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Part III

Bias in Large Scale Structure
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Chapter 14

Local halo biasing

Summary

After a theoretical introduction on clustering correlation functions and bias, I present reults for the

local halo bias in the MICE intermediate simulation.

14.1 Motivation

In the new era of precision cosmology, simulations have emerged as a necessary step in our effort

to understand structure formation in the universe. In fact they should be seen as the natural link

between theory and observations. A link which may allow us to approach separately the different

physical contributions that combine in an observation and also to understand better the systematics

and statistical errors.

Part III of this thesis is devoted to study the local halo bias and the halo clustering by using a

cosmological dark matter simulation, the MICE intermediate simulation. The main goal here is to

test the validity of the local bias model. In this model, presented below, the bias is considered local

and deterministic. In reality however, the bias is neither local (due to tidal forces) nor deterministic,

but stochastic (see Dekel & Lahav 1999). We would like to address the question of to what extend

the local bias can be applied to recover the predictions presented in chapter 2 for the growth of

structure using statistical measurements as the variance, the skewness or the correlation functions.

To do so, we will work with comoving data from the simulation at two different red shifts z = 0
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14.2. Correlation functions and biasing

and z = 0.5. By working with comoving data we concentrate on the gravitational evolution and

structure formation and get rid of redshift distortions and other lightcone effects, which might not

be directly related to the question addressed. Nevertheless, the inclusion of lightcone effects and

redshifts distortions have to be considered as the natural next step in our study, since at the end we

want to model the observational data.

14.2 Correlation functions and biasing

14.2.1 Two and three point correlation functions

The two and three-point correlation functions are defined, respectively, as (Bernardeau et. al. 2002)

ξ(r12) = 〈δ(r1)δ(r2)〉 (14.1)

ζ(r12, r23, r13) = 〈δ(r1)δ(r2)δ(r3)〉 (14.2)

where δ(r) is the local density contrast at position r smoothed over a given characteristic R scale.

The expectation value is taken over different realizations of the cosmological model. In practice, we

apply the ergodic theorem and perform the average over different spatial positions in our universe,

which are assumed to be a fair sample of possible realizations (Peebles 1980). As a particular case,

when in the two or three points are in fact the same (r1 = r2 = r3), we get the variance and the

skewness. They are defined as

σ2 = 〈δ2〉 =
1
N

N∑
i=1

δ2
i (14.3)

m3 = 〈δ3〉 =
1
N

N∑
i=1

δ3
i (14.4)

where the sum (allowed due to the ergodic theorem) is over a fair sample of points in the simulation.

In this case, one typically considers these quantities as a function of the smoothing radius R, while

the correlation functions are displayed as a function of pair separation r12. In the limit r12 � R

correlations are independent of R, while for r12 � R both measurements are closely related.
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14. Local halo biasing

It is also convenient to define the normalized skewness and the hierarchical Q3 parameter as

follows (Growth & Peebles 1977)

S3 =
m3

σ4
2

(14.5)

Q3 =
ζ(r12, r23, r13)

ζH(r12, r23, r13)
(14.6)

ζH ≡ ξ(r12)ξ(r23) + ξ(�r12)ξ(r13) + ξ(r23)ξ(r13), (14.7)

where we have introduced a definition for the ”hierarchical” three-point function ζH . Based on early

galaxy measurements of ζ, the Q3 parameter was thought to be roughly constant as a function

of triangle shape and scale (Peebles 1980), a result that is usually referred to as the hierarchical

scaling. It was later shown (Fry 1984) that one expects deviations from this scaling due to gravitation

clustering, which creates filamentary structure.

To describe the three parameters that define the ζ or Q3 triangle , it has been customary to use

the two sides of the triangle r12 and r23 (which are typically comparable in side) and the angle α

between them:

cos(α) =
�r12

r12
.
�r23

r23
(14.8)

with 0 < α < 180 deg.

The Q3 parameter has been measured in surveys (Feldman et. al. 2001; Gaztanaga et. al. 2005)

and in simulations (Scoccimarro et al. 1999; Barriga & Gaztanaga 2002; Gaztanaga & Scoccimarro

2005). It shows a characteristic U−shape (see figures 15.3 and 15.4 ) which results from gravitational

instability: elongated triangles have larger probabilities because of the gravitational collapse. In the

initial Gaussian field ζ, Q3 and S3 are all zero.

14.2.2 The local halo bias model

A simple model for halo or galaxy bias was introduced by Fry and Gaztañaga (1993). These authors

assumed that the density contrast in the halos (or galaxy) distribution δh can be expressed as a

general non-linear function of the local density contrast of dark matter, δm, so that: δh = F [δm].

On large enough scales, where the fluctuations in the density field are smoothed so that the matter

151



14.2. Correlation functions and biasing

density contrast is of order unity or smaller, this relation can be expanded in a Taylor series

δh =
∞∑

k=0

bk

k!
δk
m = b1δm +

b2

2
δ2
m + · · · (14.9)

where the k = 0 term comes from the requirement that < δh >= 0. Within this local bias model, at

scales where ξ2 < 1, we can write the biased (halo or galaxy) two and three point functions to the

leading order in ξ (Fry & Gaztanaga 1993; Frieman & Gaztanaga 1994) as

ξh(r) � b2
1 ξ(r)

Qh
3 � 1

b1
(Q3 + c2) (14.10)

where c2 ≡ b2/b1, and the � sign indicates that this is the leading order contribution in the expansion

given by equation 14.9 above. We can also write the halo skewness as:

Sh
3 =

1
b1

(S3 + 3c2) (14.11)

Thus, we can see that, in general, even when δm � 1, the linear bias prescription is not accurate

for higher-order moments, (i.e., Q3), the reason being that nonlinearities in bias (i.e. c2) generate

non-Gaussianities of the same order as those of gravitational origin.

The linear bias term b1 can produce distortions in the shape of Q3, while the non-linear bias

terms c2 only shifts the curve. Because b1 typically increases with the halo or cluster mass, the

U-shape of Q3 as a function of α is typically suppressed, resulting in a more hierarchical form of

the 3-point function ζ � ζH . Therefore, it is possible to use the shape of Qh
3 in simulations (or

observations) to separate b1 from c2. This is done by comparing the dark matter predictions with

the simulations (observations) data results and adjusting the bias parameters. This gives an estimate

of the linear bias b1 which is independent of the overall amplitude of clustering ξ. This approach has

already been implemented for the skewness S3 (Gaztañaga 1994, Gaztañaga & Frieman 1994), the

bispectrum (Frieman & Gaztañaga 1994, Fry 1994, Feldman et al. 2001, Verde et al. 2002) or the

angular 3-point function (Frieman & Gaztañaga 1999, Gaztañaga & Scoccimarro 20005, Gaztañaga

et al. 2005).
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14. Local halo biasing

14.2.3 Press-Schechter and Sheth-Tormen halo model predictions

In the spherical collapse model, expanding the conditional mass function for halos around the crit-

ical density contrast it is possible to find predictions for the bias on very large scales (Mo et al.

1997,Scoccimarro et al. 2001, Cooray & Sheth 2002)

b1(m, z) = 1 + ε1 + E1

b2(m, z) = 2(1 + a2)(ε1 + E1) + ε2 + E2 a2 = −17/21 (14.12)

where the ε1, E1 and E2 are defined in terms of the p and q variables as presented in section 3.2.

ε1 =
qν − 1
δsc(z)

ε2 =
qν

δsc(z)

(
(qν)2 − 6qν + 3

δsc(z)

)

E1 =
2p/δsc(z)
1 + (qν)p

E2

E1
=

1 + 2p

δsc(z)
+ 2ε1 (14.13)

Again ν = δsc(z)/σ2(z) where δsc is the critical density contrast for collapse at a given redshift z,

δsc(z). The Halo model predictions correspond to a fixed halo mass, bi(m), while we would like to

have predictions for halos above a certain mass bi(m > M), which we will get from simulations. One

could relate both estimations through the relation:

bi(m > M) =
1
nh

∫
m>M

dm n(m) bi(m), (14.14)

where n(m) is the halo mass function, which we can take to be that of Sheth and Tormen 2002 (ST)

or the Press-Schechter one (PS). And the halo number density is given by

nh =
∫

m>M

dm n(m) (14.15)

The unconditional halo mass functions n(m) have been given in section 3.2. Note that the Sheth

and Tormen (ST) mass function have two free parameters p and q. They are usually taken to be

p � 0.3 and q � 0.75, but other values of the parameters can fit as well the simulations. In this
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14.3. The MICE intermediate simulation

chapter we will show predictions for both the former values and also for q = 0.2 and p = 0.8. This

will give us an idea of how adjustable is the ST fit to the simulation. The Press-Schechter (PS)

predictions correspond to the values of p = 0 and q = 0.5.

If one have a model for populating galaxies in halos, i.e a halo occupation distribution (HOD)

that give the number of galaxies of a given type (i.e., luminosity and color) given the mass of the

halo < Ng|m >, then we can introduce it in equations 14.14 14.15 and obtain the galaxy bias. If

the bias model works, looking at the observed galaxies would allow us to fit the (usually two) HOD

parameters. For an approach of how this can be done with SDSS survey (and also to see the bi

dependence on mass) see, for instance, Sefusatti & Scoccimarro (2005) .

14.3 The MICE intermediate simulation

We will analyse the halo bias and clustering from the MICE intermediate dark matter simulation

1. This simulation have been run with Marenostrum at the Barcelona Supercomputer Center using

the L-GADGET code, periodic boundary conditions, and 128 processors. Two hundred comoving

outputs from z = 1.4 to z = 0 have been produced (12 TBytes of data). In this thesis we will use the

z = 0.0 and the z = 0.5 outputs. They have N = N 3
1D = 10243 dark matter particles over a cubical

box of size L = 1536Mpc/h. This particles have been put in cubic cells of 4Mpc/h producing a

density mesh, from which we will compute the correlation functions and the direct local bias. The

particle mass resolution of the simulation can be easily computed and it is

M = 27.75
(

L

N1D

)3

Ωm1010M�/h � 2.34 1011M�/h (14.16)

The cosmological model parameters for the simulation are Ωm = 0.25, ΩΛ = 0.75, ΩB = 0.044,

ns = 0.95, h = 0.7 and σ8 = 0.8. The softening length of the simulation is 50 Kpc/h.

A list of groups with 20 or more particles is provided on the fly by the Friends of Friends algorithm

in the GADGET code. We have set the linking length to be 0.168 which results in 2729833 groups

at z=0, and 2110669 groups at z=0.5. The central positions of all groups in the simulation have

been located by P.Fosalba and we will use them for the computing the correlation function.

1For more information of the simulations we have run in the MICE collaboration team see
http://segre.ieec.uab.es/fjc/LSS/MN/ and http://segre.ieec.uab.es/fjc/LSS/MN/download.
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14. Local halo biasing

14.4 The Mass function

We have computed the cumulative mass function for halos in the simulation We show it in figure 14.1

for redshifts z = 0 (upper black curve) and z = 0.5 (lower black curve). Errors in the mass function

are shown as the with of the curve and are computed by means of the Jack-knife method with 64

subsamples. For comparison we have also plotted the Press-Schechter (PS) prediction in red and

the Sheth and Tormen (ST) prediction in blue. As expected the PS prediction produces more small

mass halos and less high mass halos than the simulation. The Sheth and Tormen predictions are

shown for p = 0.2, q = 0.8 and p = 0.3,q = 0.75. They fit much better the simulation measurement.
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Figure 14.1: Cumulative mass function for halos in the MICE simulation at redshifts z = 0 (upper
curves) and z = 0.5 lower curves. Compare them with PS predictions (orange) and the ST q=0.2
p=0.8 (blue) and p=0.3 q=0.75 (green) predictions
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14.5. Measuring halo bias by direct δm δh comparison

14.5 Measuring halo bias by direct δm δh comparison

In this chapter we are interested in determining the local bias parameters directly. In order to

do so we will compare at different points the (smoothed) halo density contrast δh with the local

(smoothed) matter density fluctuation δm. This will give an scatter plot of the relation δh = F [δm],

from which we can obtain b1 and c2 by means of a least mean square fit to the local bias parabola

(equation 14.9). We have evaluated the δm − δh relation at ∼ 16000 points to fit the parameters,

and have checked that increasing the number of points to ∼ 110000 does not improve significatively

the fit. Errors in the b1 and c2 parameters have been computed using the Jack-knife method with

64 subsamples.

One issue to be addressed is the dependence of the fit on the chosen smoothing scale. We have

smoothed the mesh density field of the simulation with a Gaussian filter of radius Rs, which can

vary. In figure 14.2 we show the scatter plots of halos of M ≥ 50 × 2.34 · 1011Msolar for three

different smoothing radius Rs = 5, 10, 20Mpc/h and for two redshifts, z = 0 and z = 0.5. We can

see that for the smallest smoothing radius the scatter of points is very big. In this case there are

even points with δm ≥ 1 which may situate us in a regime where the Taylor expansion of F [δm] can

not be applied. When the radius is larger the scatter gets reduced and all points (except maybe a

negligible number) will have δm < 1. To get a better idea of the convergence of the fit we show in

figures 14.3 and 14.4 the dependence of b1 and c2 on the smoothing radius for several halo minimum

masses. The Jack-knife errors are also plotted. As expected, we see that the values of b1 and c2

change significatively as we increase the smoothing radius Rs from 5 to 20− 25 Mpc/h, from where

they start to converge to their large scale values. Note also (figure 14.3 ) that the convergence seems

slower for the higher mass halos and lower redshifts. In our study, to be conservative, we will take an

smoothing radius of 30Mpc/h as the one where the convergence regime has been reached. Scatter

plots with their fitting curves for this smoothing radius are shown in figures 14.5 (z = 0 case) and

14.6 (z = 0.5). It is easy to see that, as the mass increases the curve changes its slope and also

passes from slightly convex to concave form. This is the change in sign of c2. With increasing mass

the scatter also becomes more prominent. This is logical since, for a given over density region in the

matter field, we are looking for rare objects (more massive halos) and shot noise dominates.

In figure 14.7 we show the b1 and c2 dependence on halo mass for both redshifts we are studying.
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14. Local halo biasing

The results from the scatter relation fits have been plotted in black. We can compare them with

the PS predictions (orange) and ST predictions for p = 0.2, q = 0.8 (blue) and p = 0.3, q = 0.75

(green). Like in the mass function plot it is immediately seen that PS fails completely to fit the

measurements. The ST predictions do a much better job, although they not reproduce exactly the

simulation results. In fact the values p = 0.2, q = 0.75 seems to fit better the b1(m) relation than

the p = 0.3, q = 0.75 values, while for the c2(m) relation is the other way around. As expected the

errors in the b1 parameter are smaller than the ones of the second order coefficient b2 and its related

value c2. We can see that both b1 and c2 increase with redshift and mass. Curiously enough the

theory predicts a decrease of the parameter c2, but for halo masses that are lower than the ones

provided by the simulation, so we can not prove this characteristic feature. In the next chapter we

will compare the clustered based values of b1 and c2 with the measured values of b1 and c2 that we

presented here. This will allow us to study the accuracy of the halo bias model.
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Figure 14.2: Scatter plots showing halo density contrast δh for halos of 50 or more particles versus
dark matter density fluctuations δm. Results are shown for a different Gaussian smoothing as Rs as
labeled in the figure. Left panels show results for the z=0 output of the simulation and right panels
for z=0.5. In a continuous line we show the least square fit to the local bias parabola (equation 14.9)
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Figure 14.3: Dependence of b1 on the Gaussian smoothing radius. Top panel corresponds to z = 0.5
and bottom panel to z = 0. Results are shown for different minimum number of particle per halo, n.
In each panel from bottom to top n=25 (black), n=50 (red), n=100 (green), n=200 (blue) and n=400
(yellow). Dotted lines show the value at R = 30Mpc/h. The particle mass is 23.42× 1010Msolar
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Figure 14.4: Dependence of c2 on the Gaussian smoothing radius. Top panel corresponds to z = 0.5
and bottom panel to z = 0. Results are shown for different minimum number of particle per halo, n.
In each panel from bottom to top n=25 (black), n=50 (red), n=100 (green), n=200 (blue) and n=400
(yellow). Dotted lines show the values at R = 30Mpc/h. The particle mass is 23.42 × 1010Msolar
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Figure 14.5: Scatter plots showing halo density contrast δh versus dark matter density fluctuations
δm for a Gaussian smoothing with Rs = 30 Mpc/h. Results from MICE intermediate simulation at
z=0. As labeled, different panels correspond to different minimum number of particles per halo. In
a continuous line we show the least square fit to the local bias parabola (equation 14.9)
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Figure 14.6: Scatter plots showing halo density contrast δh versus dark matter density fluctuations
δm for a Gaussian smoothing with Rs = 30 Mpc/h. Results from MICE intermediate simulation at
z=0.5. As labeled, different panels correspond to different minimum number of particles per halo.
In a continuous line we show the least square fit to the local bias parabola (equation 14.9)
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to the PS prediction (orange) and the ST prediction with p=0.2 q=0.80 (blue) and p=0.3 q=0.75
(green). As labeled in the figure each panel have both z = 0 and z = 0.5 results.
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Chapter 15

Halo Clustering in Simulations

Summary

In this section I present the clustering of halos in the MICE intermediate simulation. Specifically

we determine the bias parameters b1 and c2 from the halo variance and skewness and compare them

to the local halo bias model. The two and three points correlation functions are also compared with

the local bias model predictions.

15.1 The variance and the skewness

One of the most common ways of determining the linear bias of galaxies or halos is by comparing their

variance with the measured/predicted matter variance. However, to perform the correct comparison

one have to subtract the shot noise contribution. This contribution to the variance appears because

galaxies and halos are not a continuous field, but a discrete one. For a top hat window function,

WR(r) = Θ(| r | −R) the shot noise is well known and it is equal to 1/n where n is the mean number

of halos in a sphere of radius R. The shot noise corrected variance is therefore:

σ2(R) =< δ2 > − 1
n

(15.1)

where R stands for the window function smoothing scale. Not only the variance has to be shot

noise corrected but also all the moments and cumulants of the halo field. The shot noise corrected
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15.1. The variance and the skewness

normalized skewness is found to be (Gaztanaga 1994):

S3(R) =
< δ3 > −3σ2(R)/n − 1/n2

σ2(R)
(15.2)

where σ2 is again the shotnoise corrected variance.

In this section we will compute the variance and the skewness by smoothing the halo density

field in cubical cells of sides L = 24Mpc/h and L = 96Mpc/h. The variance and the skewness

obtained will be the equivalent to a top hat smoothing with R = 14.9Mpc/h and R = 59.5Mpc/h

respectively. The shot noise correction can be taken as well as to be the same of an equivalent top

hat smoothing (Baugh, Gaztanaga & Efstathiou 1995).

Regarding the dark matter in the simulation it is worth to notice that it is also a discrete field.

Consequently, it will have its own shot noise correction, which will be obviously much smaller than

the halo one, due to its higher number density. We have computed the variance and the skewness of

the dark matter and see that they agree with the theoretical predictions. Note that when comparing

the measured skewness to predictions one has to take into account the fact that we are smoothing

the density field. For a top hat smoothing and CDM power spectrum the normalized skewness can

be approximated by (Cooray & Sheth 2002; Bernardeau et. al. 2002)

S3 = 4 +
6
7
Ω−2/63

m + γ1 (15.3)

where γ1 = dln(σ2(R)
dln(R)) . Obviously for the Einstein-de-Sitter cosmology and no smoothing we recover

the value 37
4 given in section 2.2.

We now proceed to use the halos variance and skewness to compute the b1 and c2 as

b2
1(R) =

σ(R)
σm(R)

(15.4)

c2 = (Sh
3 b1 − Sm

3 )/3 (15.5)

where R stands for the window function smoothing scale, and the subscripts h and m for halos and

matter respectively. For computing c2 we use the direct local b1 as measured in the last chapter.

The results are shown in figure 15.1. In the top panel we can see the linear local bias as computed
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in the last chapter (black lines) compared to the linear bias deduced from the variance relation for

different smoothing scales R = 14.9 (green points) and R = 59.5 (blue points). Errors for these

points are computed by means of the Jack-knife method with 64 subsamples in the simulation. For

clarity errors for the direct local bias determination (black lines) are not displayed, but can be picked

out from the figures in the previous chapter. As expected from theory the larger the scale smoothing

R is, the better the agreement with the local bias model. If the smoothing scale is small the density

contrast could take large values and the Taylor expansion in equation 14.9 would not apply. We have

also seen that the local bias starts to converge actually when the Gaussian smoothing radius is of the

order of 25−30Mpc/h (that would correspond to a spherical top hat radius of about 50−65Mpc/h).

Therefore, knowing this, it is not surprising that at z = 0 and for R = 14.9Mpc/h the bias from the

variance comparison clearly fails to match the local bias. We can see a better agreement at z=0.5

which can be understood because the density fluctuations are smaller. In the top panel of fig 15.1

we have also plotted (as red points) the b1 values obtained below from the two point correlation

function. Note that these points fit the local bias model and, at the lower halo masses, they almost

overlap the green and blue points (which might seem not to be plotted).

In the bottom panel of figure 15.1 we shown values of c2 as a function of the halo mass for

two different cubical cells with an equivalent spherical radius of R = 14.9Mcp/h (green points)

and R = 59.5Mpc/h (blue dots). Errors are given by means of the Jack-knife method with 64

subsamples. These values obtained from the skewness can be compared with the local c2 values

obtained from δm-δh direct relation (black line). In this case errors are not plotted for clarity but

can be picked out from the corresponding figures in the previous chapter. As in the b1 panel we see

that the R = 14.9Mpc/h smoothing radius is still too small to fit the large scale local bias values,

which are in contrast well matched by the R = 59.5Mpc/h results.

15.2 Two point correlation function

We have computed the two point correlation function ξ2(r) for the matter and halo density contrast

in the simulation. To estimate ξ2(r) we have used the 4Mpc/h density mesh of the simulation and

average all the mesh points separated by (r ± ∆r), where ∆r = 0.5Mpc/h. The results for the

matter correlation function and for different halo masses (given by the minimum number of particles
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15.2. Two point correlation function

per halo) are shown in figure 15.2. The top panel shows the z = 0 case and the bottom panel the

z = 0.5.

As expected the more massive the halos the more biased the correlation function. Note as well

what is called the stable clustering, i.e., the fact that for a given halo mass threshold the absolute

value of ξ2 remains approximately constant in redshift while the matter correlation function decreases

(in redshift). This could be understood however because halos of a given mass threshold but at

different redshift do not correspond to the same Lagrangian mass. The ones at higher redshift are

situated in a rarer (less expected) matter fluctuations, being therefore more biased.

The measured correlation function from the simulation shows very clearly the acoustic peak at

about ∼ 110Mpc/h for both the matter and the halo functions. This can be seen in the figure

15.2. For comparison, in this figure we have also plotted the Linear Perturbation Theory (PT)

prediction and the Renormalized Perturbation Theory (RPT) prediction for the correlation function,

which has been kindly provided by M. Crocce. In the Standard Perturbation Theory PT one

expands the equation of motion around their linear solution, assuming that fluctuations are small.

The power spectrum can be split into a linear part and higher order correlations. However, for

scales approaching the nonlinear regime the truncation at any finite order in PT is not meaningful

because neglected higher order contributions are important. The Renormalized Perturbation Theory

(Crocce & Scoccimarro 2006; Crocce & Scoccimarro 2006b) gets around this limitation by making

a resummation of an infinite subset of the contributions to the PT expansion. The RPT shows

deviations of the linear theory at much larger scales that have been previously thought and already

in the acoustic peak scale one gets a contribution of the nonlinear effects. (Crocce & Scoccimarro

2006). As can be seen in the figure these nonlinear contributions results into a smoother prediction

for the acoustic peak shape in the RPT than in the standard PT. This seems to be actually in a

better agreement with what we find in the simulations.

In this section we are basically interested in measuring the linear bias by comparing the 2-point

matter and halo correlation functions. We will then compare these results with the local direct bias

determination. For a given lower halo mass threshold we find the bias as

b(r) =

√
ξh
2 (r)

ξm
2 (r)

(15.6)
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This bias, which is expected to be a constant in the local halo model ( b(r, m) = b1(m) ), actually

varies at different r due to cosmic variance. This variation gets more pronounced for larger scales

(where we have few modes in the simulation) and for larger halo mass thresholds (since the number

for statistics get reduced). We choose to determine b1(m) by averaging the bias at five points with

r = 10, 25, 35, 45, 55Mpc/h, where the cosmic variance is lower. From the dispersion of their values

we will also get an error for b1. Results are shown in red in the top panel of figure 15.1. We can

see that, within its errors, they are roughly in accordance with the local bias determined directly

from the δh-δm relation. The agreement is better for smaller halos and the prediction seems to be

systematically above the measurements (but within errors) for the larger halos.

15.3 Three point correlation functions

We have computed the hierarchical relation Q3(α) (see equation 14.8 ) for dark matter and halos

in the simulation. We have used r23 = 2r12 = 24Mpc/h and r13 is given by the angle α. Results

for z = 0 and z = 0.5 are shown respectively in figures 15.3 and 15.4. Each figure have four

panels which correspond (clockwise from the top left panel) to four different minimum halo masses

M ≥ 25, 123, 225, 325 × [2.34 · 1010Msolar]. Dark matter measurements are shown as blue triangles

while halo measurements are in black circles. Errors are from the Jack-knife method and, for clarity,

we only show them in the matter measurements. Errors in halos are at least as large as in the matter

case. Notice the characteristic U shape of the hierarchical relation. It is an indication of the dark

matter and halo large scale filamentary structure, i.e, aligned structures (α ∼ 0, α ∼ 180deg ) are

more likely to be found that other configurations (for instance, equilateral triangles).

In figures 15.3 and 15.4 we have plotted the standard perturbation theory prediction for Q3 as a

dotted line. It is worth to notice that it matches very well the simulation results. This is, by using

the b1 and c2 values obtained from the δm-δh direct fit, we make a prediction for the halo Q3 at

different masses, which is plotted as a red dashed line. Note that, as it is predicted in the halo bias

model (see equation 14.10), the halo hierarchical relation compared to the matter one gets flattened

(due to b1) and shifted (due to c2). This can be clearly seen, for instance, in the case of halos with

25 or more dark matter particles. At both redshifts, as predicted by theory, the measured matter

Q3 is almost the same. At redshift z = 0.5 we have a c2 close to zero while at z = 0 its value is
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c2 = −0.3. This translate in a larger shift between matter and halos at z = 0.5 than at z = 0. We

can also see that the Q3 value at α = 0 is lower at z = 0.5 than at z = 0. This is obviously due to

its higher b1 value. The agreement between simulation measurements for halos (black circles) and

the predictions (red dashed lines) extends to the other halo masses. Consequently the results show

a clear validation of the halo bias model

15.4 Conclusions: Does the local bias work?

In part three of this thesis we have used the MICE intermediate cosmological dark matter simulation

to study the halo clustering and bias. We have seen that for a large scale smoothing of the halo

density field ( tipically a top hat radius ∼ 60Mpc/h) the shot noise corrected variance and skewness

are in agreement with (i.e., could reproduce) the local bias parameters b1 and c2 measured directly

from the δm−δh scatter relation in the simulation. At smaller smoothing scales (R ∼ 15Mpc/h) the

fluctuations are not yet small enough to converge to the bias model. We have also shown that the bias

parameters b1 and c2, predict well, within sampling errors, the halo two point correlation function ξ2

and the hierarchical Q3 function for different halo masses. This should be understood as a validation

of the local bias model power in modeling the large scale structure formation. Nevertheless, note

that there seem to be some systematic differences for the larger halos.

15.5 Future steps: clustering in the lightcone

So far we have been looking at the clustering and bias of two comoving outputs of the MICE

intermediate simulation. This have been very useful for studying the local bias model and the

evolution of the structure. However, it is very important to keep in mind that, because the speed

of the light is finite, observations do not come in as a comoving output. Our real observations are

in fact in a lightcone, i.e, every object is seen at such time that the light that was emitted then has

just now reached us. We are therefore very interested in having a simulation in a lightcone format,

which will be extremely useful for comparing theory with observations. That’s the next natural step

to make.

Using the 200 comoving outputs of the MICE intermediate simulation we have already con-
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structed a lightcone for the matter particles up to redshift z = 1.4. This lightcone covers a quarter

of the sky and is large enough to encompass the survey geometry and depth of the upcoming Dark

Energy Survey 1(DES). The next step would be to find the halos in the lightcone simulation. With

them one could keep on studying the clustering of the large scale structure, and progress towards

understanding our beautiful universe.

1http://darkenergysurvey.org
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Figure 15.1: Dependence of b1 (top panel) and c2 (bottom panel) on the halos mass. Comparison
of the b1 and c2 values as measured directly from the δh-δm local relation in the simulation (black
lines) with the values obtained from the variance and normalized skewness for different smoothing
radius (blue and green dots). In the top panel there is also plotted in red the linear bias b1 derived
from the two point correlation function. As labeled in the figure each panel have both z = 0 and
z = 0.5 results.
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Figure 15.2: Two point correlation function ξ2(r) for different minimum number of particles per
halo as labeled in the figure. The mass particle resolution is M = 23.42 · 1010Msolar. Top panel
shows results for z = 0 and bottom panel for z = 0.5. For comparison we have plot also the RPT
prediction and the linear PT prediction.
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Figure 15.3: Hierarchical relation Q3 for dark matter in the simulation (blue triangles) with r23 =
2r12 = 24Mpc/h as compared to Q3 in halos (black circles) of different masses: n = 25,125,225,325
clockwise from the top left panel. Black dotted lines show the matter prediction. Long dashed red
lines show the biasing predictions (equation 14.10) for the values of b1 and c2 obtained directly from
the δm-δh fit. Results shown at z=0.0
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Figure 15.4: Hierarchical relation Q3 for dark matter in the simulation (blue triangles) with r23 =
2r12 = 24Mpc/h as compared to Q3 in halos (black circles) of different masses: n = 25,125,225,325
clockwise from the top left panel. Black dotted lines show the matter prediction. Long dashed red
lines show the biasing predictions (equation 14.10) for the values of b1 and c2 obtained directly from
the δm-δh fit. Results shown at z=0.5
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Chapter 16

Conclusions

This thesis has been a great adventure to progress in our understanding of the universe by means of

studying the structure formation. It have been always in my mind to have an open approach that

could somehow embrace both theory and observations, for when they are confronted is when science

advances the most. Below, I summarise the main achievements and conclusions of this thesis:

• We have shown that structure formation can be successfully used to discriminate between dif-

ferent cosmological models and constrain their free parameters. This is complementary to other

cosmological probes like the CMB temperature maps or the type Ia supernovae observations.

• We have introduced a formalism to compute the growth of dark matter perturbations in

non-standard cosmologies. This formalism is obtained by rewriting the 4D Raychaudhuri’s

equation within the frame of the spherical collapse model. In this case the evolution of the

density contrast is given only by the Friedmann equation and its derivative, which is meant

to be obtained from the continuity equation. Thus, when having a Friedmann and continuity

equation, this formalism provides a useful approximate solution for the growth of structure,

without concerning us with Einstein’s equations or (if known) the fully perturbative equations

of the non-standard model.

• We have shown that the linear growth of both the Modified Polytropic Cardassian (MPC)

model and the Dvali Gabadadze and Porrati (DGP) model is generally inhibited. Its suppres-

sion can be as much as 50% of the EdS case. The Generalized Chaplygin gas (understood as
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dark energy) is however a completely different case. Its linear growth is extremely sensitive

to the model parameters, so much that only the case which will pass an observational test is

when we actually recover the ΛCDM cosmology. We have also computed the skewness of all

three models, the differences to the standard value are of few percent (at most 10% for the

extremely MPC cases), which is still out of the observational precision.

• We have shown that, at z = 1.5 the DGP and the MPC predict 2 and 4 times more clusters than

the ΛCDMmodel. For the quintessence model we have found that the coupling of dark matter

to dark energy tends to decrease the cluster number counts while the dark energy clustering

produces the inverse effect. We have also shown that oscillations in the cluster number counts

are a characteristic signature of the quintessence coupled models and they could probably be

discriminated with the upcoming large scale structure surveys.

• We have compiled the ISW detections that several groups have performed by cross-correlating

CMB-temperature maps with galaxies or other dark matter large scale structure tracers. We

use the redshift dependence of the signal to constrain the growth of structure and give new

evidence for dark energy, being the probability of a false detection only 3×10−5. We have shown

that the ISW signal can give complementary results to supernovae type Ia when constraining

the (ΩΛ, w) plane. For a flat cosmology the joint fit gives ΩΛ = 0.70±0.05 and w = −1.02±0.17.

• We have presented a new theoretical method to compute errors in the cross-correlation of sky

maps in configuration space to constrain the ISW detections. This method (TC) has been

shown to agree with the Monte Carlo errors computed from 1000 simulations of two cross-

correlated sky maps, but it is faster to implement. It is also faster than the Jack-knife method

(JK) which has the advantage of not assuming Gaussian statistics. The TC method takes into

account the survey geometry, and consequently estimates well the error at big angular scales,

where other methods like the theoretical harmonic space (TH) fails. The geometry in this

method is encoded in two functions, for which we have provided analytical expressions that

will give accurate results in most compact surveys. Despite their conceptual differences, for a

realistic ΛCDM cosmology and a survey of 10% of the sky (like the SDSS or DES), when the

covariance matrices are evaluated (only) up to 20 degrees, all four methods mentioned above

have been shown to give almost identical constraints to the cosmological parameters.
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16. Conclusions

• Finally, we have used the MICE intermediate cosmological dark matter simulation to study the

halo clustering and bias. We have seen that, for a large scale smoothing of the halo density field,

the shot noise corrected variance and skewness are roughly in agreement with the local bias

parameters b1 and c2 measured directly from the δm − δh scatter relation in the simulation.

At smaller smooting scales (top hat radius R ∼ 15Mpc/h instead of R ∼ 60.0Mpc/h) the

fluctuations are not yet small enough to converge to the bias model. We have also shown

that the bias parameters b1 and c2, predict well, within sampling errors, the halo two point

correlation function ξ2 and the hierarchical Q3 function for different halo masses. This should

be understood as a validation of the local bias model to relate the theory of the large scale

structure with observations.
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