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Abstract: In the context of a compound Poisson risk model, we define a threshold pro-

portional reinsurance strategy: A retention level k1 is applied whenever the reserves are less

than a determinate threshold b, and a retention level k2 is applied in the other case. We

obtain the integro-differential equation for the Gerber-Shiu function (defined in Gerber and

Shiu (1998)) in this model, which allows us to obtain the expressions for ruin probability and

Laplace transforms of time of ruin for several distributions of the claim sizes. Finally, we

present some numerical results.

JEL Classification: G22.

Keywords: threshold proportional reinsurance strategy, Gerber-Shiu function, ruin proba-

bility, time of ruin.

Resumen: En un modelo de Poisson compuesto, definimos una estrategia de reaseguro

proporcional de umbral: Se aplica un nivel de retención k1 siempre que las reservas sean

inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos

la ecuación íntegro-diferencial para la función Gerber-Shiu (definida en Gerber-Shiu (1998))

en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la

transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía

individual de los siniestros. Finalmente presentamos algunos resultados numéricos.

Palabras clave: estrategia de reaseguro umbral, función Gerber-Shiu, probabilidad de ruina,

momento de ruina.



1 Introduction

Studies on the effect of reinsurance strategy on solvency measures have concentrated their

attention on the ultimate ruin probability. Several of them analyze the effect of reinsurance

on the adjustment coefficient or Lundberg exponent (Waters (1979), Chapter 8 of Gerber

(1979), Centeno (1986,2002) and Hesselager (1990)).

Many authors have considered the problem of determining the optimal level and/or type

of reinsurance, where optimal is defined in terms of some stability criterion, manly the proba-

bility of ruin (Waters (1983), Goovaerts et al.(1989), Chapter 6 of Bühlmann (1996), Chapter

14 of Bowers et al. (1997), Verlaak and Beirlant (2003), Schmidli (2001, 2002), Hipp and

Vogt (2003) or Taksar and Markussen (2003)). The reinsurance strategy considered can be

static or dynamic. In the first case, it is assumed that the level and type of reinsurance

remain constant throughout the period considered, which in many cases is infinite (Waters

(1983), Centeno (1986, 2005) and Dickson and Waters (1996)). In the dynamic case, we can

find papers which consider that for a fixed type of reinsurance the level of reinsurance can

change continuously (Hojgaard and Taksar (1998), Schmidli (2001, 2002), Hipp and Vogt

(2003) and Taksar and Markussen (2003)).In these papers, optimal stochastic control tools

in continuous time are used. Dickson and Waters (2006) assume that the insurer can change

the type and/or level of reinsurance at the start of each year, so they studied a discrete time

stochastic control problem.

In this paper we consider a classical (compound Poisson) model for the insurer surplus,

and introduce a dynamic reinsurance strategy. We assume that the insurer considers a

proportional reinsurance, but the retention level is not constant and depends on the level of

the surplus. We then define a threshold proportional strategy: A retention level k1 is applied

whenever the reserves are less than a determinate threshold b, and a retention level k2 is

applied in the other case. As, for the insurer, reinsurance is a tool for controling the solvency

of the portfolio, it seems natural that the retention level depends on the surplus level at each

moment. The threshold proportional reinsurance strategy that we propose in this paper is

an easy and clear way to include this dependence.

The objective of this paper is to analyze the effect of this new strategy on the solvency
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measures of the insurer using the Gerber-Shiu function (defined in Gerber and Shiu (1998)),

which allows us to obtain ruin probability and time of ruin.

The paper is organized as follows: In Section 2 we explain the assumptions and some

preliminaries. In Section 3, we obtain the integro-differential equation for the Gerber-Shiu

function in a model with a threshold reinsurance strategy. Mathematically, the process is

similar to that applied by Lin and Pavlova (2006) in order to analyze dividend problems. We

then analyze some special cases of the Gerber-Shiu function. In Sections 4 and 5 we obtain

the expressions for the ruin probability and time of ruin if the individual claim amount is

distributed as an exponential and a phase-type(2). Finally, in Section 6, some numerical

results are presented.

2 Assumptions and preliminaries

In the classical risk theory model, the surplus, R(t), at a given time t ∈ [0,∞) is defined

as R (t) = u + ct − S (t), with u = R (0) ≥ 0 being the insurer’s initial surplus, S (t) the

aggregate claims and c the rate at which the premiums are received.

S (t) is modeled as a compound Poisson process

S (t) =

N(t)X
i=1

Zi,

where N (t), the number of claims occurring until time t, follows a Poisson process with

parameter λ, the amount of claims {Zi, i ≥ 1} is a sequence of independent and identi-

cally distributed random variables with density function f (z) and N (t) is independent of

{Zi, i ≥ 1}.

The instantaneous premium rate, c, is proportional to the product of the mean number of

claims, λ, and the mean value of the claim amount, E [Z]. In other words, c = λE [Z] (1 + ρ),

where ρ, called the security loading coefficient, is a positive constant, in order to fulfill the

net profit condition.

In this model, and in the more general ordinary renewal model, the claims interrocurrence

times, {Ti}∞i=1, are modeled as a sequence of independent and identically distributed random

variables, where T1 denotes the time until the first claim and Ti , for i > 1, denotes the time
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between the (i− 1)-th and i-th claims. Note that in a Poisson process with parameter λ,

Ti, i ≥ 1 has an exponential distribution with mean 1/λ.

The time to ruin is defined as T = min {t | R (t) < 0}, with T = ∞ if R (t) ≥ 0 for all

t ≥ 0. The ruin probability is

ψ (u) = P [T <∞ | R (0) = u] = E {I (T <∞) | R (0) = u} ,

where I (A) = 1 if A occurs and I (A) = 0 otherwise.

Let us first consider first the effect of a proportional reinsurance. The ceding company

(insurer) and the reinsurer agree on a cession percentage, say (1− k), k being the retention

level applied to each claim. Then, in one period, the expected aggregate cost assumed by the

insurer is kλE[Z] and the expected aggregate cost assumed by the reinsurer is (1− k)λE[Z].

We assume that insurance and reinsurance premiums are calculated by the expected value

principle with positive loading factors, ρR > 0 being the reinsurer loading factor.

The total premium income retained by the insurer, c0, depends on ρR and k, where

c0 = λE[Z](1 + ρ)− (1− k) (1 + ρR) λ E[Z].

A new security loading for the insurer, ρN , can be defined,

c0 = kλE[Z](1 + ρN) = λE[Z] ((1 + ρ)− (1− k)(1 + ρR))

=⇒ ρN = ρR − ρR−ρ
k

,∀k > 0.

If ρ = ρR, the total premium paid by the policyholder c is shared between insurer and

reinsurance in the same proportion k, so c0 = kc and ρN = ρ.

In this paper, we consider a threshold proportional reinsurance strategy, which is defined

by a threshold b ≥ 0. A retention level k1 is applied whenever the reserves are less than b,

and a retention level k2 is applied in the other case. Then, the premium income retained is c1

and c2, respectively. We consider that the retention levels give new positive security loadings

for the insurer , i.e. the net profit condition is always fulfilled.

Graphically,
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Figure 1: Threshold reinsurance strategy

Let R− (T ) be the surplus just before ruin, and R+ (T ) the surplus at ruin if ruin occurs.

Gerber and Shiu (1998, 2005) define the function

φ(u) = E
£
e−δTw

¡
R− (T ) ,

¯̄
R+ (T )

¯̄¢
I (T <∞)|R (0) = u

¤
, (1)

where δ ≥ 0 is the discounted factor, and w(x, y) is the penalty function, so that φ(u)

is the expected discounted penalty payable at ruin. This function is known to satisfy a

defective renewal equation (Gerber and Shiu (1998), Li and Garrido (2004), Willmot (2007)).

Easy explicit formulae for φ(u) are only available for certain special cases for the claim size

distribution (Landriault and Willmot (2008), Lin and Willmot (1999,2000)).

Let φ(u) with w(x, y) = 1, then we arrive at the expression for the Laplace transform of

the time of ruin E
£
e−δT I (T <∞)

¤
, and if addition δ = 0, then P [T <∞] = ψ (u), i.e. the

ruin probability.

3 Integro-differential equation for the Gerber-Shiu Func-

tion

In this section, we derive the integro-differential equations satisfied by the Gerber-Shiu dis-

counted penalty function. The discounted penalty function φ(u) behaves differently, depend-

ing on whether its initial surplus u is below or above the level b. Hence, for notational
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convenience, we write

φ(u) =

⎧⎨⎩ φ1(u) 0 ≤ u < b

φ2(u) u ≥ b
.

Theorem 1 The discounted penalty function φ(u) satisfies the integro-differential equations

φ0(u) =

⎧⎨⎩ φ01(u) 0 ≤ u < b

φ02(u) u ≥ b
, (2)

where

φ01(u) =
λ+ δ

c1
φ1(u)−

λ

c1

Z u
k1

0

φ1(u− zk1)dF (z)−
λ

c1
ξ1(u)

φ02(u) =
λ+ δ

c2
φ2(u)−

λ

c2

"Z u−b
k2

0

φ2(u− zk2)dF (z)

+

Z u
k2

u−b
k2

φ1(u− zk2)dF (z)

#
− λ

c2
ξ2(u),

and

ξ1(t) =

Z ∞

t
k1

w(t, zk1 − t)f(z)dz,

ξ2(t) =

Z ∞

t
k2

w(t, zk2 − t)f(z)dz.

Let w (R− (T ) , |R+ (T )|) be a nonnegative function of R− (T ) > 0, the surplus immediately

before ruin, and R+ (T ) > 0 the surplus at ruin.
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Proof. For 0 ≤ u < b,

φ1(u) =

Z b−u
c1

0

e−δtλe−λt

⎡⎣Z u+c1t
k1

0

φ(u+ c1t− zk1)dF (z)

+

Z ∞

u+c1t
k1

w(u+ c1t, zk1 − u− c1t)dF (z)

#
dt (3)

+

Z ∞

b−u
c1

e−δtλe−λt

⎡⎢⎣Z b+c2(t− b−u
c1 )

k2

0

φ
³
b+ c2

³
t− b−u

c1

´
− zk2

´
dF (z)

+

Z ∞

b+c2(t− b−u
c1 )

k2

w
³
b+ c2

³
t− b−u

c1

´
, zk2−b− c2

³
t− b−u

c1

´´
dF (z)

#
dt

= λ

Z b−u
c1

0

e−(λ+δ)tγ1(u+ c1t)dt

+λ

Z ∞

b−u
c1

e−(λ+δ)tγ2

³
b+ c2

³
t− b−u

c1

´´
dt,

where

γ1(t) =

Z t
k1

0

φ(t− zk1)dF (z) + ξ1(t),

γ2(t) =

Z t
k2

0

φ(t− zk2)dF (z) + ξ2(t).

Now, a change of variables in (3) results in

φ1(u) = λ
c1
e
(λ+δ)u

c1

Z b

u

e
− (λ+δ)t

c1 γ1(t)dt (4)

+ λ
c2
e
(λ+δ)u

c1

Z ∞

b

e
−(λ+δ) t− (c1−c2)b

c1
/c2γ2(t)dt.

By differentiating (4) with respect to u we obtain

φ01(u) =
λ+ δ

c1
φ1(u)−

λ

c1

Z u
k1

0

φ1(u− zk1)dF (z)−
λ

c1
ξ1(u).

Similarly, when u ≥ b,

φ2(u) =

Z ∞

0

e−δtλe−λt

"Z u+c2t
k2

0

φ(u+ c2t− zk2)dF (z)

+

Z ∞

u+c2t
k2

w(u+ c2t, zk2−u− c2t)dF (z)

#
dt

= λ

Z ∞

0

e−(λ+δ)tγ2(u+ c2t)dt.

8



With a change of variable and differentiating with respect to u

φ02(u) = λ+δ
c2

φ2(u)− λ
c2

"Z u−b
k2

0

φ2(u− zk2)dF (z)

+

Z u
k2

u−b
k2

φ1(u− zk2)dF (z)

#
− λ

c2
ξ2(u).

by which the proof is concluded.

From now on let w(x, y) = 1. So, in (2), we have

φ01(u) =
λ+δ
c1

φ1(u)− λ
c1

R u
k1
0 φ1(u− zk1)dF (z)

− λ
c1

h
1− F

³
u
k1

´i
,

0 ≤ u < b

φ02(u) =
λ+δ
c2

φ2(u)− λ
c2

∙R u−b
k2

0 φ2(u− zk2)dF (z)

+
R u

k2
u−b
k2

φ1(u− zk2)dF (z)

¸
− λ

c2

h
1− F

³
u
k2

´i
,

u ≥ b.

(5)

4 Ruin probability and time of ruin with individual

claim amount exponential

In this section we consider the case when the individual claim amount Z is distributed as an

exponential(1).

By substituting f (z) = e−z in (5) and differentiating with respect to u, it is easy to obtain

the ordinal differential equations,

φ001(u)−
³
λ+δ
c1
− 1

k1

´
φ01(u)− δ

c1k1
φ1(u) = 0, 0 ≤ u < b

φ002(u)−
³
λ+δ
c2
− 1

k2

´
φ02(u)− δ

c2k2
φ2(u) = 0, u ≥ b.

(6)

The corresponding characteristic equations are

r2 −
³
λ+δ
c1
− 1

k1

´
r − δ

c1k1
= 0, 0 ≤ u < b

s2 −
³
λ+δ
c2
− 1

k2

´
s− δ

c2k2
= 0, u ≥ b,

and the real roots are r1 < 0, r2 ≥ 0 , s1 < 0 and s2 ≥ 0. The roots r2 and s2 are equal to

zero if δ = 0 (the ruin probability case), and positive if δ > 0 (Laplace transform of the time

of ruin).
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Then the Laplace transform of the time of ruin E
£
e−δT I (T <∞)

¤
is

φ (u) =

⎧⎨⎩ φ1(u) = C1e
r1u + C2e

r2u, 0 ≤ u < b

φ2(u) = D1e
s1u +D2e

s2u, u ≥ b
(7)

being Ci,Di, i = 1, 2 the coefficients of the solution of the ordinal differential equations (6).

These coefficients depend on δ but not on u. From the condition lim
u→∞

φ (u) = 0, we know that

D2 = 0, and from the continuity condition φ1(b) = φ2(b) we obtain
P2

i=1Cie
rib −D1e

s1b =

0. By substituting (7) in (5), we obtain two additional conditions,
P2

i=1
Ci

k1ri+1
= 1 andP2

i=1
Ci

k2ri+1

µ
1− e

b ri+
1
k2

¶
+ D1

s1k2+1
e
b s1+

1
k2 = 1, which allows us to obtain the coefficients

Ci,Di, i = 1, 2. So, if we make the dependence of the coefficients on δ explicit,

C1 (δ)=
a2,1a1,1 (k2s1+1)r2(k2−k1)−a1,2k2(r2−s1)e

a2,2
k2

b

(k2s1+1)(r1−r2)(k1−k2)−k2 a1,1a2,2(s1−r1)e
a2,1
k2

b−a1,2a2,1(s1−r2)e
a2,2
k2

b
,

C2 (δ)=a1,2 − a1,2
a1,1

C1 (δ) ,

D1 (δ)=a1,2e
(r2−s1)b +

³
e(r1−s1)b − a1,2

a1,1
e(r2−s1)b

´
C1 (δ) ,

where ai,j = (kirj + 1) , i, j = 1, 2.

To obtain the ruin probability, φ(u) = E [I (T <∞)] = ψ(u), let δ = 0 in (7), then,

ψ (u)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ1(u) = 1− (1+ρ1)C1 (0)+C1 (0) e
− ρ1
k1(1+ρ1)

u, 0 ≤ u < b

ψ2(u) = e
ρ2

k2(1+ρ2)
b
(1− ((1+ρ1)

−e−
ρ1

k1(1+ρ1)
b
´
C1 (0)

´
e
− ρ2
k2(1+ρ2)

u, u ≥ b,

(8)

where

C1 (0) =
h

h (1 + ρ1) + (k1 − k2) ρ1 (1 + ρ1) e
− b
k2 + (k2ρ1 − h) e

− ρ1
k1(1+ρ1)

b
,

with h = (k1 + ρ1 (k1 − k2)) ρ2.
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From (7) and (8), if the moments of time of ruin exist, it is easy to obtain them from

Laplace transform of time of ruin,

E [TnI (T <∞)] = (−1)n ∂nφ (u)

∂δn

¯̄̄̄
δ=0

.

For example, the expected time of ruin if ruin occurs is given by

E [T | T <∞] = −
∂φ(u)
∂δ

¯̄̄
δ=0

ψ(u)
.

Then for 0 ≤ u < b,

E [T | T <∞] = −
∂C1(δ)
∂δ δ=0

e
− ρ1
k1(1+ρ1)

u
−C1(0)ue

− ρ1
k1(1+ρ1)

u

λk1ρ1(1+ρ1)
+

∂C2(δ)
∂δ δ=0

+
C2(0)u
λk1ρ1

1−(1+ρ1)C1(0)+C1(0)e
− ρ1
k1(1+ρ1)

u
,

and for u ≥ b,

E [T | T <∞] = −
∂D1(δ)
∂δ

¯̄̄
δ=0

D1 (0)
+

1

λk2ρ2 (1 + ρ2)
u. (9)

We can observe that for u ≥ b the expression obtained for E [T | T <∞] is a first degree

polynomial on u and, in addition, if k2 = 1, the slope of expression (9) coincides with the

slope in a model without reinsurance (see Gerber (1979), p. 138).

5 Ruin probability and time of ruin with individual

claim amount Phase-type(2)

In this section we consider the case when the individual claim amount Z follows a phase-

type(2) distribution (all linear combinations and convolutions of two exponential distributions

(with not necessarily equal means) are included). In Dickson and Hipp (2000) it is shown that

these distributions have a density satisfying the following second order differential equation:

f(z) +A1f
0(z) +A2f

00(z) = 0 for z > 0 (10)

where

A2 > 0. (11)

Dickson and Hipp (2000) in equation (2.1) show that,
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1−A1f(0)−A2f
0(0) = 0. (12)

This relationship is useful for simplifying some expressions that appear in this section.

For 0 ≤ u < b, differentiating (5) we obtain,

φ001 (u) =
λ+ δ

c1
φ01 (u)−

λ

c1

µ
f (0)

1

k1
φ1 (u)

+
1

k1

Z u
k1

0

φ1 (u− zk1) f
0 (z) dz

!
+

λ

k1c1
f

µ
u

k1

¶
. (13)

Now, from (10), we substitute f 0(z) = −A2
A1
f 00(z)− f(z)

A1
in (13), and knowing from (5) that

λ
c1

Z u
k1

0

φ1(u− zk1)f(z)dz =
λ+ δ

c1
φ1(u)− φ01(u)−

λ

c1

µ
1− F

µ
u

k1

¶¶
,

we obtain,

φ001 (u) =
³
λ+δ
c1
− 1

k1A1

´
φ01 (u)−

³
λ+δ

c1k1A1
− λ

k1c1
f (0)

´
φ1 (u)

+ λ
c1k1A1

³
F
³

u
k1

´
− 1
´
+ λA2

c1k1A1

ÃZ u
k1

0

φ1 (u− zk1) f
00 (z) dz

!
+ λ

c1k1
f
³

u
k1

´
. (14)

Differentiating (14) and knowing that f 000(z) = −A1
A2
f 00(z)− f 0(z)

A2
,

φ0001 (u) =
³
λ+δ
c1
− A1

k1A2

´
φ001 (u)

+
³
− 1

k21A2
+ A1(λ+δ)

c1k1A2
− λ

k1c1
f (0)

´
φ01 (u)

+ λ
k21c1

³
δ

λA2
+
³
1−A1f(0)−A2f 0(0)

A2

´´
φ1 (u) (15)

+ A1λ
A2c21k1

f
³

u
k1

´
+ λ

A2c21k1
F
³

u
k1

´
+ λ

c21k1
f 0
³

u
k1

´
− λ

k21c1A2
.

From (12) and (10), (15) is

φ0001 (u) =
³
λ+δ
c1
− A1

k1A2

´
φ001 (u) +

³
A1(λ+δ)
c1k1A2

− 1
k21A2
− λ

k1c1
f (0)

´
φ01 (u)

+ δ
A2k21c1

φ1 (u) . (16)
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Following a similar process, for u ≥ b, we obtain

φ0002 (u) =
³
λ+δ
c2
− A1

k2A2

´
φ002 (u) +

³
A1(λ+δ)
c2k2A2

− 1
k22A2
− λ

k2c2
f (0)

´
φ02 (u)

+ δ
A2k22c2

φ2 (u) . (17)

The characteristic equations of (16) and (17) are

c1k1r
3 −

³
(λ+ δ) k1 − c1

A1
A2

´
r2 +

³
λf (0) + c1

k1A2
− A1(λ+δ)

A2

´
r − δ

A2k1
= 0,

c2k2r
3 −

³
(λ+ δ) k2 − c2

A1
A2

´
r2 +

³
λf (0) + c2

k2A2
− A1(λ+δ)

A2

´
r − δ

A2k2
= 0.

Let us assume, in order to simplify the expressions, that ri, si, i = 1, 2, 3 are real and

distinct. Then

φ(u) =

⎧⎪⎪⎨⎪⎪⎩
φ1(u) =

3P
i=1

Fie
riu , 0 ≤ u < b

φ2(u) =
3P

i=1

Gie
siu, u ≥ b.

(18)

Note that the coefficients Fi, Gi, i = 1, 2, 3 are functions of b. In order to obtain these

coefficients, 6 equations are needed. The first equation is obtained from the condition

limu−→∞ φ(u) = 0. The second equation can be obtained considering that φ(u) must be

continuous, note that φ1(b) = φ2(b). The other 4 equations are obtained by substituting (18)

in (5).

To obtain the ruin probability, let δ = 0 in (16) and (17), then φ(u) = E [I (T <∞)] =

ψ(u). The six equations in order to obtain the coefficients are the same as in the Laplace

transform of time of ruin, taking into account that r3 = s3 = 0.

As an example, we analyze the particular case Erlang(2, β), i.e. f (z) = β2ze−βz.

Erlang(2, β) is a phase-type(2) distribution with A1 =
2

β
and A2 =

1

β2
(Dickson and Drekic

(2004)). Then, the characteristics equations are

r3 +
³
2β
k1
− λ+δ

c1

´
r2 +

³
β2

k21
− 2β(λ+δ)

c1k1

´
r − δβ2

c1k21
= 0, 0 ≤ u < b

s3 +
³
2β
k2
− λ+δ

c2

´
s2 +

³
β2

k22
− 2β(λ+δ)

c2k2

´
s− δβ2

c2k22
= 0, u ≥ b.

It is easy to demonstrate that two of the roots are negative (ri,si < 0, i = 1, 2) and that

r3,s3 > 0 if δ > 0 or r3,s3 = 0 if δ = 0. The system of equations that we need to find the

coefficients is
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G3 = 0,
3P

i=1

Fie
rib −

2P
i=1

Gie
sib = 0,

3P
i=1

Fi
rik1+β

= 1
β
,

3P
i=1

Fi
(rik1+β)

2 =
1
β2
,

3P
i=1

Fi

k2ri + β

µ
1− e

b ri+
β
k2

¶
+

2P
i=1

Gie
b si+

β
k2

k2si + β
= 1

β
,

3P
i=1

Fi

µ
e
b ri+

β
k2 (b(k2ri+β)− k2)+k2

¶
(k2ri + β)2

−
2P

i=1

Gie
b si+

β
k2 (b(k2si+β)− k2)

(k2si + β)2
= k2

β2
.

To obtain the ruin probability, the six equations to find the coefficients are also the

previous ones, taking into account that δ = r3 = s3 = 0.

6 Numerical examples

In this section we show some numerical results, computed withMathematica 6.0, for the ruin

probability in a model modified with a threshold reinsurance strategy, withZ ∼ Exponential(1),

λ = 1, ρ = 0.2 and ρR = 0.3. These results are compared with those obtained in a a model

with a proportional reinsurance strategy.

First, for u = 5 and b = 10 , in Figure 2, we represent the different combinations of k1

and k2 that give the same ruin probability. For this example the minimal ruin probability is

0.326325 for k1 = 0.68733 and k2 = 0.626034.

1

2

(5) 0.326
0.6873
0.6260

k
k

ψ =
=
=

(5) 0.345ψ =

(5) 0.368ψ =

(5) 0.391ψ =

(5) 0.414ψ =

(5) 0.437ψ =

(5) 0.460ψ =(5) 0.483ψ =

(5) 0.506ψ =

(5) 0.529ψ =

(5) 0.552ψ =

Figure 2 : Combinations of k1 and k2 to obtain the same ψ(5).
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In Table 1 we present the results for the combinations of k1 and k2 that give the minimal

ruin probability for different values of u (with b = 10), obtained with an algorithm for

numerical minimization with constraints included inMathematica 6.0. In addition, we include

in the last column the expected time of ruin for each level of the initial surplus.

u ψk1 6=k2
min (u) k1 k2 E [T | T <∞]

0 0.828764 1 0.631577 5.43174

2 0.583198 0.808025 0.627857 19.0077

4 0.396654 0.702299 0.6262 39.5646

6 0.26833 0.67847 0.625949 59.6679

8 0.181283 0.669768 0.625874 79.6959

10 0.122386 0.668654 0.625866 99.6881

12 0.0826157 0.668654 0.625815 119.688

14 0.0557689 0.668654 0.625787 139.688

16 0.0376463 0.668653 0.625768 159.688

18 0.0254127 0.668653 0.625756 179.688

20 0.0171546 0.668653 0.625747 199.688

40 0.000337037 0.668653 0.625712 399.688

100 2.55× 10−9 0.668653 0.625696 999.687

1000 4.03× 10−86 0.668653 0.625687 9999.69

Table 1 : Minimal ruin probability with threshold reinsurance strategy

Now we are going to compare the threshold proportional reinsurance strategy with a

proportional reinsurance strategy with a fixed retention level that doesn’t depend on the level

of reserves (this strategy can be obtained as a particular case of the threshold proportional

reinsurance strategy for k1 = k2 = k).

Let k1 = k2 = k in the results obtained in Section 4. In this case, it is easy to obtain

explicit expressions for the value of k that minimizes the ruin probability, which is denoted

15



by kop, and for the minimal ruin probability, denoted by ψ
kop
min(u),

kop =

(ρR − ρ)

µ
ρ+ 2u+ ρR (2u− 1) +

q
(ρ− ρR)

2 + 4 (1 + ρR)u
2

¶
2 (1 + ρR) (ρ+ ρR (u− 1))

,

ψ
kop
min(u) =

e

(2+ρR)u− (ρ−ρR)
2+4(1+ρR)u2

ρ−ρ
R

ρ+2u+ρ
R
(2u−1)+ (ρ−ρ

R
)
2
+4(1+ρ

R
)u2¡

1 + ρ
R

¢µ
ρ
R
− ρ+ 2u+

q¡
ρ− ρ

R

¢2
+ 4

¡
1 + ρ

R

¢
u2
¶ .

In Figure 3, we can observe the difference between ψkop
min(u) and ψ

k1 6=k2
min (u) for different val-

ues of u, i.e., the difference between minimal ruin probability with proportional reinsurance

with a fixed retention level k, and the minimal ruin probability with a threshold proportional

reinsurance strategy.

Figure 3: 1000(ψkop
min(u) −ψ

k1 6=k2
min (u)) for different values of the initial surplus u.

We can observe that the difference is important for small u, and that this difference

decreases with u. So, for small values of the initial surplus, the threshold proportional

reinsurance strategy allows us to obtain better results in terms of ruin probability than a

proportional reinsurance with a fixed retention level k.
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