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La fisica dels mercats financers

La fisica és una branca de la ciencia dedicada a estudiar els fenomens i els cossos de la
natura, per tal de trobar tant la formulacié matematica de les lleis que regeixen com
els constituents fonamentals dels fenomens i cossos de la natura. D’aquesta definicié
se’n despren que la fisica abarca un camp tan ampli que qualsevol altra disciplina
cientifica podria arribar-se a denominar fisica. No obstant, el saber cientific, a
mesura que ha concretat més i més, s’ha vist obligat a disgregar-se en cada cop més
nombroses i desconnectades disciplines. I la fisica no ha estat menys. Arran d’aixo,
la figura del fisic (o del cientific) com a posseidor d’una nocié global del mén ha
passat forcosament de moda doncs, amb el seu esperit d’universalitzar les lleis de la
natura, ha tendit a abstreure’s més i més de la realitat més tangible.

Malgrat tot, cada dia sén més els fisics que fan recerca des de la pluridisci-
plinarietat. Aquesta nova tendencia es justifica a ella mateixa entenent que I'aveng
desaforat de cadascuna de les disciplines cientifiques ha provocat una absoluta in-
comprensié d’unes amb les altres i que, en conseqiiéncia, cadascuna hagi avancat
pel seu compte. Degut a aquest fet, la ciéncia ha deixat parts de la “natura”
sense estudiar i d’altres han estat tractades des d’una unica perspectiva. Els “fisics
pluridisciplinars” consideren que caldria aproximar-se a moltes d’aquestes qiiestions
simultaniament des de diverses disciplines. Els temes d’interes pluridisciplinar acos-
tumen a ser més prosaics i menys fonamentals, de contacte directe amb el ciutada.

La present memoria de tesi s’inscriu dins aquesta tendéncia d’estendre el camp
d’estudi de la fisica a nous objectius, com és en aquest cas el mén de la dinamica
financera. En els darrers trenta anys, el mén borsari ha desenvolupat un creixement
vertiginds i la societat té un cada cop major interés envers els mercats financers. La
borsa és un ens generador d’un volum enorme de dades que necessiten d’'un estudi
molt acurat. La computacié dels mercats de valors ha permes tenir un registre
molt ampli d’informacié que arriba a guardar els valors negociats fins a variacions
registre a registre, el que s’anomena “tick a tick’*. A partir de l'estudi empiric de
la borsa, s’ha observat que aquesta esta subjecte a una molt variada i complexa
fenomenologia que exigeix una descriptiva matematica d’alt nivell. Aixi doncs, els
mercats contenen tots els ingredients per ser un camp especialment llaminer als ulls

Les dades resultants s’anomenen “dades d’alta freqiiéncia” ja que la distancia entre ticks arriba
a ser de I’ordre dels pocs segons.
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de la fisica i, recentment, nombrosos fisics s’han sentit atrets per les finances i han
intentat dir-hi la seva.

No obstant, la contribucié dels fisics al mon de les finances ve de lluny. Per
exemple, el fisic matematic ja als anys seixanta va estudiar la distribucié dels preus
i Mandelbrot va observar que les cues de la distribucié es poden descriure amb
una llei de poténcies (Mandelbrot (1963)). Les cues, en qualsevol cas, no poden
ser explicades pel procés brownia geometric acceptat fins aleshores. Mandelbrot
proposa les distribucions Lévy doncs aquestes distribucions tenen les cues amb el
decaiment desitjat. Ara bé, no ha estat fins a principis dels noranta que la fisica ha
entés com a disciplina propia el mon de les finances i I’economia en general. Des
d’aleshores, la natura que observa la fisica també inclou als mercats financers.

Un dels primers articles publicats en una revista de fisica va ser el de Mantegna
I’any 1991. En aquest, s’estudia la distribucié empirica de I'index de la borsa de
Milano i es quantifiquen els coeficients de la distribucié Lévy consistent amb les
dades. Aquest article és un treball preliminar al publicat a Nature el 1995 que, cer-
tament, ha tingut molta més repercussié dins la comunitat de la fisica. En aquest
article, Mantegna i Stanley analitzen les propietats estadistiques de I’index borsari
Standard & Poor’s 500 de New York. Per fer-ho, es van servir de dades d’alta
freqiiencia i del major conjunt de dades historiques de qué s’havia disposat fins
aleshores. L’article aprofundeix en la tesi de que la dinamica dels preus podria ser
descrita per un procés Lévy i que la serie temporal de I'index mostra un comporta-
ment auto-similar, és a dir, que el perfil de les distribucions de canvi de preus minut
a minut, diaris, setmanals i mensuals és semblant. En aquesta mateixa linia exis-
teix una extensié interessant de Bouchaud i Sornette (1994). El treball estudia un
metode de valoracié d’opcions alternatiu al que tipicament es fa servir en finances.
La intencié de Bouchaud i Sornette era de formalitzar un metode que accepti altres
dinamiques com ara la dels processos Lévy.

Paral-lelament, altres fisics van comencar a estudiar els mercats basant-se en
simulacions de la dinamica del preu de ’accié un cop fixades les pautes de compor-
tament dels inversors. Dins d’aquest ambit, es poden destacar els treballs de Bak
et al. (1997), Challet i Zhang (1997) o Johnson et al. (1998). Cadasci a la seva
manera tracta de mecanitzar la generacio dels preus especulatius des d’allo que se’n
diu la microestructura dels mercats. Es a dir, cerquen les interaccions dels agents
que operen a borsa que generin la complexitat observada en I’evolucié dels preus.

Totes aquestes primerenques aproximacions a les finances s’encabeixen dins d’una
sola disciplina que Stanley bateja amb el nom d’“econofisica”. Va ser tota una
declaracié d’intencions per tal d’incitar els fisics a estudiar els mercats financers
i encabir la borsa dins la fisica. L’article de Mantegna i Stanley a Nature ’any
1995 es considera el tret de sortida de la publicacié d’estudis sobre finances en
revistes especialitzades de fisica. Des d’aleshores, existeixen unes quantes publica-
cions de fisica que accepten articles d’econofisica, la quantitat d’articles publicats
per fisics dins d’aquesta disciplina s’ha disparat i ja s’estan cel-lebrant nombrosos
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congressos i workshops sobre les aplicacions de la fisica a les finances?. Alguns com
Bouchaud (Franca), Wilmott (UK) i Farmer (US) s’han atrevit, amb més o meys
fortuna, a crear empreses usant els seus propis coneixements per especular a borsa.
I d’altres han publicat tot el coneixement adquirit en llibres o han reescrit con-
ceptes de la matematica financera de manera més agradable als ulls d’un fisic (e.g.
Wilmott (1998), Mantegna i Stanley (2000) o Bouchaud i Potters (2000)).

Després de la primera embranzida, les contribucions publicades pels fisics s’han
perllongat en varies direccions. Bona part de la feina s’ha fet en ’analisi de dades.
Els fisics han rendibilitzat la gran quantitat de dades que els hi ha arribat i han
extret conclusions importants. Per exemple, el grup dirigit per Eugene Stanley ha
continuat estudiant les propietats estadistiques dels mercats com ho havia anat fent
fins aleshores®. Stanley i altres han quantitzat 1’exponent polindmic del decaiment
a les cues de la distibuci6 de preus i comprovat 1’esperit universal del comportament
auto-similar a diferents mercats del mén. Amb tot, aquests estudis conclouen que
les distribucions Lévy tenen unes cues massa altes en comparacié a les del mercat?.
L’estudi empiric ha anat també per altres camins. S’ha estudiat les correlacions
entre mercats (Plerou et al. (1999b), Laloux et al. (1999)) que sén de gran utilitat
per a la gesti6 de carteres i 'estadistica de la volatilitat (Liu et al. (1999), Lillo i
Mantegna (2000)) que és tant o més important que el propi preu de 'accié.

Tots aquests resultats s’han anat compil-lant en un llista de requeriments que
ha de complir tot model proposat (Cont (2001)). Després de coneixer la naturalesa
dels mercats financers, els fisics s’han esforcat a model-litzar la seva dinamica. Les
aproximacions son fetes des de dos punts de vista.

Un dels dos punts de vista estudia la generaci6 dels preus a partir del comporta-
ment dels agents que operen a borsa. Com ja hem vist, aquests models s’han anat
presentant des del 1997 basant-se, sovint, amb models similars als que s’apliquen
a altres sistemes fisics. Podem mencionar-ne uns quants. Bak et al. (1999) és
un dels treballs més curiosos ja que proposa un model per descriure la generacié
de la dinamica del preu del diner. D’altres ja estan més centrats en els mercats
especulatius. S’interessen per les causes a escala microscopica que generen certes
situacions critiques com ara la coincidencia entre un alt volum de negociacié amb
periodes de gran fluctuacié de la volatilitat (Iori (1999), Capocci i Zhang (2001) o
Lux i Marchesi (1999)).

El segon punt de vista tracta amb models que proposen directament una dinamica
dels preus, sense preocupar-se per la pauta de comportament microscopic que les
genera. Dins aquest conjunt de publicacions cal destacar les del nostre propi grup
del Department de Fisica Fonamental de la Universitat de Barcelona. Masoliver et

2Les conferéncies Applications of Physics to Financial Analysis (APFA) sén les més importants
i ja han arribat a la seva quarta edicid.
3Veure, per exemple, Plerou et al. (1999a).

1A més, en contra de les Lévy, també cal afegir que no tenen tots els moments definits cosa que
resulta poc realista.
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al. (2000) i Masoliver et al. (2001) han proposat una dinamica estocastica® tal que
les variacions de preu vinguin donades per un conjunt de processos a salts. Alli,
observen propietats d’escalament i descriuen les cues de manera més refinada a la
dels processos Lévy. En aquest sentit, hi ha molts pocs treballs de fisics que s’hagin
dedicat a estudiar models adequats per a la dindmica. Sornette et al. (1996) busca
precursors de cracks de la borsa valent-se de ’analisi utilitzat per a la previsié de
terratremols i Sornette (1998) intenta model-litzar certs aspectes de I’estadistica dels
mercats a partir d’aquesta aproximacié.

Cal admetre, pero, que l'entrada dels fisics al mén de les finances també s’ha
caracteritzat per una certa ignorancia envers el treball desenvolupat fins aleshores
per part dels matematics especialistes en finances. Aquesta actitud ha desacreditat
moltes de les pretensions de multidisciplinarietat i de dialeg amb que els fisics han
justificat la seva entrada al moén de la borsa. Tot i haver existit un boom en la
contractacio de fisics per exercicir de brokers al principi dels noranta, la fisica és ara
escoltada amb una major prevencié fins i tot des dels parquets borsaris.

Malgrat tot, alguns fisics insisteixen amb la idea pluridisciplinar i encara existeix
un esperit que busca concil-liar els professionals del sector, matematics financers i
fisics. La recent creacié de revistes que serveixin de plataforma per a poder-se
escoltar i fer-se entendre mutiament vol afavorir aquesta situacié. Aquestes revistes
son 'International Journal of Theoretical and Applied Finance i el Quantitative
Finance. Alguns fisics, fins i tot, ja han publicat o estan en fase de fer-ho en revistes
de matematica financera (e.g. Cont i Bouchaud (2000), Canning et al. (1998),
Bouchaud et al. (1996) o Iori (2001)). D’altres simplement han deixat de ser fisics
per posar-se a treballar en serveis d’estudis de cases de borsa o bé ja pertanyen i
sén acceptats com a matematics financers.

Paral-lelament a aquests precedents, aquest treball compil-la bona part de la
feina que he realitzat des de 1996 fins ara. L’estudi dels mercats borsaris s’ha
fet valent-se de metodes estocastics. El grup dins del qual s’ha realitzat aquesta
tasca s’ha dedicat tipicament a estudiar les dinamiques estocastiques que intervenen
en fenomens com ara els lasers, el transport de la llum dins medis desordenats
i la cinetica dels processos quimics entre d’altres. Esperonats per la repercussio
del treball de Mantegna i Stanley, ens hem decidit a introduir-nos en 'estudi de
les finances i aplicar-hi el nostre coneixement en processos estocastics. La borsa té
I’avantatge que les dades que genera poden ser facilment confrontades amb qualsevol
model-litzacié estocastica mitjancant un senzill ordinador. Aquesta aplicacié més
directa dels resultats matematics obtinguts és molt atractiva i permet estar molt a
prop d’una realitat, la borsa.

Com ja hem dit, aquesta aproximacio cap a les finances és una via poc explorada
pels fisics. No obstant, els metodes estocastics propiament dits han estat implemen-
tats des de 1900 pels matematics creant una nova disciplina anomenada matematica

5Es a dir, assumint que els mercats tenen una naturalesa aleatoria.
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financera. Per aquest raé, ens ha calgut fer un intens estudi dels treballs més nota-
bles en matematica finacera i, tot seguit, ens hem reexplicat la seva progressié d’una
manera més comprensible per a un fisic. Cal resaltar un treball que ha estat fruit
d’aquesta revisié. A Masoliver et al. (2001a), hi hem estudiat les diferéncies existents
pel fet d’analitzar les dades prenent les variacions de preu i les de la rendibilitat.

El problema més complet i emblematic és el de la valoracié d’opcions i aquest
és un dels dos temes cabdals dels capitols que vénen. I si la dinamica financera es-
tocastica ja ha estat poc estudiada pels fisics encara ho ha estat menys la valoracio
d’opcions®. La teoria basica de Black i Scholes (1973) ha estat revisada i ens hem
fixat en algunes qiiestions que potser no havien preocupat massa als matematics
pero que creiem que son d’importancia, com a minim des del punt de vista d’un
fisic. Aquesta feina ha estat presentada en format d’article de recerca en una re-
vista de fisica (Perelld et al. (2000)). La generalitzacié de la teoria Black-Scholes
també és present en aquesta memoria. Cal destacar-ne la representacio, inedita a
la literatura, del preu de ’opcié en termes de la transformada de Fourier de la den-
sitat de probabilitat del procés i basant-se amb teoria de martingala (Perell6 and
Masoliver (2001e)).

Les correlacions en el mercat és la segona quéstio important. Els fisics hem fet un
gran esfor¢ per a quantificar-les (Cont (2001)). El coneixement de les correlacions
és cabdal a nivell practic doncs permet fer prediccid, encara que sigui estadistica,
sobre la futura evolucié del mercat. Concretament, presentem dos models difussius
bidimensionals i n’estudiem les seves pecularietats com a model de mercat i com a
extensié al metode Black-Scholes de valoracié d’opcions (Masoliver i Perellé (2001b),
Masoliver i Perell6 (2001c), Perell6 i Masoliver (2001d)). De fet, d’aqui prové el titol
de la tesi: “Dinamica estocastica correlacionada en mercats financers”.

En resum, aquest treball representa, per una banda, un compendi de tot allo que
hem anat aprenent sobre les finances i que ja coneixen els matematics financers. I,
per una altra banda, el treball també presenta les nostres primeres aportacions a
aquest camp d’estudi. Crec que tant se val d’on vinguin les contribucions perque allo
que realment interessa és entendre millor el comportament dels mercats financers.
Tant la matematica financera com la fisica tenen molt per explicar-se i els treballs
matematics millorarien amb un major esperit de fisic, essent aleshores menys ab-
stractes. Mentrestant, la fisica li convindria aprendre tot allo que els matematics
financers ja coneixen i tracten amb una formulacié molt robusta.

La present memoria esta organitzada de la segiient manera. Després d’aquesta
introduccié com a justificacié del treball, el primer capitol defineix el que és una opcié
i n’explica la seva utilitat. El segon capitol déna les condicions que han de complir el
preu per a l’opcié per a no permetre arbitratge i narra els progressos fets des de 1900
per tal de trobar un preu just per a I’opcid. El tercer explica el famés metode Black-

6Existeix alguna notable excepcié (Bouchaud i Sornette (1994), Bouchaud et al. (1996)), Mat-
acz (2000)).
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Scholes per a valoracié d’opcions mentres que el quart exposa les generalitzacions
realitzades assumint encara la teoria Black-Scholes. El cinque capitol presenta un
nou model que estén Black-Scholes relaxant la hipotesi de mercat eficient. El sise
capitol tracta sobre un model de volatilitat estocastica i n’estudia totes les seves
propietats estadistiques. La memoria acaba amb unes conclusions sobre el treball
realitzat i anticipant la nostra possible futura recerca sobre els mercats financers.
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La feina aqui compil-lada no hauria estat possible sense el Dr. Jaume Masoliver, el
meu director de tesi. A ell 1i he d’agrair la seva tutel-la i la seva gran implicacié
en aquest treball de recerca. Tots dos hem hagut d’aprendre des de zero totes les
qiiestions sobre el mén de la borsa que aqui s’expliquen. El meu pare ha estat qui
em va convencer de que els mercats financers no sén una cosa tan aliena a la fisica
com pugui semblar d’entrada. Sense la seva insisténcia no m’hauria decidit a fer el
pas i li estic molt agrait per aquest fet.

Tots els articles que aqui es presenten no sén només exclusivament meus i del
meu director de tesi. L’apendix A del capitol 2 forma part d’un article realitzat
amb Miquel Montero. L’article que configura el capitol 3 ha estat realitzat en
col-laboracié amb Miquel Montero i Josep Maria Porra. Les discussions i comentaris
de Josep Maria Porra, Jaume Puig, Miquel Montero i Alan McKane han ajudat a
realitzar el capitol 5. Estem particularment agraits al Dr. Santiago Carrillo i al
Dr. George H. Weiss, doncs han millorat amb les seves diverses suggeréencies aquest
capitol 5. També he d’agrair a la Dra. Giulia Iori i al Dr. Jean-Philippe Bouchaud
la seva hospitalitat durant les meves estades a Essex i Paris.

A la gent del departament també els hi de donar gracies. Sobretot, a aquells que
m’han ajudat desinteressadament sempre que els hi ho he demanat. Primordialment,
al Miquel. Al posar-se a estudiar els mercats financers i integrar-se al nostre grup de
recerca, hem passat hores discutint i, certament, m’ha ajudat a aclarir-me en alguns
dels problemes que aqui es tracten. Després d’ell també hi he d’incloure tots els altres
estudiants de doctorat amb qui he compartit aquests anys de tesi. Especialment, a
aquells amb qui acabo de manera “gairebé” sincronitzada: en David i en Xavi.

Ja en I'ambit estrictament personal, vull donar gracies a tots aquells que m’han
hagut d’aguantar fora de les hores de tesi. Han estat ells qui han vist la pitjor cara
d’aquesta tesi. La meva familia, especialment a la meva mare, ha estat sempre al
meu costat. També, tota la meva “nova” familia, la de la Nuria, han mostrat un
constant interes sobre aixo tan estrany que és fer una tesi doctoral. Evidentment, la
Nuria és la qui realment sap el que m’ha costat portar a terme aquesta “bogeria” i
li agraeixo el suport incondicional i la seva paciencia. Finalment, als amics de tota
la vida, els jacksons, els hi vull demanar disculpes per no haver-me vist tant com jo
mateix hauria desitjat.

13
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Chapter 1
Options

A derivative, or a derivative security, is a financial instrument whose value depends
on the values of other more basic underlying variables such as stocks, financial
indices, etc.. In recent years, derivatives have become increasingly important in the
world of finance. Derivatives are now traded actively on many exchange markets.
Huge volumes of derivatives are also regularly negotiated outside exchange by banks,
financial institutions, fund managers and corporations in what is termed the over-
the-counter (OTC) market.

Traditionally, the variables underlying derivatives have been stocks, stock indices,
foreign currencies, debt instruments, commodities, and future contracts. However,
other underlying variables are becoming increasingly common. For example, the
payoff from credit derivatives depends on the credit worthiness of one or more com-
panies; weather derivatives have payoffs dependent on the average temperature at
a particular location; insurance derivatives have payoffs dependent on the dollar
amount of insurance claims of a specified type during a specified period; electric-
ity derivatives have payoffs dependent on the spot price of electricity; and so on.
Although their youth, these derivatives are also having great success and they are
today the derivatives more in need of theoretical research. The studies on these
derivatives are very sophisticated since they require the knowledge of an underly-
ing variables from outside the financial markets. Weather derivatives are a good
example of these new derivatives whose underlying variables have no relation with
any economic index. Indeed, weather derivatives represents one of the many chal-
lenging problems that physicists can find in financial markets. And, in our opinion,
physicists have a sufficient background to face to the problem and extract significant
results.

Options are one of the most important from a large class of existing derivatives.
As their name indicate, options are financial contracts that give to its owner the
opportunity but not the obligation of performing a financial transaction during a
future time, and according to their underlying variables. Very often, the variables
underlying options are the prices of traded assets. Thus, for instance, stock op-

19



20 Chapter 1. Options

tions are derivatives whose value is dependent on the price of a stock, and similar
definitions apply for index options, currency options, etc..

Options, as any other derivative, have their origin in the need of protecting
investors from the market randomness. They had existed since a long time ago but
it was only in 1973 that were first traded on an exchange, when the Chicago Board
Options Exchange (CBOE) created the first standardized listed options. Initially,
there were only calls on 16 stocks. And puts were not introduced until 1977. In
the US, options are traded on CBOE, on the American Stock Exchange, and on
the Philadelphia Stock Exchange. Worldwide, there are over 50 exchanges on which
options and many other derivatives are traded. In Spain, derivatives gradually
started been negotiated in the Mercado Espanol de Futuros Financieros (MEFF)
from 1990.

This chapter introduces the topic that is central to this work, the subject of
options. We particularize to the case of the European stock options but this does not
avoid extending to any other underlying the results given herein. Chapter contents
are non technical and divided in three sections. Section 1.1 gives a description
of European option contracts. Section 1.2 comments on the most usual way of
classifying options, and an explanation of the trading practice in real markets with
those options is left to the Section 1.3. Chapter contains the main financial concepts
which must be handled in the forthcoming chapters. Documentation for writing
this introduction to the simplest derivatives is taken from the books of Hull (2000),
Wilmott (1999), and Ferndndez (1996).

1.1 The European options

The European options are the most simple of a large variety of options since they
only depend on the stock price at a one future date. These options are traded all over
the world, and the European proper adjective only pretends locate their origin. The
most common European options are the European call and Furopean put contracts.
Due to their extreme success in financial markets, they are often called plain vanilla
options'.

This section gives the definition of those two European options when the under-
lying is a stock share. Clearly, the same definitions apply when the underlying is
any other security?.

An FEuropean call stock option is a derivative giving to its owner the right but
not the obligation to buy a share at a fixed date T for a certain price K. The

! This picturesque denomination comes from US where ice creams are very popular and, indeed,
vanilla ice creams are most consumed.

2The name of security refers to any piece of paper that proves the ownership of stocks, bonds
and other investments.
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Figure 1.1: The normalized call payoff in terms of the moneyness

We plot the normalized payoff C'(S,T)/K as a function of the moneyness S/K. We observe that
holding a call at maturity 7" may lead to a huge gain and avoids losses.
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Figure 1.2: The normalized put payoff in terms of the moneyness

We plot the normalized payoff P(S,T)/K as a function of the moneyness S/K. We observe that
holding a put at maturity T avoids selling a share in a cheaper price than K.
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preestablished price, K, is known as the exercise price or strike price®; the future
date, T, is known as expiration time or maturity time*.

The call option contract is mainly specified by the gain due to holding this option
at the maturity time 7". This gain called payoff is given by

(S — K)* =max[S - K, 0], (1.1)

where S = S(T) is the share price at time 7', and K is the strike price. In other
words, the payoff reads

S—K if S>K
— + = = 4y
(5= K) _{ 0 if S<K;

whose value is always greater or equal than zero.
We can define a kind of normalized payoff if we divide the payoff by the strike
price. That is:
(S/K —1)" = max[S/K — 1,0]. (1.2)

Observe that the normalized payoff is only function of the quotient between the stock
and the strike price S/K called moneyness. Note also that moneyness represents
the derivative and underlying prices in a dimensionless manner. Moneyness is a
positive quantity since both share and exercise prices are positive. In other words,
the moneyness is enclosed between the interval

0<S/K < oc.

In Fig. 1.1 we plot the normalized call profit of Eq. (1.2). We there see how the payoff
raises linearly without limit as the moneyness grows, and how it avoids negative gain
(i.e., losses) when the moneyness becomes smaller than 1.

An FEuropean stock put option is a derivative giving to its owner the right but
not the obligation to sell a share at a future maturity date 7', and for a strike price
K. The put option contract at maturity 7" has the following payoff

(K — 8)" = max[K — S,0], (1.3)

where again S = S(T) is the share price at time 7', and K is the strike price.
Similarly to the call, we can also represent the put payoff as

K-S if S<K
_ oyt — < K,
(K —85) _{ 0 if S>K.

30ther usual synonyms for giving a name to the variable K are ezercising price or striking price.
We will use all of them without distinction.

4Those are the most common synonyms for giving a name to the time T'. As to the case for K,
we will use them without distinction.
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Observe that, since the stock and strike price are positive, the put value at time 7T°
is enclosed between K and 0.

Also analogously to the call case, we can define a normalized payoff by dividing
the payoff by the strike price. For the European put, the normalized payoff reads

(1-S/K)* = max[1 — S/K, 0], (1.4)

where, as before, the normalized put profit is dimensionless and only function of the
moneyness. In Fig. 1.2 we plot the normalized put profit of Eq. (1.4). We there show
that the put decreases linearly with moneyness from 0 until 1 where put becomes
worthless. The normalized payoff is thus enclosed between the values 0 and 1.

1.2 Options in terms of their moneyness

At any given time and for a given underlying security, the markets offer to traders
different option contracts depending on their moneyness at time ¢ when options
contracts are negotiated. This classification is useful since, as we will see, the option
price is basically a function of two variables: moneyness and time to maturity 7 —t.
We can thus divide options into the following three categories:

An out the money (OTM) option is either (a) a call option where asset price
is less than the exercising price or (b) a put option where the asset price is
greater than the strike price.

An at the money (ATM) option is an option (call or put) which exercising
price equals to the price of the underlying.

An in the money (ITM) option is either (a) a call option where asset price is
greater than the strike price or (b) a put option where the asset price is less
than the strike price.

However, according to the definition given above, the ATM options are just
ideal contracts. It is almost impossible to find in real markets an option contract
whose moneyness is exactly 1. Hence, the ATM equality definition is extensible to
a finite interval. We choose here the moneyness interval for an ATM option to be
0.97 < S/K < 1.03. In Table 1.1, we summarize those definitions, and show the
differences between I'TM and OTM put and call options.

1.3 Trading European options

There are many reasons why investors may find options useful. Here we give a broad
overview on this interest. However, two facts should be emphasized concerning to
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Figure 1.3: Stock index evolution holding a call

We follow the evolution of the S&P 500 stock cash index during 40 days. We buy a call the 20th
October of 2000 whose maturity is at 40 days later and its strike price is K = 1380. In this case,
exercising the call at maturity represents a positive profit quantity S — K = 1521 — 1380 = 141 points.
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Figure 1.4: Stock index evolution holding a put

We follow the evolution of the S&P 500 stock cash index during 90 days. On the 10th October of
2000, we buy a put whose maturity is 90 days later and its strike price is K = 1320. At maturity, we
can exercise the put and have a profit K — S = 1320 — 1249 = 71.
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Table 1.1: Options in terms of their moneyness

Table classifies call and put options according to the value of the moneyness. Observe that options
with moneyness greater than 1.03 are ITM calls or OTM puts. Conversely, options with moneyness
smaller than 0.97 are referred to OTM calls or to ITM puts.

S/K <0.97 097 < S/K < 1.03 1.03< S/K

Call OTM ATM IT™

Put IT™M ATM OTM

the contract specifications before proceeding further. First, European options can
be exercised only on the expiration date itself. If the investor prefers a contract
specifying that the derivative may be exercised at any time before maturity, a dif-
ferent option type must be hold: the American options. Second, an option gives to
the holder the right to perform a financial transaction but he/she holder does not
have to exercise this right. This feature distinguishes option contracts from forward
and future contracts where there exists the obligation to buy or sell the underlying
assets.

As we have said, a call gives the opportunity to buy the stock for a price K at time
T and, conversely, a put gives the chance to sell the stock for K at T'. Observe that
these contracts offer two opposite choices, and traders obviously would be interested
on taking advantage of puts or calls in accordance to their own trading strategies.
Roughly speaking, we say that there are two groups of traders interested in buying
a call or a put.

There exists a groups of traders called hedgers whose purpose is to buy a security
against the random fluctuations of underlying stocks. Hedgers buy today a call in
case that they plan to buy a stock share at maturity. By holding a call, hedgers have
the guaranty of buying the underlying at a non higher price than the strike price K.
Hedgers are in this way protected against sudden increases of the underlying share.
However, hedgers prefer buying today a put option (instead of a call) if they expect
to sell (instead of buying) a share at maturity. Then, hedgers will not sell the share
in cheaper price than K, and they are therefore preserved to an undesirable decay
of the stock share price.

The second group of traders, called speculators, is much more aggressive. Whereas
hedgers want to avoid an exposure to adverse movements in the underlying, specu-
lators wish to take a position in the market, either they are betting that price will go
up or down. When the speculators have the certainty of an stock rise, they decide
to buy a call since they will buy an undervalued share. But if the feeling is that the
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stock will decrease, they buy a put since to sell an overvalued share afterwards.

In Fig. 1.3, we plot the random evolution of the S&P 500 stock cash index from
the day of buying a call until maturity. The plot shows a time interval where index
tends to go up. For this situation, trader gets some profit due to holding the call
since exercising the call means having a 141 points payoff. In this case, hedgers who
are holding calls are safe against the large index rise, and speculators earn large
amounts of money if they predict the positive trend. In accordance to Tab. 1.1,
we see that call bought is an in the money (ATM) option with moneyness 0.99.
In Fig. 1.4, we plot the random evolution of the S&P 500 stock cash index from
the day of buying the put until the maturity. The plot depicts days when index
goes basically down. In this case, trader holding a put gains money at time T
since exercising the put means earning 71 points. Hence, hedgers holding puts are
safe against these large index decrease, and speculators earn large amounts if they
forecast this negative trend. As Tab. 1.1 indicates, the put bought is also an ATM
option since its moneyness 1.00.

Clearly, these investor profiles are the extreme ways of describing the trader
behavior. In real life, all traders behave either like hedgers or like speculators.
Depending on many different factors, traders may be interested in not to lose money
and they reduce or eliminate underlying risk (hedgers) buying options. Alternatively,
traders may bet that there will be sudden stock price change and they assume the
risk involved and expect a big profit holding an option (speculators).

Summary

Derivatives are financial products designed to protect investors from the market
randomness. In this chapter we give main definitions of the concepts concerning the
options and, more generally, the derivatives. We focus our attention on the European
options. We describe their contract specifications, the way they are usually classified
and their utility in worldwide financial markets in terms of the traders demand.
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Chapter 2

Market equilibrium and
incomplete option pricing methods

An European option, as any other derivative, needs a price. The only informa-
tion given by the contract specifications is its payoff that fixes the option price at
maturity. However, the price to be paid for the option when it is bought remains
unknown. It seems reasonable to believe that the price for the option depends on
the underlying dynamics, from the day option is bought until the maturity date.
Good knowledge of the underlying is thus indispensable, and investigations in this
way look for an adequate market model, or asset model, consistent with real market
behavior.

But not only the underlying behavior is important since there even exists a more
fundamental problem. Thus, answers to the questions concerning on how an option
price is given and why is the resulting price the fair price are also crucial. All along
the 20th century, there have been a strong effort to obtain a fair option price to
the option. The so-called option pricing methods pretend to give a fair price for the
option which must be neutral either to the seller and to the buyer of the option.
Obviously, the pricing problem can be extended to a more general framework of
obtaining the fair price of any asset (i.e., any generic financial contract that is
susceptible to be sold or bought).

Option pricing and asset modeling involve many disciplines. Tools used basically
come from probability theory, stochastic methods, data analysis and, more generally,
mathematics and lately even from physics. But hypothesis and assumptions on
financial markets are based on economic theory. This mixture resulted in an specific
field called mathematical finance or econometrics which has become very important
because of the necessity of having an accurate description of the financial markets
nature. The achievement by Fischer Black and Myron Scholes (1973) of a consistent
theory and its easy application to the real markets greatly enhanced research activity
in this field. But prior to the “path-breaking (Smith (1976))” article of Black and
Scholes, there had been other works which pursued not only a good market model
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28 Chapter 2. Market equilibrium and incomplete option pricing methods

but also a fair option price along with its reasonable justification. These preliminary
studies constitute the core of this chapter and the first step which will drive us in a
future chapter to the Black-Scholes option pricing method.

The test for any option pricing theory is based on the absence of arbitrage or
the market equilibrium demands. Absence of arbitrage and market equilibrium are
here taken as synonyms and result to the same economic theoretical restrictions.
Arbitrage absence denies the existence of trading strategies which represents a sure
profit for the investor. In other words, arbitrage avoids the possibility of money
profit for free, 7.e., without taking any risk.

This chapter is divided in two sections. Section 2.1 is devoted to European
options theoretical restrictions, and the review of several attempts for deriving a
fair option price are left to Section 2.2. We there summarize main option pricing
works and make them more legible with an unified and coherent explanation but
also with criticisms based on the restrictions of Section 2.1. An special attention
has been given to the mathematical aspects of those works and, specifically, to the
stochastic methods needed for building up any of those option pricing methods. In
Appendix A, we show the existent differences between performing data analysis with
stock and log-price fluctuations. This Appendix is a brief summary of the research
paper Masoliver et al. (2001a)

2.1 Properties of European option prices

Robert Merton (1973b) established an exhaustive collection of equilibrium restric-
tions® on call and put option prices without making any assumptions on the under-
lying process. In this section we will review some of these properties. We base this
exposition on Merton (1973b), Ferndndez (1996), and Bergman et al. (1996).

Harry Markowitz (1952) asserted that risk coming from stocks fluctuations can
be diversified away, at least minimized, by holding a collection of different assets,
that is, a portfolio. Thus, the trading strategies are basically aimed to correctly
manage an optimal portfolio, i.e., a portfolio which has a maximum profit with a
minimum risk. Within this framework, Merton (1973b) took a portfolio with net
zero investment, in other words, a portfolio which does not need an initial positive
(or negative) amount of money to be carried on. This portfolio buys an asset with
the money obtained by selling another different asset of the portfolio. It is usual to
add to the collection of assets an asset called bond which is a risk-free asset with
deterministic dynamics

B(ty) = B(ty)e" 1) (1, > 1), (2.1)

where B(t) is the bond price and r is the risk-free interest rate.

'From now on, we will use without distinction the terms “equilibrium restrictions on option
prices” and “properties of the option”.
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The properties derived by Merton (1973b) depend on the so-called dominant
arquments. Merton says that “portfolio A is dominant over portfolio B if over some
given time interval the profit due to holding A is not less than B profit for all states
of the world, and the A gain is strictly greater than the B gain for at least one state
of the world”. In other words, portfolio A is dominant over portfolio B if A has a
higher profit than B in one future situation and, at least, the same profit for the rest
of possible situations. Thus, the investor that holds portfolio A can have a higher
profit than investor holding B, and he also does not take any risk of losing more
than the investor holding B. In equilibrium no dominant or dominated portfolio, or
even no dominant or dominated individual security can exist. If a dominant security
exists, everyone would prefer to hold this security. The price will be bid up until
the dominance disappears. The results derived through the dominance arguments
are completely general. If the implications based on an specific dynamics for the
underlying violate these restrictions, economic fundamentalists would reply that the
proposed model must be deficient in some way.

As it has already mentioned, the results of these dominance arguments will be
used as a general consistency criteria against which subsequent models, or even
option pricing methods, may be conveniently measured. We therefore study the
case for the European call option and, afterwards, we will thus see how to extend
the restrictions to the put case.

2.1.1 Call price properties

We here enumerate the most important restrictions on the European call option
price. Restrictions are given by several inequalities between two call prices evaluated
in different conditions or between the call, underlying and strike prices. Hence, we
prove a call price restriction by showing that if restriction did not exist there would
be hidden arbitrage opportunities with a certain trading strategy. In some cases, we
specify an strategy which would allow for profits without taking risk. And, in other
cases, we compare two portfolios and demonstrate that if inequality is not true one
portfolio is dominant over the other.

Portfolio strategies described assume no transaction costs®, market liquidity®,
and constant risk-free interest ratio. In addition, all portfolios presented contain no
other assets than calls, underlying assets or bonds.

(i) Call prices are non-negative. A call option exercise is voluntary and this
opportunity must be charged on the option price since otherwise option not only
would give the right to do an advantageous financial transaction but also would

2The costs associated with the process of buying and selling.
3The degree to which an asset (or, more generally, the market) can be quickly and cheaply
turned into money.
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Table 2.1: Call price must be cheaper than underlying price

We here show that C(S,t) > S(t) would allow for arbitrage opportunities. The strategy consisting on
selling a call and buying a share and bonds with quantity S(t) — C(S,t) would represent a sure profit
at maturity. We here define the time ¢’ as time to maturity 7' — ¢.

present time ¢ maturity time T’
S(T) <K S(T)>K

Portfolio strategy:

Buy a share —S(t) S(T) S(T)
Sell a call C(S,1) 0 K —S(T)
Buy bonds  S(t) — C(S, t) e [C(S,t) — S(t)] e [C(S,t) — S(t)]
Portfolio =0 er'[C(S,1) — S(H)] + S(T) e [C(S,t) — S(t)] + K

If C(S,t) > S(¢): m>0 m>0

represent a sure profit even if it is exercised or not*. Thus,
0<C(S,t) fort <T. (2.2)
This question is deeper discussed and rigorously proved in restriction (7).

(ii) Buying a call is never more expensive than its corresponding underlying. If
this is not the case, value of the portfolio buying today a share with the money of
selling a call and bonds would imply a sure profit at 7". If option expires without
been exercised, portfolio still contains the share which never can have negative prices.
But if option is exercised, then portfolio manager is obligated to give the share to the
call’s holder but still keeps a positive amount of money. In Table 2.1 we show that
this strategy contains arbitrage opportunities in the case that call is more expensive
than underlying share. Hence, for avoiding arbitrage opportunities, call must obey

C(S,t) < S(t), t<T (2.3)

(111) At any date before maturity, the call must be sold at least for the difference
between the stock price and its discounted exercise price. By discounted exercise

4At the expiration date, i.e., t = T, the call will be priced as the maximum of either the differ-
ence between the stock price and the exercise price, S — K, or zero. See Sec. 1.1 for further details
concerning the contract specifications and definitions of the different parameters here presented.
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Table 2.2: Call is more expensive than the discounted payoff

We here show that 0 < C(S,t) < S — Ke"(T—*) would allow for arbitrage opportunities. The strategy
consisting on buying a call but selling a share and bonds (with quantity S(¢) — C(S,t)) would represent
a sure profit at maturity. We also express time evolution in terms of the time to maturity t =T — ¢.

present time ¢ maturity time T’
S(T)<K S(T)> K

Portfolio strategy:

Sell a share S(t) - -
Buy a call —C(S,t) 0 S(T)- K
Buy bonds C(S,t) — S(t) e [S(t) — C(S, t)] e [S(t) — C(S, t)]
Portfolio worth II =0 e [S(t) — C(S,1)] e [S(t) — C(S,8)] + S(T) — K
Terminal values if
0<C(8,t) < S(t) — Ke ™' II>0 >0
—r(T—t).

price, we understand Ke This restriction is only partially asserted in a.
since now call has a more precise lower boundary. In this way,

(5(t) - Ke ™) <c(s,0) (1<) (2.4)

If this would not be the case, a portfolio with net zero investment that buys today a
call and bonds but sells a share will provide a sure profit. In Table 2.2 we show the
time evolution of this portfolio and prove that restriction is necessary for avoiding
dominant positions.

And if we take into account the restrictions (2.3) and (2.4), we will then confine
the European call price into a lower and upper bound. That is:

(S(t) — Ke ™) < C(S,) < S(t), fort<T. (2.5)

There is also a case of academic interest where upper and lower bounds collapse
becoming an equality. For 7" — oo and finite ¢, the option is called perpetual option
whose price, for the call, is

Cp(S,t) = S(1), (2.6)

and thus equal to the underlying asset price.
(iv) If two options differ only on exercise price then the option with lower exercise

must be sold for a price which is not less than the option with the higher exercise.
This can be demonstrated by constructing two portfolios, A and B, where portfolio
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Table 2.3: Call price dominance argument for the exercise price

Demonstration that a call with exercise K will have a higher price than or an equal price to option with
higher exercise K < K'. We show terminal values of portfolios A and B for different situations at the
maturity 7'.

present time ¢ maturity time T
Portfolio worth ST)<K K<ST)<K K <S5)
IT4 C(S,¢t) 0 S(IY-K S(T)-K
Iip C'(S,t) 0 0 ST)-K
Terminal values: II4 =1Ip IIp <II4 IIg <IIy

A contains a call C(S,t) with exercise price K, and portfolio B contains one call
C'(S,t) with exercise price K < K'. We observe in Table 2.3 that, for all possible
terminal stock prices, value for the portfolio A is always greater than or equal to
portfolio B terminal value. Thus, for avoiding dominance, current price of A must
be greater than or equal to the current price of B. In case that current price of B
were greater than that of A, the portfolio A would have arbitrage opportunities and
B would be a dominated portfolio. Therefore,

C'(S,1) < O(S, 1), (2.7)

where call with prime represents a call whose exercising price K < K’, and also
recall that time ¢ is always shorter than 7.

(v) If two options differ only on the maturity time then the option with the
longer maturity must be sold for a price not lower than the option with the shorter
maturity. If this is not the case, strategy consisting in buying today the longest
maturity option and selling shortest maturity call gives arbitrage opportunities®.
In Table 2.4 we specify this strategy when options have maturities 77 < 7', and
show that arbitrage opportunities exist at time 7". Thus, equilibrium of the markets
assumption asks for

C(S,t) <C'(S,t) (t<T<T. (2.8)

5There are some subtleties concerning this strategy. Econometricians assert that this portfo-
lio cannot fully prove that there exists arbitrage in this strategy since it is necessary that call
with maturity 7" is “correctly priced by the market at time 7”. For this reason, they say that
this strategy only contains “quasi-arbitrage opportunities” and propose a more accurate proof by
indirect arguments which needs the American option price restrictions (see for more details e.g.
Smith (1976)).
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Table 2.4: Call price arbitrage argument for the maturity date

Strategy consists on buying a call with maturity 7" and selling a call with maturity T < T’ having
both options the same striking price. Our strategy finishes at time T' where, in case that C'(S,t) is
correctly priced by the market (i.e., C'(S,T) obeys restriction (2.5)), portfolio will have a non negative
value. Absence of arbitrage requirement asserts that portfolio at current time ¢ must follow the same
inequality as the one of time T" which corresponds to Eq.(2.8).

present time ¢ maturity time T’
S(T) <K K < S(T)

Portfolio strategy:

Buy a call (maturity T") —C'(S,t) c'(S,T) c'(S,T)
Sell a call (maturity T') C(S,1) 0 K —S(T)
Portfolio worth II C(S,t) — C'(S,t) c'(S,T) C'(S,T)-[K-S(T)]

Terminal values: m>0 m>0

Finally, we take into account Egs. (2.5) and (2.6), and a trivial consequence of
Eq. (2.8) is that option price is also enclosed between two critical call prices

(S(t) — K)" =C'(S,t) < C(S,t) < Cp(S,t) = S(2) (t<T), (2.9)

where C'(S,t) contract expires at the current date ¢ = T, and C,(S,t) is the per-
petual which never expires (i.e., 7" — 00). Observe that inequality is identical to
that of Eq. (2.5) but now bounds are expressed in terms of the contract maturity
date.

2.1.2 Put price properties

The European put option price has analogous properties to that of the call. The put
price restrictions, P(S,t), can be derived easily using similar dominant arguments®.
The so-called put-call parity is the most transcendental equation because relates the
call price C'(S, t), the put price P(S,t), and the underlying S(¢). The equation reads

P(S,t)+ S(t) = C(S,t) + Ke "™, (2.10)

6In general, the portfolio strategies for the put case would then consist on doing the inverse
operations to the ones of the call. If we bought a certain asset in the call portfolios case, we now
must sell this asset. And if we sold the asset we now have to buy it.
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Table 2.5: Put-call parity proof by dominance argument
We here construct two portfolios, A and B. These portfolios have the same terminal values, indepen-
dently on the price of the underlying S(T). Hence, for avoiding dominance, the portfolios must have
the same price at time ¢. Observe that this implies that Eq. (2.10) must hold.

present time ¢ maturity date T
S(I<K K<S()

Strategies:

Portfolio A

Buyacall —C(S,t) 0 S(I'-K

Buy bonds —Ke "(T-t) K
My = —[C(S,t) + Ke~"(T-1)] K S(T)

Portfolio B

Buy a put —P(S,t) K- S(T) 0

Buy a share —S(t) S(T) S(T)
Iy = —[P(S,t) + S(#)] K S(T)

Terminal values: 1II4 =IIp II4 =1IIp

As is represented in Table 2.5, the put-call parity (2.10) is proved by dominance
arguments. We there show the evolution of a portfolio A that contains bonds and a
call, and of a portfolio B that contains a put and a share. The two portfolios have the
same value at maturity, independently on the underlying dynamics. In consequence,
the dominance argument dictates that both portfolios must be equivalent at time ¢.
And we see in Table 2.5 that this finally implies the validity of Eq. (2.10).

The put-call parity helps us to translate call properties to the put price with
very simple manipulations. For instance, the boundaries for the call price given by
Eq. (2.5) can be represented in terms of the put price with the help of the put-call
parity (2.10). In terms of the put, call boundaries (2.5) now read

(S(t) — Kem D)7 < P(S,1) + S(t) - Ke ™ < S(1),

where t is the current time always enclosed between (0,7"). We are mainly interested
in giving the upper and lower bounds but to the put price. After trivial calculus,
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Table 2.6: Put price dominance argument for the exercise price

Demonstration that a put with exercise K will have a lower price than or an equal price to option with
higher exercise K < K'. We show terminal values of portfolios A and B for different situations at the
maturity 7'.

present time ¢ maturity time T'
Portfolio worth ST)<K K<ST)<K' K <S8)
T4 P(S,t) K — S(T) 0 0
s P'(S,1) K' — S(T) K' - S(T) 0
Terminal values: Iy <Ilp My <Ilp Iy =1Ip

put boundaries result to be
+
(Ke—“T—t) — S(t)) < P(S,t) < Ke =Y (¢t <T). (2.11)

In the call option case, there was a very particular case where the upper and lower
bounds collapsed. This happens for the perpetual option limit, 7.e., when its matu-
rity tends to infinity . From Eq. (2.11), we can get the perpetual put by performing
the limit T"— oo and thus obtain that

P,(S,t) = 0. (2.12)

In contrast with the perpetual call (2.6), the perpetual put is worthless.
Let us study the relation between two options which only differs on their exer-
cises. By dominance arguments, we then conclude that

P(S,t) < P'(S,t) (K < K'). (2.13)

Thus, an European put option is cheaper than another European put with a higher
striking price. And this is just the opposite behavior than the one described for the
call by Eq. (2.7). In Table 2.6, we demonstrate the inequality (2.13).

The bounds of Eq. (2.11) allows us to determine the behavior of the put price
in terms of its maturity date. The difference between two puts that only differs on
their maturity date satisfies the following inequality

(Ke 0 — §)" — Ke @0 < P(5,1) - P'(S,1),

where we have taken into account inequality (2.11). Observe that inequality depends
on the moneyness S/K. Hence, assuming that 7 < 7", the lower bound let us prove
us that

P'(S,t) < P(S,t)  for S/K < eI _ g7r(I"=), (2.14)
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Table 2.7: Summary of the European call and put option price properties
We enumerate some properties of the option prices given by Egs. (2.2)—(2.9) for the call, and given by
the Egs. (2.11)—(2.15) for the put. Observe that put prices have not an specific inequality depending
on the their maturity date. See Eqgs. (2.14) and (2.15) for more details. We recall that ¢’ =T —t.

Call option Put option
Current price C(S,t) P(S,t)
Payoff (S(t) — K)*t (K- S(@)*
Price Bounds
S(t)—Ke ™ >0 S(t)— Ke ™ < C(S,t) < S(t) 0< P(S,t) < Ke "
S(t) —Ke ™ <0 0< C(S,t) < S(t) Ke ™ —8(t) < P(S,t) < Ke
Exercise
K'>K C'(8,t) <C(S,1) P'(S,t) > P(S,1)
Maturity
T >T C'(S,t) > C(S,t) ?
Perpetual option S(¢) 0

A similar analysis but with the difference P — P’ instead of P’ — P, let us also show
that

P'(S,t) > P(S,t)  for S/K > e 7Tt — ('), (2.15)

Recall that in both inequalities (2.14) and (2.15) 7" < T". Roughly speaking, the
first inequality says that longer maturity date implies higher price for the put only
if moneyness is cheaper enough. Meanwhile, the second one dictates that the put
price lowers when the moneyness is high enough.

During this section, we have been giving the main properties of the put and call
prices. In Table 2.7, we express their payoff and summarize all the restrictions related
to the exercise or maturity date option variables. We recall that these inequalities
are not only independent on the market model but also independent on the method
employed to obtain a price for the option. The restrictions serve us as a test for
the adequacy of the models and option pricing methods proposed. An adequate
model or method is the one that accomplishes the market equilibrium theoretical
demands. Forthcoming section will comment several historical market models and
option pricing methods, and restrictions enunciated in Table 2.7 will thus let us
criticize them in the name of the market equilibrium requirements.
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2.2 Incomplete call pricing methods

Before the Black and Scholes (1973) option pricing method was developed, there had
been several works proposing a fair price for the call. These studies, which we will
now outline in a chronological order, trace an historical trajectory through the main
features involving the option pricing problem. They are representative of the main
difficulties for deriving an adequate market model and an option price consistent
with market equilibrium restrictions summarized in Table 2.7.

Louis Bachelier is considered the father of mathematical finance because, in 1900,
he presented his PhD thesis containing, for the first time, an stochastic analysis of
the stock and option markets’. Despite Bachelier’s very early interest in stochastic
market modeling, research on this topic is not noticeable again until 1930°s. A
renewed interest on financial markets appeared in the embryo school of American
economists. In an ideal and theoretical framework, they believed that markets are
perfect in the sense that one cannot forecast future price changes based on past
history alone and denied the existence of arbitrage opportunities. In other words,
markets are in equilibrium thus implying the restrictions exposed in the last section.

Following this theoretical principles, Kendall (1953) analyzed the American mar-
kets and found some disagreements between Bachelier’s model and real markets. A
decade later, Sprenkle (1964) suggested a new market model with its subsequent
option price and Boness (1964) showed the necessity of taking into account the time
value of money in the resulting option price. Finally, Samuelson (1967) proposed
a general framework in option methodology giving some freedom in the underlying
asset dynamics choice. A few years later, Paul Samuelson with his pupil Robert
Merton left almost finished a consistent option pricing methodology. However, they
were Fischer Black and Myron Scholes (1973) who culminated the efforts, from
Bachelier to Samuelson, to obtain a fair option price.

As we have mentioned, the authors of all these works derived a market model
and an option pricing methodology trying to avoid any contradiction with the re-
strictions on the option prices. Nevertheless, these methods are called incomplete
equilibrium methods since they fail to find an option price consistent with the market
equilibrium requirements summarized in Table 2.7. We want to expose as clear as
possible these different attempts to solve the pricing problem and make them some
allegations sustained on the market equilibrium hypothesis. For doing this, we have
particularized to the case of the European call option price.

7 An interesting work about the Bachelier’s life has recently appeared. The authors are Courtault
et al. (2000) and the article is aimed to celebrate the century of his thesis defense that took place
the 29th of March, 1900.
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2.2.1 Bachelier (1900): the first option price

The thesis of Bachelier (1900), together with his subsequent works, has deeply in-
fluenced the whole development of stochastic calculus and mathematical finance. In
spite of his remarkable contributions, he remained in obscurity for decades®. Re-
cently, there has appeared a renewed interest on his scientific biography due to the
strong success of mathematical finance as a scientific discipline. We follow Cour-
tault et al. (2000) for a short summary of the Bachelier’s biography. And we follow
Bachelier’s own work (Bachelier (1900)) to explain, with contemporary notation and
terminology, his first derivation of the European call option price.

Louis Bachelier (1870-1946) was born into a respected bourgeois family of Le
Havre. His father was a merchant, the vice-consul of Venezuela at Le Havre and an
amateur scientist. His mother was a banker’s daughter. Unfortunately, just after
Louis graduated from the secondary school, his parents died. He therefore had to
interrupt his studies to continue his father’s business and take care of their brothers.

This event had far-reaching consequences for his academic career, and this ex-
plains why Bachelier did not follow any grande école with the French scientific elite.
Nevertheless, as the head of the family enterprise, he became acquainted with the
world of financial markets which may justify the origin of his scientific interest in
the financial market nature. Military service soon followed, bringing further delay of
his studies. In 1892, Bachelier finally arrived to Paris and continued his university
education at the Sorbonne. There is not much information available about these
years but it is known that he attended lectures of Joseph Boussinesq and Henri
Poincaré, and that his marks of the 1895 register were largely below those of his
classmates Langevin and Liénard.

Although his delay, Bachelier's development was fast enough to complete his
celebrated thesis. The date March 29, 1900, should be considered as the birth date
of mathematical finance. On that day, the French postgraduate student successfully
defended his thesis called Théorie de la spéculation®. The thesis was published in
Annales Scientifiques de | ’Ecole Normale Supérieure and was strongly supported by
Henri Poincaré, the Bachelier’s supervisor (see Bachelier (1900)). The thesis is an
analysis of the stock and option markets and contains several ideas of enormous
value in both finance and probability. It was the first attempt to use advanced
mathematics in finance and consequently the first attempt to market modeling'®.

The first part of Bachelier’s thesis contains a detailed description of products
available at that time in French financial markets. After these technical preliminar-

8Tndeed, Bachelier was an obscure figure in the mathematics of twentieth century about whom
only a few facts could be found in the literature.

9Tn accordance with the tradition, he also defended a second thesis on a subject chosen by the
faculty which for his case was on mechanics of fluids. This also helps us to figure out the Bachelier’s
mathematical background.

10Results derived in Bachelier thesis contains several errors. However, they are all rectified in
the forthcoming thesis explanation.
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ies, Bachelier began with the mathematical modeling of stock price movements and
formulated the principle that “the expectation of the speculator is zero”!'. Bachelier
found “the general shape of the probability curve” by two different methods. The
first method starts from “the principle of joint probabilities” which is now known
as the Chapman-Kolmogorov equation and it assumes that underlying process is
Markovian. The Chapman-Kolmogorov equation reads

ps(S,t|So) = / ps(S, 115", 1 )ps(S', #|So)dS” (£ > > 0), (2.16)

where pg(S,t|Sy) is the probability density function (pdf) of stock price S at time ¢
if at time ¢y = 0 the stock price was Sy. Bachelier proposed a Gaussian function for
this conditional probability density:

_ i —A2(S—50)2/2
ps(S,t]S) = NGT e , (2.17)
where A = A(t) may depend on time. Although Bachelier did not study the unique-
ness of this solution, he asserted that the probability ps(S, t|Sy) has to be normalized
thus limiting the function A(t¢) behavior. Implementing the normalization condi-
tion into Eq. (2.16) and implicitly demanding time and price homogeneity that is
ps(S,t|S",t') = ps(S — S',t — ¢'|0), Bachelier found that function A(¢) need to be

(2.18)

where £ is a constant. We can prove this in a different way using the characteristic
function of the process defined as the Fourier transform of ps (.S, ¢.Sy):

0s(w, tSo) = / ¢S (S, 1S0)dS. (2.19)

We apply this transform to the Chapman-Kolmogorov equation (2.16). The assump-
tion of homogeneity for S and time ¢ allows us to use the convolution theorem with
the result

0s(w,t]So) = ps(w,t —t'10)ps(w, t" — t4]So)- (2.20)
On the other hand, the characteristic function of the Gaussian conditional proba-
bility (2.17) is
@s(w, t]Sp) = S0 e~ /4, (2.21)
Substituting Eq. (2.21) into Eq. (2.20) immediately results in the expression (2.18)
for A(t). Finally, the probability density accomplishing all requirements reads

ps(S,t]S,) = ¢ (5—50)*/2k%t (2.22)

1
vV 2kt

H1Tn fact, this concept can be associated with the absence of arbitrage or the market equilibrium
(see above).
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So +2AS  with probability ¢

/ So+ A8
SO\ So with probability ¢(1 — ¢)

So — AS

AVA

So —2AS  with probability (1 — ¢)?
m=0 m=1 m=2

Figure 2.1: Set of the future stock prices assuming a random walk dynamics

We represent the stock share evolution assuming that it follows a binomial random walk process. Process
begins at time to = 0 and we observe possible prices after two timesteps (i.e., m = 2). We show the
probability associated with every possible state given by the probability function (2.26).

whose first moment and variance are
E[S(t)[So] = So, (2.23)

Var[S(t)|So] = E [S(1)*So] — E[S(2)|So)” = k’t. (2.24)

Bachelier also presented a different approach starting from an specific dynamics
of the market. He assumed that the market follows a pure random walk where stock
price variations have only two mutually independent events. Stock can go up with
probability ¢ or can go down with probability 1 — ¢. In Fig. 2.1, it is described the
random walk in case there are two timesteps within initial and final prices. When
m = 2, the probability of having « raises of the stock is

p(a,2) = q*(1—¢)*  (a=0,+1,+2).

al(2—a)

During each timestep stock changes a quantity given by +AS. Thus, when m = 2,
the stock price is related to the o value as follows

S(2) = 2(a — 1)AS + Sp.

We can generalize this relation for an arbitrary m. Note that after m steps the price
is given by
S(m) = (2a — m)AS + S;. (2.25)
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And by induction'?, we can prove that the probability that stock price is S(m) after

m timesteps is
m/!

p(a,m) = [ qa(l - q)m_aa (2'26)

al(m — a)
where we recall that « is the total amount of stock rises needed to achieve the stock
price S(m) (see Eq. (2.25)).

Bachelier observed that Eq. (2.26) is a term of the binomial decomposition of
the polynomial [¢ + (1 — ¢)]™. Assuming that stock follows a random walk, the first
moment is

Ela] = f‘;a‘(#;ﬂ' ag¢*(l-q™ *=q %[(ﬁr (1—q)]™,

but since [g + (1 — ¢)] = 1 we finally obtain
E [a] = mg. (2.27)

The variance can be derived using the same method and results

Var[a| = é ﬁ o ¢*(1—q)™ | - E [a]2 =mgq(l —q). (2.28)

Bachelier proceeded further and obtained the continuous-time limit. He supposed
that time intervals (¢t — ¢y) are divided into very small timesteps such that the m
number of trials tends to infinity. With the asymptotic Stirling’s formula

n

n! ~e "n"V2mn (for n — o0),

Bachelier showed in an un rigorous way that the probability density (2.26) becomes
(see Gnedenko (1985) for more details)

pla,m) = ! e (a—ma)*/2mq(1-q) (2.29)

2mmq(1 — q)

Therefore, Bachelier applied the central limit theorem which asserts that a large sum
of independent variables tends to a Gaussian probability distribution. Taking into
account average (2.27) with the relation (2.25) between « and S, we thus have

E[S(m)] = Sy + m(2g — 1)AS.

But if we compare this expression with the first moment obtained in the continuous-
time case (2.23), we then conclude that

g=1/2.

12Random walk theory is very well exposed in Weiss (1994). The reader is encouraged to consult
it if more information is wanted.
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Otherwise, the variance for the stock in discrete time can be also derived from the
« variance (2.28) and the relation between « and the stock (2.25). Hence,

Var[S(m)|Sy] = Var[a]AS? = mq(1 — ¢)AS?. (2.30)

We need to compare this equation with the one derived for the continuous-time
case (2.24). In his thesis, Bachelier did not study the many subtleties involving the
continuous-time limit. The random walk theory (Weiss (1994)) asks for a certain
relation between the timesteps and the stock increments. This relation is

AS? /At = 4k>.
With this, the variance (2.30) becomes
Var[S(m)|So] = q(1 — q)4k>mAt,
but taking into account that ¢ = mAt and ¢ = 1/2 we finally obtain
Var[S(m)|So] = k™,

which equals to the continuous-time variance given by Eq. (2.24). This transfor-
mations can be easily implemented in the asymptotic pdf (2.29) and, performing
them, we will thus obtain the pdf corresponding to the continuous-time market
model (2.22). Therefore, all results are consistent and the two different approaches
are equivalent.

These are the two approaches presented by Bachelier to the first mathematical
model of the stock movements. We recall that the main hypothesis is that the price
evolves as a continuous Markov process homogeneous in time and price. Bachelier
observed that the market dynamics derived belongs to the family of distribution
functions satisfying the heat equation. We should mention that Einstein defined an
identical mathematical model five years later for describing the so-called Brownian
motion (Einstein (1905)). This motion was first observed by Robert Brown in 1827
when he put small pollen grains suspended in water and discovered that they follow
very animated and irregular trajectories (see Fig. 2.2). More generally, Brownian
motion is followed by any suspension of fine particles, and its posterior mathematical
modeling is considered a major scientific discovery of the twentieth century.

However, Bachelier not only defined a market model but he also suggested prices
for various options. He asserted that the law governing the relation between the
payoff and option price must be based on the assumption that “the mathematical
expectation of the buyer of an option is zero”. In other words, Bachelier claimed
that neither the option seller nor the buyer can adopt dominant positions due to
holding the option. In this way, Bachelier proposed that the option price C(S, ) is
the mean value of the capital gain at maturity. Therefore,

C(S,1) = E[(S(T) - K)*|S(t) = §] = / T 4SS - K) ps(S', TS, 1) (2.31)

K
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Figure 2.2: A Brownian sample path simulation
We plot a brownian path for the stock with initial price Sop = 30 dollars and constant k = 1/2 during
2000 number of trials. Observe that the Brownian motion describes a very animated and irregular
trajectory.
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Assuming that the pdf (2.22) governs the stock dynamics, this call price reads

© 49 ,
C(S,1) = /K \/m(s

By rewriting the integral on the left hand side of this equation, we finally obtain

+ k\/ T - te_d2/2.

— K) exp[—(S" — S)?/2k*(T — t)).

C(S,t) = (S — K)N(d) o (2.32)
where
d= (S—K)/kQ(T—t), (2.33)
and

N(d) = \/% /_ doo dz e="/2 (2.34)

is the probability integral function. Observe that the call price only depends on the
time to maturity 7" — ¢, and the difference between the present stock price and the
striking price (i.e., S — K). These features are consequences of the assumption of
homogeneity of time and stock. Another parameter involved in the Bachelier option
price is the variance k2(T — t).

Bachelier performed similar analysis to other more sophisticated options but we
are not going to expose them here since they are not of our interest. The thesis report,
issued by Poincaré, Appell and Boussinesq gave to Bachelier the honorable degree.
The excellent note is tres honorable and there are several opinions about the reason
why Bachelier did not achieve this excellent mark!®. It seems that it was the best
note he could be awarded for a thesis which was essentially outside mathematics, and
that it had a number of arguments far from being rigorous. However, Courtault et
al. (2000) believe that the report is benevolent and the mild criticisms are positive.
The report only expresses the regret that Bachelier did not study in detail the
discovered relationship of stochastic processes with equations in partial derivatives.
For this reason, Courtault et al. (2000) prefer to think that Bachelier did not awarded
with the note trés honorable because of a weaker presentation of his second thesis
(see footnote 9).

After the thesis, Bachelier remained quite active in the period from 1900 to
1914. He developed the mathematical theory of diffusion processes. He defined
new classes of stochastic processes (now called independent increment processes and
Markov processes) and derived the distribution of the Ornstein-Uhlenbeck process.
He wrote several books about probability theory and probabilistic modeling of fi-
nancial markets. A book with greater success was Le Jeu, la chance, et le hasard
with more than six thousand copies sold. Nevertheless, several events avoided him

13Gee Courtault et al. (2000) for further details. Reader can find there the complete report in
an appendix.



2.2. Incomplete call pricing methods 45

to be awarded with a permanent position until 1927 when he obtained a permanent
professorship in Besancon where he worked until his retirement.

Certain historical research follows the legend that Bachelier results were com-
pletely ignored by the scientific community. However, there exist several facts
which contradicts this legend. His thesis was published in one of the most pres-
tigious mathematical journals and very quickly appeared their results in other pos-
terior monographs. He successfully published the first book on probability after
the famous treatise of Laplace (1814). His ideas influenced the important paper
of Kolmogorov (1931) on diffusion processes. In modern textbooks on probabil-
ity, Brownian motion is traditionally referred to as the Wiener process. However,
Feller (1957) in his famous treatise refers to it as the Wiener-Bachelier process. Also
Keynes (1921) and Ito and McKean (1965) respectively mentioned the importance
of Bachelier works from a mathematical point of view.

2.2.2 The log-Brownian market model

Despite Bachelier’s very early interest in stochastic market modeling, the research
on financial markets was very slowly developed. While practitioners displayed a con-
tinued and strong interest on the financial markets nature, it enjoyed relatively little
academic attention until the financial crash of 1929. According to Cootner (1965),
this lack of interest is explained by many features: the small importance of organized
financial markets; a conviction that stock markets fluctuations were the product of
irrational mass gambling; and a short gage among economists of the mathematical
and statistical tools necessary for an effective research in this field.

However, research into stock markets nature did attract renewed attention in
1930’s by an embryo school of American economists which were highly skilled in
mathematics and statistics. One of the important names of this period is considered
to be Alfred Cowles. The Cowles Commission organized the first major collection
of statistical data on the US stock market. Up to that time, research into finan-
cial markets was devoted to predict prices solely based on “outside data” such as
industrial production or company earnings. Cowles (1933) approached to financial
markets from a new and original point of view since he was interested on the way
of forecasting stock market prices from the past history of prices themselves.

At that time, theoretical economists believed that random walk hypothesis for
the stock prices was rather reasonable since this market modelisation denied the
possibility of predicting the future prices based on past history alone'*. In this
way, Cowles and Jones (1937) empirically tested the validity of the random walk
hypothesis. The conclusions were not definitive, although they found some evidences
supporting the randomness of the stock price variations. Other evidences indicated
that there existed correlations between prices at different times.

HBachelier also followed this way of reasoning but his work did not contain a solid theory to
justify this principle.
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Figure 2.3: The Brownian probability distribution

We plot the pdf given by Bachelier (2.22) for different time intervals, ¢ — to. We suppose that initial
stock price is Sy = 5 dollars and we vary the variance Var[S(t)|So] = k2(t — to)dollars® by enlarging
the time interval. The dashed line corresponds to a variance equals to 4, the dotted line to a variance
equals to 2, and solid line to a variance equals to 1. We see that Bachelier model (2.22), i.e., the
Brownian dynamics, allows for negatives prices with a non negligible probability that increases as the
time period becomes longer.

After the Cowles works in 1930’s, there was little or nothing published along
these lines until the Kendall’s paper. Kendall (1953) performed an empirical study of
several American markets time-series, and his investigation was particularly striking
since it was not undertaken with the random walk view in mind. Besides a byass
problem in the monthly changes averages of cotton prices!®, Kendall (1953) found
that an overwhelming proportion of his results supported the independence of price
changes assumption.

It remained for Osborne (1959) to try to test the fit of the data to a Brownian
market model, and to ask for the form of the pdf for the stock market price changes.
The first and more important objection to the Bachelier market model (2.22) is that
his model allows for negative prices. Clearly, this is not possible in real markets.
Bachelier, and even Kendall and Cowles, had avoided the complications posed by

15This empirical feature was already observed by Cowles, and he was unable to give a reasonable
explanation for this phenomena. The reader should wait until Osborne’s market model for having
a reasonable justification (see Eq. (2.39) and Fig. 2.4 below).
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the fact that stock prices had a lower bound at zero but unbounded from above
because they dealt with short-period (daily, weekly, and monthly) price changes.
However, over longer periods, it is obvious that the distribution of prices (2.22) can
give a non negligible probability for negative prices. This phenomena is clearly seen
in Fig. 2.3 where we plot the Bachelier pdf for several periods of time.

Osborne (1959) found that absolute price changes are correlated over time but
that the logarithm of price seemed to have independent increments. Incidentally,
we note that the logarithmic transformations are related to the fact that market
investors are mostly interested in the proportional changes in stock prices rather
than in absolute changes. Reader should go to Appendix A if more details are
required. We there perform a brief summary of the Masoliver et al. (2001a) paper
which studies the differences between taking the stock and return variables. Hence,
we define a new stochastic variable called stock return

R(t) =In[S(1)/Ss],  where So = 5(0). (2.35)

Observe that the return at time ¢ = 0 is always zero, independently on the initial
stock price. Osborne proposed that instead of the share price S(t) it was the return
the variable whose trajectory describes the Brownian motion given by (2.22). In
consequence, the pdf for the return reads

1 2 2
R, t|0) = —— ¢ F'/2°¢, 2.36
pR( ‘ ) \/m ( )
where ¢ is a constant called volatility, and plays a similar role as the constant k of the
Bachelier pdf (2.22). The first moment and variance for the return are respectively

E[R@)|0]=0,  Var[R(t)|0] = o*t. (2.37)

Osborne proceeded further by studying the corresponding stock price dynamics. He
found that prices were described by the so-called log-Brownian motion (or geometric
Brownian motion) after performing the change of variables (2.35). In such a case,
the conditional pdf (2.36) in terms of the price changes reads

ps(S,t|Sy) = e~ [In(S/S0))? /207t (2.38)

1
SV 2mo?t

The pdf’s (2.36) and (2.38) allow for negative values of the return but deny the
possibility of negative stock share prices (see Fig. 2.4). The first moment!® and
variance for the stock are respectively

E[S(t)[So] = Soe”*/?,  Var[S(t)|So] = S§ (> — 7). (2.39)

16The non-zero first moment explains the byass of the cotton prices averages mentioned before.
Although the return is zero-mean, stock may have a time dependent first moment. This unexpected
exponential term is known as the spurious drift component.
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Note that, when time is small,
E[S(£)|So] = So [1+ 0”t/2+ O(c*t?)],  Var[S(t)[So] = So [0t + O(c"t?)] .
And assuming that stock changes are also small
In(S/Sp) ~ (S — Sp)/So,

the pdf (2.38) is approximately the Gaussian distribution

ps(S,t1S0) = ——— exp|—(S = So — So0?/2)2/2(So0) 1],

27 (Spo)?t

which only differs from that of Bachelier (2.22) due to the spurious drift component
a’t/2.

Indeed, Osborne showed using several tests that empirical results were consistent
with the log-Brownian market model assumption. This was the onset of the sharp
increase in the interest on this subject by the American academic audience. The
University of Chicago proportionated a fertile generation of investigators devoted
to analyzing time-series from financial markets. Although Osborne (1959) results
were an important factor, the irruption of electronic computing fastened the research
focussed on the financial markets nature.

The richest field of application of the random walk theory of stock prices has
been in the determination of the value of the derivatives. The option value can
be explicitly determined once the stochastic model for the underlying is selected.
Indeed, the study of options was the original motivation for the first study of stock
prices (Bachelier (1900)). However, the study of options did not end with Bachelier.
Even before Bachelier’s work was rediscovered by the American economists in the
late fifties, Kruizenga (1956) had inaugurated an extensive study of put and call
options in his doctoral dissertation at the Massachussets Institute of Technology.
Kruizenga (1956) discussed the nature of the option contract, main features of option
trading in a systematic way, and relations between the call and the put. The paper
dealt for the first time with the idea of “rationality” of the option prices.

The new researchers studying the options started to obtain new results, and
an article by Sprenkle (1964) is one the most remarkable works. Recall that the
Bachelier model (2.22) allows for negative stock prices. This inadequate feature for
a stock market model gives also undesirable properties for an option price. Thus,
for instance, we see from Eq. (2.31), we see that the perpetual Bachelier call is

: . kVvT —t
(5,0 = Jim 05, = (8 - KON(O) + Jm,

Since N(0) = 1/2, the first term is finite but second term grows indefinitely as
time to maturity tends to infinity. Hence, the perpetual Bachelier call diverges and

(2.40)
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Figure 2.4: The log-Brownian probability distribution

We plot the pdf given by Osborne (2.38) for various time intervals supposing that initial stock prices 2
dollars. Solid line corresponds to o2t = 1/2, dashed line to o>t = 1/4, and dotted line to 0%t = 1/8.
We have seen that Bachelier pdf of Fig 2.3, i.e., the Brownian dynamics, allows for negatives prices
with a non negligible probability. However, the Osborne's pdf (2.38), i.e., the log-Brownian dynamics,
denies any chance to negative stock values. Contrary to the Brownian distribution, the log-Brownian
pdf is biased.
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this disagrees with the market equilibrium result (see Eq. (2.6)). We show there
that perpetual call price must be equal to the underlying asset price if arbitrage is
avoided.

Sprenkle (1964) tried to rule out this objection by assuming that random walk
is followed by the return instead of the stock. In addition, he also included a drift p
to the pdf (2.38) proposed by Osborne. The Sprenkle’s pdf for the stock thus reads

! [In(S/So) = (= o*/2)1]”
SV2mo?t P {_ 20%t } ’ (241

whose first moment and variance are

pS(Sa t‘SO) =

E[S(t)|So] = Soe"',  Var[R(t)|0] = Sge™* (e”* — 1). (2.42)
The expected payoff for the call at the expiration date 7 is

E[(S(T) - K)*|S(t) = 5] = / T A4S — K)ps(S', TS, 1),

K

And from Eq. (2.41) we get
E[(S(T) - K)*| = "™ SN (di) — KN (d), (2.43)

where

2
dy = In(S/K) +J(\/;%/2)(T t), do =dy —oVT —1t, (2.44)
and N(d) is the probability integral (2.34).
However, Sprenkle did not directly relate the expected payoff (2.43) to the option
price C(S,t). By combining Eq. (2.43) with utility function arguments'” which
escape from our interest here, Sprenkle arrived at the following price

C(S,t) =e!TUSN(d)) — (1 =R)KN(dy) (0<R<1). (2.45)

This price has a free parameter 1 which must be chosen in accordance to the “de-
gree of market risk aversion” for each investor. Observe that the price for the call
increases as 8 becomes higher, i.e., as the investor’s risk aversion grows. Arguments
for fixing the value of R are roughly exposed by Sprenkle (1964) containing some
contradictions in the way of reasoning. The most important objection is that option
price is not unique which is not consistent with the “rational” approach for giving
a price to the option!8. Nevertheless, we must keep in mind the necessity of giving
a role to the risk taken by the investor when buys a call.

7"Roughly speaking, these arguments are referred to the convexity of the stock growth, and that
utility function studies try to give a relation between the average of the stock and its inherent risk.

18This idea that market has a “rational” behavior was present in the mathematical finance
studies from Kruizenga (1956), and they look for a fair and unique price independently on the
personal level of risk aversion for each investor.
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S(t) =S5 E[S(T)|S] = SerT
C(8,1) = e M IE((S(T) - K)*] - E[(S(T) - K)*]

Figure 2.5: The time value of money

According to Boness, the time evolution influences the call price by the exponential growth of the stock
average (2.46). Average evaluated at a future date includes implicitly this growth. But the call price
is purchased today and not at maturity. It is necessary to go back to time ¢, and this represents taking
out the underlying growth during the period T — t.

2.2.3 The time value of money

During 1961-1962, A. James Boness was at the School of Industrial Management of
the M.I.T. and studied some features concerning the option pricing. As we have just
seen, the Sprenkle’s call price (2.45) contains the parameter &t measuring the “risk
aversion” of the investor. In contrast with the Sprenkle’s assertion, Boness (1964)
assumed that “investors are indifferent to risk”. He added another assumption by
saying that: “For convenience and in default of better information, all stocks on
which options are traded are defined to be of the same risk class”. Smith (1976)
refers to this assumption saying that the market is competitive in the sense that
the equilibrium price of all stocks of the same risk class imply the same expected
growing curve. In other words, Boness assumed that all stocks grow in average as

E[S(t)]So] = Soe™, (2.46)

and that all obey the same Sprenkle’s pdf given by Eq. (2.41) with the same volatility
o.

Furthermore, Sprenkle’s call price (2.45) is incomplete since its perpetual call
price diverges. Indeed, the limit 7" — oo is not well-behaved due to the exponential
of the first term of Eq. (2.45). That is:

Cy(S,1) = lim [Set"™) — K(1 = R)| — oo, (2.47)

where we have taken into account that N(oc) = 1. Note that if this exponential
did not appear, the Sprenkle option would have correctly priced the perpetual call
(compare with the equilibrium restriction on the perpetual call given by Eq. (2.6)).

Boness went deeper into this inconsistency, and he distinguished the expected
payoff at maturity from the price when the call is bought. Before Boness’ work,
option price at present was directly related to the expected gain due to holding the
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call at maturity. Boness sophisticated the relation between expected payoff and call
price. He thus assumed that both option and stock have the same expected growth,
i.e.,

E[S(T)|S(1) = 5] _ E[C(S,T)|S(t) = 5]

2.48
S C(S,t) (248)
And, in consequence, Boness could explicitly express the call price in the form
EC(S,T)]
C(S,t) = ————=——S.
E[S(T)]

But if we take into account Eq. (2.46) and the payoff for the case of the European
call, the Boness’ call is

C(S,t) = e 0 E[(S(T) - K)*[S(t) = 5], (2.49)

In this way, the so-called time value of money discounts the expected call payoff back
to the date t by using the expected rate of return to the stock during the period
T —t. The diagram of the Fig. 2.5 shows this discounted expected value procedure.
We recall that the expected payoff has been already obtained and corresponds to
that of Eq. (2.43). Finally, the call reads

C(S,t) = SN(dy) — e TV K N(dy), (2.50)
where d; o are those given by Eq. (2.44). For the perpetual call we now have
Cy(5,) = S(t), 2.51)

which is consistent with the restriction (2.6). Therefore, the divergences of the
perpetual call of Bachelier (2.40) and Sprenkle (2.47) have been removed. Moreover,
in Boness’ work appeared for the first time the concept of the time value of money
applied to options. This important feature allows to move an asset average evaluated
at one time and relate it to another different average evaluated at a different time
(see Eq. (2.49)).

Paul A. Samuelson closes this option pricing history with “a compact report on
desultory researchers stretching over more than a decade (Samuelson (1965))”. The
professor from the M.I.T. updated previous works (from Bachelier until Boness) and
formalized them rigorously with the assistance of McKean!?. Samuelson generalized
the option pricing to any adequate market model. And he postulated that an ade-
quate market model needs to be Markovian thus obeying the Chapman-Kolmogorov
equation (2.16)

ps(S,tSo) = / ps(S, 1S, ¢ )ps(S',|Se)dS" (0 <t < 1),

YHarry McKean wrote a mathematical self-containing appendix of the Samuelson (1965) ar-
ticle. He there found some exact explicit solutions for other market models different than the
log-Brownian.
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and with an average
FE [S(tQ)‘S(tl) = Sl] = Sleu(t2_tl) (tg 2 tl) (252)

According to Samuelson (1965), models that fit these requirements are the log-
Brownian process, the log-Poisson distribution (or also called jump process or shot
noise), and the log-Lévy process. By that time, there appeared several empirical
studies that questioned the validity of the log-Brownian model and proposed to take
the log-Lévy process instead (see e.g. Mandelbrot (1963) and Fama (1963)).
Samuelson derived afterwards several conditions on the absence of arbitrage that
are similar, but not identical, to the ones derived in Section 2.1. Based on these
results, Samuelson extended the assumption on the average (2.52) to options. He
thus assumed that
E[C(S,T)] = T 0C(S,1). (2.53)

This axiom is assumed to be valid for any derivative, and a constant and unknown
B depending on each particular derivative. In case that the underlying asset follows
a log-Brownian motion, Samuelson’s call price reads

C(S,t) = W PT=D SN(dy) — e PTDKN(dy), (2.54)

where we have taken into account the expected payoff for the call (2.43) and the call
growth axiom (2.53). The postulate (2.53) differs from the Boness assumption (2.48)
since now (3 can be different than p. Samuelson proceeded by studying the option
price depending on the relation between these two parameters. He concluded that

0<p<p.

Samuelson (1965) admitted the possibility of 8 being greater than p. He said that
the parameter S can be greater than p if the market perceives the option to be
riskier than the underlying security. This obscure condition gives us an idea of
the inability for risk managing by the method of Samuelson and even by the other
preceding methods. The inequality is not in contradiction with the restrictions on
call price assumed by Samuelson. However, the restrictions presented by Samuelson
are not completely correct since they do not include risk-free bonds (2.1) in port-
folio constructions and, indeed, 8 being greater than p is inconsistent with some
of the market equilibrium restrictions summarized by Table 2.7. For instance, the
perpetual for the Samuelson call (2.53) is

. o i<,
Am C(S:1) _{ S ifu=4.

In accordance to restriction (2.6), the market equilibrium demand says that C,(S,t) =
S. Hence, the Samuelson call obeys the absence of arbitrage demands only when
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@ = (. Furthermore, the market equilibrium also fixes a bounds between the call
price must be enclosed (see Eq. (2.5)). Those are

(S — Ke "T=)* < call price < S.

Observe that, assuming y = [, the inequality is hold by the Samuelson’s call only if
B = r. Therefore, those two inconsistencies with the market equilibrium restrictions
show us that Samuelson method is still an incomplete option pricing method.

Besides these errors, Samuelson was at a single step of imposing that all assets
and bonds must have in equilibrium the same growth, i.e., u = 8 = r 2. In that
case, bounds given by Eq. (2.5) and all other equilibrium restrictions derived in Sec-
tion 2.1 would had been accomplished by the Boness (2.50) and Samuelson (2.54)
option prices. After the Black and Scholes (1973), Samuelson said that the Black
and Scholes article was a “fundamental paper since restores the y = 3 case’s math-
ematics primacy” and also asserted that this article “was a valuable breakthrough
for science”. In reference to his article of (1965) Samuelson exclaimed: “I should
have explored this [case] further! (Samuelson (1973), p.16)”.

Samuelson (1965) also derived the closed partial differential equation obeyed by
the options. Based on a part of the Bachelier (1900) thesis, he found that Eq. (2.54)
is the solution to the following partial differential equation

@Cz&%ﬂﬁ&C—%ﬁyﬁgl (2.55)

with final condition depending on the derivative contract specifications. The final
condition for the European call price is

C(S,T) = (S — K)*.

The partial differential equation (2.55) is very similar to the backward Fokker-Planck
equation corresponding to the stock dynamics, and becomes the same equation if
the first term, i.e., SC' is removed (see e.g. Gardiner (1985)).

Summary

We have shown most important properties on the European call and put prices.
These properties or restrictions are based on the absence of arbitrage opportunities
(or market equilibrium) assumption which denies profits without taking any kind
of risk. The derivation of these restrictions has been performed by constructing
collections of several assets called portfolios, and proving that option prices must be

20This approach has its extension in martingale methods that will assume this equality for
deriving the option price (see Section 4.5).
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enclosed within several inequalities if arbitrage is to be avoided. The second part of
the chapter is devoted to narrate the path described by the mathematical finance
discipline, from its origin until the middle 1960’s. The option pricing methods herein
described are incomplete in the sense that their prices do not hold, in some way,
the market equilibrium restrictions. We have updated and presented in a coher-
ent way many works but we have, more extensively, focussed on Bachelier (1900),
Sprenkle (1964), Boness (1964), and Samuelson (1965) research papers. All option
pricing methods have been given with an historical framework mainly based on the
Cootner (1965) monograph.

Appendix A. Data analysis with stock and return differences

This Appendix briefly reports the main ideas enclosed in Masoliver et al. (2001).
We there study the differences between working with return or with stock price
differences. Speculative markets provide us a large time series of stock prices, and
from them we can evaluate

W(t;T) = R(t+7) = R(?) (A1)

and
Z(t;r)=S(t+71)—S(t), (A.2)

which are, respectively the return difference and the stock price difference. Let us
show some statistical results for W (¢;7) and Z(¢;7) taking the Standard & Poor’s
cash index (SEP 500) as a data source.

We plot the empirical stock price differences Z(t; 7) in Figure 2.6. The two graphs
give the probability distributions in tick data units when 7 equals to 1 minute. The
first graph shows one-minute stock differences for seventeen different years, from
1983 to 1999. Meanwhile, the second graph only shows stock differences pdf’s for
the years: 1983, 1984, 1986, 1990, 1998. In this second plot we can see how the tails
become fatter as the time ¢ in years increases exponentially. Data analysis with time
series assumes that variable does not change with time ¢t. However, this contradicts
the observed probability distribution since, in statistical sense, Figure 2.6 shows that

Z(t; 1) o< S(1).

Bachelier (1900) model assumes that, in statistical sense, Z(t;7) = S(1) — S(0)
which does not depend on time ¢. Clearly, this is not consistent with the empirical
pdf’s and we therefore conclude that Bachelier’s arithmetic Brownian model is not
a suitable model for the stock dynamics.

On the other hand, Figure 2.7 shows the pdf’s for the return differences W (¢; 7).
We there perform the same plots but now plotted for the return differences. In
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Figure 2.6: Stock difference empirical probability distributions

We show the empirical pdf’s for the tick data of the Standard & Poor’s 500 stock cash index differences.
First graph involves one-minute stock differences for years ranging from 1983 to 1999. Second graph
is a detail of the previous graph plotting pdf’s of for years exponentially distributed between 1983 and
1998.
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Figure 2.7: Return difference empirical probability distributions

We show the empirical pdf’s for the return differences of the Standard & Poor’s 500 cash index. First
plot involves one-minute returns differences for years ranging from 1983 to 1999. Second graph is a
detail of the previous graph plotting pdf’s of years exponentially distributed between 1983 and 1998.
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Figure 2.8: First and square root variances estimators of the return

We plot respectively My (t;7 = 1 min.,T = 1 year) and Viy(t;7 = 1 min,T = 1 year)'/? as a

function of time ¢ in years, from 1983 to 1999. Those functions are defined in Eqgs. (A.3) and (A.6).
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In the first graph, we plot Z(t; N7 = 1y.), for estimating Mz(¢t;7 = 1 min.,T =1 year), as a function
of time ¢ (in years) from 1983 to 1999. In the second graph, we plot Vz(t;7 = 1 min., T = 1 year)'/?
as a function of time ¢ in years, from 1983 to 1999. Those are given by Eqgs. (A.4) and (A.5) and both
cases describe an exponential growth with time ¢.
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contrast with the stock differences, we observe that the shape of the distributions
does not change so dramatically over different years (i.e., with time ¢). Hence, we
say that in statistical sense

W (t;T) = R(7).

In Masoliver et al. (2001), we show that this would be the case of an homogeneous
process. Within these class of processes, there exists the geometric Brownian motion
which, in terms of the return R, now appears to be a more reasonable candidate to
describe stock dynamics.

We can go further in the study and comparison of W (¢; 7) and Z(t; 7). We define
the following two sums for estimating the first moment:

1 N-1

My (t;7,N) = N > W(t+nr,1), (A.3)
n=0
1 N-1

Mgz (t;7,N) = N Z(t+nt,T), (A4)
n=>0

In the first plot of Fig. 2.8, we have My, estimator for the case when N7 =1 year
and 7 = 1 minute. We observe that first moment changes from one year to another
but with any specific trend. Conversely, the first graph of Fig. 2.9 shows that the
average My grows exponentially with time ¢. This feature is another argument
against the stock difference estimator Z(t; 7).

Moreover, we define the estimator for the variance Z(¢;7) and W (t;7) by

V(7 N) = N% 2_0 Z(t + nr7) — My(t; 7, )P (A.5)
Viw(t;7,N) = N% Z()[W(t +n7;7) — My (t;7, N)J2 (A.6)

In the second graph in Fig. 2.8, it is observed that the variance fluctuates without any
specific trend. Conversely, second plot of Fig. 2.9 shows that Vi grows exponentially
with time ¢. This exponential trend in the stock differences estimators indicate that
process for the stock is multiplicative (or geometric).

This Appendix has intended to stress the importance in the way we manage
financial database. From Kendall (1953) research study, it is well-known that stock
data follows a multiplicative stochastic process but still nowadays there are research
works?! which still prefer to handle stock differences instead of taking return differ-
ences, that is: S(t + 7) — S(t) instead of R(t + 7) — R(t). The usual justification
for doing this is that when 7 is small one can approximate the differences of the
stock logarithm with the stock differences. We have showed that, even when 7 =1

21Gee, for instance, Bouchaud (2000). This approximation is been usually taken by physicists
who are unaware to the financial studies focussed on these questions decades ago.
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minute, it is not true since estimators for the stock differences are biased and not
efficient??.
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Chapter 3

Black-Scholes option pricing
method

As it has been defined in Chapter 1, an European option is a financial instrument
giving to its owner the right but not the obligation to buy (call) or to sell (put)
a share at a fixed future date, the maturing time 7', and at a certain price called
exercise or striking price K. In fact, this is the most simple of a large variety of
contracts that can be more sophisticated (see for instance Wilmott (1998)). The
trading of options and their theoretical study have been known for long although
they were relative obscure and unimportant financial instruments until the early
seventies. It was then when options experimented an spectacular development. The
Chicago Board Options Exchange, created in 1973, was the first attempt to unify
options in one market and trade them on only a few stock shares. The market
rapidly became a tremendous success and led to a series of innovations in option
trading.

The main purpose in option studies is to obtain a fair and presumably riskless
price for these instruments. As we have said in Chapter 2, the first solution to the
problem was given by Bachelier (1900), and several option prices were proposed
without being completely satisfactory (c¢f. Section 2.2). However, in the early
seventies it was finally developed a complete option valuation based on equilibrium
theoretical hypothesis. The works of Fischer Black and Myron Scholes (1973), and
Robert Merton (1973b) were the culmination of this great effort, and left the doors
open for extending the option pricing theory in many ways. In addition, the method
has been proved to be very useful for investors and has helped to option markets to
have the importance that they have nowadays in finance!.

The option pricing method obtains the so-called Black-Scholes equation which is
a partial differential equation of the same kind as the diffusion equation coming from

IFor the value of their work Myron Scholes and Robert Merton received the Nobel award in
1997. Unfortunately, Fischer Black died in 1995 and could not enjoy with this prestigious award
in recognition of his work.
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64 Chapter 3. Black-Scholes option pricing method

physics. In fact, it was this similarity that led Black and Scholes to obtain their
option price formula as the solution of the diffusion equation with the final and
boundary conditions stipulated by the option contract terms. Incidentally, these
physics studies applied to economy have never been disrupted and there still is a
growing effort of the physics community to understand the dynamics of finance from
approaches similar to those that tackle complex systems in physics (see for instance
Bak et al. (1997), Mandelbrot (1997), Lux and Marchesi (1999), Arthur (1999),
Bouchaud and Potters (2000), Mantegna and Stanley (2000), Masoliver et al. (2000)
among many others).

The economic ideas behind the Black-Scholes option pricing theory translated to
the stochastic methods concepts are as follows. First, the option price depends on
the stock price and this is a random variable evolving with time. Second, the efficient
market hypothesis (Fama (1965)), i.e., the market incorporates instantaneously any
information concerning future market evolution, implies that the random term in
the stochastic equation must be delta-correlated. That is: speculative prices are
driven by white noise (Campbell et al. (1997)). It is known that any white noise can
be written as a combination of the derivative of the Wiener process and white shot
noise (Gihman and Skorohod (1972)). In this framework, the Black-Scholes option
pricing method was first based on the geometric Brownian option (Osborne (1954),
Black and Scholes (1973)), and it was lately extended to include white shot noise?.

As is well known, any stochastic differential equation (SDE) driven by a state de-
pendent white noise, such as the geometric Brownian motion, is meaningless unless
an interpretation of the multiplicative noise term is given. Two interpretations have
been presented: It6 (1951) and Stratonovich (1966). Nevertheless, all derivations
of the Black-Scholes equation starting from a SDE are based on the [t0 interpreta-
tion. A possible reason is that mathematicians prefer this interpretation over the
Stratonovich’s one, being the latter mostly preferred among physicists. Nonethe-
less, as we try to point out here, It0 framework is perhaps more convenient for
finance being this basically due to the peculiarities of trading (see Section 3.3.1). In
any case, Van Kampen (1981) showed that no physical reason can be attached to
the interpretation of the SDE modeling price dynamics. However, the same phys-
ical process results in two different SDEs depending on the interpretation chosen.
In spite of having different differential equations as starting point, we will show
that the resulting Black-Scholes equation is the same regardless the interpretation
of the multiplicative noise term, and this constitutes the main result of this chap-
ter. In addition, the mathematical exercise that represents this translation into
the Stratonovich convention provides a useful review, specially to physicists, of the
option pricing theory and the “path-breaking” Black-Scholes method.

There are several monographs aimed to explain the Black-Scholes option pricing
theory although their approach to the problem basically comes from economy or

2See Chapter 4 for more details on this latter statement.
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mathematics disciplines (see e.g. Hull (1997), Campbell et al. (1997), Baxter and
Rennie (1998), Merton (1992), Cox and Rubinstein (1985)). For this reason, this
chapter reviews the Black-Scholes theory for the physicist who wants to be intro-
duced to option pricing and subsequent theories. Our intention is to focus on the
questions which may be more difficult for a physicist, and show the essential features
to the readers which are not familiarized with finance world.

The chapter is divided in 5 sections. The first four sections are basically taken
from the article of Perell6 et al. (2000) and review the Black-Scholes theory from
a physicist’s point of view3. After this introduction, a summary of the differences
between Itd6 and Stratonovich calculus is developed in Section 3.1. The following
section is devoted to explain the market model assumed in Black-Scholes option
pricing method. Section 3.3 concentrates in the derivation of the Black-Scholes
equation using both Ito and Stratonovich calculus. The Section 3.4 presents the
European option formula for the call and the put, and we finish this Chapter by
studying the Greeks for the European options.

3.1 Ito vs. Stratonovich

It is not our intention to write a formal discussion on the differences between It6 and
Stratonovich interpretations of stochastic differential equations since there are many
excellent books and reviews on the subject (see for example the book of Gihman and
Skorohod (1972), and the review by Lindenberg et al. (1983)). During the eight-
ies, there was a quite controversial discussion on It6 and Stratonovich differential
calculus conventions, and on which one was more convenient. Studies, mainly done
by physicists, finally concluded that both approaches, It6 and Stratonovich, were
equivalent although they demanded to be very cautious and consistent at every step
of the mathematical operations. Van Kampen (1981) paper is an excellent and syn-
thetic discussion on the main features involving both It6 and Stratonovich calculus
conventions. However, we will summarize those elements in these interpretations
that change the treatment of the Black-Scholes option pricing method. In all our
discussion, we use a notation that it is widely used among physicists.

The interpretation question arises when dealing with a multiplicative stochastic
differential equation, also called multiplicative Langevin equation,

X = f(X) + g(X)E(t), (3.1)

where f and g are given functions, and &£(t) is Gaussian white noise, that is, a
Gaussian and stationary random process with zero mean

E[¢@)] =0,

3These sections are an enlarged version of Perell$ et al. (2000) since they contain more informa-
tion concerning the Greeks, the effect of dividends, and the put price. We have also added some
figures and tables showing the put and call prices and their Greeks.
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and correlation
EE@)ER)] =d(t - 1),

where §(z) is the so-called Dirac delta generalized function defined as*

5(z)=0 forz#0  and / o(2)(2)dz = o(0), (3.2)
where (z) is a regular function fast decreasing to infinity.
Alternatively, Eq. (3.1) can be written in terms of the Wiener process W (t) as

dX = f(X)dt + g(X)dW (1), (3.3)
where dW (t) = £(t)dt and whose first moment and variance are
E[dW(t)]=0  Var[dW(t)] = dt. (3.4)

When g depends on X, Egs. (3.1) and (3.3) have no meaning, unless an interpretation
of the multiplicative term g(X)&(t) is provided. These different interpretations of the
multiplicative term must be given because, due to the extreme randomness of white
noise, it is not clear which value of X should be used even during an infinitesimal
timestep dt. According to Ito, this value of X is the one before the beginning of the
timestep, i.e., X = X (t), whereas Stratonovich uses the value of X at the middle
of the timestep: X = X (¢t +dt/2) = X(¢) + dX(t)/2.

Before proceeding further with the consequences of the above discussion, we will
first give a precise meaning of the differential of random processes driven by Gaussian
white noise and its implications. Obviously, the differential of any function, such as
a random process X (¢), is defined by

dX(t) = X(t+dt) — X(2). (3.5)

On the other hand, the differential dX () of any random process is considered equal
(in the mean square sense) to its mean value E [dX (t)] if its variance is, at least, of
order dt? (Gihman and Skorohod (1972))5:

Var[dX (t)] = E [(dX (t) — E [dX (1)])*] = O(d?). (3.6)

Note that from now on all our results must be interpreted in the mean square sense.
The mean square limit relation can be used to easily show that

AW (8)|? = dt. (3.7)

4See Lighthill (1958) and Vladimirov (1984) for more details on this subject.

5In fact, this definition can be extended to a more general framework: A random differential
is equal in the mean square sense to another differential if their averages are equal and if, at
least, their mean square difference is of order equal or greater than dt?>. We note the averages are
performed by taking X (t) = X, i.e., the variable value at current time ¢ is known.
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Let us prove this. The mean square relation is
VarldW (1)"] = E [aW (t)"] - E [aw ()]

Recall that the Wiener process is a Gaussian process whose first moment and vari-
ance are given by Eq. (3.4) and that those two values fully determine the rest of
higher order averages. Hence, E [dW (t)!] = 3E[dW (¢)2]° and the mean square
relation thus reads

VarldW (1)"] = 2E [aw (t)?] = 2 df’.

Note that the average is of order dt?, and that this allows us to say that Eq. (3.7)
is valid in the mean square sense.
Otherwise, we thus have from Eq. (3.3) that

dX|? = |g(X)|*dt + O(dt?), (3.8)

and we symbolically write
dX (t) = O (dt'/?) . (3.9)

Let us now turn our attention to the differential of the product of two random
processes since this differential adopts a different expression depending on the in-
terpretation (It6 or Stratonovich) chosen. In accordance to Eq. (3.5), we define

dXY) = [(X +dX)(Y +dY)] - XY. (3.10)

This expression can be rewritten in many different ways. One possibility is
dX dy
d(XY) = (X-I— T) dy + (Y-I— 7) dX,

but it is also allowed to write the product as
d(XY) = XdY +YdX + dXdY.

Therefore, we say that the differential of a product reads in the Stratonovich inter-

pretation when
d(XY) = XgdY + YsdX, (3.11)

where
Xs(t) = X(t+dt/2) = X(t) +dX(t)/2, (3.12)

and similarly for Ys(t). Whereas we say that the differential of a product follows
the It interpretation when

d(XY) = XdY + YidX + dXdY, (3.13)
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where
X (t) = X(t), (3.14)

and Y7(t) = Y(¢). Note that Eq. (3.11) formally agrees with the rules of calculus
while Eq. (3.13) does not. Note also that Eqgs. (3.11) and (3.13) can easily be
generalized to the product of two functions, U(X) and V' (X), of the random process
X = X(t). Thus,

d(UV) = U(Xs)dV(X) + V(Xs)dU(X), (3.15)

where X is given by Eq. (3.12), and dV (X ) = V(X +dX)—V(X) with an analogous
expression for dU(X). Within Ité convention we have

dUV) = U(X)dV (X) + V(X)dU(X) + dU(X)dV (X). (3.16)

Let us now go back to Eq. (3.1) and see that one important consequence of the
above discussion is that the expected value of the multiplicative term, g(X)&(t),
depends on the interpretation given. In the Itd interpretation, it is clear that
E[g(X)&(t)] = 0 because the value of X (and, hence the value of g(X)) anticipates
the jump in the noise. In other words, ¢(X) is independent of £(¢). On the other
hand, it can be proved that within the Stratonovich framework the average of the
multiplicative term reads E [g(X5)&(t)] = g(X)g¢'(X)/2 where the prime denotes the
derivative®. The zero value of the average E [g(X)E(t)] makes It6 convention very
appealing because the deterministic equation for the mean value of X only depends
on the drift term f(X). In this sense, we note that any multiplicative stochastic
differential equation has different expressions for the functions f(X) and g(X) de-
pending on the interpretation chosen. In the Stratonovich framework, Eq. (3.3) can
be written as

dX = fO(Xg)dt + g™ (Xg)dW (t), (3.17)
where Xg = X + dX/2. In the It sense we have
dX = fO(X)dt + gD (X,)dW (¢), (3.18)

where X; = X. Note that f*) and fO are not only evaluated at different values of
X but they are different functions depending on the interpretation given, and the
same applies to ¢(*) and g(¥). One can easily show from Eq. (3.12) and Egs. (3.17)-

(3.18) that, after keeping terms up to order dt, the relation between fs and f;

is”

1 g (X
) (X)gi()

2 X

6To prove this, one can use Eq. (3.12) to write g(Xs) = g(X) + ¢'(X)dX /2 + O(dt), multiply
this equation by dW(t) = &(t)dt and then perform the average taking into account Egs. (3.3)
and (3.4) and recalling that £(¢) is independent of g(X) and ¢'(X).

"The reader can prove this by expanding the diffusive term with Taylor in order to express the
SDE in the It6 convention. The expansion, in accordance to the mean square sense equivalence,
should discard higher order contributions than dt.

FOX) = fOX) - (3.19)
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while the multiplicative functions ¢¢*) and ¢©) are equal
gV (X) = ¢ (X).

Conversely, it is possible to pass from a Stratonovich SDE to an equivalent Ito
SDE (Gardiner (1985)). Note that the difference between both interpretation only
affects the drift term given by the function f while the function g remains unaffected.
In addition, we see that for an additive SDE, i.e., when ¢ is independent of X, the
interpretation question is irrelevant.

Finally, a crucial difference between It6 and Stratonovich interpretations appears
when a change of variables is performed on the original equation. Let hA(X,t) be an
arbitrary function of X and ¢. In the It6 sense, the differential of h(X,t) reads

g OhGD) o [OR(X )

1 0?h(X,1)
0X ot 2

2
g°(X,t) X7

dt. (3.20)

In effect, the function h(X,t) is well-behaved and thus its Taylor expansion when
dt and dX are small reads
Oh(X, 1) Oh(X,t)

10%h(X
dh=7dt+7dX+—M

2 2 3
> 5 3 gy dX? + 0P, dX?). (3.21)

Recall that Eq. (3.9) gave us the expression for dX? and that dh, due to the mean
square sense assumption, does not contain terms of higher order than dt. In this
case, the reader will finally recover the Eq. (3.20) for the differential of the function
h(X,1).

On the other hand, in the Stratonovich sense, we have the usual expression

.22
0Xs ot dt, (3:22)

where

Oh(Xs,t)  Oh(X,1)
0Xs 090X

b

X=Xg

and X is given by Eq. (3.12). This can be proved by rewriting the Taylor expan-
sion (3.21) in the form

_ [on(X,1) N 0*h(X,1)

1 L Oh(X,1)
oxX 2 9X?

dh 5

dX] dX

and observing that

oh(X,1) +1 0*h(X,t) QX = Oh(X +dX/2,t)
0X 2 9X2 B 0X

+O(d).
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But, since X + dX/2 = X, this allows us to write the differential of A(X,¢) in the
form given by Eq. (3.22).

Comparing the change of variables in the It6 sense (3.20) and in the Staratonovich
sense (3.22), we observe that using Stratonovich convention, the standard rules of
calculus hold but new rules appear when the equation is understood in the Ito sense.
From the point of view of this property, the Stratonovich criterion seems to be more
convenient. However, the It6’s change of variables (3.20), known as the Ité lemma,
is the one that it is extensively used in mathematical finance books (Campbell et
al. (1997), Hull (1997), Baxter and Rennie (1998), Wilmott (1998)).

The information on the properties of the Itd6 and Stratonovich interpretation of
SDE contained in this brief summary is sufficient to follow the derivations of the
next sections.

3.2 The log-Brownian market model

Option pricing becomes a problem because market prices or indexes change ran-
domly. Therefore, any possible calculation of an option price is based on a model
for the stochastic evolution of the market prices. As we have thoroughly explained
in Chapter 2, the first analysis of price changes was given one hundred years ago
by Bachelier (1900) who, studying the option pricing problem, proposed a model
assuming that price changes behave as an ordinary random walk. Thus, in the con-
tinuum limit® speculative prices S(t) obey a Langevin equation. Also recall from
Chapter 2 that, in order to include the limited liability of the stock prices, i.e.,
prices cannot be negative, Osborne (1959) proposed the geometric or log-Brownian
motion for describing the price changes. Mathematically, the market model assumed
by Osborne can be written as a stochastic differential equation of the form

dR(t) = (1 — 0*/2) dt + odW (1), (3.23)

where R(t) is the so-called return rate after a period ¢. Therefore, dR(?) is related to
the infinitesimal relative change in the stock share price dS/S (see below), p— o?/2
is the average rate per unit time, and o2 is the volatility per unit time of the rate
after a period ¢, i.e.,

E[dR] = (n—0°/2)dt and  Var[dR] = o°dt.

There is no need to specify an interpretation (It6’s or Stratonovich’s) for Eq. (3.23)
because o is a constant independent of R(¢) and we are thus dealing with an additive
equation. The rate is compounded continuously and, therefore, an initial price Sy
becomes after a period ¢:

S(t) = Spexp[R(t)]. (3.24)

8Tn fact, Merton (1992) uses the term “continuos time finance” for the continuum limit assump-
tion on the dynamics of the market.
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This equation can be used as a change of variables to derive the SDE for S(¢) given
that R(t) evolves according to Eq. (3.23). However, as it becomes multiplicative,
we have to attach the equation to an interpretation. Indeed, using Stratonovich
calculus (see Eq. (3.22)), it follows that S(t) evolves according to the equation

dS = (u— 0°/2) Ssdt + oSsdW (t), (3.25)
where Sg = S+dS/2. In the It6 sense (see Eq. (3.20)), the equation for S(¢) becomes
dS = pSdt + oSdW (t). (3.26)

Therefore, the Langevin equation for S(¢) is different depending on the sense it is
interpreted. Our main objective here is to show that no matter which equation is
used to derive the Black-Scholes equation the final result turns out to be the same.
Before proceeding further, we point out that the average index price after a time
tis
E[S(t)[So] = Soexp(pt), (3.27)
regardless the convention being used. In fact, the independence of the averages on
the interpretation used holds for moments of any order (Van Kampen (1981)).

3.3 The Black-Scholes equation

There are several different approaches for deriving the Black-Scholes equation start-
ing from the stochastic differential equation point of view. These different deriva-
tions only differ in the way the portfolio is defined®. In order to get the most general
description of the concepts underlying the Black-Scholes theory, our portfolio is sim-
ilar to the one proposed by Merton (1973b), and it is based on one type of share
whose price is the random process S(t). The portfolio is compounded by a certain
amount of shares, A, a number of calls, T, and a quantity of riskless securities (or
bonds) ®. We also assume that short-selling, or borrowing, is allowed. Specifically,
we own a certain number of calls worth WC' money units and we owe AS + B
money units. In this case, the value II of the portfolio is

II="C-AS - ®B, (3.28)

where S is the share stock price, C' is the call price to be determined, and B is the
bond price whose evolution is not random and is described according to the value
of r, the risk-free interest rate ratio. That is

dB = rBdt. (3.29)

9Black and Scholes (1973), Merton (1973a), and Harrison and Pliska (1981) present different
but equivalent approaches.
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The so-called portfolio investor’s strategy decides the quantity to be invested in every
asset according to its stock price at time ¢ (Baxter and Rennie (1998)). This is the
reason why the asset amounts A, T, and ® are functions of stock price and time,
although they are nonanticipating functions of the stock price. This somewhat
obscure concept is explained in the forthcoming Section 3.3.1. All derivations of
Black-Scholes equation assume a frictionless market, that is, there are no transaction
costs for each operation of buying and selling.

According to Merton (1973a), we assume that, by short-sales, or borrowing, the
portfolio (3.28) is constrained to require net zero investment, that is, II = 0 for any
time t. Then, from Eq. (3.28) we have

C = 6,5 + ¢uB, (3.30)

where, §, = A/Y and ¢, = ®/T are respectively the number of shares per call and
the number of bonds per call. As we have mentioned above, §,, and ¢,, are nonantici-
pating functions of the stock price. Note that Eq. (3.30) has an interesting economic
meaning, since tells us that having a call option is equivalent to possess a certain
number, 6, and ¢,, of shares and bonds thus avoiding any arbitrage opportunity. In
fact, Eq. (3.30) is often called the replicating portfolio for the call, and represents the
starting point of our derivation that we will separate into two subsections according
to Itd or Stratonovich interpretations.

3.3.1 Nonanticipating functions and self-financing strategy

Before beginning the Black-Scholes derivation within It6 and Stratonovich conven-
tions, there are two properties concerning the trading mechanism in financial markets
that need to be explained. These are the nonanticipating character of the strategy
functions §, and ¢,, and the requisite that the only possible strategies are the self-
financing ones. Both relations restrict the behavior of the asset quantities to be hold
in a net zero investment portfolio. The first refers to the way traders manage the
portfolio and deals with the available information that they possess. And the second
property restricts the trading operations that investors can perform in accordance
to the wealth of their portfolio. Let us explain these trading mechanisms in portfolio
management.

The functionals ¢, and d,, representing normalized asset quantities are nonantici-
pating functions with respect to the stock price S. This means that these functionals
are in some way independent of S(t) implying a sort of causality in the sense that
unknown future stock price cannot affect the present portfolio strategy. The physical
meaning of this translated to financial markets is: first buy or sell according to the
present stock price S(t) and right after the portfolio worth changes with variation of
the prices dS, dB, and dC. In other words, the investor strateqy does not anticipate
the stock price change (Bjork (1998)). Therefore, in the It6 sense, the functionals 6,
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and ¢, representing the number of assets in the portfolio solely depend on the share
price right before time ¢, i.e., they do not depend on S(t) but on S(t—dt) = S—dS.
That is,

0n(S,t) = 6(S —dS,t), (3.31)

and similarly for ¢, *°.
The expansion of Eq. (3.31) yields (see Eq. (3.9))

5,(S,t) = 6(S, 1) — %ds +O(dt),

but from the It6 lemma (3.20) we see that

96(S,t) ;o
WdS = dé(S,t) + O(dt),
and finally
0, (S,t) = (S, t) — di(S,t) + O(dt).
Analogously,

5(S,t) = 6,(S, 1) + db, (S, 1) + O(dt), (3.32)

and a similar expression for ¢(S,1).

We assume that traders follow a self-financing strategy (see e.g. Harrison and
Pliska (1981) and Bjork (1998)), that is: variations of wealth are only due to capital
gains and not to the withdrawal or infusion of new funds. In other words, we
increase, or decrease, the number of shares by selling, or buying, bonds in the same
proportion. Observe that §(S,t+ dt) is the number of shares we have at time ¢ + dt,
while (S — dS, t) is that number at time ¢. Therefore,

S()d5(S — dS,t) = [6(S,t + dt) — 5(S — dS,1)]S(t)

is the money we need or obtain from buying or selling shares at time ¢. Analogously,
B(t)d¢(S —dS,t) is the money, needed or obtained at time ¢, coming from bonds. If
we follow a self-financing strategy, both quantities are equal but with different sign,
i.e.,

S(t)do(S — dS,t) = —B(t)dé(S — dS, 1),
or equivalently (see Eq. (3.31))

Sds, = —Bdé,. (3.33)

In forthcoming sections, we will observe that the self-financing strategy assumption
restricts the changes in the replicating portfolio for the call given by Eq. (3.30).

10The reader should recall that all equalities must be understood in the mean square sense as it
is explained in Section 3.1.
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3.3.2 Black-Scholes equation derivation (Itd)

We first present the Black-Scholes option pricing method within the It6 rules of
calculus. We recall that the starting point is the replicating portfolio given by
Eq. (3.30). That is:

C(S,t) = St)6,(S, ) + B(t)6n(S, ).

And we need first to obtain, within the It interpretation, the differential of the call
price C. Taking into account the It6 product rule Eq. (3.13), we have

dC = [6,(S,t) + db,(S,1)]dS + [n(S, 1) + don(S, t)]dB
+5(8)d6, (S, t) + B(t)den (S, 1),

which, after using the nonanticipating trading condition (3.32), reads
dC = 6dS + ¢dB + Sdé, + Bdg, + O(dt*/?), (3.34)

where the relationship between §, ¢ and 6, ¢, is given by Eq. (3.31). But, if we
also take into account the self-financing condition (3.33), the differential for the call
thus reads

dC = 6dS + ¢dB. (3.35)

Moreover, from Egs. (3.29)-(3.30) one can easily show that
¢dB = r(C — 65)dt + O(dt*/?),

where Eq. (3.9) and Eq. (3.31) have been taken into account. Therefore, the call
differential is
dC = 6dS + r(C — 6S)dt + O(dt*/?). (3.36)

On the other hand, since the call price C' is a function of share price S and time
t, C = C(S,t), and S obeys the (It6) SDE (3.26), then dC can be evaluated from
the It6 lemma (3.20) with the result

_(oC 1 ,.,,0°C oC
dC = <8t +350 S 882) dt + ﬁdb’. (3.37)
Substituting Eq. (3.36) into Eq. (3.37) yields
oC _|oC 1, ,0*C

Note that this is an stochastic equation because of its dependence on the Wiener
process enclosed in dS. We can thus turn Eq. (3.38) into a deterministic equa-
tion that will give the call price functional dependence on share price and time by
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equating to zero the term multiplying dS. This, in turn, will determine the investor
strategy, that is the number of shares per call, the so-called delta hedging:

aC(S,t)
§ = . .
93 (3.39)
The substitution of Eq. (3.39) into Eq. (3.38) results in the Black-Scholes equation:
oC oCc 1 o0*C

3.3.3 Black-Scholes equation derivation (Stratonovich)

Let us now derive the Black-Scholes equation, assuming that the underlying asset
obeys the Stratonovich SDE (3.25). Firstly, we perform a derivation that uses the
It6 interpretation as starting point. We thus begin with Eq. (3.36) that we write in
the form

dC = 6(8,t)dS(t) + r [C(S,t) — (S, t)S] dt + O(dt®/?). (3.41)

Now, we have to express the function § within Stratonovich interpretation. Note
that S = Sg — dS/2. Hence 6(S,t) = §(Ss — dS/2,t), whence

1 85(85a t)
2 0Ss

Analogously, C(S,t) = C(Ss,t) + O(dS). Therefore, from Eqs. (3.41)-(3.42) and
taking into account Eq. (3.8) we have

5(S,t) = 6(Ss,t) — dS + O(dS?). (3.42)

1, ,00(Ss,1)

dC = §(Sg,t)dS + |rC(Ss,t) —rSs6(Ss, ) — §UZS§T dt +O(dt*?). (3.43)
S

On the other hand, dC will also be given by Eq. (3.22)

_90(Ss.1) ,, , 9C(Ss.)

dc ot 0Ss

ds,

From these two equations we get

5(Ss,t) — 9C(3s,1) dS = 9C(3s,t) _ rC(Ss,t) + rSsé(Ss, t)
0Ss ot
+20 S 05s dt. (3.44)

Again, this equation becomes non stochastic if we set

_ 0C(Ss,1)

8(S5,1) = =5 (3.45)
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In this case, the combination of Eqs. (3.44)-(3.45) agrees with Eq. (3.40). Therefore,
the Stratonovich calculus results in the same call price formula and equation than
the Ito calculus.

The first part of this Stratonovich derivation, from Eq. (3.41) to Eq. (3.43), is
performed by translating the Ito differential into the Stratonovich sense. However,
we can derive the differential dC' by directly taking the differential of the replicating
call (3.30) in the Stratonovich sense (3.15). Thus,

dC = Ss(t)ds, + B(t)ddy + 6,(Ss,1)dS + 6, (Ss, t)dB. (3.46)
From Eq. (3.31), we have

6n(Ss,t) = 6(Ss,t) — %;S’t)ds +0(dS?), (3.47)

and analogously for ¢,. Substituting Eq. (3.47) into Eq. (3.46), and taking into
account Eqs. (3.8)-(3.9), (3.12) and (3.29) we obtain

dC = [S(t) + dS/2]ds, + B(t)dg, + 5(Ss, t)dS
+ er(t)qﬁ(SS,t) _ 252205, 1)

gowws, b) 3/2
95 ] dt + O(dt*'?).

But from Eq. (3.31) and the self-financing strategy (3.33), we see that S(t)dé, +
B(t)d¢, = 0. Hence,

dC = %dean +6(Ss,t)dS + er(t)qS(Ss, t) — 0253%555”5)1 dt + O(dt®?).
The substitution of the Stratonovich rule (3.22)
ds, = 55"6(55’ D g 4 9 (851;5’ D
yields
dC = §(Ss,t)dS + |rB(t)¢(Ss,t) — 30253%;5’” dt + O(dt®?), (3.48)

where we have taken into account Eq. (3.8) and the fact that 09,,/0Ss = 06/0Ss +
O(dt'/?). Thus, Eq. (3.48) agrees with Eq. (3.43) and this shows the consistency of
the two calculus conventions. It is only necessary to be cautious at every step of the
calculation.
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3.3.4 The effect of dividends

An extension of the market model (3.26) is given by including the dividends. The
dividends are the amount of the company’s profits that is distributed to shareholders.
Annual dividends are usually handled in several payments made over the year that
can be or cannot be preestablished. The easiest way to give reason of them in the
market modelisation is to proportionate them continuously with a constant rate d.
The dividend delivery makes cheaper in a deterministic manner the stock price since
the value of the company is reduced by going part of its resources to the shareholders
via dividends. Thus, the stock price SDE reads

dS = (u—d)Sdt + o SdW (1). (3.49)

Let us show that the option can be similarly derived as it was shown in Sec-
tion 3.3. Once we have been showing the equivalence between It6 and Stratonovich
interpretations, it is not necessary to derive the Black-Scholes equation with divi-
dends coming from these two different approaches. Hence, we solely perform the
derivation within the It sense. We can take the replicating call given by Eq. (3.30)
and rewrite its differential (3.34) after the nonanticipating trading condition is been
imposed. That is:

dC = 6dS + ¢dB + Sdb,, + Bdoy,. (3.50)

Following the derivation given by Section 3.3.2, we should now impose the self-
financing (3.33) condition. Nevertheless, the self-financing condition needs to be
defined again because there exists an infusion of new funds due to the dividends
distribution. At each timestep, the shareholders receive the extra amount of money:

0pSddt.

Therefore, the variations of wealth for the portfolio now are restricted by a more
general equation that reads

Sd, + 6,5ddt = —Bde,. (3.51)

On the left side of the equation we have the wealth due to holding shares and on the
right side the wealth invested in bonds. Observe that the share holder has a new
source of wealth due to the existence of dividends. From Eq. (3.50) and (3.51), we
thus obtain

dC = 6dS + ¢dB — 65ddt,

where we take into account the relationship between § and 4,, given by Eq. (3.31).

From now on, the derivation proceeds in the same way as to the one given by
Section 3.3.2 but with always carrying the extra term §Sddt. We thus find the same
delta hedging as the one given by Eq. (3.39) and derive a more general Black-Scholes
equation:

aC ac 1, . ,0%C
o =10 = (r—d)S5c — 3 (08) 5.

ot oS 2 (3:52)
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Observe that the dividends per unit time d appear only in one term out of the two
terms that contain the risk-free interest ratio . To take into account the effect of
dividends in the option pricing is not as easy as replacing r by r — d. Although it
is true that B-S equation does not depend on the drift © — d, we must take into
account that dividends have modified the self-financing strategy relation and, in
consequence, B-S equation must include a new term, namely, dS 9C/0S.

3.4 The Black-Scholes formula for the European
options

Let us now derive from Eq. (3.40) the well-known Black-Scholes formula''. Note
that the Black-Scholes equation is a backward parabolic differential equation, we
therefore need one “final” condition and, in principle, two boundary conditions
in order to solve it (Carslaw and Jaeger (1990)). In fact, Black-Scholes equation
is defined on the semi-infinite interval 0 < S < oo. In this case, since C(S,1)
is assumed to be sufficiently well-behaved for all S, we only need to specify one
boundary condition at S = 0 (see Wilmott et al. (1993), Carslaw and Jaeger (1990)),
although we specify below the boundary condition at S = oo as well.

We also note that all financial derivatives have the same boundary conditions
but different initial or final condition. Let us first specify the boundary conditions.
We see from the multiplicative character of Eq. (3.3) that if at some time the price
S(t) drops to zero then it stays there forever. In such a case, it is quite obvious that
the call option is worthless:

C(0,t) = 0. (3.53)

On the other hand, as the share price increases without bound, S — oo, the differ-
ence between share price and option price vanishes, since option is more and more
likely to be exercised'? and the value of the option will agree with the share price,
that is:

C(S,t
lim (5:%)

S—o0

=1. (3.54)

In order to obtain the “final” condition for Eq. (3.40), we need to specify the
following two parameters: the expiration or maturing time 7", and the striking or
exercise price K that fixes the price at which the call owner has the right to buy
the share at time 7'. If we want to avoid arbitrage opportunities, it is clear that the
value of the option C of a share that at time 7" is worth S money units must be
equal to the payoff for having the option (see Chapter 2). Recall that this payoff is

1 The same approach will serve for solving the Black-Scholes equation (3.52) where shareholders
continuously receive a constant rate dividends.

12Gee Table 2.7 in Chapter 2.
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Figure 3.1: The B-S call price in terms of the moneyness

We plot the Black-Scholes normalized call price C'/ K given by Eq. (3.56) as a function of the moneyness
S/K. The two solid lines give the limiting call prices Cp(S,t) = S and C(S,t =T) = (S — K)*
(i-e., when time to maturity is respectively infinity and zero). The intermediate prices correspond to
maturities equal to 1 month (dotted line), 1 year (dashed line), and 10 years (dashed and dotted line).
For this graph, we take r = 5% year—! and o = 30% year—1/2.

either 0 or the difference between share price at time 7" and option striking price.
Hence, the “final” condition for the European call is given by Eq. (1.1) and reads

C(S,t=T) = (S — K)*. (3.55)

In Appendix A, we show that the solution to the problem given by Eq. (3.40)
and Egs. (3.53)—(3.55) is

C(S,t) = SN(d)) — Ke "™ IN(dy) (0<t<T), (3.56)
where N(z) is the probability integral given by Eq. (2.34) and its arguments are

_ In(S/K)+ (r+0%/2)(T - 1)
N oV —t ’

It is quite straightforward to derive the put price. With the put-call parity (2.10)

d1 d2 == d1 — oV T —t. (357)

P(S,t) = C(S,t) — S+ Ke "™,
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P(S.)/K

SIK

Figure 3.2: The B-S put price in terms of the moneyness

We plot the Black-Scholes normalized put price P/ K given by Eq. (3.56) as a function of the moneyness
S/K. The prices correspond to maturities equal to 1 month (dotted line), 1 year (dashed line), and
10 years (dashed and dotted line). For this graph, we take r = 5% year—' and o = 30% year—'/2.
Observe that as time to maturity increases the European put option tends to be worthless as it was
predicted in Section 2.1.2.

we give a direct relation between the put price and the call price (3.56). Hence, the
Black-Scholes put price formula is

P(S,t) = Ke "T"YN(—dy) — SN(—d,), (3.58)

where d; 5 are given by Eq. (3.57). Also note that we have used a very characteristic
property of the probability integral (2.34) functions: N(d) + N(—d) = 1. The
put price formula (3.58) can be also obtained by solving the partial differential
equation (3.40) but with its own final condition P(S,t =T) = (K — S)™.

For the sake of completeness, we also give the option price solution when under-
lying share gives dividends. The partial differential (3.52) solution is obtained in
the same way as to the case of the Appendix A. The call price formula reads

O (8,t) = Se ‘T IN(df") — Ke " T IN(dg"), (3.59)
and the put price is

Pdiv(S, t) _ Ke—T(T—t)N(_dgiV) . Se_d(T_t)N(—d(lﬁv). (3.60)
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Table 3.1: The Greeks for the European call and put

The table gives the Greeks for the European call options C(S,t) given by Eqgs. (3.63)—(3.67) and show
the corresponding Greeks for the put P(S,t). The Greeks for the put can be obtained from the call
Greeks and the put-call parity (2.10). We recall that N’(d) = exp(—d?/2)/v/2w and that probability
integral function N(d) is given by Eq. (2.34).

Greeks Call Put
) N(dy) N(di) -1
N'(dy) N'(d1)
7 oSVT —t oSVT —t
oSN'(dy) o (T— oSN'(dy) o (T—
6 ——= 2V _rKe"TON,) -2 4rKe "TUN(—d
2\/1Tt rne ( 2) 2@ +rKe ( 2)
v SVT —tN'(dy) SVT —tN'(dy)
0 K(T — t)e " T N(d,) —K(T —t)e~" TN (—d,)

In both cases the probability integral arguments are

v In(S/K)+ (r—d+0%/2)(T —t ! i -
dtlhv: Il( / ) (; T_to-/ )( )’ dglvzd(lilv_o. T — ¢t (361)

3.5 The Greeks

The Greeks give the sensitivity of the option price respect to small changes of each
variable inside the option price formula. These are: the volatility o, the risk-free
interest rate r, the underlying asset price S, and the time to expiration 7" — ¢. In
real markets, these parameters may fluctuate for many different reasons'®. Thus, the
Greeks are very important in real markets since they allow investors to be hedged
against the changes of these variables by giving a first order correction of their
consequences in the option price.

Let us define the Greeks and find their expression to the European call price (3.56).
In order to derive them it is necessary to take into account a very important identity:

SN'(dy) — Ke "9 N'(dy) = 0, (3.62)

13 Although the fluctuations of o and r parameters are not allowed in the original Black-Scholes
theory, there exists ample evidence that this assumption is unrealistic (Hull (1997)).
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where prime denotes the partial derivative of d; . This equality can easily be proved
with simple algebraic operations. In effect, the derivative of the probability integral
given by Eq. (2.34) is
1
N'(d) = — exp(—d?/2).
(@) = 5= exp(~d*/2)

Taking into account that dy = dy + ov/T — t (see Eq. (3.57)), we have

5 —S ex
V2T V2T P

And by writing the explicit expression for dy (3.57) solely in the third term inside
the exponential we see that

exp(—d;) =

{—[d% +0%(T 1) - 2d20m]/2}_

S Ke (-1
N exp(—d}) = VT exp(—d3/2),

which proves the identity (3.62).

One of the existent Greeks is already presented: the delta, §. This Greek is the
rate of change of the call with respect to the price of the underlying asset. Recall that
the delta gives the hedging necessary to avoid the random fluctuations coming from
the stock changes (see Section 3.3). According to the delta hedging definition (3.39)
and the call price formula (3.56), the delta reads

_9C _
==

where d; is given by Eq. (3.57). We show in Fig. 3.3 that § is enclosed between 0
and 1. In the Black-Scholes theory, § evaluates the number of shares per call to be
hold at every time in a portfolio that follows a riskless strategy.

But if we want to take into account the second order fluctuations of the stock,
we must look at the gamma. The derivation of the delta (3.63) reads

5 N(dy), (3.63)

Y- 9’°C  exp(—d}/2)
05%  58\/2n(T — t)'

The gamma gives us an idea of the fluctuations of the delta hedging and allows us
to readjust the riskless strategies. Observe that gamma is always positive and this
means that the delta hedging must be increased when price S goes up.

There also exists a Greek giving the rate of change of the call with time. The
time ¢ derivative can be easily obtained if identity (3.62) is considered. Thus,

(3.64)

_0C _ oSexp(—di/2)

St 9 fon(T 1)

0 —rKe "IN (dy). (3.65)
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Figure 3.3: The delta for the B-S call in terms of the moneyness

We plot the Black-Scholes delta (3.56) as a function of the moneyness S/ K. The solid line corresponds
to maturity 1 month, the dotted line to 3 days, and dashed line to 10 months. Observe that function
smoothes as time to maturity increases and it becomes stepper as the call approaches to the maturity
date. Recall that the delta proportionates the percentage of shares per option that an investor following
a risk-free strategy must hold. For this graph, we take r = 5% year~! and o = 30% year—1/2.



84 Chapter 3. Black-Scholes option pricing method

03 g

02 ; .

vega/striking

0.6 14

moneyness

Figure 3.4: The vega for the B-S call in terms of the moneyness

We plot the normalized Black-Scholes vega v/K given by Eq. (3.66) as a function of the moneyness
S/K. The solid line corresponds to maturity 1 month, the dotted line to 3 days, and dashed line to
10 months. Observe that function is a log-normal whose maximum value is near to S/K equals to 1.
We see that as the time to maturity enlarges vega grows rapidly. Also observe the infinitesimal changes
of the call price due to the volatility may lead to call price changes of 0.36 x K. This corresponds to
a substantial change in the call price thus saying that C'(S,t) is very sensible to volatility changes. For
this graph, we take r = 5% year~"! and o = 30% year—'/2.
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The theta gives us the variation of the call with time and informs us about the call
price change as time ¢ grows. The theta is negative and this tells us that the call
price lowers as the time to maturity 7" — ¢ decreases.

The vega is very important because it gives the option sensitivity to the volatility
o. In practice, the volatility is a very difficult quantity to be evaluated. It is
necessary to estimate empirically the variance of the return R(t) then assume that
market follows a log-Brownian motion, and indirectly find out that

0%t = Var[R(%)],

where the bar denotes the empirical estimation of the variance. Since the volatility
is derived from historical time series, the sigma included in the option price formula
is often called the historical volatility. The vega'* is defined as follows

aC 2
v=oo = S\/(T —t)/2m e 4/2, (3.66)

This result is derived taking into account the identity (3.62). Observe that the
vega is always positive thus indicating that higher volatility implies higher price for
the call. Indeed, this is consistent with the idea that a riskier underlying, ¢.e., a
more volatile asset, has a more expensive call option. In Fig. 3.4, we show the high
sensitivity to small changes in the volatility. Some studies on the market behavior
question the validity of the log-Brownian market model approach since it does not
give an adequate description of the volatility (see for instance Masoliver et al. (2000),
Masoliver and Perell§ (2001b), Masoliver and Perell6 (2001c)). As we will see in
Chapter 5 small corrections on the volatility may significantly modify the price for
the option.

The changes of the option price due to the fluctuations of the risk-free interest r
are measured by the rho. The Black-Scholes theory not only assumes that market
follows a log-Brownian process but it also demands the bond evolves with a constant
and known interest ratio r (see Eq. (3.29)). Nevertheless, this is not true in real
markets and traders want to hedge their changes by measuring their consequences.
Hence,

oC
0= 7 =K(T = t)e""IN(dy), (3.67)
r
where again we have used the identity (3.62) for deriving the Greek. Observe that

if » becomes higher then the option becomes more expensive.

Summary

Options are financial instruments designed to protect investors from the stock mar-
ket randomness. In 1973, Fischer Black, Myron Scholes and Robert Merton proposed

14Tn fact, vega is not a Greek letter.
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a very popular option pricing method using stochastic differential equations within
the Ito6 interpretation. We have derived the Black-Scholes equation for the option
price using the Stratonovich calculus along with a comprehensive review of the clas-
sical option pricing method based on the It6 calculus. We have shown, as could be
expected, that the Black-Scholes equation is independent of the interpretation cho-
sen. We have extended the B-S pricing allowing for continuous-time dividends and
shown how the self-financing identity must be rewritten if dividends are considered.
We have also given the European put and call price formula and derive their Greeks.
This Chapter constitutes an enlarged version of the paper Perell6 et al. (2000).

Appendix A. Solution to the Black-Scholes equation

In this section, we outline the solution to the Black-Scholes equation (3.40) under
conditions (3.53)-(3.55). We first transform Eq. (3.40) into a forward parabolic
equation with constant coefficients by means of the change of variables

z=In(S/K), t'=T—t. (A.1)
We have oC 1 oc 1 ,0°C
= e C(z.t (__2)— iy A2
gr = T r 57 ) 5 T g (A4.2)
(-0 < z< 00, 0<t <T). Moreover, the definition of a new dependent variable:
1 2r 1, 2r
u(z, #') = exp [—5 (1 - F) 2t 50 (1 + ﬁ) (T - t')] Oz, 1), (A.3)
turns Eq. (A.2) into the ordinary diffusion equation in an infinite medium
ou 1 ,0%u
with a constant diffusion coefficient given by ¢2/2, and initial condition:
1 2r 1, 2r 2 +
u(z,0) :Kexp[—§<1—?)z+§o <1+§)T] (ef—1)". (A.5)

The solution of problem (A.4)-(A.5) is standard and reads (Carslaw and Jaeger (1990))

1 o0 270 24
u(z, t =7/ u(y, 0)e==v)/20° gy A6
(2,1) Tona7 oo (y,0) Y (A.6)
If we substitute the initial condition (A.5) into the right hand side of this equation
and undo the changes of variables (A.1) and (A.3), we finally obtain the Black-
Scholes formula Eq. (3.56).
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Chapter 4

Generalizations within the
Black-Scholes theory

The Black-Scholes theory proportionates a full explanation of the option pricing
derivation. It determines a fair price by demanding a riskless behavior of a portfolio
containing all assets involved in the option contract. And, finally, not only it gives us
the fair price for the option but also dictates us how to manage a portfolio in order
to be riskless. Hence, the Black-Scholes pricing method gives a solid justification of
the price derived and this was indeed a major contribution to finance.

Few years after Black and Scholes presented their article, Cox and Ross (1976)
and Merton (1976) studied which alternative market modelisations might have a fair
option price within the B-S pricing formulation. Any alternative models must obey
the so-called ¢deal market conditions that not only avoid any arbitrage opportunities
but also require the existence of a riskless strategy and its corresponding fair price!.
Cox and Ross (1976) proposed diffusion models where drift and volatility can deter-
ministically depend on time ¢ and stock price S. In these cases, the B-S equation
appears to be the same partial differential equation as the one given by Eq. (3.40)
but with constant o replaced by a function o(S,t). Their main disadvantage is that
the B-S partial differential equation is unsolvable for most of the cases.

Moreover, Cox and Ross (1976) and Merton (1976) went further and also in-
cluded a new class of processes in the market modelisation: the jump process. The
jump processes, in contrast with the Brownian processes, describe a discontinuous
path where jump events are randomly distributed along its time evolution. This
dynamics is due to the arrival of exogenous information to the market that causes
an instantaneous stock price change whose amplitude can be or can not be random.

As we have seen in Section 2.2, before the Black and Scholes (1973) article it
was not clear how to handle the risk in the pricing derivation and which was the
unique and fair option price. Nevertheless, after the B-S solid pricing theory, there
appeared some rapid and simple option pricing methods consistent with the absence

1The demand of existence of a riskless strategy is also known as the complete market hypothesis.
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of arbitrage demands. The following sections show how the CAPM theory is able
to give the partial differential B-S equation, and how the martingale theory lets us
to derive the B-S price formula. The drawback is that these theories are unable to
state anything concerning hedging and riskless portfolios.

The Chapter is divided in 6 sections. Section 4.1 present the jump process and
Section 4.2 proves the It6 lemma when underlying follows a jump process. Section 4.3
is devoted to explain alternative market models with jumps and derives their option
price. The following sections study other pricing theories without assuming any
specific market model. The Capital Asset Pricing Model (CAPM) is briefly outlined
in Section 4.4, and Section 4.5 concentrates in the derivation of the Black-Scholes
option price using the martingale theory. Finally, Section 4.6 presents a new and
useful option price formula in terms of the characteristic function of the underlying
process. In Appendix A, we test the validity of this representation with the geometric
Brownian process, i.e., the market model assumed by the original Black-Scholes
theory.

4.1 The jump process

As we have said in the introduction of Chapter 3, the only existing processes obeying
the efficient market hypothesis are the ones containing Brownian diffusion or jump
processes (see also Gihman and Skorohod (1972)). Hence, a general model fisting
the B-S assumptions is also allowed to include the jump process defined as follows.
The SDE of a jump process X (t) ? is

dX(t) _
X0 - ;(Yk — 1)dO(t — ty), (4.1)

where Y, — 1 gives the relative change of the stock due to the £th jump which can
be random or not, and dO is the differential of the Heaviside step function

_ 1 ift >,
@(t_t’“)_{ 0 ift <. (4.2)

Note that although ©(¢ — ) is not differentiable as an ordinary function its differ-
ential exists in the sense of generalized functions. A simple way of proceeding is the
following: since dO(t — t;) = O(t + dt — t;) — O(t — tx) then Eq. (4.2) immediately
leads to

1 ift <t <t+dt,

dO(t — 1) = { 0 if otherwise. (4.3)

2We observe that the Itd interpretation given by Section 3.1 evaluates the value of X at the be-
ginning of the timestep. Hence, following It the jump occurs at time ¢ while following Stratonovich
it occurs at time ¢+ dt/2. In contrast with the diffusion models, processes with jumps are typically
described in the literature only within the It6 interpretation.
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We also observe that, using a notation closer to physics, Eq. (4.1) can be written
as .

; = ;Aké(t — 1), (4.4)
where §(t) = dO(t)/dt is the derivative (in the sense of the generalized functions
(Lighthill (1958))) of the step function and, since it results to be the Dirac delta
function, it satisfies the properties given by Eq. (3.2). Equation (4.4) provides an
interesting interpretation of the jump process. In such a process, the stock dynamics
is given by a train of delta-pulses at random times ¢;, with random amplitudes given

It is further assumed that the occurrence of jumps at random times ¢; is a
Poisson process. Thus the probability P,(t) of having n jump events during a time
interval (0, ) is given by

_ ()"
From this we see that the probability of having one jump during the timestep dt is
Py(dt) = Adt + O[(\dt)?], (4.6)

while the probability that no jumps has occurred during dt is
Py(dt) = 1 — Adt + O[(Adt)?]. (4.7)

This is the reason why A\ is considered the probability per unit time of having a
jump®. Usually, \dt is very small therefore it is much less probable to jump than
not to jump. Moreover, the probability of having two jump events during dt is

Py(dt) = (Adt)?/2 + O[(Adt)?), (4.8)

which is considered to be negligible. From Eq. (4.5) it can be easily proved that the
probability of having n = {2,3,...} jumps during dt is of order dt" and thus also
negligible. See in Fig. 4.1 the resulting path simulation of this dynamics.

Recall that t; is a random variable representing the occurrence of the kth jump a
time t;. Hence, the average over the stochastic variable dO(t —t;) given by Eq. (4.3)
is

E[dO(t —tx)] = 1 x Prob. of having the kth jump during {¢,¢ + dt}
+ 0 x Prob. of having the kth jump outside {¢,t + dt}.

This probabilities of jump occurrence or absence are respectively given by Egs. (4.6)
and (4.7). We therefore obtain

E[dO(t — t,)] = Adt. (4.9)

3Tt can also be proved that A~! is the mean time between two consecutive jump events (Rytov
et al. (1987)).
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Figure 4.1: Simulation with Poisson jumps

We simulate the dynamics given by Eq. (4.1). We first assume that underlying is solely driven by jumps
whose length is deterministic. For this graph, A = 3 year~! and jumps amplitude Y = 1.05.
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In the same way, we can average dF’s depending on two jump events at times ¢y,
and . From Equation (4.8), we see that the probability of having two jumps (or
more) during an infinitesimal interval dt is negligible. The only jump occurrence to
consider is the one that assumes that k£ = k£’ and is Adt (see Eq. (4.6)). Thus,

At ifty, =t

E [d@(t - tk)d@(t - tk’)] = { O(dtQ) if ¢ # by

and

Adt if ty =ty
O(dt?) if ty, # tp.
And, from them, we see that in the mean square sense?
dO(t —ty) if ty = ty,

0 if ty # tp.

We have given only the essential information of the jump processes in order to derive
the 1t6 lemma for a process with jumps. Two monographs that extensively study

this class of processes are Rytov et al. (1987), Gihman and Skorohod (1972). We
refer the reader to these references for additional information.

E[dO(t — t)*dO(t — ty)?] = {

dO(t — t)dO(t — ty) = { (4.10)

4.2 The Itdo lemma for the jump process

Before outlining the option pricing method when the underlying is a jump process,
let us prove that the It0 lemma now reads

df (X, 1) = wcﬁ + S (X Vi t) — F(X,8)]dO(t — 1), (4.11)

where f is any well-behaved function.
And before proving Eq. (4.11), we first demonstrate that

d(X™) = X" (Y = 1)dO(t — ty). (4.12)
k
We proceed by induction. For m = 1, this equation is just Eq. (4.1). For m + 1, we
apply the Tto differential product (3.16)
d(X X™) = X"dX + Xd(X™) + dX d(X™),
and, taking into account Eq. (4.12), we obtain

dx™Y) = Xm“{z[m— 1)+ (V7 —1)]dOt - 1)

+3 (Ve = 1)V = 1)dO(t — t,)dO(t — tk')} .

kK’

4Gee its definition in Section 3.1.
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From Eqgs. (4.10), we thus see that the last term, in the mean square sense, is

equivalent to
S (¥~ D"~ 1)d6(t — 1)
k
and this implies, after trivial manipulations, the validity of the identity (4.12).
Now we can prove the [t6 lemma (4.11). Assuming that f(X, ) is a well-behaved
function, the Taylor expansion of the function f is

X,t) = ZAj(t)XJ

then
%dt + 3" A;(t)d(XY), (4.13)

J

df (X, t) =

and taking into account Eq. (4.12) we see that

af(X ),

df(X,t) = ZA HXI(Y{ = 1)dO(t — ty,).

Since

2 AOXT(VF — 1) = F(XVi1) = (X, 8),
J
then from Eq. (4.13) we get the It6 lemma (4.11).

4.3 Option pricing for jump processes

We assume that market prices S(¢) evolve according to the jump process described
above. Therefore, the SDE governing the market dynamics is given by Eq. (4.1)
that we now write in the form

dS(t) =Y (SY), — S)dO(t — tx). (4.14)

k

We will obtain a fair option price when prices evolve following Eq. (4.14). As we
have thoroughly explained in Section 3.3, the starting point of B-S option pricing is
the differential of the replicating call (¢f. Eq. (3.36))

dC = 6dS + r(C — §S)dt.
The use of the It6 lemma, Eq. (4.11), and the substitution of Eq. (4.14) into this
equation yield
oC
S {BS(Yi — 1) — [C(SYiut) — C(S, )]} dO(t — 1) = | S~ r(C — 65) | d
k
(4.15)



4.3. Option pricing for jump processes 95

160 T T T T

140 i

120 —

100 b

stock price

40 -

20 1 1 1 1
100 200 300 400

180 T T T T

160

140

120

100

stock price

80

60

40

20

100 200 300 400
days

Figure 4.2: Stock path simulations with jumps

We simulate the stock dynamics given by Eqs. (4.14) and (4.20). We first assume that underlying is
solely driven by jumps whose length is also stochastic. And we second assume that underlying is a jump-
diffusion process as the Merton model given by Eq. (4.20). For these graphs, we take u = 5% year—!,

o =10% year—/2, X = 3 year~" and jumps length uniformly distributed between 0.5 < Y}, < 1.5.
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Note that only in case that Y is not random an independent of k °, we can turn
Eq. (4.15) into a deterministic equation. Indeed,
oC
{6S(Y —1) = [C(SY,t) — C(S,1)]} Zd@(t — i) = i r(C —46S)| dt, (4.16)
k
and, equating to zero the term multiplying the random term dO(t — t), the delta
hedging is
C(SY,t) — C(S,t)
S(Y —1)

The substitution of Eq. (4.17) into Eq. (4.16) results in the Black-Scholes equation
when underlying is a jump process:

6 =

(4.17)

oC(S,t) C(SY,t) — C(S,t)
= — 4.1
B0 _ et - RIS (4.18)
With the final condition C(S,T) = (S—K)™, its solution reads (Cox and Ross (1976))
C(S,t) = SU(U,AY) — Ke "T-99(U, A), (4.19)

where

> 1
U(U,A) = EAke_A
k=U """

is the Laplace function,

UE[M]’

InY
where [z] is the first integer greater or equal than z. Finally,
r(T —t)
A= .
Yy -1

Merton (1976) sophisticated the model by adding a diffusion process to the ex-
isting jump process. Merton’s SDE is

dS(t) = S(t) |(u— AE[Y — 1)) dt + odW (t) + 3 (Y, — 1)dO(t — tk)] o (4.20)

where Yy, (kK =1,2,3,...) are independent and identically distributed random vari-
ables with E[Y,Y] = E[Y]? for k # [, and E[Y] = E[Y?]. Therefore, the stock
price given by Eq. (4.20) satisfies

E[dS|S] = pSdt  Var[dS|S] = S (o? + AVar[Y — 1]) dt,

5If Y has a constant and non-random value, the price process experiences jumps of the same
size but still at random times. This case, which is the simplest case, was first proposed and studied
by Cox and Ross (1976). We plot the resulting dynamics in Fig. 4.1.
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since we assume that the Wiener and Poisson jump processes are independent.
Let us obtain the call price equation corresponding to Merton’s model. The
replicating call differential given by Eq. (3.36),
dC =dS +r(C — 6S)dt,

and the It6 formulas given by Eqgs. (3.37) and (4.11) applied to dC lead to

S {8S(Y — 1) — [C(SYi,t) — C(S, )]} dO(t — 1) + (5 - @> odW

p S
_loC 1, ,0*C
=15 r(C —0S)+ 50 S 652] dt.

Observe that there are now two sources of randomness: the jump and the Wiener
differentials. This means that one is not able to create a riskless strategy and
thus manage a riskless portfolio and, therefore, market is not perfect. At this step
Merton (1976) said the “portfolio will be predictable most of the time” but, “on
average, once every 1/ units of time®, the portfolio’s value will take an unexpected
jump (Merton (1976), pp.132-133)”. Thus, a “Black-Scholes hedger” will be covered
against market risk most of the time but in those rare occasions that a jump occurs
hedger can earn or lose an unexpected amount of money. Hence, averaging over the
risk coming from jumps and hedging the fluctuations due to dWW, we thus derive the
B-S delta hedging 6 = 0C/0S and obtain the price equation

ac oc 1, _,0%C

(4.21)

where averages are performed over the variable Y. The final condition for an Eu-
ropean call is C(S,T) = (S — K)*, and therefore the European call option price is
(see the appendix of Merton (1976))

cls =% %eMTﬂ T = ) B [Cas(SY*, )] (4.22)

where Cgg is the original B-S call price given by Eq. (3.56), i.e., assuming that
underlying follows a Wiener process whose current stock price is SY*. In fact, the
Merton market model (4.20) is the first model that, starting from the replicating
call (3.36), it does not result in a closed equation for the option price.

6Recall that A~! is the average time between two consecutive jumps.
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4.4 The Capital Asset Pricing Model (CAPM)

We have used the stochastic differential equation technique in order to derive the
option price equation. However, this is only one of the possible routes. Another way,
which was also proposed in the original paper of Black and Scholes (1973), uses the
Capital Asset Pricing Model (CAPM) (Sharpe (1964)) where, adducing equilibrium
reasons in the asset prices, it is assumed the equality of the so-called Sharpe ratio of
the stock and the option respectively. The Sharpe ratio of an asset can be defined
as its normalized excess of return, therefore CAPM assumption applied to option
pricing reads (Merton (1976))

H—T _Hc—T

4.23
- p— (4.23)

where 7 is the risk-free interest rate,

pdt = E [g] , o%dt = Var [?] :
and
dC dC
pedt = F lﬁl , oZdt = Var lﬁl .

These averages are performed under the condition that S(¢) = S and C(S,t) = C
are known quantities.

From this equality it is quite straightforward to derive the Black-Scholes equa-
tion (3.40). Indeed, from the It6 differential (3.37), we get

2
ocC 1, . ,0°C ac] "
ot 2

and

2
Var[dC] = (aS %) dt.

Note that these averages are performed by taking into account that E [dS] = uSdt,
and Var[dS] = (So)?dt. The substitution of these equations in the CAPM equal-
ity (4.23) leads us to the B-S equation (3.40), which shows the consistency between
the two methods. It can be shown that this consistency also appears for to the
jump processes given by Eqs. (4.14) and (4.20). Finally, as remarked at the end of
Section 3.2, moments are independent of the interpretation chosen, we thus see that
either Ito and Stratonovich interpretations lead to the same Black-Scholes equation
if we start our derivation from the CAPM since Eq. (4.23) involves moments.
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4.5 Martingale theory

As was shown by Harrison and Kreps (1979) and Harrison and Pliska (1981), the
B-S option price can also be obtained using martingale methods. This is a shorter,
although more abstract way, to derive an expression for the call price. The main
advantage is that one only needs to know the probability density function (pdf)
governing market evolution. It is not our intention here to write a formal report on
the martingale theory and we will just outline the most important features of this
pricing methodology.

The equivalent martingale measure theory first discards any underlying process
allowing for arbitrage opportunities and then imposes the condition that the stock
price S(t) evolves, on average, as a riskless bond (Harrison and Pliska (1981)).

Let p*(S,t|So,to) be the equivalent martingale measure associated with asset
price S(t) under risk-neutrality (see below)”. Define the following expectation

E[S®)[So]" = /0 Sp*(S,t|So, t0)dS.
Then risk-neutrality requires that
E[S(t)|Sy]" = Spert o), (4.24)

where r is the constant risk-free interest rate ratio, in other words, prices must grow
on average as a riskless security.

Let us relate the equivalent martingale measure p* (S, t|Sy, to) with ps(S, t|So, to)
of the price process S(t) which we assume that follows the log-Brownian model:

d
ds = pdt + odW.
S
Let S*(t) be the risk-neutral stock price defined by
d; = rdt + odW. (4.25)

Note that S*(¢) and S(t) are related by the simple transformation
S*(t) = S(t)e~(umlt=to), (4.26)

By definition the equivalent martingale measure p*(S, ¢S, t) is the pdf of process
S*. Thus, the change of variables (4.26) allows us to relate p* with pg:

p*(S, tlSo, t()) = e(“_r)(t_to)pg (SE(M_T)(t_tO), t|50, to) s (427)

Tt can be proved using the Cameron-Martin-Girsanov theorem (Baxter and Rennie (1998))
that there always exists an equivalent martingale measure associated with any diffusion process
such as S(t).



100 Chapter 4. Generalizations within the Black-Scholes theory

and for the log-Brownian market model we can explicitly write (see Eq. (2.41))

» ! [In(S/S0) — (r — 0*/2)(t — t)]*
P (S, t|So, to) = P T exp{— 2020 — 1) } (4.28)

A completely analogous analysis can be performed on the return, i.e., R(t) =
In[S(t)/So]. We first observe that, in terms of the return, all processes are described
by the same conditional pdf, independently of the initial stock price Sy. This is due
to the fact that initially the return is always zero. Therefore, from now on we will
use the lighter notation pg(R, t|to) instead of pr(R,t|0,to).

Let R* =InS*/S, be the risk-neutral return. From Eq. (4.26), we have

R (t) = R(t) = (n = r)(t = to),
and the equivalent relation to Eq. (4.27) is

where p (R, t|to) is the return distribution adjusted for risk-neutrality. Again, for
the geometric Brownian motion, we have

Pr(R; tlto) =

[R B (’I‘ — 02/2) (t B tO)]Z} (430)

20?2 (t — to) { 20%(t — to)

Once we know the risk-neutral density p*(.S, t|So, to), the price for the European
call option is simply the discounted expected gain due to holding the call. That is
(Harrison and Pliska (1981)),

C(S.t) = e"TIE[(S(T) - K)*|S(t) =S|
= ) /K (S = K)p*(S', TS, 1)dS, (4.31)

and the final result for the call is obtained by evaluating the expected value with
the equivalent martingale measure given by Eq. (4.27) or by Eq. (4.28) for the
log-Brownian model. Observe that this price is quite similar to that of Samuelson
and Boness (see Section 2.2.3). The main difference being due to the adequate
modification of the pdf by “risk-neutralizing” its expression. Note that in terms of
the risk-neutral density, py (R, t|ty), of the return the call price can be obtained by

(st =@ | T (Sef — K)pi(R, T|t)dR. (4.32)

In(K/S)

In the case of the geometric Brownian motion the martingale price agrees ex-
actly with the B-S price Eq. (3.56)%. We can thus say that both option pricing

8We can perform similar analysis for the processes with jumps described by Egs. (4.14)
and (4.20) and see that martingale pricing method leads to the same call prices as that of Egs. (4.19)
and (4.22).
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methods are completely equivalent although martingale theory does not require the
construction of a portfolio and ignores any hedging strategy. Again, since averages
are independent on the SDE calculus convention chosen, It6 and Stratonovich cal-
culus lead to the same option price formula. As we have mentioned above, the main
advantage of martingale methods is that, for a generic underlying price process with
a known probability distribution, one only has to determine whether it allows or not
for arbitrage opportunities. In case that it does not, one directly obtains the option
price by applying the martingale price formula (4.31).

4.6 Martingale option pricing by Fourier analysis

As we have said, the main advantage of martingale pricing is that one can obtain
a fair option price when the market obeys a random dynamics different than the
geometric Brownian motion. In such a case one only has to know the probability
distribution of the underlying, then using Eqgs. (4.27) and (4.31) one readily gets
a fair price for the option. Nevertheless, knowing an analytical expression of the
pdf p(S,t|So, o) may be, in practice, beyond our reach. There are however many
situations where one knows the characteristic function of the market model, although
one is not able to invert the Fourier transform and obtain the density p(S, t|So, to)-
This is the case of non-Gaussian models (see, for instance, Masoliver et al. (2000))
and stochastic volatility models (see Chapter 6) among others. For these cases, we
will develop an option pricing based on a combination of martingale methods and
harmonic analysis.

We recall that the characteristic function (cf) of a random variable is the Fourier
transform of its probability density function. Thus the characteristic function of the
return will be given by:

enlw,tlte) = B [ to] = [ e“Fpn(R,tlto)dR.

Note that the knowledge of ¢g allows us to evaluate the first moment of the share
price S(t) = Spefi®). In effect,

E[S(£)|So,to] = SoE [ | 15| = Sopr(—i, t|to).

On the other hand, the Fourier transform of Eq. (4.29) allows us to write the
risk-neutral characteristic function ¢%(w, t|tp) in terms of the ordinary cf pg(w, t|to)
as

Ohlw, [to) = e Wk ) pp(w, [ty). (4.33)

In addition, the risk-neutral market assumption imposes that the stock average must
exponentially grow with 7(t — ) (see Eq. (4.24)). Hence, the equivalent martingale
measure must obey

O (—i, t|ty) = ett0), (4.34)
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Let us check this for the log-Brownian model. Recall that
pr(—i tito) = E [e"0 ko],
but for the Brownian motion dR(t) = (1 — 02/2)dt + odW (t), whence
E [eR(t)\to] — o=0?/2)(t—to) g [e“w(t)\to]

and from the characteristic function of the Wiener process one finally gets

QDR(—i, t|t0) = €u(t_t0).
Putting w = —i in Eq. (4.33) and using this last result yield Eq. (4.34).
After these preliminary settings, we are in the disposition of addressing the
option pricing by means of harmonic analysis. The starting point is Eq. (4.32) that
we write in the form

O(S,1) = e7@D l /

—0oQ

oo

(Se® — K)pp(R, T[t)dR

_ / i) (Se” — K )pp(R, T|t)dR]. (4.35)

—0oQ

The first integral on the right hand side (rhs) of this equation can be solved in closed
form with the result

/ " (Se® = K)py(R, T|)dR = SE [e"™ | {] — K = e ) — K.

—0oQ

As to the second integral on the rhs of Eq. (4.35), we have

1= [ (sem - KR TR = K [ (e T = 1)pios — R TR

where Ry = In(S/K) can be considered as the “return associated with moneyness”®

The inverse Fourier transform of the characteristic function
1

PRRTI) = o= [ e gp(w, Tit)dw

allows us to write this second integral as

K oo * WwR o wz ([ ,—2
I:%/_mng(w,T\t)e de/ e (e —1)dz,

0

but

[T 1 0 .
/ e (e*z — 1)dz = — — / e“*dz,
0 1—w 0

9We recall that the term “moneyness” refers to the ratio S/K.
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and . )
) )

o0 oo .
/ e“?dz = lim e~ ez g, — lim — = —,
0 e—0+ Jo e=»0+t w -+ w+10

where this result has to be understood in the sense of generalized functions as
(Vladimirov (1984))
1 , 1
wii - T +P [5] !
where d(w) is the Dirac delta function (see Eq. (3.2)), and P[1/w] is the Cauchy
principal value, i.e.,

Pl/jw]=1/w  forw#0

P | = i ([ 7 e [T ),

where ¢(w) is any regular function fast decaying at infinity. Therefore,

and

oo . 1
/ W%R:Mw%HPPm (4.36)
0 w
Hence
K K ~ T n oh(w, T
J=—— _/ * Tt wRK _ / iwRg ¥R ) d ’
2 T om | PR TIN5 Zplooe w0
that is
K K dw
= - T wRK
2 " on “’R(“’ e T
: d
=i [ [ty T = (=, Tit)e ]
0 w

Collecting results into Eq. (4.35), we finally get

K K o0 ,
Ee_T(T_t) i ge—r(T—t){/oo QD*R((“)’ T|t)eszK

[ * wRK —twRK dw
=i [ e T = - Tl ] L

dw
1—w

C(S,t)=8—

Using the following alternative expression for the Cauchy principal value!®

P l I de] _["H) =00,

—o0 W —0 w

10See for instance Vladimirov (1984).
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we can write Eq. (4.37) in a somewhat simpler form

2 o . 1— iw
de } (4.38)

w

The representations (4.37) and (4.38) are very useful when the pdf is unknown
but its characteristic function is known. This would be indeed the case of more
sophisticated market models such as those of stochastic volatility (see Chapter 6).
A similar result has been presented by Scott (1997) where he used an equivalent form
of Eq. (4.37) in order to numerically perform the integration knowing ¢j(w,T'|t).
Scott (1997) asserts that these Fourier methods allow a fast computing of the option
price.

We close this section and chapter presenting an alternative price formula to
that of Eq. (4.37) and Eq. (4.38) that only involves real quantities and that can be
more convenient in a number of cases. Some definitions are needed. We recall that
R*(t) = InS*(t)/Sp is the risk-neutral return. From Eq. (4.25), we see that R*(¢)
obeys the following SDE:

K K o , d
C(S,t)y=S5— —e (Tt _ —e’"(Tt){/ O (w, T|t)ewrx d

—1 /Ooo [ei‘*’RKgo}‘z(w,T\t) — 1]

dR* = p*dt + odW, (4.39)

where pu* = r — 0%/2. Note that —o?/2 is the spurious drift that, due to the Ito
lemma, must be added to pass from Eq. (4.25) for the price to Eq. (4.39) for the
return. This formalism can be extended to include more general market models. In
such cases instead of Eq. (4.25) we will have a more general SDE

as*
=rdt + odF(t),
S*
where F'(t) is a given driving noise with zero mean and unit variance. Equa-
tion (4.39) is still correct but changing dW by dF and

it = E[dR* /dt|to]

which includes the risk-free interest rate as well as a term of spurious drift coming

from F(t).
Let X (t) be the zero-mean return defined by
X(t) = R*(t) — p*t. (4.40)
Then .
Ohlw, T|t) = e TV (w, Tt), (4.41)

where ¢x(w,T|t) is the characteristic function of process X (¢)''. Moreover, since
the distribution of X (t), p% (z,T|t), is symmetric around z = 0, then its Fourier

HGince X (t) is driftless, it can be easily proved that it is also a martingale (Baxter and Ren-
nie (1998), p.79).
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transform is a real and even function of w: px(—w,T|t) = @x(w,T|t) (see, for
instance, Lukacs (1970)). These properties allow us to further simplify the integrals
appearing in Eqs. (4.37) and (4.38). In effect, in terms of ¢x(w,T|t) given by
Eq. (4.41), the first integral on the rhs of Eq. (4.38) (we call it I;) reads

iwa(T—t)

Il = /7 cpx(w,T|t)1+7w2(1 -Hw)dw

coswa(T —t) — wsinwa(T — t)
1+ w?

= 2/000 ox(w,Tt) dw,

where
a(T —t) = Rx + (T — t). (4.42)
Following an analogous reasoning we obtain, for the second integral on the rhs of

Eq. (4.38) the result

sinwa(T —t)

L= 2¢/ ox(w, T[) dw.
0

The substitution of these two integrals into Eq. (4.38) yields our final result

K K 00
C(S,t) =8 — Ee_T(T_t) — —e_'"(T_t)/ ox(w, T|t) [COS wa(T —t)
m 0
dw
1+ w?
where « is given by Eq. (4.42). Note that this expression only involves one real
integral and it is therefore simpler and faster to compute than Eqgs. (4.37) or (4.38).

In the Appendix A, we show that for the log-Brownian market model Eq. (4.43)
reduces to the Black-Sholes formula.

+wsinwa(T — t)] (4.43)

Summary

After the Black and Scholes (1973) article, there appeared some alternative market
models and other equivalent option pricing methods. This Chapter has presented
some of the most important market models generalizations that include jumps with-
out contradicting the absence of arbitrage prescriptions. We have shown which con-
ditions must be accomplished by these more general market models if we restrict
ourselves within the original B-S theory. Finally, we have outlined the alternative
CAPM and martingale pricing theories and give the martingale price formula in
terms of the characteristic function for a general probability distribution. To our
knowledge, this expression has not been given before in the literature and, as we
will see in forthcoming chapters, constitutes a useful expression when we only know
the characteristic function.
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Appendix A. The Black-Scholes formula by Fourier analysis

Let us check that our price formula (4.43) based on the characteristic function of the
driftless process X (¢) reduces to the Black-Scholes formula when the market model
is taken to be the geometric Brownian motion. Indeed, in such a case the dynamics

of process X (t), defined by Eq. (4.40), is given by dX (t) = odW (t) (see Eq. (4.39).
Therefore, the characteristic function of X (¢) is'?

px(w,t) = e 72, (A.1)

Let I(t) be the integral on the rhs of Eq. (4.43):

o0 ) dw
I(t) = /0 ox(w,Tt) [cos wa(t) + wsin wa(t)] T
we write this integral in a slightly different form
o0 coswa(t) — wsinwa(t o0 sinwa(t
I(t) :/ ox(w,1) (t) > ()dw+/ @X(w,t)i()dw. (A.2)
0 1+w 0
The substitution of (A.1) into this equation yields
o0 d o0 2,2 d
I(t) = /0 e~ 72 cos walt) ] +ww2 +/0 e~ 2 sinwal(t) 1 +ww2
2 t
e ‘LO‘( Jdw = 1,(8) + L(t) — I, (1),

But (Gradshteyn and Ryzhik (1994), pp.529-530)

Ii(t) = %60%/2 [2 cosha(t) — e Mo (W— %) — M3 ( o?t/2 + ;%)] ;

and L gq) (j%) |

where ®(z) is the error function defined by

O(z) = % /Ow e dz.

Collecting these integrals into Eq. (A.2), recalling that

at) = =Ry — (r — 0?/2)t,

12For simplicity in the notation, in what follows ¢ represents the time to maturity 7' — ¢.
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and using the property ®(—z) = —®(x), we get

gl(t): S [1_@<rt+RK+02/2>] _@(rt+RK—U2/2>'

™ K 202t 202t

Substituting this into Eq. (4.43) we obtain the Black-Sholes formula'?

C(S,t) = g [1 + @ <7~t+§%az/2>] _ K l1 4+ (TH\]Z%"Q/Q)] .

2
(A.3)
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Chapter 5

Option pricing and perfect
hedging on correlated stocks

As we have shown in Chapter 3, Fischer Black and Myron Scholes (1973) and Robert
Merton (1973a) obtained a fair option price assuming severe and strict theoretical
conditions for the market behavior. The requirements under which these were devel-
oped include: (i) Absence of arbitrage opportunities, i.e., identical cash flows have
identical values (Sharpe (1964), Cox and Ross (1976)). (ii) Efficient market hypoth-
esis, i.e., the market incorporates instantaneously any information concerning future
market evolution (Fama (1965)). (iii) Existence of a unique riskless strategy for a
portfolio in a complete market (Markowitz (1952)). Due to the random character
of stock market prices, the implementation of these conditions, especially condition
(ii), indicates that speculative prices are driven by white (i.e., delta-correlated) ran-
dom processes. At this point, one has to choose between a Gaussian white process
or a white jump process. In this latter case and due to requirement (iii), the jump
lengths also have to be known and fixed. There are no other choices for modelling
market evolution if the above requirements and ideal conditions are to be obeyed®.

From these three assumptions, condition (ii) is perhaps the most restrictive and,
in fact, disagrees with empirical evidence since real markets are not efficient, at
least at short times (Grossman and Stiglitz (1980), Fama (1991)). Indeed, market
efficiency is closely related to the assumption of totally uncorrelated price variations
(white noise). But white noise is only an idealization since, in practice, no actual
random process is completely white. For this reason, white processes are convenient
mathematical objects valid only when the observation time is much larger than
the auto correlation time of the process?. And, analogously, the efficient market
hypothesis is again a convenient assumption when the observation time is much

1See Sections 3.3 and 4.1 for more information concerning these statements and for a description
of the geometric Brownian and the Poisson jump processes.

2Throughout this Chapter we will use the terms “correlation” and “auto correlation” without
distinction.
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larger than time spans in which “inefficiencies” (i.e., correlations, delays, etc.) occur.

Alternative models for describing empirical results of the market evolution have
been suggested (Mandelbrot (1963), Fama (1963)). In each of these, an option
price can be obtained only by relaxing some or even all of the initial Black-Scholes
(B-S) assumptions (Figlewski (1989), Aurell et al. (2000)). Our main purpose in
this Chapter is to derive a nontrivial option price by relaxing the efficient market
hypothesis and allowing for a finite, non-zero, correlation time of the underlying
noise process. As a model for the evolution of the market we choose the Ornstein-
Uhlenbeck (O-U) process (Uhlenbeck and Ornstein (1930)) for three reasons: (a) O-U
noise is still a Gaussian random process with an arbitrary correlation time 7 and it
has the property that when 7 = 0 the process becomes Gaussian white noise, as in
the original Black-Scholes option case. (b) The O-U process is, by virtue of Doob’s
theorem, the only Gaussian random process which is simultaneously Markovian and
stationary (Doob (1942)). In this sense the O-U process is the simplest generalization
of Gaussian white-noise. (c) As we will see later on, the variance of random processes
driven by O-U noise seems to agree with the evolution of market variance, at least
in some particular but relevant cases.

The Ornstein-Uhlenbeck process is not a newcomer in mathematical finance.
For instance, it has already been proposed as a model for stochastic volatility (SV).
Our case here is rather different since, contrary to SV models, we only have one
source of noise®. We therefore suggest the O-U process as the driving noise for
the underlying price dynamics when the volatility is still a deterministic quantity
(Dumas et al. (1998)).

The auto correlation in the underlying driving noise is closely related to the
predictability of asset returns, of which there seems to be ample evidence (Breen and
Jagannathan (1989), Campbell and Hamao (1992)). Indeed, if for some particular
stock the price variations are correlated during some time 7, then the price at
time to will be related to the price at a previous time ¢; as long as the time span
ty — t1 is not too long compared to the correlation time 7. Hence, correlation
implies partial predictability. Other approaches to option pricing with predictable
asset returns are based under the assumption the market is still driven by white
noise and predictability is induced by the drift (Lo and Wang (1995)). Since the
B-S formula is independent of the drift, these approaches apply B-S theory with a
conveniently modified volatility. Our approach here is rather different because we
assume the asset price variations driven by correlated noise —which implies some
degree of predictability.

Summarizing, our purpose is to study option pricing and hedging in a more
realistic framework than that of white noise process presented by Black and Scholes.
Our model includes colored noise and the dependence of the volatility on time. Both

3See next Chapter for more details. Representative contributions on stochastic volatility are
Hull and White (1987), Scott (1987), Stein and Stein (1991), Heston (1993), Ghysels et al. (1996),
Heston and Nandi (2000).
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are empirically observed in real markets (Bouchaud and Potters (2000)). Empirical
characteristic time scales are at least of the order of minutes and can affect option
prices particularly when the exercising date is near and speculative fluctuations are
more important. Presumably, this effect is negligible when correlation times are
shorter (much shorter than time to expiration). In any case, it is interesting to
know how, and by how much, the option price and its properties are modified when
correlations in the underlying noise are significant.

The shortest way of getting the call price, and hence quantifying the effect of
correlations on prices is by martingale methods. Unfortunately, this procedure does
not guarantee that we obtain the fairest price since arbitrage and hedging are not
included in this approach®. It is therefore our main objective to generalize B-S
theory not only to get a new call price but, more importantly, to obtain a hedging
strategy that avoids risk and arbitrage opportunities.

From a technical point of view, we apply the B-S option pricing method after
projecting the two-dimensional O-U process onto a one-dimensional diffusion process
with time varying volatility. As we will show, this projection allows us to maintain
the conditions of a perfect hedging and the absence of arbitrage. Moreover, the
price obtained using this way completely agrees with the price obtained using two
alternative and different methods. One of them is based on martingale theory, and
the other one develops a new option pricing with a modified portfolio containing
secondary options instead of the underlying stock.

The Chapter is divided into six sections and corresponds to the article Masoliver
and Perell6 (2001b). In Section 5.1 we present our two-dimensional stochastic model
for the underlying asset. In Section 5.2 we find the O-U projection onto the stock
price correlated process. Section 5.3 concentrates on the B-S option price derivation
with the projected process, and Sections 5.4 and 5.5 show the consistency of this
derivation by using two alternative methods for obtaining the option price. The
Greeks and the new hedging are presented in Section 5.6, and technical details are
left to the appendices.

5.1 The asset model

The standard assumption in option pricing theory is to assume that the underlying
price S(t) can be modelled as a one-dimensional diffusion process:

%(:)) = pdt + odW (1), (5.1)

where W (t) is the Wiener process with the averages given by Eq. (3.4). In the
original B-S theory, both drift z and volatility o are constants (see Section 3.2).

4See Section 4.5 for a more detailed discussion on this point.
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Other models take u = u(t,S) and o = o(t, S) as functions of time and underlying
price (Cox and Ross (1976), Bergman et al. (1987)). The parameter o is assumed
to be a random quantity in the SV models (see Chapter 6).

Notice that if the time evolution of the underlying price is governed by Eq. (5.1)
then S(¢) is an uncorrelated random process in the sense that its zero-mean return
rate defined by Z(t) = d1n S/dt — p is driven by white noise, i.e., E [Z(t1)Z(t2)] =
0%(t; — to) where 6(¢) is the Dirac delta function®. Hence, the asset model imme-
diately incorporates price return effects and meets the efficient market hypothesis.

As a first step, we assume that the underlying price is not driven by the Wiener
process W (t) but by O-U noise V(¢). In other words, we say that S(t) obeys a
singular two-dimensional diffusion

%%?:4Mt+vamt (5.2)
AV (t) = —@ dt + g dw (1), (5.3)

where 7 > 0 is the correlation time. More precisely, V(¢) is O-U noise in the
stationary regime, which is a Gaussian colored noise with zero mean and correlation
function:

E[V(t)V(ty)] = ge—tl—h'/? (5.4)

We call the process defined by Egs. (5.2)-(5.3) singular diffusion because, con-
trary to SV models, the Wiener driving noise W(¢) only appears in one of the
equations, and this results in a singular diffusion matrix (Gardiner (1985)). Ob-
serve that we now deal with auto correlated stock prices since the zero-mean return
rate Z(t) is colored noise, i.e., E[Z(t,)Z(ts)] = (0?/27)exp[—|t; — t2]/7]. Note
that when 7 = 0 this correlation goes to 0%(t; — t5) and we thus recover the one-
dimensional diffusion discussed above. Therefore the case of positive 7 is a measure
of the inefficiencies of the market.

There is an alternative, and sometimes more convenient, way of writing the above
equations using the asset return R(t) defined by

R(t) = In[S(t)/So];

where Sy = S(to) and tp is the time at which we start observing the process (5.2)—
(5.3). Without loss of generality this time can be set equal to zero (see Appendix
A). Instead of Egs. (5.2)-(5.3), we may have

d’;—f) =+ V(t) (5.5)

5We recall that §(z) is a generalized function with the properties: 6(z) = 0 for z # 0 and
JZ 8(z)dx =1 (cf. Eq. (3.2)).
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dv(t) 1
S = SV + g, (56)

where £(t) = dW(t)/dt is Gaussian white noise defined as the derivative of the
Wiener process (in Section 3.1 we have shown several properties of this process).
The combination of relations in Egs. (5.5) and (5.6) leads to a second-order stochastic
differential equation for R(t)

ER(1) , dR()
at? dt

= p+ o€ (t). (5.7)

From this equation, we clearly see that when 7 = 0 we recover the one-dimensional
diffusion case (5.1)® . We also observe that the O-U process V (¢) is the random part
of the return velocity, dR/dt, and we will often refer to V'(t) as the “velocity” of the
return process R(t).

In Appendix A, we give explicit expressions for V() and for the return R(¢). We
prove there that R() is a non-stationary process with the conditional mean value

m(t,Vo) = E[R(t)|Vo] = pt+7 (1 e Vs, (5.8)
where V(0) = V} is the initial velocity. The conditional return variance,
K (t) = E[(R(t) — m(t, V0)?|Va] »

is given by 7'
2 _ o —t/T r 2T
Ku(t)=0o [t 2r (1—e7'/7) + 5 (1-e )] . (5.9)

We also give in Appendix A explicit expressions for the joint probability density
function (pdf) p(R,V,t), the marginal pdf’s p(R,t) and p(V,t) of the second-order
process R(t), and the marginal pdf p(S,t|Sy,to) of the underlying price S(t). We
also show that the velocity V (¢) is, in the stationary regime, distributed according
to the normal density:

1 2 2
p(V) = ———=e 7V /7. (5.10)
\Jmo? [T

Suppose now that the initial velocity V is random with mean value F [Vj] and
variance Var[Vp]. Thus, the return unconditional mean and variance read

BIRW) = pttr(1-e ) BV,
Var[R(t)] = Ku(t)+7 (1 - e*t/T) Var[Vp].

6In the opposite case when 7 = oo, Eq. (5.3) shows that dV (t) = 0. Thus V(t) is a constant,
which we may equal to zero, and from Eq. (5.2) we have S(t) = Sge*t. Therefore, the underlying
price evolves as a riskless security. Later on we will recover this deterministic case (see, for instance,
Eq. (5.35)).
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If, in addition, we assume that the initial velocity Vj is in the stationary regime then
E[V,] = 0 and Var[Vy] = 0%/27. In this case, the return unconditional mean value
is

m(t) = E[R(1)] = ut,

and the return unconditional variance
k(t) = Var[R(t)]

reads (cf. Eq. (5.9))
Kk(t) = o [t -7 (1 - e_t/T)] . (5.11)

A consequence of Eq. (5.11) is that, when ¢ < 7, the variance behaves as
Kk(t) ~ (o?/27)¢, (t < 7). (5.12)
Equation (5.11) also shows a crossover to ordinary diffusion (B-S case) when ¢ > 7:
k(t) ~ o*t, (t> 7). (5.13)

In Fig. 5.1, we plot «(t) along with the empirical variance from data of the S&P
500 cash index during the period January 1988-December 19967. The dashed line
represents results obtained by assuming normal-diffusion «(t) o< t. Observe that the
empirical variance is very well fitted by our theoretical variance x(t) for a correlation
time 7 = 2 minutes. Furthermore, the result of this correlation affects the empirical
volatility for around 100 minutes. These times are probably too small to affect call
price to any quantifiable extent. However, the S&P 500 is one of the most liquid,
and therefore most efficient, markets. Consequently, the effect of correlations in any
other less efficient market might significantly influence option prices and hedging
strategies, and this is the main motivation for this work.

5.2 The projected process

One may argue that the O-U process (5.2)—(5.3) is an inadequate asset model since
the share price S(t) given by Eq. (5.2) is a continuous random process with bounded
variations. As Harrison et al. (1984) showed, continuous processes with bounded
variations allow arbitrage opportunities and this is an undesirable feature for ob-
taining a fair price. Thus, for instance, arbitrage would be possible within a portfo-
lio containing bonds and stock whose strategy at time ¢ is buying (or selling) stock
shares when p + V (¢) is greater (or lower) than the risk-free bond rate (Harrison et
al. (1984)).

"Tick by tick data on S&P 500 cash index has been provided by The Futures Industry Institute
(Washington, DC).
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variance

1 10 100

time (min.)

Figure 5.1: The underlying asset variance

The variance of the underlying asset as a function of time (in logarithmic scale). Circles correspond
to empirical variance of S&P 500 cash index from 1988 to 1996. Solid line represents the theoretical
variance, Eq. (7) with 7 = 2 minutes. The dashed line is the B-S variance o?t. In both cases
o = 3.69 x 10~ *min~'/2 which approximately corresponds to an annual volatility 0 = 11%.
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In our case, however, the problem is that in the practice the return velocity V (t) is
non tradable and its evolution is ignored. In other words, in real markets the observed
asset dynamics does not show any trace of the velocity variable®. This feature allows
us to perform a projection of the two-dimensional diffusion process [S(t), V(¢)] onto
a one-dimensional equivalent process S(t) independent of the velocity V. We will
show latter in this section that the projected process S(t), which is equal to the
actual price S(t) in mean square sense, obeys the following one-dimensional SDE

%&? = [p+ &(T —t)/2]dt + /(T — t)dW (t), (5.14)
where k(t) is given by Eq. (5.11), and the dot denotes time derivative. Therefore,
the price given by Eq. (5.14) is driven by a noise of unbounded variation, the Wiener
process, and the Harrison et al. (1984) results do not apply. In consequence, the
O-U projected process is still a suitable starting point for option pricing since it does
not permit arbitrage.

5.2.1 Derivation of the one-dimensional SDE

Note that the dynamics of the return R(t) = In[S(t)/S] is given by the second-order
SDE (5.7) which includes the stochastic evolution of the velocity V(¢). Let us now
obtain a first-order SDE describing the price dynamics when velocity V'(¢) has been
eliminated.
The starting point of our derivation is the marginal conditional density
p(R, t|Ro, to; Vo). This density is given by Eq. (A.14) of Appendix A and when ¢, # 0
it reads
1 [R = Ro — m(t — to, Vo)]”

p(R,t| Ry, to; Vo) = exp{— }, 5.15
( ‘ 0, L0 0) 27‘(‘K11(t—t0) 2K11(t—t0) ( )

where m(t, V) and K11(t) are given by Eqs. (5.8) and (5.9). Note that p(R, t|Ro, to; Vo)
is the solution of the following partial differential equation

o _ o] OO o] O
T 11+ Voe ]aRO > [1-e ] TR (5.16)

with the final condition p(R, t|Ro,t; Vo) = 6(R — Ry). Observe that the Eq. (5.16)
is a backward Fokker-Planck equation whose drift, u + Vpexp[—(t — ty)/7], and

8Indeed, knowing V (t) would imply knowing the value of the return R(t) at two different times,
since R(t) - R( )
t) — R(t —e€
V()= lim ————= — 4.
( ) e—1>r(r)l+ € s
Obviously, this operation is not performed by traders who only manage portfolios at time ¢ based

on prices at ¢ and not at any earlier time.
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diffusion coefficient, $02 {1 — exp[—(t — to) /7]}°, are both functions of t — t,. As is
well-known, there exists a direct relation between the Fokker-Planck equation and
the SDE governing the process (Gardiner (1985)). In our case, the corresponding
SDE is

dR(to) = [+ Voe V7] dto + o [1 — e U] AW (), (5.17)

and its formal solution is

R(t) = R(to) + p(t —to) + Vor[l—e t70)/7| 4o /t t [1— e t=Im] dw (ty).
(5.18)

5.2.2 Equality of processes in mean square sense

To avoid confusion, let R(t) be the solution of the first-order SDE (5.17), i.e., R(t)
is the projected process given by Eq. (5.18). And let R(t¢) be the solution of the
second-order SDE (5.7) where the dynamics of the velocity is still taken into account.
Thus, R(t) is explicitly given by Eq. (A.1) of Appendix A.

We will now prove that R(t) and R(t) are equal in mean square sense (cf. Sec-
tion 3.1 and specially Eq. (3.6)). That is:

E[(R(t) - R(t)?] =0,  for any time t. (5.19)

In effect, from Eq. (5.18) and assuming, without loss of generality, that ¢y = 0 and

R(ty) = 0 we have

R(t) = pt + Vor(1 — e77) + /0 t [1 — e—“—tl)/f] £(t1)dts, (5.20)

where £(t1) = dW (t1)/dt, is the Gaussian white noise. On the other hand, from
Eq. (A.1) we write

o [t v 141
R(t) = ut + Vor(1 — e—t/T) + ;/ dtl/ e (=t )/T&-(tll)dtll- (5.21)
0 0
Therefore,
E[(R(t) - R(1))?] = 2Ku(t)
202 t 2 1 t
=2 [ [ ave @ [ 1 - e Ble(n)en],
T Jo 0 0
where Kj,(t) is given by Eq. (5.9). Taking into account that

E[E(t)E(t")] = 6(t, —1"),
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we have
E[(R(t) - R1)?] = 2K (1) — 22 [ [ apre et [1 - eeene]
- T Jo 0 ’
However, (see Eq. (5.9))

0'2 i ¢ 1N "
—/ dtl/ dt"e_(t —t/T [1 - 6_(t_t )/T] = Kll(t)
T Jo 0
Hence,
E[(R(t) - R(t))*] =0,

and R(t) is equal to R(t) in mean square sense.

5.2.3 The projected process when the initial velocity is in
the stationary regime

As we have mentioned, we are mainly interested in representing the asset dynamics

when the initial velocity V4 is random and distributed according to the stationary

pdf (5.10). We have shown in Section 5.1 that this basically implies the replacement
of K11(t) by «(t). In such a case, the SDE for R(t) reads’

dR(t) = pdt + \/i(T — t)dW (1),

where £(t) is given by Eq. (5.11) and the dot denotes time derivative, that is
i(t) =0 (1—e7). (5.22)

We need the It6 lemma given in Appendix B for deriving the SDE for the stock S.
Thus, according to Eq. (B.6), the effective dynamics for S = Sye® is

% — [+ #(T = £)/2]dt + \JR(T — )dW (2). (5.23)

In this way, we have projected the two-dimensional O-U process (S, V') onto a one-
dimensional price process which is a Wiener process with time varying drift and
volatility. We also note that we need to specify the final condition of the process
because the volatility v/% is a function of the time to maturity 7'—t, and this implies
that the projected asset model depends on each particular contract.

9Since R(t) and R(t) are equal in mean square sense we will drop the bar on R as long as there
is no confusion. Thus, we will use R for the projected process as well.
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5.3 The option price on the projected process

In this section we will present a generalization of the Black-Scholes theory assuming
that underlying price is driven by the O-U process. We therefore eliminate the
efficient market hypothesis but retain the other two requirements of the original B-S
theory: the absence of arbitrage and the existence of a riskless strategy.

We invoke the standard theoretical restrictions —continuos trading without trans-
action costs and dividends— and apply the original B-S method taking into account
that the underlying asset is not driven by white noise but by colored noise modelled
as an O-U process.

The starting point of B-S option pricing is a portfolio which contains certain
amounts of shares, calls and bonds. In this context, B-S hedging is only able to
remove the call risk that comes from stock fluctuations. Therefore, we need to
start from the effective one-dimensional market dynamics given by Eq. (5.23) since
otherwise we would not be able to remove risk fluctuations arising from dW (¢).
These fluctuations are only explicitly given in the projected SDE for the stock (see
Section 5.4.1 for a deeper discussion on this point).

5.3.1 Black-Scholes option pricing with the equivalent one-
dimensional SDE

As we have proved in Section 5.2, there exists an effective one-dimensional dif-
fusion which describes the O-U process (5.2)—(5.3). Assuming that the effective
one-dimensional price dynamics is given by Eq. (5.23), it is quite straightforward to
derive the European call option price within the original B-S method.

Following the B-S theory presented in Section 3.3, we define a portfolio com-
pounded by a certain amount A of shares at price S, a quantity of bonds ®, and a
number Y of calls with price C, maturity time 7" and strike price K. We assume
that short-selling is allowed and thus the value P of the portfolio is written

P=YC—AS— B, (5.24)

where the bond price B evolves according to the risk-free interest rate ratio r. That
is

dB = rBdt. (5.25)

Recall that the portfolio is required to obey the net-zero investment hypothesis,
which means P = 0 for any time ¢ (¢f. Section 3.3). Hence,

C =65+ ¢B, (5.26)

where 6 = A/Y and ¢ = ®/T are, respectively, the number of shares per call and
the number of bonds per call. Due to the non anticipating character of § and ¢ we
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have!?
dC = §dS + ¢dB. (5.27)

On the other hand, assuming that the market dynamics is described by Eq. (5.23),
the differential of the call also reads'!

1
dC(S,t) = Cydt + CsdS + §R(T —1)S?Cggdt, (5.28)

where we have used the It6 lemma as expressed by Eq. (B.7) of the Appendix B.
From Egs. (5.27)—(5.28) and (5.26), we get

1
Ci+ GH(T —1)S"Css + 185 —rC| dt = [ — Cs]dS.

Now the B-S delta hedging, 6 = Cs, removes any random uncertainty in the option
price. The partial differential equation for C'(S,t) then reads

Ct:TC—TSCS— %R(T—t)SQCSS. (529)

We note that the delta hedging is able to remove risk because we have projected the
two-dimensional SDE (5.2)—(5.3) onto the one-dimensional process. In this way, we
directly relate the differential of the stock dS(t) to the random fluctuations of the
Wiener process dW (t) (see Eq. (5.23)). Without this projection, the B-S hedging
is useless and the random fluctuations persist in the B-S portfolio. We will further
discuss this situation in Section 5.4.1.

5.3.2 The price of the European call

For the European call, Eq. (5.29) has to be solved with the following “final condition”
at maturity time T
C(s,T) = (S(T) - K)*, (5.30)

where S(T') is the underlying price at maturity and K is the strike price. The
solution to Eq. (5.29) subject to Eq. (5.30) is a type of solution perfectly known in
the literature (¢f. Appendix A in Chapter 3). Thus, our final price is

Cou(S,t) =8 N(d9Y) — Ke""=Y N(d9Y), (5.31)
where N(d) is the probability integral is given by Eq. (2.34) and

U _ In(S/K)+r(T —t)+ k(T —1t)/2
' k(T — t)

: (5.32)

19Tn Section 3.3.1 we have studied the non anticipating character and the self-financing require-
ments for these strategy functions (¢f. Eq. (3.35).

Here we use a different notation to that of the previous chapters. Thus, subscripts indicate
partial differentiation, i.e., C; = 8C/8t and so on.
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Figure 5.2: The O-U call price in terms of the moneyness

Relative call price C'//S as a function of S/K for a given time to expiration 7' — ¢t = 5 days. The solid
line represents the O-U call price with 7 = 1 day and the dashed line is the B-S price. The dotted
line is the deterministic price. In this figure the annual risk-free interest rate r = 5%, and the annual

volatility o = 30%.
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dSV = d9Y — \/K(T — 1), (5.33)

with k() given by Eq. (5.11).

Equation (5.31) constitutes the key result of this Chapter. Note that, when
7 = 0, the variance becomes k() = 0%t and the price in Eq. (5.31) reduces to the
Black-Scholes price:

Cps(S,t) = S N(dB%) — Ke"T=% N(dB%), (5.34)

where d5 have the form of Egs. (5.32)—(5.33) with x(T — t) replaced by o*(T —t).
Therefore, the O-U price in Eq. (5.31) has the same functional form as B-S price in
Eq. (5.34) when o2t is replaced by x(t).

In the opposite case, 7 = oo, where there is no random noise but a determin-
istic and constant driving force (in our case it is zero), Eq. (5.31) reduces to the
deterministic price

CalS,1) = (S — Ke D)7 (5.35)

We will now prove that Cpy is an intermediate price between B-S price and the
deterministic price (see Fig. 5.2)

Cy(S,t) < Cop(S,t) < Cps(S,1), (5.36)

for all S and 0 < ¢t < T. In order to prove this it suffices to show that Cop is a
monotone decreasing function of the correlation time 7, since in such a case

COU(’T = OO) < C’OU(T) < COU(T = 0)

However, Cop (T = 00) = Cy and Coy (7 = 0) = Cpg, which leads to Eq. (5.36). Let
us thus show that Coy is a decreasing function of 7 for 0 < ¢ < T and all S. Define

a function y as the derivative
9Cou
= . 5.37
X =5 (5.37)

Since the 7 dependence in Coy is a consequence of the variance x(t,7), we have

o ok(T —t, T)U
2k(T —t,7) or ov

X:

where voy = 0Coy /0o (see Section 5.6). But

Ok(T —t, 1)

5 =0 [1-(+(T=t)/r)e T <0,

for 0 < ¢t < T which is seen to be non positive. From Eq. (5.67) below we see
that voy > 0 for all S and 0 < ¢ < T. Hence, x < 0 which proves Eq. (5.36). In
Fig. 5.3 we plot the option price C' as a function of the correlation time 7 and for
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Figure 5.3: The O-U call price as a function of the correlation time

Relative call price C/S as a function of 7 for a given time to expiration T'—¢ = 10 days. The solid line
represents the call price with S/K =1 (ATM case). The dotted line is the call price when S/K = 1.03
(ITM case). The dashed line represents an OTM case when S/K = 0.97. We clearly see that C' is a
monotone decreasing function of 7 having its maximum value when 7 = 0 (B-S case) and its minimum
when 7 — oo (deterministic price). The annual risk-free interest rate and the annual volatility are as

in Fig. 5.2.

100
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D(S\Y)

1.05

0.8 0.85 0.9
S/IK

Figure 5.4: The relative call price difference in terms of the moneyness

The function D(S,t) is plotted as a function of S/K for T —t = 10 days and 7 = 1 day (solid line),
7 = 2 days (dashed line) and 7 = 5 days (dotted line). Other parameters used to generate the figure

are r = 5% per annum and o = 30% per annum.
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three different values of the moneyness S/K. This figure clearly shows that C is a
monotone decreasing function of 7.

Therefore, the assumption of uncorrelated underlying assets (B-S case) overprices
any call option. This confirms the intuition understanding that correlation implies
more predictability and therefore less risk and, finally, a lower price for the option.
In fact, we can easily quantify this overprice by evaluating the relative difference

D = (Cps — Cou)/Chgs.

Figure 5.4 shows the ratio D(S, ), for a fixed time to expiration, plotted as a function
of the moneyness, S/K, and for different values of correlation time 7. We see there
that the ratio D is very sensitive to whether the call is in the money (ITM), out of
the money (OTM) or at the money (ATM). The biggest difference between prices
occurs in the case of OTM options. This is true because when S/K < 1, both
Cps and Cop are small but Cps > Cop (see Fig. 5.2). Depending on the value of
correlation time 7 this implies that D is approximately equal to 1.

Another interesting point is the behavior of D as a function of the expiration
time 7" — ¢. In this case, D behaves quite differently depending on whether the call
is in, out, or at the money. This behavior is evident in Figs. 5.5 and 5.6. Figure 5.5
shows D(S,t) as a function of expiration time T'—t for an OTM option (S/K = 0.95)
and the ATM option (S/K = 1.00) and for two different values (1 and 5 days) of the
correlation time. Note that B-S notably overprices the option, particularly in the
OTM case. In Fig. 5.6 we show plots of D(S,?) as a function of ¢ for an I'TM option
(S/K = 1.05). This exhibits completely different behavior since the B-S overprice
is considerably less (no more than 7%). Moreover, contrary to the ATM and OTM
cases, the relative difference D(S,t) is a non monotone function of 7 — ¢, having
a maximum value around one or two weeks before maturity. Although perhaps
the most striking and interesting feature is the persistence of the B-S overprice far
from maturity regardless the value of the correlation time. This is clearly shown
in Table 5.1 where we quantify the ratio D in percentages for different values of
moneyness, time to expiration and correlation time.

5.4 An alternative derivation of the call price

In this section and the next, we present two different and alternative derivations
of the final call price C'oyy. The first of these derivations is based on an extension
of the B-S theory but now starting from the two-dimensional diffusion (5.2)—(5.3)
and with a different portfolio than the usual one. A second derivation, briefly
outlined in the next section, uses the equivalent martingale measure method. Both
derivations arrive at the price formula (5.31), thus showing the consistency of the
pricing methods.

We will first apply the original B-S method starting from the two-dimensional
O-U process (5.2)—(5.3) instead of the equivalent process (5.23). Unfortunately, this
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Table 5.1: Relative call price differences in percentages

We present the values of D x 100, where D = (Cps —Cor)/Cps. T —1 is the expiration time in days.
Correlation times 7 are 1, 2, and 5 days. The rest of columns are divided in three blocks corresponding
to a different values of the moneyness S/K. From left to right blocks represent the OTM, ATM, and
ITM cases. Notice the importance and the persistence far from maturity of the relative differences in
price (r and o as in Fig. 5.2).

T —t S/K =0.95 S/K =1.00 S/K =1.05
r=1 2 5 r=1 2 5 r=1 2 5
1 99.9 100 100 393 538 693 01 01 0.1
2 874 98.7 100 246 393 580 06 0.7 0.7
3 629 883 995 173 305 501 1.2 17 20
4 450 73.1 965 131 246 441 15 25 34
5 335 59.4 904 105 204 392 1.6 29 46
6 261 486 828 87 173 353 17 31 55
7 210 404 751 74 149 319 17 32 6.1
8 174 341 679 64 131 291 16 32 65
9 147 292 613 57 116 267 16 32 6.7
10 127 254 556 51 104 245 15 31 68
20 50 100 252 25 51 131 11 23 57
30 20 59 151 17 34 86 09 1.8 45
40 20 41 105 12 25 64 07 14 3.7
50 16 31 79 1.0 20 5.1 06 12 3.1
100 07 14 34 05 1.0 25 04 07 18
150 04 08 22 03 07 16 02 05 13
200 03 06 15 02 05 12 02 04 10

250 0.2 0.5 1.2 0.2 04 1.0 0.2 0.3 0.8
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D(S.t)

T-t (days)

Figure 5.5: The relative call price difference for OTM and ATM options

The function D(S,t) is plotted as a function of T'—t (in logarithmic scale) for fixed values of moneyness.
The solid lines represent ATM options, the thick line corresponds to 7 = 1 day and the thin line
corresponds to 7 = 5 days. The dashed lines represent an OTM option with S/K = 0.95, the thick
line corresponds to 7 = 1 day and the thin line corresponds to 7 = 5 days (r and ¢ as in Fig. 5.2).



128

Chapter 5. Option pricing and perfect hedging on correlated stocks

0.06 -

0.04

D(S.t)

0.02

P | L L L L PR
100

10
T-t (days)

Figure 5.6: The relative call price difference for an ITM option

D(S,t) is plotted as a function of the expiration time T — ¢ (in logarithmic scale) for an ITM option
with S/K = 1.05. The solid line corresponds to 7 = 1 day and the dashed line to 7 = 5 days (r and

o as in Fig. 5.2).
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procedure yields a trivial expression for the price of the option (see below) and is
therefore useless. To avoid this difficulty we will define a different portfolio which is
the first step towards the generalization of both B-S equation and formula.

5.4.1 The Black-Scholes method for the two-dimensional O-
U process

We assume that market prices are driven by an O-U process as shown in Eqgs. (5.2)-
(5.3) and that the portfolio is given by Eq. (5.24). That is, C =S + ¢B and

dC = 5dS + ¢dB.

Let us now apply the original B-S method starting from the two-dimensional O-U
process (5.2)—(5.3) instead of the equivalent process (5.23). Using the It6 lemma for
a singular two-dimensional diffusion (see Appendix B),

2

dC(S,V,t) = CsdS + CydV + Cydt + ;—TZCVth, (5.38)

and taking Eqgs. (5.25) and (5.27) into account, we write
02
[Ct + ZOVV —r(C — 55)] dt + (Cs — 6)dS + CydV = 0.
Now the assumption of delta hedging § = C's, turns this equation into
2
lCt — T(C - SCs) + ;_TCVV] dt + CydV = 0. (539)

Equation (5.39) is still random due to the term with dV representing velocity fluc-
tuations (see Eq. (5.3)). In consequence, Black-Scholes delta hedging is incomplete
since it is not able to remove risk. In this situation, the only way to derive a risk-free
partial differential equation for the call price is to assume that the call is independent
of velocity. Then, Cyy = 0 and Eq. (5.39) yields

Cy+rSCs — rC = 0. (5.40)

According to the final condition for the European call, C(S,T) = (S(T) — K)*,
the call price is C(S,t) = (S — Ke™""~%)*. Note that this is a useless expression
because it gives a price for the option as if the underlying asset would have evolved
deterministically like the risk-free bond without pricing the random evolution of
the stock. In fact, there is no hint of randomness, measured by the volatility o, in

Eq. (5.40).
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The main reason for the failure of B-S theory is the inappropriateness of B-
S hedging for two-dimensional processes such as O-U price process (5.2)-(5.3)'2.
Indeed, delta hedging presumably diversifies away the risk associated with the dif-
ferential of asset price dS(t) given by Eq. (5.2). Nevertheless, what we have to
hedge is the risk associated with dV () given by Eq. (5.3), which contains the only
source of randomness: the differential of the Wiener process dW(t). All of this
clearly shows the uselessness of the B-S delta hedging for the two-dimensional O-U
process. Note that we must relate in a direct way the differential dS(¢) with the
random differential dW (t), otherwise we will not be able to remove risk. This is in-
deed the case of the projected process (5.23) which leads to the European call price,
Eq. (5.31). However, if we do not want to project the process and maintain the
two-dimensional formulation (5.2)-(5.3) we have to evaluate the option price from
a different portfolio. We will do it next by defining a new portfolio which will allow
us to preserve the complete market hypothesis and remove the random component

dw ().

5.4.2 The option pricing method with a modified portfolio

We present a new portfolio in a complete but not efficient market. The market is
still assumed to be complete, in other words, there exists a portfolio with assets
to eliminate financial risk. However, we relax the efficient market hypothesis by
including the correlated O-U process as noise for the underlying price dynamics.

Now, our portfolio is compounded by a number of calls T with maturity 7" and
strike K, a quantity of bonds ®, and another number of “secondary calls” Y', on
the same asset, but with a different strike K’ and, eventually, different payoff or
maturity time. Note that in the new portfolio there are no shares of the underlying
asset. Thus, instead of Eq. (5.24), we have

[I=7C-Y'C - ®B. (5.41)
After assuming the net-zero investment, we obtain
C = ¢B+ (', (5.42)

where ¢ = ®/7 is the number of bonds per call, and ¢ = Y'/T is the number of
secondary calls per call. We proceed as before, thus the non anticipating character
of ¢ and 9 allows us to write

dC = ¢dB + dC’ (5.43)
and, after using It6 lemma (5.38) for both dC' and dC’, some simple manipulations

yield

2
l(ct + ;—TCVV —rC+ (u+V)SCs)

12 A similar situation appears in the stochastic volatility models (Scott (1987)).
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2
~4(Cy + ;—TC(,V —rC" + (u+ V)SC'S)] dt = (¥Cl, — Cy) dV.
(5.44)

This equation can be transformed to a deterministic one by equating to zero the
term multiplying the random differential dV (t) given by Eq. (5.3). This, in turn,
will determine the investor strategy giving the relative number of secondary calls to
be held. Thus, instead of B-S delta hedging, we will have the “psi hedging”:

Cv

(G o (5.45)
Then
L[Cjt + 0-_20VV —rC+ (/11 + V)Sos]
CV 2T
1 ! o’ ! ! !

This equation proves, as otherwise expected, that the call has the same partial
differential equation independent of its maturity and strike. This has been suggested
in a more theoretical setting for any derivative on the same asset (Bjork (1998)).

On the other hand, the two options C' and C’ have different strikes. Then, anal-
ogously to the separation of variable method used in mathematics (Mynt-U (1987))
and proceeding in a similar way to that used in the study of SV cases, both sides
of Eq. (5.46) are assumed to be equal to an unknown function A(S,V,t) of the
independent variables S, V', and ¢t. We thus have

2
C, + ;—TCVV + (u+V)SCs — rC = \Cy. (5.47)

In the stochastic volatility literature, the arbitrary function A(S,V,t) is known as
the “risk premium” associated, in our case, with the return velocity (Scott (1987),
Heston (1993)). In the Appendix C we show that the risk premium A is given by

AS, V1) = ; (5.48)

A substitution of Eq. (5.48) into Eq. (5.47) yields a closed partial differential for the
call price C(S,V,t) which is
o? V
Ct + ;CVV - ;CV + (,u + V)SCS —rC =0. (549)

For the European call, Eq. (5.49) has to be solved with the “final condition” (5.30)
at maturity time which is C(S,V,T) = (S(T) — K)*. The solution to Eq. (5.49)
subject to Eq. (5.30) is given in Appendix D and reads

G5Vt =[SO N KNG, (550
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where z; = 21(S,V,T — t), 2o = 23(S,V,T — t) are given by Eq. (D.8) of Appendix
D, and
6(t7 V) = m(ta V) + Kll(t)/Qa

where m(t, V) and Ky (t) are given by Egs. (5.8) and (5.9).

The option price (5.50) depends on both the price S and the velocity V' of the
underlying asset at time ¢, ¢.e., at the time at which the call is bought. They are
therefore the initial variables of the problem. However, while the initial price S is
always known, the initial velocity V' is unknown. The velocity is thus assumed to
be in the stationary regime so that its probability density function is as shown in
Eq. (5.10). We therefore average over the unknown initial velocity and define C by

C(S,1) = [ : C(S, V, t)psr(V)dV, (5.51)
and from Egs. (5.10) and (5.50) we have
C(S,t) =D [SeTIN(z) - KN(z)], (5.52)
where
B(t) = ut + K(t)/2, (5.53)

k(t) is the variance defined by Eq. (5.11), and Z; 5 are given by Eq. (D.9) of Appendix
D. As mentioned above, Eq. (5.52) cannot be our final price yet because it still
depends on the mean return rate p. This rate could differ depending on whether
is estimated by the seller or buyer of the option and therefore, in Eq. (5.52), there
are hidden arbitrage opportunities®3.

Therefore, we must proceed in a similar way as in the martingale option pricing
theory of Eq. (5.62) and define the final call price, Cop/(S,t), as price C when [(t)
is replaced by rt. That is:

Cou(S,t) = TS, t)‘ﬂ (5.54)

(t)—rt’

and this price completely agrees with the one derived in Section 5.2 (see Eq. (5.31)).

5.4.3 The projected process and the modified portfolio

Suppose we start from the modified portfolio (5.42) but assuming that the share

price is given by the projected process (5.23) instead of the two-dimensional O-U

process (5.2)—(5.3). In this case, one can obtain the same option price as before (cf.

Eq. (5.31)). However, the hedging strategy will be given by the following function
Cs

U510 =& (5.55)

13Gee Section 2.1 for the arbitrage restrictions on option prices. These are summarized in Ta-
ble 2.7.
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Let us prove this. We start from Eq. (5.43):
dC = ¢dB + pdC',
Now, instead of Eq. (5.44) we have (see It6 lemma (5.28))

l(ct + %/%(T —1)Css —1C) — 3 (C} + %/‘{(T —t)Clhg — rC")]dt

= (Cs — Cg) dS. (5.56)

And the removal of risk implies Eq. (5.55). The psi hedging given by Eq. (5.55) is
equivalent to the psi hedging defined in Eq. (5.45) although now it is represented
in terms of the final price Coy(S,t) instead of the intermediate price C(S,V,t).
Substituting Eq. (5.55) into Eq. (5.56) and reasoning along the same lines as above
(see Eq. (5.47)) we obtain

C, + %,:@(T —4)S2Cs — rC = ACs, (5.57)

where A = A(S, t) is the risk premium for the effective process which is now obviously
independent of the velocity V. Combining Eqs. (5.23), (5.28) and (5.57), we get

dC(S, ) = {rc + [g o+ ;n( )] SCS} dt + /(T = £)SCsdW (1)

(5.58)
Hence, the conditional expected value of dC' reads
BdC|C] = {rC + [g ot k(T - )] scs} (5.59)
but the equilibrium of the market implies that E [dC|C]| = rCdt. Therefore,
A=—S [u + %/{(T - t)] , (5.60)

and Eq. (5.57) reads
Ct—i-%m( —1)S*Cg5 — rC + {,u—i- ;m( )] SCs =0,
Finally, the absence of arbitrage opportunities requires the replacement (see Eq. (5.53))
p+ &(T—1)/2 — 1.
Thus, the option price equation is
Cy=rC —rSCs — %/%(T —1)S%Cys, (5.61)

which agrees with Eq. (5.29).

Note that both procedures, the original B-S method presented in Section 5.2
and our method, result in the same partial differential equation for the call price.
However, each method uses a different hedging strategy because they start from a
different portfolio.
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5.5 The call price by the equivalent martingale
measure method

We will now show that, in the present case, the price obtained by martingale methods
completely agrees with our extended B-S price (5.31). As we have seen in Section 4.5,
the equivalent martingale measure theory imposes the condition that, in a risk-
neutral world, the stock price S(t) evolves, on average, as a riskless bond.

Let p*(S,tSo,ty) be the equivalent martingale measure associated with asset
price S(t) conditioned on S(ty) = Sp. Define the martingale conditional expected
value

E* [S(1)[So] = /O Sp*(S,t|So, to)dS.
Then the risk-neutral assumption requires that
E*[S(t)]S] = Spertto),

where r is the constant spot interest rate. On the other hand,
BIS(®)ISo] = |~ Sp(S,t[So, t)dS.

Assuming that the initial velocity is in the stationary regime, the marginal density
p(S,t|Sty) is given by Eq. (A.16) of Appendix A. Therefore,

E[S(t)[So] = Soexp [B(t —to)],

where 3(t) = pt + k(t)/2 with k(t) given by Eq. (5.11). We thus see that the
equivalent martingale measure is accomplished by the replacement

B(t) — rt. (5.62)

In consequence,

P*(S, 110, to) = Lo {Jln(S/S@ —r(t—to) + Rt = to>/2]2},

Sy/27k(t — to) 2k(t — to)

(5.63)

which is the so called the risk-neutral pdf for the stock price and it is a consequence
of the absence of arbitrage demand. Now, it is possible to express the price for the
European call option by defining its value as the discounted expected gain due to
holding the call. That is (¢f. Eq. (4.31))

C*(S,1) = e TOE(S(T) — K)*|S(t) = §]
= e | “(S' = K)p*(S', TS, 1)dS", (5.64)

K
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hedging

moneyness

Figure 5.7: Hedging in terms of the moneyness

Psi hedging and delta hedging as a function of the moneyness S/K. The solid line represents psi
hedging when 7 = 1 day, the time to expiration is T — ¢t = 20 days, and the exercising price of the
secondary call is K' = 0.9K. The dotted line corresponds to the delta hedging still assuming the O-U
asset model with the same correlation and expiration time. The dashed line corresponds to B-S delta

hedging (r and o as in Fig. 5.2).

and the final result for the call is obtained by calculating the expected value with the
equivalent martingale measure defined in Eq. (5.63). The martingale price agrees
exactly with our previous price in Eq. (5.31), C*(S,t) = Coy(S,t). We can thus
say that, in the O-U case, both option pricing methods are completely equivalent
although martingale theory does not require the construction of a portfolio and
ignores any hedging strategy.

5.6 Greeks and hedging

We briefly derive the Greeks for the O-U case. Since the O-U call price has the same
functional form as the B-S price but replaces o%(T —t) by x(T —t), the O-U Greeks
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Figure 5.8: Relative hedging cost in terms of the moneyness

We plot the relative hedging costs ¢»C'/K and §S/K as a function of the moneyness S/K. The solid
line represent psi hedging cost when 7 = 1 day, the time to expiration is 7' — ¢t = 20 days, and the
exercising price of the secondary call is K’ = 0.9K. The dotted line corresponds to the delta hedging

with 7 =1 day and 7' — ¢t = 20 days (r and o as in Fig. 5.2).
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will have the same functional form as B-S Greeks with the same replacement except
for vega, v = 0C/0c, and § = 0C/0t. Thus, for § = 0C/0S, v = §?°C/dS?, and
0 = 0C/0r, we have (cf Section 3.5)

ef(dIOU)Q/2

You = )
T S (T — 1)

Souv = N(d%), oov = K(T —t)e " T=IN(dY).

(5.65)

Since d?§ > dP’; for all S and ¢ and N(z) is a monotone increasing function, we
see that dpoy > dps and poy > os. Hence, the O-U call price is more sensitive to
changes in stock price and interest rate than the B-S price.
On the other hand, from Eq. (5.31) and taking into account the identity proved
in Section 3.5
SN'(dy) — Ke "9 N'(dy) = 0, (5.66)

we have ,
vou = (8/0)[K(T — t)/QW]l/Ze_(d?U) ?, (5.67)

and
0.2(1 _ ef(Tft)/'r)
2,/2mk(T —t)

Since dIOU > dfs, one can easily see that voy < vpg for all values of S/K, T —t
and 7. Thus our correlated call price is less sensitive to any change of underlying
volatility o than is the B-S price.

We conclude with the psi hedging. For the two-dimensional O-U case the hedging
strategy is given by the function (S, V, t) specifying the number of secondary calls
to be hold. However, the hedging given by Eq. (5.45) depends on the velocity V' and
is not expressed in terms of the final call price Coy = C(S,t). As we have shown
in Section 5.4.3, psi hedging in terms of Coy can only be derived from the effective
one-dimensional process (5.23). In this case, the removal of the randomness coming
from dS implies that hedging is given by Eq. (5.55). Since Cs = oy, we see from
Egs. (5.55) and Eq. (5.65) that

Bou = —Ke T |- N(d9V) + e [0 (5.68)

N(dy)
N(dr)

W(S,t) = (5.69)
Now, we take the secondary option to be an European call with maturity 7" and
exercising price K' < K, where T and K refer to the primary option. We plot
in Fig. 5.7 the psi hedging as a function of the moneyness. We see there that the
¥ hedging is always greater than doy and dpg hedgings. Since N(d}) — 1 when
K’ — 0, the psi hedging approaches to the delta hedging dor; as the moneyness of
the secondary call tends to infinity. This is consistent with the fact that secondary
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calls have the same price as the underlying stock when its exercising price is zero,
i.e., C' — S as K' — 0 (see Eq. (5.31)). Therefore, having secondary calls with
exercising price equal to zero is equivalent to own underlying shares and the O-U
psi hedging coincides with the O-U delta hedging.

As we have mentioned, psi hedging 1 indicates the number of secondary calls
per call to be hold if we follow a risk-free strategy with the modified portfolio (5.41).
Therefore, the money invested to carry out this strategy is given by ¥C’. That is

W' = %EZS [SN(d}) — K'e TN (d)] (5.70)
where we have combined the Egs. (5.31) and (5.69). On the other hand, delta
hedging also indicates the number of shares per call to be hold in a risk-free strategy
with the B-S portfolio (5.24). And, analogously, the money necessary to perform
this strategy is

dS = SN(dy), (5.71)
where § is given by Eq. (5.65). We compare these quantities in order to know which
hedging is cheaper for the investor. From Egs. (5.70) and (5.71), we see

pC' o K'e""H N(dy)
§S S N(d}) ’

but'4

1 —r(T— 1
0< K'e "™ N(d) <1
S N(dy)

Therefore, ¥YC' < §S and psi hedging is always less expensive than delta hedging.
Note that when K’ — 0 both strategies have the same cost. In Fig. 5.8 we plot,
as a function of moneyness, the relative psi hedging cost, ¥ C’/K, along with the
relative delta hedging cost, 6.5/ K. We see there that psi hedging is considerably less
expensive than delta hedging and this difference increases with moneyness. Indeed,
for an ATM call (S/K = 1.00) and with parameter values as that of Fig. 5.8, delta
hedging is approximately 800% more expensive than psi hedging.

Combining Egs. (5.34), (5.55) and (5.66) one can easily show that when 7 = 0
the O-U psi hedging is ¥ps = N(dP%)/N(dP5") 5, where the prime refers to the
secondary call. Since § = C's = N(d;), we have

dBs
Yps = Sy
Finally, for the secondary call, whose exercising price goes to zero, 6z — 1 and,
again, B-S psi hedging and B-S delta hedging coincide.

14This is straightforward to prove from Eq. (5.70) since ¥C' > 0.
15We use the subscript BS in ¢gg to indicate that this hedging refers to an uncorrelated stock
(r =0), as in the B-S world
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Summary

We have developed a theory for option pricing with perfect hedging in an inefficient
market model where the underlying price variations are auto correlated over a time
7 > 0. This is accomplished by assuming that the underlying noise in the system
is derived by an Ornstein-Uhlenbeck, rather than from a Wiener process. After
obtaining an effective one-dimensional market model, we have achieved a closed
expression for the European call price within the Black-Scholes framework and find
that our price is always lower than the Black-Scholes price. We have obtained
the same price if we start from a modified portfolio although now we get a different
hedging strategy than that of Black-Scholes. We have compared these strategies and
study the sensitivity of the call price to several parameters where the correlation
effects have been also observed.

Appendix A. Mathematical properties of the model

We present some of the most important properties of the model given by the pair
of stochastic equations in Egs. (5.5) and (5.6). Their formal solutions are

t !
V() = Voe 0 4 2 [T et gy (#),

T Jto

and
t t’ 7 1
R(t) = p(t — to) + Vor(1 — e~ =ty 4 g/ dt’/ e CTTaw ("), (A1)
to to

where we have assumed that the process begun at time ¢, with initial velocity V,
and return Ry = 0. The return R(¢) has the following conditional mean value

E[R(t)|[Vo] = p(t — to) + 7(1 — eIV,
and variance

VRG] = (¢~ 1) 27 (1 = ) £ T (1 2000

Since (R(t),V(t)) is a diffusion process in two dimensions, its joint density
p(R,V,t) satisfies the following Fokker-Planck equation (Gardiner (1985))

0.2

v
pe=—(n+V)pr+ —bv + o2 PVV (A.2)

This is to be solved subject to the initial conditions R(ty) = 0 and V (¢5) = V4, that
is



140 Chapter 5. Option pricing and perfect hedging on correlated stocks

A first step towards solving the problem (A.2)—(A.3) is the definition of the joint
Fourier transform (i.e., its characteristic function)

(w1, wa, t) :/ dRei“’lR/ dve?Vp(R,V,t).

Then problem (A.2)—(A.3) becomes
Orp = iwr g + (w1 — wo/T)w1 8,0 — (02 /278w, (A4)
So(wla w2, 1= 0) = eiw2V0' (A5)
We look for a solution of the form

plwr, wa, ) = exp {ilwimi (t) + woms (8)] — [Kui ()] + Kis(Hwnws + Koa (3]},
(A.6)
where m;(t) and K;;(t) are functions to be determined. We substitute Eq. (A.6)
into (A.4) and identify term by term. We have

my = p+ ma, Ty = —my/T;
K22+(2/7')K22 :0'27'2, K12+(1/T)K12 :2K22(t), K11 = 2K12,

with the initial conditions, according to Eqs. (A.5)—(A.6), given by
my(0) = Vo, mai(0) = Ky5(0) =0 (4,7 =1,2).
The solution reads
ma(t) =t + Vor (1—€e7/7), ma(t) = Voe /7,

and K;;(t) are given by

I _ —t/T Z 2T
Ku(t)=0 [t 2r (1—e7'/7) + 5 (1-e )] , (A.7)
Ko) =L (1=, Kp(t)= 2 (1— 2" A8
12(t)—5( —e ), 22@)—5( —e ), (A-8)
The inverse Fourier transform of Eq. (A.6) yields the Gaussian density
1 V — Vye (t—to)/m)2
p(R, V,t|Vy, t0) = e {—( - )
27 /et K (t — to)] 2K (t — to)

[Koa(t — to) (R — m(t — to, Vo)) — Kua(t —to) (V — ‘/06—(75—750)/7)]2
N 2Ky (t — to) det[K (t — to)] }
(A.9)
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where
det[K ()] = K11 (t) Kaa(t) — Kio(t)- (A.10)
and

m(t, Vo) = pt + Vot (1 - e_t/T) . (A.11)
Notice that the joint density (A.9) is a function of the time differences ¢ — tq where
to is the initial observation time, so that the two-dimensional diffusion (S(t),V (t))
is a time homogeneous process and, without loss of generality, we may assume that
t() = 0.
The marginal pdf of the velocity V' (),

p(V,UV) = [~ p(R,V,tVi)dR,
is

p(V, Vo) =

V = Voe 1)
YE

————exXp
2r K. 29 (t)

In the stationary regime (¢t — 00) we find a normal density independent of the initial

velocity:

]_ 2 2
2(V) = ——— eV, A13
Pst(V) = (A.13)

Analogously, the marginal density of the return R(t),

(R, Vo) =/_ (R, V,t|Vy)dV,
1s

p(R,t|Vp) =

o kn) {_ 2K (1)

If we assume that the initial velocity V5 = V(0) is a random variable distributed
according to the pdf in Eq. (A.13). We can therefore average the above densities to
obtain a pdf independent of V;. That is,

p(RV,t) = [ p(R, V. tVo)pa(V)dVe,
and similarly for the marginal pdf’s p(R,t) and p(V,t). Since we are mainly inter-
ested on the marginal distribution of the return we will give its explicit expression.
Thus, from Egs. (A.13) and (A.14) we have

M] , (A.15)

1
Y R [_ 2 (1)
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where k() is given by Eq. (5.11). Alternatively, the distribution of the underlying
price S = Spe® is given by the log-normal density

(InS/Sy — ,ut)Q]
2k(t)

p(S,1|Sp) = %exp [— (A.16)

27k (t)

From this we easily see that the conditional probability p(S’, T|S,t) when ¢t < T is

p(SI,T‘S, t) = [11’1 SI/S — /j,(T - t)]2‘| |

1
S 27 k(T — t) o l_ 26(T — )

(A.17)

Appendix B. The Ité6 formula for processes driven by O-U
noise

In this Appendix we generalize the Ito formula for processes driven by Ornstein-
Uhlenbeck noise. This is applied to the share price S(¢) which is governed by the
pair of stochastic equations (5.2)—(5.3)

V)

T

dS(t) = S(u+V)dt,  dV(t) = ——Ldt + gdW(t). (B.1)

Consider a generic function f(.S,V,t) which depends on all of the variables that
characterize the underlying asset. The differential of f(S,V,t) is defined by

df(S,V,t) = f(S(t+dt), V(t+dt),t+dt) — f(S(t),V(t),1). (B.2)

But the Taylor expansion of (B.2) yields
1 1
df (S, V:t) = fsdS + fvdV + fudt + 5 fssdS® + S fyvdV* + foydSdV + -, (B.3)

where the expansion also involves higher order differentials such as (dt)?, (dS)3,
(dV)3, etc. However, the differential of the Wiener process, dW, satisfies the well-
known property, in the mean-square sense, dW (t)? = dt (cf. Section 3.1). And from
the pair of equations (B.1) we then see that dS? is of order dt* while dV'? is of order
dt and dSdV is of order dt*/?. Therefore, up to order dt, Eq. (B.3) reads

2

df (S,V,1) = fsdS + fydV + fodt + % foydt, (B.4)

which is the It6 formula for our singular two-dimensional process (5.2)—(5.3).
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Suppose now we start from the effective one-dimensional SDE (5.17)

dR(t) = pdt + /(T — £)dW (2). (B.5)

We will prove that the corresponding SDE for the stock price defined as S = Speft
is given by Eq. (5.23). In effect, substituting Eq. (B.5) in the Taylor expansion

1
dS(R) = SrdR + 55'RRdR2 +--,

neglecting orders higher than dt and taking into account that dR? = &(T — t)dt (in
mean square sense), we finally obtain

o = e+ R = /2] + /KT~ 0w ), (B.5)

which is Eq. (5.23).

Moreover, we can also give the differential of a generic function f(S,¢) when
underlying obeys SDE (B.6). In this case, we have

df (S,t) = fsdS + fodt + %R(T — )52 fsgdt, (B.7)

where again we have neglected higher order contributions than dt.

Appendix C. A derivation of the risk premium

We proceed to find a closed expression for the arbitrary function A(S,V,t) that
appears in Eq. (5.47). The call price C is a function of S,V, and t. We now
consider this function taking into account that S = S(t) and V = V/(¢) follow
Egs. (5.2) and (5.3), respectively. This therefore allows us to evaluate the random
differential dC using the It6 lemma, as a result we find that

2
dC = lCt + (p+V)SCs + ;—TCVV] dt + CydV.
After using Eqgs. (5.47) and (5.3), we have

dc = [rC + (/\ - K) CV] dt + Zoyaw. (1)
T T

The expected value of dC, on the assumption that C(¢) = C is known, reads

EldC|C] = [ro + ()\ - ;) CV] dt. (C.2)
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We claim that this average must grow at the same rate as the risk-free bond:
E[dC|C] = rCdt, (C.3)

since otherwise the option would not be in equilibrium (Hull (2000)). In some sense,
this assumption is similar to that of the equivalent martingale measure demand
expecting that markets grow in average as the risk-free bond (cf. Section 4.5).
The substitution of Eq. (C.3) into Eq. (C.2) yields the following expression for
the risk premium A(S, V, t):
r= Y (C.4)

T

Appendix D. Solution to the problem in Egs. (5.49)—(5.30)

We will solve Eq. (5.49) subject to the final condition in Eq. (5.30). Define a new
independent variable Z
S =e?, (D.1)

where the domain of Z is unrestricted. The problem posed in Egs. (5.49)-(5.30)
now reads

V 2

Cio=1rC—(u+V)Cy+—Cy — g—Tva,

T
C(Z,V,T) = max[e? — K, ).

The solution to this problem can be written in the form
C(Z,V,1) = / iz / dV' maxle? — K|G(Z,V,4|Z',V',T), (D.2)
where G(Z,V,t|Z',V',T) is the Green function for the problem (Mynt-U (1987)),

i.e., G(Z,V,t|Z', V', T) is the solution to

2

v
Gy =1G — (u+V)Gy+ —Gy — —Gyv, (D.3)
T 2T
with the final condition
Gz, V,T\Z',V'\T)=06(Z - Z")o(V = V"), (D.4)

where §(X — X') is the Dirac delta function. Define G = e "G, then the final-value
problem in Egs. (D.3) and (D.4) reads

2

_ vV _
Gt = —(,U, + V)GZ + ;GV - ;-_TGVV’ (D5)
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G(Z,V,T\Z'\V'\T) =e"™6(Z — Z)6(V = V). (D.6)

Note that Eq. (D.5) is the backward equation corresponding to Eq. (A.2). Therefore,
Eq.(A.9) permits us to write the solution to the problem posed in Egs. (D.5)—(D.6)
(Gardiner (1985)). This solution implies that G is

(1) [V’ _ Ve—(T—t)/T]2
G(Z,V,t|Z',\V',T) = {

97 \/det[K (T — t)] TPV 2K )

[Koo(T = ) (Z' = Z+m(T = 1,V)) = K(T 1) (V' = Ve T-0/7)]°
N 2Ky (T — t) det[K (T — £)] }

(D.7)

where det[K (t)], K;;(t), and m(t,V) are defined in Egs. (A.10)-(A.11).
Substituting Eq. (D.7) into Eq. (D.2) and finally reverting to the original vari-
ables we obtain Eq. (5.50) with

L In(S/K) +m(T —t,V) + K1 (T —t)
b Ku(T — 1)

y 29 = 21 — Kll(T—t).

(D.8)

Finally it can be shown, after some lengthy but simple manipulations, that the
functions z; 9 = Z,2(S,T — t) appearing in the averaged price C(S,t), Eq. (5.52),
are given by
In(S/K T—1 T—1
21: n( / )+,U( )+l€( ), 22:21— K)(T—t), (Dg)
k(T —t)

where £(t) is given in Eq. (5.11).
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Chapter 6

A correlated stochastic volatility
model

During decades, the diffusion process known as the geometric Brownian motion has
been widely accepted as one of the most universal models for speculative markets. It
was first proposed by Osborne (1959) when he observed that empirical distributions
of prices were biased and in disagreement with the theoretical distribution of the
arithmetic Brownian dynamics first proposed by Bachelier (1900).

However, specially after the 1987 crash, the geometric Brownian motion and its
subsequent Black-Scholes (B-S) formula were unable to reproduce the option price
data of the real markets. Several studies have collected empirical option prices in
order to derive their implied volatility (i.e., the volatility that underlying should
have if B-S price formula hold). These tests conclude that the implied volatility is
not constant and it is well-fitted with a U-shaped function of the moneyness and
whose minimum is at moneyness near to 1, ¢.e., when current stock price is equal to
the striking price. This effect is known as the smile effect and shows the inadequacy
of the Black-Scholes model since this assumes a constant volatility!.

A possible way out to this inconsistency is assuming that volatility is not a
constant but an unknown deterministic function of the underlying price. The de-
terministic volatility still allows to manage the option pricing within the B-S theory
although in most of the cases it is not possible to derive an analytic option price.
Within this approach, there exists the ARCH-GARCH models (Engle (1982)) and
their subsequent extensions (Bollersev et al. (1994)). These models do well in de-
scribing the implied volatility but their disadvantage is that some of their parameters
substantially change with time frequency?.

The stochastic volatility (SV) models are another possible choice. These models

!The smile effect is fully documented in the literature (see for instance Jackwerth and Rubin-
stein (1996))

2See Engle and Patton (2001) for more details on parameter estimation from data assuming the
ARCH-GARCH approach.
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assume the original log-Brownian model but, as their name indicates, with volatility
being random. Although SV models as known today appeared in the late eighties
(see below), there seems to be some precedent like the work of Clark (1973) suggest-
ing to model asset returns with an extra “subordinated stochastic process”. This
extra process modifies the value of the volatility at randomly distributed times. In
Clark’s own words: “The different evolution of price series on different days is due
to the fact that the information is available to traders at a varying rate. On days
when no new information is available, trading is slow, and the price process evolves
slowly. On days when new information violates old expectations, trading is brisk,
and price process evolves much faster (Clark (1973), p.137)”.

At late eighties several different SV models were presented by Scott (1987),
Wiggins (1987), and Hull and White (1987). All of them propose a two-dimensional
process involving two independent variables: the stock and the volatility. These
works are basically interested on option pricing theory and ignore the statistical
properties of the market model, although they are indeed able to reproduce the
smile effect.

After then there have appeared several papers extending and refining the original
SV models but again many of them are solely interested on adequately describe
empirical option prices. Stein and Stein (1991) is an exception to this tendency
because they study the most important statistical properties of a volatility model
following an Ornstein-Uhlenbeck (O-U) process.

We believe that the relative small number of works dealing with market dynamics
based on SV models is essentially due to two reasons: (i) Their statistical properties
are difficult to be analytically derived, and the analysis is even much more involved
when there are correlations between volatility and stock. (ii) It is commonly asserted
that empirical data available are not enough for obtaining a reliable estimation of
all parameters involved in an SV model (see e.g. Fouque et al. (2000b)).

Our present work wants to modify these statements for the correlated Ornstein-
Uhlenbeck stochastic volatility (O-U SV) model because we are able to analytically
derive the main statistical properties of it. On the other hand, the leverage correla-
tion recently observed by Bouchaud et al. (2001) allows us to estimate all parameters
involved not only in our O-U SV process but eventually in any SV process.

Recent research on empirical markets data has provided a set of requirements
that a good market model must obey. In this regard Engle and Patton (2001) have
listed a number of stylized facts about the volatility. The results we will herein
derive conclude that the SV models are good candidates fairly accomplishing these
stylized facts. We will prove this and confront the statistical properties of our
correlated O-U SV model with the statistical properties of the daily return changes
for the Dow-Jones stock index.

The chapter is divided in 5 sections and is a preliminary version to the article
Masoliver and Perell6 (2001c). After this introduction, we present our stochastic
volatility market model in Section 6.1 and study the statistical properties of the
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volatility in Section 6.2. Section 6.3 is specifically focussed on the leverage effect.
Section 6.4 is devoted to show how to estimate from the Dow-Jones index (1900-
2000) the parameters of the model. Finally, Section 6.5 concentrates on the deriva-
tion of the probability distribution through obtaining the characteristic function.
Technical details are left to the Appendices A and B.

6.1 The stochastic volatility market model

The starting point of any stochastic volatility model is the log-Brownian stochastic
differential equation:

%(tt)) = pdt + odWy(t), (6.1)
where p is the drift and o is the volatility. The SV models refine this dynamics
taking 0 = o(t) to be stochastic. There exist a large class of such models but,
to our knowledge, the dynamics of ¢ is not definitively associated to any specific
process (see the monograph of Fouque et al. (2000b) or the review by Ghysels et
al. (1996)). We choose the Ornstein-Uhlenbeck (O-U) stochastic volatility model
because, as we will see shortly, it is one of the simplest approaches still reproducing
the main observed features of markets. We thus assume that the random dynamics

of o(t) is given by (Stein and Stein (1991))
do(t) = —a(o — 0)dt + kdW(t). (6.2)

Equations (6.1) and (6.2) contain a two-dimensional Wiener process (W1 (t), Wa(t)),
where dW;(t) = &(t)dt (i = 1,2), and &(¢) is Gaussian white noise processes with
7ero mean, i.e.,

El&Gt)] =0 and E[&()&()] = pyo(t —t'). (6.3)

We note that the cross-correlation is given in terms of the Dirac delta function (cf.
Eq. (3.2)), i.e., (z) = 0 for all z # 0 and

/ " 8(2)6(x — 2)dz = { ¢(z) —0<z<a, (6.4)

oo 0 otherwise;

where ¢(z) is an arbitrary integrable function. Note that p;; = pj; and p; = 1,
hence the components of p;; are reduced to

1 ifi=
pij_{p if i # Jj, (65)
where the parameter p is given by Eq. (6.3), i.e., E [&1(¢)&2(t')] = pd(t —t') which, in
terms of the Wiener process, is equivalent to say that E [dW;(t)dWs(t')] = 0 when
t #t', and
E [dW1(t)dWs(t)] = pdt.
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Recall that Var[dW;(t)] = dt, therefore

_ E[dWi()dWs(0)]
\/Var[dW (t)[Var[d W, (t)]

is the correlation coefficient and hence?
-1<p<1.

The correlation coefficient p has no definite sign. However, it is known that a
negative p is able to provide the skewness observed in financial markets (Fouque et
al. (2000b)). One of our objectives herein is not only to show that p is negative but
also to estimate its value from empirical data.

In what follows it turns to be more convenient to work with the zero-mean return
defined as

dX = % — pdt, (6.6)
and whose SDE reads
dX(t) = o(t)dWy(t). (6.7)

The zero-mean return X (¢) has a simpler dynamics than the stock price S(t) because
it only contains the random fluctuation odW;. Nevertheless, this process still retains
the most interesting features of the whole dynamics. In the Appendix A, we give en
explicit expression for X (¢) and derive some key features.

6.2 The Ornstein-Uhlenbeck volatility process

We will now present the main properties of the O-U volatility. The starting point
is the solution of Eq. (6.2):

t !
o(t) = oge™ 1) 4 (1 — e~ 0)) 4 [ =gy (1), (6.8)
to

where we have assumed that the process started at time ¢t = ¢, when volatility was
0o. From now on we will assume that the volatility is in the stationary regime. This
means that the market started long time ago, thus {; — —oo, and the stationary
volatility reads

t 7
o(t) =0+ k / e~ O g, (1), (6.9)
whose average value, variance and correlation are

Elo]=0,  Varlo] = E[o?] - E[o]’ = ¥*/20, (6.10)

3This is a direct consequence of the Cauchy-Schwarz inequality (see, for instance, Grimmett
and Stirzaker (1992)).
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and
Elot+7)ot)] = 6%+ (k*/2a)e™". (6.11)

Note that these expressions provide a physical interpretation of the parameters of
the model, especially 6, the expected volatility, and «, the inverse of the volatility
“correlation time” (see below).

Before proceeding further we want to address the question of the sign of o(t).
If one adopts the O-U process (6.2) as a model for stochastic volatility one may
argue that o(t) has no definite sign which can be seen as an inconvenience for a
“good” SV model. Let us see that this is not really the case. First of all, the actual
evaluation of volatility is very difficult, not to say impossible, since volatility itself
is not observed. In practice, the so-called instantaneous volatility is derived from

lim VIX(t+ At — X0 /A, (6.12)

where we have used the zero-mean return defined above. Due to the limit At — 0,
this equation has to be taken as an infinitesimal difference. We thus define

instantaneous volatility = /dX (¢)2/dt. (6.13)
JFrom Eq. (6.7) and the fact dW? = dt, we get

instantaneous volatility = /o (t)? = |o(t)]. (6.14)

Observe that in this definition no sign is attached to the random variable o(t).

6.2.1 The correlated process

As we have mentioned in Section 6.1, our SV model permits correlations between
the stock and the volatility. We will now examine the important effects of these
correlations. From Eq. (6.9), we see that the correlation between the stationary
volatility and the random component of return variations, dW (t), is

Elo(t+r)awi()] = k [ T el B [ () AW (1))

which, taking into account Egs. (6.3)—(6.5), can be written as

t+7 ,
E k(wﬂ%lt(t)] = pk /_ N e )5t —tat'. (6.15)

Finally (c¢f. Eq. (6.4))

pke=7dt if 7 >0,

0 if 7 <0. (6.16)

Plo(e+ r)awi(0] - {
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Therefore, for correlated SV processes future volatility is correlated with past return
variations, although past volatility and future return variations are completely un-
correlated. Moreover, p determines the sign of the correlation (6.16) because £ is
positive. In the next section we will show how this property is able to reproduce
the leverage effect observed in real markets.

We finally note that, despite the existence of correlations, o(t) and dW;(t) are
independent random quantities. This is a direct consequence of It6 convention
for stochastic integrals, because process o(t) is independent of its driving noise
dWy(t) = & (t)dt. Hence, as 7 — 0~ we have

E[o(t)dW;(t)] = E[o(t)] E [dW:(t)] = 0. (6.17)
Since dX (t) = o(t)dW:(t). Eq. (6.17) implies that
E[dX(t)] =0, (6.18)

in accordance with the name “zero-mean return” given to X ().

6.2.2 Mean reversion

The effect of mean-reversion refers to the existence of a normal level of volatility
to which volatility will eventually return. This effect can be observed in financial
markets (Ghysels et al. (1996)). Practitioners believe that the current volatility is
high or low compared to a normal level of volatility and they assume that in the long
run, forecasts of the volatility should all converge to the same normal level. Hence,
the average of the instantaneous volatility (6.13) should converge to the normal level
as time tends to infinity, this is done, for instance, by Engle and Patton (2001) who
require that

lim £

t—o0

dt

Note that the limit over time ¢ indicates that process has begun in the infinite past
and, therefore, the volatility process is in the stationary state.

Our O-U volatility process appears to be an adequate candidate for describing
this effect. Let us show this. From Eq. (6.7) and taking in to account the indepen-
dence of o(t) and dW,(t) and that E [dW?] = dt, we get

ldX (t)?

00] = normal level of volatility.

. 2 T 2
lim E [dX (t)?|oo] = lim E [0°(t)|oo] d,
but the limit ¢ — oo indicates that volatility has reached the stationary state (see
Section 6.2). Hence, the second moment of sigma is given by Eq. (6.10), and therefore

2

k
O-U normal level of volatility = 62 + %% (6.19)
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Observe that the O-U volatility has a constant and non zero normal level of volatility
and this is in accordance with the observed mean-reverting property mentioned
above.

Moreover, the average over o2 given by Eq. (6.8), when the volatility is not yet
in the stationary state, is

E [az(t)|ao 0] = [ooe_at +6(1— e_o‘t)]2 + Ls (1 - e_2at) )
’ 20

We observe that this average quickly tends to the normal level (6.19) as «t increases.
This is the reason why the magnitude of « allows us to classify the SV models
into: (i) fast mean-reverting processes when 1/« < t, and (ii) slow mean-reverting
processes when 1/a > t.

6.3 The leverage effect

It is commonly known that positive or negative sudden changes in the return have
not the same impact on the volatility. Black (1976) was the first to find empirical
evidence on this and observed that the volatility is negatively correlated with return
variations. A qualitative explanation of this effect is that a fall in the stock prices
implies an increase of the leverage* of companies, which in turn entails more uncer-
tainty and hence higher volatility. Nevertheless, it has also been argued that the
leverage alone is too small to explain empirical asymmetries in prices (Ghysels et
al. (1996)). Another possible explanation is that news on any increase of volatility
reduce the demand of stock shares because of investor’s risk aversion. The conse-
quent decline in stock prices is followed by an increment of the volatility as initially
forecasted by news, and so on (Ghysels et al. (1996)).

Although the mechanism still lacks of a clear explanation, the leverage effect de-
nomination indicates this negative correlation. To our knowledge, the leverage effect
has only been studied in a qualitative manner® until very recently when Bouchaud et
al. (2001) have performed a complete empirical analysis containing new important
information on this issue.

Following Bouchaud et al. (2001) we quantify the leverage effect by means of the
leverage correlation function that we define in the form

EdX(t+7)%dX(t)]

L(T) = Var[dX ()2 , (6.20)

where X (t) is the zero-mean return defined in Eq. (6.6). Bouchaud et al. (2001)
have analyzed a large amount of daily relative changes for either market indices and

4Leverage is the use of credit to enhance speculative capacity.
5See, for instance, Ghysels et al. (1996) and Engle and Patton (2001).
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stock share prices and find that

—Ae7b if 7 >0,

(A > 0). Hence, there is a negative correlation with an exponential time decay be-
tween future volatility and past returns changes but no correlation is found between
past volatility and future price changes. In this way, they provide a sort of causality
to the leverage effect which, to our knowledge, has never been previously mentioned
in the literature (see for instance Fouque (2000b) or Bekaert and Wu (2000)).

Let us see how our correlated O-U SV model is able to exactly reproduce this
result. In effect, in the Appendix A we show that

Var[dX (t)] = 6*(1 + v*)dt (6.22)

where

v = k*/(206%), (6.23)

is the intensity of volatility fluctuations compared to the expected volatility (see
Eq. (6.10)). On the other hand we prove in Appendix A that

2pk €707 |1 4+ V2”7 |dt* if T >0,
E[dx(t+rdx@)] =4 " ° |1 e erait it - (6.24)
0 if 7 <.
Hence the leverage correlation function (6.20) is
vV 2a (14 v?e o7)
=2 T fi 2
L(T) =2p [ L+ 0770 ] e ort >0, (6.25)
and
L(t)=0  for7<0. (6.26)

We observe that sign of the leverage function is solely determined by the sign of
p. Therefore, the O-U SV model is able to reproduce the empirically observed
leverage correlation. In Fig. 6.1 we show the leverage effect for the Dow-Jones index
(1900-2000) and plot our O-U SV leverage function given by Eq. (6.25).

6.4 Forecast evaluation

Any acceptable market model is required to “forecast” the dynamics of the market.
In other words, the model must be able to reproduce the market behavior and have
an easy and systematic methodology for estimating its parameters. In our model
these parameters are p, k, , and a 5. Fouque et al. (2000a) for the same model only

6Tn all SV models there are usually the same number of parameters and they can be estimated
in a similar way as follows.
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Figure 6.1: The leverage effect in the Dow-Jones index

We plot the leverage function £(7) for the Dow-Jones index from 1900 until 2000. We see that there
exists a non-negligible correlation when 7 > 0 and negligible when 7 < 0. Observe that correlation
strongly fluctuates when —3 < 7 < 2. We also plot a fit in solid lines with our O-U SV leverage
function (6.25). This fit helps us to estimate « and p (see Section 6.4 and Table 6.2 for more details).
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estimate two of these parameters (k and 6) from the empirical second and fourth
moment of daily normalized stock changes. Unfortunately they cannot give a clear
estimation of the volatility auto-correlation time 1/« and of the magnitude of p
although it was already known that p has to be negative in order to reproduce the
desired skewness. Let us now see that with the help of the leverage effect we can
completely estimate all parameters of the model.

We will perform the empirical estimation of the Dow-Jones index daily return
changes by approximating dX by AX, i.e.,

dX (t) ~ X(t+ At) — X (1),
where At =1 day. From Egs. (6.22) and (A.7) of Appendix A, we have
Var[AX] = 0*(1+v)At,  Var[AX?] = 260" [4(1+7)* - 3] A,
where 1% = k*/(206%). We take the quotient of the variances and obtain

1 4 1Var[AX?]
(1522 3 6VarAX] (6.27)

In this way, we are able to estimate the value of v? once we know the empirical
values of these variances. The Dow-Jones index proportionates the daily variances
of AX and AX? and, subsequently, gives an estimated value for v2. Afterwards,
is estimated with the knowledge of v? and the empirical Var[AX]. In Table 6.1, we
briefly report these operations and give the corresponding estimation of v2 and 62
for the Dow-Jones index time-series from 1900 until 2000.

Since (1 + v?)? is always positive and (1 + v?)? > 1, then from Eq. (6.27) we see

that
4 1Var[AX?]

il ittt IO |
0< 3 6 Var[AX]? —
which is equivalent to
Var[A X2
2< ——————
~ Var[AX]?

Therefore, the kurtosis of our model, 5 = Var[AX?]/Var[AX]? — 2, has the bounds

< 8.

0< v <6, (6.28)

which shows that the model is never platykurtic. For the Dow-Jones index vy, = 1.72
and it is therefore consistent with requirement (6.28). However, as Cont (2001)
reports, there exists other markets or even intraday tick data possessing a higher
kurtosis outside inequality (6.28).

The leverage effect provides the way for estimating the correlation coefficient p
and the characteristic time 1/a. Indeed, the best fit of the leverage function (6.25)
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Table 6.1: The O-U SV estimation from the return variances

We estimate the parameters of our model from Dow-Jones historical daily returns from 1900 to 2000.
We take the variances given by Eq. (6.22) and use the identity (6.27) for deriving the estimated
quantities v and 6.

Estimators Dow-Jones daily return data Theoretical values
Var[AX (t)] 1.68 x 104 6? (14 v*)At

Var [AX (t)?] 10.5x 10~# 20 [4(v* +1)? — 3] A#?
Parameter estimation v? =0.18

6 = 18.9% year—'/?

Table 6.2: The O-U SV estimation from the leverage

We estimate the parameters p, a and k from the fit of the leverage correlation derived from the Dow-
Jones stock index data plotted in Fig. 6.1. For doing this, we take the v estimation given by Table 6.1
and assume that the leverage function is given by Eq. (6.29). Observe that magnitudes £(0%) and a
estimated from the Dow-Jones index are of the same order as those given by Bouchaud et al. (2001)
for a combination of several stock indices.

Estimators Dow-Jones data estimation
L(0T) -12.5

a 0.05 day~*

1/a 19.6 days

P -0.58

k= 200262 1.4 x 10~ 3days™"
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to the Dow-Jones daily data (Fig. 6.1) gives a characteristic time decay 1/« ~ 20
days. We thus compare the empirical leverage with our theoretical leverage (6.25)

when 7 — 07,
vV 2«
(1+v2)0’

and get an estimation of p once we know o = 0.04 days™! and »* = 0.18. Finally,
we can derive k from the definition given by Eq. (6.23) (see Table 6.1). All these
operations are summarized in Table 6.2.

In Fig. 6.2 we simulate the O-U SV resulting process with the parameters esti-
mated above. We follow the random dynamics for AX () and compare it with the
empirical Dow-Jones time series during approximately one trading year. We there
see that our model describes a very similar trajectory than that of the Dow-Jones.
This is quite remarkable, because we have simulated last year’s trajectory using
all past data of the Dow-Jones index with almost equal results to the actual case.
This, in turn, shows the stability of parameters. We may thus say that the model is
fairly useful for “predicting” the stock dynamics (at least for one year period) using
market history.

L(0%) =2p (6.29)

6.5 The probability distribution

We will now obtain the probability distribution of the model. This problem has
been recently addressed by Schébel and Zhu (1999) who, using the Feynmann-Kac
functional (see, for instance, Karlin and Taylor (1981)), end up with an expression
for the two-dimensional characteristic function of the joint process (R(t),o(t)). Here
we take a different path that, besides being simpler, allows us to get an analytical
expression of the return characteristic function, which has more practical interest
than the joint density. The analysis can be done in terms of the return R(t) =
In S(t)/So but we prefer to deal with the zero-mean return X (¢) since, although the
calculation is basically identical, the expressions derived are shorter and handier.

6.5.1 The characteristic function

Let po(z, 0, t|zo, 00, ty) be the joint probability density of the two-dimensional diffu-
sion process (X (t),o(t)) described by the pair of SDE’s given by Egs. (6.7) and (6.2).
This density obeys the following backward Fokker-Planck equation (Gardiner (1983)):

1
0)% - 50’

20°po Ppy 1 2 0°py
0o 0

0
D2 = OC(O'O - 0 2 pkO'() 2
0z 0og0zxy 2 00§

oty

(6.30)

with final condition

pg(.’]?, g, t‘LE(), oo, t) = 5(.’13 — .’L'()) (5(0’ — 0'0). (631)
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Figure 6.2: Path simulation and Dow-Jones historical time-series

We show a Dow-Jones daily returns sample path and the O-U SV process simulation with the parameters
given by Tables 6.1 and 6.2. The dynamics is traced over approximately a trading year (the empirical
path approximately corresponds to 1999 trading year).
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Before proceeding further we note that, since all coefficients in Eq. (6.30) are in-
dependent of z, zy,t and ¢y and the final condition only depends on the differences
x — xo and t — to, then (X (t),0(t)) is an homogenous process in time and return.
Therefore,

pa(z, 0, t|x0, 00, t0) = P2(T — g, 0,1 — ty|og). (6.32)
Moreover, one easily sees that the marginal density of the return,

oo

px(z — xo,t — to|oo) :/ p2(x — 20, 0,t — to|og)do,

—0oQ
also obeys the same partial differential equation than pe, Eq. (6.30), which due to
homogeneity can be written in the form”

Opx opx 1 ,0%x ?px 1 ,0%px
gr — 0= 0G50 TPk e T o e

where px = px(z — x,t — tg|op) and the initial condition is

(6.33)

px (T — o, 0|09) = 6(x — xp).

Partial differential equation (6.33) is the starting point of our analysis. Again, due
to homogeneity we can assume, without loss of generality that zo = 0 and ¢, = 0.
Observe that Eq. (6.33) is quite involved because of the correlation between the
volatility and the return, i.e., because of the crossed derivative term. Therefore,
there seems to be a tremendous task if one tries to attack the problem directly from
Eq. (6.33). However, Fourier analysis proportionates the necessary tools to obtain
an analytic solution of the problem. Solution that is expressed in terms of the return
characteristic function (cf) defined by

o
ox (w, t|op) :/ e“Tpx(z,tlog)dx.

This is done in Appendix B where we prove that

ox(w,t|og) = exp[—A(w, t)oy — B(w,t)oy — C(w, )], (6.34)
where
w? sinh nt

Alw,t) = — 6.35
(w,?) 2 ncoshnt—i—Csinhnt) ’ (6:35)

w?al coshnt — 1
B(w,t) = 6.36
(.1) n (ncoshnt+§sinhnt> ’ (6.36)

(wah)?

1
Clw,t) = [ p + iwpk — oz] t/2 + 3 In (cosh nt + %sinh nt)

(waB)? [2¢(coshnt — 1) + nsinhnt
203 n cosh nt + ( sinhnt

] . (6.37)

"Note that Eq. (6.30) is the backward Fokker-Planck equation while Eq. (6.33) is a forward
equation for x and ¢ but not for o.
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and

n= \/on — 2ipkaw + (1 — p?)k2w?, ¢ = a— iwpk. (6.38)

Furthermore, we obtain the unconditional characteristic function, ¢x(w,t), if we
average over oy which we assume is in the stationary regime. We thus write

ox(w,t) = /(px(w,t|00)pg(ao)dao (6.39)

with the stationary pdf®

1 (o — 0)2]
Po(0) = ——— exp | ——5—+—| - 6.40
) k2 o l k?/o (6-40)
Then from Egs. (6.34) and (6.39)—(6.40), we get
1 B2k /a — 40B — 46%A
ox(w,t) = ———=exp l—C—i— ] 6.41
ot = i A1 5 k2A]a) (641)

Note that this solution has the right limit when volatility is constant and non-
random. Indeed, in such a case k¥ = 0 and from Egs. (6.35)—(6.37) and (6.41) we
have

ox(w,t) = e 02 (6.42)

which is the cf of the zero-mean return when X (¢) follows a one-dimensional diffusive
process with constant volatility o = 6 (see Eq. (A.1)). Hence, solution (6.41) appears
to be consistent with the geometric Brownian motion model studied in Chapter 4.

6.5.2 Convergence to the Gaussian distribution

Let us see that, as ¢ — oo, our marginal distribution approaches to the Gaussian
density under certain circumstances. In other words, we will prove a Central Limit
Theorem for the model. The starting point of this analysis is Eq. (6.41) that as
at > 1 can be written in the following simpler form

w?a’6?

¢x(w,t) ~ exp l— ( o iwpk — o + n) t/2] ;o (at>1). (6.43)

This is not a Gaussian distribution yet, since n defined by Eq. (6.38) is an irrational
function of w. We have to assume an extra requirement. Specifically, we suppose
that

Fe, (6.44)
(6%

8Tn Chapter 5, we show that this is the stationary pdf for an O-U process.
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which means that volatility is weakly random. Indeed, & is the strength of the volatil-
ity driving noise’ while « tell us how large is its deterministic drift (see Eq. (6.2)).
Therefore the ratio k/a measures in some way the degree of volatility randomness.
Taking into account Eq. (6.44) we write (¢f. Eq. (6.38))

k1 ,k? k3
n:all—iwp&—i-iuﬂ?—i-O(@)].

Substituting this into Eq. (6.43) yields
px(w,t) ~exp{—w? [1+12 + O(k/a)| 0t/2},  (at>>1), (6.45)

where v? = k? /2a6?. The Gaussian density (6.45) proves the Central Limit Theorem
in our case.

6.5.3 Cumulants
Cumulants are defined as follows (Kendall (1987))

n

own

Infiox (w, )]

)
w=0

and are very useful for deriving statistical properties of the model. For instance, the
second cumulant reads

Ky = 07 (1 + 1/2) t, (6.46)

which results to be the integrated variance of dX (¢) (c¢f. Eq. (A.7)). The third and
fourth cumulants are respectively

2

ks =38 {2 ot = (1= e0)] + 2 [2at = (1 - 72)] } 6
and
Ky = kQOQ%{4[2at + atp? (6 + 467“) — (2 + 12p2) (1 — efat) +p° (1 — 6720“:)]
b 07 par sag? (1) - (1= ) (1482)] (6.45)

In terms of cumulants kurtosis is given by

K
Yo = —;L, (6.49)

K

9k is often known as the volatility of volatility (vol-vol).
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and measures the tails of the distribution compared to the Gaussian distribution.
Kurtosis is zero for a Gaussian distribution, negative for a distribution with tails
decaying faster than the Gaussian (platykurtic distribution), and positive for a dis-
tribution with tails decaying slower (leptokurtic distribution). Typically, markets
have positive kurtosis even reaching x4 = 50 in some cases which indicates a very
extreme non normality (Cont (2001)).

The kurtosis (6.49) of our model can be derived taking into account the cumulants
given by Egs. (6.46) and (6.48). The resulting expression is very similar to that of
the fourth cumulant (6.48) but with an extra constant factor. Its asymptotic limits
are rather simple to derive and read

61°(v? + 2)

ey <, (6.50)

and
V22 (1 + 4p%) + 4(1 1
yy ~ S JEu2p+);;2 L+l = (at>1). (6.51)
i From Eq. (6.50), we observe that even dealing with an infinitesimal time there will
exist a non negligible kurtosis. Conversely, from Eq. (6.51) we see that kurtosis
goes to zero as time increases and that the convergence is slow going as 1/t. In
addition, we observe that for short times kurtosis does not contain the correlation
p? but in the long run a non zero p? magnifies the kurtosis of the distribution (cf.
Egs. (6.50)—(6.51)).
Let us now turn our attention to skewness 7, defined in terms of third and second
cumulant as

=3 (6.52)

7= ,{3/2
and that quantifies the byass in the return distribution. A negative skewness in-
dicates that returns are more likely to decrease than to increase, while a positive
skewness indicates a higher probability of a return raising than a decline. Empirical
observations have found that financial markets have an slightly negative skewness
(Cont (2001)).

Similarly to the kurtosis derivation, the skewness defined by Eq. (6.52) is ob-
tained with Eqgs. (6.46)—(6.47) and the resulting expression is very similar to that of
Eq. (6.47) but with an extra constant factor. We limit ourselves to the asymptotic
cases
2at (for at < 1), (6.53)

v
~3p —
g P 1

v(r?+2) 1
(2 +1)32 oot
. From these equations we see that both at short and long times, skewness vanishes.
However, it decreases very slowly, more slowly than kurtosis (compare Eqgs. (6.51)

and

(for at > 1). (6.54)
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and (6.54)). Finally, we note that skewness is proportional to p and, in consequence,
the sign of p not only determines the leverage correlation sign but also the skew-
ness sign. Empirical observations of leverage and skewness indicate that p must be
negative (Cont (2001)).

6.5.4 Tails

It is well established that distribution of prices have heavy tails. There exists several
empirical studies quantifying this fact (see for instance Mantegna and Stanley (1995)
or Plerou et al. (1999)). Let us now study the existence of fat tails in our SV model.
Recall first that for long times, at > 1, the probability distribution is practically
Gaussian and there is no fat tail to look for. Therefore, we will search for heavy tails
at small to moderate times, ¢.e., when Central Limit Theorem is not applicable.

The tails of the distribution are determined by the shape of the density function
px (z,t) when z is large. A well known fact from Fourier analysis is that the large
x behavior of px(z,t) is given by the small w behavior of its characteristic func-
tion ¢x(w,t) (Weiss (1994)). Therefore, tails are derived from the characteristic
function (6.41) by taking the first two orders in the limit when w is small.

When w is small but time is not too long (i.e., at ~ 1) the expressions for A(w, t),
B(w,t) and C(w, t) are approximately given by (cf. Eqgs. (6.35)—(6.37))

w? Huw?

A(wat) ~ E(l - e—2at)’ B(w;t) ~ g(l - e—at)Z,

and
C(w,t) ~ (W0 +iwpk — )t/2 — (62 /4a)[2(1 — e *)? + 1 — e 2*]w?
-i-% In[1 — ipktw + (k*/40?)(2at — 2022 p* — 1 + e 2*")w?).
Thus from Eq. (6.41) we have

[+ (R?/40?) (1 — e )] V2 exp(—w?0%t/2 — iwpkt/2)
1 —ipktw + (k2/4a?)(2at — 20212 p% — 1 + e—20t)2]1/2°

¥Yx (wa t)

Again, taking into account that w is small and ¢ is moderate we get

1
1 — 2ia(t)w + b(t)w?’

ox(w,t) ~ (w—0), (6.55)

where
a(t) = pkt/4, and b(t) = k*t(2 — p*at) /8. (6.56)

The inverse Fourier transform for this asymptotic cf is

! 1 2 z| —a(t)x x 00).
px(e.) ~ o |~ (VP <0l —atwe) | (1 o)
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Hence the tails of the zero-mean return have an asymmetric exponential decay given
by

L 1 2 —a x T — 00
px(z, 1) ~ ool [—@ ( (1) + b(D) (t)) ] (z = o0), (6.57)
and
1 2
px(z,t) ~ m exp [@ ( a(t)? + b(t) + a(t)) x] ,  (z = —o0). (6.58)

Since a(t) = pkt/4, we see that the sign of p will determine which is the fattest tail.
When p is negative the fattest tail is the one representing losses and when p > 0 the
fattest tail corresponds to profits. If p = 0 there is no difference between the two
tails.

Finally, let us guess how the tails of price (not return) distribution are. We first
recall that the asymptotic expressions (6.57)—(6.58) refer to the marginal distribution
of X (t), that is, regardless the value of volatility at time ¢ and after averaging over
the initial volatility. In order to obtain the asymptotic form of price distribution
ps(S,t) out of the asymptotic form of px(z,t) we must know what is the relation
between S(t) and X (¢). For the general case this relation is given by Eq. (A.1) of
Appendix A and, since it corresponds to the two-dimensional case when no average
and marginal distribution have been performed, Eq. (A.1) involves X (¢), S(¢) and
o(t). We conjecture that if time is not too large X (¢t) ~ In[S(t)/Sy]. Therefore, for
the price distribution pg(S,t) we have the following power laws:

ps(S,1) ~ ﬁ (S—0), and  ps(S,1) ~ Sim (S>o0)  (659)
where
valt) =1+ 5o [:I:\/a(t)Q +b(t) — alt)
Summary

The stochastic volatility (SV) models are a possible way out to the observed in-
consistencies between the geometric Brownian model and real markets. The SV
models, as their name indicates, assume the original log-Brownian model but with
the volatility ¢ being random. We have assumed that the volatility follows one of
an Ornstein-Uhlenbeck process that also allows for correlations between the random
fluctuations of the price and volatility. With this model we have explained in a
quantitative way the leverage effect and other stylized facts, such as mean reversion,
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leptokurtosis and skewness. We have also estimated all parameters of our model
and observed that a simulated path (using the estimated parameters) is very similar
to the sample path of the historical evolution of the Dow-Jones daily index (1900-
2000). Finally, we have obtained a close analytical expression for the characteristic
function and studied the heavy tails of the probability distribution.

Appendix A. The zero-mean return

The zero-mean return has been defined through its differential dX by Eq. (6.6). Let
us first prove that X (¢) is explicitly given by

X (t) = In[S(£)/So] — it — % / "2t dt (A1)

Indeed, if we apply the It6 lemma to Eq. (A.1) and, as usual, keep orders smaller
than dt*/? we have

AX (1) = dS/S + 1 (dS/S)" — pdt — Sodt,
but dS/S = pdt + odW; and (dS/S)? = o?dt, then we obtain Eq. (6.7):
dX = odW,

and this proves the validity of Eq. (A.1).
We will now derive several averages concerning dX. We know from Eq. (6.18)
that
E[dX(t)]=0. (A.2)

Again taking into account the independence of o(t) and dW;(t) we write
E[dX?| = E [0®] E [aW/(1)?], (A.3)
but E [dW?] = dt, and using Eq. (6.10) we have
E[dx?] = (6” + k*/2a) dt. (A.4)
As to the fourth moment,
E[dx*] = E [o'] E [aW}],

we note that E [dW2] = 3E [dW?]* = 3dt? and we evaluate E [0%] using the station-
ary pdf (6.40). Hence

E[dX*] = 3 [3(k?/20)% + 6(k?/20)6% + 0*] di*. (A.5)
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The variances of dX? and dX are obtained from Eqgs. (A.4) and (A.5) and read
Var[dX (t)] = (6°+k*/20) dt, (A.6)
VarldX(8)?] = 2 [94 +4(k/20)" +8 (K/20) 02] de2. (A7)
We finally derive the following correlation function:
E[dX(t+7)%dX (1) = E [o()dWi(t)o(t + 7)2dWi(t + 7)?] .

Note that all variables are Gaussian which allows us to decompose the rhs of this
equation into average pairs, taking also into account that dWi (¢t + 7)*> = dt we can
write

E[dX(t+7)%dX (1) = {2E [o(t)o(t + 7)] E [o(t + 7)d Wi (2)]
+E [o(t + )] E [o(t)dWi (£)] bt

Combining this with Eq. (6.16), we get

5 [ 2pke™ " E[o(t)o(t +7)]dt* if T >0,
E[dX(t+7)%dX(t)] = { . 7 < 0.
and the volatility correlation (6.11) allows us to write

B [dX (¢ +7)%dX(1)] = { 2pk €77 [07 + (k?/20)e™*"|dt* if 7> 0,

0 if 7 <0.

Appendix B. The marginal characteristic function

In this Appendix we will obtain the expression given by Eq. (6.34) for the marginal
characteristic function ¢ x (w, t|og) of the two-dimensional diffusion process (X (t), o(t))
whose joint density po(z, 0, |29, 09, to) is the solution to the final problem posed by
Eqgs. (6.30)-(6.31).

The marginal characteristic function (cf) of process X (),

o0

ox(w, tlog) :/ ei“’sz(x,ﬂao)dx,

—0oQ

allows us to write Eq. (6.33) in the following simpler form:

: 0 1
+ [iwpkog — a(og — 0)]% - §0§w2gox. (B.1)
0

dpx I 1 262(PX

o 2 0ok
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The initial condition is
vx(w,0]og) = 1. (B.2)
By direct inspection one can easily see that the solution to problem (B.1)-(B.2)
is
ox (w, t|og) = exp[—A(w, t)oy — B(w,t)og — C(w,1)] (B.3)
where functions A(w,t), B(w,t) and C(w,t) are the solution of the following set of
ordinary differential equations

A = —2k*A% - 2(a — iwpk)A + w?/2 (B.4)
B = — [2k2A + (a — iwpk)] B +2abA
C = k(A-B?/2)+ abB, (B.6)

with initial conditions
A(w,0) = B(w,0) = C(w,0) = 0. (B.7)
Note that Eq. (B.5) is a linear equation and that the rhs of Eq. (B.6) does not

involve C(t). Therefore, their formal solutions are straightforward and read

B(t) = 200 | " At exp [—(oz — iopk)(t — ') — 2k /;A(t”)dt” i, (B3

t t
O(t) = k2 / [A(t) - B2(¢)/2] d + af / B(t')dt'. (B.9)
0 0
On the other hand Eq. (B.4) is more involved since it is a Ricatti equation. However,
the definition of a new dependent variable
_ Y
2k%y
turns Eq. (B.4) into the following linear second-order equation with constant coef-
ficients:

(B.10)

i+ 2(a — iwpk)y — k*w?y = 0.
The solution to this equation is
y(t) = 016)‘+t + CQ@A_t,

where C} 5 are arbitrary constants and

Ax = a — iwpk + \/(oz —iwpk)? + k2w?.
Substituting this into Eq. (B.10) yields
C ApeMt A (Cy/C)ert
2k2[eMt + (Cy/Cr)er1]

Now the initial condition A(0) = 0 gives C5/C; = —A,/A_ and the substitution of
A+ allows us to write A(t) in the form given by Eq. (6.35). Finally the substitution
of Eq. (6.35) into Eqs. (B.8)—(B.9) results in Eqgs. (6.36)—(6.37).

A(t)
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Chapter 7

Conclusions and perspectives

The year 1995 is considered to be the starting date of physicists bursting research
on financial markets. It was then when Mantegna and Stanley' published in Nature
an statistical analysis of the S&P 500 stock index using large time-series of intra-
day data. They concluded that index and price distributions are self-similar and
thus follow scaling invariance. Subsequent research by physicists has been mainly
focussed on analyzing the statistical properties of prices. Financial markets are very
appealing for physicists due to the availability of a huge quantity data which can
be easily confronted with proposed models. There is no need of laboratories and a
personal computer has all necessary tools to test theories. For this reason, the study
of speculative markets has been of great success among physicists and journals of
physics has decided to follow a publishing policy accepting papers on this discipline
which has been termed “econophysics”. We can thus say that, nowadays, physics
also studies financial markets.

This work represents an introduction to this new topic not only for me but also
for the whole research group directed by Prof. Jaume Masoliver. This research group
has been typically dedicated to study stochastic dynamics arising in phenomena such
as lasers, scattering in disordered media or the kinetics of process arising in chemical
physics among many others. In the present case, stochastic methods are applied to
financial markets.

Before applying the stochastic methods of physics to finance, we have revisited
and studied the work already done on this field by mathematicians. This effort is
collected in Chapter 2 after giving basic definitions in Chapter 1. The father
of the mathematical finance is considered to be Louis Bachelier since in 1900 he
presented his doctoral thesis devoted to study the random behavior of speculative
markets. More specifically, the thesis contains a proposed model for the stock,
now called the arithmetic Brownian motion, and afterwards gives a price for the

'Mantegna, R. N., H. E. Stanley, 1995, Scaling behavior in the dynamics of an economic index,
Nature 376, 46-49.
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option based on the proposed dynamics. In fact, these two topics still are the two
more emblematic problems in mathematical finance. In Chapter 2 we narrate the
development of the mathematical finance discipline during last century and until
the path breaking work by Black and Scholes (1973)2. We have exposed the main
works in a systematic way that allows us to have an idea of main problems involving
market modelling and option pricing.

At this point, we have empirically shown that S&P-500 index is, as it is
well-known, a geometric instead of an arithmetic process. And we have
exemplified the differences between taking stock and return changes and
shown its consequences in the data analysis. This constitutes one of our
research articles:

e Masoliver, J., M. Montero, J. Perelld, 2001a, Return or stock price differ-
ences, submitted for publication.

In Chapter 3 we have updated the option pricing theory from the physicist’s
point of view. We have centered our analysis of option pricing to the Black-Scholes
equation and formula for the European call, extensions to other kind of options
can be straightforward in many cases and are found in several good finance books.
We have reviewed Black-Scholes theory using It6 calculus, which is standard to
mathematical finance, with a special emphasis in explaining and clarifying the many
subtleties of the calculation. Nevertheless, we have not limit ourselves only to review
option pricing, but to derive, for the first time to our knowledge, the Black-Scholes
equation using the Stratonovich calculus which is standard to physics, thus bridging
the gap between mathematical finance and physics.

As we have proved, the Black-Scholes equation obtained using Stratonovich cal-
culus is the same as the one obtained by means of the It6 calculus. In fact, this
is the result we expected in advance because It6 and Stratonovich conventions are
just different rules of calculus. Moreover, from a practical point of view, both inter-
pretations differ only in the drift term of the Langevin equation and the drift term
does not appear in the Black-Scholes equation and formula. But, again, we think
that this derivation is still interesting and useful for all the reasons explained above.

We have revisited the Black-Scholes option pricing using the Ito and
Stratonovich conventions in the paper:

o Perelld, J., J. M. Porra, M. Montero, J. Masoliver, 2000, Black-Scholes
option pricing within It6 and Stratonovich conventions, Physica A 278, 260-
274.

2Black, F., and M. Scholes, 1973, The pricing of options and corporate liabilities, Journal of
Political Economy 81, 637-659.
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After Black and Scholes (1973) presented their option pricing theory, there ap-
peared generalizations in two different directions. Chapter 4 has shown these
extensions that still accept to deal with the Black-Scholes ideal conditions. First
generalization has asked for the market model that fits the Black-Scholes prescrip-
tions. We have seen that jumps are the only alternative stochastic dynamics to
the one initially assumed by Black and Scholes, i.e., the diffusive process. The sec-
ond generalization wants to simplify the original Black-Scholes derivation. This is
done with the Capital Asset Pricing Model (CAPM) theory and with the so-called
equivalent martingale measure.

Based on martingale theory, we have presented an original Fourier analysis that
leads to a useful representation of the European call in terms of the characteristic
function of the so-called “zero-mean return”. We are now working on applying this
representation to underlying models that only information we have is its charac-
teristic function. In this way, we particularize to the Lévy process and to a model
already presented by our group® and thus observe the consequences in option prices
of the existence of fat tails. This study is also done assuming a market model with
colored noise in the way that it is assumed in Chapters 5 and 6.

The option price represented in terms of the characteristic function of
the return constitutes another research paper:

e Perelld, J., and J. Masoliver, 2001e, The effect of colored noise and heavy
tails on financial options, to appear in Physica A. Invited talk in: “Horizons
in complex systems”, Messina, 5-8 December 2001.

The second part of this thesis is devoted to relax the Black-Scholes prescrip-
tions on the underlying modelisation. The strong effort on compiling statistical
properties of the market has led to a list of stylized facts that any proposed market
must accomplish. One of the important findings is the existence of time correlations
in the prices data series. We have intended to explain these correlations with two
different models. The first one describes the correlations between log-prices evalu-
ated at distinct times. And the second describes the so-called leverage correlation,
i.e., between log-price variations and volatility. Both models are two-dimensional
diffusion processes. Therefore, extension is done by including a new stochastic dif-
ferential equation and, in consequence, a new random variable. In Chapter 5, this
new variable is the velocity of the log-price and, in Chapter 6, this is the volatility.

Chapter 5 has developed option pricing with perfect hedging in an inefficient

3Masoliver, J., M. Montero and J. M. Porra, 2000, A dynamical model describing stock market
price distributions, Physica A 283, 559-567. Masoliver, J., M. Montero and A. McKane, 2001,
Integrated random processes exhibiting long tails, finite moments, and power-law spectra, Physical
Review E 64, 011110 (11 pages).
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market model. The inefficiency of the market is related to the fact that the underly-
ing price variations are auto correlated over an arbitrary time period 7. In order to
take these correlations into account we have modelled the underlying price S(t) as
a singular diffusion process in two dimensions (with an Ornstein-Uhlenbeck process)
instead of the standard assumption that S(¢) is a one-dimensional diffusion given
by the geometric Brownian motion with constant volatility.

The option pricing method has been developed by keeping perfect hedging with
a riskless strategy which finally results in a closed and exact expression for the
European call. Our pricing formula has the same functional form as the B-S price
but replaces the variance of the Wiener process by the variance of the O-U process.
The O-U variance, (), is smaller than the B-S variance, 0¢, which implies that the
equivalent volatility in the O-U case is lower than B-S volatility?. But less volatility
implies a lower option price. We have indeed proved that the B-S call price is always
greater than the O-U price. In other words, the assumption of uncorrelated assets
overprices the Furopean call. This agrees with the fact that correlation, which can be
regarded as a form of predictability, implies less risk and therefore a lower price for
the option. We have quantified this overprice and showed that B-S formula notably
overprices options and, more strikingly, that the overprice persists for a long time
regardless of the strength of correlations. We have also analyzed the sensitivity of
the O-U price to several conditions. Thus we have proved that while Coy is more
sensitive to changes in the interest rate and stock price than Cpgg, it is also less
sensitive to any change of the volatility. The practical consequences of this are
nontrivial.

The option price and the hedging strategy have been obtained using two different
approaches. The most straightforward way of getting the call price is by means of a
projection onto a one-dimensional process with a time-varying volatility. A second
way of obtaining the option price starts with the complete two-dimensional O-U
process. This is a longer procedure but opens the door to a new hedging strategy:
the psi hedging. We have therefore two ways of achieving the perfect hedging: the
usual one consisting in holding underlying assets (delta hedging), and the second one
which uses secondary calls instead of assets (psi hedging). We have shown that this
last strateqy can be considerable less expensive than the delta hedging and can avoid
a possible lack of liquidity of underlying shares. Finally, the proportion of secondary
calls to be held, i.e., the psi hedging, converges towards O-U delta hedging when
the exercising price of the secondary call tends to zero.

In practice our method of valuation requires the estimate of one more parameter,
the correlation time, than in the B-S Wiener case. Assuming that the underlying
asset is driven by O-U noise one can find an estimate for the correlation time 7 by
evaluating the variance (t) of the asset return. Once one has an estimate of this

4Since the volatility ¢ is the square root of the variance per unit time, one can define, in the
O-U case, an equivalent volatility by ooy = /k(t), where the dot denotes time derivative and

thus see that ooy /o = V1 —e~t/7 < 1.
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variance the correlation time.

We finally mention that one interesting extension of the valuation method pre-
sented is to the American options. Although this case is more involved, one is
probably able to obtain, at least an approximate or a numerical result using a com-
bination of first passage times and martingale methods, as recently presented by
Bunch and Johnson (2000)°. In any case we believe that the effects of auto correla-
tions on the valuation of an American option will be even more critical than for the
European call. This case is under present investigation.

This study on option pricing if prices ared driven by an Ornstein-
Uhlenbeck correlated process is based on the paper:

e Masoliver, J., J. Perells, 2001b, Option pricing and perfect hedging on
correlated stocks, submitted for publication.

Another possible extension is presented in Chapter 6. During decades, the
multiplicative diffusion process known as the geometric Brownian motion had been
widely accepted as one of the most universal models for speculative markets. How-
ever, specially after the 1987 crash, the log-Brownian motion and its subsequent
Black-Scholes (B-S) formula were unable to reproduce the observed derivatives prices
in real markets. The multiplicative diffusion model assumes that the volatility o is
constant.

The stochastic volatility (SV) models are a possible way out to the observed
inconsistencies between the geometric Brownian model and real markets. The SV
models, as their name indicates, assume the original log-Brownian model but with
the volatility o being random. From 1987 on, there have appeared several works
extending and refining stochastic volatility models but most of them are basically
designed to reproduce empirical option prices. We have assumed that the volatility
follows one of the simplest stochastic volatility models still showing mean reversion,
i.e., the Ornstein-Uhlenbeck process, but also allowing for correlations between the
random fluctuations of the price and volatility processes.

As we have mentioned, recent efforts in the study of the empirical statistical
properties of the speculative markets has led to a list of stylized facts that any pro-
posed model should accomplish. We have shown that our model is able to reproduce
these facts. More specifically, our volatility process is mean reverting and we have
found that it is able to quantitatively reproduce the recently observed leverage effect.
We have also estimated all parameters of our model and observed that a simulated
path (using the estimated parameters) is very similar to the sample path of the
historical evolution of the Dow-Jones daily index (1900-1999). In this way, we are

5Bunch, D. S., and H. Johnson, 2000, The American Put Option and Its Critical Stock Price,
Journal of Finance 55, 2333-2356.
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able to fairly reproduce the stock dynamics. Finally, we have derived the character-
wstic function of the process, obtained its kurtosis and skewness, and observed the
power-law decay for the tails of the price distribution. The results herein derived
show that the SV models are good candidates for describing not only option prices
but market dynamics as well.

Future research based on this approach is as follows. The resulting characteristic
function with the parameters already estimated can be useful for deriving option
prices and this is one of our possible future works. Analysis can be based on the
Fourier represented given in Chapter 4. On the hand, observed volatility is not
definitively attached to any specific model. There exists a large class of volatility
processes and, since we now have a systematic way of estimating parameters of the
process, a deeper analysis on which model gives a better explanation of the stylized
facts can also be very interesting. Other existent volatility models requires a more
involved mathematical analysis and it would be also interesting how far we can go
using the methods presented in this Chapter.

The correlated Ornstein-Uhlenbeck stochastic volatility model is been
studied also in the paper:

e Masoliver, J., J. Perello, 2001c, A correlated stochastic volatility model
quantifying leverage and other stylized facts, submitted for publication.

and on the poster session:

e Masoliver, J., J. Perelld, 2001d, Correlated stochastic volatility models
and the leverage effect, 4th “Applications of Physics to Financial Analysis
(APFA)" conferences, London, 5-7 December 2001.









Dinamica estocastica
correlacionada en mercats
financers

1. Les opcions

Els derivats sén instruments financers amb un preu que depen del valor d’altres vari-
ables subjacents més basiques. Els derivats son negociats activament en nombrosos
mercats financers. Tradicionalment, les variables subjacents sén accions, index de
mercat o bé altres derivats.

Les opcions sén un dels productes més importants dins l’extensa gamma de
derivats existents. Com el seu nom indica, les opcions dénen ’oportunitat al seu
propietari, pero no pas l'obligacio, de fer una transacci6 financera durant un periode
futur i en funcié de certes variables subjacents. Aquest treball es limita a tractar les
opcions europees sobre accions. Les opcions europees sén les més simples i populars!.

Una opcié de compra europea és un producte financer que déna dret al seu
propietari de poder adquirir una accié a una data futura amb un preu fixat el dia
d’avui. La data futura s’anomena és la data d’expiracié del contracte a temps 7" i
el preu prefixat és el preu d’exercici de valor K.

En concret, la prima obtinguda pel fet de posseir una opcié de compra, anome-
nada call europea, a data d’expiracio és

S(T) — K]* = { 5 (T) - K § ggg Z I[g (R1)

on S(T) és el preu de laccié a temps T. El propietari d’una call s’assegura el dret
d’adquirir I’accié a una data fixada amb un preu no superior a I’acordat avui. L’opcid
permet, aixi, obtenir fins un guany infinit si la borsa puja i, alhora, restringeix les
perdues, en cas de descens, fins una quantitat molt minsa. Una quantitat que és,
precisament, el preu de 1'opcié que ha pagar I'inversor pel contracte.

1Per aquesta rad, els americans les han batejat amb el nom d’“opcions vainilla”.
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De la mateixa manera, existeixen les opcions de venda. El guany degut al fet de
tenir una opcié de venda, anomenada put europea, és

K — S(T)]" = { é{ - S8(T) § é{(;)i@ (R.2)

Aixi doncs, tenir una put representara tenir el dret de vendre’s les accions a una certa
data futura i amb un preu fixat avui. Aquesta operativa permetra al propietari de
la put d’assegurar-se de poder vendre la seva accid, com a minim, a un preu K.

Les opcions s’acostumen a classificar en termes de la seva moneyness definida
com el quocient S/K. Les tres categories sén

e Les opcions “fora de diner” [out the money (OTM)]. Pertanyen a aquest grup
les calls amb S/K < 11 les puts amb S/K > 1.

e Les opcions “a diner” [at the money (ATM)]. Sén aquelles opcions amb S/K =
1.

e Les opcions “dins de diner” [in the money (ITM)]. En aquesta classe, s’hi
encabeixen les calls amb S/K > 11iles puts amb S/K < 1.

Les opcions estan pensades per evitar el risc derivat de les fluctuacions de les
accions al llarg del temps. Aixi, I'inversor es pot cobrir les espatlles a un baix preu
i evitar que qualsevol canvi inesperat i indesitjatble li trastoqui les seves estrategies
de compra-venda. No obstant, existeixen inversors amb un anim més agressiu que
poden sentir-se atrets per aquest tipus de productes. El perfil de inversor especulador
fa apostes mitjancant les opcions que, com hem dit, sén molt barates en comparacié
amb el subjacent. Mitjancant una opcié de compra, I'inversor pot obtenir un guany
indefinit en cas de que I'accié augmenti el seu valor. I posseint una put pot guanyar
fins a un quantitat K en cas de que el valor de I'accié es desplomi.

2. Equil:libri de mercat i metodes incomplets de
valoracié d’opcions

Un cop sabem que és una opcid europea, li hem de donar un preu. La tnica infor-
macié de que diposem és el guany degut al fet de posseir ’opcié just quan expira.
Sembla raonable pensar que el preu per a ’opcié ha ser funcié de la dinamica de
I’acci6 des del moment en qué comprem ’opcid fins quan expira. Per tant, un bon
coneixement del subjacent és indispenable i totes les investigacions sobre el valor
de 1'opci6 necessitaran d’'un model de mercat adequat que sigui consistent amb els
mercats reals.

Pero no només el comportament del subjacent és important doncs encara existeix
un problema encara més fonamental. Com ve donat el preu d’una opcié en termes
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dels subjacent? Per que el preu resultant és un preu “just” que, a priori, no afavoreix
a comprador ni a venedor? Els anomenats metodes de valoracié d’opcions pretenen
donar resposta a aquestes preguntes.

La valoracié d’opcions i la model-litzacié del subjacent necessiten el coneixement
de varies disciplines. Les eines necessaries provenen del camp de teoria de probabil-
itat, metodes estocastics i analisi de dades. O sigui, de manera més generica, de les
eines tipiques de matematics i fisics. No obstant, les hipotesis sobre el comporta-
ment mercats son proposades per la teoria economica. La barreja de totes aquestes
disciplines ha donat com a resultat nous camps d’estudi anomenats “matematica
financera” i “econometrica” i, darrerament, “econofisica”.

2.1 Propietats dels preus de les opcions europees

Robert Merton (1973b) va establir un llista exhaustiva sobre les restriccions que
I’assumpcié d’equi-libri de mercat imposa al preu de les opcions. Aqui revisarem
algunes d’aquestes restriccions sobre el preu de la call i put europea pel fet de
demanar absencia d’arbitratge. Enumerem les restriccions més importants que se’n
deriven pel preu C(S,t) de la call a temps ¢ i quan el subjacent val S(?):

o [S(t)— Ke ™ T-9* <C(S,t) <S(t) (t<T).

e La call perpetua Cp(S) = lim(r_y)_,00 C(S, 1) val: Cp(S,t) = S(t).
o C'(S,1) <C(S,t) (K <K

e C(S,t) < C'(S,1) t<T<T.

Les restriccions sobre el preu P(S,t) de les opcions de venda, i.e., les puts,
s’obtenen gracies a una relaci6 entre ambdues que es fixa adduint raons d’equil-libri
de mercat. La relacié anomenada paritat put-call demana que

P(S,t) 4+ S(t) = C(S,t) + Ke "™, (R.3)

2.2 Metodes de valoracié incomplets

Abans que Black i Scholes (1973) presentessin el seu metode de valoracié d’opcions,
hi han hagut molts treballs intentant de fixar un preu just per al’opcié. Creiem inter-
essant retornar-hi perque sén representatius de les dificultats existents en 1’obtencio
d’un model de mercat adequat i d’un valor de I’opcié consistents amb les restriccions
d’equil-libri de mercat.

Louis Bachelier esta considerat el pare de la matematica financera. L’any 1900
va presentar la seva tesi que contenia, per primer cop, un analisi estocastic de la
borsa, dels preus i de la seva opcié de compra europea. La primera part de la seva
tesi obté la densitat de probabilitat de les variacions dels preus. Bachelier suposa
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que aquests segueixen un dinamica tal que només poden moure’s una unitat amunt
o avall essent aquests dos esdeveniments equiprobables. El limit a temps continu
ens permet escriure
1 —(S—S0)?/2k2t
pS(S’ t|SO) \/m € ’ (R4)

on assumim que l’accié val Sy a temps t; = 0. De fet, aquesta dinamica és la
mateixa que Einstein, sense coneixer el treball de Bachelier, va emprar per descriure
el moviment brownia cinc anys més tard, I’any 1905.

La segona part de la tesi es dedica a donar preu a I’opcié. Bachelier va proposar
que el preu just fos aquell en queé tant comprador com venedor tinguessin un guany
zero en promig. En conseqiiéncia,

C(S,t) = E[(S(T) - K)*|S(t) = §] = /K TS = K)ps(S,T|S,0)dS".  (R.5)

Si assumim el model de mercat proposat per Bachelier, aleshores I’'Eq. (R.5) ens

déna
C(S,t) = (S — K)N(d) + L\/T%_t e, (R.6)
d=(S—K)/K*(T -1 (R.7)

N(d) = \/% /_ doo e 2y (R.8)

és la “funcié de probabilitat integrada”. Observeu, pero, que el preu Bachelier per
a lopcié (R.6) no obeeix les restriccions d’equi-libri de mercat. Per exemple, es pot
comprovar facilment que la call perpétua de Bachelier no tendeix a S(t) sino que
divergeix.

Tot i el treball de Bachelier, la naturalesa dels mercats no resultava prou atrac-
tiva per la comunitat cientifica. Els brokers tenien un creixent interes sobre els
mercats per0 en cercles académics es continuava considerant que les fluctuacions
dels mercats no eren res més que el producte d’'una massa irracional que especula.
No obstant, a partir dels anys trenta comencaren apareixer un seguit d’estudis fets
per investigadors americans amb un alt grau de coneixement de matematiques i
estadistica. Aquest es dedicaren a compil-lar dades i després confrontar-les amb el
model de mercat proposat per Bachelier (1900).

Fruit d’aquest esfor¢, Osborne (1959) i Sprenkle (1964) van concloure que els
preus seguien un moviment brownia geometric. Per tant, les variacions de preu que
resultava més adequat tractar-les en termes de la rendibilitat

R(t) = In[S(t)/S] (R.9)
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donat que la seva densitat de probabilitat era novament una gaussiana com la segiient

_ 1 —(R—(u—02/2))% /202t
pr(R,]0) Nor=r e . (R.10)
En aquesta densitat hi apareix una constant o que s’anomena “volatilitat”. Un cop
modificat el model de mercat, Sprenkle (1964) va proposar un nou preu per a ’opcié.
Es va valer de la formula de Bachelier perd modificant el promig amb una constant
que doéna rad del grau d’aversié al risc de cada inversor. Sprenkle entenia que el
parametre d’aversié de risc és, en qualsevol cas, propi de cada inversor. No obstant,
aixo entra en contradiccié amb la idea de que existeix un tnic preu just per a tot
inversor.
La critica sobre el parametre d’aversié de risc no és la unica. La call perpetua
d’Sprenkle també divergeix. Els treballs de Boness (1964) i Samuelson (1965)
ataquen la quésti del valor monetari del temps. Samuelson (1965) imposa que

E[S(t)|S(t) = S1] = Spetle=t) - [CO(S,T)|S(t) = S] = C(S, )21, (R.11)

El preu actual de 'opcié C(S,T) no té una relacié directa amb el promig del seu
valor a temps d’expiracié com havia afirmat Bachelier. Suposant que el procés per
a l’accié és un brownia geometric, les Egs. (R.11) ens permeten escriure

C(S,t) = e PATVSN(dy) — e PT VK N(dy), (R.12)

amb

i = ln(S/K)+(,u—|—02/2)(T—t)’ i = di — oVT 1.
oVT —1t

on N(d) és la integral de probabilitat (R.8). Els axiomes de l’equacié (R.11) no de-
terminen g i B i Samuelson només diu que 0 < p < . Aquesta desigualtat permet
treure la divergencia en la call perpetua pero no déna el valor desitjat per les restric-
cions d’equil-libri de mercat. En el proper capitol veurem que si Samuelson (1965)
hagués imposat p = f = r hauria estat ell el primer a presentar el primer preu que
acompleix la demanda d’absencia d’arbitratge.

3. Metode Black-Scholes de valoracié d’opcions

Els treballs de Black i Scholes (1973) i Merton (1973b) sén la culminacié del gran
esfor¢ fet des del treball de Bachelier (1900) per obtenir un meétode de valoracié
completament satisfactori. El metode ha esdevingut de gran utilitat pels inversors
i ha ajudat als mercats d’opcions a tenir la importancia que actualment tenen.

El metode obté una equacié amb derivades parcials del mateix tipus que ’equacio
de difussié i rep el nom d’equacié Black-Scholes (B-S). La teoria que permet derivar
aquesta equacio es fixa amb un model de mercat concret. Es a dir, déna una equacio
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diferencial estocastica tal que descrigui la dinamica del subjacent. De bon principi,
Black i Scholes (1973) proposaren que 1’evolucié del mercat vingués donada per un
procés brownia geometric.

Ara bé, I'equacié diferencial no té sentit fins que no li assignem una inter-
pretacié al terme multiplicatiu de soroll. Existeixen dues interpretacions: It (1951)
i Stratonovich (1966). No obstant, totes les derivacions conegudes de Black-Scholes
s’ha fet mitjancant el calcul d’It6. Possiblement, aixo es deu al fet que aquesta és la
convencié que tipicament utilitzen els matematics mentres que la d’Stratonovich és
I’emprada normalment pels fisics. Potser, la interpretacié d’Ito resulta més adequada
per descriure la mecanica de les transaccions financeres. En qualsevol cas, pero,
les dues interpretacions sén equivalents (Van Kampen (1981)) i haurien d’arribar
als mateixos resultats. En aquest capitol provarem que efectivament les dues con-
vencions deriven la mateixa equacié B-S. Aquest exercici matematic, a més, ens
permetra estudiar amb cura les subtilitats de calcul que hi ha en la valoraci6 de
Black-Scholes i que poden arribar a ser d’interés per a un fisic que es vulgui in-
troduir en la materia. Bona part d’aquest capitol esta basat en 1’article Perell6 et
al. (2000).

3.1 It0 vs. Stratonovich

La diferencial de la variable X (¢) es llegeix com
dX(t) = X(t+dt) — X(t) (R.13)

i direm que la diferential dX és equivalent, en mitjana quadratica, a la del procés
dY sempre i quan
Var[dX (t) — dY (t)] = O(dt). (R.14)
Presentem la segiient equacio diferencial que determinara la dinamica del procés
X(t)
dX(t) = f(X,t)dt + g(X,t)dW (t) (R.15)

on dW (t) = &(t)dt és el procés de Wiener que és un procés gaussia amb mitjana i
varianca

E[dW#)]=0  Var[dW ()] = E [dW (t)?] — E[dW ()]" = dt. (R.16)

Noteu que, en mitjana quadratica, dW (¢)* — dt.

El problema de la interpretacié apareix quan llegim g i f de ’anterior equacié
diferencial estocastica (R.14). Aleshores, la interpretacié d’It6 avalua les funcions a
I'inici de I'interval infinitessimal de temps dt, i.e., X = X (¢). En canvi, Stratonovich
déna la quantitat X = X (¢ + dt/2), just al mig de l'interval.

En conseqiiéncia, cadascuna de les interpretacions entendra de manera diferent
la diferencial del producte de variables estocastiques

d(XY) = [(X +dX)(Y +dY)] — XY. (R.17)
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Podem descomposar la darrera equacié de dues maneres diferents. [to llegeix la
diferencial
d(XY) = XdY +YdX + dXdY, (R.18)

pero Stratonovich prefereix
d(XY) = XsdY + YsdX, (R.19)

on Xg =X +dX/2.

En general, qualsevol funcié h(X, t) ben comportada també s’entendra de manera
diferent si agafem una o altra interpretacio. Descartant els termes d’ordre superiors
a dt, la serie de Taylor de la funcié h ens déna

X 10%h(X
g X0 OH(X, ) 1O°h(X, 1)

ot 0X 2 0X?
que, de fet, correspon a la interpretacié d’It6. Si traduim la mateixa diferencial en
el sentit d’Stratonovich veurem que

i OWXst) o Oh(Xs, 1)

0Xs ot

dxX + dX?% + O(dt?, dX?), (R.20)

dt (R.21)

i la diferencial obeeix les regles estandard de calcul.

3.2 El model brownia geometric

Black i Scholes (1973) proposen pel mercat la dinamica segiient:
dR(t) = (p— 0?/2) dt + odW (2). (R.22)

La rendibilitat R(t) es defineix com R = In(S/Sy) on S és el preu de I’accié. Ob-
serveu que

E[dR] = (n—0°/2)dt i  Var[dR] = o’dt,

L’equacié (R.22) té el mateix sentit tant si I'interpretem en It6 com en Stratonovich.
Aplicant els canvis de variables enunciats a la darrera seccié (veure Eq. (R.20) i
Eq. (R.21)), obtenim (¢ la Stratonovich)

dS = (- 0?/2) Ssdt + 0SsdW (1),  (Ss =S +dS/2) (R.23)

i (4 la Ito)
dS = pSdt + oSdW (t). (R.24)

Aixi doncs, tot 1 que el procés és el mateix, aquest ve descrit per dues equacions
estocastiques diferents. El promig de I'accié, en qualsevol cas, és

E [S(t)|So] = So exp(pt). (R.25)
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3.3 L’equacié Black-Scholes

Existeixen diverses maneres d’obtenir I’equacié Black-Scholes. Nosaltres escollim la
derivacié de Merton (1973b) que parteix d’una cartera composada per accions de
preu S, bons de preu B i opcions de preu C. Aixi doncs, la cartera sera un certa
combinacié de cadascun d’aquests valors

[MI=YC-AS—-®B.

Convé recordar que els bons evolucionen sense aleatorietat de manera que dB =
rBdt. A més, Merton (1973b) demana que la cartera sigui d’inversié nul-la (II = 0).
Gracies a aquesta demanda, simples operacions matematiques ens permeten escriure

C = 6,5 + 6B, (R.26)

on 6, = A/YT i ¢, = ®/Y. La carteres que “reprodueixen” el preu de la call
s’anomena carteres replica.

Derivem 1’equacié amb derivades parcials que assumint la interpretacié d’Ito. En
aquest cas, la diferencial sera (c¢f. Eq. (R.18))

dC = [6,(S, 1) + d6,(S, )]dS + [6n(S, 1) + dn (S, t)]dB
+S(t)d6, (S, 1) + B(t)ddn(S, t).

Certes components d’aquesta diferencial queden cancel-lades degut a dues restric-
cions degudes a la naturalesa dels mercats. Les funcions 6, i ¢,, donen ’estrategia a
seguir. Ara bé, §,, i ¢, s6n funcions no anticipades en el sentit de que depenen dels
preus de ’accié avaluats a un temps immediatament anterior al moment en que de-
cidim Destrategia. Es a dir, 6,(S,t) = 6(S —dS, t) i ¢,,(S,t) = ¢(S —dS,t). Per una
altra banda, els inversors fan les operacions segons la quantitat de diners disponibles.
O sigui, segueixen estrategies autofinancades que impliquen Sdd,, = —Bda,.

Mitjancant aquestes dues restriccions sobre les estratégies de mercat i tenint en
compte que dB = rBdt, arribem a

dC = 6dS + r(C — 6S)dt. (R.27)
Per una altra banda, coneixem la diferencial de C' = C(S, t)

_(0C 1, ,0°C e
dC = <8t +50°8 aSQ)dt-i— 5505,

Les dues diferencials desemboquen a I’equacid

ac\ .. [aC 1 ,.,0°C
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Pero 'equacié només té fluctuacions aleatories degut a dS. Aquestes es poden treure
amb ’estrategia

_oC

~ 0S8

que s’anomena cobertura delta. Finalment obtenim una equacié amb derivades
parcials on no hi ha cap component aleatoria i que rep el nom d’equacié Black-
Scholes, i.e.,

J

oC oCc 1 0°C
— =7rC —1rS—% — =(05)* .
o =" %5 730 5w
Aquesta equacié és una equacié diferencial parabolica amb la condicié final es-

pecificada pel contracte. La call europea té

(R.29)

C(S,T)=[S(T) - K|* (R.30)
i la seva soluci6 és
C(S,t) = SN(d)) — Ke ™™ IN(dy) (0<t<T) (R.31)
amb arguments
In(S/K) + (r+ 02/2)(T — t)
di = do =dy —oVT —t. R.32
' oVT —t ’ 2 1T ( )

En aquesta capitol també derivem 1’equacié basant-nos amb Stratonovich. De
fet, en aquest cas,

dC = Ss(t)dd,, + B(t)dey, + 6,(Ss,t)dS + ¢,(Ss,t)dB. (R-33)

pero, assumint que les funcions que determinen l'estratégia siguin no anticipades i
que l'estrategia sigui autofinancada,

95(Ss, t)

1
dC = ~dSds, + §(Ss,t)dS + [rB(t)¢(Ss,t) — 0> Sz
2 0Ss

] dt + O(dt®?),

s’acaba obtenint

1
dC = §(Sg, 1)dS + er(t)ng(Ss, p) - 5&5@%1 dt+ 0. (R.34)
s
Per una altra banda,
_0C(Ss,t) 0C(Ss, 1)
dC = 5 dt + 954 ds.

Si ajuntem ambdues diferencials i intentem substraure les fluctuacions d.S de ’equacié
resultant acabem trobant I’equacié Black-Scholes i la cobertura delta.

Tota aquesta analisi es pot fer assumint la presencia de dividends o bé per a
d’altres opcions com ara les put europees.
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3.4 Les sensibilitats de la call

Les “gregues” donen idea de la sensibilitat de 'opcio respecte canvis petits de cadas-
cun dels seus parametres. Aquests parametres sén: r,0,S i T — t. Enumerem les
gregues per a la call europea:

6= g =N(d). (R.35)

=55 -

0= % - _"25 e;(:i((;d_%é ? — rKe "IN (dy). (R.37)
v = z—f = S\/(T —t)/2m e 4/2. (R.38)

= % = K(T —t)e "I N(dy). (R-39)

La delta mesura les fluctuacions de I’opcié respecte l'accié. Fixeu-vos que aquesta
quantitat ens especifica la cobertura Black-Scholes. La gamma quantifica els canvis
de la propia cobertura. La vega és la sensibilitat de ’opci6 respecte la volatilitat i
es pot veure que la call és molt sensible a aquest tipus de variacions.

4. Generalitzacions dins la teoria Black-Scholes

Black-Scholes proporciona una completa explicacié sobre com es deriva el preu de
I’opcié. Determina el preu just per a l'opcié i, a més, ens dictamina quina és la
estrategia de mercat a seguir per tal de que la nostra cartera no tingui cap mena
de fluctuacié riscosa. Després de larticle de Black i Scholes (1973), aparegueren
generalitzacions tant en la model-litzacié del mercat com en els metodes valoracié
de les opcions.

4.1 Processos a salts

Després de Black i Scholes (1973), Cox i Ross (1976) i Merton (1976) estudiaren quins
models podrien afitar-se als requeriments de la teoria Black-Scholes. Una possibilitat
és la d’admetre que 0 = o(S5,t). Aquesta sofisticaci6é del model de mercat compleix
els requeriments per tal d’obtenir ’equacié amb derivades parcials de Black-Scholes
pero la solucié de I'equacié que ens déna el preu C(S,t) pot ser molt complicada.
Una altra extensio possible és la que assumeix que el mercat segueix un procés a
salts.
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Cox i Ross (1976) proposen que el preu de 1'accié evolucioni com

dS(t) = 3°(SYx — S)dO(t — ty), (R.40)

mentres que Merton (1976) composa un procés difussiu amb un de salts
dS(t) =S@t) [(p—=AE[Y —1])dt + odW (¢ +§:n—1d®@—m) (R.41)

on Yy (k=1,2,3,...) sén variables independents and idénticament distribuides amb

EY,Y]] = E[Y] for k # I, i E[Y?] = E[Y?. Aquest tipus de processos a salts
vénen descrits per

1 sit <t <t+dt,

dO(t — 1) = { 0 en cas contrari.

Els esdevinements %, estan distribuits segons Poisson amb parametre .

Aquests dos models arriben a un preu per a 'opcié de compra europea. En
ambdds cassos necessiten la diferencial d’una funcié ben comportada que depengui
del procés aleatori S. El lema d’Ito per aquest tipus de processos és

3ﬂ t)

(R.42)

df (X, t) = (ﬁ+§]fXWL) f(X,1)]dO(t — 1), (R.43)

Es pot veure que el model de Cox i Ross dona el preu de la call
C(S,t) = SY(U,AY) — Ke"T=9W(U, A), (R.44)

on o
A=) EAkefA
k=U

és la funcié de Laplace,
_ |In(X/S)
U:l InY L

on [z] és el primer nombre sencer més gran z. Finalment,

_ (=1
A=——7.

Per poder arribar a aquest preu hem d’assumir que Y és una constant i no és per
tant aleatoria. La cobertura és diferent a la de Black-Scholes:
C(SY,t) — C(S,t)

S(Y —1) ’

5= (R.45)

El model més sofisticat de Merton arriba també a un preu per a la call. En aquest
cas, pero, direm que només és just en mitjana. Merton fa cobertura Black-Scholes
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i aixi esta a cobert la majoria del temps excepte en aquelles rares ocasions que
succeeixi un salt. En aquests cassos, I'inversor pot guanyar o perdre una quantitat
inesperada de capital. El preu de Merton és

(XSJ%z%j%eA@tﬁMT—wﬂﬁikdeYﬂﬂ} (R.46)

on Cgg és el preu B-S de la call donat per I'Eq. (R.31), i.e., assumint que el subjacent
segueix un procés de Wiener amb preu actual SY'*.

4.2 CAPM i martingales

També després de Black i Scholes (1973), es trobaren altres metodes de valoracié de
les opcions. Aquests sén més simples pero tenen l'incovenient d’ignorar el tipus de
cobertura que ha de seguir l'inversor. De tota manera, resulten molt ttils i practics
si la unica cosa que es busca és el preu final o I’equacié Black-Scholes.

Si el que ens interessa és I’equacié amb derivades parcials de Black-Scholes, el
metode anomenat Capital Asset Pricing Model (CAPM) (Sharpe (1964)) és el que
qal emprar. El quocient Sharpe de cadascun dels valors negociats ha de ser identic.
Es a dir,

RoT _Ho— T (R.47)
g oc
on r és tipus d’interes,
ds d
pudt = E [gl , o%dt = Var [?S] :

dC dC
pcdt = FE lﬁl ; opdt = Var lﬁl .

Aquests promitjos estan fets coneixent S(¢) = S i C(S,t) = C. Assumim el model
brownia geometric i obtenim

[oc 1, _,8*C  _8C

ac'\*
Var|dC| = [0S -5 | dt.
ar[dC] (a 5 S)
Observeu que aquests promitjos s’han fet tenint en compte que F [dS]| = uSdt i
Var[dS] = (So)?dt. La substitucié d’aquestes equacions a la igualtat CAPM (R.47)
ens acaba donant 'equaci6é B-S (R.29) i demostra la consisténcia dels dos métodes.
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Ara bé, si el que interessa és el preu final de 'opcid, cal tractar el problema amb
teoria de martingala (Harrison and Kreps (1979), Harrison and Pliska (1981)). La
neutralitzacié del risc requereix que

E[S(t)]So]" = See" 1), (R.48)
i S*(t) vindra definit per
d;* = rdt + odW. (R.49)
Observeu que aleshores S*(t) i S(t) estan relacionats
S*(t) = S(t)e~w-mlt=to) (R.50)
i
P"(S,#|So, to) = el =mt=t)pg (Selh=n=10) 4|5, ¢,) , (R.51)

Un cop fem el canvi i representem la densitat de probabilitat en termes de la
rendibilitat, trobem el preu de 'opcio

O(S,t) = e 7T / T (Sef — K)pi(R, T|t)dR. (R.52)

In(K/S)

A partir d’aquesta equacié també podem trobar

K K o
C(S,t) =8 — Ee_T(T_t) — ?e_r(T_t)/O ox(w, T|t) [COS wa(T —t)
dw

+w sin LL)O[(T — t)] ﬁ,
w

(R.53)
on ¢x és la funcié caracteristica

ox(w, T[t) = / e“Bpt (R, T|t)dR

o0

de la rendibilitat neutra del model de mercat, .e., havent-li extret el creixement
infinitessimal mig. La equaci6 diferencial estocastica del procés és

dX = dF(t) tal que: E[dF(t)] =0,

on les fluctuacions estocastiques dF ha d’acomplir la condicié d’absencia d’arbitratge.

5. Valoracié d’opcions i cobertura perfecta sobre
accions correlacionades

Un cop hem vist fins on és capa¢ d’arribar la teoria Black-Scholes, ara ens dedi-
carem a relaxar alguna de les condicions ideals imposades sobre el comportament
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del mercat. De les assumpcions imposades, potser la més restrictiva i més en de-
sacord amb les observacions empiriques és la hipotesi de mercat eficient. Aquesta
hipotesi demana que les variacions de preu estiguin totalment descorrelacionades.
Per aquesta demanda, els fisics entenem que el soroll que condueix les variacions de
preu és blanc. Ara bé, els fisics també entenem que els processos blancs son una
idealitzacié ja que cap soroll és completament blanc?. Només en cas que el temps
d’observacié sigui molt més llarg que el temps d’autocorrelacié del procés podem
considerar que el procés és efectivament blanc.

Aixi doncs, presentem un model de mercat que doni radé de I'existencia de cor-
relacions en els preus. Presentem el procés d’Ornstein-Uhlenbeck (O-U) per tres
raons: (a) El soroll O-U és encara un procés gaussia que tendeix al model brownia
que assumeix Black-Scholes que el seu temps caracteristic 7 = 0. (b) Es I'tinic procés
que és simultaniament gaussia, estacionari i markovia. (c) Com veurem, I’evolucié
de la varianca de les rendibilitats esta ben descrita per la varianca del procés conduit
per un procés O-U.

El nostre proposit és obtenir el preu de 'opcié i observar ’efecte de les correla-
cions en el propi preu de I'opcié. Ho hem fet de tres maneres diferents. Amb una
cartera com la de Black-Scholes, amb una extensié de la cartera de Black-Scholes
contenint una opcid secundaria i, finalment, via martingala.

5.1 El model de mercat

Recordem que, fins ara, hem assumit que el preu de 'accié S(t) és model-litzat amb
un procés difussiu unidimensional

%(:)) = pdt 4 odW (1), (R.54)

on W (t) és el procés de Wiener amb mitjana zero i

n [ dt sit=t,
plawwav @) ={ ' 3
Ara, el preu no és conduit per un procés Wiener W (¢) sino per un Ornstein-
Uhlenbeck V' (t). Es a dir, S(t) obeeix el procés bidimensional difussiu singular

%%) = pdt + V (t)dt (R.55)

AV (t) = —@ dt + g dw (1), (R.56)

2l soroll amb correlacions en el temps és anomenat soroll de color.
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on 7 > 0 és el temps correlacié. V(¢) és un soroll Ornstein-Uhlenbeck en 'estat
estacionari. Aquest és de color, gaussia, de mitjana zero i funcié correlacié

EV(t)V (t2)] = getltzl/f. (R.57)

Ens resulta convenient expressar el procés en termes de la rendibilitat:
R(t) = In[S(¢)/ S0,
I, aleshores, en comptes de I’'Eq. (R.55), tindrem

dR(t
dR(t) =p+VI(t) (R.58)
dt
i a la variable V (¢) 'anomenarem “velocitat” de la rendibilitat del procés.

Es pot veure que la varianga de la rendibilitat (en el régim estacionari)
k() =o?[t—7(1—e")], (R.59)

i, pert KL 7T,
K(t) ~ (o?20)8,  (t<T). (R.60)

L’equacié (R.59) (cas B-S) quan t > 7:
Kk(t) ~ o*t, (t> 7). (R.61)

La varianga empirica del S&P 500 durant el periode gener 1988-desembre 1996 es pot
explicar mitjangant la varianca teorica k(t) amb temps de correlacié6 7 = 2 minuts.
El resultat d’aquesta correlacié afecta la volatilitat a 100 minuts.

5.2 El procés projectat

Algt pot dir que el model de mercat presentat és inadequat perque el preu de I’accié
S(t) que obeeix I’Eq. (R.56) és un procés continu de variacions acotades. Harrison
et al. (1984) van provar que aquest tipus de processos permeten arbitratge i aixo és
una cosa inacceptable per obtenir un preu “just” per a l'opcié.

Malgrat aixo, a la practica no coneixem la velocitat de la rendibilitat V' (¢) doncs
aquesta no es negocia als mercats i la seva evolucio és ignorada. Es a dir, la dinamica
del mercat no déna cap coneixement de la dinamica de V' (t). Aquest fet ens permet
projectar el procés bidimensional (S,V) a un d’unidimensional equivalent S(t) (en
mitjana quadratica):

% = [+ &(T — t)/2)dt + \J&(T — t)dW (), (R.62)
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on k(t) és donada per ’'Eq. (R.59), i el punt denota derivada sobre el temps
R(T—t) =0 (1—e").

En conclusi6, el preu donat per 'Eq. (R.62) esta, ara si, conduit per un soroll de
variacions no acotades, el procés de Wiener, i els resultats de Harrison et al. (1984)
no so6n aplicables. En conseqiiéncia, el procés projectat O-U és encara un punt de
partida apropiat per a la valoracié d’opcions perque no permet arbitratge.

5.3 El preu de ’opcié amb el procés projectat

La valoracié de 'opcié amb el procés projectat és la mateixa que I'exposada en el
capiyol anterior. Per tant,

Ct =rC — TSCS — %K(T — t)SQCSS (R63)

i la cobertura és també la mateixa: § = Cg.
La solucié per a la call europea és:

Cou(S,t) =8 N(dPY) — Ke "T=) N(d9Y), (R.64)
on N(d) és la funci6 integral de probabilitat i

In(S/K)+r(T —t)+ k(T —1)/2

a7y =
k(T —t)

, (R.65)

d9Y = d9Y — \/K(T — 1), (R.66)

amb k(t) donada per I'Eq. (R.59).
D’aquest resultat en podem extreure alguns resultats. Si fem 7 = 0, quan no hi
han correlacions, aleshores recuperem el preu B-S

Cps(S,t) = S N(dP%) — Ke"T=Y N(d5%), (R.67)

on df5 tenen la forma de les expressions (R.65)-(R.66) perd amb o*(T —t) en
comptes de k(T —t). En el cas oposat, 7 = 0o, quan la correlaci6 és total i no hi ha
soroll aleatori sino una forga determinista i constant, Eq. (R.64) es redueix al preu
determinista

CalS,1) = (S — Ke 7T 0)". (R.68)
I es pot veure que
Ca(S,t) < Cou(S,t) < Cps(S,t), (R.69)

per tot S10 <t <T. Podem concloure que I'assumpcié d’absencia de correlacions
sobrevalora 'opcié.
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També hem definit la diferéncia relativa
D = (Cps — Cou)/Cgs

i hem estudiat les pecularietats d’aquesta diferéncia tant en termes de la seva mon-
eyness com del temps que manca per a l’expiraciéo del contracte. Els resultats
obtinguts conclouen que la sobrevaloracié és més important per les opcions fora
de diner (OTM) i, en qualsevol cas, els efectes de la correlaci6é sén més importants
dels que es podria haver pensat d’entrada. La sobrevaloracié persisteix a temps
d’expiraci6 llargs.

5.4 Derivacions alternatives de la call

Una altra manera de trobar el preu de I'opcié és modificant i ampliant la cartera.
Suposem que la cartera esta formada per calls, calls secundaries i bons:

I=YC-YC — ®B. (R.70)

El metode de valoracié és identic al de Black-Scholes pero ara considerant que
la cobertura esta feta amb una altra call. Després d’alguns calculs trobem que

2
l(ct + ;—TCVV —7C + (1 +V)5Cs)

2
—y(Cy + g—Tc'VV —rC' + (u+ V)SC'S)] dt = (¥C!, — Cy)dV.
(R.71)

Aquesta equacié pot esdevenir determinista si fem zero el terme multiplicant la
diferencial estocastica dV'(t) donada per ’'Eq. (R.56). I aquesta, al seu torn, fixara
I’estrategia de l'inversor donant, en tot moment, la quantitat relativa de calls se-
cundaries que cal mantenir per tenir una cartera sense risc. Llavors, no tenim la
cobertura delta de B-S sino que tenim la cobertura “psi”:

Cy
=V 72
i ’equacio esdevé
i[c = rC 4 (44 V)SC ]
Cy tTor vV 2 S
1 ! 0-2 ! ! !
- ) + 5Oy = 10"+ (u+ V)SCs].  (R.73)

Aquest problema ja s’havia tractat en cas de que mercat venia descrit per un
model de volatilitat estocastica (veure proper capitol). Més passos en calcul que
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involucren imposicions com 'anomenada prima de risc acaben per obtenir el preu
de l'opcié (R.64) presentat a la secci6 anterior.

Per comletitud, també podem avaluar el preu martingala de l'opcié quan el
subjacent és conduit per un procés d’Ornstein-Uhlenbeck. La mesura equivalent de
martingala és

i _ 1 x4 [In(S/Sy) — r(t —to) + K(t — ty)/2]?
P58, ) = Sy/2mk(t — to) p{ 26(t — o) }

(R.74)
que també s’anomena probabilitat de risc neutre. Aleshores, el preu martingala sera
C*(S,t) = e "TTIE(S(T) - K)*|S(t) = 9]

— T / TS = K)p*(S', TS, )dS, (R.75)
K
i el resultat final és consistent amb el preu préviament donat a 'Eq. (R.64), C*(S,t) =
Cou(S,t).

5.5 Les gregues i la cobertura

Derivem breuement les gregues pel procés conduit per un procés O-U. La call O-U
té la mateixa relacié funcional que el preu B-S pero reemplaca o?(T —t) per k(T —1t)
i, en conseqiiéncia les gregues O-U tindran la mateix relacié funcional que les B-S
amb el mateix reemplagament a excepcié de vega, v = 0C/0o, i § = 0C/0t. Per

tant, per § = 0C/dS, v = 0*C/3S?, i o = dC/0r, obtenim

e~ (d97)?/2

You = )
oY S\/2mk(T —t)

Sou = N(d?Y), oov = K(T —t)e "IN (dg").

(R.76)

Donat que df§ > dP’; per tot S'it, veiem que doy > dps i 0ov > eps- La call O-U
és més sensible als canvis respecte a S'i r.
Per una altra banda, tenim que

vou = (S/0)[K(T — t)/2x]"/2e&")’/2, (R.77)

02(1 — 6_(T_t)/T) *(ng)2/2

o 2R —1)

Donat que d?U > dfs, es pot veure que voy < vpgg per tot S/K, T —tirt. Aleshores,
la nostra call correlacionada és menys sensible a canvis respecte la volatilitat o que
no pas el preu B-S.

bov = —Ke " T |rN(dSY) + (R.78)
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Finalment, estudiarem la cobertura psi

N(dy)
Y(S,t) = , R.79
(5,0 = Fd) (R.79)
El cost de mantenir aquesta cobertura sera
r__ N(dl) / 1 ,—r(T—t) /

WO' = @) [SN(d}) — K'e N(d3)], (R.80)

Analogament, el cost de la cobertura delta de Black-Scholes és
dS = SN(dy). (R.81)

El quocient de les dues cobertures compleix la segiient desigualtat

1,—1(T—t) !
0< K'e N(d}) <1
S N(d)

Per tant, 9C’ < 6S i la cobertura psi és sempre més barata que la cobertura delta.

6. Un model de volatilitat estocastica correlacio-
nada

Durant decades, el procés difussiu conegut com a moviment brownia geometric ha
estat ampliament acceptat com a un dels models més universals per descriure la
dinamica dels mercats. Malgrat aix0, especialment després del crac del 1987, el
model brownia i la seva subseqiient férmula Black-Scholes per 1'opcié no saben
reproduir els preus de les opcions negociades als mercats. Existeixen varis estudis
que recullen preus empirics de les opcions i en deriven la seva volatilitat implicita
(i.e., la volatilitat que hauria de tenir el subjacent si la férmula B-S fos val-lida).
Aquests tests conclouen que la volatilitat implicita no és constant. Aqueste efecte
és anomenat “efecte somriure”, per la forma de u que té la volatilitat implicita en
termes de la moneyness, i mostra la poca idoneitat del model assumit per Black-
Scholes perque té volatilitat constant.

Una possible sortida al problema és la que proposen els models de volatilitat
estocastica. Com el seu nom indiquen, aquests models prenen la volatilitat com
una varible estocastica. Des de finals dels vuitanta, s’han presentat varis models
difussius bidimensionals que tenen dues variables estocastiques: el preu S(¢) i la
volatilitat o = o(t). No obstant, la recerca ha anat gairebé exclusivament destinada
a estudiar I'efecte d’assumir la volatilitat estocastica en la valoracié de les opcions.

Existeix alguna excepcid, com ara la de Stein i Stein (1991), que estudia les
propietats estadistiques d’un model on la volatilitat segueixi un procés d’Ornstein-
Uhlenbeck. Creiem que la poca quantitat d’estudis existents que es fixin en la
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dinamica d’aquest tipus de models és degut a: (i) Les seves propietats estadistiques
son dificils d’obtenir analiticament i encara es complica més el calcul matematic si
permetem correlacions entre les fluctuacions de la volatilitat i accié. (ii) General-
ment es creu que els observables del mercat no son suficients per estimar tots els
parametres d’aquest tipus de models.

Aquest capitol preten modificar aquestes opinions pel cas concret d’una volatil-
itat que segueixi un procés d’Ornstein-Uhlenbeck (O-U) amb correlacions. Per una
banda, som capacgos de trobar analiticament les propietats estadistiques del model.
I, d’altra banda, la correlacié de palanca recentment estudiada per Bouchaud et
al. (2001) ens ajuda a estimar la resta dels parametres que entren en joc.

L’esfor¢ en estudiar empiricament les propietats estadistiques també ha llistat
un seguit trets caracteristics que ha de posseir tot “bon” model de mercat proposat.
Veurem que el nostre model acompleix la llista de requeriments.

6.1 El model de volatilitat estocastica

Tot els models de volatilitat estocastica parteixen de 1’equacié diferencial

as(0)

S0 = pdt + odW(t), (R.82)

on p és el ritme de creixement i o és la volatilitat. Els models SV perfeccionen
aquesta dinamica prenent o = o(t) estocastica. Existeixen una llarga llista de
models d’aquest tipus pero encara no hi ha cap dinamica definitivament associada
a 0. Nosaltres triem el procés d’Ornstein-Uhlenbeck (Stein and Stein (1991))

do(t) = —a(o — 0)dt + kdW(t). (R.83)

Les equacions (6.1) i (6.2) contenen un procés de Wiener bidimensional (Wy, Ws),

on dW;(t) = &(t)dt (i = 1,2), i &(t) és un soroll gaussia blanc i amb mitjana zero,
i€,

EI6M =0 1 EI&®&(E)] = pudt—t), (R34)

El coeficient de correlacié p;; té les propietats p;; = pji = pamb -1 < p < 11i
pii = 1. I, en conseqiiéncia,

E[dW,(£)dWs(1)] = pdt.

D’ara en endavant, ens resultara més comode analitzar la rendibilitat neutra

definida

dsS
: -
dX 5 pdt
1 aleshores tractar amb
dX (t) = o(t)dWi(t). (R.85)

Aquesta variable encara reté les propietats més interessants del procés.
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6.2 La volatilitat Ornstein-Uhlenbeck

Estudiem el procés que descriu la dinamica de la volatilitat. La solucié de I'equacié
diferencial és

t !
o(t) = e =) 4 (1 — emol=t0)) 4 [ == p), (R.86)

to

entenent que el procés ha comencat a temps t; just quan la volatilitat és og. Si el
procés ha assolit el régim estacionari (i.e., ty — —o00) la volatilitat es llegeix

t 7
o(t) = 0+k / e ) g, (1), (R.87)
amb mitjana, varianca i correlacio
Elo]=0, Varlo] = E|o?] - E[o]’ = ¥*/2a, (R.88)
i
Elo(t+71)o(t)] = 0%+ (K*/2a)e . (R.89)

Abans de procedir, volem estudiar la qiiesti6 del signe de o(t). Si s’assumeix el
procés O-U (R.83) com a model per la volatilitat, es pot argumentar que o(t) pot
ser negativa i aquest fet pot ser vist com un inconvenient per poder ser un “bon”
model. No obstant, la propia volatilitat no es pot observar mai. A la practica,
I’anomenada volatilitat instantania s’avalua de la manera segiient:

lim \/[X (t + At) — X (¢)]? /At, (R.90)

At—0

Quan fem At — 0, podem entendre I'equacié amb diferéncies infinitessimals

volatilitat instantania = /dX (¢)%/dt. (R.91)

Donat que dW? = dt,
volatilitat instantania = /o (t)? = |o(t)|. (R.92)

Observeu que en aquesta definicio no hi ha assignat el signe que ha de tenir la
variable o(?).

Un altre resultat interessant del procés és el comportament tan curidés que té la
correlacié entre la volatilitat i les fluctuacions provinents de 1’accié:

pke=7dt if 7 >0,

0 if 7 <0. (R.93)

Elo(t+7)dWi(t)] = {

D’aqui es dedueix que, per a processos SV correlacionats, la futura volatilitat esta
correlacionada amb les variacions de rendibilitat passades, pero la volatilitat passada
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no ens diu res sobre les variacions de rendibilitat futures. A més, p determina el
signe de la correlacié (R.93) ja que k > 0.
El nostre procés descriu reversié en mitjana. Aquest fenomen empiric es refereix
a I'existencia d’un nivell normal de volatilitat al qual la volatilitat acaba retornant
dX ()
dt

El nostre model és adequat donat que

limE[

t—00

00] = nivell normal de volatilitat.

kQ
nivell normal de volatilitat O-U = 6* + 5 (R.94)

A més, el promig sobre sigma (6.8) quadrat és

2 _ —at | p2 —on]? , K —2at
E[a (t)\ao,O]—[ooe +6°(1—e )] —i-%(l—e )
El promig tendeix rapidament al nivell normal, de manera exponencial. El valor de
a determinara la velocitat exacta.

6.3 L’efecte palanca

Es conegut que la volatilitat esta negativament correlacionada amb les variacions
de la rendibilitat. Aquest efecte ha estat tipicament associat a ’efecte palanca®. El
mecanisme no sembla del tot convincent per justificar aquesta correlacié. Tot i amb
aixo, el nom d’efecte palanca ha quedat.
L’efecte no ha estat estudiat de manera quantitativa fins fa ben poc. Definint la

correlacié de palanca
dX (t+7)%dX(t)]

Var[dX (¢)]>2
Bouchaud et al. (2001) han tractat una gran quantitat de mercats i valors. Han
trobat que:

o) = El (R.95)

—Ae™® siT >0,
£(r) = { 0 si T <0, (R-96)
(A>0).
El nostre model és capac de descriure aquest efecte. La correlacié de palanca és
vV2a (14 v?e )] _
— 2 aT .
L(T)=2p [ Y ] e quan 7 > 0, (R.97)
i
L(T)=0 quan 7 < 0. (R.98)

Hem definit una nova variable que déna idea de 'amplitud de les fluctuacions de la
volatilitat v2 = k?/(2a6?). Observem que el signe de la correlacié ve donat pel signe
de p.

3“Leverage” en anglés. Es refereix a 1'is de credit per a tenir una major capacitat especulativa.
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6.4 Avaluacié de la prediccié

Qualsevol model de mercat proposat ha de ser capag de “predir”’ la dinamica del
mercat. Es a dir, ha de poder reproduir la seva evolucié. En aquesta seccié provem
com el nostre model és capac de fer-ho en cas de que el mercat observat sigui I’'index
Dow-Jones de New York.

Les variances
Var[AX] = 0*(1+v*)At  Var[AX?] = 260" [4(1 +17)* — 3] Af?
ens permeten avaluar el valor v? per mitja del quocient

1 4 1Var[AX?]
(1+v2)2 3 6Var[AX]2 (R.99)

El valor de theta es pot trobar facilment un cop tenim »? i sabem el valor empiric
de la varianca de AX.

No obstant el notre model és capa¢ de reproduir dinamiques de mercat tal que
la seva curtosi, 7, = Var[AX?]/Var[AX]? — 2,

0< 7 <6, (R.100)

Per la rendibilitat diaria del Dow-Jones v, = 1.72 i és dins els marges de consistencia
requerits.

L’efecte palanca ens subminsitra I’estimaci6 dels altres dos parametres: el coefi-
cient de correlaci6 p i el temps caracteristic 1/a. Les dades del Dow-Jones queden
afitades amb un temps de decaiment 1/a ~ 20 days. A més, el valor empiric de la
correlacié quan 7 — 0

vV 2a

1+ 2)0’

ens déna una estimaci6 de p que val aproximadament -0.6.
Amb tots aquests parametres hem simulat un any d’evolucié del mercat i hem
vist que és forca similar al Dow-Jones. En aquest sentit, el nostre model és predictiu.

L(0%)=2p (R.101)

6.5 La distribucioé de probabilitat

No hem estat capacos de trobar la solucié de la distribucié de probabilitat pero si
que hem aconseguit la funcié caracteristica de la marginal de la rendibilitat. Aquest
fet ja és suficient per trobar les propietats estadistiques més importants.

La funcié caracteristica es defineix:

0o .
ox(w, tlog) :/ e“Tpx(z,tlog)dx.

—00
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Pel nostre cas aquesta val:

1 B%k?/a — 408 — 46°A
ox(w,t) = ——=—exp [—C + ] (R.102)
J1+k2A/ A1+ k*Afa)
on
w? sinh nt
Alw,t) = — R.103
(%) 2 <77 cosh nt + ( sinh 7715) ’ ( )
w?alf) coshnt — 1
B(w,t) = .104
(%) n (ncoshnt+§sinhnt> ’ (R-104)
2 1
Clw,t) = [(w;;@) + iwpk — a] t/2 + 5 In <cosh nt + %sinh nt)
_ (waf)? [2¢(coshnt — 1) + psinhnt (R.105)
2n3 ncosh nt + ¢ sinhnt ’ '
i
n= \/a2 — 2ipkaw + (1 — p?)k2w?, ¢ = a — iwpk. (R.106)

Es pot veure també que, quan af > 1 amb k/a < 1, la nostra funcié carac-
teristica esdevé

ox(w,t) ~ exp {—w2 [1 + 17 + O(k/oz)] 02t/2} , (at > 1), (R.107)

i el teorema del limit central es compleix.
Tenint la funcié caracteristica, podem trobar els seus cumulants

T

—tnfpx (@, )]

w=0

Aquests, a la seva vegada, ens proporcionen la curtosi i el biaix. Presentem els seus
valors assimptotics. Per una banda, la curtosi

6v%(v? + 2)

i (@<, (R.108)

Y2

62[% (1 +4p%) +4(1 +p%)] 1
~ — at > 1). R.109
7 (v2+1)2 at ( ) ( )
Observeu que malgrat tractar amb temps inifintessimals obtenim encara una curtosi
no negligible. La curtosi va a zero a mesura que el temps creix. La seva convergencia,

pero, és lenta. Per una altra banda, el biaix

14
~3p ——— V2auat at < 1), R.110
N3 ey ( ) ( )
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v(r?+2) 1
(v24+1)32 /2at
En aquest cas, el biaix va a zero per temps petits i per temps grans.
Com ja hem dit, no ens és possible de trobar la distribucié de probabilitat al
no poder fer la anti-transformada de Fourier de manera analitica. Ara bé, podem
donar la probabilitat quan la rendibilitat és gran. Aquesta és

(at > 1), (R.111)

1 1 5
px(x,t) ~ m exp l—@ (y/a(t) +b(t) — a(t)) x] (x = 00) (R.112)

px(@t) v e exp l% (,/a(t)2 o(0) + a(t)) x] (z = —00) (R.113)

a(t)? + b(t)

amb
a(t) = pkt/4, i b(t) = k*(2 — p*at)/8a. (R.114)

Donat que a(t) = pkt/4, el signe de p determinara quina és la cua més alta. Quan
rho és negatiu la més alta sera la que representara les perdues i quan p > 0 la més
alta correspondra a la dels guanys. Si p = 0, no existeix cap diferencia entre les
dues cues.

Finalment, la distribucié de preus (no pas de rendibilitats) ps(S,t) tindra els
decaiments polinomics desitjats:

ps(S,t) ~ (S —0), i ps(S,t) ~ (S — o) (R.115)

1
0]
valt) =1+ ﬁ (/a0 +00) - at)].

7. Conclusions i noves perspectives

Sv+(t)

on

Es pot dir que, actualment, la fisica també estudia els mercats financers. Aquesta
tesi representa la introduccié a aquest tema no nomeés per a mi siné per a tot el
meu grup de recerca que dirigeix el Prof. Jaume Masoliver. Tipicament, el grup de
recerca s’havia dedicat a estudiar aquells sistemes dinamics estocastics que interve-
nen en fenomens com el transport de la llum dins medis desordenats o la cinetica
de les reaccions quimiques entre d’altres. En aquest cas, els metodes estocastics son
aplicats als mercats financers.
Heus aqui una enumeracié dels continguts d’aquest treball:
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e Abans d’aportar quelcom d’original en el coneixement dels mercats financers,

ens hem dedicat a donar les definicions basiques al capitol 1 i després hem re-
visat la recerca en matematica financera al llarg del darrer segle en el capitol 2.
A T'apendix A del capitol 2, resumim un dels nostres articles de recerca. Alli
hi exemplifiquem les diferéncies existents entre prendre diferéncies de preu i
diferencies de rendibilitat i ens mostrem les seves conseqiiéncies.

-Masoliver, J., M. Montero, J. Perelld, 2001a, Return or stock price differences,
submitted for publication.

El metode valoracié d’opcions de Black-Scholes presenta el primer preu just
per a 'opcié. En el capitol 3 hem revisat aquesta aportacié fixant-nos en
els aspectes que poden resultar més interessants per a un fisic no entés en
la materia. Hem implementat la teoria Black-Scholes amb el calcul d’It6 i el
d’Stratonovich. Ito és la convencié que normalment utilitzen els matematics
i Stratonovich és el que fan servir els fisics. Fins ara, només s’havia derivat
I’equacié Black-Scholes amb la interpretacié d’Ito. De fet, sembla que aquesta
és més adequada i que s’adiu més a l'operativa del mercat. En qualsevol
cas, hem vist que ambdues interpretacions sén equivalents i condueixen a la
mateixa solucio.

-Perelld, J., J. M. Porra, M. Montero, J. Masoliver, 2000, Black-Scholes option
pricing within 1t6 and Stratonovich conventions, Physica A 278, 260-274.

En el capitol 4 analitzem les generalitzacions al model presentat per Black
i Scholes (1973) perd que encara s’encabeixen dins la teoria Black-Scholes.
Les generalitzacions van per dos camins diferents: incloent noves dinamiques
pel preu i trobant nous metodes de valoracié més simples. Com a aportacid
novedosa cal resaltar un treball de recerca que es basa amb el preu obtingut
via martingala. Representem el preu de 'opcié en termes de la funcié carac-
teristica de la rendibilitat neutra.

El capitol 5 es dedica a relaxar una de les hipotesis del model de Black-
Scholes. Presentem un model de mercat ineficient que ve conduit per un procés
Ornstein-Uhlenbeck. Donem preu a l'opcié i veiem que les consequéncies de
I'existéncia de correlacions en les variacions de la rendibilitat influeix de man-
era no trivial al preu de 'opcié.

-Masoliver, J., J. Perellé, 2001b, Option pricing and perfect hedging on correlated
stocks, submitted for publication.

El capitol 6 presenta un model de volatilitat estocastica on la volatilitat
esta correlacionada amb la rendibilitat i ve descrita per un procés Ornstein-
Uhlenbeck. Amb aquest model expliquem de manera quantitativa 1’efecte
palanca i altres trets caracteristics com la reversié en mitjana, la leptocurtosi
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i el biaix negatiu. Gracies a la correlacié de palanca som capacos d’estimar
tots els parametres del model cosa que no s’havia pogut fer fins ara. També
obtenim una expressié analitica per a la funcié caracteristica i estudiem les
cues de la densitat de probabilitat.

-Masoliver, J., J. Perelld, 2001c, A correlated sotchastic volatility model measuring
leverage and other stylized facts, submitted for publication.

-Perelld, J., J. Masoliver, 2001d, Correlated stochastic volatility models and the
leverage effect. Poster session: 4th “Applications of Physics to Financial Analysis
(APFA)" conferences, London, 5-7 December 2001.

Podem anticipar que la recerca futura es dedicara a:

e La representacié de ’opcié en termes de la funcié caracteristica de la rendibil-
itat neutra és util per derivar el preu de 'opci6 en cas de que només coneguem
la funcié caracteristica del subjacent. Podem veure aixi els efectes de les cues
i del soroll de color en ’opcié.

-Perelld, J., and J. Masoliver, 2001e, The effect of colored noise and heavy tails
on financial options, to appear in Physica A. Invited talk in: “Horizons in complex
systems”, Messina, 5-8 December 2001

e Hem estudiat els efectes de les correlacions en les opcions europees de compra.
Podriem fer el mateix amb les opcions americanes i les puts europees.

e Existeixen una gran varietat de models de volatilitat estocastica. Ara que
tenim una manera sistematica d’estimar tots els parametres del model podem
discernir quin és el model més adequat per descriure els mercats en general o
bé particularitzar per a cadascun dels diversos mercats existents.
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variance, 40
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weather derivatives, 19
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