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Chapter 1
INTRODUCTION

In this introduction we give the historical background of the themes developed in this
dissertation and state the main results. We also set up the notation and state some
facts that we will use further on.

Remarks and notation

We work in Zermelo-Fraenkel Set Theory with the Axiom of Choice, ZFC. Our
basic references are: T. Jech, Set Theory (Academic Press, 1978) and K. Kunen, Set
Theory. An Introduction to Independence Proofs (North Holland, 1980). With ZFC*
we refer to a finite fragment of ZFC sufficient for the proof at hand.

a, 3,7, 6,n, v, £ ¢ denote ordinal numbers. We reserve s, A, u for cardinal
numbers. w is the set of all finite ordinals, or natural numbers, which we denote by
1, 7, k, I, m, n.

w* is the Baire space. i.e., the set of all functions from w into w viewed as
product space. 2¢ is the Cantor space. i.e., the set of all functions from w into {0, 1}
viewed as product space. Finally, R is the real line with the topology generated by
open intervals with rational endpoints.

There is a close relationship between these three spaces: they are “almost”
homeomorphic, that is, there exists an homeomorphism from any of them into any
other except for a countable subset (see [L2], VII.3). So, most of the topological and
regularity questions can be transferred from one of these spaces to another. Since all
the questions that we shall consider are of this kind, we will work in the space that is
most convenient for each particular problem. In each case we will indicate explicitly
what space we are working on.

Strictly speaking, only the members of R are real numbers. But, by our
previous remarks, we also call real numbers or, for short, reals the elements of w* and
2¥. Weuse a, b, ¢, r, s, t, x, y, 2 to denote reals and reserve f, g, h for elements of
w* and 2%.

These three spaces are polish spaces: separable complete metric spaces. In
general, given a polish space X, we say that a subset A of X is a Borel set ift* it
belongs to smallest o-algebra of subsets of X containing all open sets. More explicitly:

Definition Let X be a polish space. For every countable ordinal o, (o > 1) we
define, by recursion on wi, the collection gg of subsets of X:

*“iff” abreviates “if and only if”
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o Ac 2? iff A is an open subset of X.

e Ac ZO iff there exists a sequence (B, :n € w> such that for every n € w there
s B, “< o with B, € Eﬂ and A =, ., Bn, where B, is the complement of
B,.

new

We also define the collections 113 and A%, 1 < o < wq: T = {A:Ac 0} and
AO 20 N HO Finally, B C Xisa Borel set iff there is « < wy such that Be 20

A subset A of polish space X is an analytic set iff it is the projection of a
Borel subset of X x Y, where Y is some polish space. Also, A is analytic iff it is the
projection of a closed subset of X x w“. Clearly, every Borel set is analytic.

We define the projective sets of a polish space X as follows:

Definition For every n > 1, we define the collection of Z]ﬂll of subsets of X:
o Ac 2% iff A is an analytic subset of X.

e Ac Zn+1 iff A={x:3y(x,y) € B} for some B C X x w* such that Be Zlﬂll

We also define the collections El and Al as follows: = {A: A4 ¢ Z‘l} and
AL =X NI A subset A of X is a projective set ZﬁfOT‘ somen>1, Ac Z‘l

M. Suslin showed in 1917 ([Su]) that the A7 sets of every polish space are
precisely the Borel sets.

The projective sets of the Baire space are definable in the following way: For
every n > 1 and every a € w®,

e If n is odd, then:
— Ais XL (a) iff for all z € w¥
x € Aiff I1Vz.. 3z, Vm(z tm,z1 tm, 2ot m, ..., 2, T m) €ER

where R is an arithmetical relation on a. i.e., definable in the model
(V,, €,a).

— Ais I (a) iff for all z € w®
x € Aiff V232, . Vz,dm(z T myz1 T my 2ot m, . 2, T m) € R
where R is an arithmetical relation on a.
e If n is even, then:
— Ais 3 (a) iff for all z € w®
x € Aiff I1V2. . Vz,dm(z tmyz1 tmy 2ot m, .. 2, T m) € R

where R is an arithmetical relation on a.
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— Ais I (a) iff
€ Aiff V132 32,YVm(z tm,z1 T my 2ot my ... 2z, T m) € R
where R is an arithmetical relation on a.

Finally, for every n > 1, ¥} = e Xn (a) and I} = U,c 0 115 (a).

n

Forcing

A forcing notion P = (P, <p) is a set P with a binary relation <p on P that is
reflexive and transitive. We do not require that <p be antisymmetric nor that P
have a <p-least element, although this is almost always the case. p, ¢ and r (possibly
with subindexes) denote elements of P, which we call conditions (of the forcing).
p <p q means that “p extends ¢”. i.e., p gives more information than ¢ on the generic
object that is added by forcing with P. p L p ¢ means that p and ¢ are incompatible
conditions. i.e., there is no r € P such that r <p p and r <p ¢q. P is separative if
for all p,q € P, if p £p ¢, then there exists r € P such that r <p p and r Lp q.
“p denotes the forcing relation of P. o, 7, p, a, b, ¢, P, Q,P,Q, G (possibly with
subindexes) denote P-names. 7, a, P denote canonical P-names for elements in the
ground model. If G is a P-generic filter over some model V, then 7 [G], a[G], @t [G]
denote the evaluations of 7, @ and n by G in V' [G].

Sometimes we do forcing with complete Boolean algebras. If B is a complete
Boolean algebra, then (B \ {0g}, <g), where <g is the canonical partial order from
B, is a forcing notion. It is a well-known fact that every separative poset P can be
densely embedded into an unique (up to isomorphism) complete Boolean algebra, the
completion of P, r.o. (P). So, all forcing arguments can be carried out with complete
Boolean algebras. The main advantage of working with complete Boolean algebras is
that for every formula ¢ (21, ..., 2,) and all B-names 74, ..., 7, there exists a condition
le(71, ..., 7n)]s in B such that for every generic filter G over V,

VIG] 2 o(11]G], ..., n[G]) iff [o(71, ..., 7n)]8 € G.

Namely, [¢(71,...,74)]s =sup({p € B\{0g} : p 8 ©(T1,....,74)}) (see [Ku], VIL.7 or
[72], 2.18).

Descriptive Set Theory and forcing

Descriptive Set Theory is the study of definable sets of reals, mainly the projective
sets of reals. One of the main objectives in this field is to look into the regularity
properties of projective sets, like the Lebesgue measurability, the property of Baire
or the perfect set property.

We use the following notation: we write ¥ (L) (IT; (L), A% (L)) if every ¥}
(respectively, IT%, AL) set of reals is Lebesgue measurable. We write X7, (B) (I}, (B),
Al (B)) if every X7 (I}, A) set of reals has the property of Baire. Finally, we write
gi (P) (E}L (P), %111 (P)) if every g}b (E}L, %711) has the perfect set property.
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The first results on regularity properties of projective sets date from the begin-
ning of the 20th century: in 1917, N. Luzin ([Lul]) proved X1 (L), in 1923, N. Luzin
and W. Sierpinski ([Lu-Si]) proved X1 (B), and, in 1917 M. Suslin proved X1 (P) (see
[Lu2]).

But it was quickly realized the difficulty to extend this results to more complex
projective sets. If a set of reals is Lebesgue measurable, then so is its complementary
set. The same occurs with the property of Baire. So, the results mentioned above
imply IT3 (L) and II} (B). Therefore, the question about the measurability and the
property of Baire was for sets in the %% level. For the perfect set property, the
question remained at the E% level.

Then K. Godel obtained in 1938 the first negative results: in the model of
constructible sets, L, used by him to prove the consistency of the Generalized Con-
tinuum Hypothesis and the Axiom of Choice with ZF ([G6]) there exists a A set
which is not Lebesgue measurable and does not have the property of Baire. He also
noticed that in this model there is a E% set without the perfect set property.

After the method of forcing was invented by Cohen to prove the independence
of the Continuum Hypothesis and the Axiom of Choice from ZF, it has been applied
to produce a vast array of consistency results in Descriptive Set Theory. For instance,
R. Solovay ([So]) proved that ZFC+ “Every projective set of reals is Lebesgue mea-
surable and has the property of Baire” is consistent, supposing that ZFC+ “There
exists an inaccessible cardinal” also is. We can find other applications of forcing
in Descriptive Set Theory in the proof of S. Shelah ([Sh1]) that the existence of an
inaccessible cardinal is a necessary hypothesis in order to obtain a model of ZFC
where all projective set of reals (in fact, all g%) are Lebesgue measurable, and in the
proof that this large cardinal hypothesis is not necessary in order to obtain a model
of ZFC where all projective sets of reals have the property of Baire.

Cohen Forcing ([C]) which adds a real that does not belong to any meager
Borel set with code in the ground model, and Random forcing ([So]) which produces
a real not belonging to any null Borel set with code in the ground model, play an
essential role in Solovay’s proof. Shelah used the Amoeba forcing ([M-So]) which adds
a measure one set of Random reals over the ground model, to show that the inacces-
sible cardinal assumption is necessary to find a model of ZFC' where all projective
sets of reals are Lebesgue measurable. He also used Amoeba forcing for Category
([M-So]) which adds a comeager set of Cohen reals over the ground model, for the
aforementioned result on the property of Baire.

Looking at the partially ordered sets used in these and other forcing arguments
in Descriptive Set Theory, we realize that they are, essentially, sets of reals definable
in a simple way: they are projective partial orderings. By a projective partial or-
dering we mean a partially ordered set (a poset, for short) where the ordering and
the incompatibility relation are projective subsets of the real plane. Cohen, Random,
Amoeba and Amoeba for the Category forcing notions are Borel (%i) Other exam-
ples of projective, in fact Borel, and ccc forcing notions can be found in [Hel, [To2],
[Ju-R-Sh], and more complicated projective forcing notions in [B2].

Thus, the study of the projective forcing notions arise in a natural way. It
starts in [Sh1], where the absoluteness properties of g% sets are exploited. It continues
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in [Ju-Sh1], [Ju-Sh3|] and [Ju-Sh4]. In [Ju-Shl], H. Judah and S. Shelah develop a
general theory for w-Suslin forcing notions. i.e., g% posets. Their work was continued
in [B1] and in [B-Ju] restricted to X1 ccc posets. Other papers, as for instance [G-Sh1],
[G-Sh2], [Sh2], [Ju-R] and [Ju-R-Sh], study some other properties of 1 ccc forcing
notions.

In Section 2.1, we generalize these results by developing a general theory of
projective and projective ccc posets. We give the basic definitions and facts and we
compute the complexity of some sets of reals associated to these forcing notions, such
as the set of codes of the posets of reals of a given complexity, the set of codes of
maximal antichains of a poset and the set of codes of simple names for reals. We
finish this section showing that forcing a projective formula by means of a projective
ccc poset is a projective relation and computing its complexity:

Theorem 2.1.23  Let P be a projective ccc poset and let 0(x) be a Xt (I1X) formula
with k > 2. Then the relation

R(p,7) < p € P AT is a simple P-name for a real A p ©p 0(7))
s a projective relation. Moreover,
1. If Pis a X, poset, then R is Xy, 1 (ITL,, ).

2. If P is a II}, poset, then R is X1, (L%, ).

The remainder of the second chapter is devoted to Martin’s Axiom restricted
to projective posets. Martin’s Axiom (henceforth, M A) was formulated for the first
time by A. Martin and R. Solovay in [M-So|: For every ccc poset P and every family
{A, : a < K}, k < 2% of mazimal antichains of P there exists a filter G C P such
that for every a < kK, Ay NG # (). We obtain Martin’s Axiom for projective posets
by adding the condition that P is a projective poset. R. Solovay and S. Tennenbaum
showed the consistency of M A with ZFC + -CH ([So-T]). MA has become a
powerful tool for consistency results. For instance, A. Martin and R. Solovay show
in their paper that M A implies that there are no Suslin trees, and that it implies the
additivity of the Lebesgue measure, the additivity of category, X3 (L) and X5 (B).

In [Ju-Sh1], H. Judah and S. Shelah define the Martin’s Axiom for g} posets,
MA(X]), as the restriction of MA to X1 posets and show that although M A(X1)
implies the additivity of the Lebesgue measure, it is weaker than M A. Since all
consequences of MA(X1) in [Ju-Shl] are consequences of the additivity of measure,
they asked if they are equivalent. The negative answer was given by J. Bagaria
and H. Judah in [B1] (see also [B-Ju]), where they build a transitive model where
the additivity of the Lebesgue measure holds and Martin’s Axiom fails for a Borel
ccc poset. Moreover, they give a combinatorial characterization of Martin’s Axiom
restricted to the Amoeba poset and show its equivalence to the additivity of the
Lebesgue measure.

In Section 2.2, we define Martin’s Axiom for projective posets, M A(Proj),
and we show:
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Theorem 2.2.14 (GCH) Let k be a regular cardinal which is not the successor of a
cardinal of countable cofinality. Then there is an iteration of projective and ccc posets
such that whenever G is a generic filter for the iteration,

V [G] 2 MA(Proj) A 2% = k.

As Theorem 2.2.14 states, we build a model of ZFC + M A(Proj) + ~CH by iter-
ating only projective ccc posets. We want to proceed imitating the usual proof of
consistency of M A+ —~CH with ZFC. But when we check that M A(Proj) holds in
the final generic extension, some difficulties arise. Firstly, A. Levy ([L1]) showed that
if ZFC+ “There exists an inaccessible cardinal” is consistent, so is ZFC+ “Every
uncountable projective set of reals has the cardinality of the continuum”, where the
continuum is as large as you want. Hence, we cannot assume that M A(Proj) is equiv-
alent to M A(Proj) restricted to posets with cardinality less than the continuum, a
crucial fact in the proof of the consistency of ZFC+ M A+—-CH. Secondly, and more
important, in general, projective formulas fail to be absolute for transitive models of
Z F'. Since we only force with posets which are defined by projective formulas at some
stage of the iteration, given a projective poset in the final generic extension, there is
a priori no reason to ensure that we have forced with this same poset at some stage
along of the iteration. However, as we shall see, we can arrange the iteration in such
a way so that the projective formulas are absolute for sufficiently-many models along
of the iteration, where “sufficiently” means for a w;-closed and unbounded subset of
(w1-club subset of &, for short). This notion is a generalization of a club subset of x: a
w1-club subset of k is an unbounded subset of k closed under supremums of sequences
of length ~, w1 < cf () < K, of its elements. So, we begin this section by showing
some properties of A-club subsets of k, analogous to the well-known properties of club
subsets of k, which we use in the proof of Theorem 2.2.14.

In Section 2.3, we show that M A(Proj) is weaker than M A. We first collapse
a weakly-compact cardinal xk onto w; using the Levy-collapsing poset Coll (w, < k).
This allows us to apply a version of a well-known theorem of K. Kunen (Theorem
2.3.2) to projective ccc posets and prove that they are indestructible-ccc in every ccc
generic extension of the collapse. Then, we use Theorem 2.2.14 to prove the following:

Theorem 2.3.18 Let k be a weakly-compact cardinal and let Vo = L[C|, where C is
a Coll (w, < K)-generic filter over L. Suppose that ¢ (x) is a formula of the language
of Set Theory such that:

1. For every X C w¥, there are posets P§, ...  PX such that

ZFCF (¢ (X) < P, ... ,PXare ccc posets).

2. For every X C w¥, ¢ (X) is preserved under direct limits of finite support
iterations of ccc forcing notions.

Moreover, suppose that there exists a ccc generic extension Vi of Vo and A €
Vi1 such that Vi 2 p(A). Then there is a ccc poset P € Vi such that whenever G is a
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P-generic filter over Vi,

V1[G] 2 MA(Proj) N—-CH A ¢ (A).

This theorem essentially says that ZFC + MA(Proj) + ~CH is consistent with
the existence of almost any kind of uncountable structure that M A + =C'H forbids.
Then, in the following subsections, we apply Theorem 2.3.18 to show the consistency,
modulo a weakly-compact cardinal, of “There exists a Suslin tree”, “There exists a
non-strong gap in w*” and of “There exists an entangled set of reals” with ZFC +
MA(Proj) + ~CH, in spite of there being no such structures under M A + -CH.
Thus we improve a result of H. Judah and S. Shelah in [Ju-Sh1], where they show that
ZFC+M A(;j) +-CH+“There exists a Suslin tree” is consistent. Finally, in the last
subsection of the Section 2.3, we show that in some cases we do not need to collapse a
weakly-compact cardinal in order to obtain the consistency with M A(Proj)+—-CH of
statements like “There exists a cardinal x less than the continuum such that 2% < 2+7
or “No set of reals is a () set”, which are false under M A + -C'H. Note that, since
Martin’s axiom for o-centered posets (for short, M A (o-centered)) implies that for
every k < 2% 2% = 2% e obtain a model of M A(Proj) + ~CH where M A(o-
centered) does not hold. Therefore, M A (Proj) does not imply M A (o-centered).

Generic absoluteness for projective ccc posets

In the third chapter, we study the absoluteness properties of projective formulas
between a model and its generic extensions.

Definition Let M, N be transitive models of ZF such that M C N. A formula
¢ (vo, ..., v,) of the language of Set Theory is absolute for M and N iff for all
X0y ey Ty € M,

M 2 p(zg,...,x,) iff N2 p(zo,...,Tn) -

A model M of ZF is Zl absolute (n > 1) iff every L1 formula is absolute between
M and every model N of ZF such that M C N. M 1s projective absolute iff M 1is
2711 -absolute for all n > 1.

It is a well-known fact that every transitive model of ZF' is Z]j—absolute.
Shoenfield’s Absoluteness Theorem, [Sho] (see [J2], Theorem 98) states that every
transitive model of ZF + DC' containing all countable ordinals is g%—absolute. This
is the best result we can prove in ZF(C": it is easy to find two transitive models of
Z FC with all countable ordinals, M C N, such that 21 absoluteness for M, N fails.
For instance, if M 2 “V = L”, then “There is a non-constructible real” is a ¥i
sentence true in all generic extensmns of M that add a real but it is false in M.

However, if we only take into consideration generic extensions of a transitive
model of ZFC, instead of all extensions, the situation changes significantly.

Definition Let M be a model of ZF and let T" be a class of posets. M is El absolute
for I' (n > 1) iff every XX formula is absolute between M and every generic extension
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of M by a poset P € I'. M is projective absolute for I" iff M is 21 absolute for T for
all n > 1. M 1is El absolute for P (‘projective absolute for P) zﬁ M s 21 absolute
(projective absolute) for {P}.

We are interested in the generic absoluteness and projective generic absolute-
ness properties because they are a simple way to turn consistent statements into true
statements. Roughly speaking, given some statement, we force with an appropriate
forcing notion showing that the statement is true in the generic extension, thereby
concluding, by absoluteness, that it is true in the ground model. Since most of
the regularity properties of projective sets can be expressed by means of projective
sentences which may be forced by an appropriate forcing notion, projective generic
absoluteness properties provide us with a new way to prove some of these regularity
properties. For instance, H. Judah uses this way of reasoning in [Ju] to give a new
proof of X1 (L) and ¥} (B) Moreover, from [Ju-Sh2], [M-So| and [B1] we have that
A3 (L), Al (B), X3 (L) and X3 (B) are equivalent, respectively, to Y3-absoluteness
for Random, Cohen, Amoeba and Amoeba, for Category posets. From [Ju] and [B1],
we have that 23 absoluteness for Amoeba plus X3 Yiz-absoluteness for Random implies
Al( ) and that 23 absoluteness for Amoeba for category plus 24 absoluteness for
Cohen implies A3 (B) Finally, from [Ju] and [Br], we have that 24 absoluteness for
Amoeba implies %3 (L) and from [Ju] and [Br-Ju-Sh] we have that Yz-absoluteness
for Hechler forcmg implies Zl (B). Thus, projective generic absoluteness properties
for projective posets imply regularity properties for projective sets of low complexity.

Note that Shoenfield’s Absoluteness Theorem implies that every transitive
model of ZFC containing all countable ordinals is El absolute for all forcing notions.
And, as we remarked above, if M 2 “V = L”, then M is not 23 -absolute for any poset
that adds reals, as for instance, the Cohen poset. Therefore in general, transitive
models of ZFC' are not gé—absolute for the Cohen poset.

However, there is a close relationship between Martin’s axiom, and in general
Forcing axioms, and generic absoluteness of formulas of the language of Set Theory
for certain classes of posets. Recall the Levy hierarchy of formulas of language of Set
Theory:

Definition A formula is 3¢ (also Ig) iff all its quantifiers are bounded; i.e., they all
are of the form dx € y or Vx € y. A formula is X,+1 iff it is of the form Jxq...x, 1
where 1 is II,, and it is 1,41 iff it is of the form Vxq...x,¢ where ¢ is 3,. A class
C' (a property P, a relation R) is a ¥,-class (3,-property, a Y,-relation) iff z € C
(P(z), R(z,y)) can be written as a X,-formula. A function F is a ¥,-function
iff the relation y = F (x) is a X, -relation. Similarly for I1,. A property P is a
A,-property iff it is both ¥, and 11, (similarly for relations and functions)

If A is a set, then we say that ¢ is a X (A) formula iff it is a ¥; formula and all
its parameters belongs to A. In [B3], it was proved that M A is equivalent to the
absoluteness of Y1 (P (k)) formulas with x < 2%, for all ccc posets. So, Martin’s
axiom is a sort of generic absoluteness axiom between a model and its ccc generic
extensions for a class of simple formulas. In [B3] it is also shown that all models of
ZFC+MA,, are gé—absolute for the class of ccc posets. But M A,,, is stronger than
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g%—absoluteness for ccc posets: if there exists a weakly-compact cardinal, then one
can force to obtain a transitive model of ZF'C which is projective absolute for all ccc
posets and where M A, is false.

In order to have 24 absoluteness we need an inaccessible cardinal. More pre-
cisely, 23 absoluteness for Random forcing plus 24 -absoluteness for Cohen forcing
implies that w; is an inaccessible cardinal in L ([Bl] see also [B-Ju]). So, in order to
obtain a transitive model of ZFC g}l—absolute for ccc posets we need a large cardi-
nal hypothesis. In fact, the existence of an inaccessible cardinal is enough to obtain
transitive models of ZFC projective absolute, not only gﬁ—absolute, for all ZJJ% cce
posets ([B1], see also [B-Ju]).

In the third chapter of this work, we extend all these results. We begin in
Section 3.1 by studying one of the main notions of this chapter, namely, the Solovay
models over a model V. FEssentially, a Solovay model over a transitive model V' of
ZFC is the class of all sets constructible from real numbers, L (R), of a generic
extension of V' obtained by Levy-collapsing an inaccessible cardinal in V. Solovay
models are, of course, the models discovered by Solovay [So] in which every set of
reals is Lebesgue measurable and has the property of Baire. We shall prove:

Lemma 3.1.6 Suppose that L(R)™ and L(R)" are Solovay models over V such
that RM C RN and wM = wl. Then there is an elementary embedding j : L (R)M —
L (R) which s the identity on the reals and the ordinals.

So, all formulas with ordinals and reals as parameters, and hence all projective formu-
las, are absolute between two Solovay models over V' with the same first uncountable
cardinal. Thus, whenever the property of L (R) of being a Solovay model is preserved
under forcing notions that do not collapse w;, a strong form of generic absoluteness
occurs. We call it L (R)-absoluteness.

Then, also in Section 3.1, we give some consequences of L (R)-absoluteness
and of projective absoluteness. We first show that absoluteness for Borel ccc (Suslin
cce) implies two-step projective absoluteness, a stronger form of generic projective
absoluteness, for Borel ccc (Suslin ccc) posets. Then, we prove a weak version of
this fact for more complex projective ccc posets and for ccc posets in L (R). Then, to
motivate the interest of generic absoluteness properties for classes of definable and ccc
posets, we prove that a form of generic absoluteness for ccc posets in L (R) implies
that every projective set of reals is Lebesgue measurable and has the property of
Baire. We also show, using an argument of H. Woodin, that projective absoluteness
for Borel ccc posets implies that there are no uncountable projective well-orderings
of reals and, hence, that w; is an inaccessible cardinal in L.

The remainder of the Chapter 3 is devoted to study the consistency strength
of generic absoluteness properties for several classes of forcing notions. We begin, in
Section 3.2, by extending the results of [B1] and [B-Ju] to X3 ccc posets. We prove
the following;:

Theorem 3.2.1 Suppose L (R) s a Solovay model over V and P is a 21 and ccc
poset in M. Then the L (R) of any P-generic extension of M is also a Solovay model
over V.
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Note that (by Lemma 3.1.6) this theorem implies more than L (R)-absoluteness for
g% cce posets. It implies L (R)-two-step absoluteness, namely,

Definition Let V' be a model of ZFC. V is L(R)-two-step absolute for P and Q iff
for every P-generic filter G over V' and every Q[G|-generic filter H over V|G|, there
15 an elementary embedding

i LRV - [(R)VICIH]

that fizes all ordinals and reals. Let T' be a class of posets, V is L (R)-two-step
absolute for I' iff for all P € T" and every P-name for a poset Q such that ©p “Q € I'”,
V' is L(R)-two-step absolute for P and Q.

As a corollary, from [B1] (see also [B-Ju]) and Theorem 3.2.1, we have:
Corollary 3.2.8 The following are equiconsistent (modulo ZFC):

1. There exists an inaccessible cardinal.
2. L (R)-two-step absoluteness for g% cce forcing notions.

3. g}l—absoluteness under Cohen and Random forcing.

In the next section, Section 3.3, we deal with generic absoluteness for all
projective and ccc sets. We prove the following theorem:

Theorem 3.3.1 The following are equiconsistent (modulo ZFC')

1. There exists a X,-Mahlo cardinal.
2. L (R)-two-step absoluteness for projective and ccc posets.

3. g}l-absoluteness for projective and ccc posets.

We begin this section by defining the A,-Mahlo, >.,,-Mahlo, II,-Mahlo and >,,-Mahlo
cardinals and studying their reflection properties. They are definable versions of
Mahlo cardinals: « is a X,-Mahlo cardinal iff k£ is an inaccessible cardinal such that
the set of inaccessible cardinals below x has non empty intersection with all clubs of
k which are definable by means of a ¥, formula in V,; (similarly for A,-Mahlo and
I1,,-Mahlo). « is ¥,-Mahlo cardinal iff x is ¥,-Mahlo for all n € w. Note that all these
cardinals are below a Mahlo cardinal. The following subsection is devoted to prove
(1) implies (2) of Theorem 3.3.1. We do it by showing that every projective and ccc
forcing extension of a ¥,-Solovay model over V', the L (R) of a generic extension of
V obtained by Levy-collapsing a ¥,,-Mahlo cardinal in V, is also a >,,-Mahlo Solovay
model over V. In the next subsection, we prove (3) implies (1) of the theorem. More
precisely, we prove that gﬁ—absoluteness for projective and ccc forcing notions implies
that wq is a 2,-Mahlo cardinal in L.
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In Section 3.4, we study the projective generic absoluteness by Levy-collapsing
a Mahlo cardinal. First we show that every extension of a Mahlo Solovay model over
V' by means of a ccc subposet of projective poset is a Mahlo Solovay model over V. As
consequence, we get that every o-linked extension of a Mahlo Solovay model over V' is
a Mahlo Solovay model over V. J. Brendle, H. Judah and S. Shelah ( [Br-Ju-Sh]) have
shown that gﬁ—absoluteness for Hechler forcing, a o-centered forcing notion, implies
that wy is an inaccessible cardinal in L. On the other hand, A. R. D. Mathias (see
[B-F]) using an argument of R. Jensen showed that if w; is an inaccessible cardinal
in L and gﬁ—absoluteness for o-centered posets holds, then w; is a Mahlo cardinal in
L. So, we conclude:

Theorem 3.4.18 The following are equiconsistent (modulo ZFC')

1. There exists a Mahlo cardinal.

2. L (R)-two-step absoluteness for ccc subposets of projective posets.
3. L (R)-two step absoluteness for o-linked posets.

4. L (R)-two-step absoluteness for o-centered posets.

d. g}l-absoluteness for o-centered posets.

0. g}l—absoluteness for o-centered subposets of Borel posets.

In the last section, Section 3.5, we remark that Theorem 2.3.2 of K. Kunen, can
be rephrased as saying that every ccc generic extension of a weakly-compact Solovay
model over V is also weakly-compact Solovay model over V', where weakly-compact
Solovay model is Solovay model obtained by Levy-collapsing a weakly-compact car-
dinal. Then, using a version of an argument of L. Harrington and S. Shelah ([H-Sh]),
we show

Theorem 3.5.5 The following are equiconsistent (modulo ZFC')
1. There exists a weakly-compact cardinal.
2. L (R)-two step absoluteness for ccc forcing notions.

3. L (R)-two step absoluteness for Knaster forcing notions.

4. One step gﬁ-absoluteness for Knaster forcing notions.
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The Levy-collapsing forcing notion

We use the Levy-collapsing forcing notion in almost every section of this work. Here,
we state the definitions and the main facts about this forcing notion. We will use
them without further comment.

Definition For every ordinal o, Coll (w, «) is the following partial order:
e p € Coll (w,a) iff pis a function, dom (p) C w is finite and rec (p) C «a.
ep=<qiff gCp

The Levy-collapse for a, Coll (w,< «), is the product with finite support of
Coll (w, ), all § < . i.e.,

e p € Coll(w,<a) iff p € [[,Coll(w,B) and p(B) = 0 for all but finitely
many (3.

For p € Coll (w, < a), supp (p) = {# < a: p(B) # 0}.

e p<qiff ¢(B) Cp(f),dl < a.

Therefore, for every p,q € Coll (w,a), p L qiff p, g are incompatible functions.
i.e., there is 8 € dom (p) N dom (q) such that p(5) # ¢q(5). And for every p,q €
Coll (w,< a), p L q iff there is § € dom (p) N dom (q) such that p(8),q(5) are
incompatible functions.

Note that our notation departs from the usual one. We use Coll (w, < ) for
the Levy-collapsing poset (and not Lv («) as [Ku]) instead of the Levy-collapsing
algebra, as in [J2].

Thus forcing with Coll (w, ) collapses o onto w, and forcing with Coll (w, < «)
collapses all ordinals less than a onto w.

Remark We can regard the conditions p € Coll (w < «) as functions on subsets of
a X w such that

1. dom (p) is finite.
2. p(B,n) < B, all (B,n) € dom (p).
Then p < q iff q C p.

The following basic facts about the Levy-collapse can be found in [K], III.10,
[Ku], VIL8, or [J2], IV.25, so we state them here without proof:

Fact Let k be a reqular uncountable cardinal. Then,

1. Coll (w,< K) is a Kk-cc partially ordered set.
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2. Coll(w,<r) R = W1 .

Definition A partially ordered set P is almost-homogeneous iff for all p,q € P there
exists an automorphism h of P such that h(p) and q are compatible.

Fact

1. If a partially ordered set P is almost-homogeneous, then for every formula
o (x1,..,x,) and ay, ...,a, €V, either ©p ¢ (a1, ..., a,) or else ©p = (a1, ..., ap)-

2. Coll (w, < «) is an almost-homogeneous partially ordered set.

Robert Solovay [So| showed the following property of the Levy-collapse forc-
ing notion which plays a crucial role in his proof of the consistency of ZFC+“All
projective sets of reals are Lebesgue measurable and have the property of Baire”:

Lemma (Factor Lemma) Suppose that k is an uncountable reqular cardinal and G
is a Coll (w, < k)-generic filter over V.. Then for every countable set of ordinals = in

VI[G] there is a Coll (w, < k)-generic filter H over V[z]| such that V[z|[H] = V[G].
We also use that the Levy-collapse is a very simple definable forcing notion:

Fact The function a — Coll (w,< a) is A;. So, Coll (w, < «) is a partially ordered
set which is A1 definable with o as parameter. Moreover, if k is a reqular uncountable
cardinal, then Coll (w, < k) is Aj-definable over V,, without parameters. That is for
every p,q, “p € Coll (w,< k)” is a Ay property and “p < q” and “p L q”7 are A
relations.

Proof. Note that z = Coll (w, < a) iff a is an ordinal and there is a function
f such that dom (f) = a and (V€ €a)({+1ca— f({+1)=Coll (w,&) x f(£))
and (V¢ € a) (€ is limit — f(§) = Jrec (f 1 €)). Since for every &, x = Coll (w,§) is
A1, the above is a ¥; definition of the function a — Coll (w, < «). Since its domain
is the A class of all ordinals, it is a A; function (see [J2], Lemma 14.2).

Suppose now that k is a regular uncountable cardinal. Then, since Kk = V,; N
ON, for every p, p € Coll (w, < a) iff Vj; satisfies that p is a function and dom (p)
is a finite subset of ordered pairs and for every (3,n) € dom (p), § is an ordinal
and n € w and p(B,n) € (. Since “x is finite” is a A; property of x and all other
notions involved in the definition of Coll (w, < k) are Ag on p, “p € Coll (w,< k)" is
a property of p which is A;-definable without parameters over V. Since the ordering
of Coll (w, < k) is the inverse inclusion, it is clear that “p < ¢” is a relation which is
Ai-definable without parameters over V. Finally, since for all p, g, V. satisfies that
p L qiff

Vi 2 p,q € Coll(w,< k) A (FB,n) € dom (p) Ndom (q)) (p(B,n) # q(B,n)),

“p L q” is also a relation which is Aj-definable without parameters over V.. ®
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Chapter 2
PROJECTIVE FORCING

2.1 Projective posets

2.1.1 Definitions and basic facts

Definition 2.1.1 A g}l poset (n > 1) is a triple (P,<p, Lp), where <p is a 2711
subset of w¥ x w*, P = field(<p), (P, <p) is a partial order, and Lp is a g}l subset
of w* x w* contained in P X P such that for every x,y € P, x Lpy iff for no z € P,
both z <p x and z <p y; i.e., iff x,y are incompatible. Similarly, we define E}L posets
by substituting g}L for E}L in the above definition. A %111 poset is a poset that is both
g}l and E}L Finally, (P,<p, Lp) is a projective poset iff there exists n > 1 such that
(P,<p, Lp) is a X}, poset.

Fact 2.1.2 Let (P,<p, Lp) be a Z]J}L poset. Then,
1. Pisa 2711 subset of w“.
2. Lpis a A} subset of w* X w*.

Proof. (1) z e Piff y(z <pyVy <p x).
(2) x Lpyiff Vz (2 <px — =z <p y). So Lp is both g}L and E}L Hence, 1Lp
is a %711 subset of w* X w*. m

We shall refer to %% posets as Borel posets, to Z]j posets as Suslin posets and
to E% posets as co-Suslin posets.

Following the standard notation, we will write P for (P, <p, L p) and, usually,
we also write P instead of P = field (<p). If P is a projective poset, there are
projective formulas ¢(x,y) and ¥ (z,y) such that <p= {(z,y) : p(z,y)} and Lp=
{(z,y) : ()} (see [J2], 40.6).

Suppose M is a transitive class, A is a projective set, and M contains the
parameters of the projective formula that defines A. Then A denotes the set in M
defined by the relativization to M of this formula.

Definition 2.1.3 Let M be a transitive model of ZF. M is a X}-correct (II}-
correct) model iff for every ZJ}L (respectively, E}L ) set A such that M contains the
parameter of the formula that defines A, A is absolute for M; i.e., AM = AN M.

So, if P is a projective poset and M is a model of ZF' that contains all the
parameters of the formulas that define P, then we say that P is absolute for M iff
Syzgp NM and J_y:J_p NM.
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Remark 2.1.4 Suppose that M a transitive model of ZF. Then, since for every
n > 1, the E}L sets are the complements of Z]J}L sets, M s Z]J}L—correct iff M is E}L—
correct.

Fact 2.1.5 1. Fwvery transitive model of ZF is rle—correct.

2. Fvery transitive model of ZF + DC' containing all countable ordinals is g%—
correct.

Proof. (1) Since “to be a well-founded relation” is a A; property and, so,
absolute for these models. (2) By Shoenfield’s Absoluteness Theorem. ([J2], Theorem
98). m

Corollary 2.1.6 1. Let P be a Borel, Suslin or co-Suslin poset. Then P is absolute

for every transitive model of ZF' containing the parameters of the formulas that
define P.

2. Let P be a Q%, ZJJ% or E% poset. Then P is absolute for every transitive model
of ZF + DC containing all the countable ordinals and the parameters of the
formulas that define P. m

Remark 2.1.7 If P is a projective poset, then we may assume, by merging all the
parameters in the projective formulas that define P, that there is only one parameter
in its definition.

If M is a transitive model of ZF', then ‘P € M ” should be interpreted as “M
contains the parameter of the definition of P”.

Fact 2.1.8 FEvery projective poset can be coded by a real. Moreover,

1. The set of all codes of Z]ﬂll posets is a E}Hl subset of w*.

2. The set of all codes of E}l posets is a Evlwz subset of w*.

Proof. Let U be a universal X} set in w* X w” x w* as in [J2], 39.4; ie.,
U is a X and for every g}b set X in w® X w*, there exists a € w* such that X =
{(z,y) : (2, y,0) €U}

Let h : w¥ — w* X w* be the one-to-one and onto function given by h(a) =
(ag,ay) iff for all n € w, a;(n) = a(2n + i), where i € {0,1}.

Let P be a Z]ﬂll poset. Then there is a a € w® such that

(i) <p={(2,9): (2,y,00) € U}
(i) Lp={(z,9): (z,y,01) €U}

We say that a codes P. Similarly for E,ll posets using a universal ,11,11 set.
On the other hand, to every a € w* we can associate two relations <,, 1,C
w“ X w* such that:
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(i) <a={{z,9) : (z,y,00) € U}
(i) Lo={{z,y) : {z,y,01) €U}

where h(a) = (ag,a1).
We say that a € w“ codes a g,ll poset if

(i) (field(<,), <,) is a partial ordering
(i) (Vz,y € field(<,))(x Ly y < —(3z € field(<,)) (2 <a z A 2 <, 7))

Now, since = € field(<,) iff Jy(z <, yVy <, x), field(<,) is a Xi(a) subset
of w?. Since (field(<,), <,) is a partial ordering iff

o (Vz € field(<,))(z <q ) (IT}44(a))
o (Vay € field(<,))(z <qy ANy <qz — z =y) (II}(a))
o (Voyz € field(<,))(z <a y Ay <o 2 = <4 2) (I1344(a))

(i) is It ; (a). Also, since field(<,) is Xt (a), (ii) is 11X, (a). It follows that “a codes
a Z‘ poset” is a I1t ; condition on a.
In the same way, we can define a € w*” codes a IIL poset and show that this

~T

is a 1, , condition on a. Indeed, since field(<,) is X1, ,(a), (i) is 11X, (a) and (ii) is
H;Lm+2(a’)‘ u

Corollary 2.1.9 Let N C M be a transitive models of ZF. Let a € w* N N. Then
1. If N,M are E%H—correct, then

N 2 “a codes a Zlﬂll poset” iff M 2 “a codes a grll poset”

2. If N, M are E}ﬁz—correct, then
N 2 “a codes a Erll poset” iff M 2 “a codes a Erll poset’
Moreover, if PY and PM denote the posets coded by a in N and M respectively,
then PN =PM N N,

Proof. (1) and (2) follow from the fact above and from absoluteness for I1%
and I1%,, formulas of, respectively, H}Hl correct and H - +p-correct transitive models
of ZF. The second part is clear since U =UM N N. “n

Corollary 2.1.10 Let N C M be a transitive models of ZF + DC' containing all
countable ordinals. Let a € w* N N. Then,

N 2 “a codes a Suslin poset” iff M 2 “a codes a Suslin poset”

Moreover, if PY and PM denote the posets coded by a in N and M respectively, then
PN =PM AN,
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Proof. By Shoenfield’s Absoluteness Theorem ([J2], Theorem 98) these mod-
els are E%—correct. ]

Definition 2.1.11 Let P,Q be posets. i : P — Q is a dense embedding iff

1. (Vp,p' € P)(p <pp —i(p) <gi(p'))
2. (Vp,p' € P) (pLpp’ — i(p) Lqgi(p'))

3. i"P is dense in Q. i.e., (Vg € Q) (3p € P) (i(p) <¢ q)

Fact 2.1.12 Let P, Q be posets in a transitive model M. Suppose i : P — Q is a
dense embedding lying in M. Then,

1. If G is P-generic over M, then H = {q€ Q:(Ipe Q) (i(p) <gq)} is Q-
generic over M and M [H] = M [G].

2. If H is Q-generic over M, then G =i~ (H) is P-generic over M and M [G] =
M [H].

Proof. See [J2], 17.4, or [Ku], VIL.7.11. m

Remark 2.1.13 In view of this fact, if P and Q are equivalent forcing notions and P
is projective, then we will also say that Q is projective (and with the same complezity
as P). This is, of course, just a convenient abuse of language since Q need not be
projective in the strict sense of the definition 2.1.1.

2.1.2  Projective forcing with the countable chain condition

Definition 2.1.14 A poset P satisfies the countable chain condition (or, for short,
is ccc) iff every antichain of P (i.e., every set of pairwise incompatible elements) is
at most countable.

Fact 2.1.15 IfP is a projective and ccc poset, then every antichain of P can be coded
by a real. Moreover, we can set up the coding so that,

1. IfPisa Z]J}L poset, then “x codes a maximal antichain of P” is a E}L predicate.

2. If Pisa E}L poset, then “x codes a maximal antichain of P” is a E}Hl predicate.

Proof. Since P is a projective and ccc poset, every antichain A is a countable
set of reals. So, we can write A as sequence (p, : n < w). But any such a sequence
of reals can be recursively coded by a real. e.g., let J : w X w — w be the standard,
one-to-one and onto, pairing function given by J(n,m) = 2"(2m + 1) — 1 and define
a € w¥ by a(J(n,m)) = pp(m). So, p, = {(i,7) : a(J(n,i)) = j} and a codes an
antichain of P.

Now, a codes a maximal antichain of P iff
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(i) vam (n #m — {(i,j) - a(J(n,1)) = 5} Lp {(i,5) : a(J(m,i)) = j})
(i) —Iy¥n(yLp{(i,J) : a(J(n,i)) = j})

Hence, if P is a ¥}, poset, then, since Lp is AL, (i) is A} and (i) is IT;.. If P is a IT}

~n’

poset, then, since Lp is IT}, (i) is IT} and (i) is IT},;. =

Corollary 2.1.16 Let N C M be transitive models of ZF and let P be a projective
and ccc poset with P € N. Suppose a € w* N N. Then,

1. If N, M are E,ll-correct and P is g}b, then

N 2 “q codes a mazimal antichain of PN”

iff

M 2 “q codes a mazimal antichain of PM”.

2. If N, M are Eiﬂ—cormct and P is E,ll, then

N 2 “q codes a mazimal antichain of PN”

iff

M 2 “q codes a mazimal antichain of PM”.

Moreover, if Ay and Ay denote the mazimal antichains of PN and PM coded
by a in N and M respectively, then Ay = Ayy.

Proof. (1) and (2) follows from the fact above and from absoluteness of I}
and I1%, , formulas for, respectively, E}l—correct and E}Hl—correct transitive models of
Z F'. The last sentence of the corollary is clear since the coding is recursive. m

Corollary 2.1.17 1. Let N C M be a transitive models of ZF and let P be a
Suslin and ccc poset with P € N. Suppose a € w* N N. Then,

N 2 “q codes a mazimal antichain of PN”

iff

M 2 “q codes a mazimal antichain of PM”.

2. Let N C M be a transitive models of ZF + DC' containing all countable ordinals
and let P be a g% and ccc poset with P € N. Suppose a € w* N N. Then,

N 2 “q codes a mazimal antichain of PN”

iff

M 2 “q codes a mazimal antichain of PM”.

Moreover, if Ay and Ay denote the mazimal antichains of PN and PM coded
by a in N and M respectively, then Ay = Ayy.

Proof. These are particular cases of the previous corollary. m
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Definition 2.1.18 Let P be a poset. T is a P-name for a real iff ©p “r is a real ”. T
is a simple P-name for a real if

1. The elements of T are of form (p,n,m), where p € P, and n,m are the standard
P-names for some n,m € w.

2. For every n € w, the set {p € P: (Im € w)((p,n,m) € 7)} is a maximal an-
tichain of P.

3. For every n,mg, my € w, if (p,n,1mo) € T and (p,n, 1) € T, then my = my.

Fact 2.1.19 For every poset P, and for every P-name 7 for a real, there is a simple
P-name for a real o such that ©p “T = 0”.

o

Proof. Fix P and 7 and suppose ©p “7 is a real”. For every n € w, let A,
be a maximal antichain of P such that for every p € A,,, p ©p “7(n) = m”, for some
m € w. A, exists since ®p “7 is a real” and hence for every p € P there exists ¢ <p p
and m € w such that ¢ ©p “7 (i) = m”. Now, let o be the simple P-name defined by

(p,it,1h) € iffpE Ay Ap p “T (1) =1m".

Definition 2.1.20 Let P,Q be partial orderings. A complete embedding of P into
Q s a function e from P into Q such that:

1. e is one-to-one.
2. e is order-preserving. i.e., for all p,q € P, if p <p q, then e(p) <g e(q).

3. e preserves mazimal antichains. i.e., for every maximal antichain A of P, the
set {e(p) : p € A} is a mazimal antichain of Q.

We write P < Q when P C Q and the identity function is a complete embedding
of P into Q.

Fact 2.1.21 Let P,Q be posets such that P < Q and let 7 be a simple P-name
for a real. Then (if we identify the standard P-names for natural numbers with the
corresponding standard Q-names) T is a simple Q-name for a real. Moreover, if
G C Q is a generic filter, then GNP is a generic filter for P and 7 |G NP] = 7[G].

Proof. Since the identity function is an order-preserving map of P into Q
which preserves incompatibility, if G C Q is a filter, G NP is a filter. If G is a filter
on Q, then G is generic over V iff |G N A| = 1 for every maximal antichain of Q in
V. But, since every maximal antichain of P is a maximal antichain of Q, if A is a
maximal antichain of P in V, |(GNP) N A| = 1. It follows that G N P is generic for
P.

Let 7 be a simple P-name for a real. Since P < Q, if we replace the standard
P-names for natural numbers for the corresponding standard Q-names, then 7 is a
simple Q-name for a real and for every n € w, n[G] = n[GNP] = n. So, 7[G] =
{(n,m) : (p,n,m) eTApeG}=7[GNP]. =
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Fact 2.1.22 Let P be a ccc partial ordering with P C w¥. Then every simple P-name
for a real can be coded by a real. Moreover, the coding can be arranged so that:

1. If P is a g,ll poset, then the set of codes of simple P-names for a real is a E,ll
subset of w®.

2. If Pisa E}l poset, then the set of codes of simple P-names for a real is a E}Hl
subset of w¥.

Proof. Let 7 be a simple P-name for a real. So,

T:U{{(p,ﬁ,rhi> i Ewl:in Ew},
where for all n € w, 4, = {p; : (Im; € w)((p;,n,m;) € 7)} is a maximal antichain
of P. Let z, € w* be a code for A, as in the Fact 2.1.15. For every n € w, let
By, = {m; : (3p; € P)((pi,n,m;) € 7)} and let y, € w* be such that for every i < w,
Yn(i) = m;. So, y, codes B,. Let x,, be such that z,(m) = J(z,(m), y,(m)). So, =,
codes both z, and y,. Finally, let  be a code for (x, : n < w) as in the Fact 2.1.15.

We say that x codes 7.
Thus, x codes a simple P-name for a real iff

(i) = codes (z, : n < w). i.e., Ynm (z(J(n,m)) = z,(m))

(ii) Vn (z, codes both z, and y,,). i.e., Ynm (z,(m) = J(z,(m), y,(m)))
(iii) Vn (2, codes a maximal antichain of P)
(iv) ¥n (x, codes both z, and y,A

AFig ({(k, D) = 2a(J (0, k) = 1} = {(k, D) = 2a(J (5 F)) = 1} — yn(i) = yn(5)))

Clearly, (i) ,(ii) and (iv) are arithmetical and (iii) is E}l (if P is ;ﬂl%) or E}Hl (if P is
). m

Theorem 2.1.23 Let P be projective ccc poset and let 6(z) be a Xt (I1}) formula
with k > 2. Then the relation

R(p,7) < p € P AT is a simple P-name for a real AN p p 0(T)
1S a projective relation. Moreover,
1. If P is a X, poset, then R is X%,y 5 (IIL,, ).

2. If P is a II} poset, then R is X1, (1T, ).
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Proof. We prove it only for ¥1 formulas, k& > 2. The proof for II} formulas is
analogous. We proceed by induction on k:

k+1: Let (z) be a X}, formula, k > 2. So, 6(z) is of the form Jy —)(z,y),
where 1 is ¥1. Assume the fact holds for X} formulas and suppose that p € P and
7 is a simple P-name for a real such that p ©p (7). By Maximal Principle ([Ku],
VII.8.2) and Fact 2.1.19,

p e 0(r) iff p®pIy—y(r,y)
iff do (o is a simple P-name for a real A p ©p —9(7,0))
iff Jo (o is a simple P-name for a real A Vq (¢<pp — —q ®p ¥(7,0))

Now, by inductive hypothesis, “g ©p ¢(7,0)" is X1, 4 (if Pis X7) or X1, (if P is
IT7). Therefore, the last sentence is 7, (X741, respectively).

k=2: Then, §(z) = Jyv(x,y), where ¥(x,y) is a II} formula. So, by the
Maximal Principle,

p ©p O(7) iff Jo(o is a simple P-name for a real Ap ©p (7, 0))

Suppose that ¢ (z,y) and ¢ (z,y) are the projective formulas that define P
with parameter a € w”. Let wf(z) be the predicate “r is a well-founded relation”.
Then, wf(x) is a A; predicate (see [J2], 14.3). Therefore there exists a finite set S of
axioms of ZF' such that

ZF EVM (M transitive A M 2 A\ S — wi(x) is absolute for M),

where /\ S denotes the conjunction of the sentences in S (see [Ku], IV, Exercise 17).
Let ZFC* be a finite set of axioms of ZF'C' containing all axioms which are needed to
define the forcing relation in a model and to prove the Forcing Theorem and including
the set S.

Claim 2.1.24 The following are equivalent:

1. p c>P ¢(7’,0‘),

2. For every transitive model M of ZFC* containing a, p and (the codes of) T
and o and such that PM <P, M 2 “p ©p ¢ (1,0)”.

3. There exists a transitive and countable model M of ZFC* containing a, p and
(the codes of) T and o and such that PM <P, M 2 “p ©p 4 (1,0)7.

Proof. (1 = 2) Let M be as in (2). Assume M does not satisfy p ©p ¢ (7, 0).
Then, since M 2 ZFC*, there is ¢ € M such that ¢ <p p and M 2 “q ®p <)(1,0)”.
Let G be a P-generic filter over V with ¢ € G. Then, since G is closed upwards, p € G.
Let G’ = GNM. Since PM < P, by the Fact 2.1.21, G’ is P-generic over M. Also, since
q € G, MG 2 —(r[G'],0[G]). But, given that 7,0 € M and P¥ < P, by Fact
2.1.21, we have that 7[G'] = 7[G] and ¢ [G’] = ¢ [G]. So, M [G] 2 ) (7 [G], 0 [G]),
which is a ¥} formula. Since M 2 ZFC*, also M [G] 2 ZFC*, and therefore the
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Y1 formulas are absolute for M [G] as being a well-founded relation is absolute for
models of ZFC*. This implies V' [G] 2 =9 (7 [G], 0 [G]), which contradicts (1).

(2 = 3) Since ZFC* is a finite fragment of ZFC, by the Reflection Prin-
ciple, there exists an ordinal @ > w + 2 such that for every formula of ZFC* U
{o< (z,y),¢, (z,y)} is absolute for V,,. Let X = {a,p,7,0,TC (1), TC (0)} and let
M the Skolem hull of X in V,,. So M 4 V,,, and, since | X| = w, M is countable. More-
over, M is extensional since V, satisfies the axiom of extensionality. Without loss of
generality, we can suppose that M is transitive (if not, since Mostowski’s collapsing
preserves sets of reals, we collapse it). Clearly, M 2 ZFC* and a,p, 7,0 € M. Since
M 4V, for every pair of reals by, b, € M, if M 2 p_(by,by) then V,, 2 p_(b1,by) and
hence, by absoluteness of ¢_(z,y) for V,, ¢ (b1,by). Therefore, P C P. Suppose
that A, is a maximal antichain of PM in M. Then, there is a code for it, that is, there
is a real b € M such that M 2 “b codes Ay/”. Now, since M 4 V,, V, 2 “b codes
Ay,” and since the coding is recursive Ay = Ay,. So, Ay is a maximal antichain of
PVa. Therefore, PM <« PV=. But, by the choice of V,, P < P. So, PM < P. Then,
by (2)7 M= *p©p ¢(T7U)7,'

(3 = 1) Let M be a countable and transitive model of ZFC* containing
a,p, 7,0 and such that PM < P and M 2 “p ©p ¢(7,0)”. Let G C P a generic filter
over V with p € G. Since PM < P, G’ = G NPM is a PM_generic filter over M and
p € G'. So, since M 2 ZFC*,

MG 24 (7], 0[¢]).
Moreover, by Fact 2.1.21, 7 [G'] = 7[G] and ¢ [G'] = ¢ [G]. So,
MG 2y ([G],o[G]).

But then, since M 2 ZFC*, M |[G] 2 ZFC*, and therefore the I} formulas are
absolute for M [G]. Thus,

VIGI2y(r[G],oG]).
This proves the claim. m

Now, (2) of the claim above holds iff for every transitive set M,
(M,e)2 ZFC* Na,p, 7,0 € M APM <P — (M, €) 2 “p °p o(1,0)”
iff for every well-founded extensional relation E over w,
<w, E) 27FC* N 3%0711712713 (WE(no) =a 7TE(711) =P VAN 7TE(n2) =TA
Atp(ng) = o) AVnm ((w, E) 2 o (n,m,ng) — ¢ (me(m), 7g(m),a))A
AVn ({w, E) 2 n codes a max. antichain — wg(n) codes a max.antichain) —
- <M,E> = “p OP ’QD(T,O')”
where g is a transitive collapse of (w, F) onto (M, €); iff
Vz(z€e WEN{(w, E,) 2 ZFC* A Ing,n1,n2,n3(mg, (no) = a A7g, (n1) = pA
AT, (ng) =T AT, (ng) = o)A
AVnm ((w, E) 2 @1(n,m,no) — ¢1(7e. (n), 7. (M), a))A

AYn ({(w, E,) 2 n codes a max. antichain — 7g,(n) codes a max. antichain) —
- <WJEZ> = “p OP w(TJO-)”)
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Now, WF is 1} (see [J2], 40.2). {(w, E.) 2 ZFC*, (w,E.) 2 “p ©p ¢(1,0)”
and g, (n) = x are all arithmetical relations in z (see [J2], 41.1). Moreover, the
formula

Vnm <<w7 EZ> = P< ('fl, m, no) — P< (7TE'z (n)a TE, (m)v a))
is as complex as the poset. Finally, if P is a g}L (E}L) poset, the formula
Vn({(w, E,) 2 n codes a max. antichain — 7g_(n) codes a max. antichain)

is II} (I}, respectively). It follows that (2) is IT;., .
Similarly, (3) iff

dz(z e WF N{w, E,) 2 ZFC* N\ Ingnyinyng (g, (ng) = a/
ATg (n1) =pAmg,(n2) =T Amg,(ng) = o)A
AVnm <<w7 EZ> = P< ('fl, m, no) — P< (7TE'z (n)v TE, (m)v a))/\
AVYn ((w, E,) 2 n codes a max. antichain — 7, (n) codes a max. antichain)A
N(w, E,) 2 “p ®ptp(1,0)")

But this is X, (if P is X7.), or X7,, (if P is II}.).

Hence, if P is X7, then “p ©p 9(7,0)” is AL, Therefore, “p ©p 0(7)” is L}4;.
On the other hand, if P is II}, then “p ©p ¢(7,0)” is A},,. Hence, “p ©p 0(7)”, is
Yo ®

~

2.2 Martin’s Axiom for projective posets

Definition 2.2.1 Let I' be a class of posets. Martin’s Axiom for I', henceforth de-
noted by M A(T), is the following statement: For every ccc poset P € I" and for every
family {A, : @ < k}, £ < 2%, of maximal antichains of P, there exists G C P directed
such that for every a < k, GN A, # 0.

Martin’s Axiom, in the sequel denoted by M A, is M A(T"), where T is the class
of all posets.

Definition 2.2.2 Martin’s Axiom for projective posets, M A(Proj), is Martin’s Ax-
iom restricted to the class of projective posets. i.e., MA (') where I' is the class
of projective posets. Similarly, for every n > 1, we define Martin’s Axiom for gi
posets, MA(X}), Martin’s Axiom for IT), posets, MA(II}), and Martin’s Axiom for
A} posets, MA(A}).

In this section we shall construct a model of M A(Proj) + -CH by iterating
only projective posets. As it was pointed out in the Introduction, the main difficulty
of the proof comes from the fact that, in general, projective formulas are not absolute.
However, as we shall see, we can arrange the construction so that they are absolute
for “sufficiently” many models along of the iteration, where “sufficiently” means for
a wi-club set.
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2.2.1 X-club and \-stationary sets

Definition 2.2.3 Let k > X\ be regular cardinals. A set C' C k is A-closed iff for
every ordinal v with A < cf(y) < k and for every increasing sequence <ﬁ£ €< fy> of
elements of C, sup;,(8¢) € C. A set C C k is unbounded in & iff for every a < x
there is B > « such that B € C. A set C C k is a A-club in k iff C' is a A\-closed and
unbounded in k.

Remark 2.2.4 Let k > w be a reqular cardinal. C' C k is a club in k iff C is an
w-club in kK.

The following facts are well-known. We give a proof for the convenience of the
reader.

Fact 2.2.5 Let k > X\ be reqular cardinals. The intersection of any family of less
than k A-club subsets of k s a A\-club in k.

Proof. Let {C, : a < (8}, with § < k, be a family of A-club subsets of k. Let
C=Nae 5 Ca- It is easy to see that C'is A-closed. To show that C' is unbounded, let
v < k. We construct a sequence <§n i < )\> by induction:

17 =0: Then §, = supa<ﬁ(cg) where (2 :a < f3) is defined by an other in-
duction:
a=0: Let Cg be the least v € Cy greater than .

o > 0: Let €2 be the least v € C, greater than sup6<a(Cg).
Since k is regular and for every a < (3, C, is unbounded, this sequence is well-defined.

n > 0: Then §, = supa<ﬁ(cg) where (7 : a < [(3) is defined by an other induc-
tion:

a =0: Let (g be the least v € Cp greater than sup,_, (&s)-
a > 0: Let ¢! be the least v € C,, greater than sups_,(C}).
As in the previous case, these sequences are well defined.

Let 6 = sup,,(&,). By regularity of x, § < k. Clearly, v < (5 < 6. Finally,
since for every a < 3, § = sup,,.,(¢3), ¢ is the supremum of a A-sequence of elements
of C,. So, for every a < (3, 6 € C,, and, hence, 6 € C. ®

Fact 2.2.6 Let k > X\ be reqular cardinals. The diagonal intersection of a k-sequence
of \-club subsets of k is a A-club in k.

Proof. Let (C, : @ < k) be a sequence of A-club subsets in k. Let D =
Na<Cq. D is easily seen to be A-closed. To see that D is unbounded in &, let v < k.
We construct a A-sequence <€n < )\> by induction:

1 = 0: Then & is the least v € ﬂaq C, greater than ~.

n > 0: Let ¢ = sups.,(§s)- Then &, is the least v € (), Cy greater than ¢.

Since k is regular and, by Fact 2.2.5, for every § < k, (), 3 Ca is A-club set
in k, this sequence is well-defined.

Let ¢ = sup,,(&,)- By regularity of s, 6 < k. Clearly, v < {, < 4. Finally,
since for every 8 < A, <£n f<n< )\> is a A-sequence of elements of (), <ty C, and
g = SDupﬂSn</\(€n)’ for every B < \, 6 € ﬂa<§ﬁ C,. Hence, 6 € (,.5 C and therefore,

cl. 1

a<f
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Definition 2.2.7 Let k > X\ be reqular cardinals. A function f : k — k is A-normal if
it is increasing (if o < 3, then f(a) < f(8)) and A-continuous (f(a) = sups,(f(5)),
for every limit o < k with cf(a) > ).

Fact 2.2.8 Let k > X\ be reqular cardinals. C' C Kk is a A-club in k iff there exists a
A-normal function f such that ran(f) = C.

Proof. (=) Let C C k be a A-club in . Define f : Kk — K by
f (a) = the least ordinal of C'\ {f (8) : B < a}.

Since k is regular, |C| = k and so f is well-defined. Clearly, f is increasing. If
(f(B): B <) is a sequence with y limit and cf (y) > A, then sups_. (f (3)) € C.
But supg.., (f (8)) is the least ordinal in C' greater than every f(3), 8 < 7. So,
£ (1) = supgs (7 (B)).

(<) Let f be a A-normal function. Since f is increasing, for every a < k,
a < f(a) < f(a+1). So, ran(f) is unbounded. Let (¢ : & <) an increasing
sequence of elements of ran (f) with « limit and cf (v) > A. Let <ﬁ§ : £ <) be the

sequence of elements of x such that for every £ < v, f (/Bg) = o¢. Then, since f is
A-continuous

f(sup(Be)) = Sup (f (Be)) = sup (ag).

E<y <y

Hence, sup;_., (a¢) € ran(f). =

Definition 2.2.9 Let k > X\ be reqular cardinals. A set S C k is A-stationary iff
SNC #0 for every A-club in k.

Fact 2.2.10 Let k > X\ be reqular cardinals. Then,

1. Every A-club subset in k is a \-stationary set in k.

2. If C is a A-club in k and S is a A-stationary set in k, then CNS is a A-stationary
set in K.

3. Fvery A-stationary set in k is unbounded in k. So, every \-stationary set in k
has cardinality k.

Proof. (1) By Fact 2.2.5. (2) Since (SNC)NC" = SN (CNC") # 0. (3)
Since the set {# < k: a < [} is a A-club for every o < k. ®

Theorem 2.2.11 (S. Ulam) Let k be a successor cardinal and let \ be a reqular
cardinal k > X. Then any \-stationary set in k is the disjoint union of k \-stationary
subsets.
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Proof. Let k = u*. For every a < k, let f, : @ — u be a one-to-one function.
Now, for every 3 < k and every £ < pu, let

Xg={a<r:fa(B)=¢}.

Then, since every f, is a one-to-one function, for any £ < pu, if 8 # , then XéﬂX§ =
0. Furthermore, for every 8 < &, U, Xé ={a<k:f0<a}l.

Let S be a A-stationary subset of k. Then, for every § < k, U5 <u Xg NS (by
Fact 2.2.10) is a A-stationary set. Furthermore, for every 8 < k, there is £ < p such
that Xg NS is A-stationary. Otherwise, for every £ < p, let C¢ be a A-club such that

(Xg NS)NCe=0. So ., C¢ is a A-club such that,

UX;NSNNCe=(UX5nS)N N Ce=0.

E<p E<p E<p E<p

A contradiction.
We define h : kK — p by

h(B) = the least & < p such that Xg N S is a A-stationary set.

Since k = p, there is £ < p such that [{# < x: h(B) =&}| = k. Let £ be the least
such ordinal. Then, {Xg NS :h(B) =¢} is the desired set. m

Corollary 2.2.12 Let k > X be reqular cardinals. Then k is the disjoint union of k
A-stationary subsets in k.

Proof. If k is a successor cardinal, then apply Theorem 2.2.11. If k is a
limit cardinal, and hence weakly inaccessible, then there are s regular cardinals p,
A < p < K, and for each such u, {y < K : cf(y) = u} is a A-stationary in k. m

2.2.2  Forcing iteration of projective posets

Lemma 2.2.13 Let k > X3 be a regular cardinal and let P be the direct limit of an
iteration (P, Qu:a< k) with finite support of ccc forcing notions such that for each
a < K, ©, “2Q% < k7. Let G be a P-generic filter over V. Assume that o(x) is a
projective formula with parameter a € V' [G]. Then, for every b € V [G],

VIG] 2 p(b)
iff there is an wy-club C' C Kk such that for all o € C,
V[Gal] 2 ¢(b).

Proof. (=) We prove this direction by induction on the complexity of the
projective formulas:

n=1: That is, p(x) is a ¥i(a) formula or a I1}(a) formula. Since a,b €
w? NV [G], there is an ordinal a < k such that a,b € V' [G,] (see [Ku], VIIL.5.14). By
absoluteness of ¥ (I1}) formulas for transitive models of ZF', for every 3, a < 3 < &,

V[Gsl 2 ¢(b).



14 Projective forcing

So, since P preserves cofinalities, C' = { < k : @ < 3} is the desired set.
n+1: Let p(z) = Jy¢(z,y) be a X1, (a) formula. Take a witness c € V [G]
so that

VIG] 2 ¢(b,c).

Since (b, c) is a 11} (a) formula, the lemma follows by inductive hypothesis.

So, suppose ¢(z) is I1L 4 (a). Then, p(z) = Vy(z,y) where ¢(z,y) is a 3 (a)
formula. We define an wy-club C' = {a¢ : £ < k} by induction on £ < k.
§ = 0: ap is the supremum of an increasing sequence <B,Y iy < w1> of ordinals satis-

fying
For all 6 < < w; and all reals r € V[Gg,],V[Gg | 2 ¢(b, 7). (%)

We define this sequence by another induction on v < wy:

v = 0: Let ¢ < k be the least ordinal such that a,b € V [G,]. Since V [G¢] 2 2% =
A < &, let (r) : 1 < A) be an enumeration of all the reals in V' [G¢]. Since 1 is 3}, (a)
and for each n < A,

V(G 2 (b, ),

by inductive hypothesis for every n < A there is an wi-club C’,? C k such that for all
vel?
K

VG2 y(b,r).

Let D§ =[5 Cp- Dg is an wi-club. Let By be the least v € Dj greater than (.

v > 0: Let ¢ = sups_,(05). Let <r,¥ n < )\>, A < K, be an enumeration of all reals
in V'[G¢]. As in the previous case, for every n < A, there is an wj-club C) C & such
that for all v € (7,

VG 2 9(b,ry).

Let Dg =1,<» Cy- Then Dg and (s, D§ are wy-clubs. Let 3, the least ordinal in
Ns<, Dg greater than (.
Thus, <57 ty < w1> is an increasing sequence of ordinals satisfying (). Let

Qo = Sup’y<w1 (/B’y)
To see that

ViGao| 2 Yyt (b,y),

suppose that r € V[G,,] is a real. Since P preserves cofinalities, cf(ag) = w1, and so,
there exists a least v < wj and < A < & such that r = r) € V[Gg_|. But, for every
6 >, Bs € CJ. So, (Bs 1y < 6 <wy) is an increasing wi-sequence of elements of CY
with supremum ag. Hence, ap € C) and, therefore,

V[Gao] 2 (b, 7).
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¢ > 0: We take two cases into consideration.

Case 1: cf(§) < w. We define a; in the same way as in case £ = 0; i.e., as the
supremum of an increasing sequence <ﬁy ty < w1> of ordinals satisfying (x). We
obtain this sequence like before except for v = 0. In this case, we define 3, as the least
ordinal ¢ € ), <¢ D, greater than sup, (), where for every v < £, D, = N Dy.
Case 2: cf(§) > w. Let ag = sup,¢(a,). We now show that

y<wi

ViGae] 2 Vyi(b,y).

Since cf(ag) = cf(§) = 1 > w, we can fix a subsequence (8, : v < ) of (@, : v < &)
with supremum «. Let r € V[G,,] be areal. Let v < pu be the least ordinal such that
r € V[Gg,]. But, if v <6 < p, then 85 € Dg_. So, (Bs:v <6 < p) is a pu-sequence
of elements of Dy, with supremum «,. Hence, a¢ € Dgs. and, therefore,

VIGac] 2 9(b,7).

Since P preserves cofinalities, C' = {a¢ : £ < k} is the range of an w;-normal
function and therefore C' is an wq-club contained in .
(<) Assume that there is an wy-club C' C & such that for all a € C,

V[Ga] Z (b)),
and suppose that
VIG] 2 ¢(b).

Then, V' [G] 2 =¢(b) and, by (=), there exists an wi-club D such that for all « € D,
V[Ga] 2 —p(b). By Fact 2.2.5, C N D # (). But if « € C'N D, then

V' [Ga] 2 0(b) A =p(b).
A contradiction. =

Theorem 2.2.14 (GCH) Let k be a reqular cardinal which is not the successor of a
cardinal of countable cofinality. Then there is an iteration of projective and ccc posets
such that whenever G is a generic filter for the iteration,

V [G] 2 MA(Proj) A 2% = k.

Proof. We divide the proof in two parts: first, we construct the poset P and,
second, we show that forcing with this poset gives a model of M A(Proj) and 2%° = k.

(I) Construction of P: To start with, we fix a function 7 from x onto k¥ X k
such that for every (3,7 < &,

L (Vo <k)(m(a) = (87 —F<a)

2. Sgy={aer:m(a)=(6,7)} is an wi-stationary set in k.
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There exists a such a function. Indeed, by Corollary 2.2.12, x is the disjoint union
of {X¢: € <k}, a family of wp-stationary subsets of k. So, let f be a one-to-one
function from k X k onto k and define 7 by:

m(a) = (8,7), if a € Xy and f < a
(0,0), if @ € Xpg,4) and 3 > «

Clearly 7 satisfies (1), and Sz, = Xf N{a € k: B < a} is an wy-stationary set,
for every 3,7 < k. So, 7 also satisfies (2). We shall use 7 as a bookkeeping function
to ensure that we force with all projective ccc posets that appear along the iteration.

We obtain the poset P as the direct limit of an iteration (P,, Qu:a< k) with
finite support such that for every a < k,

o

o Qg is a projective ccc poset”.

We proceed by induction on o < k: suppose that for every 8 < «, Pg and ng
have been already defined and satisfy that:

1. Py is a ccc poset.
2. 5“0 < g7,
3. 3 “Qg is a projective ccc poset”.

Then we define P, and show that it satisfies (1)-(3):

a = 0: Let Py the trivial poset.

a =B+ 1: Let P, = P3xQg. Since P4 is a ccc poset and 3 “Qg is a projective
ccc poset”, P, is a ccc poset. So, P, satisfies (1).

Moreover, on one hand, it is easy to see that |Ps| < k. On the other hand,
since 5 “2% < k7 and ©g4 “Qg is a projective poset”, g “|ng| < K. So, |P,| =
|Ps = Qg\ < k. But then, since x is a regular cardinal and GCH holds, s = k. So,
since P, is a ccc poset, ©, “2% < x”. Therefore, P, satisfies (2).

Given P,, it only remains to find Q, satisfying (3). Since ©, “2% < ",

V' [G,] 2 “There are less than x projective posets”.

Let <Qg : v < K) be a sequence of all P,-names (where for some 1 < x, for every
v >n, QY is the trivial poset) such that:

©, “(QY : v < k) enumerates all projective posets”.

There is a such a sequence by the Maximal Principle.

Suppose that 7 (a) = (8,7). Since § < a, Q) = (Q7, <4, 1;) has been already
defined; i.e., there are projective formulas ¢ (z,y;2) and ¢, (z,y;2) and a simple
Ps-name for a real a that define the projective poset Qg ie.,

5 “Qf = field(<;)
°s “(Vz,y € w“’)(@é%y = o, y;a))
s “(Va,y € w?)(wlsy < @) (v,y;a))”
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Let Q = <Q, <, J.} be a P,-name such that

o “Q = field(<)
%o “(Vz,y € w¥)(z<y < v (2,y;4))”
®q “‘(Vr,y € w?)(zly < ¢, (x,y;a))”

Then we put Q, = Q, providing that ©,, “Q is a ccc poset”, and Q, = {0}, otherwise.
So

®a “Qa is a projective ccc poset”,
and P, satisfies (3). .
o limit: Then P,, is the direct limit of (P, Qg : 8 < ). Since for every 3 < a,
°5 “Qp is a ccc poset”, P, satisfies (1).
Since we are working with an iteration with finite support,

‘Pa‘ = |U,8<a Pﬂ‘ = 2,8<a ‘Pﬂ‘

But k is a regular cardinal, a < x and, by inductive hypothesis, for all § < «,
|Ps| < k. So, |Pa| < k. But then, as above, ©, “2% < x” and P, satisfies (2).

We can see that P, satisfies (3) as in the previous case.

This completes the construction of the P,’s, a < k. P is its direct limit.

(IT) If G is a P-generic filter over V', then V [G] 2 M A(Proj) A 2% = x: We
fix a P-generic filter G over V.

We first show that V [G] 2 2% = k. Since P is a ccc poset which is the direct
limit of a finite support iteration of length x of posets of cardinality less than x and
K is a regular cardinal, |P| < k. Furthermore, by GOH, k™ = k. Hence,

OP 442N0 S K

On the other hand, if Q is the Cohen poset for adding one generic real, then, since it
is a projective ccc poset, Q is the denotation of Q, for arbitrary large o < x. Each
time we force with one of these Q, one more new real is added and therefore we have

OP 442No Z ,%77'

We now show that V' [G] 2 MA(Proj). Let Q be a projective ccc poset
in V' [G]. Suppose that <o= {(z,y) : ¢ (z,y)} and that Lo= {(z,v) : ¢, (z,9)},
where ¢ (z,y) and ¢, (x,y) are projective formulas with parameter a € w* NV [G].
Let {A; :4i < p}, u < &, be a family of maximal antichains of Q in V' [G].

We code every maximal antichain A;, ¢ < u, by a real a; like in Fact 2.1.15.
Hence, for every i < p,

V' [G] 2 “a; codes a maximal antichain of Q”.

Note that, by Fact 2.1.15, the right-hand side is a projective sentence. So, by Lemma
2.2.13, for every ¢ < u, there exists an wi-club C; C k such that for every & € C;,

V [G¢] 2 “a; codes a maximal antichain of Q%"
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where Q% denotes the poset in V [G¢] which is defined by the same formulas that
define the poset Q in V [G]. Let C =),_,Ci. Then, C is an w;-club such that for
every ¢ < u and every £ € C,

i<p

V [G¢] 2 “a; codes a maximal antichain of Q°”.

Moreover, since the coding is recursive, if for each ¢ € C, Af denotes the maximal
antichain of Q¢ coded by a;, then Af = A;.

Claim 2.2.15 There exists an wy-club D C k such that for every a € D and for all
reals r,r" € VG,

VIGa] 2 oo (rr') iff VIG] 2o (r,1)
VIGa] 2@y (r,r) aff VG2

Proof. Let ((r,7"), : v < k) be an enumeration of all pairs of reals in V' [G].
Let C be the following set:

C={p<k:{(rr"), v <) enumerates all pairs of reals of V [Gg]}.
It is easy to see that C is a wi-closed set. To see that C is unbounded, given an

ordinal a < K, we construct by induction a wi-sequence (ag : @ < wq) of ordinals as
follows:

asY

=0: o=«

§ > 0: ag is the least ordinal greater than sup,_,(a) such that for every ¢ < &,
{((r,r")y 1 7 < a¢) enumerates all pairs of reals of V[G,,].

Clearly a < supg_,,, (a¢) € C.

By Lemma 2.2.13, for every pair of reals (r, 1) 4 V<K, there exists an wy-club
E., such that for every § € E,,

VIGe 2o (r,r") iff VI[G] 2o (r,r).

For every v < k,let D, = E,NC. Let D,_ = A,..D,. So D,_ is an wi-club (by
Fact 2.2.6). B B

We now show that for every £ € D,_ and all reals r,7" € V [G¢],

VIGe 2o (r,r") iff VI[G] 2 (r,r).

Let £ € D,_ and r,17" € V [G¢]. Since € € D,,_, for every ( < &, £ € CN E;. Since
r,7' € V[Ge] and § € O, there exists v < & such that (r,r") = (r,7’) . But £ € E,
and so

VIGe 2o (r,r") iff VI[G] 2 (r,r).

We obtain D, in a similar way. Finally, we put D = D,_ N D, which, by
Fact 2.2.5, is also an wi-club. = -
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Let D be as in the claim above and we put £ = C N D. Clearly, E # (). So,
pick § € E. Since § € D, for all reals r,7" € V' [Gj],

VIGsl 2@, (r,r) it VI[G]Z ¢, (7).

Thus, every antichain of Q® in V [Gj] is an antichain of Q in V [G]. Therefore, since
Q is a ccc poset in V [G] and forcing with P preserves cardinals, Q° is a ccc poset
in V' [Gg]. Hence, there exists a Pg-name Qg such that Q° = Qg [G]. Since S, g is
an wi-stationary subset of k, EN S, 3 # 0. Let n € EN S, 5. So, Q" is a projective
cce poset and Q7 = QT, |G,]. But then, V' [G,+1] contains a Q"-generic filter H over
V' [G,). Since n € C, for every i < p, A} = A; is a maximal antichain of Q"7 in V' [G,)].
Hence, for every i < pu, H N A} # 0. Finally, since n € D, for all reals r,r" € V' [G,],

VG, 2o (r,) iff V[G] 2o (7).

Thus, H is a directed subset of Q in V [G] such that for every i < p, HN A; # 0.
Hence, V [G] 2 M A(Proj). =

Theorem 2.2.16 (GCH) Let k be a regular cardinal which is not the successor of
a cardinal of countable cofinality. Then for every n > 1, there is an iteration of g}L

(IT,, A%) cce posets such that whenever G is a generic filter for the iteration, V [G]
satisfies MA (X)) (MA(IIY), MA(A})) and 2% = k.

Proof. As in Theorem 2.2.14 but using only ccc ¥ (I}, Al) posets. m

We finish this section by remarking that with a similar argument as in Theorem
2.2.14, we can improve a result from [Ju-R]. The following is an alternative axiom to
MA, (T') introduced in [vD-F]:

Definition 2.2.17 Let I" be a class of posets and let k be any cardinal. k-Anti
Martin’s Axiom for I', henceforth denoted by AM A, (T'), is the following statement:
For every ccc poset P € T there exists a family {G,, : a < k} of filters on P such that
for every maximal antichain A C P there exists a < k such that for every 8 > «,

GsNA#D.

Theorem 2.2.18 (GCH) Let k be cardinal such that wy < cf (k) and K is not the
successor of a cardinal of countable cofinality. Then there is an iteration of projective
cce posets such that whenever G is a generic filter for the iteration,

Vv [G] 2 AMACf(K) (P’I“Oj) A 2R = k.

Proof. Note that for all results of 2.2.1 on A-clubs and A-stationary subsets
of k only need that cf (\) < cf (k). So, the theorem follows with a similar argument
to that 2.2.14. m

Remark 2.2.19 The case for consistency of AM Ay (Proj) A28 = k with w; < X <
K for X reqular and k™ = k has been solved in [R-Sh].
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2.3 MA(Proj) is weaker than MA

2.3.1 Projective forcing after collapsing a weakly-compact cardinal

Fact 2.3.1 Let V' be a transitive model of ZF. Then, V and L(R) are projective
absolute. i.e., for every projective formula ¢ (xq,... ,x,) and by, ... b, ERNV,

V20 (by,... b)) iff LIR)2¢(by,....,b,).m

We need the following form of a theorem of K. Kunen. The proof is taken
from [Tol]:

Theorem 2.3.2 Let k be a weakly-compact cardinal and let Vo = V [Co], where Cqy
is a Coll (w, < k)-generic filter over V. Suppose that P is a ccc poset in Vo and G is
a P-generic filter over Vy. Then, L (R)V0 and L (R)VO[G] satisfy the same sentences of
Set Theory with parameters in 'V .

Proof. Let s be a weakly-compact cardinal and let P be a Coll (w, < x)-name
for a ccc poset. Let S = Coll (w, < k)  P.

We need the following lemma of K. Kunen (see [H-Sh|, Lemma 1). We work
with complete Boolean algebras in order to simplify the proof.

Lemma 2.3.3 Let k be a weakly-compact cardinal and let B a complete and k-cc
Boolean algebra. Then for every Z C B, if |Z| < k, there exists a complete subalgebra
B* of B such that Z C B* and |B*| < k.

Proof. Let k be a weakly-compact cardinal, B a k-cc complete Boolean alge-
bra and Z C B such that |Z| < k. Let C be a complete subalgebra of B containing Z.
Since B is k-cc and |Z| < &, |C| < k. So, without loss of generality, we may assume
that C = (k,+, -, —,0,1).

Let Uy = {a C k : a is a maximal antichain of C}. Since C is k-cc, for all a €
Ui, |a| < k. So, Uy C k<". Let Up = {(z, ) : ® C kA |z| < kA € K Aav = supg () }.
And let U3 = {Z}

Let o be the conjunction of the following sentences of the second order language
of type {E, U, U,,U3,+,-,—,0, 1}2

1. C is a Boolean algebra and Z C C; i.e., the conjunction of Boolean algebra
axioms and Vz (Usx — x C k) (first order).

2. Vo (x C kA |z| < k — F2Us(z, 2)). ie., Cis k-complete (first order).

B VX(X CrAVyz(XyAnXzANy#z—y-2=0)A
ANVz(z <kNz#£0— Jy(XyA-y-2=0)) - Jz(Ux Az = X))

i.e., every maximal antichain of C belongs to Uy (second order and II}).
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Since C = (k, +, -, —,0,1) is a complete Boolean algebra, Z C k and U; C k<" is the
set of all maximal antichains of C,

<me €, K, +7 ) Oa ]-7 Ula U27 U3> 2o0.
Then, since o is a I} sentence, by II}-indescribability of x, there is o < & such that
(Vo €, 6NV + NV, - NV, —NV,, 0,1, U NV, U,NV,, UsNV,) 2 0.

Let B* = CNV,. Then, by (1) B* = (a,+, -, —,0,1) is a subalgebra of C such
that Z C B*. Clearly, |B*| = o < k. By (2), B* is a a-complete Boolean algebra
and, by (3), every maximal antichain of B* belongs to Uy NV, = U; N a~“. Hence
B* is a a-cc Boolean algebra. Therefore, B* is a complete Boolean algebra and it is
a subalgebra of C.

So, it only remains to see that B* is a complete subalgebra of C. Let X C a.
If | X| < a, then (X,supg. (X)) € U, NV,, so (X,supg. (X)) € U, and therefore,
supg- (X) = supc (X). If | X| = «, then, since B* is a-cc, supg. (X) = 1. Further,
let X' ={uea:(JveX)(u<pg v)}. Then, since X’ is open in B*, there exists a
maximal antichain A in B* such that A C X'. But then, by (3), A € U; and, so, A is
a maximal antichain of C. Hence sup¢ (A) = supg (X') = supe (X) = 1. Therefore,
B* is a complete subalgebra of C of size less than « and includes Z. m

Let E be the poset of all complete embeddings from a complete subalgebra of
r.o. (S) of size less than & into r.o. (Coll (w, < k)), ordered by inverse inclusion. i.e.,

e h € Eiff h is a complete embedding from a complete subalgebra of r.o. (S) of
cardinality less than x into r.o. (Coll (w, < k)).

o h <hiff W C h.

By Kripke’s Theorem (see [J2], Theorem 62) and lemma above, we know that
E # 0.

Definition 2.3.4 Let k be a cardinal. A poset P is < r-closed iff whenever v < k
and (po : a < 7) 1s a decreasing sequence of elements of P (i.e., for all a, B < 7, if
a < B, then pg < po) there is p € P such that for all a < 7y, p < p,.

Claim 2.3.5 E is a < k-closed poset.

Proof. Suppose that (h, : @ < ), with v < &, is a decreasing sequence of
elements of E. Let Z = |J,_, dom (h). By regularity of x, [Z]| < k. So, since r.0. (S)
is a complete and k-cc Boolean algebra, by Lemma 2.3.3, we have that there is a
complete subalgebra (Z) of r.o0. (S) including Z of size less than k. Since {hq : a < v}
is a family of complete embeddings pairwise compatible, h = |, y h is an embedding
from Z into r.o. (Coll (w, < k)). But then, we may extend h to a complete embedding
h* from (Z) into r.o.(Coll (w,< K)) (see [J2], 25.12). Then h* € E and for every
a<vy,h<h, =m
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Lemma 2.3.6 Let H be a E-generic filter over V.. Then e = |JH is a complete
embedding from r.o. (S) into r.o. (Coll (w, < K)).

Proof. Let H be a E-generic filter over V and e = |JH. Clearly e is an
embedding from dom (e) into r.o.(Coll (w,< k)). So, we only need to show that
dom (e) = r.o0. (S) and that for every maximal antichain A C r.o. (S), €” A is a maximal
antichain of r.o. (Coll (w, < k)).

To see this it will suffice to show that for every X C r.o.(S) with |X| < &,
Dx ={h € E: X Cdom(h)} is a dense subset of E. Since then, on one hand, for
every u € r.0.(S), HN Dy, # 0, and so dom (e) =r.0(S). On the other hand, since
r.0.(S) is k-cc, for every maximal antichain A C r.o.(S), D4 is a dense subset of E.
But, if A C dom (h), then, since dom (h) <¢ r.0.(S), h"A is a maximal antichain of
r.0. (Coll (w,< k)). But €A =h"A. So, e is also a complete embedding.

Now, as in Claim 2.3.5, using Lemma 2.3.3, it is clear that for every X C
r.0. (S) of size less than k, Dx is a dense subset of E. =

Suppose that G is a S-generic filter over V. Let H be a E-generic filter over
V' [G]. Since E is a poset in V, G x H is a S x E-generic filter over V. Since
SXEXEXS, V|G x H]=VI[HxG|=V][H]|G]. Now, since E is a < k-closed
poset, E does not add new reals. i.e., RN V[G] = RN V[H][G] (see [Ku], VIL.6.14).
Therefore, all new reals in V' [H| [G] have been added by S. So, for every p € S, every
formula ¢ (v) and every x € V,

V2 o5 o (1) I VIH] 2 % % o (1107
Similarly, for every p € Coll (w, < k), every formula ¢ (v) and every z € V|

V2 ©oio,cn (&) 7 HE VIH] 2 “p om0 (£)7F7.

Let e € V[H] be the generic complete embedding from S into Coll (w, < k)
given by Lemma 2.3.6 and let i be the canonical embedding from Coll (w, < k) into
S = Coll (w,< k) * P. Then,

Claim 2.3.7 V[H] 2 “ °5 o (2)"® 7 iff V[H] 2 “ © cou,<ny 9 (2)7 7.

Proof. We show it by induction on the complexity of formulas:

n = 0: By absoluteness of ¥y formulas and the fact that for every S-generic
filter G over V[H], there exists a Coll (w, < k)-generic filter C' over V[H] such that
e 1 (C) = G and, hence, V[H|[G] = V[H][e"* (C)] C V[H][C].

n+1: Let ¢ (v) = Jy— (v,y) where ¢ (v,y) is a ¥, formula. Suppose that

V[H] 2« °5 Jy— (&,9)" 7.

So, there exists a S-name b in V[H] such that V[H] 2 “ % —ap(i,b)FR”  But
then, by inductive hypothesis, V[H] 2 “ © o <) —% (7, €. (0))XP” where for every
S-name T,

e (1) = {(e(p) €. (0)) : {p,o) €7}
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(see [Ku], VIL.7.12). Therefore,
V[H] 2« oC’oll(w,<H) Ely_'i/}<j;7y)L(R)”'

We show that if V{H] 2 “ °cou <y Iy (£,9)"® 7, then V[H] 2 * s
Jy—p (i,y)L(R) 7 as above but using the complete embedding i from Coll (w, < k)
intoS. m

But, by almost homogeneity of Coll (w, < k), we get that for every formula
@ (v) and every © € V, ©cou<n) “©(Z)7 or Ccon,<ry ¢ (Z)”. So, by Claim
2.3.7, for every formula ¢ (v) with all its parameters in V' and every x € V

V2 ¢ (0O I VIH]2 S o (01O
HEVH] 2 ¢ ©g o ()R
iff v=2¢« OS ) (j’;)L(R) ”

This ends the proof of Theorem 2.3.2. =

Note that, in the Theorem 2.3.2, if all the parameters of the formula are reals,
then by the Factor Lemma for the Levy-collapse, we can assume that they are in V4.
So, L(R)" and L (R)"“! satisfy the same projective sentences with reals in Vp as
parameters.

Definition 2.3.8 Let P be a forcing notion, let V' be a model of ZFC* and letn > 1.
V s gi—absolute for P if for every g}L formula ¢ (z1, ... ,x,) with parameters in V
and for every by, ... b, € RNV,

V2p(b,...,bn) tff VG2 (b,..., b)),

for every P-generic filter G over V. V is projective absolute for P iff for everyn > 1,
V is g,ll absolute for P. Finally, V is projective absolute for ccc forcing notions iff
for every ccc poset P € V', V' is projective absolute for P.

Thus, from the remark following the proof of Theorem 2.3.2, we obtain the
following corollary:

Corollary 2.3.9 Let k be a weakly-compact cardinal and let C be a Coll (w, < K)-
generic filter over V.. Then V [C] is projective absolute for ccc forcing notions. m

Lemma 2.3.10 Let k be a weakly-compact cardinal and let Cy be a Coll (w, < K)-
generic filter over V. Suppose that P € V' [Co| is a ccc poset and Gyg is a P-generic
filter over V [Cy]. Then V' [Co| [Go| is projective absolute for ccc forcing notions.

Proof. Let Vo = V [Cy| [Go] and suppose that Q € V4 is a ccc poset, H is a
Q-generic filter over Vg and Vy [H] 2 ¢, where ¢ is a X! (a) sentence with parameter
a € Vo. We need the following fact:
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Fact 2.3.11 There ezists a Coll (w, < k)-generic filter Cy overV such thata € V [C]

Proof. By a Skolem argument, we may assume that V [Cp] 2 |P| < N;. Let
a be a simple Coll (w, < k) * P-name for a. Since @ is of size less than x and & is
weakly-compact, by 2.3.3, we can find Q' < Coll (w, < k)*P such that |Q'| = XA < k, a
is a simple Q’-name and there is a dense embedding 7 from Q' into Coll (w, < A + 1).
As (Co * Go)NQ' is a Q'-generic filter, 7”7 (Co x Go N Q') is a Coll (w, < A + 1)-generic
filter and a = @ [Co * Go] =a [(Co *x Go) N Ql] = Ty ((1) [’ﬂ'” (Co * Go N Q/)] .

We continue with the proof of Lemma 2.3.10. Fix C; as in 2.3.11. So, a €
V' [C1] C V' [Co| [Go]. Then there exists a ccc generic extension V [C1] [G1] of V [C4]
such that V' [C1] [G1] = V [Co] [Go] (see, [J2], 25.3). Hence, V [C1] [G1] [H] 2 ¢. Now,
V [C41] [G1] [H] = V[C1][G1xH] is a single ccc extension of V' [C4]. So, since, a € V [C1],
by Corollary 2.3.9, V' [C1] 2 . Again by 2.3.9, V' [C4] [G1] 2 . But V [C1] [G1] = V.
Hence, Vo 2 ¢. m

Corollary 2.3.12 Let k be a weakly-compact cardinal and let C be a Coll (w, < k)-

generic filter over V.. Suppose P € V [C] is a ccc poset and G is a P-generic filter
over V' [C]. Let Vo = V [C][G]. Suppose that Qo, Q1 € Vu are ccc posets and Qq is
projective. Then for every Qo-generic filter H over Vg,

< Q.
Proof. Since 1} is projective absolute for ccc forcing notions. m

Definition 2.3.13 Let P be a poset. P is indestructible-ccc iff for every ccc poset
Q, ©o “P is a ccc poset”.

The next theorem shows that after Levy-collapsing a weakly-compact cardinal
to w1, all projective ccc posets are indestructible-ccc, i.e., they remain ccc in all ccc
forcing extensions.

Theorem 2.3.14 Let k be a weakly-compact cardinal and let Cy be a Coll (w, < K)-
generic filter over V.. If P,Q € V [Co] are ccc posets and Q is projective, then for
every P-generic filter G over V [Cy],

V [Co] [G] 2 “Q is a ccc poset”.

Proof. Fix a projective ccc poset Q in V' [Cp]. By the Factor Lemma for
the Levy-collapse we may assume the parameters of the definition of Q are all in the
ground model. Further, since Coll (w, < k) is an almost homogenous poset, we may
assume that

° “O ; ”
Coli(w,<r) Q18 a ccc poset”.

Let P be a ccc poset in V' [Co] and suppose A={r;:i < k}isaColl (w, < k)*P-name
for an uncountable antichain of Q.
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Let S = Coll (w, < k) *P and let E be the set of all complete embeddings from
complete subalgebras of the algebra r.o. (S) of size less than x into r.0.(Coll (w, < K))
ordered by inclusion. By Claim 2.3.5, E is a < k-closed poset. So, forcing with
E does not add new reals. Hence, projective statements are absolute between the
ground model and the E-generic extension.

Let Vo = V [H]|[Co* G] be a E x S-generic extension of V. That is, H is
E-generic over V, Cp is Coll (w, < k)-generic over V [H] and G is P [Co]-generic over
V' [H][Co]. By the Product Lemma (see [Ku], VIIL.1.4), Vo = V [Co * G] [H]. So,
since A € V and projective absoluteness holds between V [Co * G| and Vj, we have:

Vo 2 “A[Cy * G] is an uncountable antichain of Q [Cy * G]”.

Let e € V [H] be the generic complete embedding from S into Coll (w, < k)
given by H. Then there is a Coll (w, < k)-generic C; over V [H] such that Cp *x G =
71 (Cy). Note that V [H][C4] is a ccc generic extension of Vj (see [J2], 25.3) and,
hence, the projective formulas are absolute between V4 and V' [H] [C].

Let e,(A) = (e.(r;) : i < k) € V [H], the e-image of A. For every i < ,
VI[H| 2 “°s1; € Q”. Thus, since “1; € Q” is a projective formula with 7; as
the only possible non-standard term-parameter and since the projective formulas are
absolute between Vp and V' [H] [C1],

V[H] 2 “°Coqw,<n) e (Ti) € Q.
Hence, for every ¢ < k,
V[H][C1] 2 “e. (1:) [Ca] € QICA]".

Since V [Cy] 2 “Q[C4] is a ccc poset”, E is a o-closed poset and no o-closed
poset can kill the ccc-ness of any ccc poset, V' [Cy] [H] 2 “Q[C1] is a ccc poset”. So,
by the Product Lemma,

V [H][C41] 2 “Q[C4] is a ccc poset”.
Thus we can find i, 7 < x such that
V [H][C1] 2 “es (13) [C1], s (T4) [C1] are compatible”.

But, since e is a complete embedding, e, (7;) [C1] = 7;[Co * G| and e, (1;) [C1] =
7;[Co * G]. So, since Q is a projective poset, the compatibility relation in Q is also
projective, and, by projective absoluteness between V4 and V' [H][C}],

Vo 2 “1; [Co* G|, 7, [Co* G] are compatible”.
A contradiction. m

Corollary 2.3.15 Let k be a weakly-compact cardinal and let Cy be a Coll (w, < k)-
generic filter over V., P € V [Cy] is a ccc poset and Gy is a P-generic filter over V [Cp].
Let Vo = V [Col [Go]. Suppose that Qq, Q1 € Vi are ccc posets and Qy is projective.
Then for every Qq-generic filter H over Vj,

Vo [H] 2 “Qq is a ccc poset”.
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Proof. Fix a projective and ccc poset Qq in V5. Let a € RNV, the parameter
of the definition of Q;. By 2.3.11, we can find a Coll (w, < k)-generic filter C; over
V such that a € V [C1] and V' [C1] C Vp. Now,

V' [C1] 2 “Qs is a projective poset”.

Since Vo = V' [C1] [G1] is a ccc extension of V' [C1], V; is a projective absolute extension
of V' [C1] and, hence,

V' [C1] 2 “Q1 is a ccc poset”.

Since Vp [H] = V' [C1] [G1 * H] is a single ccc forcing extension of V' [C], by Theorem
2.3.14 we know that

Vo [H] 2 “Qq is a ccc poset”. =

Lemma 2.3.16 Let P,Q € V be ccc posets and suppose that Q is projective. Assume
that

1. For every P-generic filter G over V, QV < QVI¢l and
2. Zp “Q 1s ccc”,
then g “P 1is ccc”.

Proof. Suppose otherwise. So, there exists ¢ € Q such that ¢ g “P is not
ccc”. Hence, QP is not ccc. Since P,Q € V, QxP = QxP = P xQ, PxQ is not ccc.
But, since for every P-generic filter G over V, QY < QVI?l we have P x Q < P x Q.
Hence, P *x Q is not ccc. A contradiction, since P is ccc and ©p “Q is ccc”. m

Definition 2.3.17 Let ¢ (z) be a formula of the language of Set Theory. We say
that ¢ (x) is preserved under direct limits of finite support iterations of ccc forcing
notions if, whenever P is the direct limit of (P, Qu:a< V) a finite support iteration
of ccc forcing notions such that for every a < v, V|G,] 2 ¢(A), then V [G] 2 p(A),
where G is a P-generic filter over V.

Theorem 2.3.18 Let k be a weakly-compact cardinal and let Vo = L[C|], where C' is

a Coll (w, < k)-generic filter over L. Suppose that ¢ (x) is a formula of the language
of Set Theory such that:

., PX such that

n

1. For every X C w*, there are posets P§, ..

ZFECF (p(X) < Py, ... ,PX are ccc posets).

n

2. For every X C w¥, ¢(X) is preserved under direct limits of finite support
iterations of ccc forcing notions.
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Moreover, suppose that there exists a ccc generic extension Vy of Vo and A € V)
such that Vi 2 @(A). Then there is a ccc poset P € Vi such that whenever G is a
P-generic filter over Vi,

V1[G 2 MA(Proj) N—=CH N ¢ (A).

Proof. Let A\ be a regular uncountable cardinal in V3 which is not the successor
of a cardinal with cofinality w. Let P the poset to force M A (Proj)+ 2% = X defined
in V1 as in 2.2.14. Let G be a P-generic filter over V;. Then V3 [G] 2 M A (Proj) A
2% = ). Thus it only remains to prove that V3 [G] 2 ¢(A). Since P is the direct
limit of (Pa, Qu : @ < ) we prove this by showing, by induction on a < ), that
V1[Gl 2 (A).

a = 0: Obvious, since Py is the trivial poset.

a = [+ 1: By inductive hypothesis, we have that

Vi[Gp] = ¢(A).
We also have that
V1[Gp) 2 “Qg[Gﬁ] is a projective ccc poset”.
So, by 2.3.12, for every i < n and every P:-generic filter H; over V1[G,
Q[Gp)"I < Qu[Grg) HICHIIL.

Further, by 2.3.15, for every i < n, V1 [Gg] 2 “ “pa Qg[G/g] is a ccc poset”. So, by
2.3.16, for every i < n,

V1[G.] 2 “Pf is a ccc poset”.
But then, by condition (1) of this theorem,
V1[Ga] 2 0(A).

o limit: Since P, is the direct limit of (Pg,Qg : 8 < a), by condition (2) of
this theorem,

V1[Ga] 2 p(4). =

The next lemma gives a sufficient condition for a formula to be preserved under
direct limits of finite support iterations of ccc forcing notions whenever we can relate
the satisfaction of the formula to the nonexistence of certain homogenous sets.

Definition 2.3.19 Let X be a set. A 2-coloring of X is a map w from X x X onto
the set {0,1}. A set Y C X is homogeneous for (the 2-coloring) 7 iff 7Y x Y = {i},
where i is either 0 or 1.
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Lemma 2.3.20 Let X € V' be an uncountable set and let m € V' be a 2-coloring of X.
Let P be the direct limit of (P, Qs : o« < V), a finite support iteration of ccc forcing
notions. Suppose that for every P-generic filter G over V and for every a < v:

VI[Ga] Z2-(FY CX)(JY| =R AY is homogeneous)
Then V [G] 2 = (3Y C X) (Y| =Ry AY is homogeneous).

Proof. Suppose the lemma is true for a < v. Towards a contradiction, let p
and Y be such that p © “Y C X A|Y| = Ry A (Vay € YV)(n(x,y)) = 0.

For each 2 € X, choose ¢, € P so that ¢, < p and g, © “z € Y, if there is
such. Otherwise, let ¢, = 0. Without loss of generality, B = {q, : x € X A q, # 0} is
uncountable. By the A-system Lemma (see [Ku], II.1.5), there is B C B uncountable
such that {supp(q,) : ¢, € B’} forms a A-system with root r. Pick § < v such that
r C 6.

Fix {¢., : @ < A} an enumeration of B’

Claim 2.3.21 There exists p' < p such that p' © “{a : ¢, € G} is uncountable”,
where G is the canonical P-name for the generic.

Proof. Otherwise, let

C={n:3 <p)p ° “suwp{a:q, € G} =n")}

Since P is ccc, C' is countable. Let n = max (C). So n < wi. Now, ¢,,,, © “n+1¢

{a:q, € G}'. Hence q,,., © “sup({a : ¢, € G}) > n". A contradiction. This
proves the claim. m

Fix p’ < p as in the claim. Suppose G is a Pg-generic filter with p’ € G for
some 3, 6 < B < v. The set {a: q,, * f € Gz} is uncountable. For otherwise we can
extend G to a generic G for the whole iteration and then V [G] 2 {a : ¢,, € G} is
countable.

Since V' [Gs] 2 =(3Y C X)(|Y] = Ny AY is 0-homogeneous), we can find
z,y € X such that ¢, * 8,¢, * B € G and either 7 (z,y) = 1 or 7 (y,z) = 1.
But, since r C f, ¢, and g, are compatible. So, we can find ¢ < g,,q, so that

q ¢z, qy € G and either 7w (z,y) = 1 or m(y,x) = 17. This proves the Lemma
2.3.20. m

2.3.2  Suslin trees

Definition 2.3.22 A Suslin tree T is a tree T (i.e., a partial order T = (T, <r)
where for every x € T, {y € T : y <7 x} is well-ordered by <r) such that |T| = N;
and every chain and every antichain (i.e., every set of incomparable elements) of T
are countable.

Without loss of generality, we can restrict ourselves to normal Suslin trees. A
normal tree is a tree T such that ht (T) = w1, T has a unique least point (the root),
each level of T is at most countable, if x € T is not maximal in 7', then there exist
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infinite many y > x at each higher level and, if 3 < w; is a limit ordinal, x,y belong
tolevel fof Tand {z € T: z <z} ={z€T:2 <y}, thenx =y.

It is a well-known fact that Martin’s axiom implies that there are no Suslin
trees (see [J2], 23.1, or [Ku], I1.5.14). However,

Theorem 2.3.23 Suppose Con(ZF + 3r(k is weakly-compact)). Then Con(ZFC +
MA(Proj) +-~CH+ There exists a Suslin tree).

Proof. Let k be a weakly-compact cardinal. Using Theorem 2.3.18 we only
need to show that: (1) there is a ccc extension Vi of Vo = L[C], where C is any
Coll (w, < k)-generic filter over L, and a normal Suslin tree 7' € Vi, (2) there is a
poset Pr such that 7" is a Suslin tree iff Py is ccc, and (3) there exists a 2-coloring 7
of T such that T is a Suslin tree iff there are no homogeneous uncountable subsets of
T for 7.

It is well-known that the Tennenbaum poset to add a generic Suslin tree is a
cce poset. (See [T] or [J2], Exercise 22.9). Moreover, S. Todor¢evi¢ has showed that
forcing with Cohen poset adds a Suslin tree (see [B2]).

Let Pr = (T, >7). Since T is a normal Suslin tree, Py is a ccc poset. On
the other hand, suppose that T" is a normal w;-tree and P is ccc. Then, since being
an antichain of Pr is the same as being an antichain of 7', every antichain of T is
countable. Moreover, if B C T' is a branch, then, since T is a normal tree, for every
x € B there exists y, € T such that © <7 y, and y, ¢ B. But, {y, : € B} is an
antichain of T'. Thus, T is a Suslin tree iff Py is a ccc poset.

Let m: T x T — {0,1} be a 2-coloring of T" defined by:

|0, fzEyandy£x
m(z,y) = { 1, otherwise

Then it is easy to see that A C T' is an antichain iff 77 A x A ={0}. =

H. Woodin has remarked that the existence of a weakly-compact cardinal is
not necessary in order to find a model of ZFC + M A(Proj) + -CH+ “There exists
a Suslin tree”: For every poset P and every model of ZFC, let VP denote any P-
generic extension of V. Let M A(Proj)* denote the iteration in length w, for getting
MA(Proj) + 2% = R, (see 2.2.14) as defined in L. Let P be the Jech’s poset for
adding a generic Suslin tree 7" with countable conditions ([J1], see also [J2], Theorem
48). We want to show that LPT*MA®ProN" i a model of MA(Proj) + 2% = R+
“There exists a Suslin tree”. First note that, since Pr, is a o-closed poset, it does
not add new reals. So, in LPT, M A(Proj)* = MA(Proj)~" | the iteration in length
wy for getting M A (Proj) + 2% = X, defined in LP7. Hence,

LPTMAPeD" 2 N A(Proj) A 2% = R,

Further, since Py * T is also an o-closed poset and a o-closed poset cannot kill the
countable chain condition of any poset, MA(Proj)L it is still a ccc poset in LP7*T,
So, by 2.3.16, LPT*MAProj)t 2 «T g g ccc poset” and hence

L . .
LPT*MAProf)™ 2 «p is o SQuslin tree”.
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2.3.83 Gaps in w*
Definition 2.3.24 For f,g € w¥, we let f <* g if for all but finitely many n € w,
f(n) <g(n).

Suppose vy and 6 are ordinals. A (v, 0)-pregap in (w*”, <*) is a sequence (g, [
a < 7,8 < 6) such that for every a < o <=, B < 8 <& we have that g, <* gor <*
for < fs.

Further, (ga, fa:a <v,8 <06) is a (7,0)-gap in (w*, <*) if for no h € w* it
is true that for all o <y, B <0, go <* h <* fg. We call such an h a split.

We shall mainly interested in (wq,w)-gaps. Thus, henceforth, pregap and gap
will mean (wy,ws)-pregap and (w1, w1)-gap, respectively. We need the following facts
about pregaps and gaps in w* that can be found in [B-W] or in [S].

Definition 2.3.25 Given a pregap G = (g, fo : @ < w1), let Pg C wi¥ X w<Y the
following poset:

o (ap,...,ans) € Pg iff
(VE > dom (s)) (max {ga,; (k) : i <n} <min{f,, (k) :i <n}).

o Welet (oo, ... ,ans) < {(Bo,... 0mt) iff:

1. {Bos-- ,Bm} CH{ao,... ,an}
2. tCs
3. For all k € dom (s) \ dom (t),

max {gg, (k) :i <n} <s(k) <min{fs (k):i<n}.

Fact 2.3.26 Forcing with P splits G. More precisely, if H is a Pg-generic filter,
then h = J{s € w=¥: (Jag...a, € w1) (a0, ... ,an,s) € H)} splits G. Moreover,
H can be recovered from h. Indeed, (oo, ... ,on,s) € H iff

s ChA(Vk>dom(s)) (max{ga, (k) i <n} <h(k) <min{f,, (k):i<n}).m
Definition 2.3.27 A gap G is strong if it cannot be split in any ccc forcing extension.

Lemma 2.3.28 (K. Kunen) Assume that G = (g, fo : @ < w1) is a pregap such
that for every a < w1, go < fo. i.€., for everyn € w, go(n) < fo(n). Further,
suppose that if o # (3, then either go £ fg or gg £ fo. Then G is a strong gap.

Proof. First we will show that GG is a gap. Suppose that h splits G. For every
a < wi, let 7 (a) be the least n € w such that for every k > n, g, (k) < h (k) < fo (k).
Since 7 is a function from w; into w, without loss of generality, we may assume that
there exists ng € w such that for all @« < w;, m(a) = ng. Since there are only
countable many ordered pairs (g, * no, fo * 10), we also may assume, without loss of
generality, that for every o, 8 < w1, go * no = gg * no and fo, * ng = fz 1 ng. But
then, since a # 3 implies g, < fg and g3 < f,, we get a contradiction. Therefore G
is a gap.

It is clear, that, as long as G is not countable, this argument works. So, G is
an strong gap. ®
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Lemma 2.3.29 (H. Woodin) If G is a pregap, then Pg is ccc iff G is not a strong
gap.

Proof. (=) Clearly, if G is an strong gap, then Pg is not a ccc poset.

(<) Suppose that P¢ is not a ccc poset. Let {p, : 7 < w1} be an uncountable
antichain in Pg.

Let p, = (ag, ..., ), s), where n € w and s € w<“ has been stabilized. How-
ever, since if v # v/, p, and p, are incompatible, (ag, ...,a%,ag/, ...,a%’,s} is not a
condition.

Therefore, given v # 7', there exists k > m = dom (s), else max;<,(gq> (k)) £

min;<,, (f 4 (k)) or maxign(ga;r’ (k) £ minign(faj (k)).

[

We define, for every v < wi, g, f, € w* as follows:

o (k) — 0, itk <m
gy (k) = MaX;<y Jo? (k), if k>m
- 0, ifk<m
hk) = { min;<, for (), ifk>m

For every v < wy, let a, = max{ag,...,] }. So, modulo a finite set, g, = ga,
and fy = fo,.

{ay 1 ¥ < w1} is a unbounded subset of wy. Otherwise {p, : v < w1} will not
be an uncountable antichain. Therefore, picking a subsequence of G, if necessary, we
may assume that G = (g, J?v 7 < wy) is a pregap that determines the same gap
that G; i.e., h splits G iff h splits G.

But, since v # ' implies either g, £ fy or gy £ fy and, for every v, g, < ﬁ,,
by Lema 2.3.28, G is an strong gap. But then G is also a strong gap. ®

As an immediate corollary of 2.3.29, we have that Martin’s Axiom (plus N; <
2%) implies that every gap is a strong gap.

Definition 2.3.30 Given a pregap G = (ga, fo : @ < w1), let Qg be the following
poset:

e The conditions of Qg are finite sequences <<040»9207fa*0> yees ,<an,g;n,f;n>>
such that:

1. The o; are ordinals < wq.

2. For each oy, gy, f5 € w= are perturbations of go, and of fa,, respectively,
with the property that if one modifies g, and fo, by gi. and f5 to get g,
and f,., then for alli,j < n, if i # j, g, £ f&j or g;j £ fl. and for all
i <N, G, < S

e The ordering of Qg s the reversed inclusion.

Fact 2.3.31 Forcing with Qg makes G into a strong gap, provided that wi is not
collapsed.
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Proof. Follows from Lemma 2.3.28. =

Notice that if Qg is ccc, then G is a gap. For otherwise, a split for G' would
exist in every generic extension of V', even in the Qg-generic extension where G should
be a strong gap. The converse is also true:

Lemma 2.3.32 If G is a pregap, then Qg is ccc iff G is a gap.

Proof. (=) By the remark before the lemma.

(<) Suppose otherwise. Without loss of generality, we may fix an antichain
{gy : 7 < w1} such that for every v # +' the ordinals of ¢, do not appear in g,

For every v < wy, let G, F), € w* be such that:

Gy (k) = mini(gl, (k)
(k) = max(f, (k)

where, for G, (k), the minimum is taken over the g/,’s obtained from the g*,’s ap-
pearing in ¢,. We compute the F, (k)’s in a similar V\lfay. l

Since, for v # ', the ordinals in g, do not belong to ¢/, the set {G,, : v < w1} is
unbounded with {g, : @ < w1}. The same is true for {F, : v <wi} and {fy : @ < wi}.
Further, G, < F,, for v,y" < wy. This follows from incompatibility of ¢, and ¢,/ for
different v,~'. i.e., gy U ¢, is not a condition.

Define H € w* as H (k) = min{F, (k) : 7 < w1}. Therefore, for every v < wy,
G, < H < F,. But this implies that H splits G. A contradiction with the fact that
Gisagap. =

Theorem 2.3.33 Suppose Con (ZF + 3k(k is weakly-compact)). Then Con(ZFC+
M A(Proj) + ~CH+ There exists a non-strong gap).

Proof. Let x be a weakly-compact cardinal. By Theorem 2.3.18 we only
need to show that: (1) there is a ccc extension Vi of Vy = L[C], where C is any
Coll (w, < K)-generic filter over L, and a non-strong gap G € V1, (2) there are posets
P¢, ... PS¢ such that G is a non-strong gap iff P{,... ,P¢ are ccc and, finally, (3)
there are 2-colorings of an uncountable set such that GG is a non-strong gap iff there
do not exist 0-homogeneous sets for the 2-colorings.

S. Todorcevi¢ has showed that forcing with the Cohen poset adds a generic
non-strong gap (see [S], 49, see also [S], 35 and 48).

Clearly, by 2.3.29 and 2.3.32, a gap G is a non-strong gap iff both Pg and Qg
are ccc posets.

Finally, let mp, : w1 X w; — {0,1} and mq, : wi® X wi* — {0,1} be
2-colorings defined by:

[0, fa=porg.£ fsorgs £ fa
Tpg (o, B) = { 1, otherwise

and

(0, i @<n)@ <m0 A B NG < Fy Ags < fL)
TQq (Ot,ﬁ) - { 1, otherwise J ]
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where @ = (ag,...,a,) and 8 = (By,...,0B,,). It is easy to see, that if X is an
uncountable subset of w; such that mp,” X x X = {0}, then (g,, fo:a € X) is a
subgap of G (i.e., a subsequence of G that is also a gap) that is a strong gap. Thus
G is also a strong gap. On the other hand, if Y is an uncountable subset of w™ such
that 7o,”Y xY = {0}, then Y is an uncountable antichain of Q¢. So, by 2.3.32, the
pregap G is not a gap. =

2.3.4 Entangled sets of reals
In [A-Sh], S. Shelah defined the notion of entangled set of reals:

Definition 2.3.34 Let k be an uncountable cardinal. A set of reals F is k-entangled
if |E| = Kk and for every n € w and every s € 2™, in every uncountable family F C E™
of increasing (under the usual ordering of the reals) and pairwise disjoint n-tuples we
can find two x,y € F such that (Vi <n)(x; <y; — s(i) =0). Let z(s)y abbreviate
the preceding formula.

We are mainly interested in N;-entangled sets. So, henceforth, entangled will
mean Nj-entangled.

U. Abraham and S. Shelah have showed that if E is a set of N; Cohen reals,
then F is entangled, that C'H implies that there exists an entangled set of reals and
that M A implies that there are no entangled sets ([A-Sh]). And S. Todorcevi¢ has
showed that in all Cohen generic extensions there exists an entangled set of reals (see
[Be]).

Theorem 2.3.35 Suppose Con (ZF + 3k(k is weakly-compact)). Then Con(ZFC +
MA(Proj) + -~CH+ There exists an entangled set of reals)

Proof. We have already remarked that adding a Cohen real to Vo = L[C],
where C' is a Coll (w, < k)-generic filter over L, produces an entangled set of reals.
Thus, by Theorem 2.3.18, we only need to show that: (1) for every entangled set F
there is a poset P such that E is an entangled set iff Py is ccc, and (2) there are
2-colorings such that F is an entangled set iff there are no 0-homogeneous sets for
these 2-colorings.

Definition 2.3.36 Let E be a set of reals of cardinality Xy, let n € w, s € 2™ and
F C E" a set of increasing and pairwise disjoint n-tuples. Then Q3% is the following
poset:

o p € Q% iff p is a finite subset of F' such that for all distinct x,y € p, either
z(s)y ory(s)x

e p<qiffgCp.

Let Py be the product with finite support of all Q%, s € 2", n € w, ordered
coordinate-wise.

For (1) we show:
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Lemma 2.3.37 Pg is ccc iff E is entangled.

Proof. (=) Suppose that E is not entangled. We need the following claim
from [B2]:

Claim 2.3.38 E is entangled iff for everyn € w, every s € 2™ and every uncountable
set F' C E™ of increasing and pairwise disjoint n-tuples, Q% 1is ccc.

Proof. (=) Let n € w, F C E™ uncountable and s € 2". Let {p, : & < w1} be
a uncountable subset of Q7. We may assume that all p,’s have the same size m. For
every o < wi, we fix an ordering (p,, (1) : ¢ < m) of p,. Let D be a countable dense
subset of E. Every p, can be separated by a sequence of n - m of pairwise disjoint
open intervals with endpoints in D. Therefore, we may assume that the sequence
that separates the p, is the same for every a < w;. Suppose now that o, < wi,
i,j < m and i # j. If p, (i) (s)pa (), then p, (2) (s)ps (j). In a similar way, if

Do (7) (8) pa (i), then pg (j) (s) ps (i), and so pg (j) (S) pa (i). Hence, we may assume,
without loss of generality, that for every «, 8 < w; and every i,j < m, if i # j, then

else p, (7) (s)ps (7) or pg (j) (s) pa (7). Now, consider every p, as element of E™™ and
let s’ the concatenation of n copies of s. Since E is an entangled set, we may find
a, 8 < wy such that a # § and p, (s') pg. i.e., for every i < m, p, (%) (s) pg (7).

(<) Suppose that E is not entangled. Let n € w, s € 2" and F' C E" be a
counterexample to the entangledness of E. Let A = {{z} : x € F'}. Clearly, A C Q%
is a set of pairwise incompatible conditions. m

We continue with the proof of Lemma 2.3.37. From 2.3.38 follows that at least
one of the factors of Pg is not ccc. Hence, Pg is not ccc.

(<) Suppose that E is an entangled set of reals. Then, by 2.3.38, we know
that for every n € w, every s € 2" and every uncountable subset F' of increasing and
pairwise disjoint n-tuples in E", Q3% is ccc. Since we are dealing with a product of
cce posets with finite support, we only need to show that the product of a finite, in
fact of two, of these posets is ccc. For this we need the following:

Claim 2.3.39 There is a dense embedding from Q}XQ}/, into Q}Af},, where FF' =
{z7a':xe FAN2 € F'}.

Proof. Define h : Q3 X QI;, — Q FAAI';, as follows: for every p € Q% and
q € Q% h((p,q)) = p™q, where pqg = {272 : z € pAz’ € q}. his a dense
embedding. =

So, if A C Q% x Q%., is an antichain, s0 s {h({p,q)) : (p,q) € A} in QF:},
But, since E is an entangled set, by 2.3.38, Q%% is a ccc poset. Therefore Q7 x Q%
is ccc. This ends the proof of Lemma 2.3.37. =

Continuing with the proof of Theorem 2.3.35, we define for every n € w and
every s € 2" a 2-coloring 7s : E™ x E" — {0,1} by:

_J 0, if ~z(s)y and ~y (s)
s (2,9) _{ 1, otherwise
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Then, FE is an entangled set of reals iff there is no n € w, s € 2™ and an uncountable
set F' C E™ of increasing and pairwise disjoint n-tuples such that 7”F x F' = {0}. m

2.8.5 (Tr < 2%0)(2%0 < 2r)

Theorem 2.3.40 Suppose that V satisfies CH plus 2 = N3. Then there exists a
poset P € V' such that whenever G is a generic filter over V', then

V[G] 2 2% =Ry A MA(Proj) ARz < 2%,

Proof. Let P be the direct limit of the iteration (P, Qu:a< wp) with finite
support of projective and ccc posets as in Theorem 2.2.14. Let GG be a generic filter
over V. Since P is ccc, it preserves cardinalities, and thus,

V[G] 2R3 < 2%,

It only remains to check that in V [G], we have M A(Proj) and 2% = N,.
Since in V', N, is not a successor of a cardinal with cofinality w, it only remains to
see that for every o < wo, ©, “2% < N,”. We can show by induction on w, that for
every a, |P,| < N;. Thus, for every a < wy, there are at most szo = N; many simple
P,-names for reals. Hence, for every o < wy, ©, “2% = 8;”.

a = 0: Obvious, since Py is the trivial poset.

o+ 1: Since, by inductive hypothesis, |P,| < ¥;, we have <, “Mo — N;”. So,
since ©, “Q, is a projective ccc poset”, €, “|Qu| < N1”. Hence |Po+1| = |Po * Qal <
N;.

« limit: Since we are working with an iteration with finite support and R; is
a regular cardinal, |Po| = [Ugo Psl =D 5.0 IPsl < D5 N1 =N1. =
Corollary 2.3.41 Suppose Con (ZF'). Then Con(ZFC+MA(Proj)+—-CH+(3k <
2M0)(2%0 < 2F)). m
Definition 2.3.42 A poset P is o-centered iff there exist a family {P, : n € w} such

that P = U,.c., Pn and for every finite collection {po, ...., pr} C P, some n € w, there
exists p € P such that p <p po, ..., P

Note that every o-centered poset is ccc.

Definition 2.3.43 Martin’s Axiom for o-centered posets is M A (") for T' the class
of o-centered posets. We denote it by M A (o-centered).

Since every o-centered poset is a ccc poset, M A implies M A (o-centered).
Since M A (o-centered) implies (Vi < 2%) (2% = 2%), from above theorem we also
obtain the following corollary:

Corollary 2.3.44 If Con (ZF), then Con(ZFC + M A(Proj) + ~CH + M A(o-
centered)). ®

Definition 2.3.45 A Q set is an uncountable set of reals such that every subset of
it is a relative F, (i.e., ¥£9).

Corollary 2.3.46 If Con (ZF), then Con(ZFC + M A(Proj) + ~CH+ No set of
reals is @ set).

Proof. Since 2% < 2%t implies that there are no @ sets (see [Ha]). m
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2.3.6  Final remarks and open questions

1. Let M A (Indestructible-ccc) be Martin’s Axiom restricted to indestructible-ccc
posets (see Definition 2.3.13). Notice that M A (Indestructible-ccc) does not
imply M A (co-Suslin): Let 7" be a Suslin tree on the reals in L. Let L [H]| be a
generic extension of L for an iteration of length w, with finite support of posets
such that for every a < wp,

o

o Qg is indestructible-ccc”

Then, L[H] 2 “M A(Indestructible-ccc) A 2% = RN,”. Moreover, since we have
forced only with indestructible-ccc posets, T' remains a Suslin tree in L[H].
Since wit™ = wE and L[H] 2 M Ay, (o-centered), by an argument of A. Martin
and R. Solovay ([M-So]), T and every set of Ry reals is a II} set. But, Py, the
ccc poset that adds a unbounded branch to T defined in Theorem 2.3.23, has

the same complexity as T. So, L[H| # M A (co-Suslin).

2. Since Y ccc posets are indestructible-ccc, (see [Ju-Shl] or [B1] 1.1.1.20), from
(1) it follows that M A (Suslin) does not imply M A (co-Suslin). Since M A(A3)
implies M A (co-Suslin) and M A (Suslin) implies M A (Borel), M A (Suslin) does
not imply M A(Aj3) and M A (Borel) does not imply M A (co-Suslin). Ts it still
an open question whether M A (X;) implies M A (I} ), for n > 1. It is also open
whether M A (Borel) implies M A (Suslin) and whether M A (co-Suslin) implies
MAD)!

3. Is the assumption of (the consistency of) the existence of a weakly-compact
cardinal necessary to obtain the consistency results of 2.3.33 and of 2.3.357

4. Let MA (L (R)) be Martin’s Axiom restricted to ccc posets, with reals as condi-
tions, that belong to L (R). Clearly, M A implies M A (L (R)) and MA (L (R))
implies M A(Proj). Can these implications be reversed?

5. Let P be a poset. We say that P is a proper poset iff it preserves stationary
subsets of [A]¥ = {X C X : |X| = w}, for all regular cardinal A. Clearly, every
ccc poset is proper. Let PF A (Proj) be the Proper Forcing Axiom restricted
to projective posets. Is PFA(Proj) weaker than PFA? What is its exact
consistency strength?



Chapter 3
GENERIC ABSOLUTENESS FOR PROJECTIVE CCC FORCING

3.1 Solovay models

If k is an inaccessible cardinal in some model V', then a Solovay model over V' is the
L (R) of a model M resulting from collapsing x to w; over V' using the Levy-collapse.
Thus, if L (R)M is a Solovay model over V', then M has the following properties:

1. For every x € R, wy is an inaccessible cardinal in V' [x].

2. For every z € R, V [z] is a generic extension of V' by some countable poset.
Lemma 3.1.1 (H. Woodin) Suppose that M satisfies

1. For every x € R, wy is an inaccessible cardinal in V [z] and

2. For every x € R, V [z] is a generic extension of V' by some countable poset

Then there exists a forcing notion W such that does not add reals and creates a
Coll (w, < wy)-generic filter C over V' such that M and V|[C] have the same reals.
Thus, W forces that L (R)™ is a Solovay model over V.

Proof. We define the Woodin pseudo-collapse W as follows:

e g € W iff there exists a < w; such that g C Coll (w, < «) is a generic filter over
V.

e g<hiff hCyg.

By (1), for every g € W, w; is an inaccessible cardinal in V' [g] and, hence,
for every @ < wj there are only countably many antichains of Coll (w, < «) in V [g].
Therefore, for every a < wy, D, = {g € W : g N Coll (w, < ) is generic over V'} is a
dense subset of W.

Since every g € W is a countable set in L (R), given any real z, we can code
x and ¢ into a single real y. By (2), V [y] is a generic extension by some countable
poset in V. Hence, we can find @ < w; and a generic filter h C Coll (w, < «)
such that y € V [h]. But then, h < g and x € V [h|. Therefore, for every real x,
E,={9g€W:z¢cV]g]}is a dense subset of W.

Suppose that H is a W-generic filter over M and let C' = H.
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Clearly, C' C Coll(w, < w) is a filter. Since Coll(w, < w;) is a wj-cc poset, if
A €V is a maximal antichain of Coll(w, < wy), then |A| < w; and hence for some
a < wy, A C Coll (w,< a). But, then, by density of D,, CNA # (. So, Cis a
Coll(w, < wy)-generic filter over V.

Notice that if z € RNV [C], then = € V[g], for some g € H. Soxz € M. And
if x € RN M, then, by density of E,, z € V[g] for some g € H. So x € V[C]. This
shows that M and V [C] have the same reals, hence the same L (R).

Finally, we show that W does not add any new w-sequences, hence no new
reals. Suppose f : w — M is such that f € M[H]. We may assume that for some
Be M, f:w— B. Let f be a W-name for f. For every n € w, let g, € H be such
that g, ®w “f (7) = (f (n)). Since {g, : n € w} C H and H is a filter, {g, : n € w}
is a chain. Let « the least ordinal such that (J, ., g, € Coll (w,< o). Since w; is
regular, o < wy. So, HN D, # (. Let g € HN D,. Then, for every n € w, g < g,
and hence

f={ln,z) ewx B:g°wf(n)=i}.
SofeM. m

Corollary 3.1.2 If M is countable, then L (R)M is a Solovay model over V iff M
satisfies

1. For every x € R, wy is an inaccessible cardinal in V [z] and

2. For every x € R, V [z] is a generic extension of V by some countable poset. m
Remark 3.1.3 If M satisfies

1. For every x € R, wy is an inaccessible cardinal in V [z] and

2. For every x € R, V' [x] is a generic extension of V' by some countable poset,

then L (R)M satisfies every sentence with reals x and ordinals as parameters that has
Boolean-value 1, as computed in Vx|, inr.o. (C’oll (w, < wi\/[)) Hence, by [So], every

set of reals in L (R)M 1s measurable, has the Baire property, etc.

In view of Lemma 3.1.1, we will call a Solovay model any model satisfying (1)
and (2) above. So, we re-define:

Definition 3.1.4 L (R)" is a Solovay model over V iff

1. For every x € R, wy is an inaccessible cardinal in V [z] and
2. For every x € R, V [z] is a generic extension of V' by some countable poset.
We can see that “L (R) is a Solovay model over L” is II} sentence:

Fact 3.1.5 [B-W] There exists a I} sentence o such that L(R) 2 o iff L(R) is a
Solovay model over L.



Solovay models 39

Proof. We may rewrite (1) and (2) of Definition 3.1.4 as projective sentences.
Namely:

1. Vay(y e WO — (32 € WO)(|ly|| < ||z|| A L[z] 2 “]|z] is a cardinal”)).

2’. Yx3y(y codes a poset P A x is P-generic over L).

where WO is the I} set of all z € w* which code a well-ordering of w and for every
z € WO, ||z|| is the order type of the well-ordering coded by z (see [J2] 40.2). So,
since “L [z] 2 ||z|| is a cardinal” is a II3 (x, z) and “y codes a poset P A x is P-generic
over L” is 13 (x,y), (1’) and (2’) are IT;. m

Lemma 3.1.6 Suppose that L (R)™ and L (R)" are Solovay models over V such
that RM C RN and w) = wl. Then there is an elementary embedding j : L (R)M —
L (RN which is the identity on the reals and the ordinals.

Proof. Notice that if such an embedding exists, then it is unique and must
be defined by:

J(A) = {e e LR : LR)Y 2 p(x,0,a)},
where ¢ is some formula with parameters an ordinal o and a real a, that defines A
in L (R)™.
In order to prove that j is well-defined and is an elementary embedding, we

only need to show that for every formula ¢ (x1,x,), every ordinal o and every real
ae M,

L(R)M 2 p(a,a) iff L(R)N 2p(a,a).

Notice that Coll (w, < w1)™ = Coll (w, < w1)". Let H and H* be W-terms for
Coll (w, < wl)M—generic filters over V[a] such that, with W-value 1, R is the set
of reals of V[a][H] and RY is the set of reals of V[a][H*]. Then, the following equiv-
alences have all W-value 1 in M:

L (R) 2 2 (OC; (1,) 1H V[a/] [H] 2 (%2 (Oé, (J,)L(R) lff V[a] 2« oColl(w,<w1)M % (d) é,)L(R) 9

(the last one, by almost-homogeneity of the Levy-collapse).
And the following equivalences have all W-value 1 in N:

L (R) 2 %, (Oé, a) iff V[a] [H*] 2 © (Oé, a)L(R) iff V[a] 2> « OColl(w7<w1)N 0 (d, d)L(R) 5
Hence,

LRM2p(a,a) if LRV 2¢(a,a).

We are interested in the absoluteness properties of generic extensions of Solo-
vay models under ccc forcing notions.



40 Generic absoluteness for projective ccc forcing

Definition 3.1.7 Let V be a model of ZFC. Let P € V a forcing notion and let ¢
be a formula (with parameters in V). V is p-absolute for P iff for every P-generic
filter G over V,

V2 iff VIG] 2 .

Let 3> be a set of formulas. V is X-absolute for P iff for every ¢ € 3, V is p-absolute
for P. Let T be a class of posets. V is Y-absolute for I' iff for every P € I', V s
Y-absolute for P. (Compare with Definition 2.3.8)

Let P be a forcing notion in V, and Q a P-name for a forcing notion. V is
two-step p-absolute for P and Q if for every P-generic filter G over V and every
QI[G]-generic filter H over V[G],

VIG] 2 ¢ iff VIG][H] = ¢.

(Note that in two-step absoluteness ¢ may have parameters in V|[G], not just in V).
Let X be a set of formulas, we define V is two-step Z-absolute for P and Q in the
obvious way. Let I' be a class of posets. V is two-step Y-absolute for I' iff for every
P € T and every P-name Q for a forcing notion such that ©p “Q € I, ¥ is absolute
for P and Q.

V' is L(R)-absolute for P iff for every P-generic filter G over V' there exists an
elementary embedding

j+ L(R) — L(R)V

that fizes all the ordinals (hence all the reals). For T' a class of posets, V is L (R)-
absolute for I" iff for every P € ', V is L(R)-absolute for P.

V' is L(R)-two-step absolute for P and Q iff for every P-generic filter G over
V and every Q[G]-generic filter H over V[G), there exists an elementary embedding

IR L(R)V[G] N L(R)V[G][H]

that fizes all the ordinals (hence all the reals). Let T' be a class of posets, we define
V' is L (R)-two-step absolute for I' similarly as above.

Since we are interested mainly in the absoluteness of projective formulas,
henceforth, with “V" s absolute” and with “V is two-step absolute” we will mean
that V' is X-absolute or, respectively, that V' is two step X-absolute where Y is the
set of projective formulas.

We next observe that for some classes of posets, absoluteness implies two-step
absoluteness.

Lemma 3.1.8 Let V be a transitive model of ZFC and let ¢ (x) be a ¥+ (11%) for-
mula. Then there are projective sentences oo and o1 such that

1. V204 iff V is p-absolute for Borel ccc posets.

2. V201 iff V is p-absolute for Suslin ccc posets.
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Proof. Suppose that V is a transitive model of ZFC' and let ¢ (z) be a X}
(I1}) formula. Note that for every ccc poset P €V, identifying every real a € RNV
with its canonical P-name in V', V is p-absolute for P iff

V 2z ((%p ¢ (x) < ¢ (2)).
So, V' is p-absolute for Borel ccc posets iff
V 2 VaVy(y is a Borel ccc poset — ((°, ¢ (z)) < ¢ (x))).

Since ¢ is a projective formula, we only need to show that “y is a Borel ccc poset”
and “ 2, ¢ (x)” are expressible with projective formulas.

Note that, using the I1} set of codes of Borel subsets of the real plane (see
[J2], 42.1), we can code every Borel poset with a real in a such a way that, as in Fact
2.1.8, “y codes a Borel poset” is a I} predicate on the reals. Moreover,

Claim 3.1.9 Let P be a Suslin poset. Then, the following are equivalent:
1. P is ccc.
2. For every transitive well-founded model M of ZF with P € M, M 2 P 1is ccc.

3. There exists a transitive well-founded model M of ZF with P € M such that
M 2P is ccc.

Proof. See [Ju-Shl]. See also [B1], 1.1.1.17. m

Then, y is codes a Borel ccc poset iff
(a) y is a code of a Borel poset P and
(b) P is ccc.

But (a) is a I} predicate on y and, as in Theorem 2.1.23, we can show that (2) and
(3) of the Fact 3.1.9 are I (y) and 3 (y) respectively. Hence, (b) is A} (y). So, “y
codes a Borel ccc poset” is a A} predicate on y.

From Theorem 2.1.23, we have that, if £ > 2, then “ ©, ¢ (z)” is a g,ﬁﬂ
relation, if ¢ is X}, or a II},, relation, if ¢ is II}.

We show (2) of the lemma in a similar way. m

Corollary 3.1.10 Suppose that V' is absolute for Borel (Suslin) ccc posets. Then V
is two-step absolute for Borel (Suslin) ccc posets.

Proof. Since for every projective formula ¢, “V is @-absolute for Borel
(Suslin) ccc posets” is expressible with a projective sentence, for every Borel (Suslin)
cce extension W of V., W satisfies the same projective formula, and hence, “W is
@-absolute for Borel (Suslin) ccc posets”. Therefore, V' is two-step absolute for Borel
(Suslin) ccc posets. ®

For more complex projective and ccc forcing notions we have a similar result.
Recall that for every transitive M 2 ZFC' if P is a projective poset, then “P € M”
means that the parameters of the definition of P belong to M.
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Fact 3.1.11 Suppose that V' is absolute for Z]ﬂll (E,ll) and ccc posets. Then, for all
g}L (E}L) and ccc posets P,Q € V', V is two-step absolute for P and Q.

Proof. We prove it only for g,ll and ccc posets. The proof for E,ll and ccc
posets is analogous. Suppose V' is absolute for g,ll and ccc posets and let P, Q be
g}L and ccc posets in V. Suppose that G is a P-generic filter over V' and H is a
QVI¢._generic filter over V[G]. We will show that for every projective formula ¢ (z)
and every real a € V[G],

VIGI[H] 2 ¢ (a) it V]G] 2 ¢ (a).

Suppose that V[G]|[H] 2 ¢ (a). So, V[G] 2 “q ©°q ¢ (a)”, for some condition
g€ Q. Since Qe Visa g}L and ccc poset, by absoluteness for Q,

V' 2V2Y4((q ®q ¢ (7)) = ¢ (2)).

But, by Theorem 2.1.23, the sentence on the right hand is projective and hence, by
absoluteness for P,

VIG] 2 Vavg((q ©q ¢ (2)) < ¢ (2))-

But then, V[G] 2 ¢ (a).
The converse follows from the fact that if V[G][H]| Z ¢ (a), then V[G][H] 2
- (a) foralla e RNV[G]. =

Fact 3.1.12 L (R)-absoluteness for ccc posets in L (R) implies L (R)-two-step abso-
luteness for cce posets in L (R)".

Proof. We show it as in the previous fact, using that every poset P in L (R)
is defined by formulas with only ordinals and reals as parameters and the fact that,
since P is ccc, we may code every simple P-name for a real with a real. m

The interest in the generic absoluteness of projective sentences under some
class of definable ccc forcing notions can be seen from the following two theorems.

Theorem 3.1.13 Suppose that V is L (R)-two-step absolute for ccc posets in L (R).
Then every set of reals in L (R) is Lebesque measurable and has the Baire property.

Proof. Let X be a set of reals in L(R). So, there is a formula ¢ with reals
and ordinals as parameters such that

Ve(z € X < o(z)).

Let A = r.0. (Amoeba) (see [M-So| or [J2], Theorem 106) and let G be a A-generic
over V. In VI[G] there is a measure-one set of Random reals over V. Let 7 be the

canonical term for a Random real and suppose r is one of the Random-generic reals
over V added by G.
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Claim 3.1.14 V|G| 2 “p(r) <> r € [[(p(q‘»)]]R‘mdom”

Proof. Work in V[G]. Suppose ¢ (r) holds in V' [G]. Let U = {u,, : n € w}
where for every n € w, u, = [ € 7]. So, if B is the complete subalgebra of A
generated by U, then H = G N B is a B-generic filter over V' and V[H] = V|[r] (see
[J2], 25.2, Corollary 2). Note that B € L (R) since it is definable with parameter 7.,
the Amoeba term for a Random real which we may assume that is essentially a real.

Let T" be the canonical B-name for the generic filter. Let A/7 be the following
poset:

e (G,p) €A/riffge Aand p € B and (Vp' <p)(q LaP).
e (¢,p) <(¢,p)iff¢g< ¢ andp <Y

Then, V|G| = V[r][G] (see [Ku], VII, Exercise D.5).
So, V[G] is a ccc forcing extension of V[r] via a definable forcing notion in
V[r], with parameter r. So, by L (R)-two-step absoluteness, we have V[r] 2 ¢ (r).
Since for every Borel-null set B, with code in V,

BV = BVl vy,

V[r] 2 “r is a Random real over V”. Hence, V|r] is a Random-generic extension
of V (see [So] or [J2], 42) and V[r] 2 r € [p(r)]Femdem  So, by Borel absoluteness,
V(G| 2 r € [p(r)]fandom.

We show the converse in a similar way. m

By the Claim, X is measurable in V[G]: Since V[G] 2 u(Ra (V)) = 1, where
p denotes the measure of Lebesgue and Ra (V') denote the set of random reals over
V, VIG] 2 u(X A [ip(r)]Fendom) = 0.

But “X is measurable” is a sentence with only reals and ordinals as parameters.
Hence, by absoluteness, X is measurable in V.

That all sets of reals in L(R) have the Baire property is proved in a similar
way, using Amoeba for category and Cohen forcing notions instead of Amoeba and
Random forcing notions, respectively. ®

Also, using absoluteness for Borel ccc posets, we can show, using a result of
H. Woodin ([W]), the following:

Theorem 3.1.15 Suppose that V' is absolute for Borel ccc posets. Then there is no
uncountable projective well-ordering of reals.

Proof. Suppose that X = (X, <x) is a projective uncountable well-ordering
of reals. Let ¢ (z,y) be a projective formula that defines X with parameter a € w*.

Without loss of generality, we may assume that o.t. (X) = w;. Otherwise, let
R C w* x w* be defined as follows: for every b, c € w®,

bRe iff {(b), :necw}={d:d<x c},
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where for every b € w* and every n € w, (b), = {(i,j) : b(J (i,n)) = j}. Note that
R is a projective relation. Indeed, for every b, ¢ € w®, bRc iff

Y ((0),,,c) AV (@ (z,¢) = 3n (z = (b),))

Therefore, if ¢ (z,y) is X2 (a), Ris AL, (a), and if ¢ (z,y) is [T} (a), R is IIX,, (a).

n

Note that for every real b € X, there exists x € w* such that zRbiff p__ () <
w1, where p_  is the rank function for the well-ordering X. i.e., for every b € w®,
P, (b) =sup({p., () +1:2 <x b}). Finally, let

b<x ciff Jzy (zRbAyRcAb <x c).

Then, X' = (X', <x/), where X' = Field (<x-), is a projective well-ordering (in fact
Y1 (a),if o (z,y) is 3 (a), or L, (a), if ¢ (z,y) is 11 (a)) and o.t. (X') = w;.

Claim 3.1.16 Let P be a Borel ccc poset in V. Then for every P-generic filter G
over V., ¢(x,y) defines the well-ordering X in V [G].

Proof. Let XVI¢l = (XVIC] <;[G]>, where XVIC¢] = Field(<;[G]), and for all
bcew’ NVIG], b<dNciff VG2 ¢ (b,c).
Note that in V' the following hold

1. V- (z,2),

2. Vry (¢ (z,y) — —¢ (y,2)),

3. Vayz (o (z,y) Ao (y,2) — ¢ (z,2)),
4. Yoy (¢ (z,y) Ve =y Ve (y,z)),

5. =3a¥n ((2), € X A @ (@)1, (2),))

and (1)-(5) are projective formula with parameters in V. Moreover, b € X iff
Jz (¢ (b,x) V ¢ (x,b)). Hence, by absoluteness for Borel ccc posets, V' [G] satisfies
(1)-(5). Therefore, X"VI¢ is a projective well-ordering.

Moreover, by absoluteness, for every b,c € w* NV,

V2p(ec) it VG| 2e(be).
So, X € XVI¢ and o.t.(XVI¢) > w,. Since
V 2Vx(Jy p(y,x) — 3z zRx),
by absoluteness,
VIG| 2Vx (Jyp(y,x) — 3z zRzx).
Therefore, 0.t.(XVI¢) = w; and X = XVI¢. m

Claim 3.1.17 For every b € w*, w’ N L (X,b) is a projective set of reals.
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Proof. For every real z € X, let X, = {y € X : y <x z}. Note that, by
reflection in L (X, b), for every ¢ € w¥, ¢ € L(X,b) iff 3z (x € X Ac e L(X,,b)).
Define S C w* x w* x w* as follows: for every z,y,z € w®,

(y,z,z) € S iff z codes X, and (X,,<x,) = (w, E,)

where E,, is the well-ordering on w coded by y (see [J2] 40.2). S is a projective relation
since for all x,y,z € w¥, (y,z,z) € S iff

zRx Ny € WONVnm ((2),, <x (2),, < y(J(n,m)) =0).
So, for every real ¢ € w®,
ce L(X,b) iff Jxyz (z € X A (y,z,2) € SAT € L(y,2,b)).

But L(y,z,b) = L[y, zb and w” N L[y, 2,b] is a ¥3(y, 2,b) set. So, if X is a Z:ﬂ]:b
well-ordering, then Ris Ay, S'is AL, and, hence, w* N L (X,b) is X1.;. And if X
is a IT} well-ordering, then R is II%.,, S also is [T}, and w* N L (X,b) is £},,. =

Continuing with the proof of Theorem 3.1.15, let B be the Random forcing
notion and suppose G is a B-generic filter over V. Then for every real b € w“ NV,

V [G] 2 “There exists a Random real over L (X,b)”.
Claim 3.1.18 “There exists a Random real over L (X,b)” is a projective sentence.

Proof. Recall that every Borel set can be coded by a real in such a way that
the set of codes of Borel sets is a I1} set (see [So] or [J2], 42.1). Then, r is a Random
real over L (X, b) iff for all real z, if z codes a Borel null set B, and z € L (X,b), then
ré¢ B,.

A set of reals X is null iff

SRS

Vn3y(y codes an open set O, A X C Oy A 1 (O,) <

).
If X is a Borel set, then the expression between parentheses is 11} (see [J2] 42.4). So,
“X is null” is a 33 statement about the code of X.

Moreover, for a measurable set X, u(X) > 0 iff there exists a closed set
F C X such that p (F') > 0. Therefore, if X is a Borel set, then “X is not null” is a
¥1 statement with parameter the code of X.

Hence, for every Borel set X, “X is null” is a Al statement with parameter
the code of X.

By Claim 3.1.17, for every real b € w* NV, w¥ N L(X,b) is a projective set.
So, for every real b € w¥ NV, “r is a Random real over L(X,b)” it is a projective
sentence. W

—~

Now, by absoluteness,

V 2 Vz3r(r Random over L (X, z)).
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Let C be the Cohen forcing (see [C] or [J2], 42) and suppose c¢ is a Cohen
real over V. Since C is a Borel ccc poset and Vz3r(r Random over L (X, z))) is a
projective sentence, by absoluteness, and the fact that X = XV,

V' [¢] 2 Vz3r(r Random over L (X, z)).
So,
V' [¢] 2 3r(r Random over L (X, c)).

But, since X is a projective uncountable sequence of different reals, this contradicts
the following lemma of H. Woodin, [W].

Lemma 3.1.19 (H. Woodin) Suppose that S is a uncountable sequence of distinct
reals and c is a Cohen real over V. Then, in V [c| there is no Random real over

L(S,c).

Proof. Let S = (s, : @ < A). Fix in L (S5) a sequence (A, : @ < A) of infinite
and almost-disjoint subsets of w and a enumeration (I : kK € w) of open intervals of
R with rational endpoints and such that every interval appears infinitely many times.

Let ¢ € w* a Cohen real over L (S). We work in L (S, c). Define f,g € w* as
follows: for every n € w,

e f(n)=-c(2n).
e g(n)=c(2n+1).

For every av < A\, let g, = g * A,

For every ao < X and every n € w, 1 < n, we will construct an open set O C R
such that p (O7) < L.

Fix a < A and n € w with 1 < n. Define a sequence of natural numbers
(k"™ . 1 € w) recursively:

i=0: Then, kg™ = min({k € w: go (k) = n A p(Lw) < 2}).

i+ 1: Then, k5) = min({k € w: g (k) = n A p(Uj<; Lrap U Lrwy) < +1)-
We show that (k" :i € w) exists. For every ¢ > 0 and every m € w, we define in

L(S),

De = {p+ dom (p) > m A (3 € A) (p(2k+1) = n A pllyan) < )}
Claim 3.1.20 D,,. is a dense subset of the Cohen poset.

Proof. Suppose that g € C. Let p € C be such that:

1. dom (p) = 2k + 2, where k € A, and k > max ({dom (q) ,m}).
2. For all i € dom (q), p (i) = q (4).

3. p(2k) is the least i € w such that u ([;) < e.
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4. p(2k+1) =n.
5. p(i) = 0, otherwise.
Then, p < qand p € D,,.. So, D, is dense. m

Since ¢ is a Cohen real over L (5), for every m € w and € > 0 there exists
p € Dy, such that p C c. But then, (k" : i € w) exists.

(2

Let Op = U,c, Iraomy- So, Of is open and p (Of) < 1

Fact 3.1.21 Ifo C A\, 0 € L(S) and o is infinite, then for alln € w, ., O = R.

aco

Proof. Fix ¢ C X infinite and such that ¢ € L(S). We will prove that for
every k > 1, [=k, k] € U, e, O
Suppose otherwise. Then there exists p € C such that

pc Bk = 1) ([=k k] * Uge, O0)"-

Since dom (p) is finite, there exists 7 C o, 7 infinite, such that for every o, 5 €
7, dom (p) N A, = dom (p) N Ag. Then, by definition of the sequences (k" : i € w),
there is m € w such that for all a € T,

(koy .oy k) = (k"™ 1 i € w) T dom (p) .

Let € > £ — (U, Ly@h))- Clearly, e > 0. Fix m' € w such that mzl's > 2k. Fix
g, ..., y—1 € T all different. Let m” € w such that for all 7, 7 < m/, Ay, NA,, € m".
Let ¢ € C be such that:

1. dom (q) = m".
2. For all i € dom (p), q (i) = p (7).
3. For all i € dom (¢) \ dom (p), g (i) = 0.

Sincen # 0, forall j < m’, (k;?" :i € w) T dom (p) = (k;"" : i € w) * dom (q).

Since mé'a > 2k, we can find open intervals Jy, ..., J,»v_1 with rational endpoints
such that:

a) For every i <m/, u(J;) =

b) [=k k€U

No|m

Ji.

<m’

For every i < m/, let k be the least k > dom (q) such that £k € A,,. So, for all
i,j <m',if i # j, then ki # kj. Define ¢’ € C such that

1. dom (¢') = 2 (max {k} : i <m'}) + 2.
2. For all i € dom (q), ¢’ (i) = q (4).

3. For all i <m/, ¢’ (2k]) is the least j € w such that J; = I;.
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4. For all i <m/, ¢ (2kl +1) =n.
5. ¢ (1) = 0, otherwise.
But then, ¢’ < p and ¢’ °¢ “[~k, k] C U, On,”. A contradiction. m

For every a < A and every n > 1, let Cjy = R\ O. Then, for all a < A,
R\ Ulgn < O 1s a null set of reals. For every a < A and every n > 1, let C} the

canonical C-name in L (S) for C%'. Then, by the last claim, the following holds in

L(S):
For all ¢ C \ infinite, allp € Cand alln > 1, p 7 ¢, C" # 07, (%)

Fact 3.1.22 (x) is true in V

aco

Proof. For every p € C, k € w and n > 1, define in L (.5) the following tree
T, k.n of sequences of ordinals less than A:

e (ap,... am> € Tpkn iff all a; < A are different ordinals and p ©¢ “[—k, k| N

ﬂz<m 7& Q”
o (ag,...;tm) < {(Boy ey Bryr) M {0y ooy ) C By oevs B )-

Suppose that (k) is false in V. So, there is ¢ C X infinite, a ¢ € C and
n > 1 such that ¢ ®c “(.c, C™ # (. Then there is p < ¢ and k € w such that
p °c “[—k, kN ﬂa@ » £ (). Therefore, T, 1, has an infinite branch.

If there are p € C n > 1 and k € w such that T, , has an infinite branch,
then there exists an infinite sequence (o; : i < w) of different ordinals less than A and
m < w such that

pc [_ka k] N ﬂigm CZZ # 0.
But, since for every m < w, (,,,, C&, N[—Fk, k] is a compact set of reals, [
[—k, k] # 0. So, there is r < p such that r°c “N
false in V.
So, for all p € C, all k£ € w and every n > 1, T}, is a well-founded tree in

L (S). But, by the absoluteness of “being well-founded”, T}, ;. ,, is a well-founded tree
in V. Therefore, (*) is truein V. m

n

m<w CTL N
C” # ()7 and, therefore, (x) is

m<w

We can now finish the proof of Lemma 3.1.19 and of Theorem 3.1.15. Suppose
that ¢ is a Cohen real over V' and there is a Random real over L (S, ¢) in V [¢]. Note
that for every a < A, 1 € U<, ., Cf, since R\ U, <, ., C is null. Pick, in V', a Cohen

name 7 for r. For every a, we pick p, € C and n, > 1 such that p, ©c “r € Oga”.
Since C is countable and A is uncountable, there is a ¢ C X infinite, p € C and
n > 1 such that for every o € 0, p = po and n = nq. So, p °c “(\,eo C" £ (7, in
contradiction with the above Fact. m

Note that the above theorem really shows that Zn+2—absoluteness for Cohen
poset and En+1 absoluteness for Random poset implies that there are no uncountable
21 Well—orderlngs of the reals. So, as a corollary we get the following result of [B1]
(see also [B-Ju])
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Corollary 3.1.23 g}l—absoluteness for Cohen poset and g%—absoluteness for Random
poset implies that wy s an inaccessible cardinal in L.

Proof. Since for every real a € V, the well-ordering of RN L[a] is X3 (a), there

are only countable many reals in L]a]. So, wf[a] < wq, for every real a. ®

3.2 Collapsing an inaccessible cardinal

In this section we study the absoluteness properties of Solovay models under ccc
forcing extensions. We will show that every Z]J% and ccc forcing extension of a Solovay
model is also a Solovay model. We will also show in Section 3.3 that this is, in some
sense, the optimal result for Solovay models.

Theorem 3.2.1 Suppose L (R)M 1s a Solovay model over V and P is a Z;% and ccc
poset in M. Then the L (R) of any P-generic extension of M is also a Solovay model
over V.

Proof. Suppose L (R)" is a Solovay model over V. Let x = w. Force over
M with W to obtain a Coll (w, < k)-generic filter C' over V so that RVl = RM
(Lemma 3.1.1). Let P be a g% and ccc poset in M. Notice that for a filter G C P, G
is P-generic over M iff G is P-generic over V[C]. Moreover, RMI¢] = RVICIC] Thuys,
to prove the theorem it will be enough to show that every real in V[C][G] is generic
over V for a countable poset.

Let P be a Coll (w, < k)-name for P in V. So, ©cou(w,<r) “P is a ccc poset”
and there are a simple Coll (w, < k)-name for a real @ and X3 formulas ¢ (z,y;u)
and ¢, (z,y;u) such that: -

L. ot <ry “(Voy € &) (2<py < o (z,y;a))".
2. °Coltg,<ny “(Y2y € ) (2 Lpy < ¢, (2,;4))".
Let S = Coll (w, < k) * P. Note that S is a k-cc poset.

Notation 3.2.2 Recall that if A is a projective set and N is a transitive model of (a
fragment of ) ZFC' that contains the parameters of the projective formula that defines
A, then AN denotes the set defined by the relativization to N of this formula.

e For every a < k and every Coll (w, < k)-generic filter C over V let C, =
CNColl (w,< a).

e For every Coll (w, < k)-generic filter C over V, let P = P[C]. Moreover, for
every a < k, if a = a[C|], the parameter of the definition of P, belongs to
V[C4], Py =PV [fa ¢ V[C,], then P, denotes the trivial poset. Let P, be
a Coll (w, < a)-name for P,. i.e.,

1. oColl(w,<a) “(VZIZ’ € ww)(x € Pa = ¢§($7$; C'L))”

2. 2 Coll(w<ay “(Voy € ) (2<py + o (z,y;a))"
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8. ° o<y “(Voy € ¥)(xLpy < ¢, (v,y;d))"

We may assume that for every o < K, ©coliw,<a) Pa 5 a poset”. Finally, for
every a < K, let S, = Coll (w, < a) * P,.

o Let R denote the set of all simple Coll (w, < k)-names for reals and for every
a < K, let R, be the set of all simple Coll (w, < a)-names for reals.

Notice that, by Shoenfield’s Absoluteness Theorem, if £ < ¢’ then S C S
and, since Coll (w, < k) is a k-cc poset, S = U§<,$ S¢. Thus, for every subposet X of
S of cardinality less than x there exists a < x such that X is a subposet of S,,.

For every a < &, let £ (o), if it exists, be the least £ < k such that for every
¢ > £ the following holds: For every simple Coll (w, < a)-name A for a subset of Ra,
every simple Coll (w, < a)-name for a real ¢ and every q € Coll(w, < &), if

q © Coll(w,<r) “A is not a maximal antichain of P below ¢’
then

q  Coli(w,<¢") “A is not a maximal antichain of P below ¢”.
Lemma 3.2.3 For every a < k, & () exists.

Proof. Note that “z codes a maximal antichain of P below ¢’ iff “z codes a
maximal antichain of P,”, where P, is the subposet of P consisting of all conditions
of P below c. Since P is a gé poset, P, also is a gé poset. So, by Fact 2.1.15, “x
codes a maximal antichain of P below ¢” is a [1 predicate on z, and (the codes of) ¢
and a.

In order to simplify the notation, we work with the algebra r.o. (Coll (w, < k)).
Fix a < k. Note that every subset in V[C] of reals in V[C,] is countable, and hence
can be coded by a real in V[C]. So, by Shoenfield’s Absoluteness Theorem, for every
simple Coll (w, < a)-name A for a subset of R, and every simple Coll (w, < a)-name
for a real ¢, if

[[A does not code a maximal antichain of P below ¢ cotiqw,<wy # 0,

then there exists a final segment Fof x such that for every & € F,

[[A does not code a maximal antichain of P below cotiw,<ry € Coliqw, <€)

© Coll(w,<¢) “A does not code a maximal antichain of P below ¢”

For all simple Coll (w, < a)-name A for a subset of R, and all simple Coll (w, < a)-
name for a real ¢, let D . be this final segment, if [A does not code a maximal

antichain of P below eotiw,<xy # 0. Let D Ae = K otherwise.

Since there are less than & simple Coll (w, < a)-names A for subsets of R, and
less than x simple Coll (w, < a)-names ¢ for a real, the intersection D of all D, .. is a
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non-empty final segment of k. Let £ () be the least £ € D greater than «a. It is easy
to check that & (o) works. m

We continue with the proof of Theorem 3.2.1.

For every a < £, let S, be the complete subalgebra of r.o. (§) generated by
Se- And for every a < £ < k, let S§, be the complete subalgebra of S generated by
Sa-

Claim 3.2.4 For every £ > £ (a), S, = S5,

Proof. It is clear that S, C S%. So, since S§ is a complete subalgebra of
r.0.(S), Sq C S§,. To prove that S§ C S,, we only need to show that S, is a complete
subalgebra of S¢. Tt is clear that S, is a subalgebra of S¢. So, let A C S, be a maximal
antichain below (p, ¢)€S, and suppose that A is not a maximal antichain of S¢ below
(p,¢). Let Ay = {b € R, : (3g € Coll (w, < a)) ({q,b) € A)}. Then there exists
q € Coll (w, < &) such that

q © Coli(w,<£) “Al is not a maximal antichain of P below ¢”
Since £ > £ (a),
q © Coli(w,<r) “Al is not a maximal antichain of P below ¢”.

So, A is no a maximal antichain of S below (p,¢). A contradiction, since S, is a
complete subalgebra of r.o. (S) and A is a maximal antichain of S, below (p,¢). =

Definition 3.2.5 Let E be the following poset:

o h € E iff there exists o < k such that h is a complete embedding from S, into
r.0. (Coll (w, < K)).

o« h<Hh iff W Ch

Note that the S,, @ < &, have cardinality less than x. Hence, by Kripke’s
Theorem (see [J2], Theorem 62), E # 0.

Lemma 3.2.6 Let H C E be a generic filter over V. Then e = J,cyy h is a complete
embedding from r.o. (S) into r.o. (Coll (w, < K)).

Proof. It is clear that e = (J,.4h is an embedding from dom (e) into
r.0. (Coll (w,< k)). Thus to prove the lemma it will be enough to show that for
every h € E and every 3 < k there is B’ < h such that dom (k') = S¢ and £ > .

So, fix h and 3. Let « such that h is a complete embedding from S, into
r.0. (Coll (w,< K)). Let £ > £ (a), € > 3. By claim 3.2.4, S§ = S,,. Hence, (see [J2],
25.12), we can extend h to a complete embedding A’ form S; into r.0. (Coll (w, < k)).
|

Lemma 3.2.7 E is a < k-closed poset. Hence, forcing with E does not add new
bounded subsets of k. In particular, it does not add reals.
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Proof. Let (h, : a < ), with 7 < k, be a decreasing sequence of elements
of E. For each o < 7, let &, be such that dom (h,) = S¢ . Let & = sup,_, (£,)
and let £ > &,. Let h, = U, < ha. Let B the complete subalgebra of S¢ gener-
ated by U, < gga. So, h. extends uniquely to a complete embedding A from B into
r.0. (Coll (w,< k)). Now (see [J2], 25.12) we can extend h to a complete embedding
R’ from S into r.0. (Coll (w, < k)). It is clear that A’ is below all h,, & <. m

Now we complete the proof of Theorem 3.2.1. We need to show that every
real in V[C x G], where C % G is a S-generic filter over V, is generic over V for a
countable poset. So, let 7 be a simple S-name for a real, 7 € V. Let a < k be such
that 7 is a S,-name. Suppose H is EV-generic filter over V[C x G]. Notice that by
the Product Lemma, C G is SY-generic over V[H] and V[C x G][H] = V[H][C * G].
We have that e = (J, .y h completely embeds r.0.(S) onto a complete subalgebra
Q of r.0.(Coll (w,< k)). Let h € H be such that h : S¢ — r.0.(Coll (w, < K))
with € > £(a) and let ¢ < & such that h[S¢] C r.0.(Coll (w, < ¢)). Notice that
Q' = Qnr.o. (Coll (w,< ()) is a complete subalgebra of Q. Then g = ¢[C'*G] N Q" is
a Q’-generic filter over V[H]. Further,

ex(F) = {{e(p, b), ) : (p,b,71) € 7}

is a Q"-name and r = 7[C * G] = e, (7) [¢). By Lemma 3.2.7, Q' € V and so g is Q-
generic over V. Also, Q' is countable in V[C'xG]. Also, by Lemma 3.2.7, g € V[C'x H]
and e, (1) € V[C' * G| . Thus, in V[C * G], r belongs to a countable forcing extension
of V. m

Corollary 3.2.8 The following are equiconsistent (modulo ZFC):
1. There exists an inaccessible cardinal.
2. L (R)-two-step absoluteness for g% and ccc forcing

3. g}l—absoluteness under Cohen and Random forcing notions.

Proof. (1) implies (2) follows from Theorem 3.2.1 and Lemma 3.1.6. (2)
implies (3) is trivial. (3) implies (1) is a result of J. Bagaria and W. H. Woodin (see
[B1], 2.1.1.3 or [B-Ju]. See also Corollary 3.1.23). m

From Theorem 3.1.15 and the fact that Solovay models are Borel ccc absolute,
it readily follows that in a Solovay model there are no uncountable projective well-
orderings of reals. Hence, there are no uncountable projective gaps. We will now
show that in a Solovay model there are no E% Suslin trees.

Definition 3.2.9 We say that a poset P is a El—mdestructlble—ccc poset iff for every
Zl and ccc poset Q,

°o“P s a ccc poset”.

Similarly, we define the Hl—lndestructlble ccc posets and the Al—mdestructlble—ccc
posets. Finally, P is a prOJectlve—1ndestruct1ble ccc poset iff for alln > 1, P is a
g}l-mdestmctzble ccc poset



Collapsing an inaccessible cardinal 53

Theorem 3.2.10 Let L(R)M be a Solovay model over V. Then, every ccc poset
PeL(RMisa Y3-indestructible-ccc poset.

Proof. It is essentially the same proof as that of Theorem 2.3.14.

Suppose L (R) is a Solovay model over V. Let k = w}. Force over M with
W to obtain a Coll (w, < k)-generic filter Cy over V so that RVI¢ = RM (Lemma
3.1.1). We work in V' [Cp].

Let P € L(R)"%! be a cce poset so that the set, the ordering and the incom-
patibility relation of P are definable with a real a and an ordinal o as parameters.
By the Factor Lemma for the Levy-collapse, we may assume that the parameters
of the definition of P are in the ground model V. Further, since Coll (w, < k) is an
almost-homogeneous poset, we may assume that

© Coll(w,<r) “P is a ccc poset”.

Let Q be a 21 and ccc poset in V [Cp. Suppose that there exists a filter
G C Q generic over V [Co] such that V' [Co x G] 2 “P[Co * G] is not ccc”. Let S =
Coll (w,< k) * Q and let A = {7, :i < k} be a S-name for an uncountable maximal
antichain of P [Cy * G].

By Lemma 3.2.6 and Lemma 3.2.7, we know that there exists a < k-closed
poset E € V such that for every H C E generic over V there exists a complete
embedding e from S to Coll (w, < k) in V[H].

Let Vo = V [H][Co*G] be a E x S forcing extension of V. That is, H is
E-generic over V, Cy is Coll (w, < k)-generic over V [H] and G is Q [Co)-generic over
V' [H][Co). Since E is < r-closed, L (R)"*/ = [ (R)"® and w)'**“ =, Hence,

Vo 2 “A[Cy * G] is an uncountable antichain of P [Co * G]”.

Let e € V [H] be the generic complete embedding given by H. Then, there
is a filter C; C Coll (w, < k) generic over V [H] such that Cy *G = e~ 1 (Cy). Let
ex(A) = {e.(15):i <K} € V' [H] be the e,-image of A. Since, for every i < &,
V[H|2“°sT1; € P” “r; € P” is a formula with only a,a and 7; as parameters and
e is a complete embeddlng,

4 [H] = oCOll(uJ,<l{) Ex (7'1) S P”.
Hence,
V[H][C1] 2 “e. (1:) [C1] € P[],

for every i < k.

Note that, V [C4] 2 “P[CY] is a ccc poset” and that, in V [Cy], E is a o-closed
poset. But no o-closed poset can kill the ccc-ness of a ccc poset. So V [Ch] [H] 2
“P[C}] is a ccc poset” and, by the Product Lemma,

V [H][C41] 2 “P[C4] is a ccc poset”.

Thus, we can find 4, j < &, © # j, such that V [H][C1] 2 “r; [C4], 7; [C1] are compati-
ble”.
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Now, L (R)VHI) — 1 (R and L (R)VPHIC] — 1 (R)VI?l gince E is a
< k-closed poset. Hence L (R)VH1 and L (R)VT#I! are Solovay models over V.
Therefore, by Theorem 3.2.1, L (R)V0 is also a Solovay model over V. Moreover, since
wlo = w/ A 5nd L (R) € L(R)VHI 1y Lemma 3.1.6, there is an elementary
embedding j from L (R)" into L (R)"¥° which is the identity on the reals and
ordinals. So, by absoluteness between L (R)"® and L (R)VI (see [Ku], VIL7.13),

Vo 2 “1; [Co* G|, 7;[Co * G] are compatible”.
But since E is < s-closed, L (R)"* = L (R)"1°*“! and hence,
V[Cox* G| 2“1 [CoxG], 7;[Co* G] are compatible”.
A contradiction. m

Corollary 3.2.11 If L (R)™ is a Solovay model over V, then in L (R)™ there are
no Z]J% Suslin trees.

Proof. If T is a X3 Suslin tree, then Py = (T, >7) is ¥3 ccc poset. But,
in every Pp-generic extension adding an uncountable branch to T', Py is not ccc. A
contradiction with Theorem 3.2.10. m

3.3 Collapsing a ¥,-Mahlo cardinal

This section is devoted to proving the following theorem:
Theorem 3.3.1 The following are equiconsistent (modulo ZFC')

1. There exists a 2,,-Mahlo cardinal.
2. L (R)-two-step absoluteness for projective and ccc posets.

3. g}l—absoluteness for projective and ccc posets.

We first define the A,-Mahlo cardinals, X,,-Mahlo cardinals, the II,-Mahlo
cardinals and the ¥ -Mahlo cardinals, we fix their place in the large cardinal hierarchy
(below a Mahlo) and study some of their properties that we use in the proof of the
theorem. We divide the proof of the theorem in two parts (subsection 3.3.2 and
subsection 3.3.3). In the first part we will show that every projective and ccc forcing
extension of a Y ,-Mahlo Solovay model over V is also a ¥,-Mahlo Solovay model in
V. In the second part we prove that g}l—absoluteness for all projective and ccc posets
implies that w; is a ¥,-Mahlo cardinal in L. Finally, we observe that both proofs
really give an almost level-by-level proof: the first shows that for all n > 3, every
¥ 41 and ccc forcing extension of a IT,-Mahlo Solovay model over V' is a IT,-Solovay
model over V. The second shows that for all n > 2, ¥j-absoluteness for A}, and
ccc forcing notions implies that w; is a ¥,-Mahlo cardinal in L.
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3.8.1 X,-Mahlo cardinals

Definition 3.3.2 Let k be a cardinal. C C k is a X,,-closed and unbounded subset
of k, a X,-club in k for short, iff C' is a club in k and there exists a X, formula,
v (z;y) and a € V,; such that for every a < k

aecCiff V.2 p(o;a)

i.e., C s definable over V,, with a %, formula with parameters from V. Similarly,
we define Il,-clubs in k by substituting I1,, for ¥, in the above definition. A A,-club
in K is a club in k that is both X, and I1,.

Note that for every cardinal £ and every club C C k, C' is a Yp-club iff it is
a Ilp-club iff it is a Ag-club. Moreover, for every n € w, if C' is a X,-club (II,-club,
A,-club), then C'is a ¥,,-club, II,,-club and A,,-club for every m > n.

Note also that for every n € w, if C' and D are 3,,-clubs (II,-clubs, A,-clubs)
then C'N D is also a ¥,-club (II,-club, A,-club). So for every n € w, the collection
of all ¥,-clubs (II,-clubs, A,-clubs) has the finite intersection property. So, these
collections generate non-principal and proper filters over «.

Definition 3.3.3 Let k be a cardinal. S C k is a ¥,-stationary subset of k iff for
all X -club C in k, SNC # 0. Similarly, we define I1,,-stationary and A,-stationary
subset of k.

Note that every stationary subset of « is a 3,-stationary (II,-stationary, A,,-
stationary) set for every n € w. Moreover, if C' is a X,-club (II,-club, A,-club)
and S is a X,-stationary (II,-stationary, A,-stationary) set, then C' N S it is also
a Y,-stationary (IL,-stationary, A,-stationary) set. Finally, for every n € w, every
Y -stationary (II,-stationary, A,-stationary) subset of x is unbounded (because the
final segments of k are ¥g-clubs) and hence, of cardinality k.

Definition 3.3.4 Let k be a cardinal. & is a ¥,-Mahlo cardinal (I1,-Mahlo cardinal,
A,-Mahlo cardinal) iff k is an inaccessible cardinal and the set I of all inaccessi-
ble cardinals below k is a X, -stationary (respectively, 11, -stationary, A, -stationary)
subset of k. Finally, k is a ¥,-Mahlo cardinal iff k is a 3,-Mahlo cardinal for all
necw.

Note that a cardinal x is Yp-Mahlo iff it is IIg-Mahlo iff it is Ag-Mahlo. More-
over for every n € w, if k is a ¥,,-Mahlo (II,-Mahlo, A,-Mahlo), then « is %,,-Mahlo,
I1,,-Mahlo and A,,-Mahlo for every m < n. In particular, if x is ¥,-Mahlo cardinal,
then k is also II,,-Mahlo and A,-Mahlo for every n € w.

It is obvious that every Mahlo cardinal is a >,-Mahlo cardinal. Moreover,

Fact 3.3.5 If k is a Mahlo cardinal, then the set of ¥,-Mahlo cardinals below k is a
stationary subset of k.
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Proof. Suppose that  is a Mahlo cardinal. Let C' be a club in k.

Note that if D C X is a X,-club on A, A < k inaccessible, for some n € w, then
D'=DU(k\ \)is aclubin k and, since V,, = y is a II; function, it is II; definable,
with A as parameter, on V,: for all £ < k, £ € D" iff

Vi Z (€< AN Sat (Ve €))VA<E,

where ¢ is the 3, formula that defines D in V), P9 is the Godel number of ¢ and
Sat (v, v1,v2) is the A; formula that defines the satisfaction relation for sets. i.e.,
Sat (vg, v1,v2) iff the set vy satisfies the formula (of Gédel number) v, by means of
the sequence v,.

Let (D, : @ < k) be an enumeration of all clubs in x which are first order
definable (with parameters) over V. and such that for every inaccessible cardinal
A < K, (Dq : @ < A\) enumerates all clubs in x such that D, N A is a club in A which
is first order definable on V). Then D = A,..D, is a club in k. Let £ = C N D.
Since « is a Mahlo cardinal,

(Vi, €, F) 2Vadu(a < p A p is inaccessible A p € E)

and there is an inaccessible cardinal A such that (Vy, €, ENV,) 4 (V,, €, E) (see [K],
1.6.2). So,

(V\, €, ENV,) 2Va3du(a < p A p is inaccessible A u € E).

Notice that A is a ¥,-Mahlo cardinal: Let D C A be a 3,-definable (n € w)
club in A. So, for some o < A\, D,NA = D. Let u be a inaccessible cardinal such that
a<pand p e ENV,. So, p € D, and hence € D. Moreover, since ENV, = ENA
is unbounded in A and F is a club, A € F and so A € C. Therefore, the set of
Y.~-Mahlo cardinals below & is a stationary subset of x ®

Lemma 3.3.6 Let n > 1. Suppose that k is a cardinal and let I, = {\ < Kk : X\ is
inaccessible NV 4, V,.}. Then,

1. k is a Il,,-Mahlo cardinal iff k is an inaccessible cardinal and the set I,, is a
I1,,-stationary subset of k.

2. If k is an inaccessible cardinal and I, is an unbounded subset of k, then k is a
Yn-Mahlo cardinal.

So, k 1s a X,-Mahlo cardinal iff k is inaccessible and for everyn € w, I, is a Il,-
stationary subset of k.

Proof. We need the following fact:

Fact 3.3.7 If k is an inaccessible cardinal, then for alln > 1, C, ={a < k:V, 4,
Vi.} is a I,,-club on k.
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Proof. Suppose that x is inaccessible. It is easy to see that C, is a closed
and unbounded subset of x (see [K] 1.6.1). So, we only need to see that C,, is a II,-
definable over V.. Let o, (vg, v1) the formula that defines the satisfaction relation for
Y, formulas. i.e., o, (vg,v1) iff vg is (the Godel number of) a ¥, formula ¢, v; € Vj,
and V,, 2 ¢ (v1). Note that oy, (vg, v1) is a 3, formula (see [J2] 14.18 and ff.).

We claim that for every a < k, a € C,, iff

V.2 (Welex,) (VaeV,) (on (Pet,a) — Sat (Va.,P¢% a)), (*)

where ¥, denotes the set of (Godel numbers of) ¥, formulas. Since o, (vg,v1) is a
Y, formula with n > 1, Sat (v, v1,v2) is a Ay formula, ¥, is a A; definable set and
V, is a II; definable set with parameter «, it is easy to see that the right-hand of (x)
is a II,, formula with « as parameter.

It is clear that if & < k and a € C,, then (x). Now, we show by induction
on m < n that if (%) holds for a then for every ¥, formula ¢ (z) and every a € V,,
Va2 p(a)iff Vi 2 ¢ (a):

m = 0: Clear since the Yo formulas are absolute between transitive sets con-
taining all the parameters of the formula.

m + 1: By inductive hypothesis the ¥,,+1 formulas are upward absolute. So
suppose that ¢ (z) is a 3,41 formula, a € V, and V,, 2 ¢ (a). So, since m +1 < n,
¢ (x) is a X, formula and so, V,; 2 o, (pgoq, a). Hence, by (%), V,, 2 Sat (Vmp o4, a).
Therefore, V,, 2 ¢ (a)"". i.e., Vo 2 ¢ (a).

Hence, if « satisfies (x), then V, 4, V.. =

Now, we prove the lemma.

(1) If k is a II,-Mahlo cardinal, then since C,, = {a < k : V, 4, V,;} is a
II,,-club on k, the set I of all inaccessible cardinals below x is II,-stationary and
I, =1NC,, I, is Il,,-stationary. The other direction is obvious.

(2) Suppose that r is an inaccessible cardinal and there are unbounded many
inaccessible cardinals A such that V) <,, V... Let C be a club on x which is definable
over V,, by means of a ¥,, formula ¢ (z) with a parameter a € V,,. Then,

Vi 2Vadf(a < fAe(B))

Since ¢ (z) is a X, formula, the right-hand is a II,4+; sentence with a as parameter.
Since there are unbounded many inaccessible cardinals such that V) =<,, Vj, there is
an inaccessible cardinal A such that a € V) and V) 4,, V... Therefore,

Va2 Vadb(a < fAe(B))

by downward absoluteness of II,,+1 formulas for V), V... So, C'N X is unbounded in .
But then A e C. m

Corollary 3.3.8 For every n € w, n > 1, every Il,-Mahlo cardinal is a ¥,,-Mahlo
cardinal.

Proof. Follows from (1) and (2) of Lemma 3.3.6. m
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Corollary 3.3.9 If k is an inaccessible cardinal limit of inaccessible cardinals, then
K 18 a 2X1-Mahlo cardinal.

Proof. Recall that for every uncountable infinite cardinal \ < k, Hy 41 H,.
Since for every inaccessible cardinal p, H,, = V), if k is an inaccessible cardinal limit
of inaccessible cardinals, there are unbounded many inaccessible cardinals A such that

V) 41 Vi.. So, by (2) of Lemma 3.3.6,  is a ¥;-Mahlo cardinal. =

Note that if x is a 2g-Mahlo cardinal then & is an inaccessible cardinal limit
of inaccessible cardinals. So, Corollary 3.3.9 implies that for every ¥p-Mahlo cardinal
is YJ;-Mahlo.

Definition 3.3.10 Let k be a reqular cardinal. « is O-inaccessible iff k is an inac-
cessible cardinal; k is a-inaccessible (a > 0) iff for every § < «a, k is the limit of
B-inaccessible cardinals; k is hyperinaccessible iff k is a k-inaccessible cardinal.

It is easy to see that for every a and every k, “k is a a-inaccessible cardinal”
is a relation between o and k which is A, definable over V. So,

Fact 3.3.11 If k is a Ay-Mahlo cardinal, then k is an hyperinaccessible cardinal.

Proof. Suppose that k is a A,-Mahlo cardinal. We prove that x is hyperi-
naccessible by showing by induction on o < k that & is a-inaccessible: If & = 0 or «
is limit, it is clear by the definitions of A,-Mahlo cardinal and of a-inaccessible car-
dinal, respectively. So suppose that a = 4+ 1 and assume that « is a #-inaccessible
cardinal. Suppose, towards a contradiction, that x is not § + 1-inaccessible. Then
there exists v < k such that for all 4 > ~, if p is a cardinal limit of é-inaccessible
cardinals with 6 < (3, then p is a singular cardinal. But then,

C={pu<r:vy<pA(¥o<pf)(pis limit of d-inaccessible cardinals)}
is a Ap-club in k of singular cardinals. A contradiction. m
Corollary 3.3.12 The least ¥1-Mahlo cardinal is not a Ay-Mahlo cardinal. m
Fact 3.3.13 The least hyperinaccessible cardinal is not a Il,-Mahlo cardinal.

Proof. Let k be the least hyperinaccessible cardinal and suppose that « is a
[I,-Mahlo cardinal. Since k is a hyperinaccessible cardinal,

V. 2Vaf3u(6 < p A p is a-inaccessible).

Note that the right hand is a Ilz-sentence. By (1) of Lemma 3.3.6, there exists
A < k such that ) is inaccessible and V), <, V... Since the IIs-sentences are downward
absolute for V), Vi,

Vi 2Vaf3u(B < u A p is a-inaccessible)

But, then A is a hyperinaccessible cardinal. A contradiction. m



Collapsing a X,-Mahlo cardinal 59

Fact 3.3.14 Suppose that k is a Il,,+1-Mahlo cardinal with n > 1. Then the set of
Yn-Mahlo cardinals below k is a Il,+1-stationary subset of k.

Proof. Let s be a II,,41-Mahlo cardinal with n > 1. Let D be a II,,41-club on
k. Let Cha1 = {a < k:V, 4,41 Vi }. By Lemma 3.3.7, C,41 is also a II,,41-club on
k and so, E = C,+1 N D is a Il,,+1-club on k. Since k is a II,,+1-Mahlo cardinal with
n > 1, the set of inaccessible cardinals below k is I,,+1-stationary.

Let A € E an inaccessible cardinal. So, A € D.

Suppose that C' is a ¥,-club on A. Let ¢ (x) be the ¥,-formula (with possibly
parameters in V)) such that for every o < A,

aeCift V2 p(a).
Then V) satisfies

1. Va3p (a < BA@(0)).
2. Va((Vf<a)(Fy <) (B<rAe (7)) = ¢la))

Recall that (1) and (2) are I1,,41-formulas. Since A € Cy4q, V) 441 Vi. Let C' C &
be defined by a € C" iff V,; 2 ¢ («). Since, V) 4,41 Vi, C' is a ¥,~club on k. Hence,
since k is a II,,+1-Mahlo cardinal,

Vie 2 Ju(p is inaccessible A ¢ (1)).

Since ¢ is a ¥, formula with n > 1 and “u is inaccessible” is A, predicate on p, the
formula on the right-hand is a ¥,,+1-formula and hence it is satisfied by V). But then,
A is a 2,-Mahlo cardinal. =

Corollary 3.3.15 For all n > 1, the least X,,-Mahlo cardinal is not a Il,+1-Mahlo
cardinal. |

3.8.2  Absoluteness by collapsing a X,,-Mahlo cardinal
Definition 3.3.16 L (R) is a ¥,-Mahlo Solovay model over V' iff

1. For every x € R, wy is a ¥,-Mahlo cardinal in V' [x] and
2. For every x € R, V [z] is a generic extension of V' by some countable poset.

Clearly, every X,-Mahlo Solovay model over V' is a Solovay model over V. So,
we can give a characterization of ¥ -Mahlo Solovay models in the same way as that
of Lemma 3.1.1. Namely

Lemma 3.3.17 Suppose that M satisfies

1. For every x € R, wy is a ¥,-Mahlo cardinal in V' [x] and

2. For every x € R, V [z] is a generic extension of V' by some countable poset.
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Then there exists a forcing notion W such that does not add reals and creates a
Coll (w, < wy)-generic filter C over V' such that M and V[C] have the same reals.
Thus, W forces that L (R) is a ¥,-Mahlo Solovay model over V. m

Theorem 3.3.18 Suppose L (R)M is a X,-Mahlo Solovay model over V and P is a
projective and ccc poset in M. Then the L(R) of any P-generic extension of M is
also a X,-Mahlo Solovay model over V.

Proof. Suppose L (R)" is a ¥,-Mahlo Solovay model over V. Let x = w! and
let C be the Coll (w, < k)-generic filter over V such that, with W-value 1, R = RVIC],
Notice that, as in Theorem 3.2.1, to prove the theorem it will be enough to show that
for every n > 4, if P is a 2111 and ccc poset in V[C], then, for every G is P-generic
filter over V[C], every real in V[C][G] is generic over V for a countable poset.

Let P be a g}l and ccc poset in V[C] and let P be a Coll (w, < k)-name for P
in V. S0, ©coli(w,<r) “P is a ccc poset” and there are a simple Coll (w, < Kk)-name for
a real @ and X formulas o (z,y;u) and ¢ | (z,y;u) such that:

L. ©cotg,<ny “(Voy € &) (z<py < o (z,y;a))".
2. 2 Coliqw,<r) “(Vzy € w“’)(xj_py — o, (r,y;a))".

Let S = Coll (w, < k) % P. Note that S is a k-cc poset.
We use the same notational conventions from Theorem 3.2.1.

Definition 3.3.19 Let k be an inaccessible cardinal. For every ¥t (I1X) formula
o (x) with n > 2, every simple Coll (w, < k)-name T for a real and every p €
Coll (w, < k), let R, (p,T) be defined by induction on the complexity of ¢ (x) as fol-
lows:

n =2: Then, ¢ (z) is ¥3. Suppose that o (z) is Iy (z,y) where (z,y) is I1t. Then,
RSO (pa 7—) Zﬁ

Jdado(7,0 are simple Coll (w, < a) -names for reals A p  coliw,<a) ¥ (0, 7))

n+1: Then, ¢ (x) is of the form Iy—) (z,y) where ¢ (x,y) is a X formula. Then
RLP (pa T) Z.ﬁ.

do(o is a simple Coll (w, < k) -name for a real A (Vg < p) =Ry (q,7,0))
If p (x) is 11 formula with n > 2, then R, (p,7) iff (Vg < p) =R-, (p, 7).

Recall (see the Introduction) that for an inaccessible cardinal k, Coll (w, < k)
is a poset which is A;-definable with x as parameter and it is A;-definable without
parameters over V... We use this fact to prove the following.

Lemma 3.3.20 Let k be an inaccessible cardinal. Suppose that p € Coll (w, < k),
T is a simple Coll (w,< k)-name for a real and o (z) is a X (1Y) formula with
n > 2. Then, R, (p,T) is a relation which is ¥,_1 (respectively, 11,,_1) definable
without parameters over V.
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Proof. We need the following facts:

Fact 3.3.21 Suppose that k is a reqular uncountable cardinal. Then “x is a maximal
antichain of Coll (w,< k)7 is a property which is A;-definable with x as parameter
and it is A1-definable without parameters over V.

Proof. Recall that for every uncountable cardinal, Coll (w,< k) is a k-cc
poset. Hence, if z is a maximal antichain of Coll (w,< k), then |z| < k. So, by
regularity of s, there is a < k such that z is a maximal antichain of Coll (w, < «).
Hence, “x is a maximal antichain of Coll (w, < k)” iff there is a < & such that:

1. (Vpex)(peCal(w, < a))

2. (Ypgex)(p#£q—pLq)
3. = (Ip e Coll (w,< a))((Vg € x)(pLq))

But since y = Coll (w, < a) is a relation which is A; definable with « as parameter,
“r is a maximal antichain of Coll (w,< k)" is a property which is A;-definable with
K as parameter.

Since for every maximal antichain = of Coll (w,< k), |z| < k and x C V,
x € V,. Note, also, V,; 2 “x is a maximal antichain of Coll (w,< k)” iff V,; satisfies
that there is « such that (1)-(3) above holds. So, “x is a maximal antichain of
Coll (w,< k)7 is a property of  which is ¥; definable (without parameters) over V.

Moreover, V,, 2 “x is a maximal antichain of Coll (w, < k)” iff V,; satisfies:

1. (Vpex)(peCol(w,<kK))

2. (Ypgex)(p#q—pLq)
3. 7Ip(peColl(w,< k)N NVgez)(plq))

But, since that Coll (w, < k) is a Aj-definable (without parameters) poset over Vj,
(1) and (2) are Aj-predicates on = over V,; and (3) is a [I;-predicate on z over V,; (all
without parameters). So, “z is a maximal antichain of Coll (w,< k)” is a property
on = which is II;-definable without parameters over V.

So, “z is a maximal antichain of Coll (w, < k)”
definable without parameters over V.. m

is a property which is Aj-

Fact 3.3.22 Suppose that k is a reqular uncountable cardinal. Then, “T is a simple
Coll (w, < k)-name for a real” is a Ai-definable, with k as parameter, property of T
and Aj-definable, without parameters, property of T over V.

Proof. Suppose that 7 is a simple Coll (w, < k)-name for a real. Identifying
the standard Coll (w, < k)-names for natural numbers with elements of w, 7 is a
simple Coll (w, < k)-name for a real iff

1. (Vz € 7) (z is an ordered tripleAzg € Coll (w, < K) Ax1 € WA T € W).
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2. (Vnew)(FrerT)(rr=n).
3. (Vn €w)({xo:x €7 Axs=n}is amaximal antichain of Coll (w, < k)).
4. (V.I‘yeT)(.?I():yo/\l‘]_:ylﬁl‘zzyz)

where for an ordered triple z, xg, z1 and x, denote, respectively, the first, the second
and the third coordinates of x. Since the function that sends every ordered triple x
to x; (0 <7< 2)isa Ag function, (1) and (4) are Ag on 7. Since Coll (w,< k) is a
A;-definable, with k as parameter, poset (1) is A; with x as parameter. Finally, by
fact above, (3) is A; with x as parameter. So, “7 is a simple Coll (w, < k)-name for
a real” is a property which is Aj-definable with k as parameter.

Moreover, if 7 is a simple Coll (w, < k)-name for a real, then 7 € V,. So,
as above fact, “7 is a simple Coll (w, < k)-name for a real” is A;-definable without
parameters over V.. ®

Now, we prove Lemma 3.3.20 for 32! formulas (n > 2) by induction. The proof
for ITI1 formulas is analogous. So, suppose that x is an inaccessible cardinal. Then
Coll (w, < k) = Coll (w, < k)" and, by above fact, “r is a simple Coll (w, < k)-name
for a real” is a A; property over V:

n+1: Let ¢(z) be a X1, formula, n > 2. So, p(x) is of the form Jy—)(z,y),
where 1 is ¥1. Assume that the lemma holds for ¥} formulas. Suppose that p €
Coll (w, < k) and 7 is a simple Coll (w, < k)-name for areal. Then, R, (p, 7) is defined
by the formula

do (o is a simple Coll (w, < k)-name for a real A (Vg < p) =Ry (¢, 7,0)).

Now, “o is a simple Coll (w, < k)-name for a real” is a A; predicate on o over V,
and, by inductive hypothesis, Ry (¢, 7,0) is a ¥,_1 relation over V, with n > 2. So,
the above is ¥, a formula with parameters p and 7.

n=2: Then, p(x) is of the form Jyi(x,y), where ¥(x,y) is a I} formula.
Note that R, (p, ) iff

Jado (7, 0 are simple Coll (w, < ) -names for reals A p © couqw,<a) ¥ (0, 7))

Since “o is a simple Coll (w, < «)-name for a real” is a property on o which is Aj-
definable with o as parameter over V,, we only need to show that “p ©cow,<a)
Y(T,0)” is expressible over V,, by means of a ¥; formula and a II; formula both with
a,0,T and p as parameters.

As in Theorem 2.1.23, let wf () be the predicate “z is a well-founded relation”.
Then, since wf (z) is a A; predicate, there exists a finite set S of axioms of ZF' such
that

ZF = YM(M is transitive A M 2 \ S — wf (z) is absolute for M)

Let ZFC* be a finite set of axioms of ZFC containing all axioms which are needed

to define the forcing relation in a model, to prove the Forcing Theorem, and including
S. Then,



Collapsing a X,-Mahlo cardinal 63
Claim 3.3.23 The following are equivalent:

1. p oColl(w,<a) ’QD (7—7 U)'

2. For all transitive model M of ZFC* containing p, 7,0 and o, M 2 “p < coii(w,<a)

¥ (r,0)7.

3. There exists a transitive model M of ZFC* containing p, 7,0 and o and such
that M 2 “p © coiiw,<a) ¥ (T,0) 7.

Proof. (1 = 2) Let M be as in (2). Assume M does not satisfy p ©coi(w,<a)
(r,0). Then, since M 2 ZFC*, there is ¢ € M such that ¢ < p and M 2
“q ° Coli(w,<a) ~Y(T,0)”. Let C be a Coll (w, < a)-generic filter over V with ¢ € C.
Then, since C' is closed upwards, p € C. Since @ € M and M is transitive,
Coll (w, < a)” = Coll (w,< @) and hence C is Coll (w, < a)-generic over M. Also,
since ¢ € C, M [C] 2 —(7[C], o [C]), which is a ¥} formula. Since M 2 ZFC*,
also M [C] 2 ZFC*. Therefore, the ¥1 formulas are absolute for M[C] as be-
ing a well-founded relation is absolute for models of ZFC*. This implies V[C] 2
= (7[C], 0 [C]), which contradicts (1).

(2 = 3) Since ZFC* is a finite fragment of ZFC', by the Reflection Principle,
there exists an ordinal § > o > w+2 such that for every formula of ZF'C* is absolute
for V. Let X = {a,p,7,0,TC (7),TC (0)} and let M the Skolem hull of X in Vj.
So M 4 V. Moreover, M is extensional since Vj satisfies the axiom of extensionality.
Without loss of generality, we can suppose that M is transitive (if not, we collapse it
with Mostowski’s collapsing). Clearly, M 2 ZFC* and «a,p, 7,0 € M. Then, by (2),
M 2 “p © golgw,<ay Y(7,0)”.

(3 = 1) Let M be a transitive model of ZFC* containing o, p, 7,0 and M 2
“p 2 Coli(w,<a) Y(1,0)". Let C C Coll (w,< a) a generic filter over V with p € C.
Since o € M, Coll (w, < a) = Coll (w, < a). Hence C is a Coll (w, < )-generic
filter over M and p € C. Since M 2 ZFC*, M [C] 2 ¢ (7[C],0[C]) and M [C] 2
ZFC*. But then, the 11} formulas are absolute for M [C]. Thus,

VICI24(r]C],0[C]).
This proves the claim. m

We finish the proof of Lemma 3.3.20. Note that (2) of the claim above is a II;
formula with p, 7,0 and « as parameters and (3) is a ¥; formula with p, 7,0 and «
as parameters. So, (1) is A; on p, 7,0 and a. Since k is inaccessible, V,, 2 ZFC. So
the above claim shows that (1) is Ay on p, 7,0 and « over V,,. Therefore, R, (p, 7) is
a X; relation over V,. m

Lemma 3.3.24 Let k be an inaccessible cardinal and let o(z) be a X (I1L) formula
with n > 2. Then, for every p € Coll (w,< k) and every simple Coll (w, < k)-name
for a real T,

P coliqw,<r) P (1) iff Vi 2 Ry (p, 7)
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Proof. Recall that Coll (w, < k)" = Coll (w, < k). So, it will be sufficient to
prove the lemma for X! formulas (n > 2) because for every I1% formula Vayp (y, ),
every p € Coll (w, < k) and every simple Coll (w, < k)-name 7 for a real,

P ©coliqw,<m) V2@ (T,2) U p Ccouq,<wy ~Fz—9 (7, 2)
iff for all ¢ < p, ¢ °coi(w,<r) T (T, 2)
iff forall ¢ <p, Vi, 2R3, (¢, 7)
if VK 2 (Vq S p) (_'REI:c—mp (Q7 7-))
IH VH 2 RVmap (pa T)

We prove the lemma by induction on n > 2:

n+1: Let ¢ (x) be a ¥, formula with n > 2. So, ¢ (z) is of the form
Jy— (x,y), where ¥ (z,y) is LL. Assume that the lemma holds for ¥! formulas
and suppose that p € Coll (w,< k) and 7 is a simple Coll (w, < k)-name for a real.
Then, p coiw<x)y 3y~ (1,y) iff Jo(o is a simple Coll (w, < k)-name for a real
A (Yq < p) (79 ° coii(w,<x) ¥ (7,0))). Fix a witness 0. Then, on one hand,

o is a simple Coll (w, < k) -name for a real iff

iff Vi, 2 “o is a simple Coll (w, < k) -name for a real”
On the other hand, fix ¢ < p. Then, by inductive hypothesis
¢ © Coli(w,<ry ¥ (1,0) iff Vi, 2 2Ry (¢, 7,0)
But, since Coll (w, < k) = Coll (w, < k)",
(Vg < p) (74 ®coiiw,<r) ¢ (1,0)) iff Vi 2 (Vg < p) =Ry (¢, 7,0)

Therefore, p © couqw,<x) ¢ (1) iff Vi, 2 R, (p, 7).

n = 2: So, ¢ (z) is of the form 3y (x,y), where ¢ (z,y) is a I} formula. Let
p € Coll (w,< k) and 7 be a Coll (w, < k)-name for a real.

Suppose that p ©coiw,.<r) ¢ (7). So, since Coll (w, < k) is a k-cc poset, by
Shoenfield’s Absoluteness Theorem formulas and Maximal Principle,

(3a < k) FJo(o, T are simple Coll (w, < a) -name for reals A p °coiw,<a) Y(7,0))

Now, since a@ < k and k is regular and uncountable, o, 7,0 € V,, and V,, 2 “o, 7 are
simple Coll (w, < a)-names for reals”. So, only remains to show that

Vm 2 “p c>C'oll(u),<cv) ¢(T7 0-)”'

But, since  is inaccessible, V,, 2 ZFC. Moreover, p, 7,0, a € V, and ¥(z,y) is a I1}
formula. So, by (2) of Claim 3.3.23, V., 2 “p ©couw.<a) ¥ (1,0)”. So, Vi, 2 R, (p, 7).
Suppose now that V,, 2 R, (p, 7). i.e.,

Vi. 2 dado (7,0 are simple Coll (w, < o) -names for reals A p °couqw,<a) (7, 0))

Let a, 0 € Vj; such that V,; satisfies that 7, 0 are simple Coll (w, < «)-names for reals
and p coli(w,<a) Y(7,0). Then, by absoluteness of A; predicates with parameters
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in Vi, 7 and o are simple Coll (w, < a)-names for reals. Moreover, since k is inac-
cessible, V, 2 ZFC. So, since Vi, 2 “p ©couw.<a) ¥(7,0)”, by (3) of Claim 3.3.23,
P °Coli(w,<a) ¥ (T,0). But then, since Coll (w,< a) < Coll (w,< k) and by Shoen-
field’s Absoluteness Theorem, p © coiw,<x) © (7). ®

We continue with the proof of Theorem 3.3.18. Since P is a Coll (w, < x)-name
for a g,ll and ccc poset, by Lemma 3.3.20, for every p € Coll (w, < k) and every simple
Coll (w, < k)-names for reals 7,0, R, (p,7,a), R,_(p,7,0,a) and R, (p,7,0,a) are
Yn—1 relations over V..

Since k is a X ,-Mahlo cardinal, by Lemma 3.3.6, we can fix an unbounded
sequence (A¢ : & < k) such that for every £ < k, A¢ is an inaccessible cardinal and
Vi 4,1 Vi and a is a simple Coll (w, < Ag)-name for a real.

Let p € Coll (w,< k) and let 0,7 be simple Coll (w, < k)-names for reals.
So there is a least £ < & such that p € Coll (w,< A\¢) and o and 7 are simple
Coll (w, < A¢)-names for reals. Then, for every ( < k, £ < (, since k and A; are
inaccessible cardinals, by Lemma 3.3.24,

3

p oColl(w,</1) SDS (Ua T, (1) iff VH 2 chg (pa T,0, CL)
iff Vi, 2Ry (p,7,0,a)

iff p oColl(w,<)\C) ¢< (0,7,4)
And the same holds for the ¥t formula ¢, (x,y; 2).

So, for every £ < ( < k, every p € Coll (w, < A¢) and all simple Coll (w, < A¢)-
names for reals 7, o,

p oC’oll(w,<r~c) Pp (7—7 a) 7oiff p oColl(w,<>\g) ¥p (Tv a)

P o,y P< (T:0,0) M p =g, ) 0 (T,0,4)

p <>Coll(w,</-:) (288 (7—7 g, a) iff p oColl(w,<>\g) Y1 (7—7 g, (1,)
Hence, if ¢ < ¢ then S, C S, and, since Coll (w, < k) is a k-cc poset, S = U£<,$ She-
Thus, for every subposet X of S of cardinality less than x there exists £ < k such
that X is a subposet of S, .

Moreover, for every £ < ( < k, every p € Coll (w,< A¢) and all simple
Coll (w, < A¢)-names for a real 7, ¢

D © Coli(w,<x) T codes a maximal antichain of P below ¢” iff

: o « : : : - -9
iff p Colt(w,<r) T codes a maximal antichain of P below ¢

For every a < k, let £ (), if it exists, be the least £ < k such that for every
¢ > £ the following holds: For every simple Coll (w, < A,)-name A for a subset of
R..., every simple Coll (w, < A\,)-name for a real ¢ and every g € Coll (w, < A¢), if

q © Coli(w,<r) “A is not a maximal antichain of P below ¢,
then

o « 1 . . . . - °99
9% Cott(w,<xe) A is not a maximal antichain of P below ¢”.
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Lemma 3.3.25 For every o < k, & () exists.
Proof. Asin Lemma 3.2.3. m

The rest of the proof of Theorem 3.3.18 is like the proof of Theorem 3.2.1 but
using only the ¢ (£ < k) inaccessible cardinals instead of all ordinals below x. ®

Corollary 3.3.26 Con(ZFC + 3k (k is a X,,-Mahlo cardinal)) implies Con(ZFC +
L (R)-two-step absoluteness for projective and ccc posets). m

Note that the proof of Theorem 3.3.18 really shows that for every n > 3, every
g,lﬁl and ccc forcing extension of a II,,-Mahlo Solovay model is a II,,-Mahlo Solovay
model. So,

Corollary 3.3.27 For every n > 3, Con(ZFC + 3k (k is a II,-Mahlo cardinal))
implies Con(ZFC + L (R)-two-step absoluteness for g}lﬂ and ccc posets). ®

Further, all ccc posets in a ¥,,-Mahlo Solovay model are projective-indestructi-
ble-ccc (see Definition 3.2.9). Hence, in any ¥,-Mahlo Solovay model there are no
projective Suslin trees. The same holds in every II,-Mahlo Solovay model for ,§7l~b+1
and ccc posets: every ccc poset in a II,,-Mahlo Solovay model is g,lwl—indestructible—
ccc and, therefore, there are no g}ﬁl Suslin trees.

Theorem 3.3.28 Let L (R)Y be a S,-Mahlo Solovay model over V. Then, every
ccc poset P € L (R)M 18 a projective-indestructible-ccc poset. More precisely, in any
I1,,-Mahlo Solovay model every ccc poset is giﬂ—indestructible—ccc.

Proof. As in Theorem 3.2.10. =

Corollary 3.3.29 If L (R)" is a ©,,-Mahlo Solovay model over V, then in L (R)™
there are no projective Suslin trees. More precisely, if L (R)M 18 a I1,,-Mahlo Solovay
model over V, then in L (R)™ there are no Y41 Suslin trees.

3.8.8  The strength of gﬁ—absoluteness for projective and ccc forcing notions

We will show that g}l—absoluteness for projective and ccc posets implies that wj is
Y.,-Mahlo in L. In the proof we use an argument of R. Jensen implicit in [Je-So].
We assume that wjy is not ¥,-Mahlo (n > 2) in L, so there is a ¥,-club D on w;
of singular cardinals in L. Then, we force with Coll (w, < w1) to add a function 7
that, to every real a coding a countable ordinal ||a|| in the generic extension, assigns
a real that codes the least singular cardinal in D greater than ||a||. We prove that =
has a Coll (w, < w1)-name that can be coded by a A}, subset of w* x w* (Lemma
3.3.31). Then, working in the Coll (w, < w;)-generic extension, we define a version
of Solovay’s almost-disjoint coding poset, P,, that adds a generic real by that codes
7 and we show that in every Coll (w, < wy) * P.-generic extension wf[bH = &1 holds
(Lemma 3.3.42). Finally, we prove that, even if P,. was not a projective forcing notion
in the Coll (w, < wy) generic extension, since 7 has a Coll (w, < wy)-name coded by a
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AL+ set of pairs of reals, Coll (w, < wy) P,isa AL, ccc poset (Lemma 3.3.44). So,
since “there exists a real x such that wf[m] = wy” is expressible with a ¥} sentence,
this is true in the ground model, in contradiction with the inaccessibility of w; from

the reals.

Y

Theorem 3.3.30 Suppose that V is gﬁ—absolute for projective and ccc forcing no-
tions. Then wq 1s a X,-Mahlo cardinal in L.

Proof. Suppose, towards a contradiction, that w; is not a ¥,-Mahlo cardinal
in L. By 3.1.23, w; is an inaccessible cardinal in L. So, there is n > 2 and a ¥,,-club
D on w; of singular cardinals in L. Let ¢ (z) be the X,-formula such that for every
a<w,a€cDiff

[le]L Zp(a).

Since wj is an inaccessible cardinal in L, [V,,,]* = L, = [HC]*. So, for every a < wy,
a€ D iff

HC 2 p(a)".

Since “z € L’ is a Li-formula and ¢ (z) is a L,-formula with n > 2, ¢ (z)" is
also a X,-formula. Therefore, D is a club on w; of singular cardinals in L which is
Y,-definable over HC.
Let D* = {a € w” : ||a|| € D}. So, D* is a ¥}, set of reals (see [J2], 41.1)
Note that Coll (w, < wy) belongs to L and is a ccc poset in V. Moreover,

Lemma 3.3.31 Suppose C' is a Coll (w, < wy)-generic filter over V.. Then, there is
a function m € VI[C] from WO, the set of all reals in V[C| that code a countable
ordinal, into D*, the set of all reals in V[C] that code a countable ordinal in D, such
that:

1. For every x € WO, m(x) is a code for the least ordinal in D greater than ||z||
and for every z,y € WO, if |1x (@)] = Iz ()], then 7 (z) = 7 (3).

2. m has a Coll (w, < w1)-name that can be coded by a A%, set in w” X w*.
Proof. We need the following claims and definitions:

Definition 3.3.32 We say that 7 is a Coll (w, < wi)-name for a subset of w iff
C Coll(w,<wr) ‘T C W 7. We say that 7 is a simple Coll (w, < wp)-name for a subset

of w iff

1. The elements of T are of form (p,n), where p € Coll (w,< w1) and 1 is a
standard Coll (w, < wy)-name for some n € w.

2. For everyn € w, the set A, = {p € Coll (w, < wq) : (p, ) € T} is an antichain
of Coll (w, < wy).
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Note that as in Fact 2.1.19, for every Coll (w, < wj)-name for a subset of w
there exists a simple Coll (w, < wy)-name for a subset of w such that ©cu(w,<wr)
“r = o”. Moreover, for every a < w; there is a simple Coll (w, < w;)-name for a
subset of w, 7, such that ©couw<w) “||7]| = &”. Note also that, since for every
Coll (w, < wy)-generic filter C over V, wil? = /1
in L.

Let WO,,, be the set of all simple Coll (w, < wy)-names o for a subset of w
such that ©conw,<wq) “llol| =4 for some v < wy. Let WO= Coll (w, < w1) x WO,,.

= w1, the same is true for names

Definition 3.3.33 For every v < wi let 7., be the <-least simple Coll (w, < w1)-
name T for a subset of w such that ©conw,<wr) “|ITI| =" Let By, = {7, : v € D}.
Let B = Coll (w, < w1) X B,,.

Define the function 7, from the set WO,,, into B,, as follows: for every
o€ WO,,, m,, (o) =T iff

1. 7€ By,

2. % cou,<wn) “lloll <l

8. (Vp € Buy) (T cougw,<wn) “lloll < llpll” = couw,<wny “ITI < ol ™)
Let 7 = Coll (w, < w1) X Ty, -

Clearly, we have that B and 7 are Coll (w, < w1)-names for, respectively, a sub-
set of P (w) and a subset of P (w) x P (w). We will show that for every Coll (w, < wy)-
generic C over V, m = 7[C] satisfies (1) of Lemma 3.3.31.

Claim 3.3.34 Suppose C' C Coll (w, < w1) is a generic filter over V and let B =
B[C]. Then, for every o € D there exists one and only one a € B such that ||a|| = «.
i.e., we have:

1. V[C]2{]la|]| : @« € B} = D.
2. VIC] 2 (Ya,b € B) (Jla]| = ||b]| — a = D).

Proof. (1) (=) Suppose that V[C] 2~y € D. Then, since D € L, L2~ € D.
But, 7, € B, and hence © . <w1) “T € B”. So V[C] 2 “r,[C] € B[C|A|I7,[C]|| =
7. Therefore, V[C] 2 v € {||a| : a € B}.

(<) Suppose that V[C] 2 v € {|la|| : a € B}. Then, for some p € C,
P CCoiw<wy) “(Gz € B)(||lz|| =%)”. Hence, there exists a simple Coll (w, < w;)-
name @ for a subset of w such that p o, <wr) “@ € BA |la|| = 4”. But then, there
are ¢ € C' and 7 € B,, such that ¢ < p and q ©couq,<w) “7=0a".

Since 7 € B,,, for some 6 € D, 7 = 75 and ¢ ©couw,<w) ‘|7l = 5. But
then, since ¢ < p, ¢ ° couw,<wy) ‘|7 =77, and s0 ¢ © cogw,<wr) ¥ = §”. Therefore,
v=06and V[C| 2~ € D.

(2) Suppose that a,b € B and V[C] 2 “|la|| = ||b||”. Let a, b be simple
Coll (w, < wy)-names for subsets of w such that a = a[C] and b = b[C]. So, there
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exists p € C such that p ©cou.<wy) 4,0 € B A ||| = ||b]|”. Then, as in (1), there
are ¢ € C and 0,7 € B,,, such that ¢ < p and

q oColl(w,<w1) ‘o=aNT= i?/\ ||UH = ||7'H 7

Since o, T € B,,, there are countable ordinals 7,6 € D such that ©cow.<wi) “ o] =
77 and © couqw,<wr) 7] = 87. S0, ¢ ©coliw,<wr) ¥ =0 and hence v = . But then,
by <y-minimality of 7 and o, 7 = o. Therefore,

So, in order to prove (1) of 3.3.31, we only need:

Claim 3.3.35 Suppose C' C Coll (w, < w1) 1is a generic filter over V. and m = 7 [C].
Then m is a function from WO to B such that for every a € WO, if w(a) = b, then
b is the unique code in B of the least ordinal in D greater than ||a||.

Proof. We work in V[C]. Clearly # C WO x B and 7 is a function. So, it
will suffice to show that:

1. WO C dom (7)

2. If m7(a) = b, then b € B, ||a|| < ||b]|, and for every ¢ € B, if |ja|]| < ||¢||, then
18]l < lell-

(1) Suppose that a € WO. Then, there are a simple Coll (w, < wi)-name a
and p € C such that a[C] = ¢ and p conw,<wr) “@ € WO”. So, there are ¢ € C
and 7 € WO, such that ¢ < p and ¢ ®coy,<wr) ‘7 = @”. Let § < w; be such
that ©couw,<wr) “ |7l = 5”. Since D is an unbounded subset of w; there is a least
v € D such that 6 < v. But then, 7, € B,,. So, (r,7,) € m,, and therefore
q °Coli(w,<w1) ‘@ =T € dom (7)”. So, a € dom (7).

(2) Suppose that (a,b) € m. So there are p € C and simple Coll (w, < w1)-
names @, b such that p © Collw,<w1) (@, b) € #”. Hence, there are ¢ € C and (0, 7) €
Ty Such that ¢ ©ceg <wy “(@,0) = (o,7)”. Since (0,7) € my, € WO,, X B,
q oColl(w,<w1) “re B”, that iS, q oColl(w,<w1) “be B”.

Moreover, since (o, T) € m,,, by definition of 7., ©couw,<w) “lloll < [I7]7,
and hence, ¢ ©coiw,<w) 1@l < ||b]]”. Therefore, ||al|l < ||b]|.

Now Suppose that ¢ € B and ||a]| < ||c||. Then there are p’ € C' and a simple
Coll (w, < wr)-name ¢ such that ¢[C] = ¢ and P’ ©con<wy) “¢ € B A llall < |1¢]”.
But then, by compatibility in the filter and as in the above case, there are ¢ € C' and
a simple Coll (w, < wi)-name p € B, such that ¢’ < ¢,p’ and ¢ col(w,<wr) ¢ = p”.
Therefore,

¢ ©Goliw,<wr) “(@,0) = (0, 7) Ao, 7)€ Ae=pApeBA|oll <ol
But then, by definition of 7, ,

q' ©coliq,<wn) “NITI < llpll 7
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Therefore, ¢ © coiw.<wny “I0ll < |1¢l]” and, so, [|b] < [lc[|. =

To prove (2) of Lemma 3.3.31 we need to compute the complexity of the sets
involved in the definition of 7:

Fact 3.3.36 Coll (w, < wy) is a A} poset.

Proof. Let A = {{a,n,) € w1 X w X w; : f € a}. We say that z € w*
codes (a,n,3) € Aiff x(0) =mn, |[(z')o]]| = a and ||(2/)1]| = B, where for all n € w,
z'(n) = xz(n+ 1) and for every ¢ € {0,1}, (z); = {(k,z(2k + 1)) : k € w}.

Hence “z codes a triple in A” is a 1} predicate on z: x € w* codes a triple in
A iff

()0 € WO A (2')1 € WO A[[(2)a]] < [[(2)ol]

But WO is a I} set and < is a I} relation.

Let A* be the I1} set of codes of elements of A.

Let p € Coll (w, < w1). We may assume that p is lexicographically ordered in
the first two coordinates. Suppose that p = ((ai, n;, 8;) : @ < n) where n = |dom (p)|.
Then, we say that x € w” codes p iff  (0) = n and for every i < n, (2'); codes
<ai= T, ﬁz)

Let Coll (w, < w1)" be the set of all codes of elements of Coll (w, < wy). Then,
for all z € w¥, z € Coll (w, < wy)" iff

1. (Vi < 2(0))((2"); € A¥)

2. (vig < z(0))(I(")7)oll = [I((z")7)oll A (2)i(0) = ();(0) —
= (@)l = 1))l

Now, since (1) is I1} (x) and (2) is A} (x), Coll (w, < wy)" is a A} set of reals.

Define <, in Coll (w, < w1)* x Coll (w, < w1)* by: forall z,y € Coll (w, < wy)",
x <, y iff the sequence coded by x extends the sequence coded by y. Hence, for all
r,y €wY, x <, yiff

1. 2,y € Coll (w, < wy)"

2. (vj <y(0))3i <z (0) (=)ol = [I((¥)7)olIA
A@)i(0) = (4);(0) A ("))l = [1((@)5)all)

So, since (1) is A} (z,y) and (2) is X1 (z,y), <. is a A} relation in w* x w*. Note that
<, is reflexive and transitive relation but not a antisymmetric, and Coll (w, < w1)* =
Field (<4).

Define L, in Coll (w,< w1)" x Coll (w,< wy)" as follows: for every z,y €
Coll (w, < w1)", * L, y iff 2,y code incompatible sequences. So, for all z,y € w*,
x L, yiff

1. 2,y € Coll (w, < wy)"
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2. (3 <2(0))(F <y )=l = 1))l A

A')i(0) = (y');(0) AJ[(")7)all # I ()7)all)
But then, (1) and (2) are A} (z,y) and hence L, is also a A} relation in w* x w®.
So, (Coll (w, < w1)", <,, L,) is a A} forcing notion.
Finally, we define F' : Coll (w,< w1)" — Coll (w,< wy) by F' (x) is the condi-
tion coded by z. F is a dense embedding (but not one-to-one) from Coll (w, < wy)*
into Coll (w, < wi). Therefore Coll (w, < w1) is a A} poset. m

Since Coll (w, < wy) is a A} and ccc poset, by Fact 2.1.15, “z codes an antichain
of Coll (w,< wy)” is a A} predicate. Hence, as in Fact 2.1.22, we may code every
simple Coll (w, < wy)-name for a subset of w with a real in a such a way that “x
codes a Coll (w, < wy)-name for a subset of w” is a A} predicate and “z is codes a
simple Coll (w, < wi)-name in L for a subset of w” is the intersection of a A} and a
Y1 predicate. Hence, Y33.

Fact 3.3.37 Let O(x) be a X1 (I1}) formula. Then the relation

R(p,7) < p € Coll (w, < w1) A
AT is a simple Coll (w, < w1) -name for a subset of w N

/\p oC'oll(w,<wl) ‘9(7—)

is a A} relation.

Proof. We prove it for I} formulas. The case for ¥1 formulas is analogous.
By Claim 2.1.24, for every Y} formula ¢ (z), every p € Coll (w, < wy) and
every simple Coll (w, < wy)-name o for a subset of w, the following are equivalent:

L. p ©coli(w,<w1) ¢ (o)

2. For every transitive model M of ZFC* containing p and (the code of) o, and
such that Coll (w, < w1)™ < Coll (w, < w1), M 2 “p © congu.<wy) © (7).

3. There exists a transitive and countable model M of ZFC* containing p (the
code of) o and such that Coll (w, < wl)M < Coll (w, < w1) M 2 “D ° coli(w,<wr)
p(0)”.

For every transitive model M of ZFC*, Coll (w,< wy)" = Coll (w, < wil).
So, since wi! < wy, Coll (w, < w}’) < Coll (w,< wy). Therefore (2) and (3) above
are equivalent to, respectively,

2’. For every transitive model M of ZFC* containing p and (the code of) o, M 2
“p c>C'oll(w,<wl) 2 (U) 7.

3. There exists a transitive and countable model M of ZFC* containing p (the
code of) o and such that M 2 “p © couw,<w) ¢ (0) 7.
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But it is easy to see that (2') is expressible with a II} sentence and (3') is expressible
with a 33 sentence, both with p and o as parameters. m

Corollary 3.3.38 Let WO* be the set of codes of simple Coll (w, < wy)-names for a
subset of w that belong to WO,,. Then WO* is a A} set of reals.

Proof. Since z € WO is a I1} formula. m

Claim 3.3.39 Let B* be the set of all codes for simple Coll (w, < w1)-names for a
subset of w belonging to B,,. Then B* is a g}lﬂ set of reals.

Proof. We define the relation Dif as follows: for every x,y € w*, xDify
iff  codes a simple Coll (w, < wj)-name for a subset of w different from the simple
Coll (w, < wy)-name coded by y.

So, for every z,y € w*, xDify iff x,y code simple Coll (w, < wy)-names for
subsets of w and

Inm(J 1t (2, (m))g A T (yn (m)), code different elements of Coll (w, < wy) V
VI (@ (m)y # T (ya ()),y).

(see Fact 3.3.36 and the remark following it). So xDify is a A} (x,y) relation.

Let <3 be the following relation: for every z,y € w¥, z <} y iff x,y code
simple Coll (w, < wjy)-names in L for subsets of w and the simple Coll (w, < wi)-name
coded by x is <p-less than the simple Coll (w, < wi)-name coded by y. Since “z
codes a simple Coll (w, < wy)-name in L for a subset of w” is a ¥ predicate, <,
is a ¥j-relation over HC and every simple Coll (w, < wp)-name for a subset of w is
hereditarily countable, <% is a ¥; definable relation over HC. Hence <} is a %1
relation.

Recall that D* is the g}ﬁl set of codes of ordinals in D. Let R be the relation:
R(o,a) iff

o is a simple Coll (w, < w1)-name for a subset of w A
Na € WONA °coiqw,<wr) “llol] = a7

Note that R is a A} relation (by Fact 3.3.37).
We have that for every x € w¥, x € B* iff

1. x codes a simple Coll (w < wy)-name in L for a subset of w.

2. There exists y € D* such that R (z,y) and

Vz(z codes a simple Coll (w, < w1)-name in L for a subset of w A
NzDifz AR (z,y) — -z <} x)
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(1) is X3 (). Since the universally quantified formula in (2) is I3 (z) and D* is X},
with n > 2, (2) is £},;. So, B* is a X1, set of reals. m

Let 7* : WO* — w* be such that n* (z) = y iff Jo7(x codes o A y codes
T ATy, (0) =T).

We finish the proof of (2) of Lemma 3.3.31 by showing that 7* is a A],,
function in w* x w*.

Let S and T be the following relations:

S (o,71) iff o, 7 are simple Coll (w, < wy)-names for subsets of w A

A oC’oll(w,<w1) ¢ HUH < HTH 7

and

T (o,7) iff Ao, 7 are simple Coll (w, < w;)-names for subsets of w A

A ©Goligw,<wn) “lloll <[]

Since ||z|| < ||y|| is a [I] formula and ||z|| < |jy|| is a ¥1 formula, by Fact 3.3.37, S
and T are A} relations between codes for simple Coll (w, < wy)-names for subset of
w.

So, for every z,y € w¥, (z,y) € 7 iff

1. z e WO

2. ye B*

3. S(z,y)

4. Vz(z € B*ANyDifz NS (x,2z) — T(y, z))

Since (1) is A3 (z), (2) is Xh4q, (3) is A7 (2, y) and, as it can be easily seen, (4) is

I3, 7 is AL, Actually, it is the intersection of a X7, and a I}, relation. This
ends the proof of Lemma 3.3.31. m

We continue with the proof of Theorem 3.3.30. Working in V[C], we define
the Solovay’s almost-disjoint forcing for m, P, which adds a real that codes .

Let (s, : n € w) be a recursive enumeration of 2<¢, the set of all finite
sequences of 0’s and 1’s such that each sequence is enumerated before any of its
proper extensions. Let {X,, : n € w} be a recursive partition of w into infinite pieces.
For any a C w, let a be the characteristic function of a. For every a C w and every
n € w, define

S* = {kew:s, Ca}
St = {kew:sp Canlg(sy) € Xn}

Note that {S®: a C w} is a perfect maximal almost-disjoint family of infinite subsets
of w. Also, notice that S is the disjoint union of the S%, n € w.
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For any subsets a and b of w, let
bOa={n€w:bNS;,is finite}
Note that © is a Borel operation from P (w) x P (w) into P (w):
boOa=cif Vn(n € c— ImVk(k€bN Sy — k< m))
and S is recursive on a and X,,.

Definition 3.3.40 Suppose C' is a Coll (w, < wy)-generic filter over V. Then, in
VI[C], let G (m) = {{a,n) : n € w(a)}, the graph of w. Then, the Solovay’s almost-
disjoint coding for 7w, P, is the following poset:

e (s,9) €P iff s € W™ and g € [G (7)]<¥. i.e., s Cw is finite and g C G (7)
s finite.

o (s,9) < (t,h) ifft Cs, h C g and (Y{a,n) € h) (sN S Ct).

Remark 3.3.41 Note that in V[C], P, is a o-centered poset (see Definition 2.3.42).
For (s, g),(s,h) € Py, then (s,gUh) < (s, g), (s, h). Hence, any two conditions in P,
with the same first coordinate are compatible.

We shall see that forcing with P, over V[C] adds a real that codes .

Lemma 3.3.42 Suppose that H is a P.-generic filter over V[C]|. Then there is a
real by € P (w) N V[C][H] such that wi™™ = w;.

Proof. Suppose that H is a P,-generic filter over V [C] and let
by = U{s € [w]™: (3g € [G(M)]™) ((s.9) € H)}
Clearly by € P (w) NV [C][H].
Claim 3.3.43 For every a € dom (), by ® a = 7 (a).

Proof. To prove the claim, it will be enough to show that for every a €
dom (7) and n € w,

S2 N by is finite iff n € 7 (a).

Fix a € dom (7) and n € w. Suppose that n € 7 (a). Then, D,,, = {(s,9) €
P.: (a,n) € g} is a dense subset of P,. For suppose (s, g) € P,. Let h = gU{(a,n)}.
Then (s,h) € D, and (s,h) < (s,g). Let (s,g) € HN D,,. Then (a,n) € g and
for every (t,h) € H, if (t,h) < (s,g), then S?Nt C s. So, S? Nby C s. Therefore
Se M by is finite.

Suppose now that n ¢ 7 (a). Note that for every m € w the set E}%, = {(s,g) €
Pr: (3k>m) (k€ S*Ns)} is dense in P,. Indeed, fix any m € w and (s, g) € P,.
Since {S* : a C w} is an almost-disjoint family and for every a C w, S* = |, ., St
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S \Upjreg S% is an infinite set. Let & be the least element of 5%\ |J (bireq Sb greater
than m. Put t = s U {k}. Since m < k € Sf Nt, (t,g) € E,. Moreover, s C ¢ and,
since for every (b,j) € g, k ¢ S, S;Nt=.5"Ns Cs. So, (t,g) < (s,9).

Let (s,9) € HNE]",. Since (s,g) € H, s C by. But then, there is k > m such
that £k € SpNs C S2Nby. We have shown that for every m € w there exists k > m
such that £ € S2 Nby and so S? N by is infinite. m

Let {0¢ : € <w1} € L[by] be an increasing and continuous enumeration of D.

L[by]
1

Let v =w . We define, by recursion on £ < v, a sequence of reals (d¢ : £ < v)

such that:

1. For every £ < v, de € WO and ||d¢|| = 6.

2. For every £ < v, de € Liby].

¢ =0: Let a € L be a code for a well-ordering of w with ||a|| = w. Since the S%
(n € w) are recursive on a, S® € L{by], for every n € w. Since a € WO, a € dom ().
Let do = 7 (a). So, dg € WO. Moreover, ||do|| = min (D \ w+ 1) = min (D) = &
and do = 7r(a) = bH ®ac L[bH]

§ = n+ 1: Suppose that d,, satisfies (1) and (2). Since d,, € WO, d,, € dom ().
Let dy+1 = w(d,). Clearly, by definition of 7, dyvs € B C WO and ||d,+1]| =
0p+1 € D. Finally, since d,, € L[by], for every n € w, S# € Llby], and hence
dW"‘l =T (dn) = bH ® dW € L[bH]

¢ limit: Suppose that for every n < &, d, has been defined and satisfies (1)
and (2). Note that (d,), . € L[by]. We work in L[(d,),_]. Since for every n < ¢,
dy € L[(dy), |, Ll(dy), ] # “6, is countable” for all n < . Moreover, since D is a
club and for every n <¢, 6, € D, 6¢ = sup, . (6,) € D. But, then L[(d,), ] = “6¢
is singular” and hence, L[(alr,)q7 <£] 2 “f¢ is countable”. Let d¢ by the least real in the
canonical well-ordering of L[(d,), ] coding a well-ordering of w with ||d¢|| = é¢. So,
de satisfies (1) and, since L[(dn)n<j C Liby|, de € Liby]; i.e., it satisfies (2).

Suppose now that v < wy. Then, since (6¢ : £ < v) is an increasing sequence
of elements of D and v = sup;_,, (6¢), v € D. So, for some § < wy, v = 6. But then,

L[by] 2 “wy is singular”. A contradiction. Therefore, w "1 = ;. m

Note that if V' is projective absolute, then P, is not a projective poset: Since
V' is projective absolute for projective and ccc posets and Coll (w, < wq) is a %% and
ccc poset, by the Factor Lemma, V|[C] is projective absolute for Borel ccc posets.
Indeed, by Fact 3.3.37, every Borel and ccc extension of V[C] is a Q% cce extension of
V. Suppose now, towards a contradiction, that P, is a projective poset so that B has
a projective definition. We define < in B x B as follows: for every z,y € B, x < y iff
llz|| < |ly||- Then, (B, <) is an uncountable projective well-ordering. A contradiction
with Theorem 3.1.15.

However,

Lemma 3.3.44 Coll (w, < wy) %P, is a %}wz poset.
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Proof. We need the following facts and definitions in order to code the coding
apparatus of P, and calculate its complexity.

Definition 3.3.45 Let G () be the Coll (w, < w1)-name for the graph of © defined
as follows:

(p,o,n) € G(7T) iff 3t ((o,7) € Tyy A (p,1) € 7).

Let G (m)" be the set of all ordered triples (z,y,n) € w* X w* X w such that for some
(p,o,n) € G(m), x codes p and y codes o.

It is clear that for every p € Coll (w, < wy),

Y

P © Coli(w,<wy) (0,1) € G (m)” HE p ©coliw,<wy) T ET(0)”.
Moreover,
Fact 3.3.46 G (n)" is a AL, relation in w* X w* X w.
Proof. First recall that for every z,y € w* and n € w, (z,y,n) € G (7)" iff
1. z € Coll (w, < wy)"
2. ye WoO*
3. 32({y,2) e m* A Im(z = ({(k,)) : (2), (k) = T (4, 1)} )m))

Since (1) is Az (z), (2) is A3 (y) and, since 7* is A},
is ;_,7]’-L+2'

But since 7, is a function, if (z,z), (x,2') € 7 and z # 2/, then z and 2’
are different codes for the same simple Coll (w, < wy)-name. Therefore, for every
T,y €Ew’ and n € w, (x,y,n) € G ()" iff

(3) is X4y Therefore, G (7)"

1. z € Coll (w, < wy)”
2. ye Wor
3. V2 ((y,2) € 7 — Im (z = ({(k,)) : (2), (k) =T (5,n)})m))

and since (3) is II},,, G ()" is also I, ,.

So, G (m)"is A}yp. W

Definition 3.3.47 We say that ¢ is a nice Coll (w, < wi)-name for a finite subset

of G () iff for some n € w there exists {({0;,%;) : j < n} C rec(G (7)) such that
g C G (m) is of form

U{A<Gjﬂ?j> X {<0-jvij>} 1y < n}

where for every j < n, A, ;) is an antichain of Coll (w, < w1).
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Fact 3.3.48 Suppose that h is a Coll (w, < wi)-name such that © colw,<ws) “h C
G (m) A h is finite” and let D;, be the set of all p € Coll (w, < wy) such that for some
nice Coll (w, < wy)-name § for a finite subset of G (), p © Coli(w, <wr) “h = g”. Then
D; is a dense subset of Coll (w, < wq).

Proof. Suppose that h is a Coll (w, < wi)-name such that ¢, <wr) “h C
G (m) A h is finite” and let p € Coll (w, < w1). Since p ©couw,<wy) b C G () AR
is finite”, we may find n € w and a condition p’ < p such that p’ ©couw,<wr) “h =
{{a;,k;) : j <n} CG(m)”. So, for every j < n,
P Coti(w,<wr) “(@j, k‘j) EWO x &”
We can find a decreasing sequence (p; : j < n) in Coll (w, < wy) such that:
1. For every j <n, p; <p'.
2. For every j < j' <mn, pj <p;.

3. For every j < n, there exists 0; € WO, and ¢; € w such that p; ©coi(w <wr)
“aj, ki) = (04,1;)"-
Let r = p,_1. Then for every j < n,

r oColl(w,<wl) “<d’j7 k]> = <0-J">ljj>77

for some o; € WO,,, and i; € w. Note that for every j < n, (0;,7;) € rec(G (m)). Let
i = Ut x {{o3,13)} 1 < )

where for every j < n, A, i) = {p € Coll (w,< w1) : (p,0j,%;) € G (m)}. Tt is clear
that ¢ is a nice Coll (w, < wy)-name for a finite subset of G (7). Since r < p/,

r oC’oll(w,<wl) “il = {<aj’ k]) .] < ﬁ} = {<O-j7>ljj> j < ﬁ} = g”
Therefore, r € D; and D;, is a dense subset of Coll (w, < w1). =

Fact 3.3.49 We may code every nice Coll (w, < wi)-name for a finite subset of G (r)
with a real so that the set F* of all reals that code some nice Coll (w, < wi)-name for
a finite subset of G () is a AL, set of reals.

Proof. Let ¢ be a nice Coll (w, < wy)-name for a finite subset of G (7). Sup-
pose that |rec (§)| = n, where n € w. Fix an enumeration {(o;,7;) : j < n} of rec(g).
For every j < n, let A; = {p € Coll (w,<w1) : (p,0j,7;) € g} be the antichain
associated to (o;,7;) in ¢. For every j < n, let y; be a code for A; and let u; € WO*
be a code for o;. For every j < n, let z; € w* be such that z; (0) = i; and 2} = u;.
Finally, for all j < n, let x; € w* be such that (z;), = y; and (z;); = z;. Then we
say that = codes g iff z (0) = n and for every j <n, (2'); = ;.

Let F™* be the set of all reals that code some nice Coll (w, < wj)-name for a

finite subset of G (7). Then, for all z € w*, z € F* iff
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1. z codes (z; : j < x(0))
2. (V5 <x(0)) (x; codes (y;, 7))
3. (Vj <x(0)) (y; codes an antichain of Coll (w, < w1))

4. (Vj <2 (0)Yn({(¥5),,, 7,2 (0)) € G (7)")

Since (1) and (2) are Aj (x), (3) is Aj (z) and (4) is A}, F* is a AL, set of reals.
|

Definition 3.3.50 We define Caract (z,y) in w* X w* as follows: for all simple
Coll (w, < wy)-name o for a subset of w and all simple Coll (w, < wy)-name 7 for a
real in 2¥ (i.e., a simple Coll (w, < wi)-name T for a real such that for every n € w,

© Coll(w,<w1) T (M) € {6, i}”), Caract (o, 1) iff
oC’oll(w,<w1) “o=1"
That is, Caract (o, 7) iff ©coliw,<wy) “T 18 the characteristic function of o”.

It is clear that for every simple Coll (w, < wi)-name o for a subset of w there
exists a simple Coll (w, < wi)-name 7 for a real in 2* such that Caract (o, 7) and,
conversely, for every simple Coll (w, < wj)-name 7 for a real in 2 there is a simple
Coll (w, < wy)-name o for a subset of w such that Caract (o, 7). Moreover, for every
simple Coll (w, < wi)-name o for a subset of w and all simple Coll (w, < wy)-names
7,7 for reals in 2¥, if Caract (0, 7) and Caract (o,7'), then ©conw,<wy) “7 = 77
and, conversely, for every simple Coll (w, < wy)-name 7 for a real in 2* and all simple

C’oll (w, < wl) names o, o' for subsets of w, if Caract (o, 7) and Caract (o', 7), then

-
Coll(w <wi) ‘o=o0

Claim 3.3.51 Let Caract* C w” x w* be defined by: for all z,y € w*, Caract* (z,y)
iff x codes a simple Coll (w, < wy)-name o for a subset of w and y codes a simple
Coll (w, < wi1)-name T for a real in 2 and Caract (o,7). Then Caract* is a A}
relation in w” X w®.

Proof. Notice that Caract* (z,y) iff x codes a simple Coll (w, < w1)-name o
for a subset of w and y codes a simple Coll (w, < w;)-name for a real in 2 and

o w~
Coll(w,<w1) T =T .

But oColl(w,<w1) “o = 77 iff oColl(w,<w1) « (VTL € GJ)) ('fl € 0o <~ T (n) = i)” and
(Vn € w)(n € x < y(n) = 1) is an arithmetical sentence with x and y as parameters.
Thus, by Fact 3.3.37, Caract* is a A} relation in w® x w*. =

Note that Coll (w, < wy) has the following property: po, ..., p, € Coll (w, < wq)
are pairwise compatible iff poU...Up,, € Coll (w, < wy). And, in this case, poU...Up,, <
D0y -y P S0, if n € w and {A4; : i < n} is a family of antichains of Coll (w, < w1),
then

A={poU..Up,: (Vi<n)(pi€ A)A(Vi,j <n)(i#j— pi Lp;)}
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is an antichain of Coll (w, < wy). Moreover, if for every i < n, A; is maximal, then A
is also maximal.

Let s be a finite sequence of 0’s and 1’s and 7 < lg (s). By § (i) we denote the
canonical Coll (w, < wj)-name for the i-value of s.

Definition 3.3.52 For every simple Coll (w, < wi)-name T for a real in 2, let ST
be the following Coll (w, < wi)-name:

S™={(p,n):pe Coll (w,< wi) A
A (Vi <lg (sn)) 30:((gi: 7, 5n (1)) € T AP = Uicigeny @) -

Claim 3.3.53 For all simple Coll (w, < wi)-name 7 for a real in 2%, ST is a simple
Coll (w, < w1)-name for a subset of w. Moreover, for every n € w, colw,<wy) T €
ST 5, CT1".

Proof. Let 7 be a simple Coll (w, < w1 )-name for a real in 2*. To see that S”
is a simple Coll (w, < wj)-name for a subset of w, we only need to show that for every
n€w, A, = {p € Coll (w, < wi1) : (p,7t) € ST} is an antichain of Coll (w, < w1).

For every i < lg(s,), let B; = {q € Coll (w, < w1) : (¢,%, 5y, (7)) € 7}. Then,

A = A{Uicigey Pi 1 0i € Bi N (Vi,5 <1g(sn)) (i # 5 — pi £ pj)}-

But, since for every ¢ < lg (s,), B; C {q € Coll (w,< w1) : (¢,7,0) € TV (¢,%,1) € T}
and 7 is a simple Coll (w, < wi)-name for a real in 2¥, the last set is a maximal
antichain and, hence, B; is an antichain. Therefore, A,, is also an antichain.

Let C' C Coll (w, < w;) be a generic filter over V such that V[C] 2 “n €
ST[C]”. So, for some p € C, (p,i) € S7. Hence, by definition of S7, for every
i <lg(sy) there exists ¢; such that (g;,7, 5, (i)) € 7 and p = J;y4¢,,) ¢- But, since
p € C and for every i < lg(s,), p < ¢, ¢; € C for every i < lg(s,). So, for every
i <lg(sn), (1,8, (1)) € T[C]. ie., VIC] 2 “s, C 7[C]".

Now suppose that V[C] 2 “s,, C 7[C]”. For every i < lg(s,) there is ¢; € C
such that (¢;,7, $, (1)) € 7. But then, by compatibility in the filter, there exists r € C
such that for all ¢ < 1g(s,), r < ¢;. Therefore, if p = UK,g(Sn) gi, ¥ < p and hence

p € C. By definition of S7, (p,7) € S7. Therefore, V[C] 2 “n € S7[C]”. =

So, for all simple Coll (w, < wi)-name o for a subset of w and every simple
Coll (w, < wi)-names 7,7 for reals in 2¥, if Caract(o,7) and Caract (o,7'), then
oColl(w,<w1) “ST — ST 77'

Definition 3.3.54 Let Ad* (z,y,k) iff x codes a simple Coll (w, < w1)-name o for a
subset of w and y codes ST, where, recall, & denotes a Coll (w, < wy)-name for the

characteristic function of the subset of w named by o.

Fact 3.3.55 Ad* (z,y,k) is a X3 subset of w*” x w® X w.
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Proof. Let [Coll (w, < w1)*|<* be the set of all finite sequences of reals in
Coll (w, < w1)" the set of all reals coding a condition in Coll (w, < wy) (see the proof
of Fact 3.3.36). We define Uni C [Coll (w,< w1)"]< x Coll (w, < w1)* by: for all
n € w, Tg, ..., Tn,r € Coll (w, < w1)*, Uni (xo, ..., Ty, x) iff zg, ..., x,, code compatible
conditions and x codes its union. It is easy to see that Uni is a II5 subset of (w*)=“:
for every g, ..., x,, x € w¥, Uni (zo, ..., Tp, x) iff

L 2<, 20N ... N <, 2. (A (z,70,...,20))
2. V2 (2 <o Ao A2 <oy — 2 <, z). (13 (2,0, ..., Tp))

Let R (z,y) iff x codes a simple Coll (w, < wi)-name 7 for a real in 2 and y
codes S7. So, for all z,y € w*, R (x,y) iff:

1. x codes a simple Coll (w, < wy)-name for a real in 2 (113 (z))

2. y codes a simple Coll (w, < wy)-name for a subset of w (A} (y))

3. o codes (z,, : n € w) and y codes (y, : n € W) (A}(z,y))

4. ¥n(x, codes z, and u, Ay, codes v, and n) (A} (z,y))

5. Vn,m (Vi < lg(n)) Ik(u; (k) = s, (1) ANUni((20)4 , - (Zn-1) g » (Un),,))

6. Vn (Vi,j < lg(n)) Ik(ui (k) = sn (0) A (2i) £ (25)), =
— ImUni((20)g > - (Zn-1)g» (Vn)y))

where, for every n € w, lg(n) = lg(s,). So, (5) and (6) are II3, and hence R also is
a 113 subset of w*” x w*.

Let S C w¥ x w¥ X w, defined as follows: for every z,y € w*and k € w,
S (z,y,k) iff # codes a simple Coll (w, < wi)-name 7 for a real in 2 and y codes S}.
Thus, for all z,y € w* and every k € w, S (z,y, k) iff

1. z codes a simple Coll (w, < wy)-name for a real in 2« (I13 (x))

2. There exists z such that

R (z,z) and

y codes (y, : n € w) and z codes (z, : n € w) and

(a
(b
(c
(d

Vn(z, codes u, and n Ay, codes v, and J (k,n)) and

~— ~— ~—

Vn,m (J (k,n) =m — v, = uy)

But since (2a) is I13 (z, 2), and (2b)-(2d) are Af (y, 2), (2) is X3 (x,y). Hence, S is 33.
Finally, since for every z,y € w* and k € w, Ad* (z,y, k) iff

dz (Caract® (x,2) NS (z,y,k)) ,

Ad* is also a X} relation in w® X w¥ X w. W
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Fact 3.3.56 For every p € Coll (w, < wi), s,t € (W]~ and every Coll (w, < wi)-
name S}, the following are equivalent:

1. D ° Coliqw.<wry 5N SF C
2.¥n(nesANg<p)Ir(r LqA(ri)eST) —net).

Proof. (1 = 2) Suppose that p ©coi(w,<wr) “5MN S{ C . Fix n € s such that
for all ¢ < p there exists r such that ¢ / r and (r,n) € SZT Since n € 5, P ° Coli(w,<wr)
“n € §”. Since for every ¢ < p there exists r € Coll (w, < wy) such that ¢ £ r and
(n,r) € ST, the set {p' € Coll (w, < w1) : (Ir € Coll (w, < w1))(P <7 A (r,it) € ST)}
is dense below p. So, for every Coll (w, < w;)-generic filter C' over V' such that p € C,
n € SZT[C] Therefore, p © coliw,<wr) T € S{”. 50, P CColi(w,<w1) ‘T € 5N S{”. But
then, since p < coi(w,<wr) 5N S’{ i p © Coli(w,<wr) T € ”. Hence, n € t.

(2 = 1) Suppose (2) and p C Coll(w,<wy) T E SN SZ”- Since p < coli(w,<wy) T €
$nN S’Z”, on one hand, p ©coiw,<w1) T € 87, so n € s. On the other hand, since
P Coll(w,<wr) ‘T E SZT”, for every Coll (w, < wy)-generic filter C' over V' such that
p e C,ne SC| So, for every Coll (w, < w1)-generic filter C' over V with p € C,
there exists r € C' such that (r,n) € S[ . So, for every q < p there exists r such that
qg L rand (rn) e SZT But then, by (2), n € t and hence, p ©con(u,<w) “t € 1. So,
pSNSIC. m

Finally, we will show that Coll (w, < wy) * P, is a %}ﬁz poset.

By Fact 3.3.48, we may assume that for every (p, §, §) € Coll (w, < w1) * Py, §
is a nice Coll (w, < wi)-name for a finite subset of G (7).

Let A : w¥ — w¥ X wW¥ X w* be the one-to-one and onto function given by
h(z) = (xo,x1,z2) iff for all n € w, x;(n) = x(3n + i), where ¢ € {0,1,2}. If
h(z) = (xo, r1,x2), we say that x codes (xg,x1,x2).

Recall that F is the dense embedding from Coll (w, < w1)" into Coll (w, < w1)
of Fact 3.3.36. If z € w*, we say that x codes a condition (p, 3, ) € Coll (w, < w1)*Py
iff  codes (xg, 1, x2) and F' (xg) = p, 1 codes s and x;, codes the nice Coll (w, < w1)-
name ¢ for a finite subset of G ().

Define (Q*, <*, L*) as follows:

e Q* = {x €w” : z codes a condition in Coll (w, < w;) * P,}

e 1z <* y iff the condition coded by x extends in Coll (w, < wy) * F’W the condition
coded by y

e x 1" yiff x,y code incompatible conditions of Coll (w, < wy) * P,
So z € Q* iff
1. x codes (xg, x1, )

2. g € Coll (w, < wy)”
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3. x1 codes a finite subset of w

4. x codes a nice Coll (w, < w)-name for a finite subset of G ()

where x; codes a finite subset of w iff x; is the characteristic function of a finite subset
of w. (1) and (3) are A} predicates on the reals. Note that, by Fact 3.3.36, (2) is
A (o) and, by Fact 3.3.49, (4) is AlL,,. Therefore, Q* is a A}, subset of w*

Note that for every p € Coll (w, < wy) and all nice Coll (w, < wj)-names h, g
for finite subsets of G (7), p © coqw,<wq) b C ¢ iff for all (o,7) € rec(h),

(Va1 < p) (g2 < 1) (3ga, 71, 1) € 1) (22 < g3 A @2 © Coliwr<wn) 0 =T1") —
— (Vry < p)(Fry < re)(F(rs, 72,7) € §)(r2 <13 A2 CColi(w,<wr) 0 =T2"))
(see [Ku], VII.3.3). Let R be the relation defined by: R (p,o,7) iff p € Coll (w, < wy),
o,7 are simple Coll (w, < wy)-names for reals and p ©col(w,<wy) “0 = 77. Note that

R is a A} relation (by Fact 3.3.37). So, using the above equivalence and that given
by Fact 3.3.56, for all z,y € w¥, x <* y iff

1. €@ and y € Q*

2. x codes (xg, 1, z2) and y codes (Yo, Y1, Y2)

3. zo <. Yo, where, recall, <, denotes the ordering relation in Coll (w, < wy)"
4. Vn(yp(n)=1—21(n) =1).

5. Let ¢, (x,y) be the conjunction of:

(a) x2 codes (a; : j < x2(0)) and y, codes (b, : j < y2(0))
(b) (% < 22 (0)) (a; codes (alal)) A (¥] <y (0)) (b, codes (H2E1))
(¢) (Vi < 22(0)) ¥n(((a})n, (a;'-)/7aj( )) € G (m)" A
A (V)< yz( ) Y ({(69)n, (7). b7 (0)) € G (m)"
(d) (V§ <y2(0))[Vz0(20 <« o — F21(21 <& 20N
ATk (3m < y2(0)) (21 < (bp)w A R(z1, (05) (87,))))) —
— Vzo(22 <i 1o — Jz3(23 < 22/
AFn(3l < 72 (0)) (23 < (a7)n A Rlzs, (b7)', (a1)'))))]

6. Let ¢,cq (7,y) be the conjunction of the following:

(aj codes (alaj))

n({(a9)n, (a7)', a5 (0)) € G (m)°
u(Ad*((a3)n, u, aj (0))A
AVn(zy(n) =1A Vzo(zo <. o — Iz1(—20 L o AT ((0) = 21)) —

() () = 1)) :
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We know that (1) is AL, (2) and (4) are A (x,y) and (3) is A3 (z,y). Note that
(5.a) and (5.) also are Al (z,y) and, by Fact 3.3.46, (5.c) is A},,. Moreover, (5.d) is
a formula which is equivalent both to a ¥} (z,y) formula and to a I} (x,y) formula.
Hence, since n > 2, (5) is AL,,. Finally, (6 a) and (6.b) are A} (x, y) (6.c) is Ao,
and, since, by Fact 3.3.55, "Ad* is Y1, (6.d) is 113 (z,y). So, (6 ) is ALy, Therefore,
<*is A1+2 relation in w* x w* 1ncluded in Q* x Q*.

Finally, note that for every (p, 3, g), <q,t h} € Coll (w, < wy) * P, (p,8,g) L
(g,t,h) iff p L q or there exists (c,i) € rec(g U h) such that

In(n e sA NP <p,q)Ir(r L' Alr,i) € ST)An¢t)
or there exists (¢,7) € rec(gU h) such that
In(netn(Vp <p,q)3r(r L A({(r,i) € ST)An ¢ s)
Let ¥ineom (7,y) the conjunction of following:
1. x codes (g, x1,x2) and y codes (yo, Y1, Y2)
2. x, codes (a; : j < x2(0)) and y, codes (b; : j < y2(0))
3. (Vj < 22(0)) (a; codes (a2, al)) A (Vj < y2(0)) (bj codes (b2b7))
4. (37 <max{z,(0),y2(0)}) EIz(Ad*((ajl-)/, z, ajl- (0)) v Ad*((bjl-)’, z, bjl- (0)A
ATn(zy(n) =1 AVv(v <, 2o Av <, yo —
— Ju(—u L, v AIm((2),, = u)) A (y)y (n) = 0)

(1), (2) and (3) are Al (z,y). Since Ad* is X3, (4) is equivalent both to a ¥ and a
I1} formula with parameters x,y. Hence, @, (z,y) is equivalent also to a 1 (z,y)
formula and to a I13 (z,y) formula. Finally, for all z,y € w*, x 1* y iff

1. ze @ and y € Q*
2. x codes (xg, 1, x2) and y codes (Yo, Y1, Y2)

3. Zo J—* Yo \ Pincom ('T7 y) v Pincom (y7 JI),

where, recall, 1, denotes the incompatibility relation in Coll (w, < w1)*. So, L* is a
A}HZ relation in w* X w* included in Q* X Q*.

Therefore, (Q*, <*, 1*) is a An+2 poset.

Let G be the map from Q* into Coll (w, < w1) * P sending every z € Q* to the
condition coded by it. It is clear that G is a dense embedding (but not one-to- one)
from (Q*, <*, 1*) into Coll (w, < w) * P,. Therefore, Coll (w, < w1) * P, is a AL,
poset. End of proof of Lemma 3.3.44. m

Now we finish the proof of Theorem 3.3.30: From Lemma 3.3.42, we know
that for every Coll (w, < w) * P,-generic filter C x H, V[C % H] 2 wL[bH] = w;. Note

that wf[bH = wy is expressible by means of a I13 (bg) sentence:

Vy(y e WO — 3z (2 € WO Az € Libu| Ayl < IzI) -
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So, Jz (wf[w] = w1) is equivalent to a ¥} sentence and
V[C * H] 2 3z (wit = wy)

Since Coll (w, < wy) is ccc and © co(w,<wr) “P.. is o-centered”, Coll (W, < wy) * P, is

cce. So, by Lemma 3.3.44, Coll (w, < wq) * P,isa %71#2 and ccc poset. Therefore, by
Yz-absoluteness between V' and V[C * H],

V 2 3z (it = wy)
in contradiction with the inaccessibility of w; in L. m

Note that the proof of Theorem 3.3.30 really shows that for every n > 2, Z:fl"'
absoluteness for %711+2 and ccc forcing notions implies that w; is a Y,-Mahlo cardinal
in L. So,

Corollary 3.3.57 For everyn > 2, Con(ZFC + gﬁ-absoluteness for %,1”2 and ccc
forcing notions) implies Con(ZFC + 3k (k is a ¥,-Mahlo cardinal)). m

As consequence of Theorem 3.3.18 and of Theorem 3.3.30, we have proved
Theorem 3.3.1:

Theorem 3.3.1 The following are equiconsistent (modulo ZFC')

1. There exists a X,-Mahlo cardinal.
2. L (R)-two-step absoluteness for projective and ccc posets.

3. g}l-absoluteness for projective and ccc posets. m

3.8.4  Final remarks and open questions

1. For every n € w, let o,, 7, and 6, denote, respectively, the least X,,-Mahlo
cardinal, the least II,-Mahlo cardinal and the least A,-Mahlo cardinal. We
know that 69 = 09 = mg = 61 = 01 < 6, and that for every n > 1, 6, < 0, <
Tn < Op+1. We also know (see Corollary 3.3.15) that 0, < m,+1. But we do not
know if ¢,, < 0, or 0, < m, or T, < 6,+1. What of these inequalities hold?

2. From Theorem 3.3.30 we have that g}l—absoluteness for %}1 and ccc forcing
notions implies that w; is a ¥,-Mahlo cardinal in L. This shows that Theorem
3.2.1 is optimal in the following sense: in order to obtain gﬁ—absoluteness for ccc
forcing notions of complexity greater than g%, we need a large cardinal greater
than an inaccessible.

3. There is a little gap between Theorem 3.2.1 and Theorem 3.3.30: the case for
the gﬁ—absoluteness for E% and ccc posets. We don’t know which is its exact
consistency strength. Let us call P a strongly Eé poset iff P is a Eé poset and
1 p, the incompatibility relation for P, is a A} subset of the real plane. Then
as in Fact 2.1.15, it is easy to see that for every for every strongly E% and ccc
poset P and every real x € w¥, “xr codes a maximal antichain of P” it is a E%
predicate. So, with a few modifications, the proof of Theorem 3.2.1 also shows
that every strongly Eé and ccc extension of a Solovay model is a Solovay model.
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4. Note that, in spite of Theorem 3.3.1, the proofs of Theorem 3.3.18 and of
Theorem 3.3.30 are not optimal for n > 3, because on one hand, we need a
I1,,-Mahlo cardinal in order to obtain L (R)-two-step absoluteness for 2n+1 and
ccc posets (see Corollary 3.3.29). On the other hand, with 24 absolufteness for
Al 4+ and ccc posets, we only obtain the existence of a X, “Mahlo cardinal in L
(see Corollary 3.3.57).

5. Note also that in the case for the g}l—absoluteness for E}Hl and ccc posets (with
n > 3) there is a gap between Theorem 3.3.18 and Theorem 3.3.30. As in the
case for the Hl and ccc posets, we can define the strongly H 1 posets and
adapt the proof of Theorem 3.3.18 to show that every strongly Hn+1 and ccc
extension of a II,,-Mahlo Solovay model is a II,,-Mahlo Solovay model.

6. The following is a natural question: Does L (R)-two-step absoluteness for 2
and ccc posets imply 21 absoluteness for An+2 and ccc posets?

3.4 Collapsing a Mahlo cardinal

3.4.1 Absoluteness by collapsing a Mahlo cardinal
Definition 3.4.1 L (R) is a Mahlo Solovay model over V' iff

1. For every x € R, wy is a Mahlo cardinal in V' [x] and
2. For every x € R, V' [x] is a generic extension of V' by some countable poset.

As in the case of Solovay models over V' and of ¥ ,-Mahlo Solovay models over
V', we can give a characterization of Mahlo Solovay models in the same way as that
of Lemma 3.1.1. Namely,

Lemma 3.4.2 Suppose that M satisfies
1. For every x € R, wy is a Mahlo cardinal in V' [x] and

2. For every x € R, V [z] is a generic extension of V' by some countable poset.

Then there exists a forcing notion W such that does not add reals and creates a
Coll (w, < wy)-generic filter C over V' such that M and V|[C] have the same reals.
Thus, W forces that L (R)M is a Mahlo Solovay model over V. m

Note that P is a subposet of a projective poset Q iff P = (P, <p, 1 p) where
<p=<@! P and Lp=1pt P and P is any subset, not necessarily projective, of Q.
Hence, P is a subposet of a projective poset iff there are ¥! formulas ¢ (z,y) and
¢, (x,y) with a € w* as parameter such that for all reals z,y € w*, -

v <pyiffz,y € Pand ¢ (z,y)
zlpyiff x,y € Pand ¢, (z,9)
and P is any set of reals.
In order to study the generic absoluteness properties of a Mahlo Solovay model,

we need to look into the reflection phenomena of projective sentences along the Levy-
collapsing forcing for a Mahlo cardinal.
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Lemma 3.4.3 Suppose that K is Mahlo cardinal and C C Coll (w, < k) is a generic
filter over V. Let ¢ (v, ...,vy) be a XL (1Y) formula. Then for all reals by, ..., by, €
VIl

V[CT 2 ¢ (bo, - br)

iff there exists a stationary set S C k of inaccessible cardinals such that for every
AES,

V [C)\] 2 (p(bo, ey bk) .

Proof. We write © for vg, ..., v, and b for by, ..., by. Let k be a Mahlo cardinal
and let C' C Coll (w,< k) be a generic filter over V. For every o < k, let C, =
Coll (w,< a) N C. Fix an enumeration (r, : @ < k) of all reals in V' [C] such that for
every inaccessible cardinal A < K, (r, : @ < A) enumerates all reals of V' [C)]. Let
I be the stationary set of all inaccessible cardinals below k. We need the following
fact:

Fact 3.4.4 Suppose that k is Mahlo cardinal and suppose that C' C Coll (w, < k) is
a generic filter over V. Let ¢ (vg,...,vx) be a XX (II2) formula. Then for all reals
bo,...,bp €V [C], if

V[C] 2 ¢ (bo, ..., br)
then, there exists a club D C k that for every A € DN 1,
%4 [CA] 2 (2 (bo, ceey bk) .

Proof. We show this fact by induction on the complexity of projective for-
mulas.

n = 1: Follows from absoluteness of X1 and Il formulas and the fact that
Coll (w, < K) is a k-cc poset.

n + 1: Suppose that for every X1 and every I1X formula 1 (7) and every b €

V [C], if V[C] 2 4(b), then there exists a club D C & such that for every A € DN I,

V[CN] 2 9(b).

»!,, formulas: Follows from inductive hypothesis.

1, formulas: Let Va1 (v, z) be a I1L, ; formula with a € V [C] as parameter and let
b € V[C]. Suppose that V [C] 2 Vo) (b, z). Then, for every a < k, V [C] 2 ¢(b, 1y).
But ¢ (9, z) is a XL formula and therefore, for every o < k, there exists a club D, C &
such that for every A € D, NI, V[C\] 2 (b, 7,). Let D = AycxDq. Clearly, for
every A\ € DN I,V [C\] 2Vay(b,z). m

Now we prove the lemma:

(=) Follows from Fact 3.4.4 since D N [ is a stationary set of inaccessible
cardinals.

(<) Let ¢ (v) be a projective formula and let b € V [C] be such that there exist
a stationary set S of inaccessible cardinals such that for every A € S, V [Cy] Z o(b).

Suppose that V [C] 2 =¢(b). Let D C & be the club from Fact 3.4.4 for —p(b). Let

A € SN D. Then, since A is an inaccessible cardinal in D, V' [C)] 2 —¢(b). But, since

A€ S, V[C,\] 2 p(b). A contradiction. m



Collapsing a Mahlo cardinal 87

Corollary 3.4.5 There is no projective sentence o such that ZFC = “o < w1 is a
Mahlo cardinal in L”.

Proof. Suppose otherwise. Then, there exists some real a and a X! sentence
o with parameter a such that ZFC F “o < w; is a Mahlo cardinal in L”. Let
k be the least Mahlo cardinal in L. Let C' C Coll (w,< k) be a generic filter over
L. Then, L[C] 2 0. So, by Lemma 3.4.3, there exists an stationary set S C k of
inaccessible cardinals such that, for every A € S, L[C)\] 2 0. So, L[C)] 2 “w; is a
Mahlo cardinal in L” and, by downward absoluteness of II; predicates, L 2 “wf[c*] is

a Mahlo cardinal”. But wf[c*] < K. A contradiction with the minimality of k. ®

Theorem 3.4.6 Suppose L (R)M 1s a Mahlo Solovay model over V' and P is a ccc
subposet of a projective poset in M. Then the L (R) of any P-generic extension of M
is also a Mahlo Solovay model over V.

Proof. Suppose that L (R)" is a Mahlo Solovay model over V and let x =
wM be the Mahlo cardinal in V such that forcing over M with W, we obtain a
Coll (w, < k)-generic filter C over V so that RVl = RM, Let P = (P, <p, Lp) be a
cce subposet of a projective poset in V[C]. As in Theorem 3.2.1, it will be enough to
show that for every P-generic filter G over V', every real in V[C|[G] is generic over V
for a countable poset.

Let P be a Coll (w, < k)-name for P. Let a € w* be the parameter of the x
formulas p_ (x,y;a) and ¢, (x,y;a) that define the ordering < and the relation L
such that <p=< N (P x P) and Lp=_1 N(P x P) respectively. Suppose that a is a
simple Coll (w, < k)-name for a.

Let S = Coll (w, < k) % P. Note that S is a k-cc poset.

Notation 3.4.7 We use the same notational conventions from 3.2.1 with only the
following two exceptions:

e Foreverya <k, P, = (P,,<p,, Lp,) where P, = PNV [C,] and <p, and Lp,
are defined in' V' [Cy] by the same formulas ¢ (z,y;a) and ¢, (z,y; a) restricted
to elements of P,, whenever a, P, € V [C,]. Otherwise, P, is the trivial poset.

o We use < and L only for the relations defined by the formulas ¢ (v,y;a) and
ey (z,y;a).

Lemma 3.4.8 Let k be a Mahlo cardinal, C C Coll (w, < k) a generic filter over V
and P be ccc subposet of a g}L poset in V' [C]. Then there exists a stationary set S C k
of inaccessible cardinals such that for every A € S, Py is a subposet P.

Proof. Suppose that P € V' [C] is a ccc subposet of a g,ll poset. Let ¢ (z,y)
and ¢, (z,y) be Xt formulas with parameter a € V [C] that define the ordering <
and the incompatibility relation L in V' [C]. Let ((r,r"), : @ < k) be an enumeration
of all ordered pairs of reals in V [C], such that for every inaccessible cardinal \ < &,
({r,1")o : @ < A\) enumerates all pairs of reals of V' [C,]. Since for every real r,r’" €
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V[C], o< (z,y) and —p (z,y) are projective formulas, using Fact 3.4.4, for every
a < k we can fix a club set D, C k such that for every inaccessible cardinal A\ € D,,,

VI 2 e (rr') HEVCT 2 o (r,17),

where (r, "), = (r,7"). Let D< = A, D,. Note that for every inaccessible cardinal
A € D< and for all reals r, 7" € V [C)],

ViCy2r<r it vV[C]2r </
We define the club D, in the same way but using the formula ¢, (x,y).

Claim 3.4.9 There exists a stationary set S C k of inaccessible cardinals such that
for every A € S, Py € V[C,].

Proof. For every a < k, let
Dy={n<k:P,eVI[C)]}.

We know that for every a < k, P, € VI[C], P, C wNVI[C,] € VI[C,] and
lw* NV [C,]| < k. Hence, there exists n < & such that P, € V[C,] (see [Ku],
VIIL.5.14). So, D, # 0 and, since for every 8 < v < &, V' [Cs] C V [C,], for every
a < Kk, D, is a club in k.

Let D = Ay<xD,. Let I be the stationary of inaccessible cardinals below &.
Let S=1ND. Let A € S. Then, since A € D, for every a < A\, P, € V' [C,]. Since
A is an inaccessible cardinal, for every real b in V' [C)], there exist o < X such that
be VI[C,]. So P\=J,_, P.. Thus Py belongs to V [C]. m

a<i T o

Let Sp = SN D<ND,. Clearly, Sp C k is a stationary set of inaccessible
cardinals such that for every A € Sp, P, is a subposet of P. =

Thus for every pu, A € Sp, if o < A then S, C S\ and S = U)\ESP S,. Hence,
for every subposet X of S of cardinality < x there exists A € Sp such that X is a
subposet of S,.

For every A € Sp, let £(A) , if it exists, be the least £ € Sp such that for
all © € Sp such that p > ¢ the following holds: For every simple Coll (w, < \)-
name A for a subset of R, every simple Coll (w, < A)-name for a real ¢ and every
q € Coll (w, < p), if

q © Coli(w,<x) “A is not a maximal antichain of P below ¢”
then

q © Coli(w,<p) “A is not a maximal antichain of P below ¢”.

Lemma 3.4.10 For every A € Sp, & () exists.
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Proof. As in Lemma 3.2.3, but using the fact that if A is not a maximal
antichain of P then there exists r a real belonging to P which is incompatible with
all reals in A. But then, this real belongs to some P, for some ;1 € Sp and the
incompatibility relation in P is absolute for V[C),] and V[C], since p € Sp. ®

The rest of the proof of Theorem 3.4.6 is like the proof of Theorem 3.2.1 but
using only inaccessible cardinals in Sp instead of all ordinals below x. =

As a consequence of Theorem 3.4.6, we will see that being a Mahlo Solovay
model is preserved for o-linked forcing notions.

Definition 3.4.11 A poset P is o-linked iff there exists a family {P, : n € w} such
that P = J,,c,, Pn and for every n € w and every {p,q} C P,, there exists r € P such
that r <p p,q.

Theorem 3.4.12 Suppose L (R)M 1s a Mahlo Solovay model over V and P is a o-
linked poset in M. Then the L (R) of any P-generic extension of M is also a Mahlo
Solovay model over V.

Proof. In view of Theorem 3.4.6 we only need to prove the following:

Fact 3.4.13 Fvery o-linked poset can be densely embedded into a subposet of a Borel
poset.

Proof. Let P be a o-linked poset. We find a o-linked poset Xp which is a
subposet of a Borel poset and a dense embedding from P into Xp.

Definition 3.4.14 Let P be a o-linked poset. A set X = {X,, : n € w} is a o-linking
family of P iff P = J,c, Xn and for every n € w, if p,p’ € X, then there exists
q € P such that ¢ < p,p’. Suppose that X,Y are o-linking families of P. Y extends
X iff for everyn € w, X,, CY,. Y is a maximal o-linking family of P iff there is no
o-linking family of P that properly extends Y .

Claim 3.4.15 Let P be a o-linked poset. Then every o-linking family of P can be
extended to a maximal one.

Proof. By Zorn’s Lemma. m
Definition 3.4.16 Let P be a o-linked poset and let Y be some maximal o-linking

family of P. We define Xp as follows: For everyp € P, let xtp = {n €w:p€Y,}.
Let

OmpEXp zﬁpGP

o z, <x, Tq iff x, C 4.
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So, for every z,,z, € Xp,
Ty Lx, xg iff z, Nz, =0.

Since z C y and x Ny = () are arithmetical, it is clear that for every o-linked poset
P, Xp is a subposet of Borel poset.

Claim 3.4.17 IfP is a o-linked poset, there exists a dense embedding (not necessarily
one-to-one) from P onto Xp.

Proof. Let ¢ be the function from P into Xp such that i (p) = z,. If p <p g
and p € Y, then, by maximality of Y, ¢ € Y,,. Hence, z, C z, and so i (p) = z, <x,
zq = i(q). Moreover, if p L p ¢ then, there is no n € w such that p,q € Y,,. Hence,
z, Nz, = 0 and, therefore, i (p) = 2, Lx, x, =1 (q). Finally, note that i"P = Xp. So
¢ is a dense embedding of P onto Xp. This ends the proof of the claim, of Fact 3.4.13
and of Theorem 3.4.12. m

Note that Xp is a o-linked poset: for every n € w, let X,, = {z, :n € x,}.
Then, {X,, : n € w} is a o-linking family of Xp.

3.4.2 The strength of gﬁ-absoluteness for o-centered subposets of Borel posets
Theorem 3.4.18 The following are equiconsistent (modulo ZFC')

1. There exists a Mahlo cardinal.

L (R)-two-step absoluteness for ccc subposets of projective posets.

L (R)-two-step absoluteness for o-linked posets.

L (R)-two-step absoluteness for o-centered posets (see Definition 2.3.42).

g}l-absoluteness for o-centered posets.

S ¢ e

g}l-absoluteness for o-centered subposets of Borel posets.

Proof. (1) implies (2) follows from Theorem 3.4.6. (2) implies (3) follows
from Fact 3.4.13, (3) implies (4), (4) implies (5) and (5) implies (6) are obvious.

(6) implies (1): essentially is a result of A. R. D. Mathias (see [B-F]), which
uses a theorem of J. Brendle, H. Judah and S. Shelah (see [Br-Ju-Sh]). For complete-
ness, we give a proof of these results:

Definition 3.4.19 For all x,y € w¥, y <* x iff there exists n € w such that for
allm > n, y(m) < x(m). In this case, we say that x dominates y. Let F' C w”.
x € w* dominates F' iff for all y € F', y <* x. In this case, we also say that x is a
dominating real for F'. F' is an unbounded set iff for every y € w* there exists x € F
such that x £* y.

Definition 3.4.20 Let D be the Hechler forcing to add a dominating real:
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o (s,x) €D iff s€w<¥, x € w”, s and x are increasing and s C x.
o (s,z) < (t,y) iff t Cs and ¥n(y(n) <z (n)).

Remark 3.4.21 Note that D is a Borel poset. D also is a o-centered poset: suppose
(s,z),(s,y) € D. Let z € w* such that for every n € dom (s), z(n) = s(n) and
for everyn € w\ dom(s), z(n) =z (n) +y(n). Then (s,z) < (s,x),(s,y). So, all
conditions in D with the same first coordinate are compatible..
Fact 3.4.22 If G is a D-generic filter over V', then

d=| s ew™: Tz cw)((s,2) € G)}

is a dominating real for w* NV. m

Theorem 3.4.23 (J. Brendle, H. Judah and S. Shelah) Assume g}l—absolute—
ness for the Hechler poset holds. Then wi is an inaccessible cardinal in L.

Proof. Suppose V is gﬁ—absolute for D and w; is not inaccessible in L.
Let 6 = 3z(L[z] N w* is unbounded). First, note that @ is equivalent to a X}
sentence:

JaVy3z (z € Ljz] A z £ y)

Since <* is a Borel relation and w* N L[z] is a 33 (x) set of reals, the formula between
parenthesis is 33 (z,y, ) and so 6 is X3.

Fact 3.4.24 V 2 0.

Proof. Fix z € w* NV. Let G be a D-generic filter V and let d € w* be the
D-generic real over V. Then, for all z € w¥ NV, z <* d and, since L[z] C V,

V[G]|2Vz(z € Ljz] — 2 <"d).
So,
VIG] 2 IyVz(z € Ljz] — 2 <" y).
But the right-hand formula is 33 (z) and = € w* N V. So, by ¥j-absoluteness for D,
V23ywWz(z € Llz] - 2 <" y).
Therefore,
V 2Vz3yvz(z € Ljz] — 2 <" y).
ie, V20 m

Fact 3.4.25 V[G] 2 6.
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Proof. Recall that in the proof of Theorem 3.3.30, we have fixed a recursive
enumeration (s; : ¢ € w) of 2<“ such that every finite sequence of 0’s and 1’s is enu-
merated before all its proper extensions and recursive partition of w in infinitely many
infinite pieces. Also recall that for every a C w, @ : w — {0,1} denotes its character-
istic function. Finally, let {S® : a C w} be the perfect and maximal almost-disjoint
family defined in 3.3.30.

Definition 3.4.26 Let x € w* be an increasing function and let a C w be such that
S®Nrec(x) is infinite. We define h,, € w* as follows: for every i € w,

haa (i) = k iff = (n;) € 5§,
where n; is the i-th element of S* Nrec (z).
Claim 3.4.27 For everya € P (w) NV, rec(d) N S® is infinite.
Proof. We only need to show that for every a C w and every n € w,
Dy ={(s,z) : (Im =n) (s (m) € 5)}

is a dense subset of D, for then, by definition of d, for every n € w there is m > n
such that d (m) € S°.

Let (s,z) € D. Suppose that m = max{n,dom(s)} + 1 and let s’ € w™*!
be defined as follows: for every ¢ € dom(s), s’ (i) = s(i), for every i € m \
dom (s), §' (i) = z (i) and, finally, let s’ (m) be the least i € S* such that i >
max ({s' (i) : ¢ <m}U{xz(m)}).

Let 2/ € w* be such that for every i < m, 2’ (i) = §' (i) and for every i > m,
x' (i) = max{z (i), 2’ (i — 1) + 1}.

Since s and x are increasing and s C z, &' is increasing. Moreover, by definition
of 2/, 2’ is increasing and s’ C z’. So, (s',2') € D. Since m > n and §' (m) € 5S¢,
(s', 2"y € D2. Finally, by definition of s’, s C s’ and, by definition of 2/, for all i € w,
x (i) < ' (i). Therefore, (s',2') < (s,z). =

Definition 3.4.28 Let s € w<* and D C D. We define the rank of s in D, rkp (s),
by recursion on w<* as follows:

1. tkp (s) = 0 iff there exists x € w* such that (s,z) € D.

2. tkp (s) = a iff there is no § < « such that tkp (s) = [ but there are m € w and
{ty : k € w} Cw™ such that k € w, s C ty, t (dom (s)) > k and rkp (t;) < a.

3. tkp (s) = oo otherwise.

Note that, since w<¥

rkp () = oo. Moreover,

is countable, for all s € w<¥, either rkp (s) < wy or

Claim 3.4.29 Let D be a dense subset of D. Then for every s € w<¥ increasing,
rkp ($) < wy.
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Proof. Suppose that s € w™ is a increasing sequence. First note that if
rkp (s) = oo, then

{n € w:tkp(s®n) # oo} < w

We define, by recursion on w, a sequence (k; : i € w) of natural numbers such
that for all increasing sequence t € w<, if k; < ¢ (i), then rkp (s2t) = oc:

7 = 0: Since !{n cw:rkp (san) + oo}} < w, there exists k& € w such that for
all ¥’ > k, k' € w\ {n € w:1kp (s®n) # oo}. Let ko be the least such k greater than
s(m—1).

1> 0: Suppose that (k; : j < i) has been defined. Then, by inductive hypoth-
esis, tkp (s2(k; : j <)) = 00. So, [{n € w:rkp (s®(k; : j <)) # 00}| < w. There-
fore, there is k € w such that &' > k, k' € w\ {n € w: rkp (s@(k; : j <1i)®n) # oo}.
Let k; be the least such k greater than k; ;.

Let z € w* defined as follows:

x(n):{ s(n), ifn<m

kypm, ifn>m

Then z is increasing and s C z. So, (s,z) € D. But then, by density of D, there
s (t,y) € D such that (t,y) < (s,z). Therefore, for all j € dom(t), if m < j,
z(j) <y(j) =1t (y) and, then, by definition of the sequence (k; : i € w), rkp (t) = oc.
But, since (t,y) € D, rkp (t) = 0. A contradiction. m

Lemma 3.4.30 Every real © € V[G] is eventually different form at most countably
many reals hqq with a € P(w)NV. i.e., for every xz € V]G],

Ha e P(w)NV :(3In €w)(Ym >n) (haa(m) #z(m))} <w.

Proof. Let & be a D-name for a real w“. Let, for every n € w, D,, C D be a
dense and open subset such that every (s,y) € D,, decides # * (n + 1). Let N be a
countable elementary submodel of H (x) such that {S*:a € P(w)NV},z € N. We
will prove that if S* ¢ N, then,

°p (Vn € w) (Im = n) (& (m) = hea(m)).
Fix S* ¢ N and suppose that (s,y) € D such that for some k € w,
(s;y) “p (Ym 2 k) (& (m) # haa(m)).
Let | > k be such that |rec (s) N S| =1 and let
Y={tecw:sCtA[rec(t)NS* =1A (Vi € dom(t)\ dom(s)) (y (i) <t(i))}.

We fix ¢t € Y with minimal rkp, (¢).

Claim 3.4.31 rkp, (t) =0
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Proof. Suppose otherwise. Since rkp, (t) # oo, there are m € w and a set
{ty : k € w} Cw™ of increasing sequences such that for all k € w, rkp, (tx) < rkp, (¢)
and tj (dom (t)) > k. Note that {t; : k € w} € N. Forevery j < m—dom () we define
Z; = {ty (dom (t) + j) : k € w}. Note that every infinite subsequence of {t; : k € w}
also witnesses that rkp, (t) > 0. So, picking the appropriate subsequence, and since
the S form a maximal almost-disjoint family, we may assume that {¢; : k € w} has
the following property:

For every j < m — dom (¢), the exists only one a; C w such that Z; C S%

Since N < H (x), we may carry this construction in N.

Since S* ¢ N, Z;NS* is finite for all j < m—dom (¢). Therefore, thereis k € w
such that rec (t,) NS® =rec (t)NS®. So, in particular, t;, € Y and rkp, (tx) < rkp, (¢).
A contradiction with the minimality of rkp, () in Y. =

Since rkp, (t) = 0, there exists z € w* such that (t,z) € D;. Let 2’ € w* be
such that for all n € w, 2/ (n) = max{y (n),z(n)}. Then, (t,2) < (s,y) and, since
lrec (t) NS < I, (t,2’) decides & (I) without deciding h, 4 (1).

Suppose that (t,2") ©p @ (I) = j. Fix i > 2/ (dom (t)) such that i € S§. Then,

(t%6,2") °p d(l) = j = haa(l).
A contradiction with the election of (s,y). ®

We finish the proof of Fact 3.4.25: Since w; is not inaccessible in L, for some
real be w’ NV, wf[b] = w;. Clearly,

{haa:a€ P(w)NLPbl} Cw”NLPY|[d CwNV[G]

and, by Lemma 3.4.30, {hq,q: a € P (w)NL[b]} is an unbounded set of reals in V[G].
Therefore, w* N L[b][d] is not countable. Let x € w* N V[G] be such that = codes b
and d. Then

VIG] 2 “w* N L[x] is unbounded”.
Therefore, V|G| 2 “Jz(w” N L]z] is unbounded)” and so V[G] 2 6. m

Since V' 20, V[G] 2 6 and 6 is a X3, V is not Yz-absolute for D. A contradic-
tion. This ends the proof of Theorem 3.4.23. m

Now we prove (6) implies (1) of Theorem 3.4.18. We will show that Y-
absoluteness for o-centered subposets of Borel posets implies that w; is a Mahlo
cardinal in L. Suppose otherwise. Since g}l—absoluteness for o-centered subposets of
Borel posets implies gﬁ—absoluteness for Hechler forcing, by Theorem 3.4.23, w; is an
inaccessible cardinal in L. So, there exists a club D € L on w; of singular cardinals
in L.

Let D* C P (w) be the set of all codes of a well ordering of w of order type w
or an ordinal in D. Let 7 : D* — D* be such that for all a € D*, 7(a) is a code for
the least ordinal in D greater than |al|.
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Let P, the Solovay almost-disjoint coding for 7 (see Definition 3.3.40). Recall
that P, is a o-centered poset. Hence, by Fact 3.4.13 and the remark following it, P,
can be densely embedded into a o-centered subposet P: of a Borel poset. But, by

Fact 2.1.12 and by Lemma 3.3.42, in every P}-generic extension over V there exists

a real x such that wf[w] = w;. But this is expressible with a 1 sentence that, by

gﬁ—absoluteness, it is true in V. A contradiction with the inaccessibility of w;. ®

3.5 Collapsing a weakly-compact cardinal

Definition 3.5.1 L (R) is a weakly-compact Solovay model over V', henceforth a
w-c Solovay model over V', iff

1. For every x € R, w; is a weakly-compact cardinal in V' [x] and
2. For every x € R, V' [x] is a generic extension of V' by some countable poset.

Clearly, every w-c Solovay model over V' is a Solovay model over V. So, we
can give a characterization of w-c¢ Solovay models in the same way as in Lemma 3.1.1.
Namely

Lemma 3.5.2 Suppose that M satisfies
1. For every x € R, w1 is a weakly-compact cardinal in V [z] and
2. For every x € R, V' [x] is a generic extension of V' by some countable poset.

Then there exists a forcing notion W such that does not add reals and creates a
Coll (w, < wy)-generic filter C over V' such that M and V|[C] have the same reals.
Thus, W forces that L (R)™ is a w-¢ Solovay model over V. m

Note that we can formulate Theorem 2.3.2 in the following way:

Theorem 3.5.3 (K. Kunen) Suppose L (R)M is a w-c¢ Solovay model over V and
P is a ccc poset in M. Then the L (R) of any P-generic extension of M is also a w-c
Solovay model over V. m

Definition 3.5.4 A poset P is Knaster iff for all uncountable subset X of P there
exists an uncountable Y C X of pairwise compatible conditions.

Theorem 3.5.5 The following are equiconsistent (modulo ZFC):

1. There exists a weakly-compact cardinal.
2. L (R)-two-step absoluteness for ccc forcing notions.
3. L (R)-two-step absoluteness for Knaster forcing notions.

4. g}l—absoluteness for Knaster forcing notions.
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Proof. (1) implies (2) follows from 3.5.3. (2) implies (3) and (3) implies (4)
are obvious.

(4) implies (1): Let V be a model of ZFC' that is X-absolute under Knaster
forcing notions. Suppose that w; is not a weakly-compact cardinal in L.

Lemma 3.5.6 (J. Silver) Suppose that k is a regular cardinal which is not a weakly

compact cardinal in L. Then, in L, there is an Aronszajn tree T on k such that for
every model M of ZFC, if M 2 “T has a branch of length k7, then M 2 “cf (k) = w”.

Proof. See [D], 5.1.C. =
Since wj is not a weakly-compact cardinal in L, we can fix an Aronszajn tree
T € L as given by the lemma. Without loss of generality, we may assume that T" has

infinitely-many nodes of height 0.

Definition 3.5.7 For every sequence (dy)
lowing poset:

of reals let P(T, (d,) ) be the fol-

a<wi a<wil

e p € P(T,(do)qey,) if:

1. pis a function from a finite subset of T' into Q, the set of rational numbers.
2. (Vt,t' e dom (p)) (t <rt' —p(t) <gp(t))
3. (Vt € dom (p)) (htr (t) =w-aAp(t) Ew — p(t) € dy)

e p<qiffqCp.

Lemma 3.5.8 For every sequence (dy) P(T, (d.) is Knaster poset.

a<wy’ a<w1)

Proof. Let (d,) be any sequence of w; reals. We need the following claim:

a<wi

Claim 3.5.9 If T is an Aronszajn tree and for every uncountable subset of X C T,

there exists an uncountable subset Y C X of pairwise incomparable elements, then
P(T, (dy) ) is a Knaster poset.

a<wi

Proof. Let {p¢ : { < w1} be an uncountable subset of P(T', (da),.,,)- By a
A-system argument we may assume that for every £ < wq, dom (pg) = = U z¢, where
{z} U{ze : £ <wi} is a family of pairwise disjoint finite sets. Moreover, by thinning
out the family {p¢ : £ < w1} we can assume that:

1. For all §,¢ <wi, petxz=pcta.
2. There exists n € w such that for all £ < wy, ze = {5 : i < n}
3. For every i <n and every &, ¢ < wi, pe(t5) = pc(t9)

4. For every £ < ( < ws, every t € x¢ and every ' € z¢, htr (t) < htp (/).
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Since (J{z¢ : £ < w1} is an uncountable subset of 7', there exists S C w;y
uncountable such that [ J{z¢ : £ € S} is a set of pairwise incomparable elements of 7.

Note that p,q € P(T, (da),,,) are incompatible iff there are ¢t € dom (p) and
t" € dom (g) such that ¢t <r t' but p(t) £ ¢(t'). But, since (J{z¢ : £ € S} is a set
pairwise of incomparable elements of T', {p¢ : { € S} is an uncountable set of pairwise
compatible conditions of P(7, (d,) . So, P(T, (d,) is Knaster. m

a<w1) a<w1)

So, in order to prove Lemma 3.5.8, it only remains to show that for every un-
countable set X C T there exists an uncountable set Y C X of pairwise incomparable
elements of T'.

Suppose otherwise. Let 7" C T uncountable such that for every Y C T” of
pairwise incomparable conditions is countable. So, 7" = (1", <7.), where <p=<p?
(T" x T") is a Suslin subtree of 7. But then, P» = (T”,>/) is a ccc poset and for
every Pr-generic filter G over V', V[G] 2 “T has a branch of length w;”. Hence, by
Lemma 3.5.6, V[G] 2 “cf (w1) = w”. A contradiction, since P is a ccc poset and
hence preserves cofinalities. m

Claim 3.5.10 For every P(T, (da) -, )-generic filter G over V, there exists a order-
preserving function f € V|G|, f: T — Q such that:

1. For every a < w1, n € d, iff there exists t € T with htr (t) = w - « such that
7 t) =n.

2. For every t € T, if hir (t) is a limit ordinal, then
ft)=sup{f(t):t <z t}.

Proof. Let G be a P(T, (da),.., )-generic filter over V. Let f = JG. Then
since G is a filter, f is an order-preserving function and, by genericity, dom (f) = T.

By definition of P(T’, (da),,, ), if there exists ¢ € T with htr (t) = w - @ such
that f (t) = n, then n € d,. Moreover, since for every a < w; and every n € d,,

Dl ={peP(T,(d),...): (Tt edom(p)) (htr(t) =w-aAp(t)=n)}

a<wi
is a dense subset of P(T', (da) <, ): if n € da, then there exists t € T' with htr (t) =
w - a such that f (t) = n. So, (1) holds.

Finally, since for every ¢t € T with htr () a limit ordinal, every condition
p € P(T, (dy) with ¢t € dom (p) and every rational number r < p (¢), the set

a<w1)
D! ={q€P(T,(da)yey,) :a < p AT ET1ec(p)}
is dense below p. Hence, (2) follows. m

Now we finish the proof of Theorem 3.5.5: Let (da),.,,be a sequence of reals
such that for every a < wi, do € WO,. Then forcing with P(T), (da),.,,) adds a
real ¢ € V' [G] such that (d,) € L[T,c|. Since T € L, L[T,c] = L|[c|]. Moreover,

a<wi
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V' [G] 2 “L|c] has uncountably-many reals”. But this can be expressed by means of
the I13 (c) sentence:

—JzVy (ye WOAy e Ll —[ly <[l )
So, “Jz(L [x] has uncountably many reals)” is a ¥ sentence, and by Xj-absoluteness,

V' 2 3z(L[z] has uncontably many reals).

[a]
al

Therefore, there is a € V such that wf
Borel cce posets, by Corollary 3.1.23, wf[
weakly-compact cardinal in L. m

= wy. But, since V is Yj-absolute for
< wi. A contradiction. Hence, w; is a
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