solutions with different surfactant concentrations were

studied in order to investigate the effect of the concentration on the formation of

shear bands.

C.1 Rheo-PIV experimental setup

We used a Rheo-PIV experimental setup, consisting on a controlled-stress rheome-

ter AR-G2 (TA Instruments), with a cone-plate geometry, to which a Particle Im-

age Velocimetry system was implemented. A top transparent plastic (or quartz)

plate and a tilted mirror were required to illuminate the sample with a laser beam.

An schematic view of the Rheo-PIV device is shown in Fig. C.1. A more detailed

description is provided in Dimitriou et al. (2011). A new PIV configuration that

had recently been implemented in the laboratory was employed, in which the PIV

images were recorded through the tilted surface of the top plate (Fig. C.1(b)).

This new configuration overcame the imaging difficulties encountered in the old

configuration (Fig. C.1(a)), in which the images were recorded through the fluid

meniscus, that were mainly caused by edge irregularities appearing at moderate

shear rates. Besides, the new configuration enabled to image at different radial

locations and characterize the velocity field along the radial coordinate.

Figures C.1 (c) and (d) show the calibration experiments performed using a

Newtonian mineral oil. Within experimental error, the velocity profiles exhibit a

linear dependence along the gap width, which is well captured with a linear fit.

In the new configuration the theoretical velocity profiles exhibit a slight quadratic

dependence on the vertical coordinate, y. However for relatively small angles of

incidence of the laser beam (α1 . 40◦, Fig. C.1(b)), the theoretical velocity profiles

are linear to a good approximation. In all cases quadratic deviations are much

smaller than the experimental uncertainty.

Shearing protocol

Experimentally, we performed ramps of increasing imposed shear rates and mea-

sured the stress response of the fluid, shown schematically in Fig. C.2. Steps of
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Figure C.1: Schematic view of the Rheo-PIV experimental setup. The imaging could
be achieved either through the fluid meniscus (a) or through the tilted surface (b).
In both configurations the calibration using a Newtonian mineral oil provided linear
velocity profiles (panel (c): old configuration (a); panel (d): new configuration (b)).
The vertical position along the gap y, has been made dimensionless dividing by the gap
width H. The velocity along the x direction, vx, has also been made dimensionless by
measuring it in units of the velocity of the upper plate, Vw.

∆γ̇ = 0.3 s−1 were applied for the concentrated solution and ∆γ̇ = 0.6 s−1 for

the diluted solution, being γ̇ = 0.1 s−1 the initial shear rate applied in all experi-

ments. Typically time intervals ∆t = 180 s were spent at each shearing rate. All

the experiments were performed at T = 25.0◦C.

Time

S
tr
e
s
s

Figure C.2: Sketch of the shearing protocol used in the experiments, consisting on steps
of increasing shear rates.
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Figure C.3: Schematic view of the cone-plate geometry used in the experiments. The
velocity profiles measured at different radii (0.4R, 0.6R, and 0.8R) are depicted in the
top (γ̇ = 0.4 s−1) and bottom panels (γ̇ = 0.7 s−1).

Radial dependence

We measured the velocity field at different radial locations and verified that there

was no substantial dependence on the radial coordinate. These observations were

in good agreement with previous results reported by Britton and Callaghan (1997).

Figure C.3 shows the velocity profiles measured at three different radii (ri = 0.4R,

0.6R, and 0.8R) and two different shearing rates (γ̇ = 0.4 and 0.7 s−1). In the

linear regime (top panels) the velocity profiles are linear in the entire geometry. In

the nonlinear regime the fluid experiences a non-homogeneous deformation that

is mantained all along the radial coordinate. Only small differences are observed,

regarding the steepness of the velocity profile. All the results provided in the rest

of the appendix are obtained at ri ≃ 0.7R.

C.2 Transient response under steady shear

Diluted micellar solution

The experiments performed using the diluted micellar solution are shown in Fig.

C.4. The stress relaxes very fast (trelax ≤ 10 s) for all applied shear rates (even for
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Figure C.4: Stress relaxation under imposed steady shear (left) and velocity profiles
(right) measured at increasing shear rates for the diluted micellar solution CPyCl/NaSal
[66:40] mM. The velocity has been made dimensionless by measuring it in units of the
velocity of the upper plate corresponding to an imposed shear rate of γ̇ = 0.1 s−1,
Vw(0.1).

Wi > 1). Accordingly, the velocity profiles are linear for all explored shear rates.

Note that, even for shear rates belonging to the (nonlinear) shear-thinning regime

the profiles look linear, and only a small amount of slip at the bottom surface is

observed for the largest shear rates (γ̇ = 2.5, 3.7 s−1 in the figure).

These observations corroborate that the diluted micellar solution does not

shear-band, at least for the range of shear rates explored. Although we are exper-

imentally limited to this shearing range, both the monotonicity of the flow curve

and the absence of hysteresis when ramping up and down the applied shear rate

(Chap. 3) seem to indicate that this solution strongly shear-thins but does not

shear-band.

Stress relaxation & Onset of elastic instability

The results are qualitatively different for the concentrated micellar solution, as

shown in Fig. C.5. In the limit of small shear rates (Wi < 1), the stress also

relaxes very fast, trelax < 20 s. In this shearing regime (γ̇ = 0.1 and 0.4 s−1 in the

figure) the velocity profiles look linear.

However, under imposed shear rates slightly above the critical shear rate,

γ̇ & γ̇c = 0.5 s−1, the fluid response exhibits long transients. Figure C.6 shows

the stress relaxation measured at γ̇ = 0.7 s−1, over 900 s. The velocity profiles

measured at different lapses of time reflect the progressive evolution of the spa-

tiotemporal flow organization. Right after the shear rate is imposed, at timescales
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Figure C.5: Stress relaxation under imposed steady shear (a) and velocity profiles (b)
measured at increasing shear rates for the concentrated micellar solution CPyCl/NaSal
[100:60] mM. The velocity has been made dimensionless by measuring it in units of
the velocity of the upper plate corresponding to an imposed shear rate of γ̇ = 0.1 s−1,
Vw(0.1).

comparable to the fluid relaxation, there is an stress overshoot. After this sudden

increase, the stress relaxation exhibits a long decay. At short times (t ≤ 50 s)

there exists an initial transient linear response (A in the figure). Next, the long

decay in the stress relaxation is accompanied by the reorganization of the fluid

in different shear bands (B, C). The fluid flow becomes structured in three dif-

ferent bands, with a highly-shear-rate band in the center, and two low-shear-rate

bands at the boundaries. At longer times, 200 ≤ t ≤ 500 s, the shear stress

reaches a quasi-steady state (τ ≃ 12.5 Pa). During this time interval the shear

bands remain almost steady in time (D, E, F). At even longer times (t > 500 s)

the stress slightly increases. We attribute this stress increase to the onset of a

curved streamline instability (G) (Pakdel and McKinley, 1996; Grand et al., 1997;

Lerouge et al., 2008). Once the elastic instability sets in we observe a dynamic

shear-banding behavior. The location of the central highly sheared band moves

significantly through the gap width (H, I, J, K).

Shear banded velocity profiles

At larger shear rates (γ̇ > γ̇c) the shear-banded profile is maintained. Well above

the critical shear rate γ̇c, the transients in the stress response relax faster, and

typically trelax ≃ 100 s (Fig. C.5(left)). However the stress response does not reach

a strict steady state and slight fluctuations still appear even on long time scales.

The 3-banded velocity profiles are consistent with previous results obtained by

Britton and Callaghan (1997) under steady shear and Dimitriou et al. (2012) under
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Figure C.6: Stress relaxation measured at γ̇ = 0.7 s−1 over 900 s for the [100:60] mM
solution (top), and velocity profiles measured at different time lapses (denoted with
letters in the figure). The velocity has been made dimensionless, in each case, by
measuring it in units of the velocity of the upper plate, Vw.

large amplitude oscillatory shear flow. However the velocity profiles reported

by the latter under LAOS exhibited a rather smoother shape than the profiles

presented here. The velocity profiles under steady shear are well reproduced by

the functional form provided by Dimitriou et al. (2012). In Fig. C.7(left) we show,

as an example, the velocity profile measured at γ̇ = 1.9 s−1. In red we depict the

fit obtained using the functional form in Dimitriou et al. (2012) (Eq. 3). The shear

rate provided by the fit for the low-shear-rate band is γ̇ = 0.3 s−1, which fairly

coincides with the shear rate at the beginning of the stress plateau, and γ̇ ≃ 40

s−1 for the high-shear-rate band. Unfortunately, this value is close to the largest

shear rate that can be resolved with our experimental setup, that is limited by

the cross-correlation process. However, the experimental shear rate obtained for

the high-shear-rate band is still compatible with the shear rate value that would

correspond to the end of the stress plateau, of γ̇ ≃ 500 s−1 (depicted in blue in

the figure).



162 C. Spatiotemporal dynamics of shear banding under steady shear flow

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

y
/H

vx/Vw

 

 

γ̇ = 1.9 s−1

Fit 1

Fit 2 (imposed γ̇2)

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

y
/H

 

 

vx/Vw

γ̇ = 1.6 s−1

1.9

Figure C.7: Nonlinear velocity profiles obtained for the concentrated micellar solution
[100:60] mM. Left: Three-banded velocity profile measured at γ̇ = 1.9 s−1. The red and
blue solid lines are fits to the experimental data. Right: five-banded and seven-banded
velocity profiles measured at γ̇ = 1.9 s−1 and γ̇ = 1.6 s−1, respectively. The velocity
has been made dimensionless, in each case, by measuring it in units of the velocity of
the upper plate, Vw.

In several tests, and for γ̇ > γ̇c, we have observed the formation of a larger

number of bands. In particular five different bands have been frequently reported

(Fig. C.7) and, on rare occasions, even seven! We have also observed in some cases

velocity profiles with a clear spatio-temporal dependence, exhibiting an evolution

from five to three bands, or viceversa. We have not identified a systematic criterion

to predict the appearance of a larger number of bands, apart from Wi > 1.

Spatial fluctuations

This manifest temporal evolution of the shear banded profiles implicitly suggests

that the velocity field indeed exhibits important spatial fluctuations, that in some

cases may be strong enough to induce important changes in the flow organization

(e.g. diminishing, or incrementing, the number of shear bands). In Fig. C.8 we

show two particular examples of the velocity field obtained at γ̇ = 1.3 s−1 and

γ̇ = 1.9 s−1. In the panel on the right there is a homogeneous 3-banded profile that

is maintained along the horizontal coordinate, and in this case is then appropriate

to average along the horizontal coordinate to obtain the average velocity profile.

In the panel on the left the velocity field is slightly more complicated, displaying

five shear bands. More interestingly, significant heterogeneities are observed along

the horizontal coordinate. These heterogeneities would translate into larger error

bars if the averaged velocity profile was computed.
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Figure C.8: Velocity field measured for the concentrated solution. Left: velocity field
captured after 120 s from the start-up flow set to γ̇ = 1.3 s−1. Right: velocity field
captured after 80 s from the start-up flow set to γ̇ = 1.9 s−1. The velocity (color bar)
has been made dimensionless, in each case, by measuring it in units of the velocity of
the upper plate, Vw.

We pressume that this complex spatiotemporal dynamics observed for the

shear banded profiles might be caused by the existence of the onset of an elastic

instability that would disturb the flow, leading to a complicated temporal flow

evolution with important spatial fluctuations.





References

Adams, J. M., Fielding, S. M. and Olmsted, P. D. (2008), “The interplay be-

tween boundary conditions and flow geometries in shear banding: Hysteresis,

band configurations, and surface transitions”, J. Non-Newtonian Fluid Mech.,

151, 101–118.

Adler, F., Sawyer, W. and Ferry, J. (1949), “Propagation of transverse waves in

viscoelastic media”, J. Appl. Phys., 20, 1036–1041.

Adrian, R. J. (1991), “Particle-Imaging Techniques for Experimental Fluid-

Mechanics”, Annu. Rev. Fluid Mech., 23, 261–304.

Akhavan, R., Kamm, R. and Shapiro, A. (1991), “An investigation of transition to

turbulence in bounded oscillatory Stokes flows. Part 1. Experiments”, J. Fluid

Mech., 225, 395–422.

Andrienko, Y. A., Siginer, D. A. and Yanovsky, Y. G. (2000), “Resonance behavior

of viscoelastic fluids in Poiseuille flow and application to flow enhancement”, Int.

J. Non-Linear Mech., 35, 95–102.

Azzouzi, H., Decruppe, J. P., Lerouge, S. and Greffier, O. (2005), “Temporal

oscillations of the shear stress and scattered light in a shear-banding-shear-

thickening micellar solution”, Eur. Phys. J. E, 17, 507–514.

Barnes, H., Townsend, P. and Walters, K. (1969), “Flow of non-Newtonian liquids

under a varying pressure gradient”, Nature, 224, 585–587.

Barnes, H., Townsend, P. and Walters, K. (1971),“Pulsatile flow of non-Newtonian

liquids”, Rheol. Acta, 10, 517–527.

Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge: Cam-

bridge University Press.

Bécu, L., Manneville, S. and Colin, A. (2004), “Spatiotemporal dynamics of worm-

like micelles under shear”, Phys. Rev. Lett., 93, 018301:1–4.

165



166 REFERENCES

Berret, J.-F. (1997), “Transient Rheology of Wormlike Micelles”, Langmuir,

13(8), 2227–2234.

Berret, J.-F., Roux, D. C. and Porte, G. (1994), “Isotropic-to-nematic transition

in wormlike micelles under shear”, J. Phys. II France, 4, 1261–1279.

Bird, R. B., Armstrong, R. C. and Hassager, O. (1987), Dynamics of Polymeric

Liquids Vol. 1, 2, second edn, John Wiley and Sons.

Blennerhassett, P. J. and Bassom, A. P. (2006), “The linear stability of high-

frequency oscillatory flow in a channel”, J. Fluid. Mech., 556, 1–25.

Boger, D. V. (1977), “A highly elastic constant-viscosity fluid”, J. Non-Newtonian

Fluid Mech., 3, 87–91.

Boukany, P. andWang, S. Q. (2008),“Use of particle-tracking velocimetry and flow

birefringence to study nonlinear flow behavior of entangled wormlike micellar so-

lution: from wall slip, bulk disentanglement to chain scission”, Macromolecules,

41, 1455–1464.

Britton, M. and Callaghan, P. (1997), “Two-Phase Shear Band Structures at Uni-

form Stress”, Phys. Rev. Lett., 78(26), 4930–4933.

Byars, J., Oztekin, A., Brown, R. and McKinley, G. (1994), “Spiral instabilities in

the flow of highly elastic fluids between rotating parallel disks”, J. Fluid Mech.,

271, 173.

Callaghan, P. T. (2008), “Rheo NMR and shear banding”, Rheol. Acta., 47, 243–

255.

Cappelaere, E. and Cressely, R. (1997), “Shear banding structure in viscoelastic

micellar solutions”, Coll. and Polym. Sci., 275, 407–418.

Castrejón-Pita, J. R., del Rı́o, J. A., Castrejón-Pita, A. A. and Huelsz, G. (2003),

“Experimental observation of dramatic differences in the dynamic response of

Newtonian and Maxwellian fluids”, Phys. Rev. E, 68, 046301–046305.

Cates, M. E. and Fielding, S. M. (2006), “Rheology of giant micelles”, Adv. Phys.,

55(7-8), 799–879.

Crandall, I. (1926), Theory of Vibrating Systems and Sounds, D. Van Nostrand

Co., New York.

Cromer, M., Cook, L. P. and McKinley, G. (2011), “Pressure-driven flow of worm-

like micellar solutions in rectilinear microchannels”, J. Non-Newtonian Fluid

Mech., 166, 180–193.



REFERENCES 167

Davies, J., Bhumiratana, S. and Bird, R. (1978), “Elastic and inertial effects in

pulsatile flow of polymeric liquids in circular tubes”, J. Non-Newtonian Fluid

Mech., 3, 237–259.

de Gennes, P.-G. (1979), Scaling Concepts in Polymer Physics, Cornell University

Press, Ithaca.

Decruppe, J. P., Lerouge, S. and Berret, J.-F. (2001), “Insight in shear banding

under transient flow”, Phys. Rev. E, 63, 022501:1–4.
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del Rı́o, J. A., López de Haro, M. and S., W. (2001), “Erratum: Enhancement in

the dynamic response of a viscoelastic fluid flowing in a tube [Phys Rev E 58,

6323 (1998)]”, Phys. Rev. E, 64, 039901(E).

Didden, N. (1979), “On the formation of vortex rings rolling-up and production

of circulation”, J. Appl. Math. and Phys. (ZAMP), 30, 101–116.

Dimitriou, C. J., Casanellas, L., Ober, T. J. and Mckinley, G. H. (2012), “Rheo-

PIV of a shear-banding wormlike micellar solution under large amplitude oscil-

latory shear”, Rheol. Acta, 51, 395–411.

Dimitriou, C. J., McKinley, G. H. and Venkatesan, R. (2011), “Rheo-PIV Analysis

of the Yielding and Flow of Model Waxy Crude Oils”, Energy & Fuels, 25, 3040–

3052.

Divoux, T., Tamarii, D., Barentin, C. and Manneville, S. (2010), “Transient shear

banding in a simple yield stress fluid”, Phys. Rev. Lett., 104, 208301.

Drazin, P. (2002), Introduction to Hydrodynamic Stability, Cambridge University

Press.

Eckmann, D. and Grotberg, J. (1991), “Experiments on transition to turbulence

in oscillatory pipe flow”, J. Fluid Mech., 222, 329–350.

Ewoldt, R., Hosoi, A. and McKinley, G. (2008), “New measures for character-

izing nonlinear viscoelasticity in large amplitude oscillatory shear”, J. Rheol.,

52(6), 1427–1458.

Fall, A., Bertrand, F., Ovarlez, G. and Bonn, D. (2009), “Yield Stress and Shear

Banding in Granular Suspensions”, Phys. Rev. Lett., 103, 178301.



168 REFERENCES

Fardin, M. A., Divoux, T., Guedeau-Boudeville, M. A., Buchet-Maulien, I.,

Browaeys, J., McKinley, G. H., Manneville, S. and Lerouge, S. (2012), “Shear-

banding in surfactant wormlike micelles: elastic instabilities and wall slip”, Soft

Matter, 8, 2535–2553.

Fardin, M. A., Lasne, B., Cardoso, O., Grégoire, G., Argentina, M., Decruppe,
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