Universitat de Barcelona

Facultat de Biologia

Departament de Bioquímica i Biologia Molecular

La hiperplasia suprarrenal congénita por defecto en la enzima 21-hidroxilasa: caracterización por el sistema HLA y aportación de la biología molecular.

Ma Isabel Plensa Nebot

La hiperplasia suprarrenal congénita por defecto en la enzima 21-hidroxilasa: caracterización por el sistema HLA y aportación de la biología molecular.

Memoria presentada por

Ma Isabel Plensa Nebot

para optar al grado de

Doctor en Ciencias Biológicas

Tesis realizada bajo la dirección del Dr. Carles Pavía Sesma de la Sección de Endocrinología del Hospital Universitari Sant Joan de Déu de Barcelona Programa de Bioquímica (Bienio 1994-1996)

Tutor: Dr. Miquel Llobera Sande

Carles Pavía Sesma

Director de tesis

Miquel Llobera Sande

Tutor de tesis

Ma Isabel Plensa Nebot

La interesada

Barcelona, Junio de 2003

Als meus pares

A Manuel

Antes de avanzar en una investigación haré alguna experiencia, pues mi intención es alegar, ante todo, la experiencia, y demostrar luego, con el razonamiento, por qué tal experiencia ha de operar de tal modo.

Aforismos. Leonardo Da Vinci.

AGRADECIMIENTOS

Quiero agradecer a todos los que a lo largo de estos años han estado a mi lado en todo momento, dándome su apoyo incondicional durante la realización de esta tesis. Por las discusiones científicas mantenidas; por los inestimables consejos recibidos; por los buenos momentos pasados y sobre todo, por el aliento recibido en los momentos difíciles, que me han ayudado a continuar adelante con este estudio y hacer posible que esta tesis esté en vuestras manos:

Al Dr. Carlos Pavía, mi director de tesis.

Al Dr. Miquel Llobera, mi tutor.

A la Dra. Guadalupe Ercilla del Servicio de Inmunología del Hospital Clínic i Provincial de Barcelona.

A la Dra. Carme Valls y a Montse Gallart del Laboratorio Hormonal del Hospital Universitari Sant Joan de Déu de Barcelona.

A todos los pacientes y familiares que han accedido a participar en el presente estudio.

A la Dra. Francisca Rivera, al Dr. Josep Oriola y a Marga Ferrer del Laboratorio Hormonal del Hospital Clínic i Provincial de Barcelona.

A todo el personal del Departamento de Genética del Hospital Universitari Sant Joan de Déu de Barcelona.

Al Hospital Universitari Sant Joan de Déu de Barcelona.

A Manuel.

A mis Padres y familia.

A los buenos amigos, biólogos y no biólogos.

;;GRACIAS POR TODO!!

ÍNDICE

ÍNDICE	i
ÍNDICE DE FIGURAS Y TABLAS	v
ABREVIATURAS	ix
GLOSARIO	xiii
1. INTRODUCCIÓN	1
1.1. Corteza Suprarrenal	3
1.1.1. Embriología	5
1.1.2. Anatomía	6
1.1.3. Citología	7
1.1.4. Funciones de la corteza suprarrenal	7
1.1.5. Vías de síntesis de esteroides	9
1.1.5.1. Vía del sulfato	11
1.1.6. Las enzimas de la síntesis de esteroides	11
1.1.6.1. Escisión de la cadena lateral C27 (20, 22 desmolasa) y	
formación de esteroides C21	13
$1.1.6.2$. Activación de esteroides mediante 3β -hidroxiesteroides	
deshidrogenasa (3 β -HSD) e isomerasa	14
1.1.6.3. Escisión de la cadena lateral C21 y formación de esteroides	
C19	15
1.1.6.4. Hidroxilación de los esteroides en C21	16
1.1.6.5. Hidroxilación de los esteroides en C11\beta y C18	17
1.1.6.6. Hidroxilación en los esteroides C17β	18
1.1.6.7. Reducción de los esteroides en $C5lpha$	18
1.1.6.8. Aromatización	19
1.1.7. Control de la secreción de cortisol	19
1.1.7.1. Control de los andrógenos suprarrenales	22
1.1.7.2. Control de la secreción de aldosterona	24
1.1.7.3. El sistema renina-angiotensina en condiciones basales	25
1.1.7.4. El papel del sistema renina-angiotensina en la homeostasis	
del sodio	26
1.1.7.5. Otros mecanismos de control de la producción de aldosterona	26
1.1.8. Transporte de esteroides suprarrenales	27

1.1.9. Acción de la hormona esteroide	27
1.1.10. Esteroides en plasma	28
1.1.10.1. Valores normales	29
1.1.11. Catabolismo y excreción de esteroides	31
1.1.12. Esteroides suprarrenales en orina	32
1.1.12.1 Determinación de grupos	33
1.1.12.2. Metabolitos específicos en orina	33
1.1.12.3. Perfiles de esteroides por cromatografía de gases de los	
esteroides urinarios	34
1.1.13. Estados de deficiencia de esteroides suprarrenales	35
1.2. Hiperplasia Suprarrenal Congénita por déficit en 21-hidroxilasa	
(P450C21)	37
1.2.1. Frecuencia	40
1.2.2. Fisiopatología	41
1.2.3. Formas clínicas	42
1.2.3.1. Formas clásicas	43
1.2.3.2. Formas no clásicas (NC)	45
1.2.4. Genética molecular	46
1.2.4.1. Relación genética	46
1.2.4.2. El locus 21-OH	48
1.2.4.3. Lesiones genéticas	49
1.2.4.4. Relación fenotipo-genotipo	56
1.2.5. Diagnóstico	57
1.2.5.1. Epidemiología	57
1.2.5.2. Biología hormonal	58
1.2.6. Diagnóstico diferencial	62
1.2.7. Tratamiento	63
1.2.7.1. Principios del tratamiento	63
1.2.7.2. Indicaciones y conducta práctica	65
1.2.8. Evolución	66
1.2.9. Tratamiento quirúrgico	67
1.2.10. Consejo genético	68
1.2.11. Diagnóstico prenatal	69
1.2.12. Tratamiento prenatal	70

	Índice
1.2.13. Detección neonatal	72
2. OBJETIVOS	73
3. MATERIAL Y MÉTODOS	77
3.1. Pacientes y diagnóstico clínico	79
3.2. Aspectos éticos	80
3.3. Determinaciones hormonales	80
3.4. Identificación de los antígenos del sistema HLA (Antígenos	
Leucocitarios Humanos)	80
3.5. Análisis genético molecular del gen 21-OH	84
3.5.1. Obtención de DNA genómico a partir de leucocitos en sangre	
periférica	84
3.5.2. Detección de Deleciones, Duplicaciones y Grandes Conversiones	87
3.5.3. Reacción en Cadena de la Polimerasa (PCR)	97
3.5.4. Detección de Mutaciones Puntuales	98
3.5.4.1. Mutación P30L	103
3.5.4.2. Mutación Intrón 2	104
3.5.4.3. Mutación P453S	105
3.5.4.4. <i>Mutación G318X</i>	106
3.5.4.5. Mutación R356W	107
3.5.4.6. Mutación 1172N	108
3.5.4.7. <i>Mutaciones V281L y R339H</i>	109
3.5.4.8. Mutación Exón 3 (deleción 8-pb)	110
3.6. Análisis estadístico	110
4. RESULTADOS	113
4.1. Datos clínicos de los pacientes	115
4.2. Árboles genealógicos	116
4.3. Análisis hormonal	125
4.3.1. Pacientes con déficit de 21-hidroxilasa	125
4.3.2. Progenitores	129
4.3.3. Hermanos no afectos de los pacientes	131
4.3.4. Nomograma de referencia	132
4.4. Antígenos del sistema HLA	135
4.4.1. Análisis de la segregación de los haplotipos HLA en las	
familias tipadas	135

4.4.2. Desequilibrio de asociación entre los antígenos HLA y el	
déficit en 21-hidroxilasa	136
4.5. Análisis genético molecular del gen 21-OH	140
4.5.1. Lesiones génicas encontradas en los pacientes con déficit en	
21-hidroxilasa	141
4.5.2. Análisis mutacional en los familiares de los pacientes.	
Detección de portadores	143
4.6. Correlación entre el tipaje HLA y las anomalías del gen	
21-hidroxilasa detectadas en los pacientes	147
4.7. Correlación genotipo-fenotipo	148
5. DISCUSIÓN	151
6. CONCLUSIONES	165
7. BIBLIOGRAFÍA	169

ÍNDICE DE FIGURAS Y TABLAS

Figuras

Figura 1.1: Ubicación de las glándulas suprarrenales	6
Figura 1.2: Esquema de la esteroidogénesis suprarrenal y gonadal	9
Figura 1.3: Organización subcelular de la esteroidogénesis	10
Figura 1.4: El ciclo citocromo P-450 para hidroxilación de un sustrato RH a	
ROH	12
Figura 1.5: Localización de los genes 21A y 21B, dentro de la región	
codificadora para HLA y complemento en el cromosoma 6	16
Figura 1.6: Concentraciones plasmáticas de ACTH a intervalos durante un	
período de 24 horas	20
Figura 1.7: Inhibición de la secreción de CRH hipotalámica y de la ACTH	
hipofisaria por feedback del cortisol	21
Figura 1.8: Mecanismo de acción de la hormona esteroide	28
Figura 1.9: Regulación de la función suprarrenal	35
Figura 1.10: Regulación de la secreción de cortisol en personas normales	
y en pacientes con Hiperplasia Suprarrenal Congénita	39
Figura 1.11: Déficit en 21-hidroxilasa. Esquema que muestra la localización	
del P450c21 en la cadena de biosíntesis del cortisol	41
Figura 1.12: Espectro de las formas clínicas del déficit en 21-hidroxilasa	42
Figura 1.13: Esquema de los grados de virilización según Prader	43
Figura 1.14: Mapa genético del brazo corto del cromosoma 6	47
Figura 1.15: Polimorfismos del gen y pseudogen para las enzimas de	
restricción Bgl II y Taq I	49
Figura 1.16: Diferentes lesiones de las unidades génicas C4-CYP21	
detectadas por Southern Blotting	50
Figura 1.17: Esquemas de reordenamientos génicos asociados a la HSC	
por déficit en 21-hidroxilasa	52
Figura 1.18: Mutaciones puntuales más frecuentes en el gen CYP21B	54

Figura 1.19: Frecuencia de la deficiencia clásica en 21-OH y no clásica,	
en relación a otras alteraciones genéticas autosómicas recesivas	
frecuentes	58
Figura 1.20: Nomograma con las concentraciones basales de 17-OHP sérica	
y las obtenidas 60 minutos tras el estímulo con ACTH	61
Figura 1.21: Estrategia diagnóstica y tratamiento prenatal en una madre con	
riesgo de tener un niño afecto por la forma clásica del déficit en	
21-hidroxilasa	70
Figura 3.1: Esquemas que muestran reordenamientos del gen CYP21 según	
el número relativo de copias de gen y pseudogen	96
Figura 3.2: Ejemplos de patrones de Southern obtenidos con dos enzimas de	
restricción	97
Figura 3.3: Esquema que muestra la localización de los cebadores utilizados	
para detectar las mutaciones P30L, Intrón 2 y Exón 3	99
Figura 3.4: Esquema que muestra la localización de los cebadores utilizados	
para detectar las mutaciones V281L+R339H, I172N, G318X,	
R356W y P453S	100
Figura 4.1: Pedigrees de las familias 1-11 con forma SW del déficit en	
21-hidroxilasa	117
Figura 4.2: Pedigrees de las familias 12-14 con forma SV del déficit en	
21-hidroxilasa	119
Figura 4.3: Pedigrees de las familias 15-55 con forma NC del déficit en	
21-hidroxilasa	120
Figura 4.4: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma SW y C.N.	126
Figura 4.5: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma SV y C.N.	126
Figura 4.6: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma NC y C.N.	127
Figura 4.7: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma NC; NC. Ho.; NC. He.	
y C.N.	128
Figura 4.8: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma SW; SV; NC v C.N.	128

Figura 4.9: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los Progenitores (P); P. Ho.; P. He. y C.N.	129
Figura 4.10: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma NC. He.; P. Ho.; P. He. y	
C.N.	130
Figura 4.11: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en las formas crípticas (C) y C.N.	131
Figura 4.12: Concentraciones séricas de 17-OHP basales y post estimulación	
con ACTH, en los pacientes con forma NC. He.; P. Ho.; P. He.; C. y C.N.	132
Figura 4.13: Nomograma con las concentraciones séricas de 17-OHP basales	132
y post estimulación con ACTH, obtenidas en todos los grupos	
de individuos estudiados	134
Figura 4.14: Deleciones, duplicaciones, conversiones y mutaciones puntuales	134
detectadas en los pacientes con forma SW; SV y NC	143
Figura 4.15: Frecuencia de las lesiones génicas detectadas en las formas	143
crípticas	146
cripticas	140
<u>Tablas</u>	
Tabla I.I: Localización y estructura de los genes codando por las enzimas de la	
esteroidogénesis	13
Tabla I.II: Enzimas que intervienen en el catabolismo de esteroides	31
Tabla I.III: Relación entre metabolitos y hormonas	32
Tabla I.IV: Incidencia de los déficit de 21-hidroxilasa (formas clásicas),	34
estimada por detección prenatal o por investigación de los casos	
diagnosticados	40
Tabla I.V: Características de las mutaciones puntuales del gen CYP21B	+∪
en el déficit de 21-hidroxilasa	55
Tabla III.I: Cebadores utilizados para el análisis de las mutaciones del gen	55
CYP21B	101
CIIZID	101

Tabla III.II: Características del análisis mutacional en el gen CYP21B	102
Tabla IV.I: Signos clínicos más característicos presentes en los tres grupos	
de pacientes	115
Tabla IV.II: Frecuencias de ciertos antígenos HLA en los tres grupos de	
pacientes considerados y grupo control	137
Tabla IV.III: Frecuencia de ciertos antígenos HLA en los grupos de individuos	
estudiados y grupo control	139
Tabla IV.IV: Frecuencia de las lesiones génicas encontradas en los tres grupos	
de pacientes con déficit en 21-hidroxilasa	141
Tabla IV.V: Análisis del conjunto de pacientes con forma NC heterozigotos	145
Tabla IV.VI: Haplotipos HLA de los pacientes, agrupados en función de	
las lesiones génicas detectadas	147
Tabla IV.VII: Correlación genotipo-fenotipo en los pacientes analizados	148

ABREVIATURAS

x Media.

17-OHP 17-hidroxiprogesterona.

17β-HSD 17β-hidroxiesteroide deshidrogenasa.

21-OH 21-hidroxilasa.

3β-HSD 3β-hidroxiesteroide deshidrogenasa.

a. Años.

ACSR-PCR Creación de un lugar de restricción mediante amplificación.

ACTH Hormona adrenocorticotropa.

Arg Arginina.

ARP Actividad de la renina plasmática.

ASF Factor estimulante de la aldosterona.

Asn Asparagina.

BB Azul bromofenol.

BSA Albúmina sérica bovina.

C. Formas crípticas.

C.N. Controles normales.

C4A / C4B Genes del componente 4 del complemento.

cAMP Adenosina-monofosfato cíclico.

CBG Globulina transportadora de cortisol.

cDNA Ácido desoxirribonucleico complementario.

Ci Curie.

CMO I Corticosterona metil-oxidasa I.

CMO II Corticosterona metil-oxidasa II.

Compuesto S 11-desoxicortisol.

Conversión Conversión CYP21B.

CRH Hormona liberadora corticotropa.

CYP21A / CYP21B Pseudogen y gen funcional de la 21-hidroxilasa.

d Dalton.

D.O. Densidad óptica.

Del 8 pb Deleción 8-pb.

Abreviaturas

Del A Deleción CYP21A.Del B Deleción CYP21B.

DHA / DHEA Dihidroepieandrosterona.

DHAS / DHEA-S Dehidroepiandrosterona sulfato.

DHT Dihidrotestosterona.

DNA Ácido desoxirribonucleico.dNTP Desoxinucleótido trifosfato.

DOC 11-desoxicorticosterona.Dup A Duplicación CYP21A.

ECA Enzima conversora de la angiotensina.

EDTA Ácido etileno-diamino-tetraacético.

FAD Flavín adenín dinucleótido.

FMN Flavín mononucleótido.

 \mathbf{g} , \mathbf{mg} , $\mathbf{\mu g}$, \mathbf{ng} , \mathbf{Kg} Gramo, miligramo, microgramo, nanogramo, kilogramo.

Gln Glutamina.

Glu Ácido glutámico.

Gly Glicina.

GnRH Hormona liberadora de gonadotrofinas.

His Histidina.

HLA Sistema mayor de histocompatibilidad (Antígenos Leucocitarios

Humanos).

HPLC Cromatografía líquida de alta definición.

HSC Hiperplasia Suprarrenal Congénita.

Ile Isoleucina.K⁺ Ion potasio.KDa Kilodalton.

K_M Constante de Michaelis-Menten.

L, dL, mL, μL Litro, decilitro, mililitro, microlitro.

LDL Lipoproteína de baja densidad.

Leucina.

LH Hormona luteinizante.

Lys Lisina.

M, mM, μM Molar, milimolar, micromolar.

m. Meses.

MCR Receptores de las melanocortinas.

Met Metionina.
min Minutos.

MND Mutación no detectada.

mRNA Ácido ribonucleico mensajero.

N Concentración normal.

Na⁺ Ion sodio.

NADP Nicotinamide-adenine-dinucleotide phosphate.

NADPH Nicotinamide-adenine-dinucleotide phosphate reduced.

NC Forma No Clásica.

nm Nanómetro.nmol Nanomol.

OGE Órganos genitales externos.

P Progesterona.P. Progenitores.

P450 17α P450 17α-hidroxilasa.

P450C21 21-hidroxilasa.

P450scc Desmolasa 20-22 o P450 side-chain cleavage.

pb, Kb, Mb Pares de bases, kilobases, megabases.

PBS Phosphate buffer saline.

PCR Reacción en cadena de la polimerasa.

PHF Pseudohermafroditismo femenino.
PHM Pseudohermafroditismo masculino.

pmol Picomol.

POMC Proopiomelanocortina.

Pro Prolina.

PSA Persulfato amónico.

PVC Punciones de las vellosidades coriales.

r Coeficiente de correlación de Pearson.

r.p.m. Revoluciones por minuto.

R.R. Riesgo relativo.

RNA Ácido ribonucleico.

sd Desviación estándar.

SDS Sodium Dodecil Sulfate.

Abreviaturas

seg Segundos.

sem Error estándar.

Ser Serina.

SNC Sistema nervioso central.

StAR proteina Steroidogenic Acute Regulatory protein.

SV Forma virilizante simple.

SW Forma clásica con pérdida salina.

T Testosterona.

TBE Tris/EDTA/Borato.

TE Tris/EDTA.

TEMED Tetrametil etilén diamina.

Trp Triptófano.U Unidad.V Voltios.v Volumen.

Val Valina.

 V_{max} Velocidad inicial máxima.

vs. Versus.W Vatios.

Δ Incremento.

 Δ^4 -A Δ^4 -androstendiona.

GLOSARIO

Adrenarquia o adrenarquía. Despertar puberal de la fracción androgénica de la corteza suprarrenal.

Amenorrea. Falta de menstruación. Es *primaria* o *secundaria* según que aquélla no haya aparecido en tiempo oportuno o haya cesado después de haber aparecido.

Anorexia. Falta de apetito.

Astenia. Falta o pérdida de fuerza.

Estenosis. Estrechez patológica congénita o accidental de un orificio o conducto.

Ginecomastia. Volumen excesivo de las mamas en el hombre.

Hipercaliemia. Exceso de potasio en la sangre.

Hiperpotasemia. Exceso de sales de potasio en la sangre; hipercaliemia.

Hiponatremia. Deficiencia de sales de sodio en la sangre, depleción salina.

Hipotonía. Tono muscular inferior al normal.

Hirsutismo. Síndrome que se caracteriza por la aparición de pilosidades en zonas glabras, especialmente en la mujer.

Idiopatía. Enfermedad de origen primitivo o desconocido.

Oligomenorrea. Menstruación escasa o poco frecuente; hipomenorrea u opsomenorrea.

Polidipsia. Necesidad de beber con frecuencia y abundantemente.

Poliquístico. Que presenta muchos quistes.

Poliquistosis. Enfermedad poliquística bilateral y congénita de los riñones.

Poliuria. Emisión exagerada de orina.

Ponderal. Relativo al peso.

Pseudohermafroditismo. Il -femenino. Ginandria; estado en que las características sexuales externas parecen masculinas, pero con presencia de ovarios. Il -masculino. Androginia; estado en que los caracteres sexuales externos son más o menos femeninos, pero existen testículos, ordinariamente no descendidos.

Pubarquia. Aparición de pilosidad púbica y/o axilar antes de los 8 años.

Pubertad. Periodo de la vida comprendido entre los 12 y 14 años, en el que comienza la función de los órganos reproductores, indicada en el hombre por la erección y eyaculación seminal y en la mujer por la menstruación. Il -**precoz**. Madurez sexual patológicamente temprana.

Suprarrenalectomía. Extirpación de la cápsula suprarrenal.

Tubérculo. Eminencia pequeña natural en un hueso o en otra parte. Il *-genital*. Eminencia en el embrión delante de la cloaca, de la que se desarrolla el pene o el clítoris.

Uretrografía. Radiografía de la uretra.

Uretroscopia. Endoscopia de la uretra.