Universitat de Barcelona Departamento de Genética

TESIS DOCTORAL

Análisis de la expresión génica y de los mecanismos de muerte celular inducidos por la Bisantraciclina WP631 en células tumorales humanas

Sylvia Mansilla Barrado

Barcelona, abril de 2005

TESIS DOCTORAL

ANÁLISIS DE LA EXPRESIÓN GÉNICA Y DE LOS MECANISMOS DE MUERTE CELULAR INDUCIDOS POR LA BISANTRACICLINA WP631 EN CÉLULAS TUMORALES HUMANAS

Sylvia Mansilla Barrado

Barcelona, abril de 2005

Programa de Doctorado de Genética Facultad de Biología Universitat de Barcelona Bienio 1999-2001

ANÁLISIS DE LA EXPRESIÓN GÉNICA Y DE LOS MECANISMOS DE MUERTE CELULAR INDUCIDOS POR LA BISANTRACICLINA WP631 EN CÉLULAS TUMORALES HUMANAS

Memoria presentada por **Sylvia Mansilla Barrado**para optar al grado de Doctora en Biología

Tesis Doctoral realizada bajo la dirección del Dr. José Portugal Minguela en el Institu	uto
de Biología Molecular y Celular de Barcelona (IBMB-CSIC)	

El Director,		El Tutor,
José Portugal		Ricard Albalat
	La Autora,	

Barcelona, abril de 2005

Sylvia Mansilla

A: absorbancia

AcK: acetato potásico

ATTC: American Type Cell Collection

β-gal: β-galactosidasa

BSA: albúmina sérica bovina

BrdU: 5'-bromo-2'-deoxi-uridina

CAT: cloranfenicol acetiltransferasa

CFDASE: carboxifluoresceindiacetato succimidil éster

CFSE: carboxifluorescein succimidil éster

cpm: cuentas por minutocps: cuentas por segundoDEPC: dietilpirocarbonato

DNasa I: desoxiribonucleasa I

DMSO: dimetilsulfóxido

dNTP: desoxirubonucleótidos

D.O: densidad óptica

DTT: ditiotreitol

E: coeficiente de extinción molar

EDTA: ácido etilendiaminotetraacético

ELISA: Inmunoensayo ligado a enzima (*Enzyme Linked Immuno Assay*)

FBS: suero fetal bovino

G: Gauge, unidad de medida del diámetro del orificio de las agujas

GAPDH: gliceraldehído 3-fosfato deshidrogenasa

GLUT1: transportador de glucosa 1

Hepes: ácido N-2-hidroxietilpiperazín-N'-2-etanosulfónico

kb: kilobase

kDa: kilodalton

λ: longitud de onda

LB: medio de cultivo Luria Bertani

LSC: Laser Scanning Cytometer

MDR: resistencia cruzada a antitumorales (*Multidrug Resistance*)

MDR-1: glicoproteína P (Ppg)

MRP-1: Multidrug Resistance Protein

MGED: Microarray Gene Expression Society

MIAME: Minimum Information About a Microarray Experiment

MOPS: ácido morfolino-propanosilfónico

MTT: bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio

nm: nanómetro

OMIM: Online Mendelian Inheritance in Man

pb: par de bases

PMSF: fenilmetil sulfoniflúor

POD: peroxidasa

PBS: tampón fosfato salino

PCR: reacción en cadena de la polimerasa (Polimerase Chain Reaction)

RNasa: ribonucleasa

rpm: revoluciones por minuto

RT: transcripción reversa

SA-\beta-gal: Senescence Associated β -galactosidase

SDS: dodecilsulfato sódico

SDS-PAGE: electroforesis en gel de poliacrilamida en SDS (Polyacrilamide Gel

Electrophoresis)

SEM: error estándar de la media (SD/ \sqrt{n})

SSC: tampón de citrato sódico salino

TBE: tampón Tris-Borato-EDTA

TE: tampón Tris-EDTA

TMB: tetrametilbenzidina, sustrato de la peroxidasa (POD)

TEMED: N,N,N',N'-tetrametiletilendiamida

Tris: Tris(hidroximetil)-amino-metano

xg: constante gravitatoria 9.8 m/s

X-Gal: 5-bromo-cloro-3-indolil-β-D-galactopiranósido

ÍNDICES

ÍNDICE

1. INTR	RODUCCIÓN	1
1.1.	Genética del cáncer: proto-oncogenes y genes supresores de tumores	3
1.2.	Control de la proliferación celular	7
	1.2.1. Regulación extrínseca de la proliferación celular	7
	 Papel del factor de transcripción Sp1 en el control del ciclo celular 	r 9
	• Papel del proto-oncogen <i>c-myc</i> en el control del ciclo celular	11
	1.2.2. Regulación intrínseca de la proliferación celular	14
1.3.	Control de la apoptosis y la senescencia celular	19
	1.3.1. Apoptosis	19
	1.3.2. Senescencia replicativa	21
	1.3.3.Aspectos comunes entre apoptosis y senescencia replicativa: pape	el del
	gen supresor de tumores <i>p53</i>	23
	• Control de la vía intrínseca de la apoptosis: papel de p53 y o	de la
	familia de Bcl-2	24
	• Control de la vía de la senescencia replicativa: papel de p53 y d	e los
	genes supresores de tumores $p21^{WAF1}$ y $p16$	26
1.4.	El gen p53 y susceptibilidad a la terapia antitumoral: modelos de mu	ıerte
celu	lar como alternativa a la apoptosis en el tratamiento del cáncer	28
	1.4.1.Terapia antitumoral dependiente de la funcionalidad del gen supr	resor
	de tumores <i>p53</i>	29
	1.4.2. Terapia antitumoral independiente de la funcionalidad del gen supr	resor
	de tumores <i>p53</i>	31
1.5.	Las Antraciclinas como agentes antitumorales	35
	1.5.1. Estructura de las Antraciclinas	37
	1.5.2. Mecanismos de acción de las Antraciclinas	37
	1.5.3. Farmacología y administración en clínica	38
	 Actividad y administración en clínica 	38
	•Efectos adversos derivados de la quimioterapia con Antraciclinas	40

1.5.4. Optimización del índice terapéutico de la Antraciclinas: dis	seño
racional de fármacos	43
1.5.5. Diseño y síntesis de la Bisantraciclina WP631	45
• La Daunorubicina se intercala específicamente en tramos C+G	46
• La WP631 se bisintercala en el DNA con una constante de un	nión
equiparable a la de muchos factores de transcripción	47
 Mecanismos de acción: la WP631 inhibe al factor de transcripe 	ción
Sp1	49
 Actividad antitumoral de la WP631: inducción de muerte cel 	ular
independiente de p53 en líneas celulares	51
2. OBJETIVOS	53
3. MATERIALES Y MÉTODOS	57
3.1. Antraciclinas	59
3.1.1. Preparación y determinación de la concentración de las Antracicl	inas
	59
3.2. Líneas celulares y condiciones de cultivo	60
3.2.1.Descripción de las líneas celulares	60
3.2.2.Mantenimiento de los cultivos	61
3.2.3.Congelación y descongelación de los stocks	62
3.2.4.Subcultivos celulares	65
3.3. Ensayos de inhibición del crecimiento celular, tratamientos farmacológ	icos
y obtención de las muestras	66
3.3.1. Método del MTT	66
3.3.1.1.Determinación de las curvas de crecimiento	66
3.3.1.2.Determinación de la citotoxicidad de las Antraciclinas	67
3.3.2. Tratamientos farmacológicos y obtención de las muestras	68
3.4. Análisis de los efectos antitumorales de las Antraciclinas: efec	ctos
citostáticos y citotóxicos	68
3.4.1.Ensayos para analizar los efectos citostáticos de los antitumorales	69
3.4.1.1.Tinción con yoduro de propidio	69
3.4.1.2.Ensayos para determinar la presencia de senescencia celular	70
3.4.2.Ensayos para analizar los efectos citototóxicos de los antitumorales	73

	3.4.1.2.Ensayos de viabilidad: azul de tripano	73
	3.4.1.3.Determinación de la fragmentación del DNA	74
	3.4.2.3.Doble tinción con yoduro de propidio y anexina: análisis o	de la
	muerte celular por apoptosis y necrosis	77
	3.4.2.4. Análisis de la muerte por catástrofe mitótica	79
	3.4.2.5. Análisis de la activación de las caspasas-2 y -3	81
3.5.	Análisis de los mecanismos de resistencia a antitumorales en las lí	neas
célula	as MCF-7/VP	83
	3.5.1. Ensayos para determinar la proliferación celular	83
	3.5.1.1.Ensayo clonogénico	83
	3.5.1.2.Tinción con CFSE	84
	3.5.2. Análisis de la expresión de proteínas asociadas a resistencia	85
	3.5.2.1.Determinación de la actividad de las proteínas asociada	as a
	resistencia a antitumorales	85
3.6.	Medida de la acumulación intracelular de Antraciclinas	87
3.7.	Métodos generales para la obtención de ácidos nucleicos y proteínas	89
	3.7.1. Obtención de DNA plasmídico	89
	3.7.1.1.Transformación	89
	3.7.1.2.Minicultivos	90
	3.7.1.3.Glicerinados	90
	3.7.1.4.Obtención de DNA plasmídico a pequeña escala: Minipreps	90
	3.7.1.5.Obtención de DNA plasmídico a gran escala: Maxipreps	91
	3.7.2. Obtención de RNA total	93
	3.7.2.1.Extracción de RNA	93
	3.7.2.2.Tratamiento con DNasa I	95
	3.7.3. Análisis de la calidad y la concentración de los ácidos nucleicos	96
	3.7.2.3. Electroforesis en gel de agarosa	96
	3.7.2.4.Determinación de la concentración y pureza de los ác	idos
	nucleicos	98
	3.7.4.Extracción de proteína total	99
	3.7.2.5.Obtención de extractos proteicos	99
	3.7.2.6.Determinación de la concentración de proteínas en	los
	extractos	100
3.8.	RT-PCR semicuantitativa	100

	3.9.	Análisis de los perfiles de expresión génica en presencia	ı de
	Antra	aciclinas: macroarrays de cDNA	103
		3.9.1. Obtención de sondas marcadas radiactivamente	104
		3.9.2. Hibridación de las sondas sobre las membranas Atlas Arrays	107
		3.9.3. Stripping de las membranas	110
		3.9.4. Cuantificación de los niveles de expresión génica	110
	3.10.	Análisis de los niveles de proteínas	111
		3.10.1. Electroforesis en SDS-PAGE	111
		3.10.2. Transferencia de las proteínas e inmunodetección (Western blot)	112
	3.11.	Análisis in vivo de la competición entre la WP631 y el facto	r de
	trans	cripción Sp1 por el DNA	115
		3.11.1. Descripción de los plásmidos	116
		3.11.2. Transfección por electroporación	117
		3.11.3. Obtención de los extractos proteicos y Western blot	118
		3.11.4. Determinación de la actividad CAT	119
		3.11.5. Determinación de la actividad β-galactosidasa	120
		3.11.6. Cuantificación de la actividad CAT relativa	121
	3.12.	Análisis in vitro de la competición entre la WP631 y el facto	r de
	trans	cripción Sp1 por el DNA	121
		3.12.1. Digestión de los plásmidos pGLUT1-CAT	121
		3.12.2. Marcaje de los fragmentos de DNA	122
		3.12.3. Ensayo de retardamiento en gel (<i>Band-Shift</i>)	123
	3.13.	Determinación de la presencia de secuencias ricas en citosina-gua	nina
	en pr	omotores humanos	125
1	DECHI	LTADOS	129
r.		eterminación de la capacidad de las Antraciclinas de inhibi	
		ración en las líneas celulares Jurkat T, MDA-MB-231 y MCF-7/VP	131
	•	antificación de los efectos citotóxicos y citostáticos de las Antraciclin	
		·	as en 135
	ias iiiiC	4.2.1. Análisis de la mortalidad celular inducida por Antraciclinas	135
		4.2.2.Análisis de las perturbaciones del ciclo celular inducidas	
		•	138
	4.3.	Análisis de la resistencia en la línea celular MCF-7/VP	141

5.

		4.3.1.Ensayos de proliferación celular	141
	4.4.	Determinación de la acumulación intracelular de Antraciclinas	146
	4.5.	Análisis de la senescencia celular inducida por Antraciclinas	150
	4.6.	Análisis morfológico de la catástrofe mitótica	153
	4.7.	Observación microscópica de aberraciones cromosómicas du	ırante la
	catási	trofe mitótica	159
	4.8.	Análisis de la muerte celular por apoptosis y necrosis	161
	4.9.	Análisis de la expresión de p53, c-myc y p21WAFI en las células J	Jurkat T,
	MDA	-MB-231 y MCF-7/VP, tratadas con Antraciclinas	166
		4.9.1.Análisis de los niveles de transcripción mediante	RT-PCR
		semicuantitativa	166
		4.9.2. Análisis de los niveles de proteína mediante Western blot	168
	4.10.	Análisis de la activación de las caspasas-2 y -3	171
	4.11.	Determinación de la capacidad de la WP631 de modular la acti	vidad de
	la pro	oteína asociada a resistencia MRP-1 en las células MCF-7/VP	175
	4.12.	Análisis de los perfiles de expresión génica inducidos por Antr	aciclinas
	en la	línea celular Jurkat T	180
	4.13.	Análisis in vivo (células en cultivo) de la inhibición dependient	e de Sp1
	por V	VP631	189
		4.13.1. Determinación de los efectos de diferentes dosis de WP631	sobre el
		crecimiento de células Jurkat T	189
		4.13.2. La WP631 inhibe la activación de los promotores	GLUT1
		dependiente de la maquinaria transcripcional endógena	193
		4.13.3. La WP631 inhibe la activación de los promotores GLUT1 d	le manera
		diferencial cuando se sobreexpresa Sp1 y/o Sp3	193
		4.13.4. La eficiencia de la WP631 desplazando al factor de transcrip	oción Sp1
		de los promotores wtGLUT1 y mut2GLUT1 es diferente	196
	4.14.	Determinación de la presencia de secuencias ricas en citosina	-guanina
	en pr	omotores humanos	197
5.	DISCUS	IÓN	203
6.	CONCL	USIONES	231

7. BIBLIOGRAFÍA	237

8. ANEXO I: INFORMACIÓN SOBRE LOS EXPERIMENTOS CON MACROARRAYS PRESENTADOS EN ESTE TRABAJO, SIGUIENDO EL FORMATO DE MIAME 255

9. ANEXO II: PUBLICACIONES (Abril de 2005)

289

ÍNDICE DE FIGURAS Y TABLAS

Figura 11: Localización cromosómica de los diferentes proto-oncogenes y genes supresores de tumores mapados hasta la fecha 5
Figura 12: Esquema de las siete funciones celulares de los proto-oncogenes y genes supresores de tumores 6
Figura I3: Fases del ciclo celular 8
Figura 14: Ejemplo de la inducción del gen de respuesta temprana <i>c-myc</i> tras la estimulación de las células con factores de crecimiento 9
Figura I5: Estructura primaria de los factores de transcripción Sp1 y Sp3 11
Figura I6: Estructura primaria de la proteína c-Myc
Figura I7: Activación secuencial de los diferentes complejos ciclina-cdk a lo largo de la progresión del ciclo celular 16
Figura I8: Variaciones del estado de fosforilación de la los miembros de la familia de Retinoblastoma 18
Figura 19. Esquema de la localización de los diferentes puntos de control del ciclo celular que aseguran que la progresión del ciclo tiene lugar correctamente 19
Figura I10: Vías principales de activación de las caspasas en mamíferos 21
Figura I11: Lugares de unión del factor de transcripción p53 en los promotores de diferentes genes implicados en el control del ciclo celular 25
Figura I12: Estructura primaria de los miembros de la familia de Bcl-2, que incluye factores anti y proapoptóticos 26
Figura I13: Regulación de la vía intrínseca por la familia de Bcl-2 27
Figura I14: Dos modelos esquemáticos que ilustran los mecanismos de muerte de las células sensibles o resistentes a la apoptosis, en respuesta a agentes antitumorales que lesionan el DNA 29
Figura I15: Esquema de la regulación del punto de control de G ₂ , que controla la entrada de las células en la mitosis
Figura I16: Representación esquemática de las diferentes vías que llevan a la catástrofe mitótica 36

Figura I17: Estructura de las cuatro Antraciclinas comúnmente utilizadas en el tratamiento

39

del cáncer en la actualidad, Doxorubicina, Daunorubicina, Epirubicina e Idarubicina

Figura I18: Esquema de las fases del proceso de detoxificación celular de xenobiótic fármacos	os y 40
Figura I19: Estructura de las proteínas transmembrana de la familia MDR: glicoproteí o MDR-1 y MRP-1	na P 42
Figura I20: Diseño de Bisantraciclinas basado en el diseño modular	45
Figura I21: Estructura de las Bisantraciclinas WP652, WP760 y WP631	46
Figura 122: Estructura del complejo formado por la unión de dos moléculas Daunorubicina al hexanucleótido d(CGTACG), según los resultados de cristalografía	s de 48
Figura 123: Esquema de la estructura cristalográfica del complejo WP631-DNA	49
Figura M1: La medida de la incorporación de BrdU se ha utilizado para determina capacidad de las células tratadas con Antraciclinas de sintetizar DNA y para determina los diferentes tratamientos inducen lesiones en el DNA	
Figura M3: Principio de los ensayos colorimétricos para la detección de la activació las caspasas $-2 \text{ y} -3$	n de 82
Figura M4: Principio de la tinción con CFSE	85
Figura M5: Diseño de los cebadores para RT-PCR semicuantitativa	102
Figura M6: Diseño de los experimentos con arrays de cDNA	104
Figura M7: Componentes y orden de colocación durante el montaje del sándwich par transferencia de las proteínas separadas en un gel de SDS-PAGE a una membrana nitrocelulosa	
Figura M8: Mapa de la región proximal de los promotores GLUT1wt y GLUT1mut2	116
Figura R1: Determinación del inóculo celular inicial para la realización de experimentos en condiciones de crecimiento exponencial	los 132
Figura R2: Citotoxicidad de la Daunorubicina y la WP631 en células Jurkat T, MDA-231 y MCF-7/VP	MB- 133
Figura R3: Alteraciones en la distribución del ciclo celular a lo largo del tiempo inductor por la Daunorubicina, la Doxorubicina y la WP631, sobre las líneas Jurkat T, MDA-la y MCF-7/VP	
Figura R4: Distribución del ciclo celular de las células MCF-7/VP tratadas con 307 Doxorubicina, 122 nM WP631, 594 nM WP631 o sin tratar	′ nM 144
Figura R5: Análisis de la distribución del ciclo celular y tinción con CFSE	146

Figura R6: Cinéticas de absorción de la Daunorubicina y la WP631 en células Jurkat T, y de la Doxorubicina y la WP631 en células MDA-MB-231 o MCF-7/VP

149

- **Figura R7:** Determinación de la actividad SA-β-galactosidasa lisosomal a pH 6.0 en células Jurkat tratadas con 91 nM Daunorubicina, 60 nM WP631 o sin tratar 151
- **Figura R8:** Determinación de las síntesis de DNA, mediante la medida de la incorporación de BrdU, en células Jurkat T tratadas con 91 nM Daunorubicina durante 4 y 24 horas, con 60 nM WP631 durante 4 y 72 horas, o sin tratar

 152
- **Figura R9:** Análisis de LSC de las células Jurkat T tratadas con 60 nM WP631 durante 72 horas
- **Figura R10:** Análisis de LSC de las células MDA-MB-231 tratadas con 2 μM Doxorubicina ó 157 nM WP631 durante 96 horas
- **Figura R11:** Análisis de LSC de las células MCF-7/VP tratadas 594 nM WP631 durante 96 horas, 3 días después del cambio de medio 157
- **Figura R12:** Análisis de LSC de las células MCF-7/VP tratadas con 307 nM Doxorubicina durante 96 horas
- **Figura R13:** Tinción de los cromosomas de células Jurkat T control o tratadas durante 72 horas con 60 nM WP631 **160**
- **Figura R14:** Doble tinción con Anexina-V y yoduro de propidio de células Jurkat T tratadas con diferentes dosis de Daunorubicina o WP631 y triple tinción con Anexina-V, yoduro de propidio y naranja de acridina de células Jurkat T tratadas con diferentes dosis de Daunorubicina o WP631, en el momento del inicio de la muerte celular **162**
- **Figura R15:** Doble tinción con Anexina-V y yoduro de propidio de células MDA-MB-231 tratadas con 2μM Doxorubicina o 157 nM WP631

 165
- **Figura R16:** Doble tinción con Anexina-V y yoduro de propidio de células MCF-7/VP tratadas con 594 nM WP631

 166
- **Figura R17:** RT-PCR semicuantitativa para determinar los cambios en la expresión de los genes p53, c-myc y $p21^{WAFI}$, implicados en los procesos de apoptosis, senescencia celular y catástrofe mitótica **168**
- **Figura R18:** Análisis de los cambios en los niveles de las proteínas c-Myc, p53 y p21^{WAF1} en células Jurkat T tratadas con Daunorubicina o WP631
- **Figura R19:** Imágenes de las células MDA-MB-231 y MCF-7/VP tratadas durante diferentes tiempos con Doxorubicina o WP631, y análisis de los cambios en los niveles de las proteínas c-Myc y p21^{WAF1}

 172
- **Figura R20:** RT-PCR que demuestra que el gen *mrp-1* pero no el gen *mdr-1* se expresa en las células MCF-7/VP y región promotora proximal del gen MRP-1 humano 176

Figura R21: RT-PCR semicuantitativa usada para determinar cambios en los niveles de transcripción del gen *mrp-1* en células MCF-7/VP tratadas con Doxorubicina (IC₅₀) o diferentes dosis de WP631 (IC₅₀ e IC₇₅) durante 24 ó 96 horas **176**

Figura R22: Determinación de la actividad de las proteínas MDR-1 y MRP-1 en células MCF-7/VP tratadas con 307 nM Doxorubicina, 122 nM WP631 ó 594 nM WP631, o sin tratar durante 24 ó 96 horas **179**

Figura R23: Imágenes de las membranas de *nylon* Human Oncogene and Tumor Supresor Atlas Arrays (BD Clontech) obtenidas en células Jurkat T y dispersión de los cambios en la expresión de los genes asociados a cada tratamiento respecto al control

181

Figura R24: Cambios en los perfiles de expresión génica en células Jurkat T tratadas durante 4 horas con 182 ó 91 nM Daunorubicina, ó 60 nM WP631 y Diagrama de Venn

183

Figura R25: Análisis de la expresión génica en células Jurkat T tratadas con Daunorubicina, utilizando las membranas Human Oncogene/Tumor Suppressor Atlas Array

Figura R26: Viabilidad, proliferación y distribución del ciclo celular en células Jurkat T tratadas durante 4 ó 24 horas con diferentes concentraciones de WP631 (60 nM, 600 nM y 1 μM)

Figura R27: *Western blot* que muestra los cambios en los niveles de las proteínas Sp1 y Sp3 en células Jurkat T transfectadas con los vectores wtGLUT1 o mut2GLUT1, y en presencia/ausencia de los vectores pCMV-Sp1 y/o pCMV-Sp3flu

192

Figura R28: Inhibición de la transcripción dependiente de Sp1/Sp3 por la WP631 195

Figura R29: Efecto de la WP631 sobre la unión del factor de transcripción Sp1 a los promotores wtGLUT1 y mut2GLUT1 197

Figura R30: Representación gráfica de la presencia de pasos CpG y tramos CGNNCG en las regiones promotoras analizadas **200**

Figura R31: Ejemplo de la presencia de tramos ricos en CG, incluyendo sitios de unión potenciales del factor Sp1, de tres de los promotores humanos analizados: promotor de *BRCA2*, promotor de la *ciclina D1* y promotor de *jun* **202**

Figura D1: Tres rutas que relacionan los perfiles de expresión génica diferencial de células Jurkat T tratadas con 182 nM Daunorubicina (su IC₇₅), 91 nM Daunorubicina (su IC₅₀) ó 60 nM WP631 (su IC₇₅), con las respuestas celulares observadas: apoptosis, senescencia y catástrofe mitótica **215**

- **Figura D2:** Modelos esquemáticos que ilustran modos alternativos de interacción de la WP631 con el DNA, y su capacidad de competir con el factor de transcripción Sp1 **218**
- **Figura D3:** Modelo esquemático que ilustra los efectos de la WP631 sobre la actividad transcripcional del promotor wtGLUT1 cuando se sobre expresan los factores de transcripción Sp1 y Sp3, basado en los resultados presentados en la Figura R28 **220**
- Figura D4: Modelos que ilustran las respuestas celulares frente al tratamiento con antitumorales

 226
- **Tabla M1:** Descripción de las líneas celulares utilizadas durante el desarrollo de este trabajo 61
- **Tabla M2:** Patrón de tinción de las células viables, apoptóticas y necróticas, teñidas con yoduro de propidio y Anexina-V 78
- **Tabla M3:** Información sobre los experimentos con Macroarrays de cDNA presentados en este trabajo, siguiendo el formato de MIAME 109
- **Tabla M4:** Descripción de los promotores humanos analizados y números de acceso correspondientes para las diferentes bases de datos 127
- **Tabla R1:** Valores de las concentraciones de Daunorubicina, Doxorubicina y WP631 que inhiben el crecimiento celular un 50% (dosis IC_{50}) o un 75% (dosis IC_{75}) en las líneas Jurkat T, MDA-MB-231 y MCF-7/VP
- **Tabla R2:** Recuento de la mortalidad celular en células Jurkat T, MDA-MB-231 y MCF-7/VP tratadas con las dosis IC₅₀ e IC₇₅ para la Daunorubicina, Doxorubicina o WP631 durante 72 ó 96 horas, con posterior cambio del medio de cultivo **137**
- **Tabla R3:** Recuento de células, mediante la tinción con azul de tripano, en cultivos de células MCF-7/VP tratados con 307 nM ó 122 nM WP631, o sin tratar 145
- **Tabla R4:** Determinación de la activación de las caspasas-2 y -3 durante los procesos de muerte celular por apoptosis, senescencia o catástrofe mitótica, inducidos por Antraciclinas

Tabla R5: Porcentaje de activación de las caspasas-2 y -3 en células Jurkat T tratadas con la dosis IC₅₀ para la Daunorubicina, o en células MDA-MB-231 tratadas con la dosis IC₇₅ para la Doxorubicina **174**

Tabla R6: Selección de genes involucrados en los puntos de control celular G₁ y G₂, en la respuesta a lesiones en el DNA, y en el control de la apoptosis, cuya expresión cambia de manera diferencial en células Jurkat T tratadas con diferentes dosis de Daunorubicina o WP631

Tabla R7: Cuantificación de la fragmentación del DNA intracelular en células Jurkat T tratadas con dos dosis diferentes de Daunorubicina o WP631, durante 4 ó 10 horas **188**

Tabla R8. Composición, frecuencias observadas de diferentes tramos ricos en CpG y presencia de lugares de unión potenciales del factor activador de la transcripción Sp1 en los 26 promotores humanos analizados y dos controles externos de robustez estadística

199