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Abstract: Cooperative TU-games with large core were introduced by Sharkey (1982) and 

the concept of Population Monotonic Allocation Scheme was defined by Sprumont (1990). 

Linking these two concepts, Moulin (1990) introduces the notion of large monotonic core 

giving a characterization for three-player games. In this paper we prove that all games with 

large monotonic core are convex. We give an effective criterion to determine whether a 

game has large monotonic core and, as a consequence, we obtain a characterization for the 

four-player case. 
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Resum: El concepte de joc cooperatiu amb large core és introduït per Sharkey (1982) i el 

de Population Monotonic Allocation Scheme és definit per Sprumont (1990). Inspirat en 

aquests conceptes, Moulin (1990) introdueix la noció de large monotonic core donant una 

caracterització per a jocs de tres jugadors. En aquest document provem que tots els jocs 

amb large monotonic core són convexes. A més, donem un criteri efectiu per determinar si 

un joc té large monotonic core o no, i daquí obtenim una caracterització pel cas de quatre 

jugadors. 



1 Introduction

A cooperative game with transferable utility assigns to each coalition of players
a real number, which represents what the coalition can achieve on its own, its
worth. Most studies on cooperative games assume that the grand coalition
forms. Then, the analysis reduces to determine the payoff to the members of
the grand coalition. When sharing a divisible good among the players of the
grand coalition, Sharkey (1982) introduce the concept of acceptable vectors
or aspirations.
An aspiration for a given game is a payoff vector that summarizes predic-

tions about what the resulting payoffs of their members will be.
When an efficient allocation is to be determined, Sharkey (1982) defines

the notion of largeness of the core: a game has large core if each aspiration
has a core allocation as its lower bound. He proves that convexity implies the
largeness of the core.
From the viewpoint of variable population, any cooperative game can be

seen as a stream: one subgame for each coalition of players. A generalized
allocation now determines an allocation for every subgame.
Sprumont (1990) introduces the concept of Population Monotonic Alloca-

tion Scheme (PMAS) for cooperative games. A PMAS selects a core allocation
for every subgame of a game in such a way that the payoff of any player can
not decrease as the coalition to which he belongs enlarges. He shows that all
convex games have a PMAS (for example, the extended Shapley value).
To solve fair allocation problems, Moulin (1990) introduces the notion

of large core within the context of variable population of players. Thus, he
adapts the idea of the largeness of the core by defining the notion of monotonic
aspiration, a generalized aspiration with the population monotonic property,
and the notion of largeness of the monotonic core (the set of all PMAS): a
game has large monotonic core if each monotonic aspiration has a PMAS as
its lower bound.
The paper is organized as follows. In Section 2, we introduce basic concepts

and notations to be used later on, and we show that convexity is a necessary
(but not sufficient) condition to have large monotonic core. This generalizes
what was already proved by Moulin in 1990 for three-player games. Section
3, contains the main results of this paper. We give a necessary and sufficient
condition for a game to have large monotonic core in terms of some computable
parameters associated to its characteristic function. Finally, in Section 4, we
characterize those four-player games with large monotonic core in terms of
their characteristic function.
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2 Preliminaries and notations

A cooperative game with transferable utility (a game) is a pair (N, v), where
N = {1, 2, · · · , n} is a finite set of players and v : 2N → R is the characteristic
function with v(∅) = 0. A subset S of N , S ∈ 2N , is a coalition of players,
s = |S| its cardinality and v(S) is interpreted as the worth of coalition S.
We denote by P (N) := {S ⊆ N | S 6= ∅} the set of nonempty coalitions of
N . Given S ∈ P (N), we denote by (S, vS) the subgame of (N, v) related to
coalition S (i.e. vS (R) = v (R) for all R ⊆ S). The class of games with player
set N is denoted by GN . We identify each game of GN with its characteristic
function.
As usual, a game v ∈ GN is superadditive if v(S)+ v(T ) ≤ v(S ∪T ) for all

S, T ⊆ N with S∩T = ∅, and it is convex if v(S)+v(T ) ≤ v(S∪T )+v(S∩T )
for all S, T ⊆ N.
A payoff vector is z = (zi)i∈N ∈ RN , where zi is the payoff to player i, and

for S ∈ P (N) we write z (S) :=
P
i∈S

zi and z(∅) := 0.

The core of a game v ∈ GN is the set

C (v) :=
©
z ∈ RN | z (N) = v (N) and z (S) ≥ v (S) for all S ∈ P (N)

ª
.

Thus the core C(v) is a compact and convex (possibly empty) polyhedral
subset of RN .
A game v ∈ GN is said to be balanced if it has a nonempty core, and it is

totally balanced if the subgame (S, vS) is balanced for all S ∈ P (N) .
Every game v ∈ GN can be written as v =

P
S∈P (N)

λSuS where uS is the

unanimity game associated to coalition S (i.e. uS (T ) = 1 if T ⊇ S and
uS (T ) = 0 otherwise) and λS is the unanimity coordinate associated to S and
v (i.e. λS = λS(v) =

P
T∈P (N):T⊆S

(−1)s−t v (T ) where t = |T | and s = |S|).

A vector ȳ = (ȳi)i∈N with components ȳi ∈ R is an aspiration (Bennett,
1983) or acceptable vector (Sharkey, 1982) of a game v ∈ GN when ȳ (S) ≥
v (S) for all S ∈ P (N). We denote the set of all aspirations of the game v by
A (v) .
Sharkey (1982) introduces the concept of large core for cooperative games.

A game v ∈ GN has large core, when for every ȳ ∈ A (v) there is an element
x̄ ∈ C (v) such that x̄ ≤ ȳ ( i.e. x̄i ≤ ȳi for all i ∈ N ). Moreover, he proves
that all convex games have large core. Kikuta (1988) and Moulin (1990) show
that convex games are exactly those games with totally large core ( i.e. with
all the subgames having large core).
A Population Monotonic Allocation Scheme (or PMAS) of a game v ∈ GN

(Sprumont, 1990) is a vector x =
¡
xSi
¢
S∈P (N), i∈S , with components x

S
i ∈ R,
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that satisfies the following conditions:X
i∈S

xSi = v(S) for all S ∈ P (N) . (1)

xRi ≤ xSi for all R,S ∈ P (N), R ⊆ S, and all i ∈ R. (2)

The first condition tells us that, for each coalition S ∈ P (N), the payoff vector
xS :=

¡
xSi
¢

i∈S ∈ R
S is a distribution of the amount v(S) among the players

of S. The second condition guarantees that each one of the players of S does
not receive more in any subcoalition R in which he takes part. Thus if x is a
PMAS of a game v, then x is an element of the vector space

Y
S∈P (N)

RS, which

has dimension 2n−1 · n. Moreover, from conditions (1) and (2), it follows that
each payoff vector xS belongs to C(vS) for all PMAS x. Therefore, if a game
v has a PMAS, then it is totally balanced. Sprumont (1990) proves that all
convex games have a PMAS (for example, its extended Shapley value). Norde
and Reijnierse (2002) give a finite number of conditions to determine whether
a game has a PMAS or not. In the case of a four-player game its characteristic
function must satisfy sixty inequalities.
Moulin (1990) defines the monotonic core of the game v ∈ GN as the set

of all its PMAS. We denote this set by

MC(v) :=

⎧⎨⎩x ∈
Y

S∈P (N)

RS

¯̄̄̄
¯̄x is a PMAS of v

⎫⎬⎭ .
Thus, the monotonic core MC(v) is a compact and convex (possibly empty)
subset of

Y
S∈P (N)

RS.

A monotonic aspiration of a game v ∈ GN (Moulin, 1990) is a vector
y =

¡
ySi
¢
S∈P (N), i∈S , with components y

S
i ∈ R, that satisfies the following

conditions: X
i∈S

ySi ≥ v(S) for all S ∈ P (N).

yRi ≤ ySi for all R,S ∈ P (N), R ⊆ S, and all i ∈ R.

Then, a monotonic aspiration of a game selects an aspiration for every
subgame in such a way that the individual aspiration of a player cannot de-
crease as the coalition to which he belongs enlarges. The set of monotonic
aspirations of the game v is denoted by

MA(v) :=

⎧⎨⎩y ∈
Y

S∈P (N)

RS

¯̄̄̄
¯̄ y is a monotonic aspiration of v

⎫⎬⎭ .
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Notice that MA(v) is a nonempty closed and convex subset of
Y

S∈P (N)

RS, but

it is non bounded.
Moulin (1990) introduces the concept of large monotonic core for coope-

rative games. A game (N, v) has large monotonic core when for every y ∈
MA(v) there is an x ∈MC(v) such that x ≤ y ( i.e. xSi ≤ ySi for all S ∈ P (N),
i ∈ S). Thus a game with large monotonic core has a PMAS. In the case of
three-player games Moulin characterizes the above concept as follows:

Lemma 2.1 (Moulin, 1990) A three-player game v has large monotonic core
if and only if it is superadditive and it satisfies:

v (12) + v (13) + v (23) ≤ v (123) + v (1) + v (2) + v (3) . ¤

Notice that the above characterization can be rewritten in terms of the
unanimity coordinates as

λS ≥ 0 for all S ⊆ N with |S| ≥ 2,

which implies the convexity of the game. Moulin (1990) says that "whether
convexity is still a necessary condition for games with an arbitrary number
of players is not clear". However, a convex game does not necessarily have
large monotonic core (see, for instance, the three-player convex game v :=
u12 + u13 + u23 − u123 ).
The following proposition gives an affirmative answer to the above posed

question.

Proposition 2.2 Let v ∈ GN be an arbitrary game. If v has large monotonic
core, then v is a convex game.

Proof: We show that the game v has totally large core and, therefore, it is
convex by Kikuta (1988) or Moulin (1990). Let S ∈ P (N) and y0 ∈ A (vS)
fixed. To show that the game vS has large core, we prove that there is an
x0 ∈ C (vS) such that x0 ≤ y0.
Let ȳ be an aspiration of the game v such that ȳ |S= y0. Then, the vector

y := (ȳ |T )T∈P (N) ∈MA(v). By hypothesis, there is an x ∈MC(v) such that
x ≤ y. In particular, the vector x0 := xS ∈ C (vS) and x0 ≤ yS = ȳ |S= y0. ¤

3 The large monotonic core

In this section, we present a characterization of games with large monotonic
core, in terms of its characteristic function. This characterization can be put
into practice to decide whether a given game has large monotonic core or not.
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We start with two remarks. First, a game v ∈ GN has large monotonic
core if and only if the game vo has large monotonic core, where vo is the 0-
normalized game associated to v (i.e. vo (S) := v (S) −

P
i∈S v (i) for S ∈

P (N)).
Second, if a game v ∈ GN has large monotonic core, then (S, vS) has large

monotonic core for all S ∈ P (N) .
After that, we consider the set of monotonic aspirations that are efficient

for all coalitions of size below a fixed upper bound t.

Definition 3.1 Let it be v ∈ GN and t = 0, 1, . . . , n. The set

MAt (v) :=
©
y ∈MA (v) | yS (S) = v (S) for all S ∈ P (N) with s ≤ t

ª
.

is the set of monotonic aspirations at level t.

Notice that eachMAt (v) is a closed and convex (possibly empty) subset ofY
S∈P (N)

RS, but, for t < n, it is not upper bounded. According to the preceding

definition, we have the following decreasing chain of sets

MA (v) =MA0 (v) ⊇MA1 (v) ⊇ · · · ⊇MAn−1 (v) ⊇MAn (v) =MC (v) .

Moreover, notice that for every y ∈MA (v) there is a z ∈MA1 (v) with z ≤ y.
Indeed, it is sufficient to take zii := v (i) for all i = 1, . . . , n and zR := yR for
all R ∈ P (N) with |R| ≥ 2. So MA1 (v) 6= ∅.
Fixed an integer t ≥ 2, the following proposition shows an effective crite-

rion to decide when a give monotonic aspiration of level t−1 has a monotonic
aspiration of level t below it.

Proposition 3.2 Let it be v ∈ GN , t = 2, 3, · · · , n and y ∈ MAt−1 (v) .Then
the following statements are equivalent:
(a) There exist z ∈MAt (v) such that z ≤ y.

(b) For all T ∈ P (N) with |T | = t we have
P
i∈T

µ
max

RÃT :i∈R
yRi

¶
≤ v (T ) .

Proof: (a)⇒ (b)We suppose the existence of z ∈MAt (v) such that z ≤ y.
Let T ∈ P (N) be a coalition with size |T | = t. Then we have

zR = yR for all ∅ 6= R Ã T,P
i∈T

µ
max

RÃT :i∈R
yRi

¶
=
P
i∈T

µ
max

RÃT :i∈R
zRi

¶
≤
P
i∈T

zTi = v (T ) ,
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which proves (b) .
(b)⇒ (a) Let T ∈ P (N) be a coalition with |T | = t. Then, by hypothesis

(b) , we haveX
i∈T

yTi ≥ v (T ) ,
X
i∈T

µ
max

RÃT :i∈R
yRi

¶
≤ v (T ) , max

RÃT :i∈R
yRi ≤ yTi for all i ∈ T.

Thus, by Lemma A.1 in the Appendix, there exists xT ∈ Rt such that

xT (T ) = v (T ) and max
RÃT :i∈R

yRi ≤ xTi ≤ yTi for all i ∈ T.

Now, we define z as follows:

zT := xT for T ∈ P (N) with |T | = t,

zR := yR for R ∈ P (N) with |R| 6= t.

It is not hard to check that z ∈ MAt (v) and z ≤ y, which proves statement
(a) . ¤
Notice that statement (b), in the above proposition, can be checked in a

finite number of steps for a given y ∈MAt−1 (v). Notice also that the sum on
statement (b) can be rewritten as

P
i∈T

µ
max

RÃT :i∈R
yRi

¶
=
P
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= max

{ji}i∈T∈
Q
i∈T

T\{i}

µP
i∈T

y
T\{ji}
i

¶
.

(3)

Corollary 3.3 Let it be v ∈ GN and y ∈MA (v) satisfyingX
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
≤ v (T ) for all T ∈ P (N) with |T | ≥ 2.

Then there exists x ∈MC (v) such that x ≤ y.

Proof: Note first that if z ∈MA (v) with z ≤ y, then z also satisfiesX
i∈T

µ
max

j∈T\{i}
z
T\{j}
i

¶
≤ v (T ) for all T ∈ P (N) with |T | ≥ 2.

Applying Proposition 3.2 repeatedly, we obtain the result. ¤
The following theorem gives a necessary and sufficient condition for a game

to have a large monotonic core.
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Theorem 3.4 Let it be v ∈ GN . The game v has a large monotonic core if
and only if the inequalityX

i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
≤ v (T )

holds for all T ∈ P (N) with t := |T | ≥ 2 and all y ∈MAt−1 (v).

Proof: First, let us suppose that v has large monotonic core. Take then
T ∈ P (N) with t := |T | ≥ 2 and y ∈ MAt−1 (v) . By hypothesis, there exists
x ∈MC (v) ⊆MAt (v) such that x ≤ y. Then, by Proposition 3.2, we obtain
the desired inequality.
Conversely, let us suppose that v satisfies the above inequality for all T ∈

P (N) with t := |T | ≥ 2 and all y ∈ MAt−1 (v). Let y be an arbitrary
monotonic aspiration of v. We must show that there is x ∈MC (v) such that
x ≤ y. By Proposition 3.2, we can recursively associate a sequence {yt}t=0,1,··· ,n
such that

y0 := y, yt ∈MAt (v) and yt ≤ yt−1 for t = 1, · · · , n.
Therefore, taking x := yn ∈MAn (v) =MC (v) , we obtain

x = yn ≤ yn−1 ≤ · · · ≤ y1 ≤ y0 = y. ¤

As a consequence of the above theorem, we can identify a class of games
with large monotonic core.

Corollary 3.5 Let it be v ∈ GN satisfyingX
i∈T

v (T\ {i}) ≤ v (T ) + (t− 2)
X
i∈T

v (i)

for all T ∈ P (N) with size t ≥ 2. Then v has large monotonic core.

Proof: Let T ∈ P (N) be a coalition with t := |T | ≥ 2 and y ∈ MAt−1 (v) .
Then we haveP

i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
≤

P
i∈T

Ã P
j∈T\{i}

y
T\{j}
i − (t− 2) v (i)

!

=
P
i∈T

Ã P
j∈T\{i}

y
T\{j}
i

!
−
P
i∈T
(t− 2) v (i)

=
P
j∈T

Ã P
i∈T\{j}

y
T\{j}
i

!
− (t− 2)

P
i∈T

v (i)

=
P
j∈T

v (T\ {j})− (t− 2)
P
i∈T

v (i)

≤ v (T ) ,
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where the first inequality follows from Lemma A.2 in the Appendix, only
noting that

v (i) = yii ≤ y
T\{j}
i for all i ∈ T and j ∈ T\ {i} ,

and the second one follows by assumption. Thus, according to Theorem 3.4,
we obtain that v has large monotonic core. ¤
After that, we are going to give a reformulation of Theorem 3.4 to obtain a

criterion to determine whether a game has large monotonic core. This criterion
will allow obtain in Section 4 a necessary and sufficient condition for the case
of four-player games, that can be applied in practice.
We take a game v ∈ GN and a coalition T ∈ P (N) with size t := |T | ≥ 2.

Recall that in the proof of Corollary 3.5 we have seen thatX
i∈T

v (i) ≤
X
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
≤
X
i∈T

v (T\ {i})− (t− 2)
X
i∈T

v (i) , (4)

for all y ∈MAt−1 (v). Thus, the set defined by

ΣT
v :=

(X
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
| y ∈MAt−1 (v)

)
⊆ R,

is a compact set. ΣT
v is defined to be empty if MAt−1 (v) = ∅.

Therefore, when MAt−1 (v) 6= ∅ (this occurs, for example, if v has a
PMAS) we define the constant

KT
v := supΣ

T
v = max

y∈MAt−1(v)

(X
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶)
∈ R, (5)

and, by (4), we haveX
i∈T

v (i) ≤ KT
v ≤

X
i∈T

v (T\ {i})− (t− 2)
X
i∈T

v (i) .

By Proposition 3.2, part (b) ⇒ (a) , for a given integer t = 2, . . . , n − 1,
if MAt−1 (v) 6= ∅ and KT

v ≤ v (T ) for all T ∈ P (N) with |T | = t, then
MAt (v) 6= ∅ and, therefore, KT 0

v is defined for all T 0 ∈ P (N) with size t+1.
Now, we may reformulate Theorem 3.4 as follows:

Theorem 3.6 A game v ∈ GN has large monotonic core if and only if KT
v ≤

v (T ) for all T ∈ P (N) with |T | ≥ 2.¤

10



As a consequence, we are really interested in computing these constants
KT

v for a game v and a coalition T . In fact, we need to find the maximum of

a convex function,
P
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
, over the following compact set

MA0t−1 (v) :=
n¡

yS
¢
S∈P (N),|S|≤t−1 | y ∈MAt−1 (v)

o
.

This is a problem of convex programming that can be solved by an appropriate
optimization software. Moreover, this problem can be reduced to solving a
finite number of linear programming problems since by (5) and (3) we obtain

KT
v = max

y∈MA0t−1(v)

⎧⎨⎩ max
{ji}i∈T∈

Q
i∈T

T\{i}

ÃX
i∈T

y
T\{ji}
i

!⎫⎬⎭
= max

{ji}i∈T∈
Q
i∈T

T\{i}

(
max

y∈MA0t−1(v)

ÃX
i∈T

y
T\{ji}
i

!)
.

Therefore, given an arbitrary game, in order to decide whether it has large
monotonic core or not firstly, for each T ∈ P (N) with size t = 2 we compute
the constant KT

v and check if the inequality KT
v ≤ v (T ) holds. If this is

the case, we compute KT
v for coalitions of size t = 3 and check if the same

inequalities holds. We go on in this way increasing at each step the size of the
coalitions.

4 Four-player games with large monotonic core

For a game v ∈ GN , by means of computing the constantsKT
v for all coalitions

T ∈ P (N) , we have an effective criterion to decide whether the game v has
large monotonic core or not. This is what we do for n = 4.

Proposition 4.1 Let v ∈ GNand let T ∈ P (N) .
(a) If t = 2 and T = {i, j} , then

KT
v = v (i) + v (j) .

(b) If t = 3, T = {i, j, k} and

KS
v ≤ v (S) for all S ∈ P (N) of size s = 2,

then
KT

v = v (ij) + v (ik) + v (jk)− (v (i) + v (j) + v (k)) .

11



(c) If t = 4, T = {i, j, k, l} and

KS
v ≤ v (S) for all S ∈ P (N) of size s = 2 or 3,

then
KT

v = v (ijk) + v (ijl) + v (ikl) + v (jkl)− δT (v) ,

where δT (v) is

max

⎧⎪⎪⎨⎪⎪⎩
v (jk) + v (jl) + v (kl) + 2v (i) , v (ik) + v (il) + v (jk) + v (jl) ,
v (ik) + v (il) + v (kl) + 2v (j) , v (ij) + v (il) + v (jk) + v (kl) ,
v (ij) + v (il) + v (jl) + 2v (k) , v (ij) + v (ik) + v (jl) + v (kl) .
v (ij) + v (ik) + v (jk) + 2v (l) ,

⎫⎪⎪⎬⎪⎪⎭
The proof of this proposition is in the Appendix.
As a straightforward result of Theorem 3.6 and Proposition 4.1, we can

state the following characterization of four-player game with large monotonic
core in terms of its characteristic function.

Proposition 4.2 A four-player game v has large monotonic core if and only
if the following three conditions are satisfied:
(i) v (i) + v (j) ≤ v (ij) for all i, j ∈ N with i < j.
(ii) v (ij)+ v (ik)+ v (jk) ≤ v (ijk)+ v (i)+ v (j)+ v (k) for all i, j, k ∈ N

with i < j < k.
(iii) v (123) + v (124) + v (134) + v (234) ≤ v (1234) + δ{1,2,3,4} (v), where

δ{1,2,3,4} (v) is defined in part (c) of Proposition 4.1.

To finish, we show an example where Proposition 4.1 is applied to games
with n ≥ 4 players. It is a game with nonnegative unanimity coordinates, so
convex, which does not have large monotonic core.

Example 4.3 Let it be µ2, µ3, µ4 > 0 and µ such that 0 ≤ µ < min {µ2, µ3, µ4} .
Then the n-player game defined by

v := µ2u12 + µ3u13 + µ4u14 + µu1234 ∈ GN

does not have large monotonic core.

Indeed, by (c) of Proposition 4.1 applied to T = {1, 2, 3, 4} , we have

KT
v = µ2 + µ3 + µ2 + µ4 + µ3 + µ4 + 0−max {0, µ2 + µ3, µ2 + µ4, µ3 + µ4}
= µ2 + µ3 + µ4 +min {µ2, µ3, µ4}
> µ2 + µ3 + µ4 + µ = v (T ) ;

which, by Theorem 3.6, shows that v does not have large monotonic core.
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A Appendix

Lemma A.1 Let ν ∈ R, y1, . . . , yt ∈ R such that y1 + . . . + yt ≥ ν and let
a1, . . . , at ∈ R such that a1 + . . . + at ≤ ν and ai ≤ yi for i = 1, . . . , t. Then
there exist x1, . . . , xt ∈ R such that x1 + . . . + xt = ν and ai ≤ xi ≤ yi for
i = 1, . . . , t. ¤

Lemma A.2 Let ν ∈ R and y1, . . . , yr ∈ R.
(a) If ν ≤ yj for j = 1, . . . , r, then max {y1, . . . , yr} ≤ y1 + . . . + yr −

(r − 1) ν.
(b) If ν ≥ yj for j = 1, . . . , r, thenmin {y1, . . . , yr} ≥ y1+. . .+yr−(r − 1) ν.

¤

Proof of Proposition 4.1: We know that MA1 (v) 6= ∅.
(a) Assume t = 2, so, without lost of generality, we can suppose that T =

{1, 2} . According to Definition 3.1, for any y ∈ MA1 (v) we have yii = v (i)
for all i ∈ N, andX

i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= y11 + y22 = v (1) + v (2) ;

so, by (5), (a) holds.
(b) Assume t = 3. By hypothesis, K{i,j}

v ≤ v (ij) for all i, j ∈ N with
i < j (i.e. v (i) + v (j) ≤ v (ij)). Then, by a remark before Theorem 3.6, we
know thatMA2 (v) 6= ∅; so the constant KT

v is defined. We can suppose that
T = {1, 2, 3} . Then we must prove:

KT
v = v (12) + v (13) + v (23)− (v (1) + v (2) + v (3)) . (6)

For any y ∈MA2 (v) we haveX
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= max

©
y121 , y

13
1

ª
+max

©
y122 , y

23
2

ª
+max

©
y133 , y

23
3

ª
≤
¡
y121 + y131 − v (1)

¢
+
¡
y122 + y232 − v (2)

¢
+
¡
y133 + y233 − v (3)

¢
= v (12) + v (13) + v (23)− (v (1) + v (2) + v (3)) ,

where the above inequality is obtained by Lemma A.2 and the last equality
by Definition 3.1. This proves the inequality

KT
v ≤ v (12) + v (13) + v (23)− (v (1) + v (2) + v (3)) .

Since, by assumption, v (ij)− v (j) ≥ v (i) for all i, j ∈ N, we can consider
a monotonic aspiration y =

¡
yS
¢
S∈P (N) ∈MA2 (v) such that

13



y12 = (v (12)− v (2) , v (2)) ,
y13 = (v (1) , v (13)− v (1)) ,
y23 = (v (23)− v (3) , v (3)) ,
yi = (v (i)) for all i ∈ N.

Thus we obtain

KT
v ≥

X
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= v (12)− v (2) + v (13)− v (1) + v (23)− v (3) ,

and equality (6) is proved.
(c) Assume t = 4. By hypothesis, K{i,j}

v ≤ v (ij) for all i, j ∈ N with
i < j (then, MA2 (v) 6= ∅) and K

{i,j,k}
v ≤ v (ijk) for all i, j, k ∈ N with

i < j < k (as a consequence, MA3 (v) 6= ∅). Therefore, by (a) and (b), we
have that the unanimity coordinates are

λS ≥ 0 for all S ∈ P (N) with |S| = 2 or 3,

and so, the subgames vS are convex for all S ∈ P (N) with |S| = 3.
Without loss of generality, we can suppose that T = {1, 2, 3, 4} . Then we

must prove the following equality:

KT
v = v (123) + v (124) + v (134) + v (234)− δT (v) .

Let y ∈MA3 (v) . Then we have

P
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= max {y1231 , y1241 , y1341 }+max {y1232 , y1242 , y2342 }+

+max {y1233 , y1343 , y2343 }+max {y1244 , y1344 , y2344 } .

We want to find an optimal upper bound for the above expression. From
Lemma A.2, for i = 1 we have
max {y1231 , y1241 , y1341 } ≤
· · · ≤ max {y1231 + y1241 − y121 , y

134
1 } ≤

½
y1231 + y1241 + y1341 − (y121 + y131 ) ,
y1231 + y1241 + y1341 − (y121 + y141 ) ,

or

· · · ≤ max {y1231 + y1341 − y131 , y
124
1 } ≤

½
y1231 + y1241 + y1341 − (y121 + y131 ) ,
y1231 + y1241 + y1341 − (y131 + y141 ) ,

or

· · · ≤ max {y1231 , y1241 + y1341 − y141 } ≤
½

y1231 + y1241 + y1341 − (y121 + y141 ) ,
y1231 + y1241 + y1341 − (y131 + y141 ) .

Summarizing, for i = 1 we have obtained

14



max {y1231 , y1241 , y1341 } ≤

⎧⎨⎩ y1231 + y1241 + y1341 − (y121 + y131 ) ,
y1231 + y1241 + y1341 − (y121 + y141 ) ,
y1231 + y1241 + y1341 − (y131 + y141 ) .

In the same way as above, for i = 2 we have

max {y1232 , y1242 , y2342 } ≤

⎧⎨⎩ y1232 + y1242 + y2342 − (y122 + y232 ) ,
y1232 + y1242 + y2342 − (y122 + y242 ) ,
y1232 + y1242 + y2342 − (y232 + y242 ) .

For i = 3 we obtain

max {y1233 , y1343 , y2343 } ≤

⎧⎨⎩ y1233 + y1343 + y2343 − (y133 + y233 ) ,
y1233 + y1343 + y2343 − (y133 + y343 ) ,
y1233 + y1343 + y2343 − (y233 + y343 ) .

And, for i = 4 we have

max {y1244 , y1344 , y2344 } ≤

⎧⎨⎩ y1244 + y1344 + y2344 − (y144 + y244 ) ,
y1244 + y1344 + y2344 − (y144 + y344 ) ,
y1244 + y1344 + y2344 − (y244 + y344 ) .

Now, we add the last terms in all possible ways, picking one for each i, ac-
cording to Definition 3.1. Comparing the sums obtained we see that

KT
v ≤ v (123) + v (124) + v (134) + v (234)− δT (v).

On the other hand, to prove the converse inequality, by symmetry, we can
reduce to the following two cases:

I: δT (v) = v (23) + v (24) + v (34) + 2v (1) .
II: δT (v) = v (12) + v (13) + v (24) + v (34) .

Case I: δT (v) = v (23) + v (24) + v (34) + 2v (1) . Thus, then we have

λ13 + λ14 ≤ λ34, λ12 + λ14 ≤ λ24, λ12 + λ13 ≤ λ23; (7)

and, in particular, we obtain

λ13 ≤ λ34, λ12 ≤ λ24, λ13 ≤ λ23 ≤ λ23 + λ34. (8)

Now, let us see that we can always find a monotonic aspiration y =¡
yS
¢
S∈P (N) ∈MA3 (v) satisfying

y123 = (v (1) , v (23)− v (13) + v (1) , v (123)− v (23) + v (13)− 2v (1)) ,
y124 = (v (124)− v (24) , e, e0) ,
y134 = (v (1) , v (13)− v (1) , v (134)− v (13)) ,
y234 = (v (234)− v (34) , v (13)− v (1) , v (34)− v (13) + v (1)) ,

15



y12 = (v (1) , v (12)− v (1)) ,
y13 = (v (1) , v (13)− v (1)) ,
y14 = (v (1) , v (14)− v (1)) ,
y23 = (v (23)− v (13) + v (1) , v (13)− v (1)) ,
y24 = (e, e0) ,
y34 = (v (13)− v (1) , v (34)− v (13) + v (1)) ,

yi = (v (i)) for all i ∈ N,

where e, e0 ∈ R satisfy the following inequalities
v (12)− v (1) ≤ e ≤ v (234)− v (34) ,
v (14)− v (1) ≤ e0 ≤ v (34)− v (13) + v (1) ,

e+ e0 = v (24) .

Notice first that, by Lemma A.1, there always exist e, e0 satisfying the above
inequalities since, applying (7) and (8), we obtain

v (12)− v (1) ≤
(8)

v (24)− v (4) ≤ v (234)− v (34) ,

v (14)− v (1) ≤
(7)

v (34)− v (13) + v (1) ,

v (12)− v (1) + v (14)− v (1) ≤
(7)

v (24) ≤
(8)

v (234)− v (34) + v (34)− v (13) + v (1) .

The other monotonic inequalities can be obtained from (7) and (8), since we
have

v (23)− v (13) + v (1) ≥
(7)

v (12)− v (1) ,

v (123)− v (23) + v (13)− 2v (1) ≥ v (13)− v (1) ,
v (124)− v (24) ≥ v (1) ,
v (134)− v (13) ≥ v (14)− v (1) ,
v (134)− v (13) ≥ v (34)− v (13) + v (1) ,
v (234)− v (34) ≥ v (23)− v (13) + v (1)
v (23)− v (13) + v (1) ≥

(8)
v (2) ,

v (34)− v (13) + v (1) ≥
(8)

v (4) ,

Therefore, the claimed y ∈MA3 (v) does exist. Moreover, we have

KT
v ≥

X
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= y1241 + y2342 + y1233 + y1344
= v (124)− v (24) + v (234)− v (34) +

v (123)− v (23) + v (13)− 2v (1) + v (134)− v (13)

= v (123) + v (124) + v (134) + v (234)− δT (v) .
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Case II: δT (v) = v (12) + v (13) + v (24) + v (34) . So, we have

λ23 ≤ λ12 + λ13, λ14 ≤ λ12 + λ24, λ14 ≤ λ13 + λ34, λ23 ≤ λ24 + λ34, (9)

λ14 + λ23 ≤ λ12 + λ34, λ14 + λ23 ≤ λ13 + λ24. (10)

Now, let us see that we can always find amonotonic aspiration y =
¡
yS
¢
S∈P (N) ∈

MA3 (v) satisfying

y123 = (a, a0, v (123)− v (12)) ,
y124 = (v (124)− v (24) , e, e0) ,
y134 = (b, b0, v (134)− v (13)) ,
y234 = (v (234)− v (34) , f, f 0) ,

y12 = (a, a0) , y23 = (d, d0) ,
y13 = (b, b0) , y24 = (e, e0) ,
y14 = (c, c0) , y34 = (f, f 0) ,
yi = (v (i)) for all i ∈ N.

where a, a0, b, b0, c, c0, d, d0, e, e0, f, f 0 ∈ R satisfy the following inequalities

v (1) ≤ c ≤ b ≤ a, v (2) ≤ d ≤ a0 ≤ e,
v (4) ≤ c0 ≤ e0 ≤ f 0, v (3) ≤ d0 ≤ f ≤ b0,
a+ a0 = v (12) , b+ b0 = v (13) , c+ c0 = v (14) ,
d+ d0 = v (23) , e+ e0 = v (24) , f + f 0 = v (34) .

(11)

We leave the existence of these parameters for the next lemma. Therefore
assuming their existence and recalling that, by assumption, v (ijk)− v (ij) ≥
v (ik)−v (i) for all i, j, k ∈ N, we obtain the claimed existence of y ∈MA3 (v) .
Moreover, we have

KT
v ≥

X
i∈T

µ
max

j∈T\{i}
y
T\{j}
i

¶
= y1241 + y2342 + y1233 + y1344
= v (124)− v (24) + v (234)− v (34) +

v (123)− v (12) + v (134)− v (13)

= v (123) + v (124) + v (134) + v (234)− δT (v) . ¤

Lemma A.3 With the above assumptions and notations, there are real num-
bers a, a0, b, b0, c, c0, d, d0, e, e0, f, f 0 satisfying (11).
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Proof: It is sufficient to show the existence of two real numbers a, e satisfying
the following eight inequalities:

v (12)− v (23) + v (3) ≤ a ≤ v (12)− v (2) ,
v (24)− v (14) + v (1) ≤ e ≤ v (24)− v (4) ,
v (12) ≤ a+ e ≤ v (12) + v (13) + v (24)− v (14)− v (23) ,
v (14)− v (24) ≤ a− e ≤ v (12) + v (34)− v (23)− v (24) .

(12)

Indeed, taking

a0 = v (12)− a, b = v (14)− v (24) + e, b0 = v (13)− b,
e0 = v (24)− e, f = v (23)− v (12) + a, f 0 = v (34)− f,

we obtain

v (1) ≤ b ≤ a, v (2) ≤ a0 ≤ e,
v (4) ≤ e0 ≤ f 0, v (3) ≤ f ≤ b0,
v (14) = b+ e0, v (23) = a0 + f,

and, taking
c = b, c0 = e0, d = a0, d0 = f,

the lemma would be proved.
Now we prove the existence of numbers a and e satisfying (12). Firstly,

notice that, by (10), we have

v (12) ≤ v (12) + v (13) + v (24)− v (14)− v (23) ,
v (14)− v (24) ≤ v (12) + v (34)− v (23)− v (24) .

Secondly, the set of the points (a, e) in the Euclidean plane satisfying the
first four inequalities (resp. the last four inequalities) in (12) is a rectangle D
(resp. D0 ) with the sides li, 1 ≤ i ≤ 4, parallel to the axes (resp. with the
sides li, 5 ≤ i ≤ 8, parallel to the quadrant’s bisectrix) as the Figure 1 shows.
Therefore, we only have to prove that the intersection of both rectangles

is nonempty. For this, we denote by Pij = (aij, eij) the intersection point of
the line li with the line lj when li and lj are non parallel lines. By (9), we
have the following inequalities
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Figure 1: Rectangles D and D0

(1) a57 =
v (12) + v (14)− v (24)

2
≤ v (12)− v (2) ,

(2) a68 =
2v (12) + v (13) + v (34)− 2v (23)− v (14)

2
≥ v (12)− v (23) + v (3) ,

(3) e58 =
v (23) + v (24)− v (34)

2
≤ v (24)− v (4) ,

(4) e67 =
v (12) + v (13) + 2v (24)− 2v (14)− v (23)

2
≥ v (24)− v (14) + v (1) ,

(5) e16 = v (13) + v (24)− v (14)− v (3) ≥ v (24)− v (14) + v (1) ,
(6) e25 = v (2) ≤ v (24)− v (4) ,
(7) a37 = v (1) ≤ v (12)− v (2) ,
(8) a48 = v (12) + v (34)− v (23)− v (4) ≥ v (12)− v (23) + v (3) .

The inequalities (1) and (2) (resp. (3) and (4) ) show that D0 has at least a
point between the lines l1 and l2 (resp. l3 and l4 ), and the inequalities (5)
and (6) (resp. (7) and (8) ) show that D has at least a point between the lines
l5 and l6 (resp. l7 and l8 ). From this follows that D ∩D0 6= ∅ and, therefore,
the lemma is proved. ¤
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