

UNIVERSITAT DE BARCELONA Departament de Física Aplicada i Electrònica Laboratori de Física de Capes Fines Av. Diagonal, 647 08028-Barcelona

CELULAS SOLARES DE SILICIO AMORFO: OBTENCION, CARACTERIZACION Y MODELIZACION

José Miguel Asensi López

Programa de Doctorat: Física i Tecnologia de Materials (bienni 1987-1989) Tutor: Dr. Josep Lluís Morenza i Gil Director de la Tesi: Dr. Jordi Andreu i Batallé

> Memòria presentada per optar al títol de Doctor en Ciències Físiques

> > Barcelona, Març de 1994

7.4. METAESTABILIDAD DE LAS CELULAS SOLARES P-I-N DE a-Si:H SEGUN EL *MODELO TERMODINAMICO*.

En este apartado se realiza un primer intento de análisis de los efectos metaestables en las células solares de a-Si:H según nuestra interpretación basada en las hipótesis del "modelo termodinámico" de formación de defectos (ver [Asensi & Andreu, 1993] y [Asensi et al., 1993]).

7.4.1. Cálculo del perfil del DOS en la estructura p-i-n en condiciones de desequilibrio electrónico.

En el Capítulo 2 demostramos que la expresión [7.1] para la distribución energética de defectos seguía siendo válida en condiciones de desequilibrio electrónico *estacionario*. La única *diferencia* consiste en que la probabilidad $f^{0}(E)$ del estado neutro del defecto que aparece en dicha expresión debe sustituirse por la probabilidad más general deducida de la estadística electrónica en condiciones estacionarias de desequilibrio (ver apartado 4.5). En otras palabras, el DOS debe considerarse ahora como una función de los pseudo-niveles de Fermi para electrones y huecos en lugar del nivel de Fermi.

De forma similar al cálculo inicial del perfil del DOS a la temperatura de equilibrio T^{*}, las ecuaciones diferenciales que describen el comportamiento del dispositivo deberán resolverse ahora teniendo en cuenta la dependencia del DOS con los pseudo-niveles de Fermi. Al estar tratando una situación de desequilibrio electrónico (puede existir un potencial exterior aplicado o excitación luminosa) debe considerarse el conjunto completo de ecuaciones físicas: la ecuación de Poisson junto con las ecuaciones de continuidad y transporte. Obsérvese que tanto la carga atrapada como la velocidad de recombinación a través de la distribución específica de la densidad de defectos son funciones de las concentraciones de huecos y electrones (es decir, de los pseudo-niveles de Fermi) según las expresiones deducidas en el apartado 4.5; pero ahora la misma distribución es todavía más compleja, como se discute a continuación:

Variación de $\mu_{\rm H}$ en condiciones de desequilibrio: En principio, el contenido total de hidrógeno es un parámetro que debe mantenerse constante una vez depositada la estructura p-i-n de a-Si:H. La concentración total de hidrógeno está determinada por el valor del potencial químico del hidrógeno ($\mu_{\rm H}$). En la deducción inicial del perfil del DOS a la temperatura de equilibrio T^{*}, el potencial químico del hidrógeno, que se mantenía constante a lo largo de toda la estructura, era un dato inicial que se ajustaba de forma que la densidad de defectos neutros en la zona intrínseca fuera del orden de 10¹⁵ cm⁻³. Cuando se permite que evolucione el perfil del DOS en condiciones de desequilibrio electrónico a temperaturas inferiores a T^{*} (*metaestabilidad*) el contenido de hidrógeno de la muestra debe permanecer constante. Esto implicará, en general, que el valor de $\mu_{\rm H}$ en la nueva situación sea diferente

al valor inicial. En otras palabras, para obtener el perfil del DOS en condiciones de desequilibrio, debe añadirse una nueva restricción al conjunto de ecuaciones físicas que describen la operación de la célula solar: el contenido de hidrógeno se mantiene constante y, para ello, $\mu_{\rm H}$ debe actuar como una nueva variable y no como un parámetro inicial de definición del dispositivo. En la situación final, una vez se ha producido la *degradación*, el perfil del DOS *congelado* que debe utilizarse para analizar el comportamiento del dispositivo estará determinado por el nuevo valor de $\mu_{\rm H}$, constante a lo largo de toda la estructura, y por

Fig. 7.23. Diagrama de flujo de la subrutina SW del programa PSCF que resuelve el estado *metaestable* del dispositivo (ver texto).

los perfiles de concentración de huecos y electrones obtenidos en el cálculo del estado *degradado*.

Condiciones de contorno: Aunque ésto es más que discutible, hasta ahora hemos mantenido la hipótesis de neutralidad eléctrica en los contactos en condiciones de equilibrio (sin potencial exterior aplicado ni excitación luminosa). El potencial de equilibrio V_{eq} (= V_{bi}) definido a partir de dicha hipótesis es igual a la diferencia entre las posiciones del nivel de Fermi en los contactos p y n. En general, V_{eq} dependerá de la concentración de defectos y de su distribución energética específica en dichos contactos. Obsérvese que esto último es especialmente cierto en el análisis según el *modelo termodinámico* del DOS, donde se ha comprobado que la concentración de defectos es prácticamente igual a la concentración de impurezas en el material dopado y, por lo tanto, la carga atrapada en los defectos debe influir de forma importante en la posición del nivel de Fermi.

En el cálculo del estado *metaestable* de la célula de a-Si:H, la variación del potencial químico $\mu_{\rm H}$ y de los pseudo-niveles de Fermi se traducirá en la variación de la distribución energética de los estados de defecto en el material dopado que forma los contactos del dispositivo. En el estado de equilibrio electrónico esto supone la variación de la posición del nivel de Fermi en los contactos y, por lo tanto, del *potencial de equilibrio* de la célula (V_{eq}). Es decir, si mantenemos las mismas hipótesis en la interpretación de las condiciones de contorno del dispositivo, los pseudo-potenciales $v_p(0)$ y $v_p(d)$ (ver subapartado 4.2.6), o en otras palabras: la posición del nivel de Fermi en los contactos ($E_{\rm F}(0)-E_{\rm V}$ y $E_{\rm F}(d)-E_{\rm V}$), deben ser redefinidos. Por lo tanto, el cálculo del estado *metaestable* de la célula debería resolverse de forma *autoconsistente* con la condición de neutralidad eléctrica en los contactos en la situación de equilibrio electrónico.

Subrutina SW: Estas dos restricciones: contenido de hidrógeno constante y neutralidad eléctrica de los contactos en el estado de equilibrio, hace que el cálculo del estado *metaestable* del dispositivo sea más complejo que la determinación del perfil del DOS a la temperatura de equilibrio T^{*}. Para ello ha tenido que añadirse una nueva subrutina al programa de simulación (esta subrutina es gestionada por medio de la instrucción SW) que resuelve de forma iterativa, mediante el *Método de Newton*, ambas restricciones. En la figura 7.23 se muestra el diagrama de flujo de la subrutina de cálculo del estado *metaestable*.

7.4.2. Ejemplo de simulación del estado degradado de una célula solar de a-Si:H.

En este subapartado se analiza un primer ejemplo de degradación de la estructura p-i-n bajo el punto de vista del modelo termodinámico del DOS. Hay que advertir que nos estamos enfrentando con un problema complejo, existen todavía demasiados puntos oscuros que conviene aclarar antes de tener suficiente confianza en las predicciones del modelo termodinámico del DOS aplicado al funcionamiento de la célula solar p-i-n de a-Si:H. Algunos de estos puntos oscuros ya se comenzaron a discutir al principio de este capítulo: por ejemplo, la dificultad que supone la descripción del material dopado y que nos ha obligado a reducir el tamaño del "pool" de defectos en toda la estructura. Otra dificultad que conviene investigar con detalle son las propiedades de los contactos metálicos. Todavía no resultan nada claros los mecanismos de transporte que tienen lugar a través de dichos

		μ _H (eV)	$v_{p0}(V)$	$v_{pd}(V)$	$I_{sc}(mA/cm^2)$	$V_{oc}(V)$	FF	η(%)
	$d_i = 0.3 \ \mu m$		-					
	Α	0.221	0.329	-0.616	7.880	0.830	0.633	4.47
4	В	0.078	0.521	-0.435	8.635	0.844	0.602	4.73
	$d_{i} = 1.2 \ \mu m$							
	· · A	0.221	0.329	-0.616	7.710	0.829	0.547	3.78
	В	0.076	0.520	-0.405	8.348	0.840	0.463	3.50
	$d_i = 0.3 \ \mu m$							
	· / A	0.287	0.440	-0.649	8.844	0.850	0.660	5.36
	В	0.110	0.552	-0.467	8.952	0.871	0,653	5.50
	$d_{i} = 1.2 \ \mu m$							
	A	0.287	0.440	-0.649	8.844	0.850	0.660	5.36
	` В	0.110	0.552	-0.467	9.003	0.853	0.623	5.17
	TABLA II	Simulac el <i>mode</i> calculac texto).	ción de <i>d</i> elo term lo bajo	egradaci odinámic iluminac	ión de dispositivo co del DOS. El ión AM1 en la	os p-i-n c l estado condició	le a-Si:H <i>metaest</i> ón de co	de acuerdo con able (B) se ha ortocircuito (ver

contactos (el análisis que se hace a lo largo de todo el trabajo es quizás demasiado simple) y, sobre todo, convendría revisar la hipótesis de neutralidad eléctrica en la situación de equilibrio eléctronico. Obsérvese que, en la descripción según el modelo termodinámico, el DOS en toda la estructura y particularmente en las zonas dopadas es función de la posición del nivel de Fermi: en este caso, la descripción de los contactos a partir de las diferencias entre las funciones de trabajo (lo que, en principio, sería más correcto) puede tener implicaciones importantes en los resultados de los cálculos, ya que dicha diferencia influirá también en las características de la distribución energética de los defectos del material junto a los contactos. En la simulación de la metaestabilidad de la estructura p-i-n y en la discusión de los resultados no debe olvidarse la presencia de todos estos problemas.

En la Tabla II se muestra el resultado de *degradar* con una iluminación AM1 y en la condición de cortocircuito (es decir, sin un potencial exterior aplicado) algunas de las estructuras p-i-n que hemos estado considerando en este capítulo. Obsérvese como la resolución del estado metaestable (situación B) bajo la condición de contenido de hidrógeno constante implica una disminución importante del potencial químico del hidrógeno respecto al estado inicial (situación A), y como la condición de neutralidad eléctrica en la situación de equilibrio electrónico también supone la variación de los pseudo-potenciales de equilibrio que definen las condiciones de contorno. Sobre esto último, obsérvese como, en todos los casos considerados, el pseudo-potencial de equilibrio para huecos en el primer contacto (v_{n0}) aumenta tras la degradación, lo que implica que el material de la zona p se hace más tipo p (el nivel de Fermi se aproxima a la banda de valencia), y el pseudo-potencial para huecos en el contacto $n(v_{pd})$ también aumenta, lo que implica que el material de la zona n se hace menos tipo n (el nivel de Fermi también tiende a aproximarse a la banda de valencia aléjandose de la banda de conducción). En principio, este resultado debería contrastarse con estudios experimentales de degradación de material dopado (p.e. el estudio de la variación de la energía de activación de la conductividad tras someter a muestras de a-Si:H dopado a degradación).

Fig. 7.24.

Característica V-I bajo iluminación AM1 de la estructura p-i-n en el estado inicial (A) y después de degradar con la iluminación AM1 en la condición de cortocircuito (B) para la estructura con espesor de zona *i* igual a 1.2 μ m y $\mu_{\rm H}$ inicial igual a 0.22 eV (ver Tabla II). La línea discontinua representa la intensidad de recombinación en la situaciones A y B.

Sin embargo, el resultado mostrado en la Tabla II no se ajusta a lo observado experimentalmente. Se encuentra, por ejemplo, que el rendimiento de las células con un pequeño espesor de zona *i* (0.3 μ m) en lugar de disminuir aumenta tras la degradación. Para grandes espesores de zona *i* (1.2 μ m) el rendimiento sí disminuye pero unn factor muy pequeño. En todos los casos se encuentra que la degradación de la célula implica la disminución del factor de forma (FF) de la curva V-I, pero esta disminución del FF queda compensada por los aumentos de la intensidad en cortocircuito y de la tensión en circuito abierto. En las células delgadas el aumento de la I_{sc} y la V[∞] llega a suponer una mayor eficiencia en el estado degradado B.

En la figura 7.24 se muestra la curva V-I bajo iluminación AM1 en el estado inicial (A) y después de la degradación (B) para uno de los casos considerados: célula con espesor de zona *i* igual a 1.2 μ m y $\mu_{\rm H}$ en el estado A igual a 0.22 (de hecho, las cuatro células de la Tabla II presentan un comportamiento similar). En dicha figura se muestra también la *intensidad de recombinación* en función de la tensión aplicada para las situaciones A y B. Es interesante señalar que, a pesar del aumento *anómalo* del valor de I_{sc} en el dispositivo degradado, la intensidad de recombinación es apreciablemente superior en este caso (de hecho, se oberva como para cualquier tensión aplicada la recombinación es superior en el estado degradado: más adelante, en la figura 7.28 se muestran los perfiles de velocidad de recombinación en las tres condiciones de operación de la célula solar, para el estado A y el estado B). De alguna forma, la degradación de la célula llega a corregir uno de los mecanismos de pérdidas (distinto a la recombinación) que limitaba el valor de I_{sc} en el estado inicial A.

En la figura 7.25 se muestran los perfiles de la concentración de defectos según el estado de carga en las situaciones A y B y en condiciones de equilibrio eléctronico (sin iluminación ni potencial exterior aplicado) para la misma célula de la figura 7.24. Obsérvese como en el estado *metaestable* la concentración de defectos neutros (que actúan como *centros de recombinación*) en la zona intrínseca aumenta de forma considerable: más de un orden de

Fig. 7.25. Perfiles de densidad de defectos según su estado de carga $(+, - \circ 0)$ en condiciones de equilibrio electrónico en el estado inicial A (línea discontinua) y el estado *degradado* B (línea continua) para la estructura p-i-n con $\mu_{H0}=0.22$ eV y d_i=1.2 μ m.

Fig. 7.26. Perfiles de campo eléctrico (en valor absoluto y escala logarítmica) para la estructura p-i-n de la fig. 7.25 en varias situaciones: estado A en equilibrio electrónico (1A), estado A bajo iluminación AM1 en cortocircuito (2A), estado B en equilibrio (1B) y estado B bajo iluminación AM1 (2B).

Fig. 7.27. Amplicación de los perfiles de campo eléctrico (escala linea) en la unión p-i para las mismas situaciones de la fig. 7.26.

Fig. 7.28. Perfiles de velocidad de recombinación en las tres condiciones de operación de la célula solar (1: cortocircuito, 2: máxima potencia, 3: circuito abierto) en el estado inicia A (línea discontinua) y en el estado *degradado* B (línea continua) para la célula con $d_i = 1.2 \ \mu m$ y μ_{H0} - $E_H = 0.22 \ eV$.

magnitud. Sin embargo, este aumento no es suficiente para provocar la disminución de la eficiencia de la célula solar. Presumiblemente, las consecuencias asociadas a los cambios de la distribución de defectos en las zonas dopadas y en las interfases p-i e i-n llegan a contrarrestar los efectos del aumento de centros de recombinación en la zona i. Para ilustrar esto último, en la figura 7.25 se muestran los perfiles de campo eléctrico en la condición de cortocircuito (es decir, sin potencial exterior aplicado) en oscuridad y bajo iluminación AM1, para el dispositivo en el estado incial A y en el estado degradado B. Se observa como en el estado degradado el campo eléctrico en el interior de la zona i es más intenso que en el estado inicial (tanto en oscuridad como bajo iluminación AM1), lo que debe evitar el aumento de la velocidad de recombinación en esta zona del dispositivo (ver fig. 7.28). En la figura 7.27 se muestra una ampliación de la figura 7.26 (en escala lineal) para los perfiles de campo eléctrico en la unión p-i. Puede observarse como en la región de la zona i próxima a la interfase *p-i* la evolución del perfil de campo eléctrico tras la degradación de la célula es diferente a lo observado el interior de la zona i: el campo eléctrico se hace menos intenso en la situación B, lo que debe repercutir negativamente en el funcionamiento de la célula (obsérvese en la fig. 7.28 el aumento de la velocidad de recombinación en dicha región). Sin embargo, el cambio más destacado que experimenta el campo eléctrico tras degradar la célula solar se observa en la zona p, junto al contacto metálico. Para el estado inicial A del dispositivo vimos que la iluminación provocaba la inversión del campo eléctrico en dicha zona. Como ya se ha discutido, la inversión del campo eléctrico en la zona p, oponiéndose al sentido de la fotocorriente, supone un nuevo mecanismo de pérdidas debido a que impide la colección de los portadores minoritarios generados en la zona p. En la figura 7.27 se observa como tras la degradación, en la situación B, este efecto se ha reducido notablemente. Presumiblemente, la extraña mejora del valor de I_{sc} que se produce en el estado metaestable se debe a este motivo, el cual, a su vez, debería relacionarse con los cambios en la densidad de defectos, y en su distribución energética, que ocasiona la iluminación AM1 en el material dopado.

Perfil de configuraciones SiH: El resultado obtenido en la simulación de la metaestabilidad necesariamente obliga a replantearse algunos de los parámetros (o hipótesis) utilizados en la descripción de la célula p-i-n según el modelo termodinámico del DOS. Como ya se ha comentado, el problema no es sencillo y deberían realizarse todavía todo tipo de experimentos para aclarar cual es la descripción más adecuada. En este subapartado mostramos el resultado que se obtiene cuando se considera que la concentración de configuraciones SiH (es decir, el tamaño del "pool" de defectos) es del orden de 10²¹ cm⁻³ (tres órdenes de magnitud superior a lo considerado hasta ahora en este capítulo). Dicho valor fué el que se utilizó al analizar las predicciones del modelo termodinámico en el Capítulo 2 y, de hecho, es lo que parecen confirmar los datos experimentales sobre el estado del hidrógeno en el a-Si:H (ver Capítulo 2). Sin embargo, como ya se ha discutido, si se admite una densidad de configuraciones SiH de este orden en el material intrínseco necesariamente debe modificarse algún parámetro del "pool" en las zonas dopadas para que las concentraciones de impurezas activas y la densidad de defectos tengan valores razonables en estas zonas. En este ejemplo se ha optado por reducir la densidad de configuraciones SiH en las zonas dopadas. Para ello se ha introducido un perfil de configuraciones SiH en la definición de la estructura p-i-n. La concentración en la zona intrínseca se supone de 1.5x10²¹ cm⁻³, la cual se reduce hasta 1.5x10⁻¹⁹ cm⁻³ en el material dopado (la concentración de impurezas, tanto para el material p como para el n, sigue siendo de 10^{18} cm⁻³;). Se

Fig. 7.29.

Perfil de configuraciones SiH.

Característica V-I bajo iluminación AM1 de la estructura p-i-n en el estado inicial (A) y después de degradar con la iluminación AM1 en la condición de cortocircuito (B) para la estructura con espesor de zona *i* igual a 0.3 μ m y μ_H inicial igual a 0.50 eV. La línea discontinua representa la intensidad de recombinación en la situaciones A y B.

supone que la concentración de configuraciones SiH es proporcional a la concentración de dopantes. El aumento del tamaño del "*pool*" en la zona *i* obliga a aumentar el valor del potencial químico del hidrógeno ($\mu_{\rm H}$ -E_H) para poder ajustar la densidad de defectos neutros en el material *i* en el rango de 10¹⁵ cm⁻³. Ahora, en el estado inicial, $\mu_{\rm H}$ -E_H es igual a 0.50 eV⁵. El resto de los parámetros utilizados en la descripción de la célula se mantienen como hasta ahora (ver Tabla I).

En la figura 7.29 se muestra la curva V-I bajo iluminación AM1 para una célula p-i-n delgada ($d_1=0.3 \mu m$) definida con un perfil de configuraciones SiH según lo comentado en el párrafo anterior. Se muestra el resultado en la situación inicial (estado A) antes de degradar la célula ($\mu_H=0.50 \text{ eV}$) y después de la degradación con una iluminación AM1 en condición de cortocircuito (estado B; μ_H disminuye hasta 0.22 eV). Ahora, a diferencia del

ł 0.2	$\mu_{\rm H}({\rm eV}) \ v_{p0}({\rm V})$	$v_{pd}(V) I_{sc}(mA/cm^2)$	V _{oc} (V) FF	η(%)
$d_i = 0.3 \ \mu m$ A B	0.503 0.329 0.220 0.576	-0.594 6.142 -0.480 5.847	0.817 0.556 0.855 0.473	3.01 2.55
TABLA III	Simulación de d el <i>modelo tern</i> configuraciones iluminación AM	<i>legradación</i> de dispositiv <i>nodinámico</i> del DOS, SiH. El estado <i>metae</i> 11 en la condición de co	vos p-i-n de a-Si:] para el caso o estable (B) se ha rtocircuito (ver to	H de acuerdo con le un <i>perfil</i> de a calculado bajo exto).

⁵ Obsérvese que el tamaño del "*pool*" en el material dopado es un orden de magnitud superior al supuesto en los apartados anteriores: esto está relacionado con el mayor valor del potencial químico del hidrógeno; ahora no es necesario reducir tres órdenes de magnitud el tamaño del "*pool*" para ajustar la posición del nivel de Fermi a lo observado experimentalmente en el material dopado.

Fig. 7.30. Perfiles de densidad de defectos según su estado de carga (+, -60) en condiciones de equilibrio electrónico en el estado inicial A (línea discontinua) y el estado degradado B (línea continua) para la estructura p-i-n definida con un perfil de configuraciones SiH (μ_{H0} =0.50 eV y d_i=0.3 μ m).

Fig. 7.31. Perfiles de velocidad de recombinación, en la unión *p-i*, en las tres condiciones de operación de la célula solar (1: cortocircuito, 2: máxima potencia, 3: circuito abierto) en el estado inicia A (línea discontinua) y en el estado *degradado* B (línea continua) para la célula de la fig. 6.30.

caso anterior (cuando se suponía un "*pool*" constante y *reducido*) incluso el rendimiento de la célula solar *delgada* disminuye apreciablemente tras la degradación: el valor inicial es del 3% y el final del 2.5%.

El único problema ahora es que los valores obtenidos para la eficiencia son anormalmente bajos para lo que se espera en una célula p-i-n con un espesor de zona *i* de $0.3 \mu m$, incluso en el estado inicial no degradado. En la tabla III se muestra el conjunto de parámetros fotoeléctricos deducidos de las curvas V-I de la figura 7.30. El valor excesivamente bajo del rendimiento, ya en el estado inicial, se debe a los pequeños valores de la I_{sc} y, sobre todo, el FF (éste es de 0.56, cuando lo más habitual es encontrar valores cercanos a 0.7 en una célula de a-Si:H *delgada* no degradada con 0.3 μm de espesor de zona *i*). .

CONCLUSIONES

,

A - Sobre la estructura electrónica del a-Si:H:

Se ha desarrollado el modelo de la distribución energética de los defectos en el a-Si:H basado en las hipótesis de la *Teoría química* de formación de defectos cuando se admite que éstos son el resultado de reacciones de difusión del hidrógeno. El modelo se basa en la descripción mecánico-estadística de los diferentes estados del hidrógeno en la red de a-Si:H, incluyendo el concepto de "*defect pool*" y la dependencia de las energías de formación con el nivel de Fermi (o los pseudo-niveles de Fermi). Se demuestra que la expresión obtenida para la densidad de estados es válida tanto en condiciones de equilibrio electrónico como en condiciones de desequilibrio estacionario.

El modelo conduce a una nueva imagen de la densidad de estados de defecto en el a-Si:H y a una nueva interpretación de los efectos metaestables. La distribución energética de estados, en el a-Si:H intrínseco y en estado *no degradado*, se descompone en tres bandas *no correlacionadas* según la carga eléctrica del defecto. La densidad de defectos cargados es muy superior a la densidad defectos neutros. La degradación del material se explica por la transferencia del hidrógeno que satura defectos neutros con energías en el centro del gap hacia los defectos cargados y energías cercanas a los bordes de las bandas de conducción y valencia.

Se demuestra que el modelo permite explicar los diferentes fénomenos relacionados con la formación de defectos que se han observado en el a-Si:H: i) el comportamiento térmicamente activado de la densidad de defectos neutros; ii) la dependencia de la distribución energética de los defectos con la posición del nivel de Fermi, y iii) el efecto Staebler-Wronski y, más concretamente, la dependencia con la temperatura y la intensidad de iluminación de la densidad de defectos fotoinducidos.

B - Sobre la obtención y caracterización de células solares p-i-n de a-Si:H:

Se ha contribuido a la puesta a punto de un reactor de depósito de a-Si:H, mediante plasma RF, que permite obtener células solares de estructura p-i-n. El reactor está dotado de un portasustratos giratorio automatizado que facilita el depósito de las diferentes capas de la célula. Se ha puesto a punto, también, el sistema experimental de caracterización fotoeléctrica de las células solares obtenidas: tanto para la medida básica de la característica tensión-intensidad bajo iluminación como para las medidas más fundamentales de respuesta espectral.

El depósito y posterior caracterización de los dispositivos ha permitido determinar las condiciones tecnológicas que permiten obtener células solares basadas en la homounión p-i-n de a-Si:H con buenas características fotoeléctricas, el rendimiento máximo alcanzado está en el rango del 5%.

La dilución de diborano, durante el depósito de la zona p, parece ser el parámetro tecnológico relacionado con dicha capa que más afecta a las propiedades del dispositivo. Para niveles de concentración superiores al 1 %, el comportamiento de la célula empeora de forma significativa. En este caso, la disminución del rendimiento se debe, sobre todo, a los bajos valores del factor de forma de la curva V-I.

El aumento del espesor de la zona p se traduce siempre en una disminución de la intensidad en cortocircuito, debido a la disminución de la respuesta espectral a las longitudes de onda más corta; lo que demuestra que en la homounión p-i-n de a-Si:H la zona p se comporta como una zona de muerte para los portadores fotogenerados en ella. El aumento del espesor de la zona p también implica un ligero aumento de la tensión en circuito abierto, aunque ésto sólo es cierto para concentraciones moderadas de diborano: inferiores al 1%.

En general, el aumento del espesor de la zona i implica un aumento del rendimiento debido a la mayor absorción y, como consecuencia, al mayor valor de la intensidad en cortocircuito. En las curvas de eficiencia cuántica ésto se traduce en un aumento de la respuesta a las longitudes de onda más larga. Este comportamiento puede depender de la calidad electrónica de la zona i. En especial, se ha estudiado el efecto de la temperatura de depósito de la zona i, encontrándose una notable influencia de dicho parámetro en las propiedades fotoeléctricas de las células. La disminución de la temperatura de depósito de la zona i implica, en general, el aumento de la tensión en circuito abierto. Sin embargo, para muy bajas temperaturas de depósito el rendimiento de la célula empeora debido a la disminución de la intensidad en cotocircuito y el factor de forma.

El comportamiento de la célula solar de a-Si:H es particularmente sensible a las condiciones de depósito durante las primeras etapas del crecimiento de la zona i. En particular, se encuentra un aumento significativo de la tensión en circuito abierto con el aumento de la potencia RF o con la utilización de un plasma en régimen gamma en lugar de régimen alfa.

Las propiedades del material utilizado en la zona n no parecen tener una influencia significativa en el comportamiento de la célula. No obstante, en el conjunto de muestras realizadas se observa, en general, un ligero aumento de la tensión en circuito abierto y la intensidad en cortocircuito con el aumento del espesor de la zona n.

Se ha comprobado, en diferentes series de espesor de zona p, que los cambios en la respuesta espectral producidos por la iluminación de fondo apenas dependen de dicho espesor. Por el contrario, se observa una notable influencia del espesor de la zona i y de la zona n: al aumentar dichos espesores, la respuesta del dispositivo se hace más sensible a la iluminación de fondo. Estos cambios dependen de las características del material intrínseco: a bajas temperaturas de depósito la iluminación de fondo implica la disminución de la respuesta espectral; a medida que se aumenta la temperatura de depósito, la situación se invierte y la iluminación supone una disminución de la respuesta espectral.

C - Sobre la simulación del funcionamiento de la célula solar p-i-n de a-Si:H:

Se ha desarrollado el programa de simulación del funcionamiento de una estructura p-i-n de a-Si:H. El programa resuelve de forma simultánea la ecuación de Poisson para el potencial eléctrico y las ecuaciones de continuidad para el transporte de electrones y huecos. Incluye las estadísticas eléctronicas que describen el estado de ocupación y la velocidad de recombinación para los distintos tipos de defectos en el a-Si:H: la estadística de Simmons-Taylor para los estados en las colas de las bandas y la estadística de Scockley-Last para el enlace no saturado. El programa permite simular con facilidad cualquier tipo de medida fotoeléctrica; y puede utilizarse para analizar las implicaciones de las distintas hipótesis sobre la densidad de estados en el a-Si:H.

La simulación de la operación de la célula p-i-n de a-Si:H demuestra el papel determinante de los defectos electrónicos (en particular, del enlace no saturado) en dicha operación. Se han estudiado las implicaciones del modelo convencional de la densidad de estados. En este caso, los resultados indican que deben revisarse los parámetros o hipótesis más habituales empleados en la descripción del a-Si:H. Con dichos parámetros se demuestra que la zona p de la célula no se comporta como una zona de muerte para los portadores fotogenerados en ella, en contra de lo observado experimentalmente. Se han analizado tres posibles causas que podrían provocar este comportamiento: i) la existencia de un potencial de contacto en la zona p, ii) la disminución de la movilidad de los portadores en las zonas dopadas y iii) el aumento de la sección eficaz de captura de los defectos cargados.

Los estudios preliminares de la influencia del modelo de la densidad de estados basado en la *Teoría química* de formación de defectos en el funcionamiento de la estructura p-i-n demuestran como la dependencia de la densidad de estados con la posición del nivel de Fermi provoca, para la temperatura de equilibrio, el apantallamiento del campo eléctrico en el interior de la zona intrínseca. La imagen de la estructura p-i-n que predice la *Teoría química* es bastante diferente a la supuesta más habitualmente: en condiciones de equilibrio, el campo eléctrico es claramente no uniforme, siendo muy intenso en las interfases p-i e i-n y prácticamente nulo en el interior de la zona i.

El modelo *termodinámico* de la densidad de defectos puede incoporarse en el programa de simulación para analizar los efectos metaestables en las células p-i-n de a-Si:H. Los primeros resultados demuestran que la iluminación de la célula provoca un incremento importante de la densidad de defectos neutros (centros de recombinación) en el interior de la zona i y, como consecuencia, el empeoramiento del rendimiento debido a la disminución de la I_{sc} y el FF.

•

REFERENCIAS

,

. .

- Abeles B., Wronski C.R., Tiedje T., Cody G.D., Solid State Commun. 36, (1980) p.537.
- Abeles B., Wronski C.R, Goldstein Y., Cody G.D., Solid State Commun. 41, (1982), p.251.
- Amer N.M., Jackson W.B., Semiconductors and Semimetals, Vol 21 B, ed. Pankove J.I., Academic Press. New York. (1984), p.83.
- Adler D., Yoffa E.J., Phys. Rev. Lett. 36, (1976), p.1197.
- Adler D., Phys. Rev. Lett. 41, (1978), p.1755.
- Adler D., J. Phys. (Paris) 42, (1981), C4-3.
- Adler D., Naturwissenschaften 69, (1982), p.574.
- Adler D., Solar Cells 9, (1983), p.133.
- Adler D., Semiconductors and Semimetals, Vol 21 A, ed. Pankove J.I., Academic Press, New York, (1984), p.291.
- Adler D., Physical Properties of Amorphous Materials, ed. Adler D., Schwartz B.B., Steele M.C., New York, Plenum Press, (1984a), p.5.
- Adler D., Optical Effects in Amorphous Semiconductors, ed. Taylor P.C, Bishop S.G., (AIP Conf. Proc. n.120), New York, (1984b), p.70.
- Adler D., Silver M., Shaw M.P., Cannella V., MRS Symp. Proc. 70, (1986), p.113.
- Adler D., Proc. of the Int. Workshop on Amorphous Semiconductors, ed. Fritzsche H., Han D.X and Tsai C.C., World Scientific Publishing Co., (1987), p.15.
- Anderson P.W., Phys. Rev. 109, (1958), p.1492.
- Andújar J.L., Tesis doctoral, Universidad de Barcelona (1990).
- Arch J.K., Rubinelli F.A., Hou J.Y., Fonash S.J.,
 J. Appl. Phys. 69, (1991), p.7057.
- Arch J.K., Fonash S.J., Appl. Phys. Lett. 60, n.6, (1992), p.757.
- Asensi J.M., Comunicación interna, (1989).
- Asensi J.M., Bertomeu J., Andreu J., Puigdollers J., Morenza J.L., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.151.
- Asensi J.M., Andreu J., Bertomeu J., Puigdollers J., Proc. 11th. E.C.Solar Energy Conf., Montreux, Suiza, (1992), p.769.
- Asensi J.M., Andreu J., Phys. Rev. B 47, (1993), p.13245.
- Asensi J.M., Andreu J., Puigdollers J., Bertomeu J., Delgado J.C., MRS Symp. Proc. 297, (1993a), p.315.

- Balagurov L.A., Omel'yanovskii E.M., Petukhov A.G., Starikov M.N., Foigel M.G., Sov. Phys. Semic. 21, (1987), p.987.
- Bar-Yam Y., Joannopoulos J.D., non-Cryst. Solids 77&78, (1985), p.99.
- Bar-Yam Y., Joannopoulos J.D., Phys. Rev. Lett. 56, (1986), p.2203.
- Bar-Yam Y., Adler D., Joannopoulos J.D., Phys. Rev. Lett. 57, (1986a), p.467.
- Blayo N., Drevillon B., J. Non-Crys. Solids 137&138, (1991), p.775.
- Belenguer Ph., Boeuf J.P., Phys. Rev. A 41, (1990), p.4447.
- Berkel C., Powell M.J., Appl. Phys. Lett. 51, (1987), p.1094.
- Bertomeu J., Tesis doctoral, Universidad de Barcelona (1993).
- Beyer W., Tetrahedrally-Bonded Amorphous Semiconductors, Ed. Adler D., Fritzsche H., Plenum Press, New York, (1985), p.129.
- Biegelsen D.K., Stutzmann M., Phys. Rev. B 33, (1986), p. 3006.
- Biswass R., Kwon I., Soukoulis C.M., MRS Symp. Proc. 192, (1990), p.251.
- Block M., Bonnet D., Zetzsche F., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.139.
- Block M., Bonnet D., Zetzsche F., J. Non-Crys. Solids 137&138, (1991), p.1197.
- Böhm C., Perrin J., J. Phys. D 24, (1991), p.865.
- Boyce J.B., Ready S.E., Physica B 170, (1991), p.305.
- Branz M.H., Phys. Rev. B 39, (1989), p.5107.
- Branz H.M., Silver M., MRS Symp. Proc., 192, (1990), p.261.
- Brodsky M.H., Title R.S., Phys. Rev. Lett. 23, (1969), p.581.
- Brodsky M.H., Frisch A., Ziegler J.F., Landford W.A., Appl. Phys. Lett., 30, (1977), p.11.
- Brüggemann R., Abel C.D., Bauer G.H., Proc. 11th. E.C.Solar Energy Conf., Montreux, Suiza, (1992), p.676.
- Bruns J., Gall S., Wagemann H.G., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.147.
- Bruns J., Gall S., Wagemann H.G., J. Non-Crys. Solids 137&138, (1991a), p.1193.
- Carlson D.E., Wronski C.R., Appl. Phys. Lett. 28, (1976), p.671.
- Carlson D.E., IEEE Trans. Electron Devices ED24, (1977), p.449.
- Carlson D.E., Sol. Energy Mater. 3, (1980), p.503.

- Catalano A., Arya R., Yang L., Bennet M., Newton J.L., Wiedeman S., Tech. Dig. of the PVSEC-4, Sydney, Australia, (1989), p.421.
- Cody G.D., Wronski C.R., Abeles B., Stephens R., Brooks B., Solar Cells 2, (1980), p.227.
- Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y., Phys. Rev. Lett. 47, (1981), p.1480.
- Cody G.D., Semiconductors and Semimetals, Vol 21 B, Ed. Pankove J., Academic, New York, (1984), p.11.
- Cohen M.H., Economou E.N., Soukoulis C.M., J. Non-Crys. Solids 59, (1983), p.15.
- Conrad K.A., Schiff E.A., Solid State Commun. 60, (1986), p.291.
- Chang K.J., Chadi D.J., Phys. Rev. B 40, n.17, (1989), p.11644.
- Chapman B., Glow discharge processes, Wiley, New York, (1980).
- Chittick R.C., Alexander J.H., Sterling H.F., J. Electrochemical Soc., 116, (1969), p.77.
- Crandall R.S., RCA Technical Report PRRL-81-TR-169, (1981).
- Crandall R.S., J. Appl. Phys. 54, (1983), p.7176.
- Crandall R.S., J. Appl. Phys. 55, (1984), p.4418.
- Davis E.A., Mott N.F., Phil. Mag. 22, (1970), p.903.
- Davis E.A., Amorphous Semiconductors, ed. M.H.Brodsky, Springer-Verlag, Berlin, (1979), p.113.
- Delgado J.C., Tesis Doctoral, Universidad de Barcelona (1989).
- Dersch H., Stuke J., Beichler, J. Appl. Phys. Lett. 38, (1980), p.456.
- Dersch H., Stuke J., Beichler J., Phys. Stat. Sol. B 105, (1981), p.265.
- Doyle J.R., Doughty D.A., Gallagher A., J. Appl. Phys. 68, (1990), p.4375.
- Drüsedau T., Bindemann R., Phys. Stat. Sol. B 136, (1986), p.k61.
- Drüsedau T., Wagner D., Bindemann R., Phys. Stat. Sol. B 140, p.k27.
- Elliot S.R., Phil. Mag. B 39, (1979), p.349.
- Emin, D., Phil. Mag. 35, (1977), p.1189.
- Fahrenbruch A.L., Bube R.H., Fundamentals of solar cells, Academic Press, New York (1983).
- Faughnnan, B.W, Crandall R.S., Appl. Phys. Lett. 44, p.537.

- Fedders P.A., Catlsson A.E., J. Non-Crys. Sol. 114, (1989), p.393.
- Forouhi A.R., Bloomer I., Phys. Review B 34, (1986), p.7018.
- Godyak V.A., Khanneh A.S., I.E.E.E. Trans. Plasma Science PS 14, (1986) p.112.
- Goldie D., Spear W.E., Phil. Mag. Lett. 57, (1988), p.135.
- Gray L.J., IEEE Trans. Electron Devices 36, (1989), p.906.
- Guha S., Yang J., Nath P., Hack. M., Appl. Phys. Lett. 49, (1986), p.218.
- Hack M., Shur M., J. Appl. Phys. 54, (1983), p.5858.
- Hack M., Shur M., IEEE Electron Device Letters, EDL-4, (1983a), p.140.
- Hack M., Shur M., IEEE Trans. Electron Devices, ED-31, (1984), p.539.
- Hack M., Guha S., Shur M., Phys. Rev. B 30, (1984), p.6991.
- Hack M., Shur M., J. Appl. Phys. 58, (1985), p.997.
- Hack M., Shur M., J. Appl. Phys. 58, (1985a), p.1656.
- Hack M., W. den Boer, J. Appl. Phys. 58, (1985b), p.1554.
- Hack M., Shur M., J. Appl. Phys. 59, (1986).
- Hama S.T., Okamoto H., Hamakawa Y., Matsubara T, J. Non Cryst. Solids **59&60**, (1983), p.333.
- Hamakawa Y., Okamoto H., Tawada Y., Int. J. Solar Energy 1, (1982), p.125.
- Han M.K., Anderson W.A., Technical Digest of International Electron Device Meeting, Washington, (1981), p.34.
- Haruki H., Uchida Y., Sakai H., Nishiura M., Kamiyama M., Jpn. J. Appl. Phys. 21 (1982) p.283.
- Hata N., Isomura M., Wagner S., Appl. Phys. Lett. 60, (1992), p.1462.
- Hegedus S.S., Salzman N., Fagen E., J. Appl. Phys. 63, (1988), p.5126.
- Henry C.H., Lang D.V., Phys. Rev. B 15, (1977), p.989.
- Heine V., Solid State Physics, ed. Ehrenreich H., Seitz F., Turnbull D., Academic, New York, (1980).
- Hepburn A.P., Marshall J.M., Main C., Powell M.J., Berkel C., Phys. Rev. Lett. 56, (1986), p.2215.
- Hirabayashi I., Morigaki K., Nitta S., Jpn. J. Appl. Phys. 19, (1980), p.L357.

- Hishikawa Y., Watanabe K., Tsuda K., Nakano S., Ohnishi M., Kuwano Y., J. Non-Cryst. Solids 97&98, (1987), p.399.
- Ihm J., Zunger A., Cohen M.L., J. Phys. C 12, (1979), p.4409.
- Ikegaki T., Itoh H., Muramatsu S., Matsubara S., Nakamura N., Shimada T., Umeda J., Migitaka M., J. Appl. Phys. 58, (1985), p.2352.
- Isomura M., Hata N., Wagner S., J. Non-Cryst. Solids 137, (1991), p.223.
- Isomura M., Takahama T., Tsuda S., Nakano S., Jpn. J. Appl. Phys. **32**, (1993) p.1902.
- Jackson W.B., Solid State Commun. 44, (1982), p.477.
- Jackson W.B., Amer N.M., Phys. Rev. B 25, (1982a) p.5559.
- Jackson W.B., Kelso S.M., Tsai C.C., Allen J.W., Oh S.J., Phys. Rev. B 31, (1985), p.5187.
- Jackson W.B., Stutzmann M., Tsai C.C., Phys. Rev. B 34, (1986), p.54.
- Jackson W.B., Moyer M.D., Phys. Rev B 36, (1987), p.6217.
- Jackson W.B., Kakalios J., Amorphous Silicon and Related Materials, Ed. H.Fritzsche, World Scientific Publishing Company, (1988), p.247.
- Jackson W.B., Tsai C.C., Thompson R., Phys. Rev. Lett. 64, (1990), p.56.
- Jackson W.B., Zhang S.B., Physica B 170, (1991), p.197.
- Johnson N.M., D.K.Biegelsen., Phys. Rev. B 31, (1985), p.4066.
- Jones R., Physica B 170, (1991), p.181.
- Jousse D., Appl. Phys. Lett. 49, (1986), p.1438.
- Kakalios J., Jackson W.B., Amorphous Silicon and Related Materials. Ed. H.Fritzsche, World Scientific Publishing Company, (1988), p.207.
- Kasaneva J.R., Tesis Doctoral, Universidad de Barcelona (1990).
- Kastner M., Adler D., Fritzsche H., Phys. Rev. Lett. 37, (1976), p.1504.
- Kelires P.C., Tersoff J., Phys. Rev. Lett. 61, (1988), p.562.
- Kocka J., J. Non-Cryst. Solids 90, (1987), p.91.
- Kocka J., Vaneecek M., Tríska A., Amorphous Silicon and Related Materials, Ed. H.Fritzsche, World Scientific Publishing Company, (1988), p.409.
- Koening H.R., Maissel L.I., IBM J.Res. & Develop. 14, (1970), p.168.

- Köhler K., Coburn J.W., Horne D.E., Kay E., Keller J.H.,
 J. Appl. Phys. 57, (1985), p.59.
- Konagai M., Miyamoto H., Takahashi., Jap. J. Appl. Phys. 10, (1980), p.1923.
- Kopetzky W.J., Schwarz R., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.188.
- Kopetzky W.J., Pfleiderer H., Schwarz R., J. Non-Crys. Solids 137&138, (1991), p.1201.
- Krühler W., Pfleiderer H., Plätner R., Stetter W., Optical Effects in Amorphous Semiconductors, ed. Bishop S.G., Taylor P.C.), AIP Conf. Proc. 120, New York, (1984), p.311.
- Krühler W., Pfleiderer H., Plätner R., Stetter W., Technical Digest of the First International Photovoltaic Science and Engineering Conference, ed. M. Konagai, Nippon Press, Tokyo, (1984).
- Kuboi O., Jpn. J. Appl. Phys. 20, (1981), p.L783.
- Kushner M.J., J. Appl. Phys. 63, (1988), p.2532.
- Kusian W., Pfleiderer H., Bullemer B., MRS Symp. Proc. 118, (1988), p.183.
- Kuwano Y., Tsuda S., Ohnishi M., Jap. J. Appl. Phys. 21, (1982), p.235.
- Landsberg P.T., Handbook on Semiconductors, Vol. 1, ed. Paul W., North-Holland Publishing Company, (1982), p.380.
- Lucovsky G., Nemanich R., Knights J.C., Phys. Rev. B 19, (1979), p.2064.
- Lundstrom M.S., Schuelke R.J., Sol. Stat. Electron. 25, (1982), p.683.
- Lundstrom M.S., Schuelke R.J., IEEE Trans. Electron Devices ED-30, (1983) p.1151.
- Luque A., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.233.
- Maass F., Tesis Doctoral, Universidad de Barcelona (1991).
- Maass F., Bertomeu J., Asensi J.M., Puigdollers J., Andreu J., Delgado J.C., J. Esteve. Appl. Surf. Science 70&71 (1993), p.768.
- Mackamul K., Morel D., Tanner P., U.S.Patent #4.584,427, (1986).
- Madan A., Shaw M.P., The Physics and Applications of Amorphous Semiconductors, Academic Press, London (1988).
- Mahan A. H., Raboisson P., Tsu R., Appl. Phys. Lett. 50 (1987), p.335.
- Marshak A.H., Van Vliet K.M., Sol. Stat. Electron. 21, (1978), p.417.
- Marshall J.M., Rep. Prog. Phys. 46, (1983), p.1235.
- Marshall J.M., Street R.A., Thompson M.J., Phil. Mag. B 54, (1986), p.51.

³⁴⁶

- Marshall J.M., Street R.A., Thompson M.J., Jackson W.B., Phil. Mag. B 57, (1988), p.57.
- McCarthy M.J., Reimer J.A., Phys. Rev. B 36, (1987), p.4525.
- McElheny P.J., Arch J.K., Fonash S.J., Appl. Phys. Lett. 51, (1987), p.1611.
- McElheny P.J., Arch J.K., Lin S., Fonash S.J.,
 J. Appl. Phys. 64, (1988), p.1254.
- McElheny P.J., Matsuda A., Jap. J. Appl. Phys. 30, (1991), p.L1345..
- McMahon T., Madan A., MRS Symp. Proc. 49, (1985), p.287.
- McMahon T.J., MRS Symp. Proc. 219, (1991), p.57.
- Misiakos K., Lindholm F.A., J. Appl. Phys. 64, (1988), p.383.
- Mittiga A., Fiorini P., Falconieri M., Evangelisti F., J. Appl. Phys. 66, (1989), p.2667.
- Miyamoto H., Konagai M., Takahashi K., Jap. J. Appl. Phys. 20, (1981), p.1691.
- Morigaki K., Hirabayashi I., Nakayama M., Nitta S., Shimikawa K., Sol. Stat. Commun. 33, (1980), p.851.
- Morigaki K., Amorphous Silicon and Related Materials, Ed. Fritzsche H., World Scientific Publishing Company, (1988), p.595.
- Morigaki K., Jap. J. Appl. Phys. 27, (1988a), p.163.
- Morigaki K., Jap. J. Appl. Phys. 27, (1988b), p.L138.
- Morigaki K., Jap. J. Appl. Phys. 29, (1989), p.L1582.
- Mott N.F., Gurney R.W., Electronic Processes in Ionic Crystals, 2^a Ed. Oxford Univ. Press (1948).
- Mott N.F., Adv. Phys. 16, (1967), p.49.
- Mott N.F., Phil. Mag. 19, (1969), p.835.
- Mott N.F., Davis E.A, Electronic Processes in Non-Crystalline Materials, Oxford Univ. Press., New York, (1979).
- Mott N.F., J. Non Cryst. Sol. 77&78, (1985), p.115.
- Mott N.F., Phil. Mag. B 51, (1985a), p.177.
- Moustakas T.D., Wronski C.R., Tiedje T., Appl. Phys. Lett. 39, (1981), p.721.
- Müller G., Simon M., Winterling G., Proc. of 16th IEEE Photovoltaic Conf., San Diego, (1982), p.1129.
- Müller G., Kalbitzer S., Mannsperger S., Appl. Phys. A 39, (1986), p.243.
- Müller G., Mannsperger H., Kalbitzer S., Phil. Mag. B 53, (1986a), p.257.
- Müller G., Appl. Phys. A 45, (1988), p.41.

- Müller G., Appl. Phys. A 45, (1988a), p.103.
- Nagels P., Amorphous Semiconductors, ed. Brodsky M.H., Springer-Verlag, Berlin, (1979), p.113.
- Nakamura G., Sato K., Ishihara T., Usui M., Sasaki H., Okonina K., Yukomoto Y., Tech. Digest of PVSEC-I, Kobe, Japan, p.587.
- Oheda H., J. Appl. Phys. 52, (1981), p.6693.
- Ohsawa M., Hama T., Akasaka T., Sakai H., Ishida S., Uchida Y., J. Non-Cryst. Solids 97&98, (1987), p.91.
- Okamoto H., Hamakawa Y., Sol. Stat. Commun. 24, (1977), p.23.
- Overhof H., Beyer W., Phil. Mag. B 43, (1981), p.433.
- Overhof H., Beyer W., Phil. Mag. B 47, (1983), p.377.
- Overhof H., Thomas P., Electronic Transport in Amorphous Semiconductors, ed. Höhler G., Springer-Verlag Berlin Heidelbeg, (1989).
- Pankove J.I., Berkeyheiser J.E., Appl. Phys. Lett. 37, (1980), p.705.
- Pantelides S.T., Phys. Rev. Lett. 57, (1986), p.2979.
- Pantelides S.T., Phys. Rev. Lett. 58, (1987), p.1344.
- Pawlikiewicz A.H., Guha S., MRS Symp. Proc. 118, (1988), p.599.
- Pawlikiewicz A.H., Guha S., IEEE Trans. Electron Devices 37, (1990), p.403.
- Perrin J., Cabarrocas P.R., Allain B., Friedt J-M., Jap. J. App. Phys. 27, (1988), p.2041.
- Perrin J., J. Non-Crys. Solids 137&138, (1991), p.639.
- Phillips J.C., Phys. Rev. Lett. 42, (1979), p.1151.
- Pierz K., Fuhs W., Mell, Proc. of 19th Int. Conf. on the Physics of Semiconductors, ed. Zawadzki W., PIOP, Warsaw, (1989), p.1609.
- Pfleiderer H., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.208.
- Pfleiderer H., J. Non-Cryst. Solids 137&138, (1991), p.1205.
- Powell M.J., Berkel C., French I.D., Nicholls D.H., Appl. Phys. Lett. 51, (1987), p.1922.
- Powell M.J., Properties of Amorphous Silicon, EMIS Datateview, (1989), p.255.

348

- Press W.H., Flanery B.P., Teukolsky S.A., Vetterling W.T., Numerical Recipes in C: The Art of scientific computing, Ed. Cambridge University Press (1988).
- Puigdollers J., Comunicación interna, (1991).
- Puigdollers J., Tesis Doctoral en preparación, Universidad de Barcelona, (1994).
- Redfield D., MRS Symp. Proc., (1987), p.561.
- Reimer J.A., Petrich M.A., Amorphous Silicon and Related Materials, ed. Fritzsche H., World Scientific Publishing Company, (1988), p.3.
- Riemman K.V., J. Appl. Phys. 65, (1989), p.999.
- Ristein J., Hautala J., Taylor P.C., J. Non-Cryst. Solids 114, (1989), p.444.
- Robertson J., J. Phys. C 17, (1984), p.L349.
- Roca P., Tesis doctoral, Universite de Paris (1988).
- Roca P., Eicker U., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.335.
- Roch C., Tesis doctoral, Universidad de Barcelona (1991).
- Rose A., Concepts in Photoconductivity and Allied Problems, Interscience, New York (1963); Krieger, Huntington NY (1978).
- Ruiz J.M., Proc. 10th. E.C.Solar Energy Conf. Lisboa, Portugal, (1991), p.395.
- Sah C.T., Shockley W., Phys. Rev. 109, (1958), p.1103.
- Sakai H., Yoshida T., Fujikake S., Hama T., Ichikawa Y., J. Appl. Phys. 67, (1990), p.3494.
- Sakata I., Hayashi Y., Appl. Phys. Lett. 42, (1983), p.279.
- Sakata I., Yamanaka M., Hayashi Y., J. Appl. Phys. 67, (1990), p.3737.
- Sakata I., Yamanaka M., Hayashi Y., J. Appl. Phys. 69, (1991), p.2561.
- Sakata I., Yamanaka M., Hayashi Y., Jap. J. Appl. Phys. 30, (1991a), p.L326.
- Santos P.V., Jackson W.B., Street R.A., Phys. Rev. B 44, (1991), p.12800.
- Schauer F., Kocka J., Philos. Mag. B 52, (1985), p.L25.
- Scher H., Montroll E.W., Phys. Rev. B 12, (1975), p.2455.
- Schiff E.A., Tetrahedrally Bonded Amorphous Semiconductors, ed. Adler D., Fritzsche H., New York: Plenum Press, (1985), p.357.
- Schropp R.E.I., Verwey J.F., Appl. Phys. Lett. 48, (1987), p.1673.
- Schumm G., Nitsch K., Bauer G.H., Philos. Mag. B 58, (1988), p.411.

- 350
- Schumm G., Bauer G.H., Phys. Rev. B 39, (1989), p.5311.
- Schumm G., Bauer G.H., J. Non-Cryst. Solids 114, (1989a), p.660.
- Schumm G., Bauer G.H., Phil. Mag. B 64, (1991), p.515.
- Schumm G., Bauer G.H., J. Non-Cryst. Solids 137&138, (1991a), p.315.
- Schumm G., Bauer G.H., 22nd IEEE Photovoltaics Specialist Conf., Las Vegas, Nevada October 7-11, (1991).
- Serra J., Andreu J., Sardin G., Roch C., Asensi J.M., Bertomeu J., Esteve J., Physica B 170, (1991), p.269.
- Serra J., Tesis Doctoral, Universidad de Barcelona, (1991).
- Shah A.V., Hubin J., Sauvain E., 6th Int. Photovoltaic Science and Engineering Conf., New Delhi, India, (1992), p.685.
- Shalímova K.V., Física de los semiconductores, ed. Mir (1975).
- Shimizu T., Kidoh H., Morimoto A., Kumeda M., Jap. J. Appl. Phys. 28, (1989), p.596.
- Shockley W., Read W.T., Phys. Rev. 87, (1952), p.835.
- Shockley W., Last J.T., Phys. Rev. 107, (1957), p.392.
- Shockley W., Moll J.L., Phys. Rev. 119, (1960), p.1480.
- Sichanugrist M., Kumada M., Konagai M., Takahashi K., Komori K., Proc. of the 10th Int. Conf. on Amorphous and Liquid Semiconductors, Tokyo, (1983), p.1155.
- Sichanugrist P., Konagai M., Takahashi K., J. Appl. Phys. 55, (1984), p.1155.
- Silver M., Giles N.C., Snow E., Shaw M.P., Cannella V., Adler D., Appl. Phys. Lett. 41, (1982), p.935.
- Silver M., Adler D., Shaw M.P., Cannella V., Phil. Mag. **B 53**, (1986), p.L89.
- Simmons J.G., Taylor G.W., Phys. Rev. B 4, (1971), p.502.
- Smith Z.E., Wagner S., Phys Rev **B** 32, (1985), p.32.
- Smith Z.E., Wagner S., MRS Symp. Proc., (1987), p.551.
- Smith Z.E., Wagner S., Phys. Rev. Lett. 59, (1987a), p.688.
- Smith Z.E., Wagner S., Amorphous Silicon and Related Materials, ed. Fritzsche H., World Scientific Publishing Company, (1988), p.409.
- Swanepoel R., J. Phys. E 16, (1983), p.1214.
- Swanepoel R., J. Phys. E 17, (1984), p.896.
- Soukoulis C.M., Cohen M.H., Economou E.N., Phys. Rev. Lett. 53, (1984), p.616.

- Spear W.E., J. Non-Cryst. Solids 1, (1969), p.197.
- Spear W.E., LeComber P.G., Solid State Commun. 17, (1975), p.1193.
- Staebler D.L., Wronski C.R., Appl. Phys. Lett. 31, (1977), p.292.
- Staebler D.L., Wronski C.R., J. Appl. Phys. 51, (1980), p.3262.
- Staebler D.L., R.S. Crandall, R. Williams., Appl. Phys. Lett. 39, (1981), p.733.
- Stathis J., Phys. Rev. B 40, (1989), p.1232.
- Street R.A., Mott N.F., Phys. Rev. Lett. 35, (1975), p.1293.
- Street R.A., Knights J.C., Biegelsen D.K., Phys. Rev. B 18, (1978), p.1880.
- Street R.A., Biegelsen D.K., Knights J.C., Phys. Rev. B 24, (1981), p.969.
- Street R.A., Phys. Rev. Lett. 49, (1982), p.1187.
- Street R.A., Appl. Phys. Lett. 41, (1982a), p.1060.
- Street R.A., Zesch J., Thompson M.J., Appl. Phys. Lett. 43, (1983), p.672.
- Street R.A., Biegelsen D.K., Weisfield R.L., Phys. Rev. B 30, (1984), p.5861.
- Street R.A., Biegelsen D.K., The Physics of Hydrogenated Amorphous Silicon II, ed. Joannopoulos J.D., Lucovsky G., Springer, Berlin (1984).
- Street R.A., Philos. Mag. B 49, (1984a), p.L15.
- Street R.A., Biegelsen D.K., Jackson W.B., Johnson N.M., Stutzmann M., Phil. Mag. B 52, (1985), p.235.
- Street R.A., Kakalios J., Hayes T.M., Phys. Rev. B 34, (1986), p.3030.
- Street R.A., Tsai C.C., Kakalios J., Jackson W.B., Phil. Mag. B 56, (1987a), p.305.
- Street R.A., Kalalios J., Tsai C.C., Hayes T.M., Phys. Rev. B 35, (1987b), p.1316.
- Street R.A., Hack M., Jackson W.B., Phys. Rev. B 37, (1988), p.4209.
- Street R.A., Winer K., Phys. Rev. B 40, (1989), p.6236.
- Street R.A., J. Non-Cryst. Solids 137&138, (1991a), p.645.
- Street R.A., Phys. Rev. B 43, (1991b), p.2454.
- Street R.A., Physica **B** 170, (1991c), p.69.
- Street R.A., Hydrogenated Amorphous Silicon, ed. Cahn R.W., Davis E.A., Ward I.M, Cambridge University Press, (1991d).
- Stutzmann M., Jackson W.B., Tsai C.C., Phys. Rev. B 32, (1985), p.23.
- Stutzmann M., Street R.A., Phys. Rev. Lett. 54, (1985a), p.1836.

- 352
- Stutzmann M., Jackson W.B., Tsai C.C., Phys. Rev. B 34, (1986), p.63.
- Stutzmann M., Jackson W.B., Street R.A., Biegelsen D.K., Disordered Semiconductors, ed. Kastner M.A., Thomas G.A., Ovshinsky S.R., Plenum Press, New York, (1987), p.407.
- Stutzmann M., Jackson W.B., Sol. Stat. Commun. 62, (1987a), p.153.
- Stutzmann M., Phil. Mag. B 56, (1987b), p.63.
- Stutzmann M., Phil. Mag. B 60, (1989), p.531.
- Sun Y.M., Pfleiderer H., Krühler W., Proc. 8th. E.C. Solar Energy Conf., Florencia, Italia, (1988), p.666.
- Suzuki K., Ninomiya K., Nishimatsu S., Thoman J.W., Steinfeld J.I., Jap. J. Appl. Phys. 25, (1986), p.1569.
- Swartz G.A., J. Appl. Phys. 53, (1982), p.712.
- Takahashi K., M. Konagai, Amorphous Silicon Solar Cells, North Oxford Academic (1986).
- Tasaki H., Kim W.Y., Hallerdt M., Konagai M., Takahashi K., J. Appl. Phys. 63, (1988), p.550.
- Tauc J., Grigorovici R., Vancu A., Phys. Stat. Sol. 15, (1966), p.627.
- Tauc J., Mat. Res. Bull. 5, (1970), p.721.
- Taylor G.W., Simmons J.G., J. Non-Cryst. Solids. 8&10, (1972), p.940.
- Taylor P.C., Semiconductors and Semimetals, Vol. 21 C, ed. Pankove J., Academic Press, New York, (1984) p.99.
- Thomas J.H, Catalano A., Appl. Phys. Lett. 43, (1983), p.101.
- Tiedje T., Cebulka J.M., Morel D.L., Abeles B., Phys. Rev. Lett. 46, (1981), p.1425.
- Tiedje T., Semiconductors and Semimetals, Vol 21 C, ed. Pankove J., Academic Press, New York, (1984), p.207.
- Tiedje T., Proc. of the Int. Workshop on Amorphous Semiconductors, ed. Fritzsche H., Han D.X., Tsai C.C., World Scientific Publishing Co., (1987), p.113.
- Tsai C.C., Fritzsche H., Solar Energy Mat. 1, (1979), p.29.
- Tsai C.C., Proc. of the Int. Workshop on Amorphous Semiconductors, ed. Fritzsche H., Han D.X., Tsai C.C., World Scientific Publishing Co., (1987), p.43.
- Tsai C.C., Amorphous Silicon and Related Materials, ed. Fritzsche H., World Scientific Publishing Company, (1988), p.123.
- Turner G.B., Schwartz R.J., Park J.W., Gray J.L., J. Non-Cryst. Solids 97&98, (1987), p.1307.

- Uchida Y., Sakai H., Nishiura M., Jap. J. Appl. Phys. 20(Sup), (1981), p.191.
- Urbach F., Phys. Rev. 92, (1953), p.1324.
- Van de Walle C., Denteneer P.J.H., Bar-Yam Y., Pantelides S.T., Phys. Rev. B 39, (1989), p.10791.
- Vanecek M., Abraham A., Stika O., Stuchlik J., Kocka J., Phys. Stat. Sol., 83 (1984), p.617.
- Vardeny Z., Olszakier M., J. Non-Cryst. Solids, 97&98, (1987), p.109.
- Veprek S., Heintze M., Sarrott F.A., Jurcik-Rajman M., Willmott P., MRS Symp. Proc. 118, (1988), p.3.
- Veprek S., Sarrot F.A., Rambert S., Taglauer E., J. Vac. Sci. Technol. A 7, (1989), p.2614.
- Von Roedern B., Ley L., Cardona M., Phys. Rev. Lett. 39 (1977), p.1576.
- Voget-Grote U., Kümmerle W., Fischer R., Stuke J., Phil. Mag. **B 41**, (1980), p.127.
- Wagner S., Carlson E.D., Proc. 10th. E.C. Solar Energy Conf. Lisboa, Portugal, (1991), p.1179.
- Winer K, L.Ley., Phys. Rev. B 37, (1988), p.8363.
- Winer K., Phys. Rev. Lett. 63, (1989), p.1487.
- Winer K., Phys. Rev. B 41, (1990), p.12150.
- Winer K., J. Non-Cryst. Solids 137&138, (1991), p.157.
- Yablonovitch E., Cody G.D., IEEE Trans. Elec. Dev. ED-29, (1982), p.300.
- Yamaguchi T., Okamoto H., Nomura S., Hamakawa Y., Jap. J. Appl. Phys. 20(Sup.), (1981), p.195.
- Yamanaka S., Konagai M., Takahashi K., Jap. J. Appl. Phys. 28, (1989), p.1178.
- Yamanaka M., Hayashi Y., Sakata I., Jap. J. Appl. Phys. 29, (1990), p.L217.
- Yang P., Ross J., Glatfelter T., Mohr R., Hammond G., Bernotaitis C., Chen E., Burdick J., Hopson M., Guha S., Proc. 20th IEEE Photovoltaic Specialist Conf., IEEE, New York, (1988), p.241.
- Yonezawa F., Cohen M.H., Fundamental Physics of Amorphous Semiconductors, ed. F.Yonezawa, Springer, Berlin, (1981), p.119.

- Zafar S., Schiff E.A., Phys. Rev. B 40, (1989), p.5235.
- Zafar S., Schiff E.A., MRS Symp. Proc. 149, (1989a), p.113.
- Zafar S., Schiff E.A., MRS Symp. Proc. 192, (1990), p.139.
- Zafar S., Schiff E.A., Phys. Rev. Lett. 66, (1991), p.1493.
- Zellama K., Germain P., Squelard S., Bourdon B., Fontenille J., Danielou R., Phys. Rev. B 23, (1981), p.6648.
- Zhang S.B., Jackson W.B., Chadi J.D., Phys. Rev. Lett. 65, (1990), p.2575.
- Ziman J.M., Principles of the Theory of Solids, Cambridge University Press, Cambridge, (1964), p.275.
- Zvyagin I.P., J. Non-Cryst. Solids 97&98, (1987), p.83.

ANEXO:

Células solares de a-Si:H obtenidas: Descripción, condiciones de depósito y características fotoeléctricas.

Eficiencia	2.1 X	2.9 %	2.9 %	2.6 %	1.5 %	2.6 %	2.6%	2.3 %	2.0 %	2.1 %	2.9 %	1.2 %	1.4 %	0.9 %	0.6 %	0.2 %	×	1.5 %	1.2 %	0.8 %	1.8 %	2.1 %	2.6 %	2.7 %
I _{sc} (mA/cm ²)	6.0	5.3	8.5	9.5	5.3	6.9	8.0	7.9	5.3	5.4	6.9	5.0	4.8	3.8	2.6	0.7	×	6.9	5.2	3.7	5.3	6.2	7.4	7.6
F.F.	0.44	0.50	0.44	0.35	0.39	0.52	0.47	0.42	0.44	0.46	0.48	0.29	0.34	0.29	0.28	0.28	×	0.42	0.42	0.36	0.44	0.44	0.45	0.46
V _{cc} (V)	0.79	0.80	0.78	0.78	0.72	0.71	0.68	0.68	0.84	0.84	0.86	0.83	0.82	0.82	0.82	0.79	×	0.52	0.55	0.57	0.77	0.77	0.77	0.77
CONDICIONES ZONA N	F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W.	T=300 °C.		F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W.	T=350 °C.		F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W.	T=250 °C.		F(PH,)=10 sccm.	P=250 mTorr. Pot=5 W.	1=200 °C.		F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W.	.1=400 °C.		F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.1	T=300 °C.	-
CONDICIONES ZONA I	F(SiH ₄)=10 sccm.	P=Z5U miorr. Pot=5 W.	T=300 °C. Rég=gamma.	vc=2.6 Å/s.	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W.	T=350 °C. Rég=gamma.	vc=2.0 Å/s.	F(SiH ₄)=10 sccm.	P=25U mTorr. Pot=5 W.	T=250 °C. Rég=gamma.	vc=2.4 Å/s.	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W.	T=200 °C. Rég=gamma.	vc=2.5 Å/s.	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W.	T=400 °C. Rég≞gamma.	vc=1.1 Å/s.	F(SiH ₄)=10 sccm.	P=250 mIorr. Pot=5 W. ROE=1.1	T=300 °C. Rég=alfa.	vc=0.88 Å/s.
CONDICIONES ZONA P	F(8 ₂ H ₆)=10 sccm.	Pot=5 W.	1=300 °C.		F(B ₂ H ₆)=10 sccm.	Pot=5 W.	1=350 °C.		$F(B_2H_6)=10$ sccm.	Pot=5 W.	T=250 °C.		F(B,H,)=10 sccm.	Pet=5 W. Pot=5 W.	1=200 °C.		F(B ₂ H ₆)=10 sccm.	P=250 mTorr. Pot=5 W.	T=400 °C.		F(B ₂ H ₆)=10 sccm.	Pot=5 W. ROE=1.2	T=300 °C.	
DN(Å)	200	200	200	200	160	160	160	160	192	192	192	192	200	200	200	200	88	88	88	88	20	70	70	20
DI(Å)	2200	4400	7300	14600	1700	3400	5600	11300	2000	4000	6800	13500	2100	4200	7000	14100	006	1800	3100	6200	2600	2600	2600	2600
DP(Å)	100	<u>5</u>	100	100	80	80	80	80	96	96	96	96	100	100	100	100	77	77	44	44	18	35	70	140
DESCRIPCION	-4 grosores zona 1. -SERIE: temperatura de	depósito, 300 °C.			-4 grosores zona I. -SERIE: temperatura de	depósito, 350 °C.			-4 grosores zona I. -SERIE: temperatura de	depósito, 250 °C.			-4 grosores zona I. -SFRIF· temperatura de	depósito, 200 °C.			-4 grosores zona 1. -SFRIF. temperatura do	depósito, 400 °C.			-4 grosores zona P.			
E CE	~	~	-	-	-	-	-	-	-	-		2	-	-	-	-	-	-	-	×	-	-	-	-
MUESTRA SI	30C06	~ [<u> </u>	4	90C07	<u>~ </u>	<u>m </u>	4	90C08 1	<u>~ </u>	<u>m</u>	4	90C12		<u>m</u> [4	90C14 1	~ 1	<u>m </u>	4	90E04	<u>~ </u>	<u> </u>	4

Efloiendia	2.6 %	2.7 %	2.9 %	2.7 %	2.6 %	2.0 %	2.4 %	2.6 %	2.1%	2.0 %	2.1%	2.0 %	3.3 %	3.5 %	4.5 %	4.2 %	×	3.8 %	5.0 %	×	4.7 %	4.2 %	4.5 %	×
1_{(mA/om ²)	6.1	6.5	6.7	6.6	8.0	7.2	8.5	8.6	6.3	5.9	6.4	6.2	8.4	8.5	11.8	10.0	×	11.0	11.9	×	10.9	10.3	9.9	×
32	0.51	0.51	0.52	0.50	0.47	07.0	0.42	0.44	0.41	0.41	0.41	0.40	0.50	0.52	0.46	0.50	×	0.51	0.54	×	0.61	0.60	0.56	×
(v)_v	0.82	0.82	0.82	0.82	0.68	0.68	0.67	0.67	0.81	0.80	0.80	0.79	0.79	0.78	0.83	0.84	×	0.67	0.77	×	0.70	0.68	0.81	×
CONDICIONES ZONA N	F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.0	T=300 °C.		F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.1	Vac=21 Vcc=-20 T=300 °C.	Rég≖gamma	F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.2	Vcc=-25 T=300 °C.	Rég≖gamma?	F(PH ₁)=10 sccm.	P=250 mforr. Pot=5 W. ROE=1.3	Vac=24 Vcc=-30 T=300 °C.	Rég=gamma	F(PH ₃)=10 sccm.	P=250 mTorr. Pot=5 W. ROE≈1.2	Vac=20 Vcc=-20 T=300 °C.	Rég≖gamma	F(PH ₃)=10 sccm.	Pot=5 W. ROE=1.2	Vac=28 Vcc=-29 T=300 °C.	Rég=gamma?
CONDICIONES ZONA I	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.1	T=300 °C. vc=1.9 Å/s.		F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.0	Vac=44 Vcc=-37 T=300 °C.	Rég=alfa vc=1.0 Å/s.	F(SiH ₄)=10 sccm.	P=Z5U mTorr. Pot=9 W. ROE=1.4	Vcc=-40 T=300 °C.	Rég=gamma vc=3.2 Å∕s.	F(SiH ₄)=10 sccm.	P=Z5U mlorr. Pot=5 W. ROE=1.0	Vac=26 Vcc=-30 T=300 °C.	Rég=gamma vc=2.5 Å∕s.	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.1	Vac=43 Vcc=-43 T=300 °C.	Rég=alfa vc=0.67 Å/s.	F(SiH ₄)=10 sccm.	Pot=5 W. ROE=1.1	Vac=>4 Vcc=-4 T=300 °C.	Rég=alfa vc=1.3 Å/s.
CONDICIONES P	F(B ₂ H ₆)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.0	T=300 °C.		F(B ₂ H ₆)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.2	Vac=28 Vcc=-26 T=300 °C.	Rég=gamma	F(8 ₂ H ₆)=5 sccm.	F(CH₄)= sccm. P=250 mTorr.	Pot=5 W. ROE=1.6 Vcc=-39	T=300 °C. Rég=gamma	F(B,H,)=5 sccm.	r(uH₄)≡⊃ sccm. P=250 mTorr.	Pot=5 W. ROE=2.1 Vac=34 Vcc=-36	T=300 °C. Rég=gamma?	F(B ₂ H ₆)=5 sccm.	F(CH ₄)=5 sccm. P=250 mTorr.	Pot=5 W. ROE=1.1 Vac=37 Vcc=-39	T=300 °C. Rég=alfa	F(B ₂ H ₆)=5 sccm.	P=250 mforr.	Pot=5 W. ROE=1.2 Vac=51 Vcc=-47	T=300 °C. Récraita
DN(Å)	152	152	152	152	80?	80?	80?	80?	256	256	356	256	200	200	200	200	24?	24?	24?	54?	208?	208?	208?	208?
DI(Å)	5700	5700	5700	5700	3000	3000	3000	3000	9600	9600	9600	9600	7500	7500	7500	7500	2000	2000	2000	2000	3900	3900	3900	3900
DP(Å)	76	38	19	10	40	20	10	5	512	256	128	64	200?	200?	200?	2007	54	54	54	54	208	208	208	208
DESCHIPCION	-4 grosores zona P.				-4 grosores zona P. -Remetirión OnEnR				-4 grosores zona P. -VENTANA A-SIC+H				-VENTANA A-SIC:H -BUFFFF LAYFR 3 4				-VENTANA A-SIC:H -BHEEED LAVED. 2 /	-Máscara vidrio: 2,4			-VENTANA A-SIC:H -Buffer Layer: 3.4	-Máscara vidrio: 2,4		
US CEL	-	-		-	2	m	-	-	-	-	-	-	-	-	-	-	×	-	-	×	-		~	×
MUESTRA E	90E08		<u> </u>	7	90E14 1		F1	4	90E15	<u> </u>	<u>"'</u>]	7	90E18		<u></u>	7	90E29	<u> </u>	<u> </u>	,	90F05	<u> </u>	<u>., 1</u>	7

1 CEL DESCRIPCION DIVĂI DIĂ	DESCRIPCION DPLA DULA	DP(Å) DI(Å)	Dicki		rwr At	CONDUCIONES TOWA P						
1 -VENTANA A-SIC:H 158 3000 158? F(B ₂ H _a)	-VENTANA A-SIC:H 158 3000 158? F(B,4,	158 3000 158? F(B ₂ H ₆)	3000 158? F(B ₂ H ₆)	158? F(B,H _a)	F(8,H _a)	=5 sccm.	F(SiHA)=10 sccm.	F(PH_)=10 SCCM.	0.82	0.25	1 1_(mA/cm ⁻¹	Eficiencia 1 7 2
1 -4 9 cosores BUFER 158 7 (CH_4) 1 LAYER: 1 (400 s), 158 3000 158? F(CH_4)	-4 grosores BUFFER 158 3000 1587 F(CH ₄)- LAYER: 1(400 s), 158 3000 1587 P=250	158 3000 158? F(CH ₄): P=250	3000 158? F(CH4):	158? F(CH4):	F(CH ₄)= P=250	=5 sccm. mlorr.	P=250 mTorr. Pot=5 W. ROE=1.2	P=250 mTorr. Pot=5 W. ROE=1.1	0.79	0.35	9.2	2.6 %
1 3(100 s), 158 3000 158? Pot=5 Vac=48	3(100 s), 158 3000 158? Pot=5 Vac=48	158 3000 158? Pot=5 V Vac=48	3000 158? Pot=5 Vac=48	158? Pot=5 4 Vac=48	Pot=5 4 Vac=48	/. ROE=1.3 Vcc=-53	Vac=43 Vcc=-45 T=300 °C.	Vac=20 Vcc=-21 T=300 °C.	0.78	0.43	9.4	3.2 %
1 148 3000 158? T=300 * 158? T=300	148 3000 158? T=300 rs 2000 rs Rég=al	148 3000 158? T=300 ^c Rég=al	3000 158? T=300 ^c Rég=al t	158? T=300 °	T=300 ° Rég=al1	c. fa	kég=alfa vc=0.99 Å/s.	Rég=gamma?	0.77	0.48	10.1	3.8 %
1 -VENTANA A-SIC:H 138 2580 138? [f(8,24,6)] -P^* (sin C) entre zona	-VENTANA A-SIC:H -P ⁺ (sin C) entre zona 138 2580 138? [f(8, ₂ H ₆):	138 2580 138? F(8 ₂ H ₆):	2580 138? F(B ₂ H ₆):	138? F(B ₂ H ₆):	F(B ₂ H ₆):	=5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.73	0.43	9.1	2.9 %
1 1 Y P: 138 2580 138? P=250 m 2(5 s)	1 Y P: 138 2580 138? P=250 T 2550 1383	138 2580 138? P=250 m	2580 138? P=250 m	138? P=250 m	P=250 m	lorr.	Pot=5 W. ROE=1.0	Pot=5 W. ROE=1.1	0.71	0.40	7.9	2.3 %
1 3(10 s), 138 2580 138? Vac=45 V 2(20 s)	3(10 s), 138 2580 138? Vac=45 V 2(20 s), 2(20 s)	138 2580 138? Pot=2 4.	2580 138? Vac=45 V	138? Vac=45 V	Vac=45 V	KUE=1.U CC=-50	T=300 °C.	vac=/ vcc=/ T=300 °C.	0.72	0.40	7.3	2.1%
1	138 2580 138? T=300 °C.	138 2580 138? T=500 ℃ Rég=alfa	2580 138? T=300 °C Rég=alfa	138? T=500 °C Rég=alfa	T=500 ℃. Rég=alfa		keg=alta vc=0.86 Å/s.	Rêg=gamma?	0.72	0.40	6.8	2.0 %
1 -4 grosores zona I. 176 6200 1767 F(B ₂ H ₆)=5 -VENTANA A-SIC:H	-4 grosores zona I. 176 6200 176? F(B ₂ H ₆)=5 VENTANA A-SIC:H	176 6200 176? F(B ₂ H ₆)=5	6200 176? $F(B_2H_6)=5$	176? F(B ₂ H ₆)=5	F(B ₂ H ₆)=5	sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.77	0.52	9.4	3.8 %
1 176 3100 176? F(CH ₄)=5 176 P=250 mTc	176 3100 176? F(CH4)=5 176 P=250 mTc	176 3100 176? P=250 mTc	3100 176? P=250 mTc	176? P=250 mTc	F(CH4)=5	sccm. Drr.	P=250 mTorr. Pot=5 W. ROE=1.0	P=250 mTorr. Pot=5 W. ROE=1.0	0.76	0.40	7.4	2.3 %
1 176 1900 1767 Pot=5 W.	176 1900 1767 Pot=5 W.	176 1900 1767 Pot=5 W.	1900 1767 Pot=5 W.	176? Pot=5 W.	Pot=5 W. Vac=45 Vc	ROE=1.0 :c=-50	Vac=41 Vcc=-42 T=300 °C.	Vac=21 Vcc=-24 T=300 °C.	0.76	0.34	6.4	1.7 %
x 1762 1762 1762 1763 0°C.	176 900 176? T=300 °C. Rég=alfa	176 900 176? T=300 °C. Rég=alfa	900 176? T=300 °C.	176? T=300 °C. Rég=alfa	T=300 °C. Rég=alfa		Rég=alfa vc=1.1 Å/s.	Rég=gamma	×	×	×	×
1 -VENTANA A-SIC:H 160 3000 160? F(B,H_6)=5 -P' (sin C) entre zona	-VENTANA A-SIC:H 160 3000 160? F(B,H_6)=5 -P' (sin C) entre zona	160 3000 160? F(B _J H ₆)=5	3000 160? F(B,H ₆)=5	160? F(B _, H ₆)=5	F(B,H ₆)=5	sccm.	F(SiH ₄)=10 sccm.	$F(PH_3)=10$ sccm.	0.74	0.40	8.1	2.4%
1 P Y TCO: 160 3000 160? P=250 mT	P Y TCO: 2000 1602 1600 1602 P=250 mT	160 3000 160? P=250 mT	3000 160? P=250 mTc	160? P=250 mTc	P=250 mT	sccm. Drr.	P=250 mforr. Pot=5 W. ROE=1.0	P=250 mTorr. Pot=5 W. ROE=1.2	0.74	0.39	7.8	2.3 %
1 3(10 s), 160 3000 160? Vac=49 V.	3(10 s), 160 3000 160? Pot=5 W.	160 3000 160? Pot=5 W.	3000 160? Pot=2 4.	160? Pot=5 W.	Pot=5 W. Vac=49 V	ROE=1.1 cc=-51	Vac=44 Vcc=-45 T=300 °C.	Vac=22 Vcc=-24 T=300 °C.	0.74	0.40	7.6	2.3 %
1	160 3000 160? T=500 °C Rég=alfa	160 3000 160? T=500 °C Rég=alfa	3000 160? T=500 °C Rég=alfa	160? T=500 °C Rég=alfa	T=500 °C Rég=alfa		keg=alta vc=1.0 Å/s.	Rėg=gamma	0.74	0.40	6.6	2.0%
2 -VENTANA A-SIC:H 224 4200 224? F(B ₂ H ₆)=5 -Interfase P/1 baia	-VENTANA A-SIC:H 224 4200 224? F(B ₂ H ₆)=5 - Interfase P/I baia	224 4200 224? F(B ₂ H ₆)=5	4200 224? F(B ₂ H ₆)=5	224? F(B ₂ H ₆)=5	$F(B_2H_6)=5$	sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.69	0.59	10.7	4.4%
1 potencia: 224 4200 224? P=250 mTc 22150 s).	potencia: 224 4200 224? P=250 mT 2(150 s).	224 4200 224? P=250 mTc	4200 224? P=250 mTc	224? P=250 mTc	P=250 mTc	scom. Drr.	Pot=5 W. ROE=1.0	P=250 mforr. Pot=5 W. ROE=1.0	0.67	0.54	10.4	3.8 %
1 3(300 s), 224 4200 2247 Vac=16 V.	3(300 s), 224 4200 224? Vac=16 V.	224 4200 224? Pot=2 W.	4200 224? Pot=5 W.	224? Vac=16 Vo	Vac=16 Vc	ROE=1.0 cc=-54	rac=14 vcc=-45	Vac=/ Vcc=-28 T=300 °C.	0.66	0.52	10.5	3.6 %
1 1 1 1 1 1 300 °C. 0 </td <td>224 4200 C24? T=300 °C. Rég=alfa</td> <td>224 4200 224? T=300 °C. Rég=alfa</td> <td>4200 224? T=300 °C. Rég=alfa</td> <td>224? T=300 °C. Rég=alfa</td> <td>T=300 °C. Rég=alfa</td> <td></td> <td> Rég=alfa vc=1.4 Å/s.</td> <td>Rég=gamma</td> <td>0.66</td> <td>0.53</td> <td>10.7</td> <td>3.8 %</td>	224 4200 C24? T=300 °C. Rég=alfa	224 4200 224? T=300 °C. Rég=alfa	4200 224? T=300 °C. Rég=alfa	224? T=300 °C. Rég=alfa	T=300 °C. Rég=alfa		Rég=alfa vc=1.4 Å/s.	Rég=gamma	0.66	0.53	10.7	3.8 %
1 -VENTANA A-SIC:H 192 3600 192? F(B ₂ H ₆)=5 - Interfase P/I con	-VENTANA A-SIC:H 192 3600 192? F(B ₂ H ₆)=5 - Interfase P/I con	192 3600 192? F(B ₂ H ₆)=5	3600 192? F(B ₂ H ₆)=5	192? F(B ₂ H ₆)=5	F(B ₂ H ₆)=5	sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.46	0.60	10.3	2.9 %
1 plasma N ₂ : 192 3600 192? F(CH4)=5 2(150 c)	plasma N2: 192 3600 192? F(CH4)=2 21150 51	192 3600 192? P=250 mTc	3600 192? P=250 mTc	192? $P=250 mt_{0}$	P=250 mTc	sccm. Drr.	P=250 mTorr. Pot=5 W. ROE=1.0	P=250 mTorr. Pot=5 W. ROE=1.0	0.30	0.34	10.3	1.1 %
3 3(300 s); 192 3600 192? Vac-20 V.	3(300 s), 192 3600 192? Vac=20 V.	192 3600 192? Pot=2 W.	3600 192? Pot=2 W.	192? Pot=2 W.	Vac=20 V	ROE=1.0 cc=-56	vac=15 vcc=-45	T=300 °C.	0.32	0.31	9.1	0.9 %
1 7500 1922 1=500 1922 1=500 1922	192 3600 192? T=300 0 Rég≣al €	192 3600 192? T=300 °	3600 192? 1=300 °(Réα≡al f:	192? T=300 °	T=500 °(Réa≂alf:		keg≈atta yc=1.2 Å/s.	Rêg≖gamma	0.39	0.22	8.7	0.8 %

MUESTRA	sus ce	DESCRIPCION	DP(Å)	DI(Å)	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	[A] [_] A	F.F.	1_(mA/om ²)	Eficiencia
90616		-VENTANA A-SIC:H -Interfase D/I con	312	5200	416	F(B ₂ H ₆)=5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.75	0.56	7.5	3.2 X
	-	plasma N2+SiH4:	312	5200	416	F(CH ₄)=> sccm. P=250 mTorr.	P=250 mTorr. Pot=5 W. ROE=1.1	P=250 mTorr: Pot=5 W. ROE=1.0	0.69	0.51	6.4	2.3 X
	г м	3(40 s),	312	5200	416	Pot=5 W. ROE=1.0 Vac=11 Vcc=-30	Vac=9 Vcc=-25 T=300 °C.	Vac=8 Vcc=-25 T=300 °C.	0.61	0.50	6.4	2.0 %
	-	10 0014	312	5200	416	T=300 °C. Rég=gamma	Reg=gamma vc=2.6 Å∕s.	Rég=gamma	0.54	0.50	6.7	1.8 %
90624		-4 grosores zona I. 	300	0096	600	F(B ₂ H ₆)=10 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.81	0.56	4.6	2.1 %
		-gamma, menos po-	300	4800	600	Pot=3 W. ROE=1.0	Pot=3 W. ROE=1.0	Pet=3 W. ROE=1.0	0.79	0.48	3.6	1.4 %
	×	presión.	300	2400	600	Vac=9 Vcc=-3 T=300 °C.	Vac=9 Vcc=-3 T=300 °C.	Vac=9 Vcc=-1 T=300 °C.	×	×	×	×
	-		300	1200	600	Rég≖gamma	Rég=gamma vc=1.5 Å/s.	Rég=gamma	0.77	0.44	2.2	0.8%
90630	-	-Interfases baja po- tencia:	560	11200	560	F(B ₂ H ₆)=1 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.77	0.56	8.0	3.5 %
		1 (1/N)	560	11200	560	P=280 mTorr.	Pot=5 W. ROE=1.0	Pot=5 W. ROE=1.0	0.77	0.58	8.1	3.6 %
4	۲ ۲	4 (P/i)(1/N)	560	11200	560	Pot=5 W. ROE=1.0 Vac=8 Vcc=-16	Vac=8 Vcc=-17 T=300 °C.	Vac=7 Vcc=-17 T=300 °C.	0.72	0.57	7.7	3.2 %
	4	כמום לי מונחותם.	560	11200	560	T=300 °C. Rég=gamma	Rég=gamma vc=2.8 Å/s.	Rég=gamma	0.71	0.56	7.9	3.2 %
90H01	-	-4 grosores zona I. 	84?	1700	168	F(B ₂ H ₆)=1 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=1 sccm.	0.66	0.63	6.9	2.9 %
A		-zona n v n diluidas	84?	800	168	P=320 mTorr.	P=520 mTorr. Pot=2 W. ROE=1.0	F(SiH ₄)=9 sccm. P=320 mTorr.	0.65	0.73	5.1	2.4 %
	-		84?	400	168	Pot=2 W. ROE=1.0 Vac=7 Vcc=-7	Vac=7 Vcc=-17 T=300 °C.	Pot=2 W. ROE=1.0 Vac=6 Vcc=-17	0.62	0.71	3.4	1.5 %
	× t		84?	200	168	T=300 °C. Rég=gamma?	Rég=alfa vc=0.42 Å/s.	T=300°C. Réq=alfa	×	×	×	×
90H06	-	-4 grosores zona P.	180	4000	180	F(B ₂ H ₆)=1 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=1 sccm.	0.61	0.53	7.9	2.6 %
A	2 1		90	4000	180	F(SiH ₄)=9 sccm. P=320 mTorr.	P=320 mTorr. Pot=2 W. ROE=1.0	F(SiH ₄)=9 sccm. P=320 mTorr.	0.61	0.55	9.8	3.3 %
	- m		45	4000	180	Pot=2 W. ROE=1.0 Vac=7 Vcc=-16	Vac=7 Vcc=-16 T=300 °C.	Pot=2 W. ROE=1.0 Vac=7 Vcc=-17	0.58	0.57	10.9	3.6%
	-		23	4000	180	T=300 °C. Rég=alfa	Rég=alfa vc=0.45 Å/s.	T=300 °C. Rég=alfa	0.59	0.56	11.3	3.8 %
90H08	- -	-4 grosores zona N. 	44	1800	352	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.58	0.70	8.9	3.6 %
L	-	dopaje.	44	1800	176	P=320 mTorr.	Pot=2 W. ROE=1.0	r(SIH4)=8 sccm. P=320 mTorr.	0.55	0.70	8.6	3.3 %
		I	4	1800	88	<pre>Pot=2 W. RUE=1.0 Vac=6 Vcc=-17</pre>	Vac=o Vcc=-1/ T=300 °C.	Pot=2 W. ROE=1.0 Vac=6 Vcc=-17	0.56	0.69	8.2	3.2 %
	- 4		44	1800	44	T=300 °C. Rég=alfa	Reg=alfa vc=0.44 Å/s.	T=300 °C. Réa=alfa	0.57	0.58	8.2	2.7 %

MUESTRA	SUS CE	EL DESCRPCION	DP(Å)	DILÀI	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	۲_(۷)	F.F.	1_{(mA/am ²)	Eficiencia
90H10	<u>-</u> _	-4 grosores zona P.	400	2000	4007	F(B ₂ H ₆)=10 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=10 sccm.	0.67	0.56	1.6	0.6 %
	2		200	2000	4007	P=520 mTorr. Pot=2 W. ROE=1.0	P=320 mTorr. Pot=2 W. ROE=1.0	P=320 mTorr. Pot=2 W. ROE=1.0	0.66	0.51	2.7	0.9 %
	- -		100	2000	4005	Vac=7 Vcc=-16 T=300 °C.	Vac=7 Vcc=-16 T=300 °C.	Vac=5 Vcc=-12 T=300 °C.	0.66	0.49	3.7	1.2 %
	- 7		50	2000	4005	Rég=alfa.	Rég=alfa. vc=0.5 Å/s.	Rég=gamma.	0.67	0.50	4.5	1.5 %
90H15	-	-4 grosores zona P.	344	1700	344	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.64	0.71	4.6	2.1 %
	2		172	1700	344	P=250 mTorr.	P=250 mlorr. Pot=2 W. ROE=1.0	F(SiH ₄)=8 sccm. P=250 mTorr.	0.63	0.70	6.5	2.9%
	м Т	—-T	86	1700	344	Pot=2 W. ROE=1.0 Vac=7 Vcc=-19	Vac=7 Vcc=-19 T=300 °C.	Pot=2 W. ROE=1.0 Vac=7 Vcc=-19	0.62	0.71	8.2	3.6%
	4		43	1700	344	T=300 °C. Rég=alfa.	Rég=alfa. vc=0.43 Å/s.	T=300 °C. Réq=alfa.	0.63	0.71	9.1	4.1 %
90H17	-	-4 grosores zona P.	1007	2600	400	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.64	0.70	6.4	2.9 %
	2		202	2600	400	P=200 mTorr.	P=<5U miorr. Pot=5 W. ROE=1.0	F(S1H ₄)=8 sccm. P=250 mTorr.	0.61	0.71	8.0	3.5 %
	1 2		25?	2600	400	Pot=5 W. ROE=1.1 Vac=15 Vcc=-45	Vac=8 Vcc=-19 T=300 °C.	Pot=2 W. ROE=1.0 Vac=7 Vcc=-19	0.58	0.71	9.1	3.8%
	4		13?	2600	400	T=300 °C. Rég=alfa.	Rég=alfa. vc=0.51 Å/s.	T=300 °C. Rég=alfa.	0.59	0.71	9.3	3.9 %
90H19	۳ -	-4 grosores zona P.	645	2400	<i>ż</i> 76	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.61	0.72	7.5	3.3 %
	- ~	1	ć24	2400	ż76	P=200 mTorr.	P=250 mTorr. Pot=2 W. ROE=1.0	F(SiH ₄)=8 sccm. P=250 mTorr.	0.61	0.71	8.3	3.6%
	- m		543	2400	645	Pot=5 W. ROE=1.0 Vac=16 Vcc=-49	Vac=8 Vcc=-19 T=300 °C.	Pot=2 W. ROE=1.0 Vac=15 Vcc=-45	0.53	0.68	9.6	3.5 %
	4		12?	2400	i76	T=300 °C. Rég=alfa.	Rég≈alfa vc=0.47 Å/s.	T=300 °C. Réq=alfa.	0.60	0.71	9.2	3.9%
90H21	- -	-4 grosores zona P.	592	3700	592	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.66	0.58	4.7	1.8 %
		1	296	3700	592	P=200 mTorr.	P=200 mTorr. Pot=5 W. ROE=1.0	F(SiH ₄)=8 sccm. P=200 mTorr.	0.66	0.61	6.7	2.7 %
	- m	T	148	3700	592	Pot=5 W. ROE=1.0 Vac=17 Vcc=-51	Vac=17 Vcc=-51 T=300 °C.	Pot=5 W. ROE=1.0 Vac=16 Vcc=-48	0.65	0.61	8.3	3.3 %
	4		74	3700	592	T=300 °C. Rég=alfa.	Rég≃alfa vc=0.74 Å/s.	T=300 °C. Rég=alfa.	0.66	0.58	10.1	3.9 %
90H23	-	-4 grosores zona P. 	0	4400	440	F(B ₂ H ₆)=2 sccm. E(Siu)-0 cccm	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.34	0.54	10.6	2.0%
		- -	55	4400	440	P=250 mTorr.	Pot=5 U. ROE=1.0	P=250 mTorr.	0.73	0.67	11.0	5.4 %
	3		110	4400	440	Vac=9 Vcc=-21	vac≂o vcc=-∠< T=300 °C.	Pot=5 W. ROE=1.0 Vac=8 Vcc=-23	0.75	0.68	10.3	5.3 %
	- +		220	4400	440	T=5UU °C. Rég=pamma.	keg≂gamma vc=2.2 Å/s.	T=300 °C. Rég=gamma.	0.76	0.65	8.2	4.1%

Eficiencia	3.9 %	4.7 %	5.1 %	5.3 %	1.4 %	1.7 %	2.0 %	2.3 %	0.9%	1.2 %	1.4 %	1.4 %	3.9 %	4.5 %	4.8 %	5.0 %	4.2 %	4.7%	4.7 %	4.2 %	4.4 %	4.5 %	4.4 %	2.9 %
1_(mA/cm ²)	8.0	9.2	10.7	11.2	3.8	4.9	5.7	6.3	2.6	3.5	3.9	3.9	9.0	10.4	10.8	11.3	10.8	10.8	10.8	9.6	10.4	10.3	8.1	5.5
F.F.	0.65	0.68	0.67	0.67	0.45	0.43	0.43	0.45	0.45	0.44	0.43	0.43	0.56	0.57	09-0	0.60	0.57	0.58	0.58	09-0	0.56	0.60	0.74	0.73
[V]_V	0.75	0.74	0.71	0.70	0.79	0.79	0.80	0.80	0.78	0.79	0.80	0.80	0.77	0.76	0.74	0.73	0.68	0.74	0.74	0.73	0.75	0.73	0.73	0.71
CONDICIONES ZONA N	F(PH ₃)=4 sccm.	F(SiH ₄)=6 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=8 Vcc=-22	T=300 °C. Réq=qamma.	F(PH ₃)=10 sccm.	P=25U mforr. Pot=5 W. ROE=1.0	Vac=7 Vcc=-20 T=300 °C.	Rég=gamma.	F(PH ₃)=10 sccm.	P=320 mTorr. Pot=3 W. ROE=1.1	Vac=7 Vcc=-6 T=300 °C.	Rég=gamma.	F(PH,)=1 sccm.	F(SiH ₄)=9 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=9 Vcc=-22	T=300 °C. Réq=qamma.	F(PH ₃)=2 sccm.	F(SiH ₄)=8 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=8 Vcc=-21	T=300 °C. Rég=gamma.	F(PH ₃)=2 sccm.	F(SiH ₄)=8 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=9 Vcc=-23	T=300 °C. Réa=camma_
CONDICIONES ZONA I	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.0	Vac=9 Vcc=-23 T=300 °C.	Rêg=gamma. vc=2.3 Å/s.	F(SiH ₄)=10 sccm.	Pot=5 W. ROE=1.0	Vac=9 Vcc=-25 T=300 °C.	Rég=gamma. vc=2.5 Å/s.	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.0	Vac=10 Vcc=-26 T=300 °C.	Rég=gamma. vc=2.6 Å/s.	F(SiH ₄)=10 sccm.	P=250 mTorr. Pot=5 W. ROE=1.0	Vac=9 Vcc=-25 T=300 °C.	Rég=gamma. vc=2.4 Å/s.	$F(SiH_{4})=10$ sccm.	P=Z50 mTorr. Pot=5 W. ROE=1.0	Vac=8 Vcc=-24 T=300 °C.	Rég=gamma. vc=3.2 Å/s.	F(SiH ₄)=10 sccm.	P=Z5U mTorr. Pot=5 W. ROE=1.0	Vac=9 Vcc=-25 T=300 °C.	Rég=gamma vc=2.4 Å/s.
CONDICIONES ZONA P	F(B ₂ H ₆)=4 sccm.	F(SiH ₄)=6 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=9 Vcc=-24	T=300 °C. Rég=gamma.	F(B ₂ H ₆)=10 sccm.	Pot=5 W. ROE=1.0	Vac=10 Vcc=-30 T=300 °C.	Rég=gamma .	F(B ₂ H ₆)=10 sccm.	P=520 miorr. Pot=3 W. ROE=1.0	Vac=7 Vcc=-10 T=300 °C.	Rég=gamma.	F(B,H ₆)=1 sccm.	F(SiH ₁)=Y sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=9 Vcc=-22	T=300 °C. Rég=gamma.	F(B ₂ H ₆)=2 sccm.	F(SIH ₄)=8 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=8 Vcc=-18	T=300 °C. Rég=gamma.	F(B ₂ H ₆)=2 sccm.	r(slH4)=8 sccm. P=250 mTorr.	Pot=5 W. ROE=1.0 Vac=9 Vcc=-22	T=300 °C. Réq≡qamma
DN(Å)	460	460	460	460	500	500	500	500	1040?	1040?	1040?	1040?	480	480	480	480	079	640	640	640	480	480	480	480
DI(Å)	4600	4600	4600	4600	5000	5000	5000	5000	5200	5200	5200	5200	4800	4800	4800	4800	12800	9600	0079	3200	9600	4800	5400	1200
DP(Å)	230	115	58	29	500	250	125	63	1040?	520?	260?	130?	240	120	60	30	160	160	160	160	120	120	120	120
DESCRIPCION	-4 grosores zona P.				-4 grosores zona P.				-4 grosores zona P.				-4 grosores zona P.				-4 grosores zona I.	-(fallo shutter!)			-4 grosores zona l.			
SEL SEL	-	~	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	2	-	-	~	-
TRA SU	-	~	m	4	ະ -	~	m	4	- 5	~	m	4	- 8	~	m	4	<u>-</u>	2	m	4	- 2	~	m	4
MUES	2H06				2H06				2H06				2H06				2H06				5H06			

MUESTRA	SUS CEL	DESCRIPCION	DP(Å)	DI(Å)	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	[A]"A	F.F.	I_(mA/am ²)	Eficiencia
90H31	<u>-</u> -	-4 grosores zona P.	224	3500	350	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.76	0.62	7.6	3.6 %
d	2 2	(muestras degradadas)	112	3500	350	F(SIH ₄)=8 sccm. P=320 mTorr.	P=320 mTorr. Pot=2.9 W. ROE=1.1	F(SiH ₄)=8 sccm. P=320 mTorr.	0.75	0.63	8.3	3.9 %
		T	56	3500	350	Pot=2.9 W. ROE=1.1 Vac=7 Vcc=-5	Vac=7 Vcc=-7 T=300 °C.	Pot=2.9 W. ROE=1.1 Vac=7 Vcc=-6	0.72	0.70	10.1	5.1 %
	-		28	3500	350	T=300 °C. Rég=gamma.	Rég=gamma. vc=1.4 Å/s.	T=300 °C. Réa≕aamma.	0.72	0.62	10.4	4.7 %
90102	-	-4 grosores zona P.	240	3750	375	F(B ₂ H ₆)=4 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.75	0.64	6.9	3.3 %
^	- ~		120	3750	375	F(S1H4)=6 SCCM. P=320 mTorr.	P=520 mTorr. Pot=2.7 4. ROE=1.1	F(SiH₄)=8 sccm. P=320 mTorr.	0.74	0.59	8.6	3.8 %
	-	T	60	3750	375	Pot=2.7 W. ROE=1.1 Vac=7 Vcc=-7	Vac=/ Vcc=-/ T=300 °C.	Pot=5 W. ROE=1.0 Vac=7 Vcc=-7	0.72	0.58	9.7	4.1%
	-		30	3750	375	T=300 °C. Rég=gamma.	Rég=gamma. vc=1.5 Å/s.	T=300 °C. Rég=gamma.	0.66	0.58	9.8	3.8 %
60104	-	-4 grosores zona P. 	224	3500	350	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.65	0.62	7.1	2.9 %
	2	depósito, 350 °C.	112	3500	350	P=320 mTorr.	Pot=2.9 W. ROE=1.0	P=320 mTorr.	0.63	0.61	8.6	3.3 %
	- M		56	3500	350	Pot=2.9 W. ROE=1.0 Vac=7 Vcc=-11	Vac=7 Vcc=-15 T=350 °C.	Pot=2.9 W. ROE=1.0	09.0	0.26?	6.7	1.1 %
	4 1		28	3500	350	T=350 °C. Rég=gamma.	Rég=gamma. vc≂1.4 Å/s.	T=350°C. Rég=qamma.	0.55	0.57	10.5	3.3 %
80106	× -	-4 grosores zona P.	288	4500	450	F(B ₂ H ₆)=1 sccm.	$F(SiH_A)=10$ sccm.	F(PH ₃)=2 sccm.	×	×	×	×
	2 1	-(fallo shutter!)	144	4500	450	F(SiH ₄)=9 sccm. P=320 mTorr.	P=520 mTorr. Pot=3 W. ROE=1.0	F(SiH ₄)=8 sccm. P=320 mTorr.	0.72	0.58	10.1	4.2%
	3 1		72	4500	450	Pot=3 W. ROE=1.0 Vac=7 Vcc=-6	Vac=7 Vcc=-7 T=300 °C.	Pot=3 W. ROE=1.0 Vac=7 Vcc=-7	0.68	0.60	10.7	4.4%
	4		36	4500	450	T=300 °C. Rég=gamma.	Rég=gamma. vc=1.8 Å/s.	T=300 °C. Réasaamma	0.68	0.60	11.4	4.7%
90110	1	-4 grosores zona P.	288	4500	450	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	0.43	0.46	6.8	1.4 %
	2 1	350 °C.	144	4500	450	F(SiH ₄)=8 sccm. P=320 mIorr.	P=320 mTorr. Pot=3 W. ROE=1.0	F(SiH ₄)=8 sccm. P=320 mTorr.	0.72	0.64	8.1	3.8 %
	- 1	-(fallos shutter!:	72	4500	450	Pot=3 W. ROE=1.0 Vac=8 Vcc=-6	Vac=7 Vcc=-7 T=300 °C.	Pot=3 W. ROE=1.0 Vac=7 Vcc=-6	0.73	0.62	9.6	4.4 %
	- +	CELULE I SIN 2008 N)	36	4500	450	T=300 °C. Rég=gamma.	Rég=gamma. vc=1.8 Å/s.	T=300 °C. Réq=qamma.	0.68	0.57	9.7	3.8 %
90111		-4 grosor P. 	240	3700	375	F(B ₂ H ₆)=4 sccm.	F(SiH ₄)=20 sccm.	F(PH ₃)=4 sccm.	0.76	0.68	7.6	3.9%
	-	total.	120	3700	375	P=320 mTorr.	Pot=3 W. ROE=1.0	F(SiH ₄)=16 sccm. P=320 mTorr.	0.74	0.64	8.9	4.2 %
	- M	T	60	3700	375	Pot=5 W. ROE=1.0 Vac=8 Vcc=-5	Vac=/ Vcc=-8 T=300 °C.	Pot=3 W. ROE=1.0 Vac=7 Vcc=-9	0.72	0.61	9.6	4.2 %
	4 2		30	3700	375	T=300 °C. Rég≡gamma.	Rég=gamma vc=1.5 Å/s.	T=300 °C. Réa≃aamma	0.68	0.63	10.2	4.4%

MUESTRA	sus c	EL DESCRIPCION	DP(Å)	DI(Å)	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	(v) 	E.F.	I_(mA/cm ²)	Eficiencia
90I 16	-	-4 grosores zona P.	240	3700	375	F(B ₂ H ₆)=4 sccm.	F(SiH ₄)=20 sccm.	F(PH ₃)=4 sccm.	0.74	0.62	8.2	3.8 %
	2	-(zona P realizada el	120	3700	375	F(SiH ₄)=16 sccm. P=280 mTorr.	P=280 mTorr. Pot=3.0 W. ROE=1.0	F(SiH ₄)=16 sccm. P=280 mTorr.	0.73	0.65	8.5	4.1 %
	3		60	3700	375	Pot=3.0 W. ROE=1.0 Vac=7 Vcc=+5	Vac=7 Vcc=-13 T=300 °C.	Pot=3 W. ROE=1.0 Vac=7 Vcc=-13	0.72	0.65	10.3	4.8 %
	-		30	3700	375	T=300 °C. Rég=gamma.	Rég=gamma. vc=1.5 Å/s.	T=300 °C. Rég=gamma.	0.70	0.65	10.5	4.8 %
90130	× -		110	2200	440	F(B ₂ H ₆)=2 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2 sccm.	×	×	×	×
	2 2		110	2200	440	P=250 mTorr.	Pot=5.0 W. ROE=1.0	F(SIH4)=& sccm. P=250 mTorr.	0.68	0.34	7.8	1.8 %
	- M		110	2200	440	Pot=5.0 W. ROE=1.0 Vac=7 Vcc=-18	Vac=8 Vcc=-24 T=300 °C.	Pot=5 W. ROE=1.0 Vac=8 Vcc=-23	0.74	0.72	7.9	4.2 %
	× t		110	2200	440	T=300 °C. Rég≡gamma.	Rég=gamma. vc=2.2 Å/s.	T=300 °C. Rég=gamma.	×	×	×	×
10706	-	-4 grosores zona P. -VENTANA A-SIC:H.	380	3000	300	F(B ₂ H ₆)=4 sccm. F(siu)=8 sccm	F(SiH ₄)=20 sccm. D=280 mTocc	F(PH ₃)=4 sccm.	0.76	0.50	5.5	2.1 %
	-		190	3000	300	F(CH ₄)=8 sccm.	Pot=3.0 W. RDE=1.0 Vac=9 Vcc=-22	P=280 mTorr.	0.74	0,40	6.6	2.0 %
	3		100	3000	300	Pot=3 W. ROE=1.0 Vac=8 Vcc=-20	T=300 °C. Rég=gamma.	Tot-3.0 %. AUC-1.0 Vac=8 Vcc=+18 T=300 °C	0.74	0.36	8.1	2.2 %
	-		50	3000	300	T=300 °C. Rég=gamma.	vc=1.2 Å/s.	Rég=gamma.	0.73	0.38	8.7	2.4 %
0100	-	-4 grosores zona P. -células 1 y 2 con ventana a-SiC:H.	200?	2500	450	F(B,H ₁)=2 sccm. F(SiH ₄)=4 sccm. F(CH ₄)=4 sccm.	F(SiH ₄)=10 sccm. P=280 mTorr. Pot=50 W. ROE=1.0 Voc=0 Voc=-17	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=280 mTorr.	0.83	0.38	8.6	2.7 %
	2		100?	2500	450	P	T=300 °C. Rég=gamma. Vc=2.5 Å/s.	roc=0.0 w. roc=1.0 Vac=8 Vcc=-16 T=300 °C. Rég=gamma.	0.80	0.31	8.5	2.1%
	г м	1	100?	2500	450	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm. P=280 mTorr.	(idem)	(idem)	0.81	0.36	6.7	2.0 %
	4 1		200?	2500	450	Pot=5 W. ROE=1.0 Vac=8 Vcc=-12 T=300 °C. Rég=gamma.			0.82	0.36	5.6	1.7 %
90L02	-	-3 grosores zona I. -SERIE: efecto de la	66	2600	330	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH ₄)=10 sccm. P=250 mTorr.	F(PH ₃)=2 scc,. F(SiH.)=8 sccm.	0.82	0.41	4.9	1.7 %
	2	temperatura de deposito en la degradación. T_=200 °C.	86	5300	330	P=250 mTorr. Pot=5 W. ROE=1.1 Voc=11 Voc=111	Pot=6.0 W. ROE=1.0 Vac=12 Vcc=-8 Tr=200 °c	P=250 mTorr. Pot=6.0 W. ROE=1.0	0.83	0.23	3.2	0.8%
	- -	-(4) material I.	66	10600	330	T=200 °C. Rég=gamma.	Rég=gamma. vc=3.3 Å/s.	vac=1∠ vcc=-o T=200 °C. Réo≃oamma	0.84	0.26	1.4	0.3 %

MUESTRA	ž	CEL	ESCHIPCION	DP(Å)	DI(Å)	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	(N)"N	F.F.	I_{[mA/om ²]	Eficiencia
- 50L06	-	2 -3 grosor	es zona l. fecto de la	20	2000	250	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH₄)=10 sccm. P=250 mTorr.	F(PH ₃)=2 sccm. F(SiH.)=8 sccm.	0.84	0.61	8.2	4.2 %
	~	1 temperatu en la degi T_=250 °	ira de deposito ; iradación. °C.	20	4000	250	P=250 mTorr. Pot=5.0 W. ROE=1.1	Pot=5.0 W. ROE=1.0 Vac=10 Vcc=-15	P=250 mTorr. Pot=5.0 W. ROE=1.0	0.83	0.46	9.0	3.5 %
	m	1 -(4) mate	riat I.	50	8000	250	vac=10 vcc=-1/ T=250 °C. Rég=gamma.	r=z∋u t. Rég≖gamma. vc=2.5 Å/s.	Vac=10 Vcc=-15 T=250 °C. Réq=gamma.	0.83	0.35	7.7	2.3 %
	-	3 -3 grosor	es zona 1. recto de la	Q	1600	200	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH4)=10 sccm. P=250 mTorr.	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm.	0.76	0.61	8.7	4.1 %
	~	2 en la degi	ara ue deposito aradación. °C.	ę	3200	200	P=250 mTorr. Pot=5.0 W. ROE=1.1	Pot=5.5 W. ROE=1.2 Vac=10 Vcc=-15 T=Z00 °r	P=250 mTorr. Pot=6 W. ROE=1.2	0.80	0.50	9.4	3.8 %
	m	3 -(4) mate	erial I.	40	6400	200	t=200 °C. T=300 °C. Rég=gamma.	Rég=gamma. vc=2.0 Å/s.	Vac=y vcc=-1.5 T=300 °C. Rég=gamma.	0.77	0.62	12.6	6.0 %
90L15	-	x -3 grosor -SERIE: e	es zona I. sfecto de la	38	1500	190	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH ₄)=10 sccm. P=260 mTorr.	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm.	×	×	×	
	~	3 en la deg T _s =350 °	gradación.	38	3000	190	P=260 mTorr. Pot=5.0 W. ROE=1.1 Vac=12 Vec=22	Pot=6.0 W. ROE=1.3 Vac=14 Vcc=-29 T=350 °c	P=260 mTorr. Pot=6.0 W. ROE=1.3	0.66	0.50	9.5	3.2 %
	m	2 -(4) mate	erial I.	38	6100	190	rac-12, vcc- 22 T=350 °C. Rég=gamma.	Rég=gamma. vc=1.9 Å/s.	vac=15 vcc=-zo T=350 °C. Rég=gamma.	0.67	0.59	12.1	4.8%
90L23	-	2 -3 grosor -SERIE: e	res zona I. efecto de la	42	2100	210	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH ₄)=10 sccm. P=360 mTorr.	F(PH_)=2 sccm. F(SiH_)=8 sccm.	0.73	0.55	0.0	3.6 %
	2	1 temperatu en la deg T _s =300 °	Jra de deposito jradación. °C.	42	4200	210	P=360 mTorr. Pot=3.5 W. ROE=1.0 Vac=0 Vcr=-2	Pot=3.5 W. ROE=1.0 Vac=9 Vcc=-2 T=300 °c	P=360 mTorr. Pot=3.5 W. ROE=1.0	0.75	0.61	11.5	5.3 %
	m	1 -(4) mate	eriat I.	42	8400	210	rac-7 vcc4 T=300 °C. Rég=gamma.	reg≘gamma. vc=2.1 Å/s.	vac=lu vcc=u 1=300 °C. Réq=qamma.	0.74	0.56	13.4	5.6 %
90L27	-	3 -3 grosor -SERIE: e	res zona I. Precto de la	44	2200	220	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH ₄)=10 sccm. P=360 mTorr.	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm.	0.72	0.67	9.0	4.4 %
	2	2 en la deg	ara de deposito gradación. °C.	77	4400	220	P=360 mTorr. Pot=3.5 W. ROE=1.2	Pot=3.5 W. ROE=1.2 Vac=9 Vcc=-1	P=360 mTorr. Pot=3.5 W. ROE=1.2	0.73	0.72	12.3	6.5 %
	m	3 -(4) mate -Repeticio	erial I. ón de 90L23.	44	8800	220	vac=y vcc=-∠ T=300 °C. Rég=gamma.	Rég=gamma. vc=2.2 Å/s.	Vac=9 Vcc=-1 T=300 °C. Rég=gamma.	0.73	0.62	14.3	6.5 %
90L28	-	2 -3 grosor -SERIE: e temperatu	tes zona I. Precto de la Pra de demósito	62	3100	310	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH ₄)=10 sccm. P=360 mTorr.	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm.	0.67	0.70	9.6	4.5 %
	~	2 en la deg T_=350 °	gradación.	62	6200	310	P=360 mTorr. Pot=4.0 W. ROE=1.3 Vac=9 Vcc=-11	Pot=4.0 W. ROE=1.2 Vac=9 Vcc=-9 T=350 °C.	P=360 mTorr. Pot=4.0 W. ROE=1.2 Vac=9 Vcc=-7	0.65	0.61	12.1	4.8%
	m	2 -(4) INGLE	.1 JBL 2	62	12400	310	T=350 °C. Rég=gamma.	Rég=gamma vc=3.1 Å∕s.	T=350 °C. Rég≂gamma.	0.65	0.60	11.5	4.5 %

MUESTRA	5 US	CEL DESCRIPCION	DP(Å)	DILÀI	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	(A) ⁼ A	F.F.	I(mA/cm ²)	Eficiencia
90L29	-	3 -3 grosores zona I. -SERIE: efecto de la	36	1800	180	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm.	F(SiH ₄)=10 sccm. P=360 mTorr.	F(PH ₃)=2 sccm. F(SiH.)=8 sccm.	0.79	0.57	8.7	3.9 %
	~	<pre>2 temperatura de depósito en la degradación. T.=250 °C.</pre>	36	3600	180	P=360 mTorr. Pot=3.3 W. ROE=1.0	Pot=3.4 W. ROE=1.0 Vac=9 Vcc=-1	P=360 mTorr. Pot=3.5 W. ROE=1.0	0.80	0.71	10.0	5.7 %
	m	2 -(4) material 1.	36	7200	180	vac=Y vcc≕-∠ T=250 °C. Rég=ganma.	r≡c⊃u ⁻u. Rég=gamma. vc=1.8 Å/s.	Vac=9 Vcc=-1 T≈250 °C. Rég=gamma.	0.80	0.63	12.2	6.2 %
91A25	-	2 -1,2: grosores zona N: NIP -3 4: grosores zona D:	40	3000	200	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm. P=290 mTorr.	F(SiH ₄)=10 sccm. P=288 mTorr. Pot=5.0 W. ROE=1.0	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=288 mTorr.	0.78	0.46	8.8	3.2 %
k	~	NId 2	20	3000	200	Pot=5.0 W. ROE=1.0 Vac=9 Vcc=-11 T=300 °C. Rég=gamma.	Vac=9 Vcc=-11 T=300 °C. Rég=gamma. vc=2.0 Å/s	Pot=5.0 W. ROE=1.0 Vac=8 Vcc=-10 T=300 °C. Réq=qanma.	0.75	0.42	0.0	2.9 %
L	m		02	3000	200	F(B ₂ H ₆)=2 sccm. F(SiH ₄)=8 sccm. P=290 mTorr.	(idem)	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P≈290 mTorr.	0.67	0.63	10.7	4.5 %
		2	40	3000	200	Pot=5.0 W. ROE=1.0 Vac=9 Vcc=-10 T=300 °C. Rég=gamma.		Pot=5.0 W. ROE=1.0 Vac=8 Vcc=-10 T=300 °C. Réq=qamma.	0.73	0.66	10.0	4.8%
91b01	-	<pre>2 -OPTIMIZACION ZONA P: disminución del flujo de B,H</pre>	60	4000	200	F(B,H ₆)=1 sccm. F(SiH ₄)=9 sccm. P=360 mTorr.	F(SiH ₄)=10 sccm. P=360 mTorr. Pot=3.0 W. ROE=1.0	F(PH ₃)=2 sccm. F(SiH ₁)=8 sccm. P=360 mTorr.	0.71	0.66	11.8	5.6 %
	N	 1,2: grosores zona P. -3,4: grosores zona P. 	40	4000	200	Pot=3.0 W. ROE=1.0 Vac=9 Vcc=-3 T=350 °C. Rég=gamma.	Vac=9 Vcc=-3 T=350 °C. Rég=gamma. vc=2.0 Å/s	Pot=3.0 W. ROE=1.0 Vac=9 Vcc=-3 T=350 °C. Rég=gamma.	×	×	×	×
	m		40	4000	200	F(B ₂ H ₆)=0.4 sccm. F(SiH ₄)=9.6 sccm. P=360 mTorr.	(idem)	(idem)	0.70	0.65	11.9	5.4 %
	4	2	60	4000	200	Pot=5.0 W. ROE=1.0 Vac=9 Vcc=-3 T=350 °C. Rég=gamma.		<u> </u>	0.72	0.63	11.6	5.3 %
91b02	-	2 -OPTIMIZACION ZONA P: efecto del régimen de plasma.	60	3000	200?	F(B ₂ H ₆)=1 sccm. F(SiH ₄)=9 sccm. P=240 mTorr.	F(SiH ₄)=10 sccm. P=216 mTorr. Pot=8.0 W. ROE=2.0	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=260 mTorr.	0.71	0.71	9.2	4.7 %
	~	1 -1.2: grosores zona P.	30	3000	200?	Pot=8.0 W. ROE=2.0 Vac=16 Vcc=-38 T=300 °C. <u>Rég=alfa.</u>	Vac=15 Vcc=-42 T=300 °C. Rég=alfa. vc=1.0 Å/s	Pot=3.0 W. ROE=1.0 Vac=8 Vcc=-15 T=300 °C. Rég=gamma.	0.68	0.70	10.7	5.1 %

MUESTRA	ŝ	<u></u>	DESCRIPCION	DP(Å)	D(Å)	DN(A)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	۲_ر۷۱	F.F.	I. (mA/om ²)	Eficiencia
91B02	M	-	-3,4: grosores zona P.	30	3000	2002	F(B ₂ H ₆)=1 sccm. F(SiH ₄)=9 sccm. P=256 mTorr.	(idem)	(idem)	0.68	0.69	9.9	4.7 %
	4	-		60	3000	200?	Pot=3.0 W. ROE=1.0 Vac=9 Vcc=-15 T=300 °C. Réq=qamma.			0.73	0.70	8.5	4.4 %
91803	-	×	-OPTIMIZACION ZONA P: disminución del flujo de B ₂ H _e .	130	3400	200?	F(8 ₂ H ₆)=1 sccm. F(SiH ₄)=9 sccm. P=232 mTorr.	F(SiH4)=10 sccm. P=212 mTorr. Pot=8.0 W. ROE=2.0	F(PH ₃)≈2 sccm. F(SiH ₄)=8 sccm. P=260 mTorr.	×	×	×	×
	~	m	-1,2: grosores zona P. -3,4: grosores zona P.	65	3400	200?	Pot=7.5 W. ROE=2.0 Vac=15 Vcc=-36 T=300 °C. Rég=alfa.	vac=16 Vcc=-39 T=300 °C. Rég=alfa. Vc=1.1 Å/S	Pot=3.0 4. ROE=1.0 Vac=8 Vcc=-15 T=300 °C. Rég=gamma.	0.65	0.71	9.1	4.2 %
	m	-		65	3400	200?	F(B ₂ H ₆)=0.4 sccm. F(SiH ₄)=9.6 sccm. P=238 mTorr.	(idem)	(idem)	0.69	0.72	10.0	5.0 %
	4			130	3400	2007	Pot=7.5 W. ROE=2.0 Vac=15 Vcc=-36 T=300 °C. Rég=alfa.		·	0.73	0.72	9.4	5.0 %
91805		×	-OPTIMIZACION ZONA P: disminución del flujo de B _, H ₆ .	120	3100	200?	F(B,H ₆)=0.4 sccm. F(SiH ₄)=9.6 sccm. P=232 mTorr.	F(SiH ₄)=10 sccm. P=216 mTorr. Pot=9.0 W. ROE=2.0	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=260 mTorr.	×	×	×	×
<u></u>	~	×	-1,2: grosores zona P. -3,4: grosores zona P.	60	3100	200?	Pot=8.0 W. ROE=1.9 Vac=17 Vcc=-40 T=300 °C. Rég=alfa.	Vac=19 Vcc=-4/ T=300 °C. Rég=alfa. Vc=1.0 Å/S	Pot=3.0 W. ROE=1.0 Vac=8 Vcc=-16 T=300 °C. Rég=gamma.	×	×	×	×
	m	-		60	3100	200?	F(B ₂ H ₆)=0.2 sccm. F(SiH ₄)=9.8 sccm. P=232 mTorr.	(idem)	(idem)	0.70	0.70	9.8	4.8%
	4	-		120	3100	2002	Pot=8.0 W. ROE=1.9 Vac=17 Vcc=-40 T=300 °C. Rég=alfa.			0.73	0.70	10.0	5.1%
91810	-	m	-OPTIMIZACION ZONA P: disminución del flujo deB ₂ H ₆ .	130	3300	200?	F(B ₂ H ₆)=0.2 sccm. F(SiH ₄)=9.8 sccm. P=236 mTorr.	F(SiH ₄)=10 sccm. P=220 mTorr. Pot=8.0 W. ROE=2.0	F(PH ₃)≈2 sccm. F(SiH ₄)≈8 sccm. P=260 mTorr.	0.74	0.70	9.6	5.0 %
	~		-1.2: grosores zona P.	65	3300	200?	Pot=7.5 W. ROE=2.0 Vac=16 Vcc=-38 T=300 °C. Rég=alfa.	Vac=18 Vcc=-44 T=300 °C. Rég=alfa. vc=1.1 Å/S	Pot=3.0 W. ROE=1.2 Vac=8 Vcc=-15 T=300 °C. Rég=ganma.	0.70	0.71	10.0	5.0 %

8	<u> </u>	N	×	×	×		*	*	%	*	*	*	*	*
Elder	4.8)	4.8	3.9	4.4	5.4	×	1.7	3.0	2.6	2.4	3.5	2.9	2.7	2.5
l_(mA/om ¹)	9.7	0.0	6.9	7.8	10.0	×	6.5	8.2	7.6	6.5	8.1	7.6	7.9	7.3
F.F.	0.70	0.70	0.72	0.72	0.72	×	0.36	0.45	0.42	0.46	0.54	0.48	0.45	0.51
۷(۷)	12.71	0.76	0.78	0.77	0.75	×	0.70	0.81	0.80	0.80	0.79	0.78	0.76	0.77
CONDICIONES ZONA N	(idem)		F(PH ₃)=2 sccm.	f(SiH ₄)=8 sccm. P=258 mTorr.	Pot=2.5 W. ROE=1.2	T=300 °C. Rég=gamma.	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=260 mTorr.	Pot=3.5 W. ROE=1.0 Vac=9 Vcc=-14 T=300 °C. Rég=gamma.	(idem)		F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=259 mTorr.	Pot=3.5 W. ROE=1.0 Vac=9 Vcc=-14 T=300 °C. Rég=gamma.	(idem)	
CONDICIONES ZONA I	(idem)		F(SiH ₄)=10 sccm.	P=220 mTorr. Pot=7.0 W. ROE=2.1	Vac=16 Vcc=-44 T=300 °C.	Rég=alfa. vc=1.1 Å/s	F(SiH ₄)=10 sccm. P=220 mTorr. Pot=9.0 W. R0E=2.0	Vac≈15 Vcc=-37 T=300 °C. Rég≈alfa. vc=1.0	(idem)		F(SíH ₄)=10 sccm. P=220 mTorr. Pot=9.0 W. ROE=2.0	Vac=15 Vcc=-38 T=300°C. Rég=alfa. vc=0.83 Å/s	(idem)	
CONDICIONES ZONA P	F(B ₂ H ₆)=0.1 sccm. F(SiH ₄)=9.9 sccm. P=230 mTorr.	Pot=7.5 W. ROE=2.0 Vac=17 Vcc=-39 T=300 °C. Réstalfa.	F(B ₂ H ₆)=0.1 sccm.	F(SiH ₄)=9.9 sccm. P=224 mTorr.	Pot=6.0 W. ROE=2.0 Vac=15 Vcc=-39	T=300°C. Réa≃alfa	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=216 mTorr.	Pot=8.0 W. ROE=2.0 Vac=14 Vcc=-34 T=300 °C. Rég=alfa.	F(B,H ₆)=2.0 sccm. F(SiH ₄)=8.0 sccm. P=232 mTorr.	Pot=8.0 W. ROE=1.9 Vac=15 Vcc=-34 T=300 °C. Rég=alfa.	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=218 mTorr.	Pot=8.0 W. ROE=2.0 Vac=14 Vcc=-36 T=300 °C. Rég=alfa.	F(B ₂ H ₆)=2.0 sccm. F(SiH ₄)=8.0 sccm. P=212 mTorr.	Pot=8.0 W. ROE=2.0 Vac=14 Vcc=-36 T=300 °C.
DN(Å)	2007	2007	200?	2002	2007	2002	200?	200?	200?	2007	200?	200?	200?	2007
DILA	3300	3300	3400	3400	3400	3400	3000	3000	3000	3000	2500	2500	2500	2500
DP(Å)	65	130	530	260	130	65	240	120	120	240	200	100	100	200
DESCRIPCION	-3,4: grosores zona P.		-4 grosores zona P.				-OPTIMIZACION ZONA P: disminución del flujo de B,M _n .	-1,2: grosores zona P. -3,4: grosores zona P.	-(sin limpieza previa del reactor) -(pico de 600°C por	fallo termopar)	-OPTIMIZACION ZONA P: disminución del flujo de B_2H_6 .	-1,2: grosores zona P. -3,4: grosores zona P.	-REPETICION de 91816a. -(sin limpieza previa del reactor)	L
R CEL	<u>m</u>	m	-	~	╞	×	m			-	-	-	-	-
MUESTRA SI	91810 3	<u> </u> 4	91B11 1	~	[m	4	91816a 1	2	m	4	91B16b 1	2	m	4

3	- II	DESCRIPCION	DriÅ)	DI(Å)	DNIAI	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	1N)"A	F.F.	f_fmA/cm ²	Eficiencia
1 -OPTIMIZAC disminuci de B ₂ H ₈ .	-0PTIMIZAC disminuci de B ₂ H ₆ .	iok ZONA P: ón del flujo	260	3300	200?	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=217 mforr.	F(SiH ₄)=10 sccm. P=216 mTorr. Pot=8.0 W. ROE=2.0	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=261 mTorr.	0.73	0.73	8.2	4.4 %
1 -1,2: gro -3,4: gro	-1,2: gro -3,4: gro	sores zona P. sores zona P.	130	3300	2007	rot=s.u w. kue=2.u Vac=15 Vcc=-35 T=300 °C. Rég=alfa.	vacero vcce-co Te300 °C. Régealfa. vce1.1 Å/s.	Pot=3.2 ₩, ROE=1.0 7 Vac=8 Vcc≈-15 T=300 °C. Rég=gamma.	0.72	0.73	8.6	4.5 %
1 - REFEILU - (limpiez reactor)	-KEFEILU -(limpiez reactor)	un de YIBIO. La previa del	130	3300	2007	F(B ₂ H ₆)=2.0 sccm. F(SiH ₄)=8.0 sccm. P=216 mTorr.	(idem)	(idem)	0.68	0.72	8.3	4.1 %
			260	3300	2002	Pot=8.0 W. ROE=2.0 Vac=15 Vcc=-35 T=300 °C. Rég=alfa.		L	0.70	0.75	6.6	3.5 %
1 - OPTIMI2 disminu de PH ₃ .	-OPTIMI2 disminu de PH ₃ .	ACION ZONA N: ución del flujo	120	3100	400	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=220 mTorr.	F(SiH ₄)=10 sccm. P=219 mTorr. Pot=9.0 W. ROE=2.5	F(PH ₃)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=221 mTorr.	0.70	0.68	9.5	4.5 %
1 -1,2: 9 -3,4: 9	-1,2: 9 -3,4: 9	rosores zona N. rosores zona N.	120	3100	200	Pot=8.0 W. ROE=2.4 Vac=16 Vcc=-38 T=300 °C. Rég=alfa.	Vac=17 Vcc=-41 T=300 °C. Rég=alfa. vc=1.0 Å/s.	Pot=8.5 W. ROE=2.4 Vac=17 Vcc=-40 T=300 °C. Rég=alfa.	0.69	0.66	8.6	3.9%
2			120	3100	200	(idem)	(idem)	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=218 mTorr.	0.71	0.69	9.2	4.5 %
2			120	3100	400			Pot=8.5 W. ROE=2.4 Vac=17 Vcc=-40 T=300 °C. Rég=alfa.	0.73	0.69	9.8	5.0 %
2 -OPTIMI dismin de PH ₃ .	-OPTIMI dismin de PH ₃ .	ZACION ZONA N: ución del flujo	140	3600	400	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=224 mTorr.	F(SiH ₄)=10 sccm. P=223 mTorr. Pot=6.0 W. ROE=2.4	F(PH ₃)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=223 mTorr.	0.75	0.55	8.7	3.6 %
1 -1,2: 9 -3,4: 9	-1,2: 9 -3,4: 9	rosores zona N. rosores zona N.	140	3600	200	Pot=5.5 W. ROE=2.0 Vac=15 Vcc=-34 T=300 °c. Rég=alfa.	Vac=15 Vcc=-42 T=300 °C. Rég=alfa. Vc=1.2	Pot=6.0 W. ROE=2.4 Vac=15 Vcc=-42 T=300 °C. Rég=alfa.	0.72	0.55	8.7	3.5 %
2 - igual zona I	-igual zona I	que 91819 pero más gruesa.	140	3600	200	(idem)	(idem)	F(PH ₃)=2 sccm. F(SiH ₄)=8 sccm. P=211 mTorr.	0.73	0.56	8.1	3.3 %
2			140	3600	400			Pot=6.0 W. ROE=2.4 Vac=15 Vcc=-40 T=300 °C.	0.74	0.56	0.9	3.8 %

Eficienda	3.8 %	4.1 %	3.3 %	3.6 %	4.4 %	4.2 %	4.2 %	3.2 %	3.6 %	×	×	3.5 %	3.6 %		3.6 %	3.3 %	3.3 %	5.1 %	5.7 %
1_(mA/om ²)	10.0	10.2	8.0	7.2	9.9	9.4	8.7	7.0	9.9	×	×	7.1	8.0		8.8	8.5	7.5	10.0	11.5
E.F.	0.53	0.57	0.57	0.70	0.64	0.67	0.70	0.66	0.55	×	×	0.71	0.69		0.68	0.68	0.71	0.70	0.70
(v) - v	0.71	0.70	0.72	0.71	0.69	0.67	0.69	0.68	0.66	×	×	0.68	0.65		0.60	0.57	0.62	0.73	0.71
CONDICIONES ZONA N	F(PH ₃)=2 sccm.	r(S1H4)=18 sccm. P=212 mTorr.	Pot=8.0 W. ROE=2.3	T=300 °C. Rég=alfa.	F(PH ₃)=2 sccm.	F(SiH ₄)=18 sccm. P=216 mTorr.	Pot=2.0 W. ROE=1.6 Vac=8 Vcc=-18	T=300 °C. Rég=alfa.	F(PH ₃)=2.0 sccm.	F(SiH ₄)=18.0 sccm. P=276 mTorr.	Pot=1.9 W. ROE=1.4 Vac=7 Vcc=-13	t=300 °C. Réq=alfa.	F(PH,)=2.0 sccm.	F(SiH ₄)=18.0 sccm. P=370 mTorr.	Pot=3.0 W. ROE=1.1 Vac=7 Vcc=-10 T=350 °C. Réq=gamma	(idem)		F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm.	r=300 miorr. Pot=4.0 W. ROE=1.1 Vac=8 Vcc=-5 T=350 °C. Rég=gamma.
CONDICIONES ZONA I	F(SiH ₄)=20 sccm.	P=220 mlorr. Pot=8.0 W. ROE=2.3	Vac=12 Vcc=-4U T=300 °C.	Rég≖alfa. vc=0.91 Å/s.	F(SiH ₄)=20 sccm.	Packa miorr. Pot=2.0 W. ROE=1.6	Vac=8 Vcc=-18 T=300 °C.	Règ=alfa. vc=0.49 Å/s.	F(SiH ₄)=20 sccm.	P=281 mlorr. Pot=1.9 W. ROE=1.4	Vac=8 Vcc=-15 T=300 °C.	Rég=alfa. vc=0.51 Å/s.	F(SiH ₄)=20 sccm.	P=564 mTorr. Pot=3.0 W. ROE=1.2	Vac=8 Vcc≖-12 T=350 °C. Rég=gamma-alfa?. vc=0.89 Å/s.	(idem)		F(SiH ₄)=20 sccm. P=368 mTorr. Pot-2 0 0 0 pnc-1 1	Vac=9 Vcc=-6 T=350 °C. Rég=gamma. vc=2.25 Å/s.
CONDICIONES ZONA P	F(B ₂ H ₆)=0.5 sccm.	P=220 mTorr.	Pot=8.0 W. ROE=2.5 Vac=15 Vcc=-34	T=300 °C. Rég=alfa.	F(B ₂ H ₆)=0.5 sccm.	P=220 mTorr.	Pot=2.3 W. ROE=1.6 Vac=8 Vcc=-19	T=300 °C. Rég=alfa.	F(8 ₂ H ₆)=0.5 sccm.	P=282 mTorr.	Pot=2.0 W. ROE=1.4 Vac=7 Vcc=-14	T=300 °C. Rég=alfa.	F(B ₂ H ₆)=0.5 sccm.	r(SiH ₄)=19.5 sccm. P=323 mTorr.	Pot=5.0 W. ROE=1.1 Vac=8 Vcc=-11 T≈350 °C. Réq=qamma.	F(B ₂ H ₆)=1.0 sccm. F(SiH ₄)=19.0 sccm. P=323 mTorr.	Pot=3.0 W. ROE=1.1 Vac=8 Vcc=-11 T=350 °C, Rég=gamma.	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm.	Pote4.4 W. ROE=1.1 Vace4.4 W. ROE=1.1 T=350 °C. Rég=gamma.
DNIÅI	450	450	450	450	245	245	245	245	250	250	250	250	180		180	180	180	450	450
DILÀ	4500	3640	2730	1820	2940	2450	1960	1470	3000	2500	2000	1500	1780		1780	1780	1780	¢500	4500
DP(Å)	180	180	180	180	98	98	98	98	100	100	100	100	02		35	35	02	180	06
DESCRIPCION	-4 grosores zona 1.	-Nuevo material.			-4 grosores zona 1.	-Nuevo material.			-4 grosores zona [.	-Nuevo material.			-OPTIMIZACION ZONA P.	-350 °c.	-1,2: grosores zona P. -3,4: grosores zona P.	rerobtemas: camblo de régimen, interfase p/i gamma)		-OPTIMIZACION ZONA P. -350 °c.	-1,2: grosores zona P. -3,4: grosores zona P.
S CEL	-	-	-	-	2	m	-	-	-	×	×	-	2		-	m	-	-	-
TRA SU	-	~	<u> </u>	4	<u>-</u>] ກ	~	<u>m </u>	4	- *	~	m	*	1 23		~	<u>m</u>	*	1	<u> ~</u>
MUESI	91B2				9182				9182				9182					9182	

MUESTRA	<u>, 2</u>	EL DESCRIPCION	DP(Å)	DI(Å)	DN(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	(v)" v	F.F.	l_(mA/om ²)	Efloienda
91828	г х		8	4500	450	F(B ₂ H ₆)=1.0 sccm. F(SiH ₄)=19.0 sccm. P=364 mTorr.	(idem)	(idem)	0.68	0.71	11.5	5.6 %
	4		180	4500	450	Pot=4.0 W. ROE=1.1 Vac=9 Vcc=-8 T=350 °C. Rég=qamma.			0.72	12.0	10.3	5.3 %
91C02		-OPTIMIZACION ZONA P. -350 °c.	160	4000	400	F(B ₂ H ₈)=0.5 sccm. F(SiH ₄)=39.5 sccm. P=440 mTorr.	F(SiH ₄)=20 sccm. P=360 mTorr. Pot=3.2 W. ROE=1.02	F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=355 mTorr.	0.75	0.67	9.9	5.0 %
	~ ~	-1,2: grosores zona P. -3,4: grosores zona P.	80	4000	400	Pot=3.5 W. ROE=1.05 Vac=9 Vcc=-7 T=350 °C. Rég=garma.	Vac=8 Vcc=-8 T=350 °C. Rég=gamma. vc=2.1? Å/s.	Pot=3.2 W ROE=1.02 Vac=8 Vcc=-7 T=300 °C. Rég=gamma.	0.73	0.68	10.6	5.3 %
	- M		80	4000	400	F(B ₂ H ₆)=1.0 sccm. F(SiH ₄)=39.0 sccm. P=440 mTorr.	(idem)	(idem)	0.71	0.68	10.9	5.3 %
			160	4000	400	Pot=3.5 W. ROE=1.05 Vac=9 Vcc=-7 T=350 °C. Rég=gamma.			0.73	0.68	9.4	4.7 %
91c03	-	-2 TEMPERATURAS. -1,2: grosores zona 1. -1,1,2: grosores zona 1.	180	5500	400	F(B,H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=368 mTorr.	F(SiH,)=20 sccm. P=366 mTorr. Pot=3.0 W. ROE=1.0	F(PH,)=2.0 sccm. F(SiH ₁)=18.0 sccm. P=362 mTorr.	0.77	0.52	10.5	4.2 %
K	×	 -3,4: grosores zona 1. 1,(1)=350 °C. 	180	4400	400	Pot=3.0 W. ROE=1.05 Vac=8 Vcc=-5 T=350 °C. Rég=gamma.	vac≅8 vcc=-4 T=300 °C. Rég=gamma. vc=2.2 Å/s.	Pot≈3.5 ₩ ROE=1.05 Vac=9 Vcc=-3 T=200 °C. Rég=gamma.	×	×	×	×
	м -		180	4400	400	(idem)	F(SiH ₄)=20 sccm. P=367 mTorr. Pot=3.0 W. ROE=1.05	(idem)	0.72	0.54	9.3	3.6 %
			180	5500	400		Vac=8 Vcc=-6 T=350 °C. Rég=gamma. Vc=2.0 Å/s.		0.71	0.47	10.8	3.6 %
91c05	- I	 -2 TEMPERATURAS. -1,2: grosores zona 1. 	230	6250	500	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=364 mTorr.	F(SiH ₄)=20 sccm. P=360 mTorr. Pot=3.3 W. ROE=1.0	F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=359 mTorr.	0.76	0.60	10.9	5.0 %
	~ !	-3,4: grosores zona 1. 1,(1)=350 °C.	230	5000	500	Pot=3.3 W. ROE=1.0 Vac=9 Vcc=-4 T=350 °C. Rég=gamma.	Vac=9 Vcc=-5 T=300 °C. Rég=gamma. vc=2.5 Å/s.	Pot=3.5 W. ROE=1.1 Vac=9 Vcc=-4 T=250 °C. Rég=gamma.	0.76	0.64	9.6	4.7%

			· · · · · · · · · · · · · · · · · · ·	_	· · · · · · · · · · · · · · · · · · ·	y				T		
Eficiencia	4.5 %	4.2 %	3.6 %	3.5 %	4.8 %	4.2 %	4.8 %	4.8 %	5.7%	5.4 %	4.8 %	4.8 %
1_{(mA/cm ^r)	9.8	10.3	7.5	7.3	9.7	9.9	10.3	10.0	10.2	9.4	10.5	10.1
F.F.	0.64	0.57	0.60	0.61	0.64	0.55	0.62	0.63	0.70	0.71	0.61	0.62
(v) _	0.72	0.72	0.80	0.78	0.77	0.77	0.75	0.76	0.80	0.81	0.75	0.77
CONDICIONES ZONA N	(idem)		F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=361 mTorr.	Pot=3.9 W ROE=1.05 Vac=9 Vcc=0 T=250 °C. Rég=gamma.	(idem)		F(PH,)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=362 mTorr.	Pot=3.5 W ROE=1.05 Vac=9 Vcc=-3 T=350 °C. Réq=gamma.	(idem)		F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=280 mTorr.	Pot=1.9 W.ROE=1.4 Vac=8 Vcc=-13 17=300 °C. Rég=gamma.
CONDICIONES ZONA I	F(SiH ₄)=20 sccm. P=365 mTorr. Pot=3.3 W. ROE=1.0	Vac=8 Vcc=-6 T=350 °C. Rég=gamma. vc=2.9 Å/s.	F(SiH ₄)=20 sccm. P=364 mTorr. Pot=4.0 W. ROE=1.1	Vac=9 Vcc=-1 T=250 °C. Rég=gamma. vc=1.9 Å/s.	F(SiH ₄)=20 sccm. P=364 mTorr. Pot=3.4 W. ROE=1.0	Vac=9 Vcc=-2 T=300 °C. Rég=gamma. vc=2.2 Å/s.	F(SiH,)=20 sccm. P=320 mTorr. Pot=2.5 W. ROE=2.4	Vac=12 Vcc=-25 T=300 °C. Rég=alfa. vc=0.9 Å/s.	F(SiH ₄)=20 sccm. P=363 mTorr. Pot=2.8 W. ROE=1.1	Vac=9 Vcc=-2 T=300 °C. Rég=gamma. vc=2.5 Å/s.	F(SiH ₄)=20 sccm. P=280 mTorr. Pot=2.7 W. ROE=2.5	Vac=12 Vcc=-30 T=300 °C. Rég=alfa. vc=0.98 Å/s.
CONDICIONES ZONA P	(idem)	<u></u>	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=365 mTorr.	Pot=3.0 W. ROE=1.0 Vac=9 Vcc=-4 T=350 °C. Rég=gamma.	(idem)		F(B,H.)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=359 mTorr.	Pot=3.0 W. ROE=1.05 Vac=9 Vcc=-3 T=300 °C. Rég=gamma.	(idem)		F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=280 mTorr.	Pot=2.0 W. ROE=1.3 Vac=8 Vcc=-11 T=300 °C. Rég=gamma.
ONIAI	500	500	077	440	077	440	500	500	500	500	370	370
DI(Å)	5800	7250	4750	3800	4400	5500	3600	3600	5000	5000	3900	3900
DPIÅI	230	230	150?	150?	150?	150?	200	200	200	200	148	148
DESCRIPCION			-2 TEMPERATURAS. -1,2: grosores zona I.	-3,4: grosores zona I. T,(1)=300 °C.			-2 REGIMENES PLASMA. -perfiles SIMS de hidrógeno.	-1,2: zona I alfa. -3,4: zona I gamma.			-2 REGIMENES PLASMA. -repetición de 91c09.	
ц щ	m	m	m	m	m	m	-		-	~	-	
	m	4	-	~	m	4	-	~	m	4	-	~
MUESTR	91005		91006				91009				91C10	

MUESTRA	21	CEL DESCRIPCION	DPIAI	DIA	DH(Å)	CONDICIONES ZONA P	CONDICIONES ZONA I	CONDICIONES ZONA N	1/N /	F.F.	1_(mA/om ² 1	Eficiencia
91c10	m	5	148	3700	370	(idem)	F(SiH ₄)=20 sccm.	(idem)	0.78	0.70	9.6	5.3 X
							P=280 mlorr. Pot=2.0 W. ROE=1.4					
	4	×	148	3700	370		vac≂a vcc=-15 1=300 °C. Rég=gamma.		×	×	×	×
91C23	n	<pre>2 -1,=250 °C -1,2: Material I.</pre>	160	4000	400	F(8 ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=360 mTorr.	F(SiH_)=20 sccm. F(SiH_)=20 sccm. P=360 mTorr. Pot=3.0 W. ROE=1.0	F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=360 mTorr	0.83	0.56	8.7	4.1 %
	4	2	160	4000	400	Pot=3.1 W. ROE=1.0 Vac=9 Vcc=-1 T=250 °C. Rég=gamma.	Vac=9 Vcc=0 T=250 °C. Rég=gamma. vc=2.0 Å/s.	Pot=3.0 W ROE=1.0 Vac=9 Vcc=0 T=250 °C. Réq≃qamma	0.82	0.57	0.9	4.2 %
91C27	-	 X - Tratamiento térmico de luna célula becha o boio 				F(B ₂ H ₆)=0.5 sccm.	F(SiH ₄)=20 sccm.	F(PH ₃)=2.0 sccm.	×	×	×	×
	2	X temperatura.				F(SiH ₄)=19.5 sccm. P=360 mTorr.	P=360 mTorr. Pot=3.0 W. ROE=1.0	F(SiH ₄)=18.0 sccm. P=360 mTorr.	×	×	×	×
	m	×				Pot=3.1 W. ROE=1.0 Vac=9 Vcc=-1	Vac=9 Vcc=0 T=250 °C.	Pot=3.2 W ROE=1.0 Vac=9 Vcc=0	×	×	×	×
	4	×				T=250 °C. Rég≃gamma.	Rég≖gamna.	T=200 °C. Réq=qamma.	×	×	×	×
91C28	-	1 -2 TEMPERATURAS ZONA N. -1,2: T(N)=200 °C. -3.4.7 (N)-200 °C.	140	3600	3607	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=360 mTorr.	F(SiH ₄)=20 sccm. P=360 mTorr. Pot=2.8 W. ROE=1.05	F(PH,)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=360 mTorr.	0.77	0.52	10.1	4.1 %
	~	· · · · · · · · · · · · · · · · · · ·	140	3600	3607	Pot=3.1 W. ROE=1.0 Vac=9 Vcc=-2 T=300 °C. Rég=gamma.	Vac≃10 Vcc=0 T=300 °C. Rég=gamma. vc=1.8 Å/s.	Pot=3.2 W ROE=1.0 Vac=9 Vcc=0 T=200 °C. Réq=qamma.	0.76	0.53	10.4	4.2 %
	m	-	140	3600	360	(idem)	(idem)	F(PH ₃)=2.0 sccm. F(SiH ₄)=18.0 sccm. P=360 mTorr.	0.70	0.64	9.7	4.4 %
	4		140	3600	360			Pot=2.8 W ROE=1.05 Vac=9 Vcc=-2 T=300 °C. Rég=gamma.	0.76	0.64	9.9	4.8%
91020	-	1 -CELULAS IDENTICAS.	100	3780	250	F(B ₂ H ₆)=0.5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=1.0 sccm.	0.80	0.65	9.8	5.1%
	~	1 -4: interfase p/i a mavor presión.	100	3780	250	P=250 mTorr.	Pet=5.0 W. ROE=1.0	F(SIN4)=9.U SCCM. P=250 mTorr.	0.76	0.67	10.6	5.4 %
	m		10	3780	250	Vac=8.0 W. ROE=1.0 Vac=8 Vcc=-15	T=300 °C.	Pot=5.0 W ROE=1.0 Vac=9 Vcc=-18	0.77	0.60	9.7	4.5 %
	•	1	<u>8</u>	3780	250	T=500 °C. Régeoamma	keg=gamma. vc=2.52 Å/s.	T=300 °C. Réactamma	0.81	0.65	10.0	5.3 %

	7		Ī							1				
Eficiencia	5.0 ×	5.0 %	5.4 %	5.4 %	4.1 %	4.2 %	4.1%	4.2 %	3.5 %	3.5 %	4.1 %	4.1 %	2.7 %	3.0 %
l_(mA/am ²)	9.1	9.2	9.5	9.5	9.6	8.9	8.9	10.5	7.8	7.2	8.7	10.2	7.1	7.5
E.F.	0.71	0.71	0.72	0.71	0.57	0.65	0.66	0.57	0.56	0.62	0.62	0.52	0.51	0.54
۲ <u>-</u> (۷)	0.77	0.76	0.79	0.80	0.74	0.73	0.69	0.70	0.79	0.78	0.75	0.76	0.75	0.74
CONDICIONES ZONA N	F(PH ₃)=1.0 sccm.	P=360 mTorr.	Pot=2.5 W ROE=1.0 Vac=8 Vcc=-3	T=300 °C. Réα=αamma.	F(PH ₃)=1.0 sccm. F(SiH ₄)=9.0 sccm. P=360 mTorr.	Pot=3.5 W ROE=1.05 Vac=10 Vcc=-1 T=250 °C. Rég=gamma.	(idem)		F(PH ₄)=1.0 sccm. F(SiH ₄)=9.0 sccm. P=360 mIorr.	Pot=3.6 W ROE=1.1 Vac=10 Vcc=0 T=250 °C. Réq=qamma.	(idem)		F(PH ₃)=1.0 sccm. F(SiH ₄)=9.0 sccm. P=360 mTorr.	Pot=5.0 W ROE=1.1 Vac=11 Vcc=0 T=250 °C. Réq=qamma.
CONDICIONES ZONA I	F(SiH₄)=10 sccm. D-740 mTore	Pot=2.5 U. ROE=1.0	Vac=6 Vcc=-3	Rég=gamma. vc=1.75 Å/s.	F(SiH4)=10 sccm. P=360 mTorr. Pot=3 W. ROE=1.05	vac=9 vcc=-2 1=300 °C. Rég=gamma. vc=2.3 Å/s.	F(SiH ₄)=10 sccm. P=360 mTorr. Pot=2.5 W. ROE≈1.05	Vac=8 Vcc=-6 1≈350 °C. Rég=gamma. vc=2.3 Å/s.	F(SiH,)=10 sccm. P=360 mTorr. Pot=3.6 W. ROE=1.1	Vac=10 Vcc=0 T=250 °C. Rég=gamma. vc=2.2 Å/s.	F(SiH ₄)=10 sccm. P=360 mTorr. Pot=3 W. ROE=1.1	Vac=9 Vcc=-2 T=300 °C. Rég=gamma. vc=1.8 Å/s.	F(SiH ₄)=10 sccm. P=360 mTorr. Pot=5.0 W. ROE=1.15	Vac=11 Vcc=0 T≈250°C. Rég=gamma. vc=1.95 Å/s.
CONDICIONES ZOMA P	F(8 ₂ H ₆)=0.5 sccm. F/SiH)=0.5 sccm.	P=360 mTorr.	Pot=2.5 W. ROE=1.0 Vac=9 Vcc=-3	T=300 °C. Rég≖gamma.	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=360 mTorr.	Pot=2.5 W. ROE=1.05 Vac=8 Vcc=-4 T=350 °C. Rég=gamma.	(idem)		F(B ₄ H ₄)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=360 mTorr.	Pot=2.5 W. ROE=1.05 Vac=8 Vcc=-4 T=350 °C. Rég=gamma.	(idem)		F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=360 mTorr.	Pot=3.5 W. ROE=1.05 Vac=8 Vcc=-5 T=350 °C. Rég=gamma.
DN(Å)	350	350	350	350	460	460	460	460	440	440	740	440	400	400
DI(Å)	3500	3500	3500	3500	9200	4600	4600	9200	7260	3600	3240	6480	8600	4300
DP(Å)	140	140	140	140	180	180	180	180	140	140	140	140	240	240
DESCRIPCION	-Interfase p/i a mayor potencia RF.	-3: p/i 50s.	-4: p/i 100s.		-2 TEMPERATURAS ZONA I. -1,2: T.(1)=300 °C. -3.4: T.(1)=500 °C.	-1,(N)=250 °C.			-2 TEMPERATURAS ZONA 1. -1,2: 1,(1)=250 °C.	-1,4:1,(1)=250 °C.			-2 TEMPERATURAS ZONA I. -1,2: 1,(1)=250 °C. -3 4: 1,1)-250 °C.	-1,(N)=250 °C.
CEL	-	-	-	-	-	-		-	-	N	-	-		
505	-	~	m	4	-	N	m	4	-	~	m	- t-	-	~
MUESTRA	91021				91027				91028				91030	

1				_										
Eficiencia	3.5 %	3.2 X	4.1 %	4.2 %	4.7 %	4.4 %	3.6 %	3.8 %	3.8 %	4.5 %	4.4%	4.1 %	4.7%	4.5 %
I_(mA/om ²)	9.4	9.4	9.2	9.0	9.4	8.6	10.2	10.2	9.8	10.8	8.8	8.6	9.2	0.0
E.F.	0.53	0.48	0.68	0.67	0.69	0.69	0.56	0.54	0.56	0.61	0.66	0.62	0.65	0.63
1/1/A	0.69	0.70	0.65	0.69	0.72	0.74	0.63	0.68	0.68	0.68	0.75	0.76	0.78	0.79
CONDICIONES ZONA N	(idem)		F(PH ₃)=2.0 sccm.	r(SiH4)=18.U sccm. P=360 mforr.	VOLEI.U W KUEEI.43 Vac=6 Vcc=-10 T=200 °C	Rég=alfa.	F(PH ₃)=1.0 sccm. F(SiH ₄)=19.0 sccm. P≈200 mTorr.	Pot=3.0 W ROE=2.0 Vac=22 Vcc=-55 T≈300 °C. Réa=alfa.			F(PH ₃)=1.0 sccm. F(SiH ₄)=19.0 sccm. P=360 mTorr.	Pot=2.7 W ROE=1.1 Vac=8 Vcc=-6 T=275 °C. Régenamme		•
CONDICIONES ZONA I	F(SiH4)=10 sccm. P=360 mforr. Pot=3.5 W. ROE=1.05	vac=y vcc=-o T=350 °C. Rég=gamma. vc=3.0 Å/s.	F(SiH ₄)=20 sccm.	P=SOU mLOFF. Pot=1.0 W. ROE=1.45	T=300 °C. Béa=alfa	vc=0.5 Å/s.	F(SiH ₄)=20 sccm. P=200 mTorr. Pot=3.0 W. ROE=1.8	Vac=23 Vcc=-54 T=300 °C. Rég=alfa. vc=0.8 Å/s.	F(SiH ₄)=20 sccm. P=320 mTorr. Pot=5.0 W. ROE=1.1	Vac=10 Vcc=-6 T=300 °C. Rég=gamma. vc=4.1 Å/s.	F(SiH ₄)=20 sccm. P=360 mTorr. Pot=3.0 W. ROE=1.1	Vac=8 Vcc=-5 T=275 °C. Rég=gamma. vc=1.3 Å/s.	F(SiH ₄)=20 sccm. P=340 mTorr. Pot=4.1 W. ROE=1.0	Vac=10 Vcc=-2 T=275 °C. Rég=gamma. Vc=2 7 Å/c
CONDICIONES ZONA P	(idem)		F(8 ₂ H ₆)=0.5 sccm.	P=360 mTorr.	Vac=6 Vcc=-9	Rég≈al fa.	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=200 mTorr.	Pot=3.0 W. ROE=1.8 Vac=3 Vcc=-54 T=300 °C. Rég=alfa.	,		F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=19.5 sccm. P=360 mTorr.	Pot=2.1 W. ROE=1.0 Vac=9 Vcc=-2 T=275 °C. Réq=qamma.	(idem)	
DN(Å)	400	400	200	200	200	200	200	200	200	200	260	260	260	260
DI(Å)	6000	12000	3000	3000	3000	3000	3200	3200	3200	7000	2600	2600	2600	3000
DPLAI	240	240	80	80	80	80	79	64	64	64	100	100	100	100
DESCRIPCION			-Material en rég. alfa con interfase p/i gamma	de diferentes grosores: -1: p/i 0s.	-2: p/i 20s. -3: p/i 40s.	-4: p/i 80s.	-Material en rég. alfa con interfase p/i gamma de diferentes grosores.	-4: zona i toda en rég. gamma.	-1: p/1 us. -2: p/i 50s. -3: p/i 100s.	-más potencia RF que 91E01.	-Material en rég. gamma con interfase p/i a mayor potencia.	-4: zona I toda a mayor potencia.	-1: p/1 us. -2: p/i 50s. -3: p/i 100s.	
CE L	-		-	m	~	~	m	m	2	м	m	-	m	2
202 V	<u>m</u>	4		~	<u>m</u>	4	-	~	m	4		N	m	4
MUESTE	91030		91E01				91E11				91E1{			

F.F. 1_(mAJom ²) Eficiencia	72 10.8 6.0 %	73 11.7 6.2 %	50 3.6 1.2 %	50 3.5 1.2 %	13 4.9 0.3 %	55 8.7 3.2 %	71 8.9 4.4 %	72 8.9 4.8 %	55 11.7 5.1 %	55 9.6 4.8 %	58 7.8 4.1 %	x x	33 9.3 4.2 %	57 8.8 4.2 %	-
v_(v) F	.77 0.77	.72 0.7	.55 0.6(.68 0.5	.47 0.1	.66 0.5	.69 0.7	.75 0.7	79 0.5	.77 0.6	.76 0.64	×	.85 0.5	.84 0.5	
CONDICIONES ZONA N	F(PH ₃)=1 sccm. F(SiH ₄)=9 sccm. P=277 mTorr.	Pot=3.5 V. ROE=1.1 Vac=8 Vcc=-12 T=300 °C. Réq=qamma.	(idem) 0	<u> </u>	F(PH ₃)=1 sccm. 0. F(SiH ₄)=9 sccm. P=280 mTorr.	Pot=4.7 W. ROE=1.0 Vac=8 Vcc=-13 1=300 °C. Réq=qamma.			F(PH ₃)=1.0 sccm. 0.	F(SiH ₄)=9.0 sccm. 0. P=280 mforr. 0.	Pot=3.0 W. ROE=1.2	T=300 °C. x	F(PH ₃)=1.0 sccm. 0.	F(SiH ₄)=9.0 sccm.	
CONDICIONES ZONA I	F(SiH4)=10 sccm. P=286 mTorr. Pot=3.5 W. ROE=1.1	Vac=8 Vcc=-10 T=300 °C. Rég=gamma. Vc=3.2 Å/s.	(idem)		F(SiH ₄)=10 sccm. P=280 mTorr. Pot=4.5 W. ROE=1.0	Vac=8 Vcc=-11 T=300 °C. Rég=gamma. vc=3.4 Å/s.			F(SiH ₄)=10 sccm.	P=288 mJorr. Pot=3.0 W. ROE=1.25	Vac=9 Vcc=-9 T=300 °C.	Rég=gamma. vc=2.6 Å/s.	F(SiH ₄)=10 sccm.	P=286 mlorr. Pot=3.2 W. ROE=1.15	
CONDICIONES ZONA P	F(8 ₂ H ₆)=1 sccm. F(SiH ₄)=9 sccm. P=176 mTorr.	Pot=3.5 W. ROE=1.1 Vac=19 Vcc=-48 T=300 °C. Rég=alfa.	F(B ₂ H ₆)≈1.0 sccm. F(SiH ₄)=4.0 sccm. F(CH ₄)=5.0 sccm.	Pot=5.0 W. ROE=1.0 Vac=21 Vcc=-54 T=300 °C. Rég=alfa.	F(SiH ₄)=1.0 sccm. F(CH ₄)=19.0 sccm. P=150 mTorr.	Pot=7.0 W. ROE=1.3 Vac≃23 Vcc=-62 T=300 °C. Rég=alfa.	F(8 ₂ H _n)=1 sccm. F(SiH ₁)=19 sccm. P=150 mTorr.	Pot=5.5 W. ROE=1.13 Vac≈21 Vcc=-57 T=300 °C. Réq=alfa.	F(8₂H ₆)≈1.0 sccm.	F(S)H ₄)=9.0 sccm. P=280 mTorr.	Pot=3.0 W. ROE=1.25 Vac=8 Vcc=-9	T=300 °C. Rég=gamma.	F(B ₂ H ₆)≈1.0 sccm.	P=280 mTorr.	
DNIA	320	320	320	320	340	340	340	340	260	260	260	260	230	230	
DI(Å)	3200	3200	3200	3200	3400	3400	3400	3400	7200	3600	1800	900	6400	3200	
DP(Å)	÷05	20?	202	ć05	120?	120?	120?	120?	100	100	100	100	96	96	
DESCRIPCION	-VENTANA A-SIC:H. -1,2: grosores zona p. sin ventana	-3,4: grosores zona po. con ventana.			-VENTANA MULTICAPA: a-SiC:H/a-Si:H,B: -1:80s/20s -2:40s/77s	-4:10s/36s			-4 grosores zona I.				-4 grosores zona l.	-T_=250°C.	
		-	-	-	2	-	-	-	-	-	-	-	~	-	
R CEL		1		1		ł	1								

Efficiencie	0.6 %	1.2 %	1.5 %	2.0 %	<u> </u>	5.1 %	4.5 %	3.5 %	5.3 %	4.8 %	1.4 %	1.4 %	4.7 %	4.5 %	5.0 %	
l_(mA/cm²)	5.8	7.1	6.8	6.9	1	11.3	8.9	6.7	9.9	10.0	4.3	3.5	9.5	9.1	9.5	1
E.F.	0.27	0.45	0.55	0.60	1	0.58	0.65	0.68	0.66	0.61	14.0	0.49	0.65	0.65	0.69	i
W"N	0.38	0.38	0.40	0.47	1	0.78	0.78	0.76	0.80	0.79	0.77	0.79	0.76	0.76	0.76	I
CONDICIONES ZONA N	F(PH ₃)=1 sccm. F(SiH ₄)=9 sccm. P=280 mTorr.	Pot=4.5 W. ROE=1.1 Vac=9 Vcc=-12 T=300 °C. Réq=qamma	2		F(PH ₃)=1.0 sccm.	F(SiH ₄)=9.0 sccm. P=280 mTorr.	Pot=3.5 W. ROE=1.1 Vac=8 Vcc=-8	T=300 °C. Réa=aamma.	F(PH ₃)=1.0 sccm.	F(SiH ₄)=9.0 sccm. P=280 mTorr.	Pot=4 W. ROE=1.05 Vac=9 Vcc=-10	1=300 °C. Réa=aamma.	F(PH ₃)=2.0 sccm. F(SiH ₄)=8.0 sccm. P=280 mTorr.	Pot=4.5 W. ROE=1.0 Vac=9 Vcc=-9 T=300 °C.		• • • • • • • • •
CONDICIONES ZONA I	F(SiH ₄)=10 sccm. P=280 mTorr. Pot=4.5 U. ROE=1.1	Vac≈9 Vcc=-12 T=300°C. Rég≈gamma. vc=2.45 Å/s.			F(SiH ₄)=10 sccm.	P=280 mTorr. Pot=3.5 W. ROE=1.15	Vac=8 Vcc=-8 T=275 °C.	Rég≂gamma. vc=2.7 Å/s.	F(SiH ₄)=10 sccm.	P=280 mTorr. Pot=4.0 W. ROE=1.05	Vac=9 Vcc=-10 T=300 °C.	Rég≂gamma. vc=2.5 Å/s.	F(SiH ₄)=10 sccm. P=280 mTorr. Pot=4.5 W. ROE=1.0	Vac≈9 Vcc=-10 T=300 °C. Rég≈gamma. vc=2.5 Å/s.	F(SiH ₄)=10 sccm. P=280 mTorr. Pot=8.0 W. R0E=1.0	Vac≈10 Vcc=-16 T=300 °C. Rég≈gamma.
CONDICIONES ZONA P	F(SiH ₄)=1.0 sccm. F(CH ₄)= 19.0 sccm. P=150 mTorr.	Pot=6.5 W. R0E=1.17 Vac=21 Vcc=~54 T=300 °C. Réq=alfa.	F(B ₂ H ₆)=1.0 sccm. F(SiH ₄)=19.0 sccm. P=150 mTorr.	Pot=5.3 W. ROE=1.0 Vac=21 Vcc=~51 T=300 °C. Réq=alfa	F(B ₂ H _a)=1.0 sccm.	F(SiH ₄)=9.0 sccm. P=192 mTorr.	Pot=8.0 W. ROE=2.0 Vac=20 Vcc=-52	T=275 °C. Rég=alfa.	F(B ₂ H ₆)=0.5 sccm.	F(S1H4)=9.5 sccm. P=280 mTorr.	Pot=4.0 W. ROE=1.05 Vac=8 Vcc=-9	T=300 °C. Rég≖gamma.	F(8 ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=280 mTorr.	Pot=4.0 W. ROE=1.05 Vac=8 Vcc=-9 T=300 °C. Révienamma		
DNIA	245	245	245	245	,	270	270	270	250	125	125	250	125	125	125	1
DILA	2450	2450	2450	2450	5500	5400	2700	1350	3500	3500	3500	3500	3000	3400	3200	6500
UPIN	100?	100?	100?	100?	1	80	80	80	100	100	100	100	100	100	100	1
DESCRIPCION	-VENTANA MULTICAPA: a-Si:H,B/a-SiC:H: -1: -2:	im 1			-3 grosores zona I.	-4:material I sobre corning metaliyado	-T = 375°C	1 ² - 2(2) C.	-EFECTO DEL ELECTRODO TRANSPARENTE	-1,2:Sn0 ₂ .	-J/4:UF SEMILF. -Grosores zona n.		-Material en rég. gamma con interfase p/i a mayor potencia.	-1: I baja potencia. -2: p/i 100s. -3: I alta potencia.	-4: corning.	
S CEL	-	-	1	-	-	-	-	-	-	-	-	-	-	1	-	ı
2	-	N	m	4	-	~	m	4		N	m	4	-	N	m	4
MUESTR	91F20				91F24				91F29				91F3C			

ESTRA	3	EL DESCRIPCION	DP(Å)	DILA	IVING	CONDICIONES ZONA P	CONDICIONES ZOWA I	CONDICIONES ZONA N	V_N	F.F.	I_(mA/cm ²)	Eficiencia
نار ح	뒤	-3 grosores zona N.	110	3120	39	F(B ₂ H ₆)=0.5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2.0 sccm.	0.55	0.61	9.5	3.2 %
<u> </u>		-4:material N sobre corning	110	3120	195	P=280 mTorr.	P=280 mTorr. Pot=8.5 W. ROE=1.1	F(SiH ₄)=8.0 sccm. P=280 mTorr.	0.79	0.73	8.7	5.0 %
<u> </u>	<u>-</u>	· · · · ·	110	3120	780	Pot=8.0 W. ROE=1.05 Vac=10 Vcc=-15	Vac=10 Vcc=-16 T=300 °C.	Pot=8.5 W. ROE=1.1 Vac=11 Vcc=-18	0.79	0.72	9.0	5.1 %
Ť	╬		1	1	1560	T=300 °C. Rég=gamma.	Rég≃gamma. vc=3.9 Å/s.	T=300 °C. Rég=gamma.	1			1
<u>. </u>	~	-Material en rég. gamma con interfase p/i a mayor presión.	96	2600	160	F(B ₂ H ₆)=0.5 sccm. F(SiH ₄)=9.5 sccm. P=280 mTorr.	F(SiH ₄)=10 sccm. P=280 mTorr. Pot=7.0 W. ROE=1.05	F(PH ₃)=2.0 sccm. F(SiH ₄)=8.0 sccm. P=280 mTorr.	0.79	0.72	9.0	5.1 %
	5	-1: I presión normal. -2: p/i 100s. -3: I alta presión.	96	3000	160	Pot=6.0 W. ROE=1.05 Vac=10 Vcc=-16 T=300 °C. Réd=clamma	Vac≃11 Vcc=-17 T=300 °C. Rég≈gamma. vc=3.2 Å/s.	Pot=7 W. ROE=1.05 Vac=11 Vcc=-16 T=300 °C.	0.79	0.73	8.8	5.1 %
I	N N	-4: SNO ₂ . -Metalización sin Au.	96	3300	160	5	F(SiH ₄)=10 sccm. P=360 mTorr. Pot=6.5 W. R0E=1.05		0.79	0.72	9.1	5.1 %
	+ +		1	6500	1		Vac=10 Vcc=-3 T=300 °C. Rég=gamma. Vc=4.7 &/s.	.	I	<u> </u>	1	1_
<u> </u>	<u>-</u>	-4 grosores zona I	1	7200	1	F(B ₂ H ₆)=0.5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2.0 sccm.	1		,	
<u> </u>		-T_=250°C	120	3600	200	P=260 mTorr.	P=260 mTorr. Pot=7.0 W. ROE=1.0	F(SiH ₄)=8.0 sccm. P=260 mTorr.	0.85	0.59	9.3	4.7 %
<u> </u>	<u>m</u>		120	2800	200	Pot=6.0 W. ROE=1.2 Vac=9 Vcc=-9	Vac≃10 Vcc=-12 T=250 °c.	Pot=7 W. ROE=1.05 Vac=10_Vcc=-12	0.84	0.64	7.5	4.1 %
	4		120	2000	200 20	l=250°C. Rég=gamma.	Rég=gamma. vc=4.0 Å/s.	T=250 °C Rég=gamma.	0.84	0.65	6.3	3.5 %
 6	╧┼	-4 grosores zona I	1	7380	1	F(B ₂ H ₆)=0.5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=4.0 sccm.	1	1	1	1
	2	-T_=250°C	122	3690	205	P=260 mTorr.	Pot=7.0 W. ROE=1.0	F131H4)=0.U SCCM. P=260 mTorr.	0.85	0.61	8.1	4.2 %
L	~ ~	-aumento flujo PH ₃	122	2870	205	Vac=8.U W. ROE=1.2 Vac=8 Vcc=-4!	Vac≂1U vcc=-1U T=250 °c.	Pot=7 W. ROE=1.0 Vac=10 Vcc=-12	0.84	0.63	8.2	4.4 %
	4		122	2050	205	i=∠>U ℃. Rég≐gamma.	Rêg≈gamma. vc=4.1 Å∕s.	T=250 °C Rég≃gamma.	0.84	0.65	6.3	3.5 %
<u> </u>	~	-4 grosores zona I	135	806	225	F(B ₂ H ₆)=0.5 sccm.	F(SiH ₄)=10 sccm.	F(PH ₃)=2.0 sccm.	0.79	0.56	10.5	4.7 %
	<u>m</u> 		135	4500	225	P=280 mTorr.	Pot=8.5 U. ROE=1.05	P=280 mTorr.	0.79	0.40?	8.1	2.6%
ـلـــَــ	~ ~		135	2250	225	Vac=1.5 W. RUE=1.2 Vac=10 Vcc=-16	Vac=11 Vcc=-19 T=300 °C.	Pot=8.5 W. ROE=1.0 Vac=10 Vcc=-19	0.78	0.52	6.7	2.7 %
	4		135	1125	225	1=500 °C. Réd=damma	Rég≈gamma. vc=4.5 Å/s.	T=300 °C Réditicamma	0.76	0.67	4.7	2.4 %

. .

.

- - ----

• . -

