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Abstract 

 

A comparison is established between the contributions of transverse and longitudinal 

components of both the propagating and the evanescent waves associated to freely-

propagating radially-polarized nonparaxial beams. Attention is focused on those fields 

that remain radially polarized upon propagation. In terms of the plane-wave angular 

spectrum of these fields, analytical expressions are given for determining both the 

spatial shape of the above components and their relative weight integrated over the 

whole transverse plane. The results are applied to two kinds of doughnut-like beams 

with radial polarization, and compare the behaviour at two transverse planes. 

 

4.1 Introduction 

 

As is well known, the longitudinal component (along the propagation direction z) of a 

light beam is negligible in the paraxial approximation. Consequently, the electric field 

vector is assumed to be transverse to the z-axis, and represented by means of two 

components. This provides a considerable simplification in the calculations. However, 

in a number of applications (for instance, particle trapping, high-density recording and 

high-resolution microscopy, to mention only some of them), the light beam is strongly 

focused and raises spot sizes smaller than the wavelength. In such cases, the paraxial 

approach is no longer valid, and a nonparaxial treatment is required. This is a topic of 

active research, which has been extensively studied in the last years [1-9]. 

 



So far, different vectorial formulations of nonparaxial electromagnetic fields have been 

investigated in the literature (see, for example, [10-13]). Among them, several types of 

representations based on the plane-wave angular spectrum have been reported in the last 

years [5,14,15]. Such kind of decomposition has revealed to be useful because it allows 

separate the contribution of the propagating and evanescent waves. In particular, the 

propagating electric-field solution has been written as the sum of two terms [16]: one of 

them is transverse to the propagation direction; another one exhibits a non-zero 

longitudinal component and its associated magnetic field is also transverse. Such 

analytical description differs from alternative proposals appeared in the literature, also 

based on the plane-wave spectrum (see [5] and references therein).  
 

In addition, such formalism enables us to analytically incorporate the presence of 

evanescent waves [1,5,17,18] when their contribution is significant. These waves are 

receiving increasing attention due, for instance, to their possibilities for subwavelength 

resolution. As it will be shown in the present paper, the evanescent field can also be 

written as the sum of transverse and longitudinal parts. We will study and compare the 

relative weight of all these terms on the basis of the plane-wave angular spectrum of the 

field. Attention will be focused on beams with radial polarization distributions [2,4,15,19-

25], a class of fields with important potential applications. More specifically, in the 

present work we will consider radially polarized beams that retain this character upon free 

propagation [15]. We refer to them as RPM fields (radially-polarized-maintained fields). 

Doughnut-like beams with radial polarization represent illustrative examples of these 

fields (used, for example, as light sources in super-resolution processes). 
 

This paper is organized as follows. In the next section, the formalism and the key 

definitions are introduced. The field is decomposed as the sum of propagating and 

evanescent waves. As occurs for the propagation term, the evanescent part split, in turn, 

into transverse and longitudinal components. Section 3 considers RPM beams, and 

analyzes the relative contribution of the transverse and longitudinal terms of both the 

propagating and the evanescent parts. The width of the plane-wave angular spectrum of 

the field is shown to play a central role in the comparative significance of the longitudinal 

component of the propagating wave. The above results are applied to several illustrative 

examples in Section 4. Finally, the main conclusions are summarized in Section 5. 

 



2 Formalism and key definitions 

 

Let us consider a monochromatic electromagnetic beam whose propagation is described 

by the Maxwell equations (for simplicity, we will consider free-space propagation). As 

is well known, the electric and magnetic fields, E and H, can be expressed in terms of 

their plane-wave angular spectrum [16],  

 

[ ]( , , ) ( , , )exp i ( )x y z u v z k xu yv dudv
+∞

−∞

= +∫E E ,     (1.a) 

 

[ ]( , , ) ( , , )exp i ( )x y z u v z k xu yv dudv
+∞

−∞

= +∫H H ,       (1.b) 

 

where k is the wavenumber, and, for simplicity, the time-dependent factor 

exp( )i tω− has been omitted. In these equations, E~ and H~ denote the spatial Fourier 

transform of E and H, respectively. For simplicity, from now on, we will choose z as 

the direction of propagation of the beam. Instead of using Cartesian coordinates, for the 

sake of convenience we will next use cylindrical coordinates R, θ and z, i.e.,  

 

x = R cosθ ,          (2.a) 

 

y = R sinθ ,          (2.b) 

 

along with polar coordinates, ρ and φ, related to the transverse Cartesian Fourier-

transform variables u, v by the expressions  

 

u = ρ cosφ ,          (3.a) 

 

v = ρ sinφ  .          (3.b) 

 

In terms of these variables, a general solution of the Maxwell equations in the Fourier 

space can formally be written as follows 



 

0( , , ) ( , ) exp( )z ikzρ φ ρ φ ξ=E E ,       (4) 

 

with 

 

ξ = (1−ρ2)1/2,    ρ ≤ 1,         (5.a) 

 

ξ = ± i(ρ2−1)1/2,    ρ > 1,        (5.b) 

 

where the signs + and – correspond, respectively, to positive (z > 0) and negative (z < 0) 

values of the variable z. In the present work, attention will be focused on the region z>0.  

 

Since the electric field should obey the Maxwell equation ⋅∇ E = 0, the Cartesian 

components of 0E  should satisfy the condition 

 

0 0 0 0y zE u E v E ξ+ + =x .        (6) 

 

The vector H  is then obtained from 0E  in the form 

        

=),~ zφρ ,(H (σ × 0 ) exp( )ikzξE ,       (7.a) 

 

where 
 

( , , ) ( cos , sin , )u v ξ ρ φ ρ φ ξ= =σ ,        (7.b) 

      

We see from Eq. (7.b) that the third component of vector σ could be a complex number 

whose presence is closely related with the appearance of evanescent waves (see below).  
 

On the basis of the plane-wave spectrum given by Eq. (4), the electric field solution of 

the Maxwell equations at any transverse plane z reads 
 

[ ]
2

0
0 0

( , , ) ( , )exp i cos( ) exp(i )R z k R kz d d
π

θ ρ φ ρ θ φ ξ ρ ρ φ
∞

= −∫ ∫E E  ,   (8) 



where 0E~  should fulfil Eq. (5). To our purposes, let us now split this field ),,( zR θE  as 

the sum of two terms: 

 

),,( zR θE = ),,( zRpr θE + ),,( zRev θE ,      (9) 

 

where 

 

[ ]
1 2

0
0 0

( , , ) ( , )exp i cos( ) exp(i )pr R z k R kz d d
π

θ ρ φ ρ θ φ ξ ρ ρ φ= −∫ ∫E E ,  (10.a) 

 

[ ] φρρξφθρφρθ
π

ddkzRkzRev )i(exp)cos(iexp),(~),,(
1

0

2

0
∫ ∫
∞

−= EE .   (10.b) 

 

The first term, Epr, involves a superposition of plane waves, and represents the 

contribution of the propagating waves (some authors [26] refer to this term as the 

homogeneous part of the angular spectrum). The second term of Eq. (9), Eev, should be 

understood as a superposition of inhomogeneous waves that decay at different rates 

along the propagation axis. As is well known, close to the initial plane, the evanescent 

part of the exact solution would be significant enough in the nonparaxial case. 

Otherwise, Eev is negligible.  

 

Let us now choose a reference system formed by the orthogonal unitary vectors e1 and 

e2, namely [16] 

 

e1 = (sinφ, −cosφ, 0) ,          (11.a) 

 

2 2
2 1 cos 1 sinρ φ ρ φ ρ= − − −( , , )e .      (11.b) 

 

The propagating field can then be written in the form  

 

E pr(r) =
1 2

1
0 0

( , ) ( )exp(i )a k d d
π

ρ φ φ ρ ρ φ⋅∫ ∫ e s r   +
1 2

2
0 0

( , ) ( , )exp(i )b k d d
π

ρ φ ρ φ ρ ρ φ⋅∫ ∫ e s r , 

           (12) 



where functions ),( φρa and ),( φρb give the projection of 0
~E  onto the vectors e1 and e2, 

respectively, i.e.,  
 

a(ρ, φ) = 0
~E ⋅e1 ,         (13.a) 

 

b(ρ, φ) = 0E~ ⋅e2 ,         (13.b) 

 

the dot symbolizing the inner product. It is interesting to remark that, for the 

propagating field Epr, condition (5) reduces to 
 

0),(),(~
0 =⋅ φρφρ sE ,         (14) 

 

where 
 

( )2cos sin 1ρ φ ρ φ ρ φ ρ= −( , ) , ,s , with [ ]10,∈ρ ,     (15) 

 

is a unitary vector associated to each plan-wave. Thus, the triad s, e1 and e2 constitute a 

mutually orthogonal system of unit vectors (see Fig. 1). In fact, the choice of these three 

vectors characterizes the formalism used in this paper. 

 
 

Fig. 1 Mutually-orthogonal unitary vectors s, e1 and e2. Note that vector e1 is contained in the 

transverse plane x-y and is orthogonal to the plane formed by vectors e2 and s, which, in turn, 

contains the z-axis (remember that these two vectors have longitudinal components along z). 

x

y

z

s

e2

e1 



 

Let us finally consider the field solution associated to the evanescent term (cf. Eq. (9) 

and (10.b)). In a similar way to that used for the propagating term, we can formally 

write the evanescent part of the field in the form [18] 

 

Eev = [ ] [ ]
2

1
1 0

( , ) ( ) ( , ) ( , ) exp i ( )ev ev eva b k d d
π

ρ φ φ ρ φ ρ φ ρ ρ φ
∞

+ ⋅∫ ∫ e e s r ,   (16) 

 

where the unit vector e1 was defined before, 

 
1 1

2 22 2

2

1 ( i( 1) cos , i( 1) sin , )
2 1

eve ρ φ ρ φ ρ
ρ

= ± − ± − −
−

 ,   (17.a) 

 

2( cos , sin , i ( 1))evs ρ φ ρ φ ρ= ± − , with [ ]∞∈ ,1ρ ,     (17.b) 

 

are vectors with complex components (again, the double sign + and – refers to z > 0 and 

z < 0, respectively) and  
 

bev(ρ, φ) = 0E~ ⋅eev .          (18) 

 

In Eq. (18) the product a ⋅b means ∗∗∗ ++ zzyyxx bababa  . Thus, note that 0ev ev⋅ =e s  for 

any z. In addition, the field evE fulfils condition (6) when [ ]∞∈ ,1ρ . It should also be 

remarked that the separate contribution of the evanescent part allows compare the 

relative weight of this term with regard to the propagating field (by calculating the 

respective square modulus, integrated throughout the beam profile). This can be used, 

for example, to find the ranges of both, the propagation distance and the beam size for 

which the evanescent waves are significant. 

 

This evanescent part can be though as a superposition of inhomogeneous waves whose 

constant phase surfaces are planes orthogonal to the (non-unitary) transverse vector s0, 

defined in the form 

 

s0 = (ρ cosφ , ρ sinφ, 0) ,        (19) 



 

and whose constant-amplitude planes are perpendicular to the  propagation axis z. 

 

The global field ( , , )R zE θ would finally read (see Eq. (9)) 
 

[ ]

1 2

0 0
1 2

0 0

2

1 0

( , , ) ( , ) ( )exp )

( , ) ( , )exp )

( , ) ( ) ( , ) ( , ) exp .ev

R z a ik d d

b ik d d

a b ik d d

1

2

1 ev ev

E e s r

e s r

e e s r)

(

(

(

π

π

π

θ ρ φ φ ρ ρ φ

ρ φ ρ φ ρ ρ φ

ρ φ φ ρ φ ρ φ ρ ρ φ
∞

= ⋅

+ ⋅

+ + ⋅

∫ ∫

∫ ∫

∫ ∫

   (20) 

 

It should be noted that the exact solution of the Maxwell equations given by Eq. (20) is 

valid for both, paraxial and nonparaxial regimes. The angular spectrum 0E~  at some 

initial plane would characterize each particular beam.  

 

3 Radially-polarized-maintained fields 

 

Let us now consider a general RPM beam. These fields exhibit four main properties, 

namely, 
 

a) Function ( , )a ρ φ  (see Eq. (13.a)) equals zero [15]. 

b) The plane-wave angular spectrum is independent of φ . This means that 

( , ) ( )b bρ φ ρ= (see Eq. (13.b)). 

c) It can also be shown from Eqs. (12), (17.a) and (18) that ( , )evb ρ φ does not depend 

onφ . 

d) The longitudinal component differs from zero on the propagation axis z [15]. 
 

Taking this behaviour into account, the propagating and evanescent parts of this type of 

beams become at the initial plane z = 0 
 

[ ]
1 2

2
0 0

( , ,0) ( ) exp i cos( )pr R b k R d d
π

θ ρ ρ θ φ ρ ρ φ= −∫ ∫E e ,    (21.a) 

 



and 
 

[ ]
2

1 0

( , ,0) ( ) exp i cos( )ev ev evR b k R d dE e
π

θ ρ ρ θ φ ρ ρ φ
∞

= −∫ ∫ .    (21.b) 

 

In particular, the general propagation law of prE reduces to the simple form [27] 

 

pr R zθE ( , , )  = i CT(R, z) uR + CL(R, z) uz ,       (22) 

 

where (cos ,sin ,0)R θ θ=u and (0,0,1)z =u are unitary vectors in the radial and 

longitudinal directions, respectively, and 

  

 CT(R, z) = 2π ρρρρρρ dikzkRJb )1exp()(1)( 2
1

1

0

2 −−∫  ,    (23.a) 

 

 CL(R, z) = - 2π ρρρρρρ dikzkRJb )1exp()()( 2
0

1

0

−∫ ,    (23.b) 

 

0J and 1J being the Bessel functions of the first kind of order 0 and 1, respectively. 

Since Ru is orthogonal to the z-axis, the first term of the left-hand side of Eq. (22) 

would also be both radially polarized and transverse to the propagation axis at any plane 

z.  

 

The polarization state of Epr can be characterized by means of the so-called degree of 

linear polarization,Λ , introduced by Lekner in [3]. Thus, in terms of functions CT(R, z) 

and CL(R, z) given by Eqs. (23.a) and (23.b), we have 
 

 2 2 2( , ) ( , )pr L TC R z C R z= −E         (24.a) 

 

and  

 
2 2 2

L TC C= +E ,         (24.b) 

 



so that  

 
2 2

2 2( , ) L T

L T

C C
R z

C C

−
Λ =

+
.        (25) 

   

We see that Λ  is rotationally symmetric around the z-axis (as expected), and the field is 

no longer linearly polarized after propagation (except along the z-axis, where 

(0, ) 1zΛ =  for any z). 

 

The relative contributions of the transverse and longitudinal terms of the propagating 

field can then be compared each other through the ratio ( ) / ( )pr L pr TI I , where ( )pr LI and 

( )pr TI denote the squared modulus of the longitudinal and transverse parts of prE , 

integrated over the whole transverse plane. Since the (longitudinal and transverse) 

components of prE  are written in terms of their plane-wave spectrum, it follows from 

the application of the Parseval theorem, that ( )pr LI and ( )pr TI  do no change upon free 

propagation. Consequently, it would suffice to calculate the ratio ( ) / ( )pr L pr TI I  at the 

initial plane. By taking into account the value of ( , ,0)pr RE θ  given by Eq. (21.a), we 

obtain 
 

1
2 2

0

( ) 2 ( ) (1 )pr TI b dπ ρ ρ ρ ρ= −∫ ,        (26.a) 

 

1
22

0

( ) 2 ( )pr LI b dπ ρ ρ ρ ρ= ∫ ,        (26.b) 

 

so that 
 

1
2 3

0
1

2 2

0

( )
( )
( )

( ) (1 )

pr L

pr T

b d
I
I

b d

ρ ρ ρ

ρ ρ ρ ρ
=

−

∫

∫
.         (27) 

 



It is clear from Eqs. (23) and (27) that ,  T LC C  and the ratio ( ) / ( )pr L pr TI I  are 

determined by the function ( )b ρ  (cf. Eq. (13.b)).  

 

To get deeper insight into the physical meaning of function ( )b ρ , let us consider the 

ratio (at any z) 

 
2

2

0 0
2

2

0 0

( )pr z

z

pr

E RdRd

RdRdE

π

π

θ
η

θ

∞

∞=
∫ ∫

∫ ∫
,        (28) 

 

where ( )pr zE  denotes the longitudinal component of the propagating wave. In terms of 

( )b ρ , zη  becomes 

 
1 2

2 3

0 0
1 2

2

0 0

z

b d d

b d d

π

π

ρ ρ φ
η

ρ ρ φ
=

∫ ∫

∫ ∫
.         (29) 

 

But Eq. (29) can be understood as the (normalized) second-order moment, 2
bρ< > , of 

function ( )b ρ . In other words, =zη b>< 2ρ  characterizes the angular size of the region 

where 2( )b ρ  is important. Consequently, for those RPM fields whose angular spectrum 

exhibits small values of 2
bρ< > , the weight of the longitudinal component of the 

propagating wave would be small, compared with 
2

prE . In the limit 2
bρ< >  << 1, we 

approach the paraxial regime. On the contrary, high values of 2
bρ< >  (closed to 1) 

means that we are considering the nonparaxial case. 
 

 

With regard to the evanescent wave associated to RPM fields, it can be shown that this 

wave splits in transverse and longitudinal components, in a similar way to that occurs 

for the propagating field. Furthermore, the relative weight of such components can be 



compared by using the ratio ( ) / ( )ev L ev TI I , where ( )ev LI  and ( )ev TI  represent the 

squared modulus (integrated over the whole plane) of the longitudinal and transverse 

components associated to the evanescent part of the field. By using Eq. (21.b), we 

obtain at plane z = 0  
    

2
2

2
1

1( ) 2 ( )
2 1ev T evI b dρπ ρ ρ ρ

ρ

∞ −
=

−∫ ,       (30.a) 

 

22
2

1

( ) 2 ( )
2 1ev l ev

dI b ρ ρπ ρ ρ
ρ

∞

=
−∫ ,       (30.b) 

 

and 

 
3

2
2

1
2

2
2

1

( )
2 1( )

( ) 1( )
2 1

ev
ev L

ev T
ev

b d
I
I

b d

ρρ ρ
ρ

ρρ ρ ρ
ρ

∞

∞

−
=

−
−

∫

∫
.       (30.c) 

 

In these equations, ( )ev LI and ( )ev LI  refer to plane z = 0. In addition, the ratio ( )
( )

ev L

ev T

I
I

 

can also be written in the form  

 

( ) 1
( )

ev L

ev T

I
I

δ= + ,          (31) 

 

where 

 
2

2
1

2
2

2
1

( )
2 1

0
1( )

2 1

ev

ev

b
d

b d

ρ
ρ

ρ
δ

ρρ ρ ρ
ρ

∞

∞

−
= >

−
−

∫

∫
.       (32) 

     

Accordingly, at any plane z, we finally have 
 



( ) 1
( )

ev L

ev T

I
I

> .          (33) 

 

In other words, for the evanescent term of RPM beams, the contribution of its 

longitudinal component is always greater than the contribution of the transverse one at 

any plane transverse to the propagation direction. 
 

4. Examples 

 

We will next analyze two kinds of RPM beams characterized by their respective plane-

wave spectrum. Although these fields have been investigated in the literature in recent 

years, however, to our knowledge, this is the first time in which the behaviour and 

significance of the transverse and longitudinal components of their associated 

evanescent waves are studied and compared.  

 

To begin with, let us consider a vectorial distribution 1( , )x yf at plane z = 0 whose 

angular spectrum 1f  takes the form [27] 

 

1( , ) ( )(0,0,1)ff ρ φ ρ= ,        (34) 

 

where ( )f ρ is an scalar function independent of φ . We see from Eq. (34) that the 

angular spectrum of 1f  only exhibits a longitudinal component. Unfortunately, this 

implies that 1f  does not fulfil the Maxwell equations, and therefore it cannot represent a 

realistic light field. However, on the basis of the formalism reported in Section 2 (see 

Eq. (20)), it can be shown that the following field, generated by 1f , obeys the Maxwell 

equations: 

 
1 2

1 1 2
0 0

2

1
1 0

( , , ) ( ) ( , )exp )

( ) ( , )exp .ev

R z ik d d

ik d d

π

π

θ ρ φ ρ ρ φ

ρ φ ρ ρ φ
∞

= ⋅ ⋅

+ ⋅ ⋅

∫ ∫

∫ ∫

2

ev ev

E f e e s r

f e e s r)

(

(

     (35) 

 

By comparing this expression with Eq. (20), we obtain 
 



( , ) 0;  ( ) ( )a b fρ φ ρ ρ ρ= = − ; 
2

( ) ( )
2 1

evb f ρρ ρ
ρ

= −
−

.    (36) 

 

The second example is, in a sense, complementary to the first case, because now the 

starting point is a vector function 2f  whose plane-wave angular spectrum 

2( , )f ρ φ exhibits a radial (transverse) distribution 

 

2( , ) ( )(cos ,sin ,0)ff ρ φ ρ φ φ= ,       (37) 

 

with a vanishing longitudinal component. Although 2f  cannot be accepted as a realistic 

light field, Eq. (35) is still valid, and the field 2E  (obtained after substituting 1f  by 2f  

in this expression) represents another solution of the Maxwell equations. In this case we 

get (cf. Eq. (20)) 

 

2( , ) 0;  ( ) ( ) 1a b fρ φ ρ ρ ρ= = − ; 
2

2

1( ) ( )
2 1

ev
ib f ρρ ρ

ρ

−
=

−
,   (38) 

 

It remains to select function ( )f ρ  that characterizes the RPM beams chosen in the 

examples. We will consider an angular spectrum with a doughnut-shape profile of the 

form 

 
2

2( ) expf
D D
ρ ρρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,        (39) 

 

with 
0

1D
kw

= , where 0w denotes a parameter closely connected with the transverse size 

of the field at the beam waist. 

 

Figure 2 plots the squared modulus of the components of the electric fields E1 and E2 at 

the initial plane z = 0: Figs. (a) and (b) show the transverse and longitudinal components 

of the propagating wave, whereas Figs.(c) and (d) refer to the evanescent part. Several 

properties follow at once from these figures: 



- In the vicinity of the propagation axis z, the longitudinal components of both the 

propagating and the evanescent waves predominate with regard to their 

respective transverse components. Moreover, the peak value of the longitudinal 

component of the evanescent wave exceeds the value of the transverse 

component more than one order of magnitude. This difference is not so strong 

for the propagating wave.  

- Close to the z-axis, the magnitudes of the components of the propagating part 

associated to E1 are smaller than the respective components of E2. 

-  The opposite occurs for the evanescent waves. In other words, near the 

propagation axis, the evanescent part of E1 predominates with respect to the 

evanescent term associated to E2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Squared modulus of the field across the initial plane z = 0 versus the radial distance from the z-

axis. Note that the beam profiles are rotationally symmetric. In all the figures 0 0.2w λ= . 

Fig.(a):
2

( )pr TE ; Fig.(b): 
2

( )pr LE ; Fig.(c): 
2( )ev TE ; Fig.(d): 

2( )ev LE . Abscises are given in 

units of 0R w . The numbers that appear in ordinates (arbitrary units) have been given for comparative 

purposes between the figures (all the curves use the same scale). Blue line refers to the example 

characterized by Eqs. (34) and (36), and the red line plots the field derived from Eqs. (37) and (38). 



 

 

In terms of parameter w0, Fig. 3 compares the contributions (i.e., integrated squared 

modulus) of the transverse and longitudinal components of both the propagating and the 

evanescent waves at plane z = 0. From this figure it is apparent that 

 

- The ratio ( ) ( )ev L ev TI I  increases almost linearly with w0, and takes quite similar 

values for both fields E1 and E2. We see that ( )ev LI reaches much higher values 

than ( )ev TI for wider beams. 

- The blue curves (associated to E1) of Figs. (b)-(d) take higher values than the red 

curves corresponding to E2; 

- When w0 increases, the curves of Figs. (b)-(d) take lower values. This happens 

because small values of w0 lead to increasing the nonparaxial behaviour. Thus, 

 i) when 0 0.4w λ> , the transverse and the longitudinal components of the 

 evanescent wave become negligible (for both fields E1 and E2), 

 ii) when 0w λ> , ( )pr LI < 0.1 ( )pr TI  (for both fields E1 and E2).  

 

The above characteristics keep essentially valid after propagating a short distance from 

the initial plane. Figures 4 and 5 illustrate the behaviour at plane z λ= . The main 

qualitative differences with regard to plane z = 0 can finally be summarized as follows: 

 

- The presence of ripples (circles around the z-axis) in both the transverse and the 

longitudinal components of the evanescent wave; 

-  Both fields, E1 and E2, exhibit quite similar spatial distributions of the 

components of their respective evanescent terms. This does not happen for the 

propagating wave in the vicinity of the z-axis. 

- The contribution of the evanescent wave has significantly reduced, as expected.  
 

 

 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Ratio between transverse and longitudinal components of the propagating and 

evanescent waves versus the parameter 0w , which ranges in the interval [ ]0.2  ,  λ λ . The 

curves have been plotted at the initial plane z = 0. Blue and red lines have the same meaning 

as in Fig. 2. Figure (a): ( ) ( )ev L ev TI I ; Fig. (b): ( ) ( )pr L pr TI I ; Fig. (c): ( ) ( )ev L pr LI I ; 

Fig. (d): ( ) ( )ev T pr TI I . Note that the two curves of Fig. (a) are almost coincident.  

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The same as in Fig. 2 but now the curves are plotted at plane z λ= . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The same as in Fig. 3 but now the curves are plotted at plane z λ= . 



 

5. Conclusions 
 

In terms of the plane-wave angular spectrum of a light beam, the propagating and the 

evanescent parts of the nonparaxial field have been split in transverse and longitudinal 

components. For radially-polarized-maintained beams (i.e., radially polarized fields that 

retain this character upon propagation), analytical expressions have been provided that 

allow to compute both the spatial shape of such components and the ratio between their 

respective contributions, integrated over the whole transverse plane.  In addition, this 

formalism enables to establish the range for which a nonparaxial regime should be 

considered. In the examples, a comparison has been made between the behavior of two 

types of doughnut-like beams with radial polarization, along with their evolution under 

short distance propagation. 
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