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Complements and substitutes in multilateral assignment markets

Abstract: I prove that, in assignment markets with more than two sides, agents of different

sides (or sectors) need not be complements, whereas agents of the same side need not be

substitutes. Shapley (1962) showed that this cannot happen when assignment markets are

bilateral. Nevertheless, I found sufficient conditions, that always hold for bilateral markets,

that guarantee substitutability and a extended notion of complementarity among agents in

arbitrary multilateral assignment markets. I also prove that Shapley’s (1962) result always

holds regardless the number of sectors of the market when goods in the market are homoge-

neous.

Keywords: Assignment problem, multi-sided assignment markets, complementarity, substi-

tutability, homogeneous goods

JEL Classification: C70, C78

Resum: En aquest treball provo que, en mercats d’assignació amb més de dos costats,

agents de diferents sectors poden no ser complementaris mentre que agents del mateix sector

poden no ser substituts. Shapley (1962) va provar que això mai pot succëır quan el mercat

d’assignació només té dos costats. No obstant, demostro que existeixen condicions suficients

que garanteixen la substitutabilitat i la complementarietat entre agents en aquests tipus de

mercats. A més, provo que, quan els béns al mercat son homogenis, el resultat de Shapley

(1962) es manté.
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1 Introduction

Consider a market with different types (or sectors) of agents, where a worth is attached to

any coalition of exactly one agent of each type. These worths account for the benefits that

can be generated by any of these essential coalitions. The benefit created by an arbitrary

coalition is obtained partitioning it into essential coalitions and adding up their worths so

that the sum is maximum. This type of markets, that are called multi-sided assignment

markets, are introduced by Shapley and Shubik (1972) for only two sectors, and generalized

by Quint (1991) for an arbitrary number of sides.

Agents can be assigned among them, forming essential coalitions, in a finite number of

different ways, being at least one that is best (or optimal), in the sense that it maximizes the

aggregate benefit. The potential value of the market is the sum of the worths attached to the

essential coalitions of any optimal assignment (or matching).

In these markets, knowing when agents are complements or substitutes is an important

issue. For instance, a Government planning to promote the increase of the number of actors

in some market should previously investigate if subsidies to achieve that goal must be given

to firms of different sectors or to firms of the same sector and if these subsidies must be given

at the same time to all the firms or not, facts that depend heavily on the complementarity

and substitutability of firms and consumers in that market.

On one hand, in this paper I show that, given an arbitrary multi-sided assignment market

with more than two sectors, agents of different types (resp. of the same type) need not be

complements (resp. substitutes), in the sense that each of them need not (resp. can) reinforce

each other so that the increase of the potential value of the market is larger (resp. lower)

when they incorporate to the market jointly than when they do it separately. Results on

complementarity and substitutability among agents are then proved to hold in arbitrary

multi-sided assignment markets so that they imply Shapley’s (1962) result. On the other

hand, I show that, in markets where each agent can be assigned an individual productivity,
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in a sense that will be more concrete below, agents of different sectors are indeed complements

and agents of the same sector are indeed substitutes. This type of m-sided markets embodies

two-sided Böhm-Bawerk horse markets (Böhm-Bawerk, 1923 and Shapley and Subik, 1972)

and, more generally, assignment markets with m−1 homogeneous goods (Tejada and Rafels,

2009).

Finally, the rest of the paper is organized as follows. In Section 2, I present the formal

model and Shapley’s (1962) result. Section 3 is devoted to present the main results of the

paper regarding the complementarity and substitutability among agents for arbitrary mul-

tilateral assignment markets, whereas Section 4 is devoted to study the particular case of

markets with homogeneous goods.

2 The model

Consider a market in which there are m ≥ 2 types of agents, each of them containing a

numerable infinite set of (potential) agents, being agent i of type j denoted by j-i.1 Assume

that there is also a mapping A : N
m −→ R+, where A(i1, i2, ..., im) stands for the worth

created by the essential coalition {1-i1, 2-i2...,m-im} ≃ (i1, i2, ..., im). Markets in which

worth can only be created when different types of agents meet are found in many situations,

for instance, an architect, a constructor and a notary are needed in a project to build a house.

Let N1, ..., Nm be finite sets of agents of each type respectively picked from the potential sets

of agents, where
∣∣N j

∣∣ = nj for all 1 ≤ j ≤ m and N = N1 ∪ ... ∪Nm. A m-sided assignment

problem (shortly m-SAP) is defined by giving the sets N1, ..., Nm and the restriction of

mapping A to N and it is denoted by (N1, ..., Nm;A|N ) or simply (N1, ..., Nm;A) when no

confusion can arise.

A matching µ = {E1, ..., Et} among N1, ..., Nm is a set of essential coalitions such

that |µ| = t = min1≤j≤m |N j | and any agent j-i belongs at most to one essential coali-

1Formally, the i-th agent of type j should be denoted by a pair (j, i) ∈ {1, ..., m} × N.
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tion E1, ..., Et. Agent j-i is unassigned by µ if she does not belong to Ek for any 1 ≤ k ≤ t.

The set of all matchings among N1, ..., Nm will denoted by M(N1, ..., Nm). A matching µ∗ is

optimal if
∑

(i1,...,im)∈µ∗ A(i1, ..., im) ≥
∑

(i1,...,im)∈µ A(i1, ..., im), for any µ ∈ M(N1, ..., Nm).

The set of all optimal matchings of (N1, ..., Nm;A) will be denoted by M∗
A(N1, ..., Nm). Since

n1, ..., nm are finite, at least one optimal matching exists and, therefore, M∗
A(N1, ..., Nm) is

always nonempty.

Following Shapley (1962), let S(A) =
∑

(i1,...,im)∈µ∗ A(i1, ..., im) be the score (or potential

value) associated to (N1, ..., Nm;A), where µ∗ ∈ M∗
A(N1, ..., Nm). If min1≤j≤m{nj} = 0,

S(A) is arbitrarily set to zero. When there is no possible confusion, I will just write S instead

of S(A). Given a status-quo multi-sided assignment game (N1, ..., Nm;A) and j-i /∈ N , let

Sj-i denote the score of the m-SAP obtained from (N1, ..., Nm;A) by adding agent i of type j

to N . More generally, given a m-SAP (N1, ..., Nm;A), which I name the status quo m-SAP, I

shall use Sj1-i1,...,js-is (resp. Sj1-i1,...,jr-ir) to denote the score associated to the corresponding

m-SAP obtained from the status quo m-SAP by adding (resp. removing) agents j1-i1, ..., js-is

to (resp. from) N . Since the exit or the arrival of new agents is symmetric, I will focus only

on the latter. In such case I will always assume that j1-i1, ..., js-is /∈ N and, therefore, they

will be referred to as new agents.

Shapley (1962) shows the following result.

Theorem 1 Let (N1, N2;A) be a status quo 2-SAP. Then,

(a)
(
Sj-ij − S

)
+

(
Sk-lk − S

)
≤ Sj-ij ,k-lk − S if 1 ≤ j < k ≤ 2,

(b)
(
Sj-ij − S

)
+

(
Sk-lk − S

)
≥ Sj-ij ,k-lk − S if 1 ≤ j = k ≤ 2,

where j-ij and k-lk are new agents.

In words, Shapley shows that agents of different types are complements, since the increase

on the potential value of the market is larger when two agents of different types incorporate
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to the market at the same time, Sj-ij ,k-ik − S, than when they do it separately,
(
Sj-ij − S

)
+

(
Sk-ik − S

)
. By a similar argument, agents of the same type are substitutes.

Lastly, the marginal contribution of any agent j-i in a market measures her impact in its

potential value, formally Sj-i − S. Then observe that
(
Sj-ij − S

)
+

(
Sk-lk − S

)
≤ Sj-ij ,k-lk − S

can be rearranged to Sk-lk − S ≤
(
Sj-ij

)k-lk − Sj-ij , which tells that the marginal contribution

of agent k-lk cannot decrease when agent j-ij is in the market compared to when she is not.

3 Complements and substitutes in arbitrary multilateral as-

signment markets

The starting point of this section is Theorem 1, that holds for two-sided assignment problems.

A natural question is to ask whether in assignment problems with more than two sides

agents of the same type are substitutes and agents of different types are complements? The

following example shows that the answer to both questions is negative, regardless the notion

of complementarity considered.

Example 1 Consider the 3-SAP defined by:

i2 = 1 i2 = 2 i2 = 1 i2 = 2 i2 = 1 i2 = 2

i1 = 1

i1 = 2




1

3

7

1







3

0

1

1







0

0

0

10


 .

i3 = 1 i3 = 2 i3 = 3

On one hand, let the status quo 3-SAP set of agents be N = {1-1, 2-1, 3-1}. It can be

easily checked that S = 1, S1-2 = 3, S2-2 = 7, S3-2 = 3, S2-2,3-2 = 7 and S1-2,2-2,3-2 = 7. Hence,
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(
S2-2 − S

)
+

(
S3-2 − S

)
= 6 + 2 > 6 = S2-2,3-2 − S and

(
S1-2 − S

)
+

(
S2-2 − S

)
+

(
S3-2 − S

)
=

2+6+2 > 6 = S1-2,2-2,3-2−S. In other words, neither agents 1-2, 2-2 and 3-2 all together nor

agents 2-2 and 3-2 alone are complements. Observe that, for instance, what makes possible

agents 2-2 and 3-2 not being complements is that the complementarity effect of introducing

them jointly to the status quo m-SAP is diminished due to the existence of sector 1, that

makes impossible to pick up simultaneously A(1, 2, 1) = 7 and A(1, 1, 2) = 3.

On the other hand, let the status quo 3-SAP set of agents be N = {1-1, 1-2, 2-1, 2-2, 3-1}.

As above, it can be easily checked that S = 4, S3-2 = 7, S3-3 = 10 and S3-2,3-3 = 13, which

imply that
(
S3-2 − S

)
+

(
S3-3 − S

)
= 0 + 3 < 6 = S3-2,3-3 − S. In other words, agents 3-2 and

3-3 are not substitutes although they belong to the same type. What makes this possible is

that the substitutability effect of introducing agents 3-2 and 3-3 to the status quo m-SAP is

offset by a complementarity effect between the same agents due to the existence of sector 1.

Next I show that, in spite of the above counterexamples, Theorem 1 can be generalized

to include extended notions of complementarity and substitutability among groups of agents

in arbitrary multi-sided assignment markets when these groups have, in some sense, bilateral

features.

Nevertheless, before I do so, I introduce a definition that will be useful along the paper.

Given (N1, ..., Nm;A) an status quo m-SAP, let 1-i1, ..., t-it be some new agents, where 1 ≤

t ≤ m − 1. These new agents are said to be linked within (N1, ..., Nm;A) if 1-i1, ..., t-it

are matched together or unmatched under some optimal matching of the m-SAP obtained

from the status quo m-SAP by adding agents 1-i1, ..., t-im. It is not difficult to check that in

bilateral assignment problems (m = 2 and t = 1), agents are always linked.

Having introduced the notion of link, I am now in the position to give sufficient (but not

necessary) conditions to guarantee that agents are complements in such a way that Part (a)

of Theorem 1 is generalized.

Theorem 2 (Complementarity) Let (N1, ..., Nm;A) be a status quo m-SAP and let t be

an integer such that 1 ≤ t ≤ m−1. If 1-i1, ...,m-im are new agents such that 1-i1, ..., t-it and
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(t + 1)-it+1, ...,m-im are respectively linked within (N1, ..., Nm;A), then

(1)
(
S

1-i1,...,t-it − S
)

+
(
S

(t+1)-it+1,...,m-im − S

)
≤ S

1-i1,...,m-im − S.

Proof. The proof extends Shapley’s (1962) one and consists on showing that (1) holds by

induction on

(2) λ = λ(N1, ..., Nm) = min
1≤j≤m

|N j |,

where N1, ..., Nm are the set of agents of the status quo m-SAP.

On one hand, when λ = 0, either S1-i1,...,m-im = S = 0 or S(t+1)-it+1,...,m-im = S = 0 and,

therefore, (1) trivially holds. On the other hand, take λ > 0 and suppose that, for any status

quo m-SAP (Ñ1, ..., Ñm; Ã) with λ̃ = λ(Ñ1, ..., Ñm) such that 0 ≤ λ̃ ≤ λ − 1, I have already

proved that (1) holds. I will refer to this assumption as (IH). Then, consider (N1, ..., Nm;A)

a status quo m-SAP with λ = λ(N1, ..., Nm) and suppose that (1) does not hold, i.e.

(3)
(
S

1-i1,...,t-it − S
)

+
(
S

(t+1)-it+1,...,m-im − S

)
> S

1-i1,...,m-im − S.

We can assume that 1-i1, ..., t-it and (t + 1)-it+1, ...,m-im are respectively matched under

some optimal matching of the m-SAP obtained by adding the corresponding new agents to

the status quo m-SAP, since, if any of these conditions is not satisfied, (1) trivially holds.

Let (i1, ..., it, kt+1, ..., km) (resp. (k1, ..., kt, it+1, ..., im)) denote the essential coalition that

contains {1-i1, ..., t-it} (resp. {(t + 1) -it+1, ...,m-im}) and belongs to some optimal matching

of the m-SAP obtained from the status quo m-SAP by adding 1-i1, ..., t-it (resp. (t + 1)-

it+1, ...,m-im). Since by hypothesis 1-i1, ..., t-it and (t + 1)-it+1, ...,m-im are respectively

linked within (N1, ..., Nm;A),

S(t+1)-kt+1,...,m-km
+ A(i1, ..., it, kt+1, ..., km) = S

1-i1,...,t-it

S1-k1,...,t-kt
+ A(k1, ..., kt, it+1, ..., im) = S

(t+1)-it+1,...,m-im

S
1-i1,...,m-im ≥ S1-k1,...,t-kt,(t+1)-kt+1,...,m-km

+A(i1, ..., it, kt+1, ..., km)

+A(k1, ..., kt, it+1, ..., im).
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Finally, adding up all the above inequalities and (3),

(
S1-k1,...,t-kt

− S1-k1,...,t-kt,(t+1)-kt+1,...,m-km

)

+
(
S(t+1)-kt+1,...,m-km

− S1-k1,...,t-kt,(t+1)-kt+1,...,m-km

)

>
(
S − S1-k1,...,t-kt,(t+1)-kt+1,...,m-km

)
,

which contradicts the induction hypothesis (IH) because

λ′ = λ(N1\{1-k1}, ..., N
1\{t-kt}, N

1\{(t + 1) -kt+1}, ..., N
m\{m-km})

= min
1≤j≤m

|N j\{j-kj | = λ(N1, ..., Nm) − 1.

Some remarks must be made on the above theorem. On one hand, let θ = (θ(1), θ(2), ..., θ(m))

be an ordering of the set of types J = {1, ...,m}, i.e. a bijective mapping from J to J . Observe

that, in the above theorem and for simplicity, I have implicitly chosen the natural ordering

of types of agents, θ = (1, 2, ...,m). However, since types can be relabeled for convenience,

Theorem 2 can be formulated for any set of new agents {1-i1, ...,m-im} that is partitioned

into
{
θ(1)-iθ(1), ..., θ(t)-iθ(t)

}
and

{
θ(t + 1)-iθ(t+1), ..., θ(m)-iθ(m)

}
, for any ordering θ and any

integer 1 ≤ t ≤ m − 1.

Second, it is straightforward to check that Theorem 2 implies Part (a) of Theorem 1, since

as I have already said, any agent is always linked within any status quo 2-sided assignment

problem.

Third, if the link hypothesis of the above theorem is relaxed, complementarity among

agents might not hold. To see it, take a look again at Example 1 and consider the status quo

3-SAP where N = {1-1, 2-1, 3-1}. Observe that 2-2 and 3-2 are not linked within the 3-SAP

obtained from the status quo 3-SAP by adding agents 2-2, 3-2. It is also straightforward to

check that
(
S1-2 − S

)
+

(
S2-2,3-2 − S

)
= 2 + 6 > 6 = S1-2,2-2,3-2 − S and, hence, (1) does not

hold.

Lastly, it is not difficult to find examples where the link hypothesis does not hold but (1)

still does.
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Now I turn into studying the substitutability among agents of the same type in arbitrary

multi-sided assignment problems. I shall show that the link hypothesis is not sufficient

to guarantee that agents of the same type are always substitutes. Instead, I find a more

restrictive but sufficient condition. Specifically, I shall prove that agents are substitutes

when ’they behave jointly as individuals’, in a sense that I explain next. To do so, however,

I previously need to extend the definition of link to support more general sets of new agents.

Indeed, suppose that P 1 = (N1, ..., Nm;A) is a status quo m-SAP and let {1-i1, ..., t-it, 1-

k1, ..., t-kt} be a set of new agents, where 1 ≤ t ≤ m − 1 and, for all 1 ≤ j ≤ t, ij 6= kj .

With some formal abuse, these new agents are also said to be linked within (N1, ..., Nm;A) if

1-i1, ..., t-it and 1-k1, ..., t-kt are respectively matched together or unmatched under some opti-

mal matching µ of the m-SAP obtained from the status quo m-SAP by adding agents 1-i1, ..., t-

it, 1-k1, ..., t-kt. Observe that two different agents for each type j, 1 ≤ j ≤ t and the same opti-

mal matching for all of them are considered. Let (i1, ..., it, it+1, ..., im), (k1, ..., kt, kt+1, ..., km) ∈

N1 × ... × Nm be the essential coalitions (if exist) that belong to µ and contain respectively

1-i1, ..., t-it and 1-k1, ..., t-kt.

Suppose that at least 1-i1, ..., t-it are assigned together under µ. In a next step, let P 2 be

the m-SAP obtained from P 1 by removing agents (t + 1)-it+1, ...,m-im and (t + 1)-kt+1, ...,m-

km (or just (t + 1)-i1, ...,m-im if 1-k1, ..., t-kt were unmatched under µ). Observe that (t + 1)-

it+1, ...,m-im and (t + 1)-kt+1, ...,m-km (or just (t + 1)-i1, ...,m-im) are new agents to P 2.

Therefore, (t + 1)-it+1, ...,m-im and (t + 1)-kt+1, ...,m-km (or just (t + 1)-it+1, ...,m-im) can

be linked within P 2 or not. Suppose that they are and repeat the above procedure by remov-

ing the corresponding agents until either the corresponding new agents are all unmatched

under all optimal matchings of the corresponding m-SAP or there are no more agents to be

removed. Also suppose that, at any step s, the corresponding new agents are linked within

the corresponding m-SAP P s. In such case, the sets of new agents at any step of the above

procedure -either if there are two agents for each type of agents or just one agent per type-

are said to be strongly linked within (N1, ..., Nm;A). In particular, {1-i1, ..., t-im, 1-k1, ..., t-
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km} are strongly linked. The strong link condition consists on applying iteratively the link

condition. Hence, the former condition implies the latter.

Although complicated to write, given an status quo m-SAP, some new agents being

strongly linked within it essentially tells that the set of types can be partitioned into two

subsets and that optimal matchings can be constructed from the empty set by adding appro-

priate blocks of agents of both subsets until an optimal matching of the status quo m-SAP

is reached. In other words, the so obtained matching is, to some extent, ’bilateral’.

To a better comprehension of this definition consider a status quo two-sided assignment

problem (m = 2) and two new agents (t = 1), one of each side. Observe that, at any step,

since t = 1, any of these new agents is either unmatched or ’assigned to herself’ and to

an agent -let call her an optimal partner - of the other side under any optimal matching of

the status quo 2-SAP. Hence, as we knew, new agents are always linked. Moreover, since

m−t = 1, any optimal partner (if exist) is always also linked within the corresponding 2-SAP,

and, therefore, also strongly linked.

Having introduced the notion of strong link, I am now in the position to give sufficient

(but not necessary) conditions to guarantee that agents are substitutes in such a way that I

generalize Part (b) of Theorem 1.

Theorem 3 (Substitutability) Let (N1, ..., Nm;A) be a status quo m-SAP and t an integer

such that 1 ≤ t ≤ m − 1. If 1-i1, ..., t-it, 1-k1, ..., t-kt are new agents that are strongly linked

within (N1, ..., Nm;A), then

(4)
(
S

1-i1,...,t-it − S
)

+
(
S

1-k1,...,t-kt − S

)
≥ S

1-i1,...,t-it,1-k1,...,t-kt − S,

provided that, for all 1 ≤ j ≤ t, ij 6= kj .

Proof. Again, the proof is very similar to Shapley’s (1962) one. It consists on showing that

(4) holds by induction on

(5) λ = λ(N1, ..., Nm) = min

{
min

1≤j≤t
|N j |, min

t+1≤j≤m

(
|N j | − 1

)}
,
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where N1, ..., Nm are the set of agents of the status quo m-SAP. Observe that, given a status

quo m-SAP, for any type of new agents λ takes the minimum of its cardinality, whereas for

the rest of types λ takes the minimum of their cardinality minus 1. The reason to that will

be apparent below.

Let µ be an optimal matching of the m-SAP obtained from the status quo m-SAP by

adding agents 1-i1, ..., t-it, 1-k1, ..., t-kt. Before starting the induction observe that if 1-k1, ..., t-

kt are unmatched under µ, then S1-i1,...,t-it = S1-i1,...,t-it,1-k1,...,t-kt , which trivially implies that

(4) holds. Hence, from now on I shall assume that 1-i1, ..., t-it and 1-k1, ..., t-kt are respectively

matched together under µ. Therefore,

(6) {(i1, ..., it, it+1, ..., im), (k1, ..., kt, kt+1, ..., km)} ⊆ µ,

for some (it+1, ..., im), (kt+1, ..., km) ∈ N t+1 × ... × Nm satisfying that, for all t + 1 ≤ j ≤ m,

ij 6= kj .

Next I prove that (4) holds when λ = 0, which implies S = 0. Observe that, necessarily,

mint+1≤j≤m

{
|N j | − 1

}
> 0, for if not either 1-i1, ..., t-it or 1-k1, ..., t-kt would be unassigned

under µ, contradicting the assumptions. Therefore, µ must consist exactly on two essential

coalition, i.e. |µ| = 2. Lastly, from (6), S = 0 and the definition the score of a m-SAP,

S
1-i1,...,t-it,1-k1,...,t-kt − S = A(i1, ..., it, it+1, ..., im) + A(k1, ..., kt, kt+1, ..., km)

≤
(
S

1-i1,...,t-it − S
)

+
(
S

1-k1,...,t-kt − S

)
.

On the other hand, take λ > 0 and suppose that, for any status quo m-SAP (Ñ1, ..., Ñm; Ã)

with λ̃ = λ(Ñ1, ..., Ñm) such that 0 ≤ λ̃ ≤ λ−1, I have already proved that (4) holds for any

set of new agents that are strongly linked within (Ñ1, ..., Ñm; Ã). I will refer to this assump-

tion as (IH). Then, consider (N1, ..., Nm;A) a status quo m-SAP with λ(N1, ..., Nm) = λ

and suppose that (4) does not hold for some new agents 1-i1, ..., t-im, 1-k1, ..., t-km that are

strongly linked within (N1, ..., Nm;A). That is,

(7)
(
S

1-i1,...,t-it − S
)

+
(
S

1-k1,...,t-kt − S

)
< S

1-i1,...,t-it,1-k1,...,t-kt − S.
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Additionally, from (6), the strong link hypothesis and the definition the score of a m-SAP,

A(i1, ..., it, it+1, ..., im) + S(t+1)-i1+1,...,m-im, ≤ S
1-i1,...,t-it

A(k1, ..., kt, kt+1, ..., km) + S(t+1)-kt+1,...,m-km
≤ S

1-k1,...,t-kt

S
1-i1,...,t-it,1-k1,...,t-kt = S(t+1)-i1+1,...,m-im,(t+1)-kt+1,...,m-km

+A(i1, ..., it, it+1, ..., im)

+A(k1, ..., kt, kt+1, ..., km)

Finally, adding up all the above inequalities and (7),

(
S(t+1)-kt+1,...,m-km

− S(t+1)-i1+1,...,m-im,(t+1)-kt+1,...,m-km

)

+
(
S(t+1)-i1+1,...,m-im, − S(t+1)-i1+1,...,m-im,(t+1)-kt+1,...,m-km

)

>
(
S − S(t+1)-i1+1,...,m-im,(t+1)-kt+1,...,m-km

)
,

which contradicts the induction hypothesis (IH) because

λ′ = λ(N1, ..., N t, N t+1\{(t + 1) -it+1, (t + 1) -kt+1}, ..., N
m\{m-im,m-km})

= min

{
min

t+1≤j≤m

(
|N j | − 2

)
, min
1≤j≤t

(
|N j | − 1

)}

= min

{
min

1≤j≤t
|N j |, min

t+1≤j≤m

(
|N j | − 1

)}
− 1 = λ − 1

and, since 1-i1, ..., t-it, 1-k1, ..., t-kt are strongly linked within (N1, ..., Nm;A), their corre-

sponding optimal partners (t + 1)-it+1, ...,m-im, (t + 1)-kt+1, ...,m-km are also strongly linked

within the m-SAP obtained from (N1, ..., Nm;A) by removing agents (t + 1)-it+1, ...,m-

im, (t + 1)-kt+1, ...,m-km .

Again, some remarks must be made. On one hand, as above, Theorem 3 can be formulated

for any arbitrary ordering of types θ.

Second, Theorem 3 implies part (b) of Theorem 1, since any agent is always strongly

linked within any status quo 2-sided assignment problem.

Third, if the strong link hypothesis of the above theorem is dropped, the result might not

hold. To see it, take a look again at Example 1 and consider the status quo 3-SAP where
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N = {1-1, 1-2, 2-1, 2-2, 3-1}. I have already shown that, in such case,
(
S3-2 − S

)
+

(
S3-3 − S

)
<

S3-2,3-3 − S . I claim that 3-2 and 3-3 are not strongly linked within the status quo 3-SAP,

although, by definition, they are linked within it. To show it, notice that the optimal partners

of 3-2 and 3-3 are respectively 1-1, 2-1 and 1-2, 2-2. Then observe that 1-1, 2-1 and 1-2, 2-2

are not respectively assigned together under the (unique) optimal matching of the status quo

3-SAP. Hence, 3-2 and 3-3 are not strongly linked within the status quo 3-SAP.

Fourth, like in the case of Theorem 2, it is not difficult to find examples where the strong

link hypothesis does not hold but (4) does.

Finally, I recognize that the strong link condition might seem a little bit ad-hoc. However,

it shows that substitution among agents is, to some extent, a bilateral concept, in the sense

that the substitution effect between groups of agents can always be offset when there are more

than two groups of agents, unless markets are endowed with more structure -as it is shown

below-. Moreover, it is also worth noting that an accurate review of the proof of Theorem 3

reveals that formulating its statement for an arbitrary t, 1 ≤ t ≤ m − 1 instead of just t = 1

-which is the most natural generalization of Shapley’s (1962) substitution effect- is made at

zero cost.

4 The particular case of multilateral assignment markets with

homogeneous goods

The remaining part of the paper is devoted to show that, when each agent in the market can

be assigned a ’productivity’, in a sense that will be concrete in the next definition, agents

of different sectors of the market are complements whereas agents of the same sector are

substitutes, in the sense of Shapley (1962). Formally, I introduce the following definition

(Tejada and Rafels, 2009).

Definition 1 Given the sets of agents N1, ..., Nm and exogenous vectors d1 ∈ R
n1, ..., dm ∈

R
nm, the multi-sided Böhm-Bawerk assignment problem associated to d = (d1, ..., dm) is the

14



m-SAP (N1, ..., Nm;Ad), where

(8) Ad(i1, ..., im) = max



0,

m∑

j=1

djij



 ,

for any (i1, ..., im) ∈ N1 × ... × Nm.

We assume that within the universe of potential agents, each one of them, let us say j-i,

is characterized by an individual productivity dji, which implies that regardless the agents

picked up to form a market, it will always be a multi-sided Böhm-Bawerk market. This class

of m-SAPs embodies assignment markets with m − 1 types homogeneous goods and in the

bilateral case coincide with the well-know (two-sided) Böhm-Bawerk horse market (see again

Tejada and Rafels, 2009). Without loss of generality I will assume that, for all 1 ≤ j ≤ m,

dj1 ≥ ... ≥ djnj
. Let n = min{n1, ..., nm}. An important parameter is defined:

(9) r = max
1≤i≤n

{
i : Ad(i, ..., i) > 0

}
.

Since it can be easily checked that {(i, ..., i) : 1 ≤ i ≤ n} is an optimal matching of (N1, ..., Nm;Ad),

from (9), we have

(10) S(Ad) =
r∑

i=1

Ad(i, ..., i) =
r∑

i=1

m∑

j=1

dji.

Next I prove that, for Böhm-Bawerk assignment problems, agents of different sectors are

complements in a very strong form, although they might not be linked within the status quo

Böhm-Bawerk assignment problem, whereas different agents of the same sector are substitutes

regardless being strongly linked within the status quo m-sided Böhm-Bawerk assignment

problem or not. Nevertheless, before I do so it is important to point out that, unlike Theorem

2 and Theorem 3, the following theorem does not provide conditions on arbitrary essential

coalitions of arbitrary m-SAPs but only focuses on a specific class of m-sided assignment

markets.

Theorem 4 Let (N1, ..., Nm;Ad) be a m-sided Böhm-Bawerk assignment problem. Then,
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(a) for any essential coalition of new agents (i1, ..., im) and any 1 = j0 < j1 < ... < js <

js+1 = m + 1,

(11)

s∑

t=0

(
S

jt-ijt
,...,(jt+1−1)-i(jt+1−1) − S

)
≤ S

1-i1,...,m-im − S,

(b) for any pair of different new agents j-i, j-k and any 1 ≤ j ≤ m,

(12)
(
S

j-i − S
)

+
(
S

j-k − S

)
≥ S

j-i,j-k − S.

Proof. Without loss of generality, I shall assume throughout the whole proof, that the status

quo m-sided Bhm-Bawerk assignment problem (N1, ..., Nm;Ad) satisfies r < n.2 Additionally,

let r1-k1,...,t-kt denote the parameter (9) of the m-SAP obtained by adding agents 1-k1, ..., t-kt

to the status quo m-SAP, for any 0 ≤ t ≤ m. By definition of (9),

(13) r ≤ r1-k1,...,t-kt ≤ r + 1.

Then, I prove Part (a). To do so, consider, for all t ∈ {1, ..., s + 1}, a set of new agents

1-it1, ...,m-itm with productivities djit
j

= djij , for all 1 ≤ j < jt, and djit
j

= dj(r+1), for all

jt ≤ j ≤ m.

Next, I shall show that (11) holds when the set of new agents is {1-i11, ...,m-i1m}. Indeed,

observe that, for all j1 ≤ j ≤ m, j-i1j and j-(r + 1) are different agents of the same side

with the same productivities. Therefore, when agents 1-i11, ..., (j1 − 1)-i1j1−1 incorporate into

the market, the increase of the score is the same irrespective agents j1-i
1
j1

, ...,m-i1m also

incorporate into the market or not. Moreover, for any 0 ≤ t ≤ m, the impact on the score

when only agents of types j ∈ {jt, ...,m} incorporate into the market is always null. All the

above is true by (13) and because, if needed, agents j1-(r + 1) , ...,m-(r + 1) of the status quo

2This can be made by adding dummy agents. A dummy agent is such that the worth of any essential

coalition ’containing’ her is always zero. Dummy agents do not alter the characteristic function when we

restrict to real players (see Tejada and Rafels, 2009, for a more accurate argument). In m-sided Bhm-Bawerk

assignment problems, dummy agents can be imagined to have a very low productivity -think about minus

infinity.
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m-SAP can play the role of agents j1-i
1
j1

, ...,m-i1m -they have the same productivities!- and,

by (10), they do not count on the score of the status quo m-SAP. Hence,

(
S

1-i11,...,(j1−1)-i1j1−1 − S
)

+
s∑

l=2

(
S

jl-ij1 ,...,(jl+1−1)-i(jl+1−1) − S
)

= S
1-i11,...,(j1−1)-i1j1−1 − S = S

1-i11,...,m-i1m − S,

and therefore (11) holds for 1-i11, ...,m-i1m. Now suppose that (11) holds when the set of new

agents is {1-it1, ...,m-itm}, for some 1 ≤ t ≤ s − 1. Next, I will show that it also holds for

t + 1. Indeed, observe that only agents of types jt, ..., jt+1 − 1 can be different in the sets of

new agents {1-it+1
1 , ...,m-it+1

m } and {1-it1, ...,m-itm}. Hence, since for all 1 ≤ t ≤ t′ and for all

1 ≤ j < kt, we have that djitj
= d

jit
′

j
, whereas for all 1 ≤ t′ ≤ t and for all kt ≤ j ≤ m we

have that d
jit

′

j
= dj(r+1), then

s∑

l=0

(
S

jl-i
t+1
jl

,...,(jl+1−1)-it+1

(jl+1−1) − S

)

=
s∑

t=0

(
S

jl-i
t
jl

,...,(jl+1−1)-it
(jl+1−1) − S

)

+S
jt-i

t+1
jt

,...,(jt+1−1)-it+1

(jt+1−1) − S
jt-itjt

,...,(jt+1−1)-it
(jt+1−1)

≤ S
1-it1,...,m-itm − S + S

jt-i
t+1
jt

,...,(jt+1−1)-it+1

(jt+1−1) − S
jt-itjt

,...,(jt+1−1)-it
(jt+1−1)

≤ S
1-it1,...,m-itm − S

+S
1-it1,...,(jt−1)-it

(jt−1)
,jt-i

t+1
jt

,...,(jt+1−1)-it+1

(jt+1−1) − S
1-it1,...,(jt−1)-it

(jt−1)

= S
1-it+1

1 ,...,m-it+1
m − S,

where the first inequality holds by the induction assumption and all the comments above. It

only remains to prove the last inequality, which using the above comments, reduces to

(14) S
jt-ijt

,...,(jt+1−1)-i(jt+1−1) − S ≤ S
1-i1,...,(jt+1−1)-i(jt+1−1) − S

1-i1,...,(jt−1)-i(jt−1) .

Notice that, by (9) and (10), for any l-kl, ..., h-kh, 1 ≤ l ≤ h ≤ m, either

S
1-k1,...,h-kh − S =

h∑

j=l

max
{
0, djkj

− djr

}
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if rl-kl,...,h-kh = r or

S
1-k1,...,h-kh − S =

l−1∑

j=1

dj(r+1) +

h∑

j=l

max
{
djkj

, dj(r+1)

}
+

m∑

j=h+1

dj(r+1)

if rl-kl,...,h-kh = r + 1.

To prove (14) I shall distinguish four cases. First, suppose that

r = r
jt-ijt

,...,(jt+1−1)-i(jt+1−1) ,(15)

r = r1-i1,...,(jt−1)-i(jt−1) < r
1-i1,...,(jt+1−1)-i(jt+1−1) = r + 1.(16)

For all 1 ≤ j ≤ m, let

hj = dj(r+1) + max{0, djij − dj(r+1)} − max{0, djij − djr}.

and observe that, by (9) and (10), the right-hand side of (16) implies
∑jt+1−1

j=1 hj+
∑m

j=jt+1 dj(r+1) >

0. Then,

S
jt-ijt

,...,(jt+1−1)-i(jt+1−1) − S =

jt+1−1∑

j=jt

max{0, djij − djr}

<

jt+1−1∑

j=jt

max{0, djij − djr} +

jt+1−1∑

j=1

hj +

m∑

j=jt+1

dj(r+1)

=

jt−1∑

j=1

hj +

jt+1−1∑

j=jt

max{djij , dj(r+1)} +

m∑

j=jt+1

dj(r+1)

= S
1-i1,...,(jt+1−1)-i(jt+1−1) − S

1-i1,...,(jt−1)-i(jt−1) .

Second, suppose that

r < r
jt-ijt

,...,(jt+1−1)-i(jt+1−1) = r + 1,

r1-i1,...,(jt−1)-i(jt−1) = r
1-i1,...,(jt+1−1)-i(jt+1−1) = r + 1.
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By (9),
∑m

j=1 dj(r+1) ≤ 0. Then,

S
jt-ijt

,...,(jt+1−1)-i(jt+1−1) − S =

jt+1−1∑

j=jt

max{0, djij − dj(r+1)}

≥

jt+1−1∑

j=jt

max{0, djij − dj(r+1)} +

m∑

j=1

dj(r+1)

=

jt−1∑

j=1

dj(r+1) +

jt+1−1∑

j=jt

max{djij , dj(r+1)} +

m∑

j=jt+1

dj(r+1)

= S
1-i1,...,(jt+1−1)-i(jt+1−1) − S

1-i1,...,(jt−1)-i(jt−1) .

Third, suppose that

r = r
jt-ijt

,...,(jt+1−1)-i(jt+1−1) ,(17)

r1-i1,...,(jt−1)-i(jt−1) = r
1-i1,...,(jt+1−1)-i(jt+1−1) .(18)

For all 1 ≤ j ≤ m, let h′
j = djr if (18) is equal to r and h′

j = dj(r+1) if (18) is equal to r + 1.

Then,

S
jt-ijt

,...,(jt+1−1)-i(jt+1−1) − S =

jt+1−1∑

j=jt

max{0, djij − djr}

≤

jt+1−1∑

j=jt

max{0, djij − h′
j}

= S
1-i1,...,(jt+1−1)-i(jt+1−1) − S

1-i1,...,(jt−1)-i(jt−1) .

Fourth, suppose that

r < r
jt-ijt

,...,(jt+1−1)-i(jt+1−1) = r + 1,

r1-i1,...,(jt−1)-i(jt−1) < r
1-i1,...,(jt+1−1)-i(jt+1−1) = r + 1.

In such case,

S
1-i1,...,(jt+1−1)-i(jt+1−1) − S

1-i1,...,(jt−1)-i(jt−1)

=

jt−1∑

j=1

hj +

jt+1−1∑

j=jt

max{djij , dj(r+1)} +

m∑

j=jt+1

dj(r+1)

≥

jt−1∑

j=1

dj(r+1) +

jt+1−1∑

j=jt

max{djij , dj(r+1)} +

m∑

j=jt+1

dj(r+1)

= S
jt-ijt

,...,(jt+1−1)-i(jt+1−1) − S.
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Lastly, applying recursively the above procedure from t = 1 to t = s it is proved that (11)

holds for {1-i1, ...,m-im}.

Now I prove Part (b). Without loss of generality assume that j = 1. Observe that, by

(9),

(19) r1-i,1-k − r ≤ r1-i − r + r1-k − r ≤ 2

and

(20) max{r1-i, r1-k} ≤ r1-i,1-k.

Next, I distinguish four different cases. First, suppose that r1-i,1-k = r+2, which implies that

n2, ..., nm ≥ r + 2 and that, by (19), r1-i = r1-k = r + 1. Then, by the way d is arranged,

S
1-i,1-k − S = d1i + d1k +

m∑

j=2

(
dj(r+1) + dj(r+2)

)

≤ d1i +

m∑

j=2

dj(r+1) + d1k +

m∑

j=2

dj(r+1) =
(
S

1-i − S
)

+
(
S

1-k − S

)
.

Second, suppose that r1-i,1-k = r1-i = r1-k = r + 1, which, by (9), implies that d1i +

∑m
j=2 dj(r+1) > 0, d1k +

∑m
j=2 dj(r+1) > 0 and d1r +

∑m
j=2 dj(r+1) > 0. Then,

S
1-i,1-k − S = max{d1i, d1k, d1i + d1k − d1r} +

m∑

j=2

dj(r+1)

< d1i +

m∑

j=2

dj(r+1) + d1k +

m∑

j=2

dj(r+1)

=
(
S

1-i − S
)

+
(
S

1-k − S

)
.

Third suppose again that r1-i,1-k = r + 1 but, without loss of generality, that r1-i = r + 1

and r1-k = r, which implies d1i > d1k. Then,

S
1-i,1-k − S = max{d1i, d1i + d1k − d1r} +

m∑

j=2

dj(r+1)

= d1i + max{0, d1k − d1r} +
m∑

j=2

dj(r+1)

=
(
S

1-i − S
)

+
(
S

1-k − S

)
.
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Finally, let r1-i,1-k = r, which, by (20), implies r1-i = r1-k = r. Then, by the way d1 is

arranged,

S
1-i,1-k − S = max{0, d1i − d1r, d1k − d1r, d1i + d1k − d1r − d1(r−1)}

≤ max{0, d1i − d1r} + max{0, d1k − d1r}

=
(
S

1-i − S
)

+
(
S

1-k − S

)
.

On one hand, like Theorem 2 and Theorem 3, Part (a) of Theorem 4 can be formulated

for any ordering of types.

On the other hand, by taking status quo 3-sided Böhm-Bawerk assignment problem gen-

erated by d = (2; 2; 2, 1, 1), the reader can check that when agents 1-i1, 2-i2 and 1-k1, 2-k2,

with productivities 1,−10 and −10, 1 respectively, are new agents that incorporate to the

status quo, (4) does not hold. Hence, the stronger form of substitutability of Theorem 3 does

not extend to multilateral markets with homogeneous goods.

Finally, it is natural to wonder whether the class of m-sided Böhm-Bawerk assignment

problems can be enlarged so that Theorem 4 still holds. A m-SAP (N1, ..., Nm;A) is super-

modular (Sherstyuk, 1999) if

A(i1, ..., im) + A(k1, ..., km)

≤ A(max {i1, k1} , ...,max {im, km}) + A(min {i1, k1} , ...,min {im, km}).

It is known that m-sided Böhm-Bawerk assignment problem are supermodular (Tejada and

Rafels, 2009). Nevertheless, Theorem 4 fails to hold for some supermodular m-SAPs as I

show next. First, consider the supermodular 3-SAP given by




2

0

3

1







3

1

0

0


 ,

where N = {1-2, 2-1, 3-1} is the status quo. In this case,
(
S2-2 − S

)
+

(
S3-2 − S

)
>

S2-2,3-2 − S and
(
S1-2 − S

)
+

(
S2-2 − S

)
+

(
S3-2 − S

)
> S1-2,2-2,3-2 − S. Second, consider the
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supermodular 3-SAP given by




0

0

3

3







0

0

0

2







0

3

0

3


 .

where N = {1-1, 1-2, 2-1, 2-2, 3-2} is the status quo. In this case,
(
S3-2 − S

)
+

(
S3-3 − S

)
=

2 < 4 = S3-2,3-3 − S.
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