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Abstract

The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We
identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to
female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that
zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate
determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte
survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of
the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads
masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl
mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become
fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or
mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis.
This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway
gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad
fate towards the female developmental pathway and thereby controls zebrafish sex determination.
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Introduction

The existence of two differentiated sexes is common among

animals and yet the mechanisms that determine sex are amazingly

diverse. Among vertebrates, for instance, some species use

primarily genetic factors and others rely on environmental factors

to cause embryonic gonads to become testes or ovaries. Genetic

sex determination (GSD) includes monogenic as well as polygenic

systems, and in monogenic systems the sex-determining gene is

usually found on sex chromosomes that evolved from a pair of

autosomes after acquiring a novel sex-determining allele (reviewed

in [1]). Mammals have an XX/XY sex chromosome system with

males as the heterogametic sex, but birds and many reptiles have a

ZZ/ZW sex chromosome system with females as the heteroga-

metic sex. Among fish, both sex chromosome systems have been

described [2–7]. In environmental sex determination (ESD),

factors in the environment, such as temperature, control sexual

fate [2]. GSD and ESD have long been thought of as distinct

mechanisms, but recent data show regulation by both genetic and

environmental factors within a single species [8]. In such species,

the integration of genetic and environmental factors ultimately tips

the bipotential gonads towards the male or the female fate

(reviewed in [9]). For example, in medaka, a teleost fish with an

XX/XY sex determination system, high temperatures can sex

reverse XX females [10].

Despite the vast diversity of primary sex-determining mecha-

nisms, genes downstream in the sex determination pathway appear

to be broadly conserved among vertebrates. It has been suggested

that during evolution, different species recruited different down-

stream genes to be the major sex-determining gene, sometimes

relatively recently, and that changes at the top of the sex-

determining pathway appear to be better tolerated than changes at

the bottom of the pathway because they are less likely to have

deleterious effects [11]. In mammals, the Y chromosome gene SRY

(Sex determining region Y) is at the top of the sex determination

cascade [12–16] and acts as a genetic switch that triggers the

bipotential gonad to initiate the male pathway (reviewed in [17]).

SRY however, does not appear to exist beyond therian mammals

[18]. In several groups, including mammals, Dmrt1 (doublesex and

mab-3 related transcription factor 1) is a downstream gene in the male

sex-determination pathway, but in medaka (Oryzias latipes), a

duplicated copy of dmrt1 (called DMY or dmrt1by) is the major sex-
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determining gene [19,20] and recent work has shown that dmrt1 is

required for testis development in chickens [21]. Interestingly,

dmrt1by is absent in most Oryzias species [22], showing that the

upstream regulators of sex determination can change rapidly.

Teleost fish show a broad diversity of sex determining

mechanisms that range from genetic to environmental, from

monogenic to polygenic, and from hermaphroditism to gonochor-

ism (two distinct sexes) [2]. Zebrafish, like many other teleosts,

have no obvious heteromorphic sex chromosomes [23–25]. Adult

zebrafish have two differentiated sexes, but have been described to

develop initially as juvenile hermaphrodites because all juveniles

develop gonads with immature oocytes regardless of their

definitive sex [26–28]. Zebrafish juvenile gonads contain imma-

ture oocytes that progress through oogenesis in about half of the

individuals, which become females, but that degenerate in the

other half of the individuals, which become males [26–28].

Oocytes begin to degenerate in a window of time (20–30 days post-

fertilization (dpf)) that lasts several days and varies among

individuals and among rearing conditions [26–31]. Because the

sex of the zebrafish gonad drives secondary sex characters,

gonadal sex determines the definitive sex of the fish. Zebrafish

depleted of germ cells develop as infertile males [31–34] and it has

been shown that the presence of germ cells is essential to maintain

female fate in zebrafish [31]. We do not yet know, however, the

primary genetic mechanisms that cause some zebrafish to become

females and others to become males.

To broaden our knowledge of the genetic mechanisms involved

in zebrafish sex determination, we studied a fancl zebrafish mutant

that develops exclusively as male. Fanconi Anemia complemen-

tation group L (Fancl, OMIM 608111), along with 12 other

Fanconi Anemia proteins, facilitates cellular responses to a variety

of stresses, including signals of DNA damage and apoptosis [35,36]

and belongs to the Fanconi Anemia/BRCA DNA repair pathway.

In humans, mutations in any of these Fanconi genes can cause

Fanconi Anemia (OMIM 227650), a recessive disease character-

ized by bone marrow failure, high risk of acute myeloid leukemia,

development of squamous cell carcinomas of the head and neck,

and developmental abnormalities in many organs including

gonads, which causes hypogonadism, impaired gametogenesis,

defective meiosis and sterility [37,38]. Fancl is a member of the

Fanconi Anemia core complex with a Plant Homeo Domain

(PHD) that mono-ubiquitinates Fancd2 and Fanci [39,40], which

co-localize with BRCA1 and BRCA2 proteins in nuclear foci to

stimulate DNA repair. A severe allele of human FANCL causes a

clinical phenotype that includes hematopoietic and skeletal

abnormalities that are similar to, or more severe than, those

typically observed in patients suffering from a defect upstream in

the Fanconi Anemia pathway (H. Joenje, personal communica-

tion). We previously identified the zebrafish ortholog of the human

FANCL gene [41]. Here we show that fancl homozygous mutants

develop solely as males and that the absence of fancl mutant

females is not due to female-specific lethality but to female-to-male

sex reversal. Results demonstrated that the sex reversal of fancl

mutants is not due to the absence of germ cells, but to an abnormal

increase of germ cell apoptosis that compromises survival of

developing oocytes and masculinizes the gonads. We found that

reducing germ cell apoptosis by introducing a Tp53 (p53 or tumor

protein p53) mutation rescues the fancl sex reversal phenotype, and

that many double mutants develop ovaries and become females.

These results suggest the model that oocytes normally must

progress through meiosis to signal the gonadal soma to maintain

female development, and point to Tp53-mediated apoptosis of

germ cells as a factor that could be targeted by environmental or

genetic signals to modify zebrafish sex determination.

Results

A Tol2 Insertion Disrupts fancl Structure and
Transcription

A zebrafish fancl mutant (allele HG10A, accession number

AB353980) was generated by insertional mutagenesis in a Tol2

transposon-mediated enhancer trap screen [42]. Cloning and

sequencing of genomic DNA surrounding the insertion revealed

that the Tol2 construct was inserted into exon 12 of fancl, thereby

disrupting the coding region of the PHD finger domain (Figure 1A

and 1B), which is essential for Fancl function [39].

To determine whether the HG10A Tol2 insertion disrupts fancl

transcription, we performed reverse transcriptase-PCR experi-

ments on cDNA isolated from testes of a homozygous fanclHG10A

mutant adult. To learn if the Tol2 insert formed part of the

fanclHG10A transcript, we designed a forward primer in exon1 and a

reverse primer in the insertion (F1 and R1 in Figure 1A). The

sequence of the PCR product revealed a fanclHG10A transcript that

contained the Tol2 construct inserted after codon Q318 in exon

12 (arrowhead in Figure 1B line 2). This insertion is predicted to

insert seven novel amino acid residues and to introduce a

premature stop codon (asterisk in Figure 1B line 2), resulting in

the loss of 41 of the 57 residues of the PHD finger domain. This

loss eliminates the crucial tryptophan-337 (W, double underlined

in the wild type (WT) in Figure 1B line 1) that is conserved in all

PHD finger-type E3 ligases, as well as histidine-330 and five of the

seven cysteines (H and C, underlined in Figure 1B line 1) that are

highly conserved in PHD finger domains [39,43,44].

To test if fancl HG10A mutants could produce fancl transcripts with

an intact PHD domain due to elimination of the Tol2 insertion, we

amplified the region encoding the PHD domain using primers

flanking the Tol2 insertion (primers F2 in exon-11 and R2 in exon-

13, Figure 1A). RT-PCR experiments revealed that fancl HG10A

mutants lacked the expected 232 base pair (bp) PCR-product

corresponding to the intact PHD domain found in wild-type

siblings (WT in Figure 1C), but instead possessed a PCR-product

of smaller size (174 bp) (fancl in Figure 1C). Cloning and

Author Summary

Zebrafish has become an important model for under-
standing vertebrate development and human disease, yet
the genetic mechanisms that regulate gonad fate to
determine zebrafish sex remain elusive. In this work, we
describe a mutation in the fancl gene that causes zebrafish
to develop exclusively as male due to female-to-male sex
reversal. Fancl is a member of the Fanconi Anemia/BRCA
pathway involved in the repair of damaged DNA. We find
that the sex-reversal phenotype is caused by an abnormal
increase of programmed germ cell death during the critical
period for zebrafish sex determination in which oocytes
progress through meiosis. This abnormal increase in germ
cell death compromises oocyte survival, gonadal somatic
cells do not maintain the female gene expression profile,
gonads become masculinized to testes, and mutants
develop into fertile males. Remarkably, we show that the
introduction of a mutated allele of the tp53 (p53) tumor
suppressor gene into fancl mutants rescues the sex-
reversal phenotype by reducing germ cell death. We
conclude that Tp53-mediated germ cell death alters gonad
fate selection in fancl mutants by compromising oocyte
survival, possibly by eliminating a hypothesized oocyte-
derived signal, which alters sex determination in zebrafish.

Sex Reversal in fancl Zebrafish by Tp53-Apoptosis
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sequencing of the F2-R2 products revealed that the small band

from fancl mutants was a variant transcript that lacked both the

first half of exon 12 and the Tol2 insertion (fanclDTol2 in Figure 1B

line 3). This fanclDTol2 variant resulted from the joining of exon-

11 to the second half of exon-12 due to a splice acceptor site that is

newly created at the junction of the Tol2 insertion (Figure 1B line

3). The absence of the first half of exon-12 in the fanclDTol2

transcript introduced a frameshift that generated an early stop

codon (asterisk in Figure 1B line 3) leading to a predicted

truncated protein lacking the entire PHD domain. These results

show that homozygous fancl HG10A mutants have two variant

transcripts, both of which encode products lacking an intact PHD

finger domain shown to be essential for the ubiquitination function

of Fancl [39].

The Lack of Homozygous fancl Mutant Females Is Due to
Female-to-Male Sex Reversal

To characterize the fancl HG10A phenotype, we crossed fancl +/HG10A

heterozygotes (called fancl+/2 below), and after genotyping the

progeny by PCR, observed that all fancl HG10A/HG10A

homozygous mutants (called fancl2/2 below) developed exclusively

as males, even though their wild-type and heterozygous siblings

developed about as many females as males. Two alternative

hypotheses could explain the lack of homozygous fancl mutant

females: female-specific lethality or female-to-male sex reversal. To

distinguish between these two hypotheses, we crossed female

fancl+/2 heterozygotes to male fancl2/2 homozygotes. We raised

211 progeny to adulthood, determined their phenotypic sex

according to sexually dimorphic characters including the color of

the anal fin and body shape, and finally scored their fancl

genotypes by PCR. Under normal conditions, this cross should

give 50% heterozygotes (about half of which should be female),

and 50% homozygous mutants (about half of which should be

female), expecting a 1:1:1:1 ratio of heterozygous females to

heterozygous males to homozygous mutant females to homozy-

gous mutant males. The fancl female death hypothesis predicts a

1:1:0:1 ratio, or 66% heterozygotes and 33% homozygous

mutants, but the sex reversal hypothesis, predicts a 1:1:0:2 ratio,

or equal proportions (50%:50%) of homozygous mutants (all

male) and heterozygotes (males plus females). Resulting genotypes

revealed 46 fancl+/2 females: 62 fancl+/2 males: 0 fancl2/2

females: 103 fancl2/2 males, which showed that about half of the

progeny were fancl homozygous mutants (103/211, 49%) and the

other half were heterozygous for the fancl mutation (108/211,

51%) (Figure 2). These results had strong statistical support (chi-

square likelihood ratio = 0.794, p-value .0.1), thus ruling out the

hypothesis that homozygous fancl mutant females died. Results,

however, were consistent with the hypothesis that animals that

otherwise would have become females developed as males due to

female-to-male sex reversal. Sex distributions within each genotype

confirmed our previous observations that all fancl homozygous

mutants developed as males (n = 103, 100%), and while approxi-

mately half of fancl heterozygous siblings developed as males (n = 62,

57%), the other half developed as females (n = 46, 43%) (Figure 2).

These scores showed strong statistical support for the hypothesis

that fancl mutants experienced female-to-male sex reversal (chi-

square likelihood ratio = 73.946, p-value,0.0001). To exclude the

possibility that some of the fancl mutants could have ovaries despite

their external male phenotypic characters, we dissected the gonads

of adult fancl homozygous mutants (n = 45), heterozygous females

(n = 11) and heterozygous males (n = 29). In all cases, we found a

perfect match between external sexual characters and gonadal sex.

These results ruled out the possibility that fancl mutants masquer-

aded as males externally while having female gonads. We conclude

that the HG10A Tol2 insertion into fancl induced a female-to-male

sex reversal phenotype in zebrafish.

fancl Is Expressed in Germ Cells of Developing Gonads
Because germ cells play a fundamental role in controlling female

sex determination in zebrafish [31,32], we wondered if fancl could

play a role in zebrafish germ cell development. To address this

question, we first tested whether fancl is expressed in germ cells of

wild-type zebrafish. We analyzed the expression pattern of fancl by

in situ hybridization on sections of gonads at seven developmental

time points encompassing representative stages of gonad develop-

ment (Figure 3), including sexually undifferentiated and presump-

tively still bipotential gonads (e.g. 10, 17 and 23 days post-

fertilization (dpf)); transitioning gonads (e.g. 26 dpf), sexually

Figure 1. The Tol2 insertion HG10A disrupts fancl transcripts. (A) Zebrafish fancl gene structure showing the Tol2 insertion in exon 12 and the
position of primer pairs used for RT-PCR experiments (arrows, F1-R1; F2-R2). Numbered boxes represent exons and dashed boxes indicate
untranslated regions. (B) Schematic representation from exon 11 to 13 of the wild-type fancl transcript (1.WT) and fancl mutant transcripts
(2.fanclTol2 and 3.fanclDTol2). The PHD finger domain is highlighted in grey. The Tol2 insertion is shown in black and an arrowhead points to its
insertion site in the amino acid sequence in B.2. Predicted protein sequences are shown; the highly conserved Cys and His residues are underlined
and the critical Trp is double underlined. Asterisks represent premature stop codons. (C) RT-PCR using as template cDNA of adult testes shows that
the 232 bp band containing the intact PHD domain in wild types (amplified by F2-R2 primers) is absent from fancl mutants. The smaller band
(174 bp) amplified in fancl mutants corresponds to the fanclDTol2 transcript in B.3. Abbreviations: M, DNA-Marker.
doi:10.1371/journal.pgen.1001034.g001
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determined but still immature gonads (33 and 37 dpf), and mature

adult gonads (6 months post-fertilization). Results showed no

detectable fancl expression in undifferentiated wild-type gonads at

10 dpf (data not shown), but weak expression signal appeared in

immature gonads at 17 dpf and 23 dpf (arrows in Figure 3A and

3B). In transitioning gonads at 26 dpf, fancl expression increased in

developing germ cells (arrows in Figure 3C and 3D), and signal

was clearly detected in the ooplasm of oocytes in the ovary-like

gonad (arrow in Figure 3C). At 33 dpf and 37 dpf, immature

gonads showed a clear morphology of ovaries or testes, and fancl

expression signal was maintained in developing oocytes and

spermatocytes (arrows in Figure 3E–3H).

In adult gonads, fancl expression remained restricted to germ

cells, but remarkably, the intensity of the detected signal differed

depending on the stage of germ cell differentiation (Figure 3I and

3J). In ovaries, the weak fancl signal detected in early stage IB

oocytes (eIB in Figure 3I) contrasted with the obvious strong signal

in the ooplasm of late stage IB oocytes (lIB in Figure 3I). This

result suggests that oocytes up-regulate fancl transcription before

they transition into stage II. At later stages of oogenesis, fancl signal

became less intense as oocytes progressed through oogenesis

(Figure 3I). This reduction in staining intensity may be due to the

dilution of transcript as oocytes increase in volume when cortical

alveoli (also known as cortical granules in non-fish species)

appeared in the ooplasm (stage II) and yolk began to accumulate

(stage III) (Figure 3I). We detected low levels of fancl transcript at

late stages of oocyte maturation (stage IV), suggesting that fancl is

part of the maternal load of messenger RNA transcripts stored in

the egg and passed along to embryos. This result agrees with our

detection of fancl transcripts by RT-PCR and in situ hybridization

experiments even at early developmental stages before the

Figure 2. The absence of females in fancl homozygous mutants
is due to sex reversal. The bar graph represents percentages of
expected (ex, grey bars) and observed (ob, black bars) females and
males among 211 progeny from a cross of fancl heterozygous females
(fancl+/2) to fancl homozygous mutant males (fancl2/2). Total numbers
(n) and percentages (%) of animals in each category are indicated on
the graph. The expected ratio of female heterozygotes to male
heterozygotes to female homozygous mutants to male homozygous
mutants is 1:1:1:1, but we observed a ratio of about 1:1:0:2 (46 fancl+/2

females: 62 fancl+/2 males: 0 fancl2/2 females: 103 fancl2/2 males). This
result rules out the hypothesis that homozygous mutant females die,
but is predicted by the hypothesis that homozygous mutants that
otherwise would have become females develop instead as males.
doi:10.1371/journal.pgen.1001034.g002

Figure 3. Zebrafish germ cells express fancl during gonad
development. In situ hybridizations with fancl probe were performed
on cryo-sections of wild-type animals at different stages of gonad
development. Weak fancl expression signal (arrows) was detected in
undifferentiated gonads at 17 days post-fertilization (dpf) (A) and
23 dpf (B). Signal became stronger in germ cells (arrows) of transition-
ing and immature ovaries (ooplasm of oocytes, arrows in C,E,G) and
transitioning and immature testes (D,F,H) at 26, 33, and 37 dpf. In
adults, fancl expression was restricted to germ cells, but signal intensity
depended on the stage of germ cell differentiation. In adult ovaries (I),
early stage IB oocytes (eIB) already showed low fancl expression and
late stage IB oocytes (lIB) showed strong fancl signal in the ooplasm,
suggesting that fancl expression initiated in early stage IB oocytes. As
oogenesis progressed, ooplasm volume increased, cortical alveoli
appeared (stage II), yolk accumulated (stage III), and fancl expression
signal became diluted. In adult testes (J), fancl expression signal was
detected in a subset of cells with large nuclei and morphology
consistent with primary spermatocytes (sc), but signal was not detected
in cells with small nuclei in an advanced stage of spermatogenesis (i.e.
spermatids and sperm (sp)). Oocyte staging is according to [49] and
[29]. Scale bar: 0.1 mm.
doi:10.1371/journal.pgen.1001034.g003

Sex Reversal in fancl Zebrafish by Tp53-Apoptosis

PLoS Genetics | www.plosgenetics.org 4 July 2010 | Volume 6 | Issue 7 | e1001034



embryonic transcription machinery becomes active [41]. In testes,

fancl expression appeared in spermatocytes (sc in Figure 3J), but

not in more advanced stages of spermatogenesis, including

spermatids and sperm (sp in Figure 3J). This result revealed the

stage-specific expression of fancl during spermatogenesis.

The finding that fancl was expressed in zebrafish germ cells

during the time-window critical for gonad differentiation and sex

determination (17 to 33 dpf) and was up-regulated in early stages

of gametogenesis is consistent with the hypothesis that Fancl plays

a specific role in germ cell development and suggests that its

disruption might lead to the female-to-male sex reversal phenotype

displayed by fancl mutants.

Gonads of fancl Mutants Have Germ Cells
Because zebrafish depleted of germ cells by dead end (dnd)

morpholino (MO) knockdown [45,46] develop exclusively as males

[31,32], and even though adult fancl mutants are fertile, we

wondered if the female-to-male sex reversal of fancl mutants could

be related to extremely low numbers of germ cells during stages of

sex determination in juvenile mutants, or at least in those that

otherwise would have developed as females and had been reversed

to males. To answer this question, we performed gene expression

analyses comparing gonads of fancl homozygous mutants (fancl),

wild-type sibling controls (WT) and dnd-MO knockdown animals

(dnd) at key stages in sex determination: 19 dpf (Figure 4A–4I),

26 dpf (Figure 4J–4X) and 33 dpf (Figure 4Y–4M’). Expression of

the germ cell specific marker vasa [47] revealed the presence of germ

cells in gonads of all fancl mutants sectioned (n = 15) (Figure 4D, 4P,

4S, 4E’, and 4H’) and sibling controls (n = 13) (Figure 4A, 4J, 4M,

4Y, and 4B’), while all germ-cell depleted animals injected with dnd-

MO (n = 16) lacked vasa signal (Figure 4G, 4V, and 4K’). The

presence of substantial numbers of germ cells in all fancl mutants

tested even at early stages of gonad development rules out the

possibility that the near absence of germ cells is the cause of the

female-to-male sex reversal in fancl mutants.

Figure 4. Gonads of fancl mutants have germ cells but fail to
maintain a female gene expression profile. Comparative expres-
sion analysis of the germ cell marker vasa, the early female somatic cell
marker cyp19a1a, and the early male somatic cell marker amh in

developing gonads of fancl homozygous mutants (fancl) and their wild-
type sibling controls (WT), and in wild-type animals depleted of germ
cells by dead end morpholino knockdown (dnd). To monitor the
expression of vasa, cyp19a1a and amh, in situ hybridization (ISH)
experiments were performed on adjacent cryo-sections of each animal
at different stages of gonad development: undifferentiated gonads at
19 dpf (A–I), transitional juvenile gonads at 26 dpf (J–X) and post-
transitional juvenile gonads at 33 dpf (Y-M’). Arrows point to examples
of regions showing gene expression. ISH with vasa probe labeled germ
cells in wild types (A,J,M,Y,B’) and fancl mutants (D,P,S,E’,H’), and
confirmed the depletion of germ cells in dnd animals (G,V,K’). In
undifferentiated gonads at 19 dpf, female and male markers were
expressed in all genotypes: WT (B,C), fancl (E,F) and dnd knockdown
animals (H,I), showing that the onset of cyp19a1a and amh expression
does not depend on germ cells or on fancl function. At 26 dpf, controls
had started to enter either the male pathway by down-regulating
cyp19a1a and up-regulating amh (K,L) or conversely into the female
pathway by up-regulating cyp19a1a and down-regulating amh (N,O),
correlated with the presence of few or many oocytes, respectively. In
contrast, most 26 dpf fancl mutants already showed a male expression
profile by the absence of cyp19a1a and the up-regulation of amh (Q,R)
and only one fancl mutant showed a low number of cyp19a1a-
expressing cells while nevertheless maintaining high amh expression
(T,U). Except for vasa, expression profiles of 26 dpf dnd knockdown
gonads were similar to fancl mutants (W,X). At 33 dpf, wild-type
controls showed either a male expression profile (no cyp19a1a and high
amh expression, Z,A’) or a female expression profile (high cyp19a1a and
no amh expression, C’,D’). Most 33 dpf fancl mutants showed a male
expression profile (F’,G’), even if gonads maintained an ovary-like
morphology (I’,J’). All 33 dpf dnd animals showed a male expression
profile (L’,M’). Scale bar: 0.1 mm (A).
doi:10.1371/journal.pgen.1001034.g004
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fancl Mutants Fail to Maintain cyp19a1a Expression and
Fail to Down-Regulate amh Expression

Because all fancl mutants developed as males, we wondered if

fancl mutants embark upon the male pathway from the beginning

of gonad development, or whether they follow a normal

bipotential pathway of development that later derails exclusively

to the male pathway. To address these alternatives, we used the

expression of cyp19a1a (cytochrome P450 family 19 subfamily A

polypeptide 1a) and amh (anti-Mullerian hormone), which are the earliest

sex-specific somatic gonadal cell markers known for ovary and

testis, respectively, to monitor development before gonads were

sexually differentiated at the morphological level [29,31,48].

In 19 dpf undifferentiated gonads, somatic cells of fancl mutants,

as well as those of wild-type controls and dnd-MO animals,

expressed both the female marker cyp19a1a and the male marker

amh (Figure 4B, 4C, 4E, 4F, 4H, and 4I). This result showed no

indication that fancl mutant gonads were developing abnormally,

which suggests that fancl mutant gonads initially embark upon the

normal bipotential pathway of development, and later derail into

the male pathway. The fact that individual gonads in both fancl

mutants and WT siblings expressed both cyp19a1a and amh, as did

animals lacking germ cells, suggests that the onset of expression of

these somatic cell markers is independent of germ cell derived

signals. These results extend to a much earlier age than previously

noted (19 dpf versus 35 dpf [31]) the time at which gonads

depleted of germ cells express amh.

At 26 dpf, different individual WT juveniles showed different

degrees of sexual differentiation, suggesting that this age is within

the transitional period of sex determination. Some WT animals

had gonads with few oocytes, low expression of cyp19a1a and up-

regulation of amh (Figure 4K and 4L), while others had gonads

with many developing oocytes, up-regulation of cyp19a1a and

absence of amh signal (Figure 4N and 4O). In contrast to WT

sibling controls, at 26 dpf, all fancl mutants had gonads with no

ooctyes or just a few small oocytes, and most of them (4 out of 5)

lacked expression of cyp19a1a and showed up-regulation of amh

(Figure 4Q and 4R). Most juvenile fancl mutants at 26 dpf,

therefore, had completed the transitional period of sex determi-

nation, and had embarked on the male pathway. Only one of the

five fancl mutants analyzed retained a remnant of a few cyp19a1a-

expressing cells despite the presence of a considerable number of

amh-expressing cells (Figure 4T and 4U); this animal was probably

still transitioning towards the male pathway. In 26 dpf dnd-MO

animals, all gonads were depleted of germ cells, and like fancl

mutants, showed no cells or few cells expressing cyp19a1a and

many cells up-regulated for the male marker amh (Figure 4W and

4X). Therefore, most fancl mutants and dnd-MO animals tipped

the fate of the bipotential gonad towards the male pathway earlier

than WT controls.

At 33 dpf, WT juveniles had already passed the transitional

period of sex determination. Males had immature testes with no

oocytes, no cyp19a1a-expressing cells and many cells with high

levels of amh expression (Figure 4Z and 4A’), and females had

immature ovaries, with cyp19a1a-positive somatic cells surrounding

oocytes but no amh-expressing cells (Figure 4C’ and 4D’). In

contrast to WT sibling controls, at 33 dpf, most fancl mutant

gonads (6 of 8) showed clear testes morphology, including the

absence of cyp19a1a expression and up-regulation of amh

expression (Figure 4F’ and 4G’). Interestingly, we found two fancl

mutants that still had some oocytes; in contrast to WT controls,

however, these individuals showed low cyp19a1a expression and

high amh signal (Figure 4I’ and 4J’), which would be expected if

these two fancl mutants were putative females that were in the

process of sex-reversing to males. At 33 dpf, all fancl (Figure 4G’

and 4J’) and dnd-MO animals (Figure 4M’) showed the typical

male-specific up-regulation of amh. In contrast to 33 dpf dnd-MO

animals, all of which lacked cyp19a1a expression (Figure 4L’), fancl

mutants that still retained some oocytes showed low levels of

cyp19a1a expression (Figure 4I’). These results would be expected if

the presence of oocytes is essential to maintain cyp19a1a

expression, and suggested the hypothesis that the female-to-male

sex reversal of fancl mutants is due to abnormal development

of oocytes that leads to a failure of somatic cells of the gonad

to maintain cyp19a1a expression and to down-regulate amh

expression.

Oocytes Fail to Progress through Meiosis in fancl Mutants
Because the Fanconi Anemia/BRCA system is involved in the

repair of damaged DNA, such as that originating in meiotic

recombination, we hypothesized that oocyte development is

altered in fancl mutants. To test this hypothesis, we performed a

histological analysis of fancl and wild-type gonad sections stained

with hematoxylin and eosin at different stages of development to

follow the progression of germ cells through meiosis (Figure 5).

At 19–22 dpf, WT sibling controls and fancl homozygous

mutants had undifferentiated gonads with no obvious morpholog-

ical differences between genotypes. Gonads of both genotypes

contained stage IB perinucleolar oocytes (arrows in Figure 5A and

5B), as indicated by the presence of nucleoli at the periphery of the

nuclei [49]. Shortly after the beginning of stage IB, chromosomes

decondense and form lampbrush chromosomes [50], which occurs

during the diplotene stage of meiosis I as the synaptonemal

complex dissolves and recombination nodules keep homologous

chromosomes together [51]. We define ‘‘early’’ perinucleolar

oocytes (epo) as stage IB oocytes that have not yet decondensed

their chromosomes, and ‘‘late’’ perinucleolar oocytes (lpo) as stage

IB oocytes that have already formed lampbrush chromosomes and

entered the diplotene stage of meiosis I. Gonads of fancl (10

individuals) and WT siblings (10 individuals) at 19–22 dpf both

had early (epo in Figure 5A and 5B) but not late stage IB oocytes,

indicating that at this time, oocytes had not yet entered the

diplotene stage of meiosis I in either genotype.

At 26 dpf (Figure 5C–5F), most WT controls (7 of 9 individuals)

showed late perinucleolar oocytes that had progressed through

meiosis from early to late stage IB (lpo in Figure 5C), in which

lampbrush chromosomes were visible, indicating that recombina-

tion had completed and oocytes had already entered the diplotene

stage of meiosis I [51]. In contrast to WT, most fancl mutants (11 of

12) lacked oocytes at late stage IB (Figure 5F), indicating that

oocytes in fancl mutants failed to progress through meiosis to the

diplotene stage. Only one of the twelve fancl mutants showed late

stage IB oocytes (lpo in Figure 5D), and this individual also

contained pyknotic cells (pc in Figure 5D), some of which were

identifiable as oocytes and some of which were of unclear origin

due to their advanced stage in the process of degeneration. The

fancl mutants that lacked oocytes (11 of 12) also had numerous

pyknotic cells (pc in Figure 5F), and showed groups of

spermatogonia (sg in Figure 5F), which were also found in WT

animals (sg in Figure 5E) that had gonads with a testis-like

morphology.

The difference between fancl and WT controls became

accentuated at 32 dpf (Figure 5G–5I). At 32 dpf, all fancl gonads

lacked oocytes and had become immature testes with spermato-

gonia and spermatocytes (sg and sc in Figure 5I), but only about

half of WT siblings had immature ovaries with late stage IB oocytes

(lpo in Figure 5G) while the other half had immature testes

(Figure 5H).

Sex Reversal in fancl Zebrafish by Tp53-Apoptosis

PLoS Genetics | www.plosgenetics.org 6 July 2010 | Volume 6 | Issue 7 | e1001034



At adult stages (Figure 5J–5L), consistent with results observed

at 32 dpf, all fancl mutants lacked oocytes and had mature testes

filled with germ cells at different stages of spermatogenesis

(Figure 5L). In contrast, half of the WT controls had mature

ovaries filled with oocytes at different stages of oogenesis

(Figure 5J), and the other half had mature testes (Figure 5K).

This analysis of developmental histology revealed that in fancl

mutants, oocytes failed to progress through meiosis and rarely

reached the diplotene stage. Interestingly, in contrast to wild types,

we observed abundant pyknotic cells in all fancl mutant gonads at

26 dpf (pc in Figure 5D and 5F), suggesting that the absence of

oocytes in older fancl mutants could be related to increased germ

cell apoptosis associated with the failure to complete meiosis.

fancl Mutants Show an Abnormal Increase of Germ Cell
Apoptosis

To examine whether germ cell apoptosis could be the cause of

both the abnormally high number of pyknotic germ cells in fancl

juvenile gonads and the absence of oocytes at late stage IB, we

used immunoassay to examine the activation of Caspase-3, an

early marker of apoptosis [52,53]. We scored the number of

Caspase-3-positive cells in 70 gonadal cross-sections in each of 12

individuals: six wild-type sibling controls (Figure 6A) and six fancl

homozygous mutants (Figure 6B) at 25 dpf, a stage within the

time-window critical for sex determination. The morphology of

the Caspase-3-positive cells detected in the immunoassay (shown

in red in Figure 6B), and the subsequent staining of the same slides

with hematoxylin and eosin (data not shown) confirmed that the

Caspase-3-positive cells were germ cells and not somatic cells, and

corroborated our earlier finding that germ cells that appeared to

be pyknotic in our histological analysis are indeed apoptotic cells.

In many cases, the shape and size of the apoptotic Caspase-3-

positive cells was appropriate for oocytes, however, we cannot rule

out the possibility that some Caspase-3-positive cells might be

undifferentiated gonial cells (oogonia or spermatogonia). Results

revealed that the average number of apoptotic germ cells in

gonads of fancl2/2 mutants was almost three fold higher than in

gonads of wild-type sibling controls (Figure 6C) (t-test p = 0.0058,

statistically significant at the p = 0.01 level). Therefore, these

results suggest the hypothesis that the absence of oocytes in fancl

mutants is caused by increased apoptosis of germ cells, especially

oocytes, which ultimately leads to the sex reversal phenotype

observed in fancl mutants.

Mutation of tp53 Rescues the fancl Female-to-Male Sex
Reversal Phenotype by Reducing Germ Cell Apoptosis

The hypothesis that the female-to-male sex reversal of fancl

mutants is caused by increased germ cell apoptosis predicts that

blocking apoptotic pathways should rescue the sex reversal

phenotype. Because tumor protein Tp53 (alias p53) is an

important activator of apoptosis [54], we can inhibit apoptosis in

fancl mutants by introducing a tp53 mutation into the fancl mutant

Figure 5. Juvenile gonads of fancl mutants contain oocytes that
fail to progress through meiosis. Histological comparison of germ
cell development in fancl homozygous mutants (fancl) and wild-type
sibling controls (WT), by hematoxylin and eosin staining of gonads at
different stages of development: undifferentiated, 19–22 dpf (A,B),
transitional juveniles, 26 dpf (C–F), post-transitional juveniles, 32 dpf
(G–I) and adults (J–L). At 19–22 dpf, no morphological differences were
observed between WT (n = 10) and fancl animals (n = 10) and both
genotypes showed early stage IB perinucleolar oocytes (epo in A,B). At
26 dpf, the first histological differences between WT and fancl became
apparent. Most WT controls (7 out of 9 individuals) had abundant
enlarged perinucleolar oocytes that had progressed from early stage IB
to late stage IB (lpo in C), and only two lacked late stage IB oocytes (E).
In contrast, only one of twelve fancl mutant animals had enlarged
oocytes at late stage IB (lpo in D), while the majority (11 out of 12)
lacked late stage IB oocytes (F). Both wild-type and fancl mutant gonads
that lacked oocytes possessed spermatogonia (sg in E,F). Remarkably, in
contrast to wild types, fancl mutants showed abundant pyknotic cells
(pc) at 26 dpf (D,F). At 32 dpf, gonads showed unmistakably the
morphology of either ovary or testis, and in wild-type controls,
approximately half of the animals (6 out of 11) had ovaries with
perinucleolar oocytes at late stage IB (lpo in G) and the other half (5 out
of 11) showed the typical testis morphology with abundant spermato-
gonia (sg) and spermatocytes (sc) arranged in cysts (dashed line in H). In
contrast to controls, all fancl mutants (n = 8) had gonads that lacked

perinucleolar oocytes, and showed testis morphology with groups of
spermatogonia (sg) and spermatocytes (sc) (I). Finally, in adults, half of
the WT controls (5 out of 10) had mature ovaries filled with oocytes at
different stages of oogenesis: stage IA, IB, II, III and IV (J), and the other
half (5 out of 10) had mature testes (K), in contrast to fancl mutants in
which all animals (n = 7), had mature testes filled with germ cells at
different stages of spermatogenesis: spermatogonia (sg), spermatocytes
(sc) and sperm (sp) (L), and none of the seven fancl mutants had ovaries.
Oocyte stages described according to [49]; Spermatogenesis stages
described according to [28]. Scale bar: 0.02 mm (as in A, except for J).
doi:10.1371/journal.pgen.1001034.g005
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line. To generate double mutants, we crossed a zebrafish female

carrier of the hypomorphic mutation tp53M214K [55] to a male

homozygous fancl mutant, identified double heterozygotes

(fancl+/HG10A;tp53+/M214K called fancl+/2;tp53+/2 below) among

F1 progeny by PCR, and in-crossed double heterozygotes to

obtain an F2 population containing double homozygous mutants.

Among the F2 raised to adulthood, 44/171 (25.7%), or about a

quarter, were fancl2/2 homozygous mutants. Among these 44

fancl2/2 homozygous mutants, 15 were also tp532/2 homozygous

mutants, from which 11 developed as females and four as males

(Figure 7A). All of the fancl homozygous mutant siblings (n = 29)

that were either homozygous wild type for tp53+/+ (n = 8) or

heterozygous for the tp53+/2 mutation (n = 21) developed

exclusively as males (Figure 7A). This result shows that the

female-to-male sex reversal phenotype characteristic of fancl

mutants was rescued in fancl2/2;tp532/2 doubly homozygous

mutants (Figure 7A). The sex-ratio scores observed in the three

genotypes showed strong statistical support (chi-square likelihood

ratio = 32.088, p-value,0.0001) for the hypothesis that the

presence of females in fancl2/2;tp532/2 double mutants and the

absence of females in the other tp53 genotypes (fancl2/2;tp53+/2

and fancl2/2;tp53+/+) is linked to the tp53 genotype. Histological

analyses of fancl2/2;tp532/2 females corroborated the conclusion

that external female sex characteristics were accompanied by

ovaries filled with normal oocytes at all stages of development

similar to fancl+/+; tp53+/+ wild-type female siblings (Figure 7B and

7C).

To determine whether the tp53 mutation rescues fancl sex

reversal phenotype by reducing germ cell apoptosis, we studied the

activation of Caspase-3 in histological sections of fancl homozygous

mutants that were either homozygous for the tp532/2 mutation

(n = 5) or wild-type for the tp53+/+ mutation (n = 5) at 25 dpf, a

critical stage for sex determination (Figure 7D and 7F). Counts of

Caspase-3-positive cells of 70 gonadal cross-sections per animal in

these ten animals showed that double homozygotes (fancl2/2;

tp532/2) had an average number of apoptotic germ cells

approximately three fold lower (Figure 7E and 7F) than their

fancl2/2 mutant siblings that were homozygous wild-type for the

tp53+/+ mutation (Figure 7D and 7F) (t-test p = 0.1032, approach-

ing statistical significance given the small sample size). These

results support the hypothesis that the tp53 mutation rescues the

fancl female-to-male sex reversal phenotype by decreasing the

number of apoptotic germ cells, thereby counteracting the

abnormally high frequency of apoptotic germ cells observed in

fancl homozygous mutants. This result is consistent with the

hypothesis that the fancl mutation causes the female-to-male sex

reversal phenotype by increasing germ cell apoptosis during a

critical time for sex determination.

Discussion

Despite the broad use of zebrafish as a model for vertebrate

development, its sex determination mechanism remains poorly

understood. In this work, we characterize a zebrafish fancl

mutation that causes homozygotes to develop exclusively as fertile

males due to female-to-male sex reversal. We show that an

increase of germ cell apoptosis in mutants compromises the

survival of oocytes undergoing meiosis, which may imply an

alteration of the signaling between germ cells and somatic cells of

the gonads, masculinization of gonads to form testes, and the

development of a male phenotype. We show that the mutant sex

reversal phenotype can be rescued by reducing Tp53-mediated

apoptosis, which allows oocyte survival, and suggests a pivotal role

of germ cell apoptosis in zebrafish sex determination. Extending

these results from fancl mutants to wild-type zebrafish, we propose

a model in which genetic and environmental sex determining

factors act to increase or decrease germ cell apoptosis and oocyte

survival and thus alters the strength of a hypothetical oocyte-

derived signal that maintains expression of female genes in somatic

cells and hence determines sex in zebrafish.

Female-to-Male Sex Reversal in Zebrafish fancl Mutants Is
Due to the Failure of Oocytes to Progress through
Meiosis

Fancl protein helps mediate cellular responses to a variety of

stresses, especially DNA damage and apoptosis [36]. Mutations in

human FANCL lead to Fanconi Anemia (FA) [39], a disease of

bone marrow failure, enormous risks of cancer, and hypogonadism

and impaired fertility (reviewed in [38]). Likewise, the most

consistent FA phenotype in murine FA gene knockout models (e.g.

Fancc, Fancg, Fanca, Fancd1, Fancd2), is hypogonadism,

impaired gametogenesis and infertility (reviewed in [56]). Our

work shows that the disruption of fancl in zebrafish causes

homozygous mutants to develop exclusively as males due to

female-to-male sex reversal rather than female-specific lethality.

This is the first demonstration, to our knowledge, that a mutation

in a Fanconi gene can cause female-to-male sex reversal.

Figure 6. Increased germ cell apoptosis in fancl mutants at
25 dpf. Immunodetection of apoptosis by anti-active Caspase-3 in
paraffin sections of gonads of wild-type sibling controls (WT) and fancl
homozygous mutants (fancl-/-) at 25 dpf (A,B). Presence of Caspase-3-
positive cells (shown in red) was lower in gonads of WT (A) than in fancl
mutants (B). Gonads outlined by a dashed line (A,B). Bar graph
representing the average number of Caspase-3-positive germ cells in
each genotype: wild-type sibling controls (WT; n = 6) and fancl
homozygous mutants (fancl-/-; n = 6) at 25 dpf (C). Results showed
that the average number of apoptotic germ cells in fancl mutants
(x– = 99643) was about three fold higher than in wild-type sibling
controls (x– = 35614), revealing an abnormal increase of germ cell
apoptosis in fancl mutants at 25 dpf, a critical period for sex
determination (C).
doi:10.1371/journal.pgen.1001034.g006
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Our work revealed expression of fancl in germ cells during

zebrafish gonad differentiation, which is consistent with a role of

Fancl in germ cell development. Other species, such as mouse, also

express fancl in their germ cells [57,58], suggesting a conserved role

of Fancl in vertebrate germ cell development. Previous work had

shown exclusive male development in zebrafish lacking germ

cells due to total loss-of-function of dead end, nanos, ziwi, or zili

[31–34,59]. We demonstrate here, however, that germ cells are

present throughout the entire life in all individuals homozygous for

the fancl mutation, which rules out the possibility that male

development in fancl mutants that otherwise would have become

females is due to lack of germ cells. Work presented here shows

specifically that the mere presence of germ cells is insufficient to

feminize gonads, but rather, it suggests that oocytes passing

through meiosis are essential to support differentiation of ovaries.

Our results are in agreement with previous suggestions that zili

mutants all become phenotypic males probably due to the lack of

oocytes at week 4 during the window of sex determination rather

than due to the total loss of germ cells at week 8 [59]. Homozygous

fancl mutants, in which germ cells are always present, provide a

useful tool to better understand the role of germ cell-soma

signaling that tips gonad fate towards the male pathway.

Comparison of sex-specific gonadal markers among fancl

mutants, WT controls and dnd-MO animals, which lack germ

cells, reveals that the onset of expression of the female marker

cyp19a1a and the early male marker amh in individual undifferen-

tiated gonads at 19 dpf is similar in all genotypes. This result

supports the conclusion that the onset of early somatic makers is

independent of germ cell signaling [31]. These results also show

that undifferentiated gonads of fancl mutants initially develop as

normal bipotential ‘‘juvenile ovaries’’ containing oocytes at early

stage IB with no obvious histological differences from gonads of

WT controls.

During the critical time-window for sex determination in

zebrafish (e.g. 26 dpf), however, fancl mutant gonads become

morphologically different from wild-type gonads. Wild-type

animals have perinucleolar oocytes that progress through meiosis

from early stage IB to late stage IB with obvious lampbrush

chromosomes, indicating that recombination is complete and

oocytes are at the diplotene stage of meiosis I, in which

homologous chromosomes begin to separate but remain attached

at chiasmata [51]. In contrast to wild types, most fancl mutants lack

late stage IB oocytes, indicating that oocytes fail to progress beyond

pachytene stage, when recombination occurs, and do not enter

diplotene. Our results show that the levels of fancl transcripts are

regulated during the process of gametogenesis because fancl

expression up-regulates in oocytes transitioning from early to late

stage IB (Figure 3I). Consistent with this result, a large-scale gene

expression profiling study of developing ovaries in trout found fancl

in a group of many genes that were over-expressed when the first

oocyte meioses were observed [60]. In fancl zebrafish mutants, the

failure of oocytes to transition from early to late stage IB suggests

Figure 7. Mutation of tp53 rescues the female-to-male sex-reversal phenotype of fancl mutants by reducing germ cell apoptosis. (A)
The distribution of individuals of different tp53 genotypes among fancl2/2 homozygous mutant progeny (n = 44) from an in-cross of double
heterozygotes (fancl+/2;tp53+/2) is shown in a bar graph representing the number of females (purple bar) and males (green bars) distributed
according to their tp53 genotypes (wild type, heterozygous or homozygous mutant). Rescue of female-to-male sex reversal was observed exclusively
in fancl2/2 mutant homozygotes that were also homozygous for the tp53 mutation (n = 15): 11 fancl2/2;tp532/2 animals developed as females and 4
developed as males. No rescue was observed in fancl mutants that were either wild-type (n = 8; fancl2/2;tp53+/+) or heterozygous for the tp53
mutation (n = 21; fancl2/2;tp53+/2), which all developed as males. Total numbers of animals (n) are indicated on the graph per each sex in each
genotype. (B,C) Hematoxylin and eosin staining of gonad sections of wild-type female (fancl+/+;tp53+/+, B) and rescued female doubly homozygous
mutant (fancl2/2;tp532/2, C) at adult stage, revealed the presence of morphologically normal ovaries in the rescued fancl2/2;tp532/2 females.
Ovaries of both genotypes had oocytes at different stages of development (i.e.: IB, II, III, IV). Scale bar: 0.1 mm (B,C). (D,E,F) tp53 mutation reduces
germ cell apoptosis in fancl mutants at 25 dpf. Immunodetection of apoptosis by anti-active Caspase-3 in paraffin sections of gonads of fancl
homozygous mutants simultaneously homozygous wild-type (D) or homozygous mutant for tp53 (E) at 25 dpf. Dashed lines outline gonad
boundaries (D,E). (F) Bar graph representing the average number of Caspase-3-positive germ cells in fancl2/2;tp53+/+ (n = 5) and fancl2/2;tp532/2

(n = 5) at 25 dpf. Results showed that the average number of apoptotic germ cells was approximately three fold lower in doubly homozygous mutant
animals (fancl2/2;tp532/2; x– = 30656) than their fancl2/2 mutant siblings that were wild-type for tp53 (fancl2/2;tp53+/+; x– = 105671). This result
shows that tp53 mutation decreased the number of apoptotic germ cells in fancl mutants at 25 dpf and demonstrates that the abnormal increase in
germ cell apoptosis in fancl mutants that compromised the survival of developing oocytes was the mechanism responsible for the female-to-male
sex reversal.
doi:10.1371/journal.pgen.1001034.g007
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that Fancl might promote the successful progression of oocytes

through meiosis I or the survival of meiotic oocytes. The FA

pathway is apparently involved in meiosis because in mouse, Fanca

is expressed in pachytene spermatocytes and Fanca knockout mice

have elevated rates of mis-paired meiotic chromosomes and

increased germ cell apoptosis [37]. Whether this effect on meiosis

depends on the known role of FA proteins in homologous

recombination in somatic cells [61] or some other aspect of meiosis

is as yet unknown.

The failure of oocytes to progress through meiosis in fancl

mutants correlates with the observation that most mutant gonads

do not express the female somatic marker cyp19a1a, but instead

up-regulate the male somatic marker amh. Interestingly, we found

a few fancl mutants with some late stage IB oocytes accompanied

by expression of cyp19a1a, but also showing high expression levels

of amh; we interpret these animals as females whose progress

towards ovary development was being derailed due to the

mutation of fancl. These results would be expected if oocytes are

essential to maintain cyp19a1a expression.

We hypothesize that in juvenile fancl mutants, the absence of

oocytes progressing through meiosis alters oocyte signaling to the

soma that maintains the female program. Without this signal,

somatic cells do not maintain the expression of cyp19a1a, do not

suppress amh expression, and as a result, gonads do not become

ovaries but instead become masculinized and form testes. It is

likely that this signal arising from meiotic oocytes is essential for

somatic pre-granulosa cyp19a1a-expressing cells to proliferate and

to differentiate as mature granulosa cells. In mammals, it has been

suggested that meiotic oocytes reinforce ovarian fate by antago-

nizing the testis pathway [62,63]. Studies on gonadal somatic cell

lineages in mice and medaka, have shown that granulosa cells of

the ovary and Sertoli cells of the testis develop from a common

precursor [64–66]. It is possible that mammalian meiotic oocytes

reinforce the ovarian pathway by preventing granulosa cells from

trans-differentiating into Sertoli-like cells, because the loss of

oocytes in mammals induces maturing follicular cells (or pre-

granulosa cells) to acquire Sertoli-like cells characteristics [67]. We

hypothesize that the action of meiotic oocytes in preventing pre-

granulosa cells from trans-differentiating into Sertoli-like cells is an

ancestral function that has been conserved in mammals and fishes.

Although our experiments do not address the question of whether

somatic cells trans-differentiate in fancl mutant gonads, our results

are consistent with the hypothesis that fancl mutants, which lack

oocytes at the diplotene stage of meiosis, can not prevent the trans-

differentiation of pre-granulosa cyp19a1a-expressing cells into

Sertoli-like amh-expressing cells. This hypothesized mechanism

could explain the disappearance of cyp19a1a-expressing cells and

the maintenance and proliferation of amh-expressing cells in fancl

mutant gonads that results in gonad masculinization. Future

transcription profiling analyses comparing wild-type animals and

fancl mutants lacking oocytes will help to identify genes involved in

oocyte-soma signaling essential for ovary development.

Increased Apoptosis in fancl Mutants Compromises
Oocyte Survival and Causes Female-to-Male Sex Reversal

We observed that the loss of oocytes in fancl mutants during the

time-window of sex determination (25 dpf) is accompanied by an

abnormal increase of Caspase-3-mediated apoptosis of germ cells

compared to wild-type siblings. This result suggests the hypothesis

that the disappearance of meiotic oocytes in fancl mutants is due to

an increase in germ cell apoptosis, which provides a cellular

mechanism for the female-to-male sex reversal phenotype of fancl

mutants. To test this hypothesis, we suppressed cell death in fancl

mutants by making them homozygous for a tp53 mutation. We

show that the reduction of apoptosis in fancl2/2;tp532/2 double

mutants is sufficient to promote the survival of developing oocytes

and to rescue the female-to-male sex reversal phenotype of fancl

mutants. Our result showing that only fancl2/2;tp532/2 double

mutants developed any females, while their fancl2/2;tp53+/2 and

fancl2/2;tp53+/+ sibling controls developed exclusively as males,

indicates that the amount of germ cell apoptosis alters sex

determination in fancl mutants.

The double mutant experiments further show that Tp53 activity

mediates increased apoptosis associated with the fancl mutation.

Doubly homozygous fancl2/2;tp532/2 rescued females were fertile

and developed normal ovaries full of oocytes maturing through all

stages of oogenesis. Active Caspase-3 results show that the amount

of germ cell apoptosis is lower in double homozygous fancl2/2;

tp532/2 individuals than in their fancl2/2;tp53+/+ mutant sibling

controls, which further supports the hypothesis that the abnormal

increase of apoptosis in fancl mutants that compromises the

survival of meiotic oocytes is the mechanism responsible for the

female-to-male sex reversal.

We did not notice a sex ratio biased towards females in the

tp53M214K mutant line. This allele, however, is hypomorphic, and

may possess levels of apoptosis compatible with the male pathway.

This conclusion is supported by our finding that a few fancl2/2;

tp532/2 double mutants developed as males. An alternative

explanation is that mechanisms of apoptosis independent of Tp53

might occur in male gonads that promote oocytes to disappear in

developing testes.

Mutation of Fanconi Anemia Genes Promotes Activation
of Tp53-Mediated Apoptosis in Both Zebrafish and Mice

Our finding of increased germ cell apoptosis in fancl zebrafish

mutants is consistent with the increase of apoptosis in a variety of

cell types reported in Fanconi Anemia knockout mice. For

instance, Fanca2/2, Fancc2/2, and Fancg2/2 knockout mice show

increased apoptosis of hematopoietic or neuronal cells, which

might lead to a progressive loss of stem and progenitor cells

[68–70]. Bone marrow failure in children with Fanconi Anemia is

attributed to excessive apoptosis and subsequent failure of the

hematopoietic stem cell compartment (reviewed in [56]). Interest-

ingly, Fanca2/2 knockout mice also show increased male germ cell

apoptosis [37], suggesting that a role of the FA network related to

apoptosis of germ cells might be a conserved feature in fish and

mammals. Young Fancl2/2 knockout mice, in contrast to fancl

mutant zebrafish, do not show sex reversal but initially develop as

sterile males and sterile females. Fancl2/2 knockout male mice –

but significantly, not Fancl2/2 knockout female mice – can recover

fertility and become fertile adult males. These results suggest that

Fancl is necessary for germ cell proliferation in mouse embryos

and for the maturation of oocytes, but not for the proliferation or

maturation of spermatogonia in adulthood [58]. In zebrafish, the

fact that fancl mutant males are fertile and that fancl2/2;tp532/2

rescued females are also fertile indicates that Fancl function is not

essential for the maturation of zebrafish spermatogonia and

oogonia to become sperm or mature oocytes, but rather that Fancl

function affects specifically germ cell survival.

The loss of oocytes progressing through meiosis in fancl mutants

suggests that Fancl function is involved in the survival of

developing germ cells through meiosis, and that when Fancl is

mutated, developing oocytes cannot survive due to an inappro-

priate increase of Tp53-dependent germ cell apoptosis. This idea

is consistent with the fact that genetic deletion of Tp53 can rescue

the TNF-alpha dependent apoptosis caused by accumulation of

the pro-apoptotic protein kinase PKR resulting from a mutation of

the human FANCC gene [68], reviewed in [56]. Therefore,
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inappropriate activation of Tp53-dependent apoptosis might be a

common mechanism affecting cell survival in both zebrafish and

human after alteration of the FA network. Given the fundamental

similarity of the cellular mechanisms of the FA pathway in

zebrafish and humans, the screening of small molecule libraries for

compounds that can rescue the sex-reversal phenotype of zebrafish

fancl mutants might identify compounds of therapeutic importance

for Fanconi Anemia patients.

A Model for Zebrafish Sex Determination: Oocyte Survival
Regulated by Tp53-Mediated Apoptosis Can Alter Gonad
Fate

Our analysis of zebrafish fancl mutants suggests a model in

which oocyte survival regulated by Tp53-mediated apoptosis is a

central element that can tip gonad fate towards the male or the

female pathway (gradient red box in Figure 8). Zebrafish develop

initially as juvenile hermaphrodites, and have immature ovaries

during the juvenile stage regardless of their definitive sex [26–28].

This immature ovary is bipotential, and expresses both female

(cyp19a1a) and male (amh) specific markers (Figure 8A) [29,31,48].

During the fate decision period, some wild-type animals up-

regulate cyp19a1a and suppress amh expression (Figure 8B) thereby

tipping the fate of the gonad towards the female ovarian pathway

(Figure 8C). Complementarily, other wild-type individuals sup-

press cyp19a1a and up-regulate amh expression (Figure 8D) and

gonad fate tips towards the male testis pathway (Figure 8E). In this

work, we show that oocyte survival is crucial to maintain the

female gene expression profile of somatic cells that is essential for

ovary development.

In wild-type zebrafish, juvenile bipotential gonads contain

immature oocytes at early stage IB ([49]; and this work). In

transitional stages, gonads that become ovaries possess oocytes that

progress through meiosis to late stage IB and reach diplotene,

where they arrest for the remainder of oocyte development [49].

In fancl2/2 homozygous mutants, loss of oocytes at or before

diplotene likely alters signaling from germ line to the soma, leading

to loss of cyp19a1a expression, failure to down regulate amh

expression, and consequent masculinization of the gonads to form

testes (Figure 8G). The cyp19a1a gene encodes aromatase, the

enzyme that converts testosterone to estrogen. It is known that

aromatase is critical for female fate in zebrafish because

pharmacological treatments with the aromatase inhibitor fadro-

zole masculinizes gonads [71–73] and because, complementarily,

treatments with estrogen (estradiol) down-regulate amh expression

and feminize the gonad [74]. We hypothesize that the apoptotic

loss of oocytes in fancl mutants causes cyp19a1a gene expression to

disappear and leads to the failure to maintain aromatase levels,

which results in failure to produce and sustain high estrogen levels

in the gonad, causing gonads to abandon the female fate and

instead, enter the testis developmental program.

The presence of oocytes appears to be important for sex

determination not only for zebrafish, but also for medaka. In

contrast to zebrafish, in which all individuals begin oogenesis, in

medaka only XX females start oogenesis while XY males suppress

oogenesis and all germ cells remain undifferentiated (reviewed in

[75]). A feature common to both species is that the number of

developing oocytes is a key feature that tips undifferentiated

gonads towards an ovary fate ([31,75] and this work). In medaka,

the partial removal of PGCs can reduce the number of developing

oocytes below a threshold necessary for female development [76].

In addition, medaka hotei mutants, which have aberrant oocyte

development [77], fail to maintain cyp19a1a expression and gonads

develop into testes. Therefore, the survival of developing oocytes

appears to be important for sex determination in both zebrafish

and medaka. These considerations support the hypothesis that

when the number of oocytes exceeds a threshold, sexual fate tips

towards the female pathway, and alternatively, when the oocyte

number fails to exceed that threshold, the sexual fate tips towards

the male pathway, as we observed in zebrafish fancl mutants.

In zebrafish, presumptive juvenile males had more TUNEL

signal in germ cells than presumptive females had suggesting the

hypothesis that oocyte apoptosis could be the mechanism of

testicular and ovarian differentiation in zebrafish [27]. Consistent

with this hypothesis, analysis of ziwi null mutants showed that total

loss of germ cells by apoptosis caused ziwi mutants to develop

exclusively as sterile males [34]. Our results show that Tp53-

mediated germ cell apoptosis is a mechanism that can tip gonad

fate towards the female or male pathway, at least in fancl mutants.

Because environmental factors such as high temperature

(Figure 8H) or endocrine-disrupting chemical treatments can also

increase oocyte apoptosis and cause sex reversal [71–73], it is

plausible to suggest that the integration of genetic and environ-

mental factors converge to modify the levels of Tp53-mediated

germ cell apoptosis, which affect oocyte survival during the critical

time window to determine the sexual fate of the gonad, and

ultimately alter zebrafish sex determination.

Materials and Methods

Ethics Statement
Animals were handled in accordance with good animal practice

as defined by relevant animal welfare bodies, and the University of

Oregon Institutional Animal Care and Use Committee approved

all animal work (Animal Welfare Assurance Number A-3009-01,

IACUC protocol #08-13).

Animals
The zebrafish fancl mutation (HG10A; GenBank accession

AB353980) was generated by insertional mutagenesis by Tol2

transposon-mediated enhancer trap [42]. The tp53 mutant line

tp53zdf1 causing the amino acid substitution M214K was obtained

from ZIRC (http://zebrafish.org/zirc/home/guide.php) [55].

Genotyping of tp53 animals was performed as described [55].

Genetic nomenclature follows guidelines from ZFIN (http://zfin.

org/zf_info/nomen.html).

Genotyping of fancl Mutants
The full-length zebrafish fancl cDNA was previously described

[44] (GenBank accession AY968598). Primer pairs used to amplify

the fancl wild-type or mutant alleles were: WT_F:CTGGTC-

TTTATTGACTGTAATGGC; WT_R:TAGATAAGCTCCA-

GATTTGGCTTG; Mutant_F:GTCAGCCCATCCAGATCAG-

CAG; Mutant_R:CATGACGTCACTTCCAAAGGACC. PCR

conditions were: 5994uC; 32 cycles of: 30094uC, 30055uC, 1972uC;

followed by 10972uC. Sizes of PCR-amplified bands: Wild type:

479 bp; Mutant: 370 bp.

Reverse Transcriptase–PCR
Total RNA isolation from dissected adult testes and cDNA

synthesis were performed as described [41]. Primers used for reverse

transcriptase-PCR (RT-PCR) experiments were: F1:GACGGCTT-

CATCACAGTGCTG; R1:CATGACGTCACTTCCAAAGGA-

CC; F2:GAACCCTGACTGCACTGTCCTAC; R2:GCTTTG-

GCGACTGGTTGGCAGAC. PCR conditions were: F1-R1:

3994uC; 40 cycles of: 30094uC, 30058uC, 1930072uC; followed by

10972uC; F2-R2: 3994uC; 37 cycles of: 20094uC, 30060uC, 45072uC;

followed by 10972uC. Sizes of PCR-amplified bands: F1-R1:

1239 bp F2-R2: 232 bp.
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dead end Morpholino Injections
To obtain animals lacking germ cells, wild-type zebrafish

embryos from the AB strain were injected at the 1–2 cell stage with

antisense morpholino oligonucleotide (Gene Tools, Oregon)

directed against dead end as described [46]. Sibling non-injected

embryos and a fraction of dnd MO-injected embryos were fixed at

24 hours post-fertilization to confirm the presence or absence of

germ cells by whole-mount in situ hybridization using vasa probe

as described [47].

In Situ Hybridization and Histology
Animals were reared and collected under standard conditions

[78]. In situ hybridization experiments on zebrafish cryosections

were performed as described [29]. Adjacent sections of gonads

Figure 8. A model for zebrafish sex determination: oocyte survival regulated by Tp53-mediated apoptosis can alter gonad fate. This
model suggests germ cell apoptosis as a central feature that can integrate genetic and environmental factors to tip the fate of the gonad towards the
female or the male pathway and thus determine zebrafish sex. (A) Zebrafish juveniles initially develop an undifferentiated bipotential immature ovary
regardless of their eventual definitive sex. The juvenile gonad contains developing oocytes (shown in yellow), as well as somatic cells that express
female-specific markers like cyp19a1a (purple) and early male-specific markers like amh (green). This model suggests that different levels of germ cell
apoptosis (indicated as a red gradient box from low (white) to high apoptosis (red)) has the potential to tip the fate of the gonad: high apoptosis (e.g
fancl2/2 mutants) tips fate towards the male pathway, while low apoptosis (e.g. fancl2/2 tp532/2 mutants) tips fate towards the female pathway and
rescues the sex-reversal phenotype of fancl mutants. In this model, wild-type zebrafish can enter the male pathway at different times during the fate
decision time-window (dashed arrows in apoptosis box) ([30] and this work), which is probably related to the level of apoptosis that affects oocyte
survival in each particular individual. (B) Analysis of somatic markers reported here shows that the survival of oocytes during the fate decision time-
window is crucial to maintain and increase expression of cyp19a1a in the somatic cells of the gonad (B, purple gradient) and to down-regulate the
expression of amh in the somatic cells of the gonad (B, green gradient), perhaps due to an oocyte-derived signal, which in fancl mutants would be
compromised. (C) This gene expression profile feminizes the gonad, oocytes continue to develop, the gonad differentiates as an ovary, and the
individual becomes a female. (D) In the absence of oocytes during sex fate decision time, as in fancl mutants, gonads do not maintain cyp19a1a (D,
purple gradient), but instead up-regulate amh expression (D, green gradient). (E) This gene expression profile masculinizes the gonad, which
differentiates as a mature testis and the individual becomes a male. (F,G) The absence of surviving oocytes in fancl2/2 mutants is probably due to
high levels of germ cell apoptosis, which causes all animals to develop as males due to female-to-male sex reversal. This sex reversal phenotype can
be rescued by decreasing germ cell apoptosis in double homozygous fancl2/2;tp532/2 mutants. Therefore, our analysis of fancl mutants provides
evidence supporting the model that the survival of developing oocytes through meiosis, and not the mere presence of germ cells, is a critical factor
that tips the fate of the gonad towards the female pathway in zebrafish. (H) Other work has shown that environmental factors such as high
temperature can also induce oocyte apoptosis and tip the fate of the gonads towards the male pathway [71]. In light of this analysis, our model
suggests that sex-determining mechanisms in zebrafish integrate signals from genetic and environmental factors that can modify the levels of Tp53-
mediated germ cell apoptosis, which influence oocyte survival during the period of gonad fate decision, and tip the fate of the gonad towards the
female or the male pathway, thus determining the sex of zebrafish.
doi:10.1371/journal.pgen.1001034.g008
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were obtained by placing three consecutive sections of the gonad

on three different slides. Probes for amh and cyp19a1a were made as

described [29] and probe for vasa was made from its 39end as

described [47]. A fancl cDNA fragment of 786 nt containing the

PHD domain (nucleotides 646-1431 of AY968598) was cloned in

TOPO vector (Invitrogen) and used to synthesize DIG-labeled

riboprobe (Boehringer Mannheim). For gonad histology, eutha-

nized animals were fixed in Bouin’s fixative for about 24–48 hours

and washed repeatedly in 70% ethanol. Animals were dehydrated

and embedded in paraffin, sectioned at 7 microns, and stained

with hematoxylin and eosin.

Immunohistochemistry
Animals were fixed at 25 dpf in 4% PFA ON at 4uC,

dehydrated, embedded in paraffin, and sectioned at 7 microns.

Apoptotic cells were detected by immuno-fluorescence using anti-

active Caspase-3 as primary antibody (1:200, BD Pharmingen)

and Alexa-Fluor594 goat anti-rabbit as secondary antibody

(1:1000, Invitrogen) following an immuno-histochemical protocol

(S. Cheesman, personal communication). Gonads were screened

for positive signal by DIC-fluorescence microscopy. The number

of positive cells in gonads of fancl and wild-type animals was scored

in 840 sections: 70 sections containing gonads per each animal

(n = 12).
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