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Resumen

Contexto

El helio es la única sustancia que permanece ĺıquida a temperatura cero. Esta curiosa
caracteŕıstica es una clara manifestación macroscópica de la naturaleza cuántica de la
materia. El helio es el segundo elemento más ligero y su estructura de capa cerrada es
responsable de la débil atracción entre átomos de He. Estas dos propiedades son la causa
de que el helio tenga una enerǵıa de punto cero suficientemente grande como para evitar
la solidificación, incluso a temperatura estrictamente cero. La enerǵıa del punto cero
–también conocida como movimiento del punto cero– es la enerǵıa asociada a la localización
de la distribución de probabilidad de un sistema. La existencia de esta enerǵıa es una
predicción de la mecánica cuántica sin equivalente clásico que desempeña el papel de
enerǵıa cinética incluso cuando no hay “movimiento” en el sentido clásico. La naturaleza
cuántica del He se manifiesta no solo impidiendo su solidificación sino también causando
una transición de segundo orden cuando la temperatura se reduce por debajo de los 2.18
grados Kelvin de un estado ĺıquido normal (He I) a un estado superfluido (He II); un
nuevo estado de la materia en el que la ausencia de viscosidad permite al helio fluir libre-
mente (sin disipación) cuando se desplaza a velocidades por debajo de cierto valor ĺımite.[1]

El helio aparece tanto en forma de ĺıquido homogéneo como en forma de gotas. Las
gotas pueden estar formadas por cualquiera de los dos isótopos estables del helio, 3He y
4He, o de una mezcla de ambos. A bajas temperaturas, una gota mixta de 3He–4He es
un agregado estructurado con 4He en su núcleo y 3He en su capa externa. Una propiedad
interesante de estas gotas es que pueden ser dopadas con impurezas de forma relativa-
mente fácil. El estudio espectroscópico de estas impurezas permite analizar el entorno de
helio que las rodea. [2–7] Dependiendo de la impureza, ésta se situará bien en el centro
de la gota, en la superficie, o en la interficie 3He–4He.[8] La estructura de gotas de 3He,
4He y, en menor medida, 3He–4He alrededor de impurezas atómicas o electrones libres ha
sido estudiada tanto a nivel teórico como experimental.

La dinámica de estos sistemas se ha resistido a una exploración teórica durante
muchos años. Uno podŕıa argumentar que, dado los pocos experimentos llevados a cabo
sobre la respuesta del helio en la escala del picosegundo, una descripción precisa de la
dinámica es una cuestión puramente académica de poca relevancia para la comunidad
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ii RESUMEN

experimental. Sin embargo, diversos experimentos como por ejemplo la observación de la
desaparición de burbujas electrónicas excitadas[9] por el Prof. Maris o la medición de la
velocidad de desorción de átomos de Ag dentro de gotas[10] del Prof. Drabbels muestran
que una descripción teórica completa y precisa del proceso dinámico que subyace a estas
experiencias es fundamental para comprender los resultados.

Resultados

En esta tesis se presenta una colección de cuatro art́ıculos publicados y un manuscrito
aún no publicado, todos ellos en el campo de la f́ısica de bajas temperaturas y fluidos
cuánticos. Cada uno de ellos reporta un paso adelante en la descripción teórica de los
sistemas de helio por medio de la teoŕıa del funcional de la densidad.

Los primeros dos art́ıculos [11, 12] están clasificados como “estructura” ya que tratan
cuestiones relacionadas con la descripción del estado fundamental de complejos de helio
dopados con impurezas atómicas. En ellos hemos calculado la estructura y determinado
su efecto sobre el espectro de absorción dipolar del Na en agregados de 3He–4He y del
Mg en el ĺıquido homogéneo e isotópicamente mezclado. Para el caso de Na en gotas
se ha encontrado que, a pesar de necesitar una gran cantidad de 3He para que la capa
exterior de la gota sature, el espectro de la impureza es muy insensible a la composición
isotópica y rápidamente satura al valor que toma en las gotas de 3He puras. Para Mg
en el ĺıquido mezclado, la presencia de 3He induce cambios en el espectro mucho más
pequeños que su anchura caracteŕıstica, por lo que se ha encontrado que el efecto general
de la composición isotópica de la mezcla en la espectroscoṕıa es mı́nima.

Hemos explorado también los ĺımites del funcional de la densidad para un número
pequeño de átomos de helio interactuando con una molécula lineal de sulfuro de carbonilo
(OCS). Para ello hemos implementado un esquema de Kohn-Sham para el 3He y hemos
obtenido la estructura de agregados OCS@3HeN para un número de átomos N hasta 40.
Hemos comparado los resultados de los agregados de 4He con el mismo número de átomos
y hemos encontrado que la alta anisotroṕıa de la molécula de OCS magnifica los efectos de
las diferentes estad́ısticas de cada isótopo. Nuestra estimación de los momentos de inercia
de estos agregados es consistente con la interpretación de los datos experimentales[13]
que sugieren una estructura de 11 átomos de helio rotando solidariamente con la molécula
de OCS.

Los siguientes tres trabajos [10, 14, 15], clasificados como “dinámica”, describen la
evolución temporal de ciertos procesos de interés experimental en los sistemas de helio.
Mientras que las publicaciones sobre la estructura completan una ĺınea de trabajo bien
establecida, las de esta sección abren un nuevo frente de exploración teórica sobre los
procesos dinámicos con resolución de picosegundos. En ellos se presenta un procedimien-
to eficiente para describirlos cuantitativamente mediante una teoŕıa del funcional de
la densidad dependiente del tiempo (TDDFT, por sus siglas en inglés) para el helio,
acoplado a la dinámica adecuada para la impureza. Cuál es la dinámica “adecuada”
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depende de las propiedades de la impureza: para la burbuja electrónica 1P se puede
utilizar una descripción puramente mecanocuántica del electrón en una aproximación
adiabática, mientras que para la burbuja 2P la aproximación adiabática no es aplicable
y se deben acoplar las evoluciones en tiempo real del helio y del electrón. Para una
impureza masiva como la Ag una descripción clásica de su movimiento es suficiente, pero
el efecto de spin-órbita es lo suficientemente importante como para que el estado electróni-
co del átomo deba tenerse en cuenta en la dinámica como un grado de libertad cuantizado.

En el caso de las burbujas electrónicas, hemos relacionado la desaparición de las
burbujas 1P a altas presiones con la existencia de un camino de relajación no-radiativo que
causa la rotura de la burbuja en dos mitades casi esféricas tras haber transcurrido unos 20
picosegundos desde su excitación. Hemos sido capaces de establecer esta relación gracias
a que nuestro cálculo predice la “fisión” de la burbuja solo para presiones superiores
a 1 bar, que es el mismo umbral observado experimentalmente para la desaparición de
las burbujas 1P. [9] Teniendo en cuenta que aumentar la presión en 1 bar aumenta la
densidad de saturación del ĺıquido en poco más de un 1 %, la exactitud de este resultado
indica que TDDFT contiene la f́ısica relevante para describir este tipo de procesos y tiene
capacidad de predicción cuantitativa. También hemos encontrado un marcado cambio
en el comportamiento del espectro de absorción con resolución temporal de la burbuja
1P dependiendo de si ésta fisiona o no, es decir, dependiendo de la presión del ĺıquido.
La observación experimental de este cambio y su determinación podŕıa completar la
información obtenida en los experimentos de cavitación y fotoconductividad.

En el caso de la desorción de un átomo de plata tras su fotoexcitación en el interior
de una gota de He, nuestros cálculos dinámicos predicen un rango de velocidades para
la impureza consistente con la distribución de velocidades experimental. Esta velocidad
es el resultado de cuánta enerǵıa transfiere la impureza a la gota, lo cual depende de
los modos de excitación disponibles para dicha transferencia. Nuestra descripción del
ĺıquido solo permite excitaciones colectivas tales como ondas de densidad u oscilaciones de
superficie, por lo que la compatibilidad de nuestros resultados con los datos experimentales
se puede tomar como una evidencia indirecta de la superfluidez de las nanogotas de
helio. Adicionalmente hemos descartado la nucleación vórtices como un posible canal
de transferencia de enerǵıa en gotas nanoscópicas al no haberlos generado en nuestros
cálculos.
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Chapter 1

Introduction

Helium first revealed itself in 1868 as a bright yellow line coming from the Sun. As the
unworldly substance it seemed to be, it was named after the Greek word for Sun, helios.
Fourteen years later its presence on Earth was unraveled by analyzing the spectral lines
of the lava on Mount Vesuvius. Before the turn of the century, helium would be captured
and isolated for study in several laboratories around Europe. In 1908, Heike Kamerlingh
Onnes achieved the liquefaction of helium by cooling it below four degrees Kelvin, but
helium would always defy solidification under normal pressure.[16] This seemingly inno-
cent realization marks the start for an exhaustive research which would reveal a new
state of matter and surprising new phenomenology in the field of low temperature physics.

Helium is the only substance which remains liquid at zero temperature. This striking
feature is a clear and indisputable macroscopic manifestation of the quantum nature of
matter. Helium is the second lightest element and its closed shell structure is responsible
for the extremely small attraction between He atoms. These two properties cause the
helium to have a zero point energy large enough to keep it from solidifying even at strictly
zero temperature. The zero point energy –also known as zero point motion– is the energy
associated with the localization of the probability distribution of a system on a finite
region of space. The existence of this energy is a prediction of Quantum Mechanics with
no classical equivalent, and plays the role of a kinetic energy present even when there is
no “motion” in the classical sense. The quantum nature of He does not only prevents it
from solidifying but also causes a second order phase transition when the temperature is
reduced below 2.18 Kelvin from normal liquid state (He I) to a superfluid state (He II);
a new state of matter in which the absence of viscosity allows it to flow freely (with no
dissipation) at velocities below a certain limit.[1]

The superfluid state is a highly correlated state where particle excitations are sup-
pressed in favor of delocalized collective excitations. It is associated with Bose-Einstein
condensation, a manifestation of the bosonic nature of helium’s most abundant isotope,
4He. Helium has a second stable isotope, 3He, which has spin 1/2 and therefore follows
fermionic statistics. The different statistics have a critical effect on the macroscopic
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2 CHAPTER 1. INTRODUCTION

properties of the liquid. For example, for 3He one needs to go to much lower tem-
peratures, below 2.6 mK, to find its superfluid state. This state is associated with
the condensation of 3He atom pairs, similar to the Cooper pairing of electrons in a
superconducting state.[17] Because 3He and 4He are practically identical in all properties
but statistics, a thorough comparison of these two substances is particularly interest-
ing to understand the role quantum statistics plays in the behavior of many-body systems.

Helium can appear both as a bulk liquid and as droplets. At low temperatures, a
mixed 3He-4He drop is a structured cluster with 4He in its core and 3He in its outer shell.
One attractive feature of these drops is that they can be doped with impurities with
relative ease for spectroscopic probing of the helium environment.[2–7] Depending on the
impurity it will either go to the center of the drop, reside at its surface, or sink down
to the 3He–4He interface.[8] The structure of 3He, 4He and, to a lesser extend, 3He–4He
mixed droplets and liquids around atomic impurities or free electrons has been studied
both in the experimental and theoretical fronts.

The dynamics of these systems, on the other hand, have proven elusive for many
years. One may naively argue that, because few experiments are carried out to study the
response of helium at the picosecond scale, an accurate dynamical description of helium
systems is a purely academic issue of little relevance to the experimental community.
However, many experiments such as Prof. Maris’ observation of disappearing excited
1P electron bubbles[9] or Prof. Drabbels’ measurement of the desorption velocity of Ag
atoms inside drops[10] have shown that a complete and accurate theoretical description of
the dynamical processes underlying these experiments is fundamental to understand them.

The publications presented in this thesis are split in two chapters: Chapter 2 addresses
some problems on the structure of drops and the mixed liquid. The differences between
3He and 4He are studied through the dipole absorption spectrum of Na and Mg impurities
and through their effect on the moment of inertia of solvated carbonyl sulfide molecules.
Chapter 3 presents the development of an accurate and consistent framework to address
time-dependent problems in helium liquids and clusters of some thousand atoms. This
methodology is used to help interpret the experiments by Profs. Maris and Drabbels
commented above.

1.1 Theoretical description of helium systems

A good theoretical description is essential to fully understand the experimental evidence.
Any potential description must take into account the key role of quantum mechanics and
the strong He–He correlations.

There are several approaches to a theoretical exploration of the properties of many-
body systems. One possibility is to solve numerically the N -body Schrödinger equation
by Quantum Monte Carlo simulation techniques.[18, 19] These techniques partially
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alleviate the prohibitive scaling of computational cost with the number of particles that
solving the Schrödinger equation has. These are ab initio procedures that give a very
detailed description of the groundstate of the system but require humongous amount of
computational power to describe systems of experimental interest such as drops with some
thousands of atoms. Other ab initio techniques include Green’s Function, Propagator
Methods, Correlated Basis Function or Coupled Cluster Method.[20–22] These methods
involve either diagramatic expansions or variations of a trial wavefunction, and are either
less suited or just not suited for complex setups like a cluster doped with a strongly
interacting impurity.

One alternative to these microscopic approaches is to pursue a phenomenological
description of the system by using Density Functional Theory. In this approach, all the
properties of the liquid are encoded in an energy functional which depends only on the
one-body density instead of the complete N -body wavefunction.[23–26] This provides a
good scaling with the number of particles while maintaining a wide applicability. The
price to pay is the added complexity of finding a realistic energy functional and the
limitation of having an hydrodynamic description of the system, with no information on
the atoms themselves nor their correlations.

We have chosen the later approach in all the works presented here as its accuracy and
efficiency have been proven. Besides, it is the only realistic way of computing real-time
dynamics in the picosecond domain for a system of thousands interacting He atoms so
far.

1.1.1 Density Functional Theory

Density functional theory is a rigorous formulation of nonrelativistic quantum many-body
physics in which the energy of the system is taken as a functional of the one-body
density and not the complete N -body wavefunction. The base for this formulation is the
demonstration [27] by Hohenberg and Kohn in 1964 that the groundstate properties of a
quantum system of interacting particles can be characterized completely by the one-body
density through the appropriate energy functional.

Several energy functionals for a system of interacting helium atoms have been devel-
oped over the years. The quintessential functional when dealing with inhomogeneous
4He settings is a finite-range functional known as “Orsay-Trento” presented in 1995 by
F. Dalfovo et al.[28] The extension to inhomogeneous 3He–4He mixtures made in [29]
(which reduces to Orsay-Trento in the absence of 3He) has been the functional of choice
for the works presented in this thesis.

With an energy functional at hand, this theory can be easily extended to a Time-
Dependent Density Functional Theory (TDDFT). In its simplest implementation, the
dynamics of the system is obtained by minimizing the quantum action for the effective
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macroscopic wavefunction Ψ,

A[Ψ] =
∫

dt

{
E[ρ] +

∫
d�r

h̄2

2m
|�∇Ψ|2 − ih̄Ψ∗ ∂

∂t
Ψ

}
,

where Ψ is a complex field whose squared modulus equals the one-body density, ρ = |Ψ|2.
This minimization yields a time-dependent Schrödinger-like equation for Ψ(�r, t) of the
form

ih̄
∂

∂t
Ψ(�r, t) =

(
− h̄2

2m
∇2 +

δE

δρ(�r, t)

)
Ψ(�r, t) .

which can be efficiently solved numerically by generic differential equation methods such
as a predictor-corrector algorithm.[30]

In all the problems addressed in this work helium is coupled to an impurity, which may
be either an atomic impurity such as Ag or an excess electron trapped in a bubble. This
coupling is introduced as a helium-impurity potential also entering in the time evolution
equation for the impurity. The power and suitability of TDDFT for the dynamics of
liquid helium and droplets becomes apparent since the same formalism has allowed to
couple, with only small changes, the helium evolution with an adiabatically evolving
wavefunction,[14] a real-time evolving wavefunction,[15] o a moving classical particle with
spin-orbit degrees of freedom.[10]



Chapter 2

Structure

2.1 Absorption spectrum of atomic impurities in isotopic
mixtures of liquid helium

Resumen (Spanish)

El espectro de absorción de impurezas atómicas en mezclas isotópicas de helio ĺıquido se
describe en este trabajo mediante cálculos basados en un formalismo del funcional de
la densidad a temperatura cero. Se consideran dos casos: en el primero, el espectro de
absorción de átomos de Na ligados a gotas de 4He1000–3HeN3 , con valores de N3 de 100 a
3000 se presenta como caso de estudio de una impureza que no solvata en gotas de helio.
En el segundo, el espectro de absorción de átomos de Mg solvatados en mezclas isotópicas
de 3He y 4He se presenta como caso de estudio de impureza disuelta en el ĺıquido uniforme.

Encontramos que el espectro de las impurezas se ve poco afectado por la composición
isotópica del entorno, y que depende básicamente de la cantidad de helio que tiene a
su alrededor sin importar el isótopo. En el caso de mezclas de ĺıquido uniforme, los
resultados se presentan en función de la presión para diferentes valores de concentración
de 3He. Los resultados para los ĺıquidos isotópicamente puros de 3He y 4He se comparan
con los datos experimentales disponibles en la literatura.
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composition because the line shift is mostly affected by the total He density around the impurity, not by its actual
composition. For bulk liquid mixtures, results are presented as a function of pressure at selected values of the 3He
concentration. The results for isotopically pure 3He and 4He liquids doped with Mg are compared with available
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I. INTRODUCTION

The study of the absorption spectrum of impurities in
liquid helium and its droplets has drawn considerable interest
because it is a powerful tool to investigate the structure of
the dopant-liquid complex, having become a classical field
in optical spectroscopy. The optical properties of impurities
in liquid 4He and its droplets have been reviewed in Refs. 1
and 2, respectively.
Electronic spectroscopy studies have been carried out for

atomic impurities in 4He, and to a lesser extent, in 3He.3–5

Only very recently, the electronic absorption spectrum of an
atomic impurity—a Ca atom—in mixed 3He-4He droplets
has been reported and analyzed within density functional
(DF) theory.6 A distinct feature of Ca atoms in mixed
helium droplets is that, depending on the size and isotopic
composition of the droplet, it may reside at the 3He-4He
interface. Therefore, one would expect that its electronic
spectrum might shed light on the structure of that interface, as
this spectrum is affected by the liquid environment around the
impurity.
Experiments on doped mixed droplets have to face the

serious problem of determining the actual composition of
the system. This is not easy because of the large number
of atoms, mostly of 3He, that are evaporated off the droplet
after the dopant pick-up, altering the initial composition of
the droplet in a way that is difficult to ascertain. The initial
composition is not easy to determine either. In contrast,
experiments in liquid mixtures may be carried out under
well-controlled conditions, fixing, e.g., the 3He concentration
x3 = N3/(N3 + N4) and particle density ρ = (N3 + N4)/V

and temperature (T ) of the mixture, which in turn determine
the total pressure (P ) throughout the equation of state of the
fluid.
In this work, we aim to study the effect of isotopic

composition on the absorption spectrum of atomic impurities
in both finite (droplets) and extensive (liquid) helium systems.
We present results for the 3p ← 3s transition of Na attached
to 3He-4He droplets, complementing those we have previously
published for Ca.6 It is well known experimentally7 and

theoretically8 that, because of the limited solubility of 3He in
4He at low temperatures,9 mixed droplets have a core-shell
structure made of nearly pure 4He and 3He, respectively.
Since Na atoms do not dissolve into helium droplets, the
a priori most interesting situation is when the number of
3He atoms, N3, is rather small as compared to that of
4He, N4. Otherwise, the environment around Na is made
of pure 3He and one should not expect any difference with
the absorption spectrum of Na in isotopically pure 3He
droplets.3

At variance with the droplet situation, 3He segregation in
liquid helium mixtures at low temperatures only appears for
concentrations above a critical value that depends on pressure.9

Hence, it is plausible that the absorption spectrum could
be sensitive to the x3 value of the mixture. To check this
hypothesis, we present calculations of the absorption spectrum
around the 3s 3p 1P 1 ← 3s2 1S0 transition of Mg atoms in
liquid helium mixtures for selected values of x3 and P .
This work is organized as follows. In Sec. II, we briefly

recall the DF method used to obtain the structure of doped
helium mixtures, drops, and bulk liquid as well, and the
procedure used to determine the absorption spectrum incor-
porating shape fluctuations of the liquid bubble around the
dopant. The absorption spectrum of Na in 4He1000-3HeN3
droplets with N3 = 100 to 3000, and that of Mg in 3He-
4He liquid mixtures for selected values of x3 and P , is
discussed in Sec. III. Finally, a summary is presented in
Sec. IV.

II. METHOD

A. Density functional description of the ground state
of doped isotopic mixtures

The energy of the Na-droplet complex is written as a
functional of the Na wave function �(r), the 4He effective
macroscopic wave function �(r) = √

ρ4(r), where ρ4(r) is
the 4He atomic density normalized to N4 atoms, and the
3He particle and kinetic energy densities ρ3(r) (normalized
to N3 atoms) and τ3(r).10 We have used a Thomas-Fermi

174505-11098-0121/2011/83(17)/174505(8) ©2011 American Physical Society
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FIG. 1. (Color online) Three-dimensional view of Na@4He1000+3HeN3 droplets for different N3 values. Also shown is the probability
density of Na in arbitrary units.

approximation to write τ3(r) as a function of ρ3(r) and its
gradient.3 Within the pair potential approximation, we have11

E[�,�,ρ3,τ3] = h̄2

2m4He

∫
dr |∇�(r )|2

+
∫

dr E(ρ4,ρ3,τ3)+ h̄2

2mNa

∫
dr |∇�(r )|2

+
∫∫

dr dr′ |�(r)|2 VX2�(|r − r′|) ρ3+4(r′).

(1)

The Na-He X 2� pair potential has been taken from Ref. 12.
The equations resulting from the variations of Eq. (1) with
respect to �, �, and ρ3(r) are self-consistently solved as
indicated in Ref. 11.
Figure 1 displays a three-dimensional view of

Na@4He1000 +3 HeN3 droplets for several N3 values, and the
probability density ofNa, |�(r )|2, in arbitrary units. The figure
shows the above-mentioned core-shell distribution of 4He and
3He atoms in the droplet, as well as the known result that Na
does not dissolve into them. In this respect, it is illustrative
to compare the results for Na with those for Ca (see Fig. 2
of Ref. 6 corresponding to Ca@4He1000 +3 He2000). So far,
Ca is the only known impurity that is dissolved into 4He but
not into 3He droplets, and for this reason it may sink into the
fermionic component until reaching the surface of the bosonic
core. More attractive impurities like OCS reside in the bulk
of the core, thus they are instrumental in the discussion of
superfluidity at the nanoscale.7 Here we discuss the remaining
case of an impurity that resides at the surface of the droplet
irrespective of the isotope. One of the cuts in Fig. 1 displays
the pure 3He-4He interface showing the building up of the

3He shell as N3 increases. It is worth noting that, with a core
of 1000 4He atoms, a large amount of 3He (N3 ∼ 2000) is
needed before the density of the fermionic shell reaches that of
liquid 3He at saturation; see also Ref. 8. The other cut displays
the doped 3He-4He interface. Notice that for the N4 = 1000
droplet, one should not expect that the absorption spectrum of
Na onto 4He1000 +3 HeN3 differs much from that of Na onto
an isotopically pure 3He droplet of similar size if N3 � 1000.
The starting point for describing aMg atom in liquid helium

mixtures is also Eq. (1). The Mg-He X 1� pair potential has
been taken from Ref. 13. In this case, instead of fixing the
number of atomsN3 andN4, the asymptotic ρ3 and ρ4 densities
far from the impurity have been fixed to those of the undoped
mixture. In practice, wework at fixedP and x3 values, which in
turn fix the ρ3 and ρ4 values (and the corresponding chemical
potentials) through the T = 0 equation of state supplied by our
DF.10 Details of the procedure and method used for solving the
variational equations can be found in Ref. 14 for an electron
bubble in liquid 4He. The generalization to helium mixtures
and atomic impurities is straightforward.
We want to emphasize that our method yields a self-

consistent and accurate description of the thermodynamics
of undoped liquid mixtures at zero temperature, a necessary
starting point to address the properties of the doped system.
In particular, it reproduces the T = 0 phase diagram of the
mixture. Figure 2 shows the calculated phase diagram obtained
as explained in Ref. 15.
The top and bottom panels of Fig. 3 show the helium density

profile around Mg in the case of isotopically pure 4He and
3He liquids for three different pressures. It can be seen that
the helium density is strongly modulated around the impurity,
slowly evolving toward the bulk liquid density as the distance
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FIG. 2. Calculated phase diagram of the 4He-3He liquid mixture
at T = 0. The solid line between stable and metastable regions is the
maximum solubility line of 3He into 4He, and the dashed line is the
spinodal line.

from the impurity increases. Notice also how the liquid density
increases as P does, and how the radius of the bubble around
the impurity is slightly larger for 3He than for 4He because of
the surface tension being smaller for 3He than for 4He. This
figure shows that, even for rather weakly interacting dopants
such as Mg, the actual structure of the liquid cannot be easily
guessed or represented by simple parametrizations. This is
especially so in the case of isotopic liquid mixtures; see the
middle panel of Fig. 3.
These density profiles already give a first idea of what to

expect from the study of the absorption peak as a function ofP :
the shift increases as the density does, and therefore it will also
increase with P . Similarly, the shift should be larger for Mg
in isotopically pure 4He than in isotopically pure 3He at given
P , as the He-Mg interaction is the same irrespective of the
isotope. These facts have been established experimentally.4,5

The middle panel of Fig. 3 shows the density profile at
P = 10 bar for x3 = 9%. It can be seen from Fig. 2 that these
conditions allow us to carry out the calculation for nearly the
largest possible 3He concentration before segregation. For the
sake of comparison, the result for pure 4He is also shown.
Whereas the results displayed in the other panels of Fig. 3
are known to some extent, to the best of our knowledge the
density profiles of isotopic mixtures of liquid helium around
an attractive impurity have not been previously determined.
Along the lines of the other two panels, one would expect a
very weak dependence of the atomic shift on the composition
of the mixture. Comparing the total helium densities displayed
in the middle panel of Fig. 3, the atomic shift might be slightly
larger for liquid 4He than for the mixture at the same pressure.
In the next section,we address these issues in detail, confirming
these expectations.
We would like to close the discussion of the density profiles

by pointing out two interesting characteristics of the liquid
mixture at low temperatures, relevant for the forthcoming
discussion of the absorption spectrum. The first feature is that,
as can be seen from Fig. 3, substituting 4He by 3He atoms
at a given P does not result in a sizable change in the liquid
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FIG. 3. (Color online) Selected density profiles of the liquid
helium mixture around an Mg impurity whose probability density
in represented in arbitrary units. Top panel: pure 4He. Bottom panel:
pure 3He. Middle panel: density profiles at P = 10 bar for x3 = 9%.
Solid line, total density; thin dashed line, 4He density; dotted line,
3He density. For the sake of comparison, the profile of isotopically
pure 4He is also shown (dashed line).

total density. This is due to the high incompressibility of liquid
helium. The other feature worth noting is that 3He atoms do not
segregate around the impurity coating the surface of the bubble.
This is due to the large zero-point energy that a 3He atomwould
have in such a small cavity, and it is more marked the larger the
impurity-helium interaction is. As a consequence, the impurity
bubble is coated by 4He atoms and not by 3He, in spite of
the density increase of both isotopes at the first solvation
shell, allowing the appearance of the rovibrational spectrum
of OCS molecules in helium droplets7 that otherwise would
be quenched by the presence of normal-phase 3He atoms. This
is at variance with the situation at the free surface of a mixed
drop or liquid mixture, where the existence of Andreev states
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bearing a large capacity of hosting 3He atoms makes possible
the accumulation of this isotope at the surface.8

B. Absorption spectrum

To determine the absorption spectrum of an impurity atom
embedded in a condensed system, it is customary to use
Lax’s method,16 together with the diatomics-in-molecules
approach.17 This is basically the method we have followed,11

once the ground state (gs) of the dopant-helium mixture
(droplet or bulk liquid) has been determined. The 2� and
2� excited pair potentials for Na-He are from Ref. 18, and the
1� and 1� ones for Mg-He are from Ref. 19. In the case of
Na, we have also considered the spin-orbit splitting.11

With only these ingredients, the model yields a good
description of the absorption energies—provided the pair
potentials are accurate enough—but the shape, especially
the width, of the absorption line is poorly reproduced.
The well-known reason for this drawback is the neglect
of the coupling of the impurity dipole excitation to the
shape fluctuations (modes) of the liquid cavity around it.
Including this coupling in the calculation yields a much
better agreement with experiments. This is illustrated, e.g.,
in Ref. 20 for Mg atoms in 4He droplets and in Ref. 21
for electron bubbles in liquid 4He. Taking into account shape
fluctuations is very cumbersome if the impurity bubble is not
spherical. The situation is far more complex for liquid 3He
and mixtures because the modes of the cavity are difficult to
determine.
Shape fluctuations are effortlessly calculated in quantum

Monte Carlo simulations of the absorption spectrum22–24

by taking advantage of the information carried out by the
quantum “walkers.” Somewhat inspired by this atomiclike
simulation, an easy-to-implement method has been proposed
within DF theory to include shape fluctuations, and it has
been applied to the case of Cs in liquid 4He,25 and was later
adapted to the droplet geometry.26,27 The extension to the case
of isotopic mixtures is straightforward, but for the sake of
completeness we present it here as applied to the case of
a Na impurity, outlining the method we have followed to
determine the absorption spectrum of an impurity in liquid
helium.
The Born-Oppenheimer approximation allows the factor-

ization of the electronic and nuclear wave functions, and
the Franck-Condon approximation allows the positions of the
atomic nuclei to remain frozen during the electronic transition.
Within these approximations, the line shape for an electronic
transition from the gs to an excited state (ex) is obtained as the
Fourier transform of the time-correlation function,

I (ω) ∝
∑
m

∫
dte−i(ω+ωgs)t

∫
d3r�gs∗e(it/h̄)H

ex
m �gs , (2)

where h̄ωgs and �gs(r) are the eigenenergy and eigenfunction
of Na in its gs, respectively. The Hamiltonian is H ex

m = Tkin +
V ex

m (r), where Tkin is the kinetic energy operator and V ex
m (r) is

the potential energy surface defined by the mth eigenvalue
of the excited potential matrix V (r) = U (r)+ VSO, where
U (r) is the convolution of the excited pair potentials 2�

and 2� with the total helium density ρ(r), as the 3He- and
4He-impurity pair potentials are the same, andVSO accounts for

the spin-orbit coupling.11 Introducing �gs(r) = ∑
ν am

ν �m
ν (r)

in Eq. (2), where �m
ν (r) are the eigenfunctions of H ex

m and
am

ν = ∫
d3r �m

ν (r)
∗�gs(r) are the Franck-Condon factors, we

obtain

I (ω) ∝
∑
m

∫
dte−i(ω+ωgs)t

∑
ν

∣∣am
ν

∣∣2eiωm
ν t

=
∑
m

∑
ν

∣∣am
ν

∣∣2δ(ω + ωgs − ωm
ν

)
, (3)

where h̄ωm
ν are the eigenvalues of H

ex
m .

If the Franck-Condon factors arise from the overlap
between the gs and excited states with large quantum numbers,
corresponding to the continuous or quasicontinuous spectrum
of H ex

m , we can assume that 〈Tkin〉 � 〈V ex
m 〉, and the Hamil-

tonian is approximated by H ex
m ∼ V ex

m (r). Introducing this
approximation in Eq. (2) and integrating over time, we get
the semiclassical expression for I (ω),

I (ω) ∝
∑
m

∫
d3r|�gs(r)|2δ(ω − [V ex

m (r)/h̄ − ωgs]) . (4)

We have evaluated this expression as follows. First, the helium
distribution is stochastically represented by a large number
of configurations nc, of the order of 106. Each configuration
consists of a set of N positions for the He atoms in the
sampling box and one for the impurity. These positions are
randomly generated by importance sampling techniques, using
the DF helium density ρ(r)/N as the probability density
distribution, plus a hard-sphere repulsion between He atoms
to approximately take into account He-He correlations. The
diameter of the sphere has to be of the order of h = 2.18 Å
to be consistent with the DF description of the liquid, as h is
the length used in the functional to screen the Lennard-Jones
interaction between particles and to compute the coarse-
grained density.10 We have chosen a density-dependent sphere
radius of the form

Ri = R(ri) = h

2

(
ρ0

ρ̄(ri)

)1/3
, (5)

where ρ0 is the saturation density value and ρ̄ is the coarse-
grained density, defined as the averaged density over a sphere
of radius h. Although this scaling has no effect in the bulk, it is
fundamental to correctly reproducing the density in the droplet
surface region. The rationale for choosing this Ri is sketched
in the Appendix. Lastly, the position of the impurity is also
randomly generated using |�gs(r)|2 as the probability density
distribution.
To determine the line shape, we obtain for each configu-

ration {j} the V ex
m {j} eigenvalues of the excited-state energy

matrix
∑

i U (|r{j}
i − r{j}

Na |)+ VSO [Eq. (16) of Ref. 11] and
subtract from them the pairwise sum of the gs pair potential
interactions V gs{j} = ∑

i VX 2�(|r{j}
i − r{j}

Na |) to obtain the
excitation energy. The histogram of the collected stochastic
energies is identified with the absorption spectrum, i.e.,

I (ω) ∝
∑
m

1

nc

nc∑
{j}

δ
[
ω − (

V ex
m {j} − V gs{j})/h̄]

. (6)

In this way, we obtain the absorption spectrum of impurities
in liquid helium including shape fluctuations. When this is the
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main source of broadening, as for impurities embedded in the
liquid or in the bulk of drops, the method has proved to repro-
duce fairly well the broadening of the absorption line, as we
show for Mg in Sec. III. Note that other sources of broadening
such as thermal wandering20 or droplet size distribution effects
may have a sizable influence for impurities residing in the outer
surface of the droplet, and they are not accounted for by this
procedure.

III. ABSORPTION SPECTRUM RESULTS

A. Na in mixed helium droplets

Figure 4 shows the absorption spectrum for
Na@4He1000 +3 HeN3 mixed droplets with N3 =
100,500,1000, and 3000. The vertical lines represent
the location of the absorption lines of the free Na atom. As
expected, the shift in the spectrum increases with the number
of 3He atoms.3 In the 4He1000 +3 He100 droplet, the effect of
3He is barely perceptible and its spectrum is sensibly that of
Na in the isotopically pure 4He droplet. One might expect the
impurity to draw the 3He atoms and be quickly surrounded
by them, but this is not quite so even for a more attractive
impurity such as Ca.24,28

In the N3 = 1000 and 3000 drops, it is the 4He core
that plays no significant role, and the spectrum is sensibly
that of the isotopically pure 3He droplet.29 The N3 = 500
droplet is an intermediate case, in which there is enough
3He to influence the absorption spectrum but the number of
3He atoms is still small, and the density in the 3He shell
does not reach that of the liquid at saturation; see, e.g.,
Ref. 8 and Fig. 1. In this configuration, the shift is slightly
smaller than in a pure 3He drop, although the difference is
too small to be detectable. We recall that the experiments
have been carried out for isotopically pure droplets of about
5000 atoms. The calculated peaks are narrower than in the
experiment because Na resides at the outer surface of the
droplet and thermal wandering and droplet-size distribution
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FIG. 4. (Color online) Absorption spectrum (arbitrary units) of
Na in 4He1000+3HeN3 droplets with N3 = 100 (solid line), 500
(dashed line), 1000 (dotted line), and 3000 (dash-dotted line). The
thin vertical lines represent the gas-phase transitions. The spectra are
normalized so that the more intense peaks all have the same height.

0.05

0.1

0.15

In
te

n
si

ty

0.05

0.1

0.15

35000 35500 36000 36500

ω (cm−1)

This Work
Ref. 30
Ref. 4

4He

3He

Total

FIG. 5. (Color online) Top panel: Calculated absorption spectrum
(arbitrary units) of Mg in liquid 4He at P = 0 bar (solid line)
compared to the experimental results of Refs. 30 (dashed line) and 5
(dotted line). The spectra are normalized so that the peaks have the
same height. Bottompanel: Calculated absorption spectrum (arbitrary
units) ofMg in liquid 3He atP = 0 bar. The line has been decomposed
into its two � components and one � component, the latter one
being the higher-energy transition. The thin vertical line represents
the gas-phase transition.

effects should contribute to the broadening in a non-negligible
way.11

B. Mg in liquid helium mixtures

Isotopic liquid heliummixtures are better suited thanmixed
drops to determine the effect of the isotopic composition on
the absorption line, as one avoids finite-size effects and the
actual composition of the fluid sample can be controlled. In
addition, they offer the possibility to study the pressure effect
on the spectrum.
The reason for choosingMg atoms for this study is twofold.

First, there are detailed results for its absorption spectrum in
pressurized isotopically pure liquid 3He and 4He,5,30 indicating
that the shift in the absorption peak is about 100 cm−1 smaller
in 3He than in 4He.5 It is thus reasonable to expect that
the absorption spectrum may show some sensitivity to the
isotopic composition of the mixture. Secondly, the adiabatic
Mg-He pair potentials for the ground13 and excited states19

are known with good accuracy. We want to mention the
existence of a series of recent studies of Mg in helium droplets
aimed at ascertaining whether this impurity resides in the
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bulk or at the surface of 4He drops.19,20,31–33 Most studies
point toward a sizable radial delocalization of Mg inside large
drops.
In a first stage, we have computed the absorption spectrum

of Mg in isotopically pure liquid 4He and 3He. For the former,
there are two inconsistent sets of experimental data obtained
by the same group, both of which are compared with our
calculations in the top panel of Fig. 5. No detailed results
for the line shape in the case of 3He have been published for
comparison. We remind the reader that our calculations are
at T = 0, whereas the experiments have been carried out at
1.4 K.
While our calculations compare very well with the ex-

perimental results for 4He in Ref. 30, they are blueshifted
with respect to those of Ref. 5 for 4He and 3He as well.
Despite this discrepancy, we have found, in agreement with
the experimental findings,5 that the shift is 0.77 nm larger
in bulk 4He than in bulk 3He. This is an important check
to assure that the calculation may disclose effects associated
with the isotopic composition of the liquid mixture, as shown
below.
The pressure dependence of the absorption spectrum of Mg

in isotopically pure liquid 4He and 3He is shown in Fig. 6
for P = 0, 10, and 20 bar, and the peak energy is represented
in Fig. 7 as a function of pressure. This dependence is in
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FIG. 6. (Color online) Top panel: Calculated absorption spectrum
(arbitrary units) of Mg in liquid 4He at P = 0 (solid line), 10 (dashed
line), and 20 bars (dotted line). Bottom panel: Same as top panel for
3He. The thin vertical line represents the gas-phase transition. The
spectra are normalized so that the peaks have the same height.
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FIG. 7. (Color online) Peak energy shift of the absorption
spectrum of Mg in isotopically pure liquid 4He (squares) and 3He
(dots) as a function of pressure. The crosses represent the peak
energy shift slightly below the segregation line for the corresponding
pressures; the x3 values are 6.3%, 8.9%, 9.4%, 9.2%, and 8.4% for
P = 0, 5, 10, 15, and 20 bar, respectively. Least-squares linear fits
for each set of points are drawn as a guide to the eye.

qualitative agreement with experiment,5 although our results
are systematically blueshifted with respect to the experimental
results by about 1 nm. The crosses in Fig. 7 represent the peak
energy slightly below the zero-temperature segregation line
as a function of pressure. Thus, each point corresponds to a
different x3 value, as shown in Fig. 2. We conclude that the
shift in the peak energy of the Mg absorption spectrum is
significant. However, the size of the line can make it hard to
determine experimentally the x3 dependence. This is illustrated
in Fig. 8, where we have drawn the absorption spectrum of
Mg in an x3 = 9.4% mixture at P = 10 bar. The absorption
peak is shifted by 28 cm−1 with respect to the isotopically
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FIG. 8. (Color online) Absorption spectrum (arbitrary units) of
Mg in an x3 = 9.4% liquid mixture at P = 10 bar (solid line). The
dashed line is the result for the isotopically pure liquid 4He at the same
pressure. The thin vertical line represents the gas-phase transition.
The spectra are normalized so that the peaks have the same height.
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pure liquid 4He, in spite of the small morphological changes
in the density profile introduced by this small 3He amount
(see Fig. 3).

IV. SUMMARY

We have studied the absorption spectrum of atomic impuri-
ties in mixed helium drops and liquid helium mixtures, paying
special attention to the dependence of the spectrum on the 3He
concentration. For the study of drops, we have chosen Na as
the impurity, which always resides on the surface of the drop,
complementing the studies carried out in Ref. 6 for Ca.
For droplets of the size and composition addressed herein,

we have found that the shift in mixed droplets is larger than
in 4He droplets but slightly smaller than in 3He droplets. Even
though a large amount of 3He is needed for the density in the
outer shell of the mixed droplet to reach the bulk liquid 3He
value, our results indicate that the spectrum of the impurity
is very insensitive to the isotopic composition and it rapidly
saturates to the value of pure 3He droplets when the quantity of
3He is increased. From this we infer that the effect of isotopic
composition on the absorption spectrum is hardly detectable
for alkali impurities in helium droplets. We have chosen Mg
for the study of liquid mixtures, and we have compared the
results obtained for isotopically pure liquid 4He and 3He with
the experiments reported in Refs. 5 and 30.We have found that
the peak energy in saturated helium mixtures can be shifted
by up to some tens of cm−1 from that in pure 4He at the
same pressure.While much smaller atomic shifts from the gas-
phase value have been detected experimentally, to determine
the dependence of the atomic shift on the isotopic composition
of the mixture is an experimental challenge due to the large
width of the absorption line.
Finally,wewould like to point out that the infrared spectrum

of excess electrons might be a way to determine the structure
of electron bubbles in isotopic mixtures of liquid helium, as
it has been for isotopically pure liquid 4He or 3He.34 Due
to the electron-helium repulsion, electron bubbles are fairly
large, with a radius of about 18.5 Å for 4He and 22.5 Å for
3He.35 At variance with the situation for the small bubbles
around an atomic impurity in liquid helium mixtures, the
electron bubble surface should be coated by 3He, as it is
for bubbles appearing in homogeneous cavitation processes.15

This coating increases the bubble radius with respect to that
of isotopically pure 4He, as it decreases the surface tension
of the liquid. Since the electron spectrum is very sensitive to
the bubble radius, determining it would probe the structure
of the electron bubble in the mixture. Knowledge of this

structure has potential implications for cavitation in liquid
heliummixtures.36,37 Work is in progress to obtain the electron
absorption energies in liquid helium mixtures.
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APPENDIX

Ignoring normalization, which is irrelevant for the present
discussion, the probability distribution we have chosen for
sampling N helium atoms is

P N ({ri}) =
N∏

i=1

ρ(ri)

N

N∏
j<i

�(rij − h), (A1)

where � is the step function. The atomic density
〈∑i δ(r − ri)〉 corresponding to this probability distribution
is〈

N∑
i=1

δ(r − ri)

〉

= ρ(r)
∫ ⎛

⎝N−1∏
j=1

drj�(|rj − r| − h)

⎞
⎠P N−1({ri}) �= ρ(r).

(A2)

Hence, due to the He-He correlations introduced in P N , the
density of the system is not equal—and cannot be—to the DF
particle density ρ(r), and one has to do something to recover
ρ(r) back from the sampling. To do so, we have introduced
a density dependence on h such that the integral appearing in
Eq. (A2) is a constant that could be absorbed in the normaliza-
tion. This cannot be done exactly, but if one assumes that ρ(r)
varies smoothly, i.e., ∇ρ(r) � ρ(r)/h, then the result of the
integral can be written as a power series of h3ρ̄(r), where ρ̄(r)
is the coarse-grained density. Then, to turn the integral into a
constant, we just need to add a density dependence in h of the
form h ∝ ρ̄(r)−1/3. This is the reason why we have chosen the
hard-sphere radius R as expressed in Eq. (5).
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2.2 A density functional study of the structure of small
OCS@3HeN clusters

Resumen (Spanish)

La estructura de agregados con N = 1, 8, 18, y 40 átomos de 3He dopados con una molécu-
la de OCS se ha calculado mediante un esquema Kohn-Sham del funcional de la densidad.
El estado fundamental para N = 1 está altamente localizado alrededor de la “cintura”
de la molécula, y los excitados están considerablemente más deslocalizados. El agregado
con 8 átomos presenta una densidad apreciable en ambos extremos de la molécula linear
y en la cintura. Con N = 18 la molécula pasa a estar completamente solvatada por 3He.
Con N = 40 la densidad muestra dos capas de solvatación completas con estructura más
bien esférica. Una comparación con cálculos realizados para los mismos tamaños con
4He muestra apreciables similitudes como la acumulación alrededor de la cintura molecu-
lar, pero también revela una estructura más difusa y menos anisotrópica en el caso del 3He.

Estos cálculos se presentan en el contexto del análisis reciente del espectro infrarojo
del OCS medido en grandes gotas de 3He puro.[13] El momento de inercia de la estructura
constituida por 11 átomos, consistente con los datos experimentales, se encuentra entre
los momentos de inercia predichos en este trabajo para N = 8 y 18 átomos. En general,
los cálculos muestran que las gotas de 3He dopadas son ligeramente más difusas y menos
ligadas que sus equivalentes de 4He.
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Kohn-Sham density functional calculations are reported for the structures of clusters consisting of a
carbonyl sulfide (OCS) molecule with N = 1, 8, 18, and 40 attached 3He atoms. The N = 1 cluster
ground state is highly localized at the molecular waist (donut ring position), but for higher levels of
excitation becomes increasingly delocalized. The first magic cluster with 8 atoms has a significant
density at both ends of the molecule in addition to the donut ring. With N = 18 3He atoms the
molecule is enclosed by a magic number closed shell. Another magic stable structure consisting of
two nearly isotropically spherical closed shells is found atN= 40. A comparison with calculations for
the same sized 4He clusters show some important similarities, e.g., pile up at the donut ring position
but altogether a more diffuse, less anisotropic structure. These results are discussed in the light of the
recently analyzed infrared spectra measured in large pure 3He droplets (N ≈ 1.2 × 104) [B. Sartakov,
J. P. Toennies, and A. F. Vilesov, J. Chem. Phys. 136, 134316 (2012)]. The moments of inertia of the
11 atom spherical shell structure, which is consistent with the experimental spectrum, lies between
the predicted moments of inertia for N = 8 and N = 18 clusters. Overall the calculations reveal that
the structures and energies of small doped 3He are only slightly more diffuse and less energetic than
the same 4He clusters. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788828]

I. INTRODUCTION

In the course of the last two decades superfluid droplets
of 4He atoms have become established as very gentle
and ultra-cold, nearly ideal matrix for high resolution
spectroscopy.1,2 One of the most surprising observations is
the appearance of well resolved rotational lines, as first ob-
served for SF6 and carbonyl sulfide (OCS), indicating that the
molecules rotate freely inside the droplets. This remarkable
behaviour has since been confirmed for more than 30 other
small molecules and several clusters. Another important ob-
servation made for heavy molecules like OCS embedded in
superfluid 4He droplets is the increase of the effective mo-
ment of inertia (MOI) by about a factor 2.8 compared to the
free OCS molecule.3 The increased MOI can be explained by
a symmetric donut ring of 4He atoms around the waist of the
OCS molecule, which participate in the end-over-end rota-
tions of the molecule. The ring consists of 5 atoms in the case
of small clusters with only that number of atoms.4–7 In larger
clusters the evidence indicates that the donut ring consists of
6 atoms.3,8, 9 Theory has identified the donut atoms as a non-
superfluid fraction as opposed to the other surrounding super-
fluid atoms which do not rotate with the molecule.10 Recent
spectroscopic and theoretical studies of linear molecules, such
as CO2 and N2O, with N = 2 to 80 attached 4He atoms also
suggest the presence of a donut ring around their waist.11, 12

The absence of the expected Q-branch in the ro-vibrational
spectrum of molecules in 4He droplets is consistent with the
fact that the energy of axial rotations of the donut ring of
atoms is too large for excitation in the very cold droplets.
The absence of Q-branches in small 4He doped clusters with

N = 2 to 80 atoms has also been explained in the same way.4

A similar explanation also applies to rings of 5 and 6 bosonic
pH2 molecules.13 Thus the accumulation of particles in the
donut ring position appears to be a characteristic property of
bosons.

Fermionic 3He clusters and droplets are of even more ba-
sic interest than those made up of 4He atoms since all nuclei,
atoms, and molecules may be looked upon each as a special
type of fermionic cluster and thus the understanding of their
interactions is truly fundamental. Of all the fermions 3He is
the simplest neutral fermion with the twofold unique char-
acteristic of occurring both in the thermodynamic limit as a
bulk liquid and as a finite-sized droplet. 3He droplets have
been predicted to have temperatures of the order of 0.1 K14 as
recently confirmed experimentally15 and are therefore much
colder than 4He droplets (0.37 K),16,17 but not cold enough to
be superfluid (Tc ∼ 3× 10−3 K). Thus 3He droplets were used
to test for the effect of superfluidity on the dynamical behavior
of the embedded chromophore molecule OCS.18 The broad
unresolved spectrum observed in pure 3He droplets was inter-
preted as evidence that the sharp rotational spectrum of the
same molecule in 4He droplets results from their being super-
fluid. Subsequently it was suggested that it was not the lack
of hydrodynamic superfluidity, but instead the strong coupling
to the particle-hole excitations of the fermionic 3He bath, not
present in bosonic 4He with its sharp phonon and roton dis-
persion curve, that caused the line broadening.19

Very recently the infrared spectrum of OCS in large pure
3He droplets reported in 199818 was fully analyzed.15 The
analysis indicates that as with 4He droplets a Q-branch is most
likely absent and that the effective moment of inertia is even
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larger than in 4He droplets by a factor of two. Compared to
the free molecule the MOI is a factor 5.5 larger. The increase
was attributed to an evenly distributed shell of 11 3He atoms
surrounding the chromophore.

Aside from the above infrared study, only a few
other spectroscopic experiments have been reported for 3He
droplets all of which have been in the visible-UV region.20–26

These experiments have revealed changes in the line shifts
and widths of optical transitions of alkali atoms22,23 that are
smaller in 3He than in 4He droplets. For both isotopes these
shifts and widths are small since alkali atoms are located on
the surface of the droplets irrespective of the helium isotope.23

It has also been established that alkaline earth atoms heavier
than Mg reside on the surface of 4He droplets whereas they all
reside in the interior of 3He droplets.25 One experiment has re-
ported on the spectroscopy of Ca attached to mixed 3He-4He
droplets,24 concluding that the Ca atom sits at the interface
of both isotopes. In the only experiment involving embed-
ded molecules the vibronic spectrum of glyoxal (C2H2O2) re-
vealed a zero phonon line with a broad wing to the red due to
particle-hole pair excitations.26 A small sharp peak superim-
posed on the wing was attributed to vibrations of the snowball
shell of 3He surrounding the molecule.

Here we report on the first detailed calculations of the
structure and energy levels of small clusters of 3He atoms
attached to the highly anisotropic OCS molecule. In the
past a number of density functional (DF) calculations have
been reported for the radial density distribution of pure 3He
droplets27–29 and the surface distortion produced by partly
solvated metal atoms.25,30, 31 The present calculations may be
looked upon as an extension of earlier DF calculations for
rare gas atoms and the spherical SF6 molecule, immersed in
the interior of small 3He clusters,32 to an anisotropic foreign
molecule.

The article starts with a description of the T = 0 density
functional theory used. For a single attached 3He atom the
energy levels for the 19 lowest bound states and the density
distributions for the six lowest σ -states are calculated by solv-
ing the Schrödinger equation. The Kohn-Sham energy levels
of the lowest occupied and some of the unoccupied states
indicate that unlike N = 6, the N = 8, 18, and 40 clusters
have closed shells and correspond to the only magic number
sizes. The anisotropic density distributions are reported for N
= 8, 18, and 40 and compared with similar calculations for
the same sized bosonic 4He clusters. As with the 4He atoms
there is an increase of the density at the donut position, but
the atoms are more uniformly distributed over the surface of
the chromophore. The moments of inertia are analyzed and
compared and found to be reasonably consistent with the re-
cent analysis of OCS rotational spectra in large 3He droplets.
The article closes with a discussion of the differences between
fermionic and bosonic clusters.

II. DENSITY FUNCTIONAL THEORY

The OCS-3HeN complex is analyzed here within a finite-
range density functional framework. The main ingredients are
the He-OCS ab initio interaction potentials of Paesani and

Whaley5 and the density functional previously used33 to de-
scribe pure 3He droplets. The axisymmetric He-OCS poten-
tial energy surfaces reported by Paesani and Whaley were ob-
tained from fourth-order Möller-Plesset perturbation theory.
We used their VMP4eq potential, which corresponds to the
OCS equilibrium geometry.5 This potential like all the other
potentials has its global minimum perpendicular to the OCS
axis centered between the O and C atoms in what is called
the donut ring position. Two other weaker local minima are
located at the two ends of the linear molecule.

In the present calculations of OCS@3HeN complexes
the OCS molecule enters into the calculations only via the
anisotropic OCS-He interaction, i.e., the molecule itself is
treated as an external potential acting on the 3HeN droplet.
Thus the total energy E of a complex is written as

E[ρ, τ ] =
∫

dr {E(ρ, τ ) + VHe−OCS(r) ρ(r)} . (1)

In this expression E(ρ, τ ) is the 3He energy density functional
of Ref. 33, which is written in terms of the 3He particle and
kinetic energy densities ρ(r) and τ (r) as

E(ρ, τ ) = ¯2

2m∗
3(r)

τ (r) + 1

2
cρ2(r)ρ̃γ (r)

+1

2

∫
dr′ ρ(r)VLJ (|r − r′|)ρ(r′) . (2)

The first term is the kinetic energy with an effective 3He mass

m∗
3(r) = m3

(
1 − ρ̃(r)

ρc

)−2

, (3)

where ρc is a constant listed below and ρ̃(r) is a coarse-
grained density as introduced in the study of classical fluids,34

defined by

ρ̃(r) =
∫

dr′ ρ(r′)w(|r − r′|) , (4)

with

w(r) = 3

4πh3
, r ≤ h,

= 0, r < h. (5)

The second term in Eq. (2) describes short-range correlations
and the third term is a truncated Lennard-Jones potential,
which accounts for the long range interaction between the He
atoms

VLJ (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, r > h,

= 0, r ≤ h. (6)

The same parameter values obtained earlier were used:33 ρc

= 0.0406 Å−3, ε = 10.22 K, σ = 2.46 Å, γ = 2.1251,
c = 1.55379 × 106 K Å3+3∗γ , h = 2.1131 Å.
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The 3He particle and kinetic energy densities ρ(r) and
τ (r), respectively, are expressed in terms of the Kohn-Sham
(KS) single-particle (s.p.) orbitals φi(r)

ρ(r) =
∑

i

ni |φi(r)|2, (7)

τ (r) =
∑

i

ni |∇φi(r)|2, (8)

where the ni are the occupation numbers. To account for spin
pairing each of the φi(r) are occupied by two atoms. We have
self-consistently solved the Euler-Lagrange equations that re-
sult from the variations of Eq. (1) with respect to the 3He
normalized s.p. orbitals

δ

δφ∗
i

⎛
⎝E[ρ, τ ] −

∑
j

εj |φj |2
⎞
⎠ = 0, (9)

resulting in

−∇ ¯2

2m∗
3

∇φi +
{

δE
δρ

+ VHe−OCS

}
φi = εiφi, (10)

where εi is the ith 3He s.p. energy.
Equation (10) has been solved by discretizing the deriva-

tives with 13-point formulas. An imaginary time method in
conjunction with a Gram-Schmidt orthonormalization pro-
cedure was employed to determine the eigenfunctions and
eigenvalues.35 In previous investigations36,37 we chose to
work in a three-dimensional cartesian grid, ignoring the ob-
vious axial symmetry of the system. The rationale for this
procedure is that the non-local terms in the functional—i.e.,
convolution integrals—can be computed more efficiently in
such a grid using fast Fourier transform techniques.38 In the
present case we have chosen a mixed approach in which the
KS orbitals (and thus the particle and kinetic energy densi-
ties) are computed in a two-dimensional, axially symmetric
grid with integration steps of �r = �z = 0.35 Å. We then
interpolate the values of the particle and kinetic energy den-
sities to map the bidimensional cylindrical grid into a three
dimensional cartesian one. This mixed approach is useful for
fermionic systems where a large number of KS orbitals is in-
volved but only the convolution of the total density is needed
and it has the advantage that the computation is much faster
due to the lower dimension of the grid. It also allows to as-
sign a well-defined orbital angular momentum lz to every s.p.
state, guaranteeing that states with different value of lz are or-
thogonal; nevertheless a Gram-Schmidt procedure is required
for all states with the same lz value. Besides the twofold spin
degeneracy of every s.p. state, we recall that the ±lz orbitals
are also doubly degenerate. Consequently, states with lz = 0
are twofold spin degenerate and those with lz �= 0 are fourfold
degenerate. Throughout, Greek letters σ , π , δ. . . will be used
to denote states with |lz| = 0, 1, 2. . . .

Although the primary concern of this work is the descrip-
tion of fermionic 3He complexes, it is interesting to make
a comparison with the bosonic ones with the same number
of helium atoms and calculated along similar lines. To this
end, we have used a slightly modified version of the Orsay-
Trento (OT) functional,39 usually employed for 4He droplets.

The original OT functional contains two terms of the form
ρρ̃2 and ρρ̃3, which look similar to the term ρ2ρ̃γ entering
the density functional for 3He given in Eq. (2), except that the
latter contains a squared bare density ρ2 in place of a linear
bare density. This makes some difference for doped helium
clusters, since a “squared” density term yields stable results
whereas for very attractive impurities a “linear” one does not.
Consequently, we have replaced the two mentioned terms by
the new ones ρ2ρ̃ and ρ2ρ̃2, keeping the same original param-
eters. This modified OT functional has also been successfully
used for studying the solvation of several ionic impurities in
bulk liquid 4He.40

We restrict our cluster calculations to the sizes N = 6,
8, 18, and 40 of which the last three were found to be the
only closed shell magic numbers in this size region along with
N = 2, which we decided not to include because of the
large error introduced by the self-interaction in such a small
cluster. The same magic numbers were found earlier for the
strongly interacting spherical noble gas atoms Kr and Xe and
for SF6.32 For the less strongly interacting atoms Ne and Ar
an additional magic number was found with N = 20. These
magic clusters are characterized by the existence of a clear
energy gap between the last occupied and the first unoccupied
levels, so that the Fermi energy can be unambiguously defined
as the highest single-particle energy of the occupied orbitals.
In that case the density of the cluster is represented by a single
Slater determinant of Kohn-Sham orbitals. Non-magic clus-
ters are instead characterized by a quasi-degeneracy of the
highest occupied and lowest unoccupied single particle lev-
els, so that there is some ambiguity in the attribution of the
occupied levels.

III. RESULTS

A. Energies and densities of the OCS-3He dimer

As a first step towards understanding the OCS@3HeN
clusters, we discuss first the N = 1 case. With only a sin-
gle 3He atom the structure provides insight into the effect of
the large zero point energy of the light particle on its local-
ization in the anisotropic potential. The Schrödinger equation
for a 3He atom in the anisotropic OCS-3He interaction poten-
tial was solved numerically. There are only 19 bound levels,
whose energies are listed in Table I. Because of the spin- and
lz-degeneracy mentioned above the 19 levels correspond to
altogether 64 bound states. The energy levels are plotted in
Fig. 1 as a function of l2z . The first band of n = 1 states in-
creases linearly with l2z , as expected for the increased rota-
tional energies of the highly localized ring-shaped bands.41

For n > 1 the curves bend over with increasing l2z .
The probability density distribution of the σ states is

shown in Fig. 2. The first three states are situated in each of
the three lowest minima of the anisotropic potential. The 1σ
state is highly localized at the global minimum in the donut
ring position between the O and C atoms. The next highest 2σ
state is spread out at the O end of the molecule over a wide
angular range corresponding to the wide potential minimum.5

The 3σ state is more localized in the narrow angular region
of the slightly deeper well at the S end. The higher energy σ
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TABLE I. Energies and spin degeneracies of the 19 bound states of the
OCS@3He complex.

State Degeneracy Energy (K) State Degeneracy Energy (K)

1σ 2 −21.215 3π 4 −5.214
1π 4 −20.543 1η 4 −5.082
1δ 4 −18.539 5σ 2 −3.760
1φ 4 −15.243 4π 4 −3.562
1γ 4 −10.720 3δ 4 −2.894
2σ 2 −9.583 2φ 4 −2.772
2π 4 −8.225 6σ 2 −1.104
3σ 2 −7.955 5π 4 −0.714
4σ 2 −6.323 4δ 4 −0.308
2δ 4 −5.887
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FIG. 1. Energies of the 19 single-particle bound states found for the OCS-
3He complex.
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FIG. 2. Probability density of the σ states. In each frame, the contour lines
follow the points where the probability density equals 0.1, 0.2, 0.3, . . . 0.9
times the maximum probability density for that state. Solid lines (for odd
fractions 0.1, 0.3, etc.) and dashed lines (for even fractions 0.2, 0.4, etc.) are
used to distinguish adjoining contours.

states are more delocalized and more uniformly spread over
the entire “surface” of the molecule. The probability distribu-
tions for the lz �= 0 states (not shown) are qualitatively similar
to the lz = 0 states with the same main quantum numbers (i.e.,
2π , 2δ, etc. are similar to 2σ ) except they all have zero prob-
ability at the symmetry axis due to centrifugal distortion.

B. Energies and densities of selected OCS-3He
clusters

In this subsection we present and discuss the results ob-
tained for complexes with N = 6, 8, 18, and 40. One could
be tempted to consider an extreme independent-particle ap-
proach in which a Slater determinant is constructed from the
previously determined states with N = 1, hoping that the par-
ticle density would roughly reproduce that of the OCS@3HeN
complex. However, the strong He–He correlations and the in-
tricate topology of the He-OCS interaction combine to criti-
cally affect the shape of the KS orbitals and their ordering as
N increases.

The single-particle energy levels for these selected sizes
are shown in Fig. 3. No shell closure can be assigned to the
size N = 6, since the energy gap between the last occupied
1π and the first unoccupied 2σ state is smaller than the en-
ergy differences between adjacent states. In contrast, for the
sizes 8, 18, and 40 the occupied orbitals are energetically well
separated from the unoccupied orbitals, much more than for
any other N ≤ 40 size. This distinct energy gap defines a clear
shell closure and the corresponding magic sizes in the N = 1
− 40 interval.

The total energies of the doped and pure 3He clusters are
listed in Table II where they are compared with the same sized
4He clusters. In the case of the 3He clusters it is only possible
to compare the energy of the doped cluster with the energy
of the pure cluster for N = 40 since clusters with less than
about N � 30 3He atoms are not bound.42–44 As a result, the
OCS solvation energy, defined as the difference of the clus-
ter energies with and without the impurity, is the same as the
total energy for N = 6, 8, 18. For N = 40 it is −261.5 K,
which is only slightly less than the energy of the doped
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FIG. 3. Single-particle energy levels obtained for OCS@3HeN complexes
with N3 = 6, 8, 18, and 40. Solid and dashed lines refer to occupied and
unoccupied states, respectively.
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TABLE II. DF total energies and solvation energies (in K) of OCS@3HeN and OCS@4HeN, and of pure 3HeN and 4HeN clusters.

OCS@3HeN Pure 3HeN Solv. energy OCS@4HeN Pure 4HeN Solv. energy

N E3 E3/N E3 E3/N �E3 E4 E4/N E4 E4/N �E4 �E4/�E3

1 −21.2 −21.2 . . . . . . −21.2 −25.5 −25.5 � 0 � 0 −25.5 1.20
6 −129.3 −21.6 . . . . . . −129.3 −145.9 −24.2 −1.5 −0.25 −144.4 1.12
8 −151.2 −18.9 . . . . . . −151.2 −170.0 −21.3 −4.2 −0.53 −165.8 1.10
18 −217.9 −12.1 . . . . . . −217.9 −271.7 −15.1 −26.7 −1.5 −245.0 1.12
40 −266.9 −6.7 −5.4 −0.14 −261.5 −378.6 −9.5 −100.3 −2.5 −278.3 1.06

cluster. As explained in Sec. II for comparison with the same
sized 4He cluster, which is treated as a superfluid, we have
used the slightly modified OT density functional.39 In Table II
are also listed the calculated DF energies of same sized doped
and pure 4He clusters. The solvation energies in 4He clusters
are only slightly larger in magnitude by about 10% than in the
3He clusters. Since the potentials are identical in the two iso-
topes this is consistent with the relatively small differences in
the structures of the clusters in the two isotopes as discussed
in detail below.

The 3He density probability distributions for the ground
state complexes with N = 1 (1σ ), 8, 18, and 40 are shown
in Fig. 4 where they are compared with the corresponding
4He cluster distributions. The N = 40 4He density distribution
is in reasonable agreement with the one obtained by Kwon

O
C
S

N 1

3He

O
C
S

8

O
C
S

18

O
C
S

40

O
C
S

4He

O
C
S

O
C
S

O
C
S

10 5 0 5 10 5 0 5 10
10

5

0

5

10

5

0

5

10

5

0

5

10

5

0

5

10

x Å

z
Å

FIG. 4. One-body densities of helium atoms in OCS@3HeN (left panels) and
OCS@4HeN (right panels) clusters with N = 1, 8, 18, 40. In each frame, the
contour lines follow the points where the density equals 0.1, 0.2, 0.3, . . . 0.9
times the maximum density for that droplet. Solid and dashed lines are used
to distinguish adjoining contours.

and Whaley8 for N = 39 within a path integral Monte Carlo
calculation at a temperature of 0.31 K. Figure 5 provides a
perspective view of the probability densities for 3He and 4He
clusters with N = 40 atoms.

As the number of He atoms increases they start to spread
more uniformly around the OCS and eventually completely
surround the molecule. This behaviour is very similar in both
isotopes and the overall differences between the 3He and 4He
density distributions in Fig. 4 are surprisingly small. This is
probably due to the much greater force exerted by the OCS
molecule on the surrounding He atoms which dominates over
the forces between the He atoms. The interatomic potentials
for the two isotopes are identical and their interactions are af-
fected only by the differences in the zero point energies and
in the Fermi repulsion resulting from the different statistics.

FIG. 5. Three-dimensional visualization of the densities of Fig. 4 for
N = 40.
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Thus in the bosonic clusters there is a higher accumulation
of atoms around the different minima of the potential and an
overall more asymmetric density shape which follows more
closely the potential contours than in the fermionic clusters.
The tendency of the 3He orbitals to avoid each other and re-
duce their mutual repulsion is best seen with the N = 40 clus-
ter. With increasing number of atoms the large mean-field ef-
fects not only cause the KS energy levels to bunch together
but also smear out the distribution of atoms so that they be-
come more spherical.

To determine the number of helium atoms in the donut
ring where the OCS-He potential has its absolute minimum,
one could simply integrate the He density around the donut.
But in practice there are two main difficulties. First, the defini-
tion of the “donut region” is somewhat arbitrary and second,
the integration method used is not accurate enough to com-
pute integrals in such a small region. An alternative estimate
is to use the N = 1 probability density as a “guide density” to
define the donut region. We assume that if there are λN atoms
around the potential minimum, the density in that region is
going to be roughly similar to λNρ1, where ρN stands for the
particle density of 3He in the OCS-3HeN cluster. Therefore, to
determine the number of atoms λN in the donut of an N-sized
cluster we minimize the quantity

ε(λN ) =
∫

dr
{
ρN (r) − λNρ1(r)

}2
, (11)

which gives the solution

dε

dλN

= 0 → λN =
∫

drρN (r)ρ1(r)∫
drρ2

1 (r)
. (12)

The resulting λN turns out to be 4.05 (N = 8), 4.18 (N = 18),
and 4.30 (N = 40). Thus more than 4 3He atoms are located
in the donut rings compared to 5 for the smallest 4He clusters
and 6 atoms in larger 4He clusters and droplets.

C. Moment of inertia of the clusters

The distribution of He atoms around the OCS molecule
is of interest in connection with the rotational properties of
the complexes. For fermions in the normal (non-superfluid)
phase, the proper method for calculating the MOI within DFT
is provided by the cranking formula which is obtained by ap-
plying a classical crank rotating with angular velocity ω to the
deformed cluster around an axis perpendicular to the symme-
try, x axis, for instance. This is known as the Inglis model in
nuclear physics45,46 and the resulting expression can alterna-
tively be obtained with the one-particle operator ω · Lx using
first order perturbation theory. In this model only one particle-
hole pair is excited at a time and the model thus holds within
the KS approach. Fortunately the Inglis formula provides val-
ues for theMOI that are very close to the rigid body value.45,46

For this reason, we have assumed the He distribution to be-
have as a rigid solid and calculated the cluster MOI as

Iij = mHe

∫
drρ(r)

(
r2δij − rirj

) + IOCS
ij . (13)

Because of the axial symmetry of the densities all non-
diagonal elements of this matrix vanish and only the I11

TABLE III. Comparison of the moments of inertia (in amu Å2) calculated
from the He distributions, considered to be rigid, with the experimental values
of the free molecules and measured in large droplets.

N Ia (3He) Ia (4He) Ib (3He) Ib (4He)

Free mol. 0 0 83a 83a

8 268 276 131 383
8(expt.) . . . . . . . . . 348b

18 957 815 1129 1028
18(expt.) . . . . . . . . . 230c

40 3850 3079 4096 3123
40 (expt.) . . . . . . . . . 215c

Large droplets(expt.) ≤80 or 240d . . . ≈500b 230e

aReference 48.
bCalculated from values of “B” listed in Ref. 4.
cReference 11.
dReference 15.
eReference 3.

= I22 = Ib and I33 = Ia terms survive. The intrinsic MOI of the
isolated molecule are IOCS

b = 83 amu Å2 and IOCS
a = 0.47

Table III lists the MOI values for OCS attached to
N = 8, 18, and 40 3He and 4He clusters calculated using Eq.
(13) from the density functional distributions and compares
them with the available experimental results. These are only
available for Ib of small 4He clusters.4, 11 The large discrepan-
cies between the rigid 4He clusters with N = 18 and 40 and
the experimental results have been explained by assuming that
the chromophore, together with about 5 or 6 tightly attached
atoms in the donut ring, undergoes end-over-end rotations in-
dependently of all the other atoms of the cluster. Thus the ef-
fective MOI, which depending somewhat on cluster size, lies
between 215 and 348 amu Å2, is much smaller than calcu-
lated for the entire rigid cluster. The difference is attributed to
an effect of microscopic superfluidity, which is not accounted
for in the present calculations.4, 11 As mentioned in the intro-
duction values for the axial MOI Ia are not available since the
donut rotations are not activated at the low temperatures of
the clusters. The same considerations apply to large droplets,
for which Ia could also not be determined from the spectra.

In the case of the 3He clusters, for which superfluid ef-
fects are not expected, the present calculations can only be
compared with the results measured in large droplets.15 Be-
cause of the largely unresolved broad features of the spec-
trum, 8 different models were tested by comparing the least
square best fits of each with the measured spectrum. The mod-
els assumed either a linear rotor or a symmetric top structure,
a fixed droplet temperature or a best fit temperature and ei-
ther a Gauss or a Lorentz profile for the rotational lines. The
conclusion drawn from the analysis of the 4 symmetric top
models, which come closest to the structure obtained in the
present study, in three cases was that the axial moment of
inertia Ia is less than 80 amu Å2 and only in one case was
Ia = 240 amu Å2. All 8 models led to values for Ib between
620 and 413 amu Å2 averaging to about 500 amu Å2. From
this value it was estimated, based on an ad hoc assumption of
a spherical shell, which is consistent with a symmetric top
model, that roughly 11 attached 3He atoms are co-rotating
with the OCS molecule independent of the other atoms in the
droplet. A difficulty with this interpretation was that a spheri-
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cal shell implies Ia ≈ 350 amu Å2 which is significantly larger
than even the only comparable large value obtained assum-
ing a symmetric top structure. Although the present predicted
value for N = 8 (Ia = 268 amu Å2) is already somewhat larger
than the best fit value of 240 amu Å2 it is gratifying that the
spherical shell value of Ia ≈ 350 amu Å2 lies between the
present calculated values for N = 8 and 18. Since also the av-
erage experimental value of Ib = 500 amu Å2 lies between
the present values for N = 8 and N = 18 we conclude that
the present calculations are reasonably consistent with the 11
atom spherical shell structure considered to be the most likely
structure by the experimentalists.

It is surprising, however, that the experimental value for
Ib does not coincide with a magic number. The fact that the
experimental number of 11 differs significantly from the two
nearest magic numbers suggests that perhaps the transition
between co-rotating and decoupled atoms is a gradual one.
Finally we note that the argument used to explain the missing
Q-branch in 4He clusters does not apply to 3He clusters. In the
latter case the fermionic statistics allows the axial rotations to
be excited even at the very low temperatures (≈0.1 K) of the
droplets as outlined in the appendix of Ref. 15. In this respect
the experiment also lends support to the symmetric top (and
spherical shell) model since it is the only one which predicts
the presence of a Q-branch in the experimental spectrum.

Thus these calculations largely clarify the differences be-
tween the solvation shells for the two isotopes. In the bosonic
4He droplets the attached atoms are compactly localized in
the donut ring which can accommodate at most 6 atoms while
the others are completely decoupled from the rotations as is
currently attributed to the phenomenon of microscopic su-
perfluidity. The co-rotating He atoms are attributed to a non-
superfluid fraction, which are “adiabatically following”10 the
rotations of the chromophore in contrast to the other atoms
which are superfluid. In the fermionic 3He droplets the co-
rotating shell contains more atoms and is only partly local-
ized in the donut position, and therefore is more spread out.
Moreover the surrounding atoms and their collective exci-
tations interact more strongly with the rotating complex.19

The attached solvation shell is however also decoupled from
the rest of the 3He droplet even though it is certainly not
superfluid.

IV. DISCUSSION

The present calculations of the MOI involve a number
of assumptions in addition to those inherent in density func-
tional theory. Foremost for the interpretation of the OCS-3He-
droplet spectra is the assumption of a rigid cluster with a fixed
size, which rotates without interacting with its environment.
This model must be considered to be highly idealized in view
of the large viscosity of 3He (200 micropoise at 0.1 K) which
is largely responsible for the large line widths in the experi-
mental spectrum. The present theory also neglects the effect
of the translations and rotations of the chromophore on the
density distributions. In the case of small 4He clusters this
has been investigated for a number of chromophores includ-
ing OCS.8,48, 49 The density becomes somewhat more spread

out and delocalized and the moment of inertia is slightly
increased.49 In the present case a dynamic quantum Monte
Carlo simulation would be required to more accurately esti-
mate the size of the cluster which rotates together with the
chromophore molecule. Such a calculation or even a simple
classical model would also have to account for the large vis-
cosity of the 3He liquid.

Finally, we comment briefly on the future prospects of
carrying out ab initio calculations of small doped 3He clus-
ters. Our experience in the present study indicates that the
extreme independent-particle approach, which has been so
helpful in nuclear physics, fails to properly predict the atom
shell filling. This is largely due to the strong helium-helium
interaction and the neglect of Fermi statistics; both aspects
which are incorporated in the DF approach used here. Jung-
wirth and Krylov50 were the first to call attention to the close
analogy between the quantum chemistry theory of atoms and
molecules and that of 3He atoms attached to heavy chro-
mophores. The electron-electron Coulomb repulsion is re-
placed by the 3He-3He van der Waals potential and the
Coulomb attraction to the nucleus by the strong van der Waals
attraction between the 3He atoms and the chromophore. Fol-
lowing this analogy, a full-configuration-interaction nuclear-
orbital implementation has been developed and applied by
de Lara-Castells and collaborators52,52, 53 to study ground-
and excited-state properties of doped clusters containing up
to four 3He atoms. However, because of the weakly attrac-
tive long range and strongly repulsive short range interac-
tion of the He atoms, very large basis sets were required in
order to get satisfactory results for larger systems. Finally
we note that a diffusion Monte Carlo calculation, which has
been employed in the past to study both pure and doped
3He clusters,43, 44, 54, 55 can be used to study larger clusters up
to several tens of atoms. Work along these lines is now in
progress.
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Chapter 3

Dynamics

3.1 Evolution of the excited electron bubble in liquid 4He
and the appearance of fission-like processes

Resumen (Spanish)

Hemos seguido la evolución de una burbuja electrónica excitada en 4He superfluido
durante unas decenas de picosegundos combinando el cálculo dinámico del ĺıquido con
la evolución adiabática del electrón. El cálculo muestra cómo el camino seguido por la
burbuja excitada al estado 1P en su relajación hacia el estado fundamental depende de
forma cŕıtica de la presión aplicada. Para presiones inferiores a 1 bar, el electrón puede
desexcitarse radiativamente hasta el estado fundamental deformado y evolucionar hacia el
auténtico estado fundamental esférico. Para presiones superiores a 1 bar hemos observado
que dos “baby bubbles” claramente diferenciadas aparecen en el trascurso de la evolución,
lo que apunta a un nuevo camino de relajación en el que el electrón se localiza en una
de las dos burbujas mientras la vaćıa colapsa. Esto permite una relajación puramente
no-radiativa.

Nuestros cálculos muestran en buen acuerdo con los experimentos en los que las
burbujas electrónicas 1P se detectan solo por debajo de una presión cŕıtica del orden
de 1 bar mientras que para presiones más elevadas la relajación de las burbujas sucede
por una v́ıa diferente. Un análisis similar de la burbuja 2P muestra que la aproximación
adiabática falla en un estadio temprano de la evolución debido al cruce de los estados 2P
y 1F.
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We have studied the evolution of an excited electron bubble in superfluid 4He for several tens of picosecond
combining the dynamics of the liquid with an adiabatic evolution for the electron. The path followed by the
excited bubble in its decay to the ground state is shown to strongly depend on pressure. While for pressures
below 1 bar the 1P excited electron bubble has allowance for radiatively decay to the deformed ground state,
evolving then nonradiatively toward the ground state of the spherical electron bubble, we have found that
above 1 bar two distinct baby bubbles appear in the course of the dynamical evolution, pointing to a different
relaxation path in which the electron may be localized in one of the baby bubbles while the other collapses,
allowing for a pure radiationless de-excitation. Our calculations are in agreement with experiments indicating
that relaxed 1P bubbles are only observed for pressures smaller than a critical one, on the order of 1 bar, and
that above this value the decay of the excited bubble has to proceed differently. A similar analysis carried out
for the 2P bubble shows that the adiabatic approximation fails at an early stage of its dynamical evolution due
to the crossing of the 2P and 1F states.
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I. INTRODUCTION

Electron bubbles �ebubbles� in liquid helium are fascinat-
ing objects with an apparently simple structure that have
been the subject of a large number of experimental and the-
oretical studies, see, e.g., Refs. 1–12 and references therein.
The imaging of individual ebubbles moving in the liquid,13

some unexplained events in cavitation experiments,14 and the
efforts in creating and detecting multielectron bubbles15,16

are recent issues calling for a dynamical description of the
electron bubble, but not the only ones. For instance, the
equilibration of the electron bubble in superfluid liquid he-
lium, studied in detail by Eloranta and Apkarian8 within
time-dependent density-functional �DF� theory, also needed
of an accurate dynamical description. The ebubbles ad-
dressed in that work are spherically symmetric, which made
the calculations affordable for using the best available DF for
4He, the so-called Orsay-Trento functional.17 Other dynami-
cal studies have resorted to much simpler approaches in-
spired on local functionals of the kind proposed by Stringari
and Treiner long time ago,18 or on generalizations of the
Gross-Pitaevskii equation to the description of liquid
helium.19–22 They have allowed to carry out dynamical stud-
ies involving nonspherical ebubbles, and their interaction
with vortices in the superfluid. However, these local ap-
proaches do not describe the superfluid accurately. In par-
ticular, its elemental excitations are poorly reproduced. To
circumvent this shortcoming, nonlocal extensions have been
proposed23 and applied, e.g., to vortex nucleation in super-
fluid helium.24

Another problem requiring a dynamical treatment, still
not addressed in full detail, is the relaxation of an ebubble
after being excited by photoabsorption, which constitutes the
subject matter of this work. This process couples the fairly
slow displacement of the helium bubble with the rapid mo-
tion of the electron it hosts, producing excitations in the liq-
uid that take away a sizeable part of the energy deposited in

the ebubble during the absorption. The emission spectrum of
the electron bubble after it has relaxed around the excited
electron state has been calculated.10,25,26 However, whether
and how these full relaxed configurations are attained before
decaying by photoemission was not elucidated.
In this work we attempt a theoretical description of the

evolution of the excited ebubble based on the zero-
temperature DF approach, using an as much accurate as tech-
nically feasible description of the liquid and an electron-
helium �e-He� interaction that have been proved to reproduce
the experimental absorption energies of the ebubble. The ini-
tial configuration is determined by a static calculation of the
excited ebubble. This state has a large radiative lifetime, on
the order of several tens of microsecond, in contrast with the
short time scale for the helium displacement, on the order of
picosecond. The subsequent dynamical evolution of the
ebubble is described within the adiabatic approximation,
which is valid for a period of time difficult to ascertain,27 that
we shall discuss in some detail. We will show that, depend-
ing on the initial excited state and the external pressure ap-
plied to the liquid, the bubble may keep its initial simply
connected topology, or evolve toward a nonsimply connected
one made of two baby bubbles that share the probability of
finding the electron in,28 the electron eventually localizing in
one of them while the other collapses. To reduce the numeri-
cal effort to a reasonable amount, we shall mostly discuss
results for the collapse of an ebubble starting from the
spherical 1P state. Results for the collapse of the 2P state will
be also shown.
This work is organized as follows. In Sec. II we describe

our model and present a quasistatic study of the ebubble,
completing the results we have presented elsewhere,25 and
recalling some technical details about the method we have
used to solve the variational equations for the fluid and the
electron. In Sec. III we present the adiabatic evolution of the
ebubble for two selected values of the liquid pressure. The
validity of the adiabatic approximation is analyzed in Sec. IV
and a summary is presented in Sec. V.
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II. QUASISTATIC DESCRIPTION

We first address some properties of excited electron
bubbles in liquid 4He using the Orsay-Trento density func-
tional including the terms that mimic backflow effects and
are crucial to quantitatively reproduce the experimental
phonon-roton dispersion relation in bulk liquid 4He at zero
pressure.17 They have no influence on the statics of the sys-
tem and have been often neglected12,29 in the dynamics be-
cause their inclusion makes the dynamical calculations very
cumbersome.8,30–32 In practice, we have found that these
terms have little effect on the dynamics of the electron
bubble presented in this work.
The e-He interaction has been modeled by the Hartree-

type local effective potential derived by Cheng et al.33 This
allows us to write the energy of the electron-helium system
as a functional of the electron wave function ��r� and the
4He effective macroscopic wave function ��r�
=���r�exp�ıS�r��, where ��r� is the particle density and
v�r�=��S�r� /mHe is the velocity field of the superfluid

E��,�� =
�2

2mHe
� dr����r��2 +� drE���

+
�2

2me
� dr����r��2 +� dr���2Ve-He��� . �1�

In this expression, E��� is the 4He “potential” energy density
and the e-He interaction Ve-He��� is written as a function of
the helium density.33 Details are given in Refs. 9 and 34. In
the absence of vortex lines, S is zero and E becomes a func-
tional of � and �. Otherwise, one has to use the complex
wave function ��r� to describe the superfluid.
For a given pressure �P�, we have solved the Euler-

Lagrange equations which result from the variation with re-
spect to �� and �� of the zero temperature constrained
grandpotential density �̃�� ,��=��� ,��−����2, with

���,�� =
�2

2mHe
����r��2 + E��� +

�2

2me
����2 + ���2Ve-He���

− 	� , �2�

where 	 is chemical potential of the liquid. The variation of
the above functional yields two coupled equations that have
to be self-consistently solved

−
�2

2mHe

� + 	�E

��
+ ���2

�Ve-He���
��


� = 	� , �3�

−
�2

2me

� + Ve-He���� = �� , �4�

where � is the eigenvalue of the Schrödinger equation
obeyed by the electron.
Our method of solving the variational equations is based

on a high-order discretization in Cartesian coordinates of the
differential operators entering them �13-point formulas in the
present case�, and the use of fast Fourier transformation
techniques35 to efficiently compute the convolution integrals
in ����, such as the mean-field helium potential and the
coarse-grained density entering the definition of the correla-

tion energy.12 This allows us to use a large spatial mesh step,
of about 1 Å size, without an apparent loss of numerical
accuracy when we compare our results with others �see be-
low� obtained using three-point formulas for the derivatives
that, as a consequence, require a rather small mesh step to be
accurate. The density at the boundary of the three-
dimensional 140�140�140 Å3 box used to carry out the
calculations is fixed to the value of the bulk liquid density at
the given P. We recall that knowledge of E��� allows to
determine the equation of state of the bulk liquid and its
chemical potential, since 	=�E /�� and P=−E���+	�.
Equations �3� and �4� have been solved employing an
imaginary-time method,36 and we have carried out the appro-
priate tests to check the stability of the solutions. We mention
that the energies we have obtained for the 1S→1P and 1S
→2P transitions9 are in very good agreement with
experiment,6 and that our results compare well with those
obtained by Eloranta and Apkarian8 using the same func-
tional but a different numerical method and e-He interaction.
This constitutes an excellent test not only for the numerics
but also for the physical ingredients employed in both calcu-
lations. We have recently discussed the effect of the presence
of vortices on the absorption spectrum of ebubbles attached
to them.25

Upon excitation to the 1P state by light absorption, the
ebubble experiences a drastic change in shape. This is due to
the fairly large radiative lifetime of this state �calculated to
be 44 	s in Ref. 26, 60 	s in Ref. 10, and 56 	s in Ref.
25� as compared to any characteristic helium time scale, al-
lowing the liquid to relax around the excited state. As a con-
sequence, the bubble adapts its shape to the 1P electron prob-
ability density before decaying by photoemission to the
deformed 1S state. Consequently, the bubble configuration at
the emission time can be obtained by minimizing the grand-
potential of the system keeping the electron in the excited 1P
state. We have done it by solving Eqs. �3� and �4� taking for
� the �1P wave function. In this case, a Gram-Schmidt
scheme has been implemented to determine both 1P and 1S
relaxed states that obviously no longer correspond to a
spherical bubble. In this axially symmetric environment, the
spherical nL states are split depending on the value �m� of
the orbital angular momentum on the symmetry z axis, and
the 
m states are degenerate. We have found that, within a
nL manifold, the m states are ordered in increasing �m�
values.25 For this reason, we will refer to the axially sym-
metric state that corresponds to the m=0 submanifold when
we speak of a deformed “nL” state. When needed, we shall
use the conventional notation for the orbital angular momen-
tum of single-particle states in linear molecules, namely,
� ,� ,� ,� , . . . for �m�=0,1 ,2 ,3 , . . ., and superscripts +�−� for
specularly symmetric �antisymmetric� states.
Figure 1 displays quasiequilibrium ebubble configurations

at different stages of the absorption-emission cycle obtained
at P=0 bar. The electron-probability densities are repre-
sented by colored clouds, these with one lobe correspond to
1S states �spherical bubble, picture 1; deformed bubble, pic-
ture 4� and these with two lobes correspond to 1P states
�spherical bubble, picture 2; deformed bubble, picture 3�. In
this figure, the line indicates the bubble dividing surface, i.e.,
the surface at which the liquid density equals half the
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saturation-density value �0, e.g., 0.0218 Å
−3 at P=0 bar,

and represents the surface of the helium bubble. We have
found25 that at P=0 bar, the 1P→1S emission energy is 36
meV, close to the 35 meV found in Ref. 10, constituting
another excellent test of the theoretical framework used by
us and by these authors. The energy released in the optical
1S-1P absorption-emission cycle can be determined combin-
ing the results we have obtained in previous works.9,25 For
instance, at P=0 bar the released energy is 69 meV �com-
pare with the 76 meV obtained in Ref. 10�. This energy is
transferred to the superfluid through generation of different
kind of excitations.
Quasiequilibrium configurations of the ebubble relaxed

around the 1P state are shown in Fig. 2 for several P values.
In this figure, helium is represented by warm colors and the
electron-probability density �arbitrary units� by cool colors.
The relaxation of the bubble around the 1P state produces a
characteristic two-lobe peanut structure whose waist—or

neck—is progressively marked as the pressure applied to the
liquid increases. Notice that helium displays a stratified den-
sity around the bubble. This feature appears whenever the
superfluid presents a kind of free surface, as in drops, films
or bubbles.9,17,36

Figure 2 shows that at a pressure of �8 bars helium starts
to penetrate between the two lobes of the electron wave func-
tion. At �9 bars the helium density in this region reaches
the saturation density, and the bubble splits into two baby
bubbles. This produces an abrupt change in the emission
energy, falling an order of magnitute between P=8 and 9
bars; in the “broken-neck” region extending up to the solidi-
fication pressure, the photon-emission energy is barely
�1 meV.25 This is expectable at these pressures, as the main
difference between 1S and 1P probability densities appears
in the waist region. If this region is inaccessible to the elec-
tron due to the presence of helium, these states become al-
most degenerate. On the contrary, if this region is not acces-
sible to the superfluid due, e.g., to the presence of a vortex
whose vorticity line coincides with the symmetry axis of the
ebubble, the baby bubbles may be held together by a tiny
neck.25

It is worth pointing out that some of the quasiequilibrium
configurations displayed in Fig. 2 may not be reachable in
the evolution of the bubble. The reason is that helium falling
in the waist region during the violent collapse may produce a
large pileup of superfluid in that region, thus causing the
actual breaking of the neck at pressures much smaller than
the 8 bars obtained quasistatically. This possibility has been
anticipated by Maris.2

III. TIME EVOLUTION OF THE EBUBBLE:
PICOSECOND DYNAMICS

The dynamics of the excess electron localization in liquid
helium has been adiabatically addressed by Rosenblit and
Jortner37,38 using a sharp-surface model for the bubble. The
superfluid was considered as incompressible, and the bubble
expansion time, i.e., the time for creating the ebubble, was
estimated to be 8.5 ps when energy dissipation by emission
of sound waves was taken into account.38 This process ex-
hibits a marked P dependence, the higher the pressure the
shorter the expansion time.
Later on, the incompressibility approximation was relaxed

using a DF approach, finding that at P=0 bar the bubble
surface breathes with a period of about 130 ps.8 These cal-
culations have revealed that the localization process may
launch shock waves, and that the subsequent main dissipa-
tion mechanism is sound radiation; excitations in the roton
well were not produced.8 In the present work we consider
that the ebubble has had time enough to relax to its spherical
1S ground state and the electron is subsequently excited by
light absorption to the 1P state, whose dynamical evolution is
the subject matter of this section.

A. Adiabatic time evolution

Since the electron evolves much faster than helium as
their mass ratio is mHe /me�7300, we have followed the dy-

Absorption
ΔE = 105 meV

Emission
ΔE = −36 meV

Relaxation stage

ΔE = −40 meV

Relaxation stage

ΔE = −29 meV

1

2

3

4

FIG. 1. �Color online� Ebubble quasiequilibrium configurations
at different stages of the absorption-emission cycle corresponding
to P=0 bar. The electron-probability densities are represented by
colored clouds. The dashed line is the bubble dividing surface. The
size of the frames is 70�70 Å2.

P = 0 bar P = 5 bar

P = 8 bar P = 9 bar

FIG. 2. �Color online� 1P bubble quasiequilibrium configura-
tions for P=0, 5, 8, and 9 bars. Helium is represented by warm
colors and the electron-probability density �arbitrary scale� by cool
colors. The size of the samples is 70�70 Å2.
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namics of the excited ebubble by combining the actual time
evolution of the liquid with an adiabatic evolution for the
electron. Within this approximation, the electron wave func-
tion is found by solving, at each time step, the static
Schrödinger Eq. �4� to obtain the instantaneous 1P electron
state �1P, and the structure of the liquid is obtained by de-
termining the complex, time-dependent effective wave func-
tion ��r , t� from the time-dependent DF equation

ı�
���r,t�

�t
= −

�2

2mHe

��r,t�

+ 	U��,v� + ��1P�2
�Ve-He���

��

��r,t� , �5�

where the effective potential U�� ,v� is given, e.g., in Refs.
30 and 31 and has an explicit dependence on the local cur-
rent field j�r�=��r�v�r� arising from the backflow term the
static potential energy in Eq. �1� lacks of. These coupled
equations are solved imposing as initial conditions the sta-
tionary solution of the superfluid for the spherical 1S
ebubble, employing the electron wave function �1P for
building the e-He interaction, as indicated in Eq. �5�. The
time step has been set to 0.01 ps, and we have used a fourth-
order Runge-Kutta method to obtain the first time steps of
the evolution. To determine the solution for subsequent
times, we have used Hamming’s �predictor-modifier-
corrector� method.39 This procedure is very robust and accu-
rate, even for large amplitude motions.40

B. Results

We have solved the adiabatic-dynamic coupled equations
for P=0, 0.5, 1, 2, 3, and 5 bars. We will mostly show results
for the two extreme pressure values, namely, 0 and 5 bars.
The evolution starts by stretching the bubble along the sym-
metry z axis and shrinking its waist. This produces density
waves in the liquid that take away a sizeable part of the
energy injected into the system during the absorption pro-
cess, 105 meV at P=0 bar and 148 meV at 5 bars.9

The evolution can be safely followed for about 25–30 ps.
For larger times, the density waves reflected on the box
boundaries get back to the region where the bubble sits,
spoiling the calculation. This time interval is large enough to
see bubble splitting at the higher pressures. Otherwise, one
needs to introduce a source of damping in the equation gov-
erning the liquid evolution �Eq. �5��, to prevent sound waves
from bouncing back. Usually, introducing damping requires
to enlarge the calculation box to accommodate a buffer re-
gion where waves are washed out, see, e.g., Refs. 8, 21, 22,
and 41. This increases the number of grid points and slows
the calculation.
Below 1 bar, we have found that the ebubble configura-

tion is simply connected and radiates a sizeable part of the
excitation energy as sound waves. For instance, at P
=0 bar, the energy difference between the spherical 1P con-
figuration and the relaxed 1P quasiequilibrium configuration
is �40 meV �see Fig. 1�. The ebubble undergoes damped
oscillations that will likely lead it to the corresponding qua-
sistatic 1P configuration described in Sec. II. As a conse-

quence, it would eventually decay radiatively to the de-
formed 1S state that will radiationless evolve toward the
spherical 1S state.
An example of this sort of evolution is shown in Fig. 3 for

P=0 bar. We have found that after 15 ps, the shape of the 1P
bubble is similar to the quasistatic configuration referred to
in Sec. II. Using a simpler model, Maris has found a smaller
value, 11 ps.2 The difference is a natural consequence of the
two basic approximations he has made, namely, treating the
liquid as incompressible and neglecting sound-wave radia-
tion. Due to the inertia of the bubble in the expansion pro-
cess, it continues to stretch in the direction of the symmetry
axis. This dilatation in the z direction goes on for the largest
times we have followed the evolution �30 ps�, accompanied
by the appearance of a more marked neck.
At 1 bar, the neck collapses due to the large kinetic energy

of the liquid filling in the region between the two 1P lobes,
and the ebubble configuration becomes nonsimply con-
nected. This causes the deformed 1P and 1S levels to become
nearly degenerate, and their probability densities are almost
identical. The appearance of any asymmetric fluctuation,
which is beyond the scope and capabilities of our frame-
work, will cause the electron to eventually localize in either
of the baby bubbles. The subsequent evolution of the system
is the collapse of the empty baby bubble and the evolution of
the other one toward the spherical 1S ground state. In this
case, the excited 1P bubble decays to the 1S spherical con-
figuration without passing through the 1P quasistatic con-
figuration described in the previous section, and the de-
excitation is nonradiative. An example of this sort of
evolution is shown in Fig. 4 for P=5 bars. For this pressure,
we have found that a configuration similar to the simply
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FIG. 3. �Color online� Adiabatic evolution of the 1P ebubble at
P=0 bar. The panels display the helium configurations correspond-
ing to 0, 5, 10, 15, 20, and 25 ps. The dashed line represents the
dividing surface of the quasiequilibrium configuration at P=0 bar
shown in Fig. 2.
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connected quasistatic one is attained after 10 ps, although the
inertia of the bubble expansion breaks the quasistatic neck at
about 18 ps. The density pileup in the neck region continues
and at about 22 ps the helium density in this region has a
peak of �2�0, whose relaxation pushes the two baby bubbles
in opposite directions helping the fission process.
Our calculations are in agreement with cavitation

experiments42 indicating that relaxed 1P bubbles are only
produced for pressures smaller than about 1 bar, and that
above this value the decay of the excited bubble has to pro-
ceed differently, likely radiationless. Indeed, we have found
that the 1P bubble fissions at P=1 bar, but it does not at P
=0.5 bar. Our results are also in agreement with the
interpretation27 of the vanishing of the photoconductivity
signal below 1 atm experimentally observed by Grimes and
Adams.6 According to this interpretation, an ebubble in the
1P state is unstable against a radiationless de-excitation back
to the ground state, the electron ultimately settling into one
of the baby bubbles while the other collapses with phonon
�heat� emission. It is this released heat that drives the photo-
current. Below that pressure, the ebubble decays radiatively,
it does not release enough heat and is not detected in the
photocurrent experiment.
The evolution of the electron energies for the 1S �empty�

and 1P �occupied� states, together with a representation of
the electron-probability densities, is presented in Fig. 5 for
two pressure values. The fission of the bubble at P=1 bar
happens after 60 ps. To obtain this result, we have proceeded
as in Refs. 21 and 22, introducing a damping term in Eq. �5�.
To make sure that the bubble does not fission at P=0.5 bar,
we have also introduced a damping term for this pressure.
We have studied the excitations produced in the liquid by

the expansion of the ebubble. From the evolution of the first

wave front, we have estimated that it moves in the z direction
at �330 m /s at P=0 bar and at �410 m /s at P=5 bars.
These values are well above the speed of sound in helium at
these pressures, meaning that the dynamics is highly nonlin-
ear. Besides, we have determined the nature of these excita-
tions by Fourier analyzing the density waves along the z axis,
leaving aside the region near the bubble surface. The density
profile is shown in the top panel of Fig. 6, corresponding to
P=0 bar at 13 ps, and the Fourier transform of the density
fluctuation �related to the static structure function of the liq-
uid� is presented in the bottom panel. Apart from the low-q
component, arising from the mean-density profile, one can
identify two distinct peaks, the more marked one at q
�0.8 Å−1 in the phonon branch near to the maxon region,
and another at q�2.3 Å−1 slightly to the right of the roton
minimum. A similar “roton” peak was found in Ref. 8. A less
marked peak appears at q�1.7 Å−1, slightly to the left of
the roton minimum. Similar peaks have been found for
shorter and larger times. From the relative intensity of these
peaks, we are prone to identify most of the emitted waves as
high-energy “phonons.”
We have also analyzed the effect of the backflow term on

the appearance of the density waves. One can see from the
bottom panel of Fig. 6 that neglecting this term changes a
little the relative intensity of the phonon and roton peaks,
increasing the former and decreasing the later as expected
from the effect of the backflow term on the excitation modes
of the superfluid, see Fig. 12 of Ref. 17. We want to stress
that rotons are not excited if one uses a less accurate, local
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FIG. 4. �Color online� Adiabatic evolution of the 1P ebubble at
P=5 bars. The panels display the helium configurations corre-
sponding to 0, 5, 10, 15, 20, and 25 ps. The dashed line represents
the dividing surface of the quasiequilibrium configuration at P
=5 bars shown in Fig. 2.

FIG. 5. �Color online� Adiabatic evolution of the energies of the
1S �empty� and 1P �occupied� states, together with a representation
of the electron-probability densities for P=0 bar �top panel� and
P=5 bar �bottom panel�. The electron-probability densities are also
displayed at four selected time values.
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functional such as that of Refs. 18–22. In this case, only the
low-q phonon spectrum of the superfluid is quantitatively
reproduced. Whether this has a sizeable influence on the
ebubble dynamics or not, can only be ascertained by a de-
tailed comparison between the results obtained using both
kind of functionals.
1P ebubbles may be excited by photoabsorption to the 1D

state, either to its m=0 component �2�+� or to its m=
1
components �1�−�. The absorption spectrum at different
stages of the time evolution can be measured in a pump-
probe experiment by which the ebubble is excited by two
consecutive laser pulses. The delay set between these pulses
should correspond to the time elapsed between the excitation
of the spherical bubble and the time at which the absorption
spectrum of the 1P ebubble is recorded. Time-resolved elec-
tronic spectroscopy has been proposed by Rosenblit and
Jortner38 as a tool for the exploration of the localization dy-
namics of the excess electron.
Time-resolved excitation energies are shown in Fig. 7 at

P=0 and 5 bars. While the evolution of the 1�−→1�− ex-
citation is qualitatively similar at both pressures, the 1�−

→2�+ excitation evolves differently in the high-pressure re-
gime when the bubble splits. Indeed, at 0 bar the excitation
energy smoothly decreases with time, whereas at 5 bars it
starts decreasing, increasing next, and eventually becoming
larger than the excitation energy to the 1�− state. Note that

both the change in behavior and the crossing take place some
picosecond before bubble splitting.
The 1�−→1�− transition is little affected by bubble split-

ting because it involves two states with negative specular
symmetry, which means that the probability density of both
states is zero in the neck region. On the contrary, the 1�−

→2�+ transition involves two states with different specular
symmetry and thus it is more affected by bubble splitting.
Along with the excitation energies, some values of the

associated oscillator strengths are displayed in Fig. 7. The
oscillator strengths have been calculated in the dipole ap-
proximation as43

fab =
2me

3�2
�Ea − Eb��
a�r�b��2.

As known, the oscillator strengths fulfill a sum rule that in
the one-electron case is �afab=1.

44 At both pressures, we
have found that these transitions have comparable oscillator
strengths. The largest difference appears for P=5 bars in the
split-bubble regime. In it, the strength of the 1�−→2�+ tran-
sition is roughly half that of the 1�−→1�− transition. We
thus conclude that the analysis of the peak energy and oscil-
lator strength of the 1�−→2�+ transition might disclose the
fission-like behavior of the excited 1P bubble, complement-
ing the experimental information gathered from cavitation
and photoconductivity experiments.
The current field �j�r�=��r�v�r�� is shown in Fig. 8 for

P=0 and 5 bars at 12 and 22 ps. At 12 ps the current fields
are qualitatively similar for both pressures: the bubble ex-
pands along the symmetry axis and shrinks in a plane per-
pendicular to it. At 22 ps, when P=5 bars, large currents
keep bringing liquid into the neck region, splitting the bubble
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and producing important density oscillations in the central
region.
We have also followed the collapse of the 2P bubble at

P=0 bar. About 2 ps after the collapse has started, a sizeable
part of the excitation energy has been released into the liquid
and two waves are distinguishable around the bubble, as
shown in Fig. 9. These waves travel through the liquid at the
same speed as in the 1P bubble case, �330 m /s. Shortly
after 7 ps, the m=0 levels of the 2P and 1F states become
very close and, as discussed in the next section, see Eq. �7�,
the adiabatic approximation fails. At this point, the 2P bubble
displays an incipient four-lobe shape arising from a similar
structure in the 2P electron probability density. It is worth
mentioning that a likely related effect, namely, the near de-
generacy of the 2P and 1F states, was found in the quasistatic
calculations of Ref. 26 as P increased.
In view of the mentioned failure and the lacking of ex-

perimental information on the collapse of the 2P bubble, we

have closed its study at this point, leaving it for future work.

IV. VALIDITY OF THE ADIABATIC APPROXIMATION

The validity of the adiabatic approximation in the first
stages of the bubble collapse, when the topology of the
bubble is simply connected, stems from the very different
time scale of the electron motion as compared to that of the
bubble,45 represented by the period of its shape oscillations.
If the fluid is incompressible and the bubble spherical, the
surface � modes of the cavity are at energies

��� =� �

mHe�0R
3 �� − 1��� + 1��� + 2� , �6�

where � and �0 are the surface tension and atom density of
the liquid, respectively. For �=2 this energy is about 1 K,
and the period of the oscillation is �50 ps.
The situation may change in the course of the collapse

because the energy difference 
=E1P−E1S between the de-
formed states decreases and the time scale �=h /
 may be-
come similar to the period of the shape oscillations of the
deformed bubble. Since 
 is small in the two bubble regime,
the approximation likely fails there.27,46 It is worthwhile
mentioning that neck fluctuations, not included in our ap-
proach nor in previous works, would pinch off the bubble at
earlier stages of the collapse, in a similar way as they may
cause the prompt scission of the fissioning atomic nucleus
after the saddle configuration has been overcome.47

On the light of our model, in which no assumptions are
made on the shape of the bubble nor the impenetrability of
the bubble surface by the localized electron, it is instructive
to analyze the validity of the adiabatic approximation assum-
ing that, during the evolution, the bubble keeps its original
axial symmetry and specular symmetry about the plane per-
pendicular to the symmetry axis that contains the node of the
1P state. This excludes any possible fluctuation and the ap-
pearance of asymmetric modes, like the breathing mode dis-
cussed in Ref. 27. Our discussion relies on the detailed pre-
sentation by Messiah,48 that we summarize in the following.
The subsystem to which the adiabatic approximation is

applied is the electron, whose wave function is decoupled
from that of the liquid. This wave function evolves in the
potential field generated by the liquid distribution, and its
Hamiltonian is time dependent, He�t�=He��He�t��. Let �n

t be
an eigenfunction of the Hamiltonian at time t, so that
He�t��n

t =�n�t��n
t . If �n�t� is the actual wave function �n

0

evolved up to time t, one has �n�t�=U�t��n
0, where U is the

evolution operator. In the adiabatic approximation, one iden-
tifies �n�t� with �n

t , the intuitive justification being that if
one perturbes the subsystem slowly and gently enough, it has
enough time to adapt itself to the new environment “with no
inertia” from the past configuration.
The error made in this approximation for a given state

�i�—the validity of the adiabatic approximation is assessed
for a given state of the subsystem, not necessarily for them
all—is defined as the probability of finding the subsystem in
a state different from the initial one evolved in time within
the “true” dynamics, �ij= �
� j

t�U�t���i
0��2. This error can be

written in a workable way as48

t = 12 ps t = 22 ps
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FIG. 8. �Color online� Current field at P=0 bar �top panels� and
5 bars �bottom panels� at time t=12 ps �left� and t=22 ps �right�.
In each panel, the larger the arrow, the larger the current.
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�ij�t� = � �

�� j�t� − �i�t��2

� j

t�
dHe

dt
��i

t��2. �7�

If �ij �1∀ i� j, the adiabatic approximation is justified. It is
usually understood that it breaks down when the levels get
very close or when they cross each other. Notice, however,
that this assumes that these states can be connected by the
evolved Hamiltonian. If a symmetry is dynamically con-
served �in our case, angular momentum and specular sym-
metry are�, then the adiabatic evolution of states with a given
quantum number associated to this symmetry is not per-
turbed by states with different values of this quantum num-
ber. Although sometimes ignored, this is a very reasonable
statement.
In the case of the 1�− state arising from the spherical 1P

manifold, the adiabatic approximation holds even when its
energy becomes almost identical to the energy of the 1�+

state arising from the spherical 1S one, i.e., a small 
 does
not invalidate the adiabatic approximation. The closest state
having the same angular momentum and specular symmetry
is the 2�− one arising from the spherical 1F manifold. At
P=5 bars, we have found that these two states are 2000 K
apart in the 10–20 ps range. Since ��7.6 K ps, one has
� / �E2�−−E1�−�2�2�10−6 ps K−1. The value of the matrix
element in Eq. �7� is some tens of kelvin per picosecond, so
that the adiabatic approximation would be fulfilled even for
the configuration displayed in Fig. 4 at 25 ps. Indeed, we
have calculated � in the above time range and have found
that it is on the order of 10−8.
It is also worth analyzing the stability of the quasiequilib-

rium configurations when the symmetries are not exactly
conserved because of perturbations from the environment. In
this situation, let us assume that when the bubble splits the
electron localizes in one of the lobes. Leaving out the dis-
cussion on the actual localization process, we have tried to
infer the likely evolution of an ebubble with a localized elec-
tron. The localized electron state in either baby bubble is
approximated by

�
 =
1
�2�1S 


1
�2�1P. �8�

Consider now a short-time dynamics in which the liquid is
kept frozen. The evolution of, e.g., the �+ localized state is
an oscillation between the two lobes

��t� = e−iE1St/��cos��t��+ − i sin��t��−� , �9�

where �= �E1P−E1S� /�. If this frequency is large enough,
the liquid cannot react to the localization of the electron in
either lobe and will essentially behave as if the electron were
delocalized.
The time elapsed between two consecutive localizations

of the electron in a given baby bubble is �=� /�. The value
of this period as a function of pressure for the quasiequilib-
rium configurations is displayed in Fig. 10. In the split-
bubble regime �P�9 bars�, this period is of several picosec-
ond, indicating that the electron-localization dynamics into
one of the baby bubbles is not a trivial process to address.

The electron will bounce back and forth as the liquid tries to
adapt to it. Real-time calculations are thus needed to describe
electron localization.
It is clear that the previous discussion on the validity of

the adiabatic evolution lacks for incorporating fluctuations or
excitations of low-energy modes that may appear in the
course of the bubble evolution and couple the 1P and 1S
states that otherwise are not, as previously discussed. One
such mode has been thoroughly addressed by Elser:27 a pea-
nut configuration, whose walls are impenetrable by the elec-
tron, is represented by two intersecting sharp spheres of ra-
dius R2 �instead of the deformed baby bubbles displayed in
Fig. 4� joined along a circular orifice of radius a. These
spheres are breathing in counterphase, producing an antisym-
metric mode whose stiffness K and inertia M can be ob-
tained analytically. This mode is very appealing, as it repre-
sents a small, swifting imbalance of the symmetric electron-
probability density.
In the harmonic limit, if a�R2, the stiffness and inertia of

the asymmetric mode are49

K = 16� E0
2

R2
2

+ ��� + R2P�� ,

M = 4��m4He�0R2
3. �10�

In these equations, E0=�R0
2�9 meV represents the energy

unit with �=2.36�10−2 meV Å−2 being the surface tension
of the liquid, R0�20 Å is the radius of the spherical bubble,
R2�16 Å is the radius of the baby bubbles, ��1.70 is a
dimensionless constant, and 
=E1P−E1S. The frequency of
the antisymmetric breathing mode is given by �AB=�K /M,
and the radius of the orifice is27
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FIG. 10. �Color online� Top: superposition of the 1S and 1P
states corresponding to the quasiequilibrium configuration at P
=9 bars to approximately localize the electron in one of the baby
bubbles. Bottom: tunneling period of a localized electron in one of
the lobes of the quasiequilibrium ebubble as a function of pressure.
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 =
4�

3
E0�R0

R2
�2� a

R2
�3. �11�

The adiabatic approximation fails when �AB�
 /�. This
yields 
�0.14 meV in the P=0–5 bars range, as only the
first term in the stiffness turns out to be relevant in this
regime. Thus, keeping only the first term in K, one gets50

a

R2
= �� 27

8�4�
�� me

mHe�0R0
3��R2

R0
��1/9

� 0.13. �12�

Hence, a�2.1 Å. Clearly, such analytical results cannot be
obtained within the DF approach, but we can use them to
determine whether the dynamic and static configurations
shown in Secs. II and III are reliable.
The adiabatic approximation thus holds at P=0 bar, as

the neck radius is fairly large, see Fig. 3, and 
 is always
much larger than 0.14 meV, see Fig. 5. From Fig. 4 we also
conclude that, at P=5 bars, the adiabatic approximation is
valid up to nearly the collapse of the waist. Indeed, the neck
radius of the helium configuration at about 17–18 ps is
�2 Å, see Fig. 4. It is worth noting the difficulty in defining
an effective radius for the orifice when the surface of the
bubble is diffuse; we recall that the surface thickness of a
4He drop of 103–104 atoms is some 6–8 Å.51 Note also that
the surface thickness of the helium bubble is rather indepen-
dent of the curvature of the surface, as can be inferred from
the fairly constant bright region around the bubbles dis-
played in Figs. 3 and 4.
Since we do not treat the bubble as impenetrable to the

excess electron, the relation between the actual 
 and a val-
ues should not exactly be as given by Eq. �11�. Using the
result ��AB�
=0.14 meV as a criterion for the applicabil-
ity of the adiabatic approximation instead of reaching the
limiting value a�2 Å, we find that the approximation holds
up to 21 ps, when the bubble has already split into two baby
bubbles. Both procedures indicate that when the adiabatic
approximation likely fails, the baby bubbles have already
developed.
The previous analysis leads us to conclude that, at high

pressures, baby bubbles are formed some tens of picosecond
after the starting of the collapse of the 1P bubble. From this
point on, the likely fate of the system is the localization of
the electron in one of the baby bubbles and the collapse of
the other. This process is helped/triggered by fluctuations
that break the specular symmetry of the ebubble configura-
tion. As mentioned, determining the time scale of electron
localization is beyond the capabilities of the adiabatic ap-
proximation. It has been calculated21 that once the electron is
localized, it takes to the superfluid some 20 ps to adapt to it
while the other baby bubble is absorbed.

V. SUMMARY

Within density-functional theory, we have carried out an
analysis of the adiabatic evolution of the excited electron
bubble in superfluid liquid 4He. We have found that for pres-

sures below 1 bar, the 1P ebubble may relax to its quasistatic
equilibrium configuration and decay radiatively to the de-
formed 1S state. This state evolves nonradiatively to the
spherical 1S bubble, completing the absorption/emission
cycle. This conclusion arises, in part, from studies carried out
for 100 ps using a less accurate functional,52 whose results
qualitatively agree with ours for the first tens of picosecond.
At higher pressures, the situation drastically changes and

the excited 1P bubble no longer decays to the quasistatic
equilibrium configuration, whose physical realization is un-
likely. Indeed, our analysis of the adiabatic approximation
indicates that it is valid up to a point where two deformed,
nearly disconnected baby bubbles appear in the dynamical
evolution, pointing toward a fission-like de-excitation pro-
cess, the likely subsequent evolution of the system being the
localization of the electron in one of the baby bubbles and
the collapse of the other. This collapse takes some 20 ps,21

and the whole de-excitation process is radiationless.
We have also found a marked change in the behavior of

the time-resolved absorption spectrum of the 1P bubble de-
pending on whether the bubble fissions or not, i.e., on the
liquid pressure. This change is, in principle, an experimen-
tally accessible observable whose determination may
complement the information obtained from cavitation and
photoconductivity experiments.
Our analysis of the collapse of the 2P bubble has shown

that the adiabatic approximation breaks down at an early
stage of the dynamical process due to the crossing of 2P and
1F states. Although disclosed by the adiabatic approxima-
tion, this crossing has nothing to do with the approximation
itself, but is inherent to the dynamics of the electron bubble.
From the crossing point on, the bubble will relax around a
mixed state with 2P and 1F components, and hence the
physical realization of a pure quasiequilibrium 2P configura-
tion is unlikely. It is very plausible that the same applies to
other high-energy nL ebubbles generated in the absorption
process. The possibility that some of them undergo a spon-
taneous symmetry breaking, as suggested by Grinfeld and
Kojima53 for the 2S state, can only reinforce our conclusion.
Obviously, this does not question the existence of either re-
laxed quasiequilibrium configurations at low pressures or of
baby bubbles at high pressures, arising from the evolution of
the spherical 2P bubble. It just means that, on the one hand,
the relaxed bubble will not be a pure 2P configuration and,
on the other hand, to study the de-excitation of these bubbles
one has to go beyond the adiabatic approximation and carry
out a more demanding real-time dynamics calculation for the
electron.
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3.2 Excited electron-bubble states in superfluid 4He: A
time-dependent density functional approach

Resumen (Spanish)

Presentamos un estudio sistemático de los diferentes estados excitados de las burbujas
electrónicas en 4He superfluido usando el método del funcional de la densidad dependiente
del tiempo. Para describir la evolución de las burbujas 1P hemos usado dos funcionales
distintos junto con dos esquemas diferentes de evolución temporal: un funcional preciso
de rango finito para el helio con una aproximación adiabática para el electrón, y un
funcional eficiente de rango cero para el helio con una evolución en tiempo real para el
electrón. Una comparación detallada entre los resultados obtenidos con cada método nos
permite seleccionar el más idóneo para cada problema.

Con este conocimiento previo, hemos aplicado el funcional de rango finito al cálculo del
espectro de absorción de las burbujas 1P resuelto temporalmente, en principio accesible
experimentalmente con la tecnoloǵıa actual. También hemos usado el funcional de rango
cero para calcular la evolución en tiempo real de la burbuja 2P durante unos cientos de
picosegundos, que presenta interés a nivel teórico debido a la pérdida de adiabaticidad de
este estado. Nuestros resultados permiten descartar la existencia de burbujas metaestables
relajadas entorno de estados excitados por encima del 1P, invalidando por no ser f́ısicos
estudios previos de estos estados llevados a cabo con métodos estáticos.
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We present a systematic study on the excited electron-bubble states in superfluid 4He using a time-
dependent density functional approach. For the evolution of the 1P bubble state, two different func-
tionals accompanied with two different time-development schemes are used, namely an accurate
finite-range functional for helium with an adiabatic approximation for electron versus an efficient
zero-range functional for helium with a real-time evolution for electron. We make a detailed com-
parison between the quantitative results obtained from the two methods, which allow us to employ
with confidence the optimal method for suitable problems. Based on this knowledge, we use the
finite-range functional to calculate the time-resolved absorption spectrum of the 1P bubble, which in
principle can be experimentally determined, and we use the zero-range functional to real-time evolve
the 2P bubble for several hundreds of picoseconds, which is theoretically interesting due to the break
down of adiabaticity for this state. Our results discard the physical realization of relaxed, metastable
configurations above the 1P state. © 2011 American Institute of Physics. [doi:10.1063/1.3544216]

I. INTRODUCTION

Electron bubble (e-bubble) in liquid helium has been
an attractive topic for numerous experimental and theoreti-
cal studies in the past, and it has drawn again some inter-
est in recent years.1–11 Density functional (DF) theory has
proved to be a powerful tool in dealing with many interest-
ing physical situations involving electron bubbles. When it is
applied to optically excited e-bubbles, not only can it achieve
quantitative agreement with experiments on the absorption
spectra,1, 3, 12, 13 but it can also nicely display the dynamical
evolutions on the picosecond time scale, such as how the bub-
bles change shapes, release energy, or even break into smaller
bubbles.14,15 These latest works likely require using differ-
ent density functionals (finite-range or zero-range for liquid
helium) in different time-development schemes (adiabatic or
real-time evolutions for electron). Regardless of the technical
details, the time-dependent density functional approach is no
doubt the only workable approach at present for studying the
evolution of the excited e-bubble states in liquid helium. The
quantitative results drawn from these simulations can be use-
ful to interpret the experimental results and predict new ones.

Upon dipole excitation from the 1S ground state to the
1P or 2P excited state, an e-bubble evolves by relaxing its
shape around the excited electron probability density. This re-
laxation eventually drives the e-bubble back to the spherical
1S ground state. It has been quantitatively shown15 that de-
pending on the pressure (P) applied to the liquid, this may
happen in two different ways. At a pressure below about 1
bar, the e-bubble undergoes damped oscillations for a period
of time long enough to allow the electron to radiatively decay
to the deformed 1S state, which then evolves radiationlessly
to the spherical 1S state. In contrast, at 1 bar or above, the
excited e-bubble evolves toward a configuration made of two
baby bubbles, so that the probability of finding the electron

evenly distributes between them. This two-bubble configura-
tion is unstable against asymmetric perturbations, and one ex-
pects this instability to cause the electron to localize in one of
the baby bubbles while the other collapses.12, 15, 16

When doing this calculation, the authors of Ref. 15 nat-
urally chose the so-called Orsay–Trento DF.17 This func-
tional is finite range and incorporates a term that mimics
backflow effects in order to accurately reproduce the disper-
sion relation of the elementary excitations of superfluid 4He.
This is instrumental to properly describe the energy trans-
fer from the bubble to the liquid that proceeds by causing
all sorts of possible excitations in the superfluid. The token
one has to pay for its use is the very high computational cost.
Due to the large difference between the intrinsic time scales
of electron and helium, this functional is not well adapted
for fully real-time, three-dimensional evolutions. Consider-
ing this limitation, the adiabatic approximation was used to
update the electron wavefunction at every instantaneous he-
lium configuration.15 One of the main concerns is then to es-
tablish how long the adiabatic approximation is valid for. A
careful analysis led to the conclusion that it holds for the 1P
e-bubble for at least several tens of picoseconds,15 a period
of time large enough to guarantee the reliability of the results
obtained for this state. Contrarily, the adiabatic approxima-
tion breaks down very quickly for the 2P e-bubble, implying
that the existence of relaxed quasiequilibrium 2P bubbles is
questionable.

The authors of Ref. 14 followed a different path. In-
stead of using a finite-range DF, they employed a much sim-
pler zero-range one. This allowed them to carry out fully
real-time calculations for hundreds of picoseconds without
imposing any adiabatic assumption, at the price of an inac-
curate description of the elementary excitations of the liq-
uid. Although this may not qualitatively affect the physical
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FIG. 1. Dispersion relation of the elementary excitation in bulk liquid 4He
at T = 0. Solid line: the OT finite-range functional results. Dashed line: the
ST zero-range functional results. Dots: the experimental data from Ref. 22.

results, it is unclear how quantitatively reliable are the results
so obtained.

In this work, we perform a more systematic study on
the relaxation of the excited e-bubbles. We first carry out a
detailed comparison between the finite-range and zero-range
functionals applied to the 1P bubble problem, through which
we gain some insight about their strong points and shortcom-
ings. We then use the finite-range functional to calculate the
time-resolved absorption spectrum of the 1P bubble, which
can in principle be measured in the experiments. Next, we use
the zero-range functional to real-time evolve the 2P bubble
for several hundreds of picoseconds, which is of theoretical
interest as one can clearly trace how the adiabatic approxi-
mation breaks down for this state. These investigations gen-
eralize and complement those presented in Ref. 15 within the
adiabatic approximation.

Our paper is organized as follows. In Sec. II, we intro-
duce the theoretical framework and numerical schemes. In
Sec. III, we discuss the results so obtained. Finally, a sum-
mary is presented in Sec. IV. Several movies showing the
dynamical evolution of electron bubbles can be found in the
supplementary material.18

II. THEORETICAL FRAMEWORK

Within the DF approach, the energy of an electron–
helium system at zero temperature can be written as a func-
tional of the single-electron wavefunction � and the macro-
scopic helium wavefunction �

E[�,�] = ¯2
2me

∫
d r |∇�|2 + ¯2

2mHe

∫
d r |∇�|2

+
∫
d r |�|2 Ve−He[ρ]+

∫
d r EHe−He[ρ]. (1)

Specifically, � = √
ρ exp[ı S] gives the helium particle den-

sity ρ and the superfluid velocity v = ¯∇S/mHe.15 Ve−He[ρ]
is the electron–helium interaction potential,19 and EHe−He[ρ]
is the helium–helium potential energy density. For the sake of
comparison, we choose for EHe−He[ρ] either the finite-range
Orsay–Trento (OT) density functional,17 or the zero-range
Stringari–Treiner (ST) density functional.20 It is known that
the former one provides a very accurate description of super-
fluid 4He, particularly of the dispersion relation that covers all

the roton excitations up to the wave number q = 2.3 Å−1. In
contrast, the latter one only reproduces the long-wavelength
phonon excitations and is not so accurate, but it has the advan-
tage of high computational efficiency in dynamic evolutions.
The dispersion relations obtained from both functionals using
the method of Ref. 21 are plotted in Fig. 1 together with the
experimental results.22

Functional variations of the associated grand potential
with respect to � and � yield the following Euler–Lagrange
equation for the helium and Schrödinger equation for the
electron:

− ¯2
2mHe

�� +
{

δEHe−He[ρ]
δρ

+ |�|2 δVe−He[ρ]
δρ

}
� = μ�

(2)

− ¯2
2me

�� + Ve−He[ρ]� = ε� , (3)

where μ is the helium chemical potential and ε is the elec-
tron eigenenergy. Throughout this paper, we treat pressure as
a given external condition. The associated chemical potential
and particle density in bulk liquid are obtained from the equa-
tion of state derived from the DF being used.

The above equations are solved numerically with 13-
point finite-difference formulae. In the finite-range DF case,
we work in three-dimensional Cartesian coordinates that
allow for an extensive use of fast Fourier transformation
techniques23 as explained in Ref. 5. Whenever necessary,
we implement a Gram–Schmidt scheme to determine from
Eq. (3) the electron spectrum in the helium cavity. In the
zero-range DF case, we work in cylindrical coordinates as-
suming azimuthal symmetry around the z-axis (r = 0) and
specular symmetry about the z = 0 plane. Hence, we only
need to solve the equations in the r ≥ 0 and z ≥ 0 “quadrant,”
which greatly speeds up the calculation and so we can attain
longer-time physics. There is no difficulty to relax these sym-
metry restrictions except slowing down the calculation. How-
ever, the results are not expected to be very different since
there is no detectable symmetry-breaking instability in our
problems. For both functionals we use a fairly large spatial
step of about 1 Å, without any apparent loss of numerical
accuracy.15

The time evolution starts from an excited e-bubble state,
which means that the electron has been suddenly brought
from the 1S onto the 1P or 2P state of the original spherical e-
bubble. From this initial configuration, the superfluid helium
then evolves according to

∂�

∂t
= − ı¯

{
− ¯2
2mHe

� − μ + UHe−He[ρ, v]

+|�|2 δVe−He[ρ]
δρ

}
�, (4)

where the detailed form of the effective potential UHe−He[ρ, v]
can be found, e.g., in Refs. 24 and 25.

In the adiabatic approximation scheme, we do not evolve
the electron in real-time but keep tracing the instantaneous
eigenstates satisfying Eq. (3). In most cases, e-bubbles around
excited electron states evolve toward configurations that are
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FIG. 2. Splitting of electronic levels along with a representation of their
probability densities once the spherical symmetry is broken. The states in
the spherical configuration (left) are labeled in the standard nL way. In the
axially symmetric case (right) the label is nlsz , where s = +(−) stands for
symmetric (antisymmetric) states under specular reflection.

not spherically but axially symmetric. The originally degen-
erate angular momentum electron eigenstates in the spheri-
cal bubble now split according to the projection (m-values)
on the symmetry z-axis, among which only the ±m states
are still degenerate with each other. It is thus convenient to
use the notation for the orbital angular momentum of single
particle states in linear molecules, i.e., σ, π, δ, φ, . . . for |m|
= 0, 1, 2, 3, . . . In addition to the axial symmetry, a nP bub-
ble also keeps the original specular symmetry in the course
of its evolution. Hence, one can construct the electron eigen-
basis in such a way that the electron wavefunctions satisfy
�(r, z, θ ) = ±�(r,−z, θ ). The correspondence between the
lower lying spherically and axially symmetric electron states
is displayed in Fig. 2 along with a representation of their
probability densities. The superscript + (−) denotes specu-
larly symmetric (antisymmetric) states.

In the real-time dynamics scheme, the electron evolves
according to

∂�

∂t
= − ı¯

{
− ¯2
2me

� + Ve−He[ρ]
}

� . (5)

We employ a fourth-order Runge–Kutta method to obtain
the first time steps, and Hamming’s method26 for subsequent
steps. A time step of 10−2 ps is chosen for the adiabatic
scheme, and of 10−6 ps for the real-time dynamics scheme.
These very different values reflect the mass ratio me/mHe
∼ 10−4. This is the reason that makes a dynamical evolution
unaffordable when EHe−He[ρ] is finite-range, since updating
the mean field is computationally very costly. Note that the
original 1P and 2P levels are threefold degenerate, and that
any of the substates (or a superposition of them) can be cho-
sen as the initial state of the electron to start the evolution of
the e-bubble. This choice influences the subsequent evolution
because |�|2 in Eq. (4) depends on it. We have chosen to ini-
tially place the 1P (2P) electron in the 1σ−(3σ−) eigenstate
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FIG. 3. Evolution of the 1P e-bubble at P = 0 bar. The left-hand side of
each panel shows the results for the OT finite-range density functional plus
adiabatic approximation for the electron. The right-hand side part of each
panel shows the results for the ST zero-range density functional plus real-
time evolution for the electron.

because, since the m states are ordered in increasing |m| val-
ues when the spherical nL manifold splits,10 the dynamics of a
m �= 0 electron state can be destabilized by small fluctuations
at an early stage of its evolution.

During the bubble evolution, sound waves released from
its surface eventually reach the cell boundary. If no action is
taken, they will bounce back spoiling the calculation. A way
to handle this problem is to include some source of damping
into Eq. (4) governing the fluid evolution, see e.g., Refs. 1,27,
and 28. We have opted by making the replacement ı −→ ı
+ 
(r) in Eq. (4). This corresponds to a rotation of time axis
in the complex plane by introducing a damping field 
(r),
which takes the form29


(r) = 
0

[
1+ tanh

(
s − s0
a

)]
, s ≡ |r| . (6)

We keep the dimensionless parameter 
0 � 1.6, and set
a = 5 Å, s0 = 60 Å in the finite-range calculation, and a = 8
Å, s0 = 90 Å in the zero-range calculation. The evolution is
damping-free [
(r) � 1] in a sphere of radius s < s0 − 2a,
which is 50 Å in the finite-range case and 70 Å in the zero-
range case. From Figs. 3–6 and the supplementary material18

one can see that this region is large enough for the 1P e-bubble
to expand inside a nondampening environment. For the 2P e-
bubble evolution, we use a (r, z) calculation box of 150× 150
Å2 and s0 = 120 Å, leaving ∼ 100 Å of nondampening space
for the bubble to expand.

The above prescription works extremely well, as it
efficiently dampens the excitations of the macroscopic
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(Å

)
-40

-20

0

20

40

-40

-20

0

20

40

-40 -20 0 20 40

t=0 ps 25 ps

50 ps

200 ps

100 ps

300 ps

FIG. 4. Same as Fig. 3 at P = 0.5 bar.

wavefunction at the cell boundaries, and does not need a large
buffer region to absorb the waves—actually we use the same
box where the starting static calculations have been carried
out.14 It allows us to extend the adiabatic calculations of
Ref. 15 from tens to hundreds of picoseconds.

III. RESULTS AND DISCUSSION

A. 1P e-bubble dynamics

1. Adiabatic versus real-time dynamical evolution

To some extent, an e-bubble in liquid helium is nearly
a textbook example of an electron confined in a spherical-
square-well potential. Its static properties are fairly insensi-
tive to the complexities of the chosen functional provided the
bulk and surface properties can be well reproduced.12,13 In
particular, a zero-range DF description of the 1S–1P absorp-
tion energies of the e-bubble as a function of P does not dif-
fer much from that obtained by a finite-range DF description.3

This means that in some situations one may simply use a zero-
range functional, which has an advantage of high computa-
tional speed.

Clearly, the dynamics of an e-bubble is much more in-
volved than its statics. In our problems, the—nonspherical—
squeezing and stretching of the bubble may cause its waist
to shrink to a point when electron tunneling plays a role, and
may also dissipate a large amount of energy by exciting ele-
mentary modes in the surrounding liquid. So, even if the static
properties of the e-bubble are equally well described by both
functionals, it is not obvious whether they yield a similar dy-
namical evolution for an excited e-bubble. This is the first is-
sue we want to address.
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FIG. 5. Same as Fig. 3 at P = 1 bar.

We use two different schemes to compute the relaxation
of a 1P e-bubble at P = 0, 0.5, 1, and 5 bars, and compare the
results so obtained. One such scheme is the finite-range OT
density functional description for helium with the adiabatic
evolution for electron. The other scheme is the zero-range ST
density functional description for helium with real-time evo-
lution for the electron.

As can be seen in Figs. 3–6, the evolution starts with the
bubble stretching along the z-axis and shrinking on its waist.
After this stage, the bubble may continue oscillating and re-
leasing energy into the liquid, eventually reaching a relaxed,
metastable 1P state, or may split into two baby bubbles due
to the liquid filling-in around the bubble waist. The density
waves radiated to the liquid during this evolution take away a
considerable part of the energy injected into the system dur-
ing the absorption process, i.e., 105 meV at P = 0 and 148
meV at 5 bar.3

In Figs. 3–6 we compare the bubble evolution obtained
within the two frameworks for different pressures. At a first
glance, both dynamics are nearly equivalent during the first
50 ps, starting to differ from this time on although they are
still qualitatively similar. A more detailed analysis, focused
on three key elements of the density profiles, indicates the
following:

(a). The shape of the bubble surface, defined as the lo-
cus where the liquid density equals half the saturation density
value ρ0, e.g., 0.0218 Å−3 at P = 0 bar. This shape deter-
mines the most crucial properties of an e-bubble. From this
shape, we know whether the bubble is simply connected or
has split. Up to t � 50 ps, the shape of the bubble is nearly
identical in both descriptions. At later times, the bubble shape
changes at a slower pace in the ST than in the OT description.
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Figure 7 illustrates the time evolution of the bubble sur-
face. In particular, the top panel shows the evolution of the
point on the bubble surface at r = 0 with z > 0. This repre-
sents half the longitudinal extent of the e-bubble. One can see
that this length oscillates in the ST calculation with a lower
frequency than in the OT one. Notice that superfluidity is in-
strumental to keep the bubble surface oscillating without ap-
preciable dampening (yet some energy is still released to the
liquid). If helium were in the normal state, these oscillations
would be washed out more quickly due to viscosity effects,
likely raising the pressure threshold at which the bubble splits.
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FIG. 7. Evolution of the extent of the bubble along the z-axis at P = 0 and
1 bar. The solid line is the OT finite-range result, and the dashed line is the
ST zero-range result.

If the bubble symmetrically splits into two baby bub-
bles, there are two such points, as can be seen in the bot-
tom panel for P = 1 bar. We have found that, besides the
moment at which the distance between the baby bubbles in-
creases steadily—about 175 ps for the OT functional and 200
ps for ST functional—there is a time interval between ∼60
and ∼90 ps for the OT functional, and ∼60 and ∼110 for the
ST functional, where the 1P bubble at P = 1 bar has split
but the emerging baby bubbles are “locked” by the shared
electron that exerts some attractive force on them, forcing
them back to a simply connected configuration. Eventually,
the baby bubbles are unlocked and the distance between them
grows.

(b). The surface thickness of the bubble, defined as the
width of the region satisfying 0.1ρ0 ≤ ρ(r) ≤ 0.9ρ0. The
thickness of the bubble surface has been found to be nearly
independent of the local surface curvature at anytime during
the evolution, see also Ref. 15. It is about 1 Å larger in the
ST than in the OT description,17,30 as can be seen in Figs. 3–6
(the blurrier the bubble–helium interface, the larger the sur-
face thickness). The zero temperature OT result, about 6 Å, is
in agreement with the experimental findings.31,32

(c). The density oscillations traveling through the liquid.
This is the point at which the differences between the two
functionals become more apparent. The density waves pro-
duced by the ST functional have much larger wavelengths
because this approach cannot sustain short wavelength inho-
mogeneities due to the huge energy cost from the |∇ρ(r)|2
surface energy term. The OT functional has not such a term
and is free from this drawback. Roughly speaking, the short
wavelength waves arising in the OT approach are smeared out
in a sort of big tsunami in the ST case, see for instance the
panels corresponding to t = 5 and 10 ps in Fig. 6. It is worth
emphasizing that the wave interference pattern found in the
OT description is not an artifact produced by waves bouncing
back from the box boundaries, as those are already washed
out by the damping term. It arises from the interference of
waves produced at different points on the e-bubble surface.

We estimated in Ref. 15 that the first wave front was
moving at supersonic velocities, about 330 m/s at P = 0 and
410 m/s at P = 5 bar. This rises the interesting question of
whether shock waves33 are generated by the displacement of
the surface of the bubble. As a matter of fact, a shock wave
was launched in the spherical expansion of a highly com-
pressed electron bubble.1 This wave travelled at supersonic
velocities (560 m/s), while the subsequent fronts moved at
the speed of sound, some 240 m/s. The analysis carried out
by these authors was facilitated by the spherical geometry
of the expansion that allowed them to use a very large box
for this one-dimensional problem. In our case, the problem
is three-dimensional, the wave fronts have a more complex
structure and our numerical scheme does not allow to confirm
nor discard the appearance of shock waves in the superfluid.
In particular, it does not allow us to distinguish between a very
distorted density profile, like that we have shown in Fig. 6 of
Ref. 15, and a discontinuity in the density and pressure profile
characterizing shock waves.33 Since there is no reason to be-
lieve that geometry plays any fundamental role, we are prone
to suggest that when the energy released to the liquid is large
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FIG. 8. Fourier transform of the density fluctuation along the z-axis within
the region 30 Å ≤ z ≤ 70 Å for the expansion process of the 1P e-bubble at
P = 0 bar and t = 8.5 ps. The solid line corresponds to the OT calculation,
and the dashed line corresponds to the ST functional calculation. The lines
have been drawn as a guide to the eye.

enough, as in the 1P to 1S de-excitation at high pressures, or
in the 2P to 1S de-excitation, the first launched front is indeed
a shock wave.

To quantitatively study the nature of the waves emitted
during the bubble evolution, we perform a Fourier analysis
of the density profile along the symmetry axis, restricting
it to the region 30 Å ≤ z ≤ 70 Å, away from the bubble
location to avoid uncontrolled effects arising from the bub-
ble itself. The Fourier transform of the density fluctuation is
shown in Fig. 8 at t = 8.5 ps and P = 0 bar. While both func-
tionals generate low-q density waves in the phonon region
(see Fig. 1) the ST approach does not display any structure,
whereas in the OT approach one can identify two distinct
peaks. The higher one is located at q ∼ 0.8 Å−1 near the
maxon region, and the lower one is located at q ∼ 2.3 Å−1

close to the roton minimum.
With these results on the evolution of the 1P e-bubble in

mind, we can state with some confidence that the ST descrip-
tion is accurate enough for describing the fate of the e-bubble,
yielding the appropriate final topology at a given pressure, and
a more than qualitative picture of its evolution. The shape of
the cavity, which is responsible for most electron properties, is
essentially the same in both ST and OT descriptions. The dif-
ferent way of energy release associated with their each kind of
elementary excitation may yield somewhat diverse evolutions
at longer times, but it has little relevance for the problems at
hand. One should keep in mind, however, that if the actual
subject of the study are the elementary excitations of the bulk
liquid, the use of the OT functional is then unavoidable.

We also want to stress that computing the 1P e-bubble
dynamics in real time for the ST functional has allowed us to
explicitly check the adiabatic approximation in the electron
evolution during the time interval relevant for the e-bubble
“fission.”15 We have computed the overlap between the time-
evolving electron wave function and the instantaneous eigen-
state 1σ−, and have found it to be equal to unity at all times,
meaning that the adiabatic approximation holds. As we will
discuss later on, this is not the case for the 2P e-bubble.

2. Time-resolved absorption spectrum

Within the OT functional plus adiabatic approximation
scheme, we have studied the excitation of 1P bubbles by
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FIG. 9. Time-resolved absorption energies at P = 0.5 and 1 bar for the 1P
e-bubble evolution. The thin vertical line at t = 170 ps indicates the time at
which the bubble splits in the P = 1 bar case.

photoabsorption either to the m = 0 component (2σ+), or to
the m = ±1 components (1π−), arising from the splitting of
the originally spherical 1D state, see Fig. 2. In principle, this
can be measured in a pump-probe experiment by which the e-
bubble is excited by two consecutive laser pulses. The delay
set between these pulses corresponds to the time interval be-
tween the excitation and the measurement, which is the same
as the time defined in our calculations. The intensity of the ab-
sorption lines is characterized here by their oscillator strength
calculated in the dipole approximation34

fab = 2me
3¯2 (Ea − Eb)

∣∣〈a|r|b〉∣∣2 . (7)

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0

O
sc

il
la

to
r

S
tr

en
gt

h

0 50 100 150 200 250

P = 1 bar

P = 0.5 bar

time (ps)

1σ−→ 2σ+

1σ−→ 1π−

FIG. 10. Time-resolved absorption oscillator strengths at P = 0.5 and 1 bar
for the 1P e-bubble evolution. The thin vertical line at t = 170 ps indicates
the time at which the bubble splits at P = 1 bar.
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We recall that this oscillator strength fulfills the sum rule∑
a fab = 1, but is generally not positive definite. If the initial

state is not the ground state, a partial sum may be greater than
unity.

Starting from the 1P electron state 1σ− (m = 0), the
two possible photoexcitation transitions are 1σ− → 2σ+ and
1σ− → 1π−, see Fig. 2. The specularly asymmetric states
have a nodal point on the z = 0 symmetry plane implying
that they are rather insensitive to the presence of helium in that
plane. Therefore, the transition energy for excitations between
two asymmetric states should not depend much on whether
the bubble has split or not. Contrarily, the specularly symmet-
ric states do not have such a nodal point, and so are more
sensitive to splitting. The lowest-lying transition connecting
specularly asymmetric with specularly symmetric states may
thus probe the topology of the bubble, since the absorption en-
ergy for this transition should increase by a sizeable amount
when the bubble splits. The level structure at the right part of
Fig. 2 may help understanding these issues.

The time-resolved absorption energies and oscillator
strengths of the evolving 1P bubble for P = 0.5 and 1 bar are
presented in Figs. 9 and 10. As shown by our calculations, the
1P bubble does not split for P = 0.5 bar, but it does for P = 1
bar at t � 170 ps. The bubble splitting yields a clear signa-
ture in the energies and the oscillator strengths: the evolution
of the transition energies is similar for P = 0.5 and 1 bar be-
fore the splitting, but when the bubble splits at P = 1 bar, the
1σ− → 2σ+ energy rapidly increases by ∼ 70 meV, becom-
ing comparable to the 1σ− → 1π− energy. This is a conse-
quence of the change in the bubble topology, which makes the
final symmetric and antisymmetric states nearly degenerate.

A conspicuous pattern also appears in the evolution of the
oscillator strength. The strength for the specularly asymmetric
transition 1σ− → 1π− remains nearly constant at f ∼ 0.65,
whereas the strength for the specularly symmetric transition
1σ− → 2σ+ oscillates when the bubble is simply connected
but falls down to f ∼ 0.32 when the bubble splits. This is
again a consequence of the near degeneracy of symmetric
and asymmetric states in the split-bubble regime. The oscil-
lator strength for the antisymmetric transition is a factor of 2
larger than that of the symmetric transition in the split-bubble
regime because the final state 1π− is twofold degenerate.35

We thus conclude that time-resolved absorption energies
are of practical interest because they bring rich information on
the bubble shape and can be determined in experiments. This
may shed light on the longstanding question about whether
1P e-bubbles under pressure do really “fission” into two baby
bubbles as our calculations indicate, and how the electron
wavefunction collapses into one of them, without violating
the quantum measurement axiom.

B. 2P e-bubble dynamics: the breakdown
of adiabaticity

Our previous analysis of the dynamics of the 1P e-bubble
has shown that one does not need to use the accurate OT func-
tional to describe this process. The much simpler ST approach
already yields a fair description. This is particularly useful
when we move to the study of the 2P e-bubble dynamics. An
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FIG. 11. Evolution of the 2P e-bubble at P = 0 bar using real-time dynamics
and the ST zero-range functional.

attempt to simulate this evolution has been made within the
OT approach and the adiabatic approximation.15 This could
only be performed for a few picoseconds, as it was shown that
the adiabatic approximation fails at t � 7.4 ps. This failure is
due to the approaching of the 3σ− (arising from the spherical
2P level) and 2σ− (arising from the spherical 1F level) energy
levels. By using the efficient real-time ST scheme, we now
relax the adiabatic approximation, following the evolution of
the 2P e-bubble for several hundreds of picoseconds. We keep
referring to this bubble as a “2P e-bubble,” but should have in
mind that once the adiabatic approximation breaks down, the
electron is no longer in the original eigenstate. Generally, it is
in a superposition of states that have the same quantum num-
bers as the initial state, here meaning that it can be in any
superposition of σ− states.

The 2P bubble evolution is shown in Fig. 11. For the
first 100 ps, the shape evolution of the 2P bubble is similar
to that of the 1P bubble, as it expands along the symmetry z-
axis while its waist shrinks in the perpendicular plane. From
this point on, the bubble oscillates back and forth in a kind
of four-lobe shapes quite different from those seen in the 1P
bubble. We attribute these conspicuous shape variations to the
breaking down of the adiabatic approximation as the electron
moves from a eigenstate to a nontrivial superposition of those
compatible with the symmetries of the system. After evolving
for ∼325 ps, the 2P bubble splits into two baby bubbles.

We present in Fig. 12(a) the evolution of the instanta-
neous eigenenergies of the first σ− states. As can be seen
in panel (b), the 2σ− and 3σ− states nearly meet at t � 7.4
ps. In agreement with some well-known results from basic
quantum mechanics,36 we have found that this situation corre-
sponds to an avoided crossing. Panel (c) shows the overlap of
the evolving electron wavefunction with the relevant instan-
taneous eigenstates. The electron is initially in a 3σ− state
(the overlap is unity), but at the point of avoided crossing the
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FIG. 12. (a): Lower-lying instantaneous σ− eigenstates together with the
1σ+ eigenstate of the 2P e-bubble at P = 0 bar as a function of time. The
thin vertical line at t = 325 ps indicates the time at which the bubble splits.
(b) Enlarged view of the region where the 3σ− and 2σ− states repel each
other. (c) Overlap of the time-evolving electron state onto the 3σ− (solid
line) and 2σ− eigenstates (dashed line), |〈�(r, t)|nσ−〉|2. The adiabatic ap-
proximation fails if the value of this overlap varies in time.

adiabaticity is lost: the electron state is a superposition of the
2σ− (∼ 80%) and 3σ− (∼ 20%) states.

We have also found a time interval between ∼155 and
∼180 ps when the 2P bubble at P = 0 bar has split but the
emerging baby bubbles do not go away. When this happens,
the nσ− and nσ+ states should be degenerate. This is illus-
trated in panel (a) of Fig. 12 for the n = 1 states. Notice from
Fig. 11 that in the 50 ps � t � 100 ps interval the bubble is
simply connected and the apparent degeneracy displayed in
Fig. 12(c) is due to the energy scale. The same thing happens
around t ∼ 230 ps.

IV. SUMMARY

We have thoroughly studied the dynamical evolution of
1P and 2P excited electron bubbles in superfluid 4He at zero
temperature. To this end, we have resorted to zero- and finite-
range density functionals, establishing how reliable the for-
mer is by comparing its results with those obtained with the
latter.

Although the results obtained for the 1P bubble evo-
lution from these two functionals show some quantitative
differences, especially for long-time evolutions, they are qual-
itatively equivalent. In particular, both lead to the conclusion
that 1P bubbles “fission” at pressures above 1 bar. The ST
functional result is of particular relevance, as it has been ob-
tained by a real-time evolution, without assuming the adi-
abaticity of the process. This confirms the previous results
obtained using the finite-range OT functional and the adia-
batic approximation for much shorter periods of time than in
the present work.15

Some indirect experimental evidence indicates a change
in the de-excitation behavior of the 1P e-bubble as pressure
increases.12,16 We have explored here the possibilities offered
by the photoabsorption spectrum of the 1P e-bubble to dis-
close whether such a bubble de-excites by “fission” or by a
more conventional radiative decay, and have obtained the sig-
natures that would help distinguish between both decay chan-
nels. Although far from trivial, a pump-probe experiment may
detect a change in the absorption spectrum of the 1P bubble
associated with the appearance of the two baby bubble de-
excitation channel.

Finally, we have studied the evolution of the 2P e-bubble
in real-time within the ST functional approach. We have dy-
namically found that the adiabatic approximation does not
hold at any positive pressure confirming the results obtained
within the OT plus adiabatic approximation approach.15 Neg-
ative pressures, as those attained in cavitation experiments,
have not been studied. The physical realization of a relaxed,
metastable 2P configuration is discarded.
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3.3 Translational dynamics of photoexcited atoms in 4He
nanodroplets: The case of silver

Resumen (Spanish)

La dinámica de translación seguida por átomos de plata en nanogotas de 4He tras las
transiciones 5p 2P1/2 ← 5s2S1/2 y 5p 2P3/2 ← 5s2S1/2 se ha investigado en una colabora-
ción teórico-experimental. Experimentalmente, se ha observado que los átomos de Ag
son expulsados tras la excitación al estado 2P1/2 con una distribución de velocidades
cuyo máximo se encuentra hacia los 55 m/s. Cuando la plata se excita al estado 2P3/2

se encuentra una rica fenomenoloǵıa: unas veces la impureza permanece solvatada y las
veces que es expulsada lo hace o bien en forma de átomo de Ag o bien como exciplex de
AgHe con una distribución de velocidad similar (aunque no idéntica) a la del estado 2P1/2.

Analizamos estos resultados mediante un esquema del funcional de la densidad
tridimensional dependiente del tiempo. La dinámica del complejo Ag-4He1000 se ha
seguido durante varias decenas de picosegundos, tiempo suficiente para observar la
formación en tiempo real de exciplexes en la gota y la expulsión de los átomos de Ag de
la misma.
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The dynamics following the photoexcitation of Ag atoms in 4He nanodroplets via the 5p 2P1/2 ←
5s2S1/2 and 5p 2P3/2 ← 5s2S1/2 transitions has been investigated in a joint experimental and the-

oretical effort. It has been experimentally found that upon excitation to the 2P1/2 state, the Ag
atoms are ejected with a speed distribution peaking at about 55 m/s. When Ag is excited to the
2P3/2 state, a rich phenomenology is found. While a fraction of the impurities remains solvated, the
impurities that are ejected from the droplets either as Ag or AgHe have speed distributions similar,
but not identical, to those found for excitation to the 2P1/2 state. The experiment findings are
qualitatively analyzed within a three-dimensional, time-dependent density functional approach for
the helium droplet. The dynamics of the Ag-4He1000 system has been followed for several tens of
picoseconds, long enough to observe AgHe exciplex formation and the departure of the photoexcited
Ag atom from the helium droplet.

PACS numbers: 36.40.-c, 32.30.Jc, 78.40.-q, 67.25.-k

I. INTRODUCTION

The effect of the strong perturbations induced by elec-
tronic excitation of impurities in helium droplets is a sub-
ject of growing interest.1–3 This is motivated by the idea
that insight into the dynamical evolution of an electron-
ically excited impurity in helium droplets is a first step
towards a better understanding of chemical reactions in
this quantum environment. With this goal in mind, we
have recently undertaken a joint experimental and theo-
retical study of the desorption of alkali atoms from the
surface of 4He nanodroplets following excitation via the
(n+1)s ← ns transition.4 The subsequent dynamical evo-
lution of both the excited impurity and helium droplet
was followed within a time-dependent density-functional
(TDDF) approach. This has allowed us to characterize
the physical observables and successfully compare them
with experiment. Moreover, the calculations have dis-
closed the dramatic effect that the excitation of the im-
purity causes on the hosting droplet, generating density
waves that propagate at supersonic velocities.4

The aim of the present work is to extend this work and
gain insight into the dynamics of photoexcited atoms re-
siding in the bulk of helium droplets. Silver atoms are
especially appealing as probe for such studies. The spec-
troscopy and the photoinduced dynamics of silver atoms
in both liquid helium and in helium droplets has been
thoroughly investigated by a wide variety of experimental
techniques.5–10 The system has also been addressed the-
oretically. The solvation structure and absorption spec-
trum of a silver impurity in helium droplets have been
calculated using methods and interaction potentials of
different complexity and accuracy.11–13 In addition, the
photoexcitation dynamics of a silver atom embedded in

a 4He200 cluster has been simulated up to 2.5 ps using a
quantum molecular dynamics approach.11

These studies have revealed that the dynamical pro-
cesses induced by the photoexcitation of the solvated sil-
ver atom are very complex and depend strongly on the
character of the excited state. In the experiments involv-
ing helium droplets, it was found that the excited silver
atoms are ejected from the helium droplets.9,10 The un-
derlying mechanism is not exactly known, but is expected
to be related to the repulsive interaction between the ex-
cited silver atom and the helium at long-range. It has
been speculated that as a result the excited silver atom
is transported towards the surface of the helium droplet
from which it then desorbs.9 If correct, this mechanism
allows to probe the translational dynamics of the excited
silver atoms in helium and test for the possible existence
of a critical velocity in helium droplets. In the current
work we analyze the velocity distributions of the ejected
silver atoms and compare them qualitatively with the
results of simulations. Besides providing insight into the
translational dynamics, the simulations also allow to have
a first glimpse at exciplex formation. The underlying
TDDFT-based model, which explicitly takes into account
spin-orbit interactions in order to describe non-radiative
transitions between excited 2P states, is widely appli-
cable. While here it is used to describe the dynamical
evolution of the Ag@4HeN complex after dipole excita-
tion, the method can be readily adapted to other dopants
and/or excitations.

This paper is organized as follows. In Sec. II we briefly
recall the experimental findings of Ref. 10 complemented
with some material recently obtained. Basic details of the
theoretical approach are presented in Sec. III. In Sec. IV
we present a semi-quantitative comparison of the numer-
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ical results with the experimental data. A summary is
presented in Sec V. For illustrative purposes, we present
in the Appendix a discussion about the influence of the
helium density profile on the absorption spectrum, by
comparing two different density-functional approaches.

II. EXPERIMENTAL

A. Setup

Details of the experimental setup have been reported
in previous publications.10,14 In short, helium droplets
consisting of several thousands of atoms are formed by
expanding helium gas at a pressure of 30 bar into vac-
uum through a 5 μm orifice cooled to cryogenic tempera-
tures. The size distribution of these droplets can be sys-
tematically varied by changing the source temperature.15
As the helium droplets pass through an oven containing
silver metal they on average pick up less than one sil-
ver atom. Via a differential pumping stage the doped
droplets enter a velocity map imaging spectrometer. At
the center of the spectrometer the droplet beam is crossed
at right angles by two counter-propagating laser beams.
The frequency-doubled output of a Nd:YAG pumped dye
laser excites the embedded silver atoms to the 5p state.
The excited silver atoms are subsequently ionized by the
absorption of an additional photon provided by another
Nd:YAG pumped dye laser. Both laser beams have their
polarization parallel to the molecular beam axis. The
generated ions are projected onto a position sensitive de-
tector consisting of a pair of microchannel plates and a
phosphor screen. A high-resolution CCD camera records
images of the phosphor screen which are analyzed online
to determine the centroids of the ion impacts. The veloc-
ity distributions of the ions are determined by performing
an inverse Abel transform on the image constructed from
the accumulated centroids.

B. Results

Most of the experimental results related to the dy-
namical evolution of excited silver atoms in helium nan-
odroplets have already been reported.10 Hence, we will
only briefly summarize those findings here. In addition,
we will present recent results on the velocity distributions
of the silver products ejected from the droplets.

The 5p ← 5s excitation spectrum of silver atoms in he-
lium droplets consisting on average of 2700 helium atoms
is shown in Fig. 1. It is characterized by two well-
separated broad resonances that are significantly shifted
with respect to the 5p 2P1/2 ← 5s 2S1/2 (D1) and 5p
2P3/2 ← 5s 2S1/2 (D2) transitions in the free atom. It
was found that the dynamical evolution of the system is
very different when exciting the embedded silver atoms
via the two resonances. Excitation at the nominal D1
transition leads to ejection of 2P1/2 excited silver atoms
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FIG. 1: (Color online) Experimental (solid line) absorption
spectrum of Ag in a 4He droplet with about 2700 atoms, com-
pared with the calculated spectrum for Ag@4He1000. Dashed
line, Orsay-Trento non-local functional; dotted line, local
functional (see Appendix). The spectra have been normalized
so that their integral is unity. The D1 and D2 transitions of
the free Ag atom are also shown (vertical lines).

with an efficiency of nearly 100%. In contrast, when ex-
cited at the D2 transition only 58% of the excited atoms
is ejected from the droplets. This implies that in order
to compare the excitation spectrum presented in Fig. 1
with calculated absorbtion spectra, the intensity of D2
transitions has to be corrected accordingly. Whereas ex-
citation via the D1 transition yields almost exclusively
silver atoms as products, excitation via the D2 transi-
tion yields Ag, AgHe and AgHe2, with a branching ratio
of 0.82:0.17:0.01. The ejected Ag and AgHe products are
found to mainly populate the 2P1/2 state, indicating the
existence of an efficient relaxation pathway which most
likely involves the 2D5/2 state. Based on photoelectron
and ZEKE spectra it was concluded that the Ag that
remains solvated populates both spin-orbit states.

To gain insight into the translational dynamics of the
excited silver atoms, velocity distributions of the ejected
atoms have been determined by recording velocity map
images. Fig. 2 shows three ion images corresponding to
Ag (2P1/2) and AgHe products resulting from the excita-
tion via the D1 and D2 bands of silver atoms embedded
in helium droplets consisting on average of 2700 helium
atoms. Inspection of the images reveals that they are all
very similar and are characterized by an isotropic angu-
lar distribution. These observations are in strong con-
trast to what has been found for species residing on the
surface of helium droplets. For these systems the images
reveal anisotropic angular distributions and a strong de-
pendence on the excitation frequency.4,16–18 The isotropy
observed in the present study is a direct consequence of
the impurity being solvated inside the droplet, as a result
of which no preferred axis can be defined on the length
scale of the excitation and the electronic matrix element
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FIG. 2: (Color online) Velocity map images of Ag and AgHe
products recorded following excitation via the D1 and D2
bands of Ag atoms in helium droplets consisting on average of
2700 atoms and the corresponding speed distributions. The
solid lines are the results of fits to Maxwell-Boltzmann distri-
butions.

becomes constant.4

More quantitative information on the translational mo-
tion of the excited silver atoms can be obtained from
the speed distributions derived from these images. The
speed distributions of the three different products shown
in Fig. 2 are very similar. They all peak in the velocity
range of 50-60 m/s, but there are noticeable differences
in shape and width. This difference becomes especially
obvious when trying to associate a translational temper-
ature with these speed distributions by fitting them to
a Maxwell-Boltzmann distribution. Those correspond-
ing to excitation of the 2P3/2 state yield a good fit with
translational temperatures of 12 K and 16 K for Ag and
AgHe, respectively. In contrast, the speed distribution

corresponding to excitation of the 2P1/2 state cannot be
described by this functional form; it decreases much more
rapidly than predicted by a Maxwell-Boltzmann distri-
bution. It should be noted that the speed distribution
of the 2P1/2 state is also noticeably different from those
found for photofragments or ions escaping from helium
droplets,14,19–22 indicating that different process are un-
derlying these speed distributions. Since the most prob-
able speed is close to the Landau velocity vL ∼ 60 m/s at
which rotons are created in the liquid,23,24 it is tempting
to relate the observed speed distributions to the exis-
tence of a critical velocity in the helium droplets. In an
effort to establish whether such a relation actually exists,
the dynamical evolution of the system has been modeled
using a time-dependent density functional approach.

III. THEORETICAL APPROACH

Let us first recall that the basic approximations com-
monly made to address the impurity–4HeN complex are
the Born-Oppenheimer (BO) approximation to factor-
ize the electronic and nuclear wavefunctions, and the
Franck-Condon (FC) approximation which assumes that
the atomic nuclei do not change their positions or mo-
menta during the electronic transition.25 In addition, the
use of Density Functional Theory (DFT) to describe the
droplet-impurity complex allows factorizing the impurity
and He nuclear components.26,27

Time-dependent density-functional theory has lend it-
self as a convenient tool to address the dynamics of he-
lium interacting with confining surfaces28,29 or atomic
impurities in bulk30–33 and in helium droplets.4 It pro-
vides a fair compromise between accuracy and compu-
tational effort. So far it is the only practical method
to dynamically address systems of experimental interest
consisting of thousands of helium atoms.

A. Statics

As a starting point for the dynamics, we first obtain the
structure of the system in its ground state as described
e.g. in Ref. 26. Throughout this work we have used the
Orsay-Trento (OT) density functional27 neglecting the
backflow term. This term has no effect on the statics
and its influence on the dynamics will be discussed later.

The BO factorization of the electronic wavefunction
allows the interaction between the helium moiety and
the impurity to be represented by an effective interaction
that is based on the AgHe pair-potential, V 5s

X (r).34 In
view of the large mass of Ag, we neglect its zero-point
motion and describe it as a classical particle by using
an external field.35 The validity of this approximation is
checked a posteriori, see below.

From the variation of the resulting energy of the system
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E[ρ] =
∫

dr
h̄2

2mHe

∣∣∇√ρ(r)
∣∣2 + EHe[ρ(r)]

+
∫

drρ(r)V 5s
X (|rAg − r|) , (1)

where EHe is the OT potential energy density per unit
volume27 and ρ is the helium particle density, one obtains
the Euler-Lagrange equation

δ

δρ

(
h̄2

2mHe

∣∣∇√ρ
∣∣2 + EHe

)
+ V 5s

X = μ , (2)

where μ is the chemical potential corresponding to a
droplet with a fixed number of He atoms,

∫
drρ(r) = N .

Throughout this paper we have taken N = 1000.
Details on how the above equation is solved can be

found in Ref. 35. In the present study we have worked
in cartesian coordinates using a spatial grid of 0.4 Å and
a 200× 200× 250 box. The derivatives have been calcu-
lated with 13-point formulas. The density profile for the
minimal energy configuration is shown in Fig. 3.

To check the validity of the approximation to describe
the Ag atom classically, we have estimated the width of
the ground state wavefunction of a quantum Ag atom in
the mean-field potential

V (rAg) =
∫

drρ(r)V 5s
X (|rAg − r|). (3)

Due to the large mass of Ag, we find a width of the wave-
function of less than 0.1 Å. This value is much smaller
than the characteristic length scale of the mean field and
V 5s
X potentials and of the helium density variations, see

Fig. 4, thereby justifying our approach.
It will be useful to start the dynamics not from the

equilibrium position of the Ag atom but rather from an
arbitrary position on the z axis, Z0, that corresponds
to a radial distance R0. This can be achieved adding a
constraint of the kind

λC
2

[Z − Z0]2 (4)

to the expression of the total energy,36 where Z is the
distance in the z direction between the impurity and the
center of mass of the helium moiety, and λC is an ar-
bitrary constant large enough to guarantee that, upon
minimization of the constrained energy, Z equals the de-
sired Z0 value. Typically, a value λC ∼ 1000 K Å−2
ensures the obtention of Z0 with a <∼ 0.01 % error.

The top panel of Fig. 4 shows ΔE = E(R0) − E(∞)
as function of R0 for N = 1000. It can be seen that the
equilibrium position of Ag is at the center of the droplet.
To better appreciate the meaning of ΔE as a function of
R0, the density profile of a pure 4He1000 droplet is also
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FIG. 3: (Color online) He density profiles of the Ag@4He1000

and Ag@4He3000 droplets obtained using the OT density func-
tional. Also shown is the result for N = 1000 obtained with
the local density of Ref. 58.

displayed. Taking for the radius of the droplet the ex-
pression R1/2 = r0N

1/3 with r0 = 2.22 Å,37 it can be
seen from the figure that it requires about 45 K kinetic
energy for Ag to reach the droplet surface. The bottom
panel of the figure shows the classical turning point of Ag
in the droplet, taking for the kinetic energy of the Ag im-
purity the classical expression 1

2mAgv
2
Ag, i.e. neglecting

the hydrodynamic mass of the helium bubble. This ap-
proximation is justified by the small bubble radius (about
5 Å, see Fig. 3) and the fact that mAg � mHe. It can be
seen that only impurities having velocities above ∼ 70
m/s can reach the surface region of the droplet. Note
that this value is well above the Landau velocity and the
critical velocity vc for ring vortex nucleation in liquid He,
vc ∼ 50 m/s.38 This figure will be helpful for discussing
the translational dynamics presented below.

B. Dipole absorption spectrum

Since the dynamical evolution is initiated by the pho-
toexcitation of the embedded Ag atom, the absorption
spectrum of the 5p 2P1/2 ← 5s 2S1/2 (D1) and 5p 2P3/2 ←
5s 2S1/2 (D2) transitions has been calculated for the
Ag@4He1000 equilibrium configuration shown in Fig. 3.
The presence of Ag in the droplet induces marked density
oscillations. This, however, is a local effect, as a compar-
ison of the density profiles for N = 1000 and 3000 shown
in that figure reveals. Hence, for impurities fully solvated
in large enough droplets the absorption spectrum is in-
dependent of the droplet size and the same as in bulk
liquid helium.8 This is of course not the case for droplets
made of a few tens of atoms.12,13

The 2Σ+ and 2Π excited state Ag-He pair potentials re-
quired for the calculation of the spectra have been taken
from Ref. 13, while the V 5s

X ground state potential, which
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FIG. 4: (Color online) Top panel: Energy of the Ag@4He1000

complex for Ag in the 2S1/2 ground state (solid line) and the
2P1/2 excited state (dashed line) as a function of the distance
of the impurity to the center of mass of the He moiety. The
energy is measured with respect to the free Ag atom and
helium droplet. Bottom panel: translational velocity of Ag
for the ΔE values displayed in the solid line of top panel.
In both panels the density profile of 4He1000 is represented
in grey and the thin vertical line indicates the sharp density
surface radius.

has also been used to obtain the equilibrium configura-
tion, is taken from Ref. 34. The spin-orbit (SO) inter-
action has been included as described in Ref. 39. Writ-
ing the electron angular momentum in cartesian coordi-
nates i = x, y, z and the spin state as s =↑ (ms = 1/2),
↓ (ms = −1/2), the spin-orbit operator VSO has compo-

nents

V ijss
′

SO = −ı
Als
2

∑
k

εijkσss
′

k

where εijk is the Levi-Civita symbol, σk is the Pauli ma-
trices and Als is 2/3 the SO splitting in the free atom.
Shape fluctuations of the helium bubble have been ex-
plicitly taken into account using the atomic-like DFT
sampling technique as described in Ref. 40. Since these
methods are both well established, we do not consider it
necessary to repeat their details here.

Figure 1 shows the calculated excitation spectrum. To
account for the fact that in the experiment the transi-
tion to the the 2P3/2 state is detected with a reduced
efficiency, as discussed in Sec. II B, we have renormal-
ized the intensity of the calculated 5p 2P3/2 ← 5s 2S1/2
transition by the experimentally determined correction
factor. It can be seen that the agreement between theory
and experiment10 is excellent. This should be contrasted
to previous Monte Carlo (MC) calculations that yielded
an appreciable overlap of the two absorption bands.11,12
More recent MC calculations13 employing the same He-
Ag pair potentials as used in this work also yield clearly
separated bands, albeit for much smaller droplets.13,34
Hence, the agreement between the theory and experi-
ment can be attributed to the high quality of the He-Ag
pair potentials together with a correct description of the
Ag@4HeN complex by the non-local density functional
approach (see the Appendix).

C. Dynamics

Once a static configuration has been determined from
DFT as discussed before, it may constitute a starting
configuration for the dynamical evolution of the system
upon photoexcitation of the Ag atom. To evolve the
system, we proceed as follows.

• A complex effective wavefunction representing the
He moiety is evolved following a TDDFT prescrip-
tion.

• The displacement of the Ag atom is treated classi-
cally.

• The dynamical evolution of the electronic excited
state within the 2P manifold of the silver atom is
taken into account by introducing an additional de-
gree of freedom, |λ〉. Using the basis for angular
momentum and spin previously described, the elec-
tronic state of Ag can be written as

|λ〉 =
∑
is

λis|i, s〉

with |〈λ |λ〉|2 = 1.
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The complete set of dynamical variables characterizing
the system thus consists of a complex effective wavefunc-
tion for helium ΨHe(t, r) such that ρ(t, r) = |ΨHe(t, r)|2,
a vector position for the impurity, rAg(t), and a 6-
dimensional complex vector for its electronic state |λ(t)〉.
The total energy of the Ag@4He1000 complex suddenly
excited to the 2P manifold is thus written as

E[Ψ, rAg, λ] =
∫

dr
h̄2

2mHe
|∇Ψ|2 +

p2Ag
2mAg

+
∫

dr EHe[ρ] + 〈λ|VSO|λ〉

+
∫

drρ(r)Vλ(r− rAg) . (5)

We have followed the prescription of Ref. 39 to write the
pair potential as a direction-dependent combination of Π
and Σ potentials

Vλ(r) = 〈λ|V(r)|λ〉 =
∑
ijss′

λ∗isVijss
′
(r)λjs′ , (6)

where the six-dimensional matrix operator V has compo-
nents

Vijss′(r) =
[
VΠ(r)δij + (VΣ(r)− VΠ(r))

rirj
r2

]
δss′ . (7)

To obtain the dynamical evolution, the coupled 3D
time-dependent system resulting from the variation of
the action

A[ΨHe, rAg, λ] =
∫

dt {E[ΨHe, rAg, λ]

− ih̄

∫
drΨ∗He(r)

∂

∂t
ΨHe(r)

− ih̄ 〈λ| ∂
∂t
|λ〉 − 1

2
mAgṙ2Ag

}
(8)

has to be solved. This yields

ih̄
∂

∂t
ΨHe =

[
− h̄2

2mHe
∇2 +

δEHe
δρ(r)

+ Vλ(r− rAg)
]

ΨHe

ih̄
∂

∂t
|λ〉 =

[∫
drρ(r)V(r− rAg) + VSO

]
|λ〉

mAgr̈Ag = −∇rAg

[∫
drρ(r)Vλ(r− rAg)

]
(9)

where the t-dependence of the dynamical variables is
omitted for clarity. Notice that the equation for |λ〉 is
a matrix equation.

To solve the above equations initial values for the vari-
ables are required. This bears some arbitrariness. We
have followed a strategy based on physical plausibility

and numerical expeditiousness. We have chosen a set of
helium density ρ0(r) –or effective wavefunction Ψ0(r)–
and silver position rAg0 determined from a static calcu-
lation carried out as indicated before, and we choose the
initial velocity of the impurity to be zero. Thus, we start
from the mimimum energy configuration for a given dis-
placement R0 or, in other words, from any point on the
curve displayed in the top panel of Fig. 4 as if it was
the classical turning point of the Ag atom in the 4He1000
droplet. It should be noted that although the silver atom
spends considerable time at the classical turning points,
these initial conditions are just a subset of those encoun-
tered in the experiment.

At any of these positions, the silver atom is photoex-
cited to the 2P manifold and the remaining variable λ is
chosen among one of the eigenstates resulting from the
diagonalization of its Hamiltonian at t = 0

Hijss′ =
∫

dr ρ0(r)Vijss′(r− rAg0) + V ijss
′

SO . (10)

If the helium density is spherically symmetric around the
dopant atom, the first term in the matrix above is propor-
tional to the identity and as a result of the diagonaliza-
tion one obtains the usual J = 1/2 and J = 3/2 eigenvec-
tors pertaining to the spin-orbit interaction. This occurs
in liquid helium or when the impurity sits at the geo-
metric center of a helium droplet. When the dopant is
displaced off center, its environment is only axially sym-
metric. In this case, the potential matrix still has two of
the VSO eigenstates corresponding to J = 3/2 as eigen-
vectors. However, the other four eigenstates are no longer
eigenvectors of VSO but a mixture of them. For the he-
lium distributions considered here, this effect turns out
to be a small perturbation and the mixed eigenvectors
are such that they still have 〈J〉 
 1/2 and 〈J〉 
 3/2.
This allows us to label the electronic states that we take
as initial condition for the dynamics as |λ〉 = |3/2〉 for the
pure J = 3/2 state, and |λ〉 = |1̃/2〉 and |λ〉 = |3̃/2〉 for
the mixed states. Following a more conventional nota-
tion, the |1̃/2〉 configuration will be referred to as 2P1/2

(D1), while the other two electronic states |3/2〉 and |3̃/2〉
will be referred to as the 2P3/2 (D2) configuration.

The three potentials V
1̃/2

, V
3̃/2

and V3/2 obtained from
these eigenvectors are shown in Fig. 5 for the ρ0 density
corresponding to R0 = 22.2 Å. Because the Σ potential is
purely repulsive and the Π potential has a deep attractive
well, the resulting Vλ, see Eq. (7), have quite different
shapes. V

1̃/2
is spherically symmetric and largely repul-

sive, with a shallow minimum of less than 1 K at 7.2
Å. V

3̃/2
is also largely repulsive with a shallow annular

minimum of about 2 K. Note that this potential is not
spherically symmetric. In contrast to these potentials,
V3/2 reveals two deep wells with depths of about 400 K
that are localized along the symmetry axis of the com-
plex. For all densities computed in this work we have
found a similar phenomenology.
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We finally mention that Eqs. (9) have been solved
within the same box and using the same grid as for the
static problem. The time step employed is 0.5 fs and the
dynamics has been followed for up to 200 ps when needed.
We have used a predictor-corrector method41 fed by a
few time steps obtained by a fourth-order Runge-Kutta
algorithm. When needed, we have included an absorbing
potential33 to prevent some He density to bounce back
when it reaches the box boundary. In these cases, the
number of evaporated He atoms that leave the calculation
box has been found to be rather small, ten atoms at most.

IV. NUMERICAL RESULTS

A. Ag 2P1/2 dynamics

We first discuss the dynamical evolution of the system
following excitation of the silver atom to the 2P1/2 state.
Figs. 6 and 7 show snapshots in 8 ps intervals of the
helium density and Ag position as the system evolves.
These results have been obtained by initially placing the
silver atom at rest at a distance of R0 = 18 and 22.2 Å,
respectively.42 The phase portrait of the motion of Ag
following its dipole excitation to the 2P1/2 state is shown
in Fig. 8 for several values of R0. This figure is quite
useful to understand and interpret the results we have
obtained, relating them at least qualitatively to the ex-
perimental findings. It can be seen from the phase space
trajectories displayed in Fig. 8 that Ag atoms photoex-
cited at a radial position R0 = 18 Å and smaller are
ejected from the droplet. One such evolution is shown in
Fig. 6, and several others are shown in the supplemen-
tary material.42 In contrast, Ag atoms photoexcited at
R0 = 22.2 Å and larger are not ejected, as shown in Fig.
7.

To gain more insight into the position dependence
of the dynamics, the energy of Ag(2P1/2)@He1000 has
been calculated as a function of the distance of the Ag
with respect to the center of mass of the helium moi-
ety, analogous to what has been done for the ground
state. The resulting energy curve, which can be con-
sidered as a first estimate of the effective interaction po-
tential for the translational motion of the excited 2P1/2

Ag, V1/2 = 2VΠ/3+VΣ/3, is displayed in the upper panel
Fig. 4. The curve helps to understand most of the results
found in the dynamical calculations. First notice that
due to the symmetry of the system excitation of Ag at
rest at the center of the droplet will not cause a displace-
ment of the impurity. As the potential is rather flat at
small displacements from the center, the final velocities
are largely insensitive to the exact initial position of the
excited silver atom. In contrast, the potential changes
strongly in the surface region and the final velocities vary
significantly with position at the surface. Inspection of
the 2P1/2 potential in Fig. 4 reveals a clear minimum at
R0 = 26 Å. As a result of this minimum, the excited
Ag will get trapped at the surface if its kinetic energy
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FIG. 5: (Color online) Top panel: Ag-He potential for the
J = 3/2 state. Middle panel: Same for the 〈J〉 � 3/2 state.
Bottom panel: Same for the 〈J〉 � 1/2 state. Nine contour
lines are drawn in solid-dashed alternation dividing the energy
display range in each panel, which is from −400 K to 400 K
for the top one and from −2 K to 2 K for the rest.
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FIG. 6: (Color online) Starting from the top left frame, dy-
namic evolution of the Ag@4He1000 complex when the Ag
atom initially at rest 18 Å off center of the droplet is sud-
denly excited to the 2P1/2 state. The time between frames is
8 ps.

is smaller than the well depth of ∼ 6 K. Indeed, the dy-
namical evolution shown in Fig. 7 and the corresponding
phase space trajectory shown in Fig. 8 reveal that Ag
atoms photoexcited at R0 = 22.2 Å are not ejected from
the droplet.

This last theoretical result at first appears to contra-
dict the experimental findings that following excitation
of the 2P1/2 state nearly all of the Ag atoms are ejected.
The bottom panel of Fig. 4 helps to reconcile this ap-
parent disagreement. Since He droplets are expected to
be superfluid at the experimental temperature of 0.4
K,43,44 configurations that start at, e.g., 22.2 and 25
Å are nonphysical, as the velocity of Ag in the droplet
that would permit the impurity to arrive at these classi-
cal turning points is above the Landau critical velocity.
Hence, before getting to these positions the motion of
Ag would likely cause roton creation or ring vortex nu-
cleation, thereby slowing down the silver atom.45,46

Closer inspection of Fig. 8 reveals some straggling of
the phase space trajectories. The effect is most marked
for small Ag velocities, i.e., in the first stages of its dis-
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FIG. 7: (Color online) Starting from the top left frame, dy-
namic evolution of the Ag@4He1000 complex when the Ag
atom initially at rest 22 Å off center of the droplet is sud-
denly excited to the 2P1/2 state. The time between frames is
8 ps.

placement. This is best seen in calculations starting from
R0 = 1 Å.42 In this case, it takes the silver atom some 150
ps to travel up to about 10 Å, and a very marked strag-
gling is observed. During this phase of the evolution the
spherical helium bubble is also found to “breath”, dis-
playing distinct monopole oscillations with a period of
about 20 ps, which corresponds to an energy of 2.3 K.
At the same time strong density oscillations can be ob-
served just above the geometrical center of the droplet,
see also Fig. 6. It is at this point where the density waves
launched by the excitation of the Ag atom are roughly
focused after being reflected from the droplet surface.
We have not tried to characterize the properties of these
waves, as they have already been discussed in Ref. 4.
The complex interference pattern produced by these den-
sity waves persist for quite long times47 during which
the droplet has a clear tendency to recover its spherical
symmetry. We attribute the observed straggling in the
motion of the excited Ag to its interaction with these in-
terfering density waves. Inspection of Figure 8 further
reveals that the final velocity for Ag excited in the bulk
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FIG. 8: (Color online) Phase portrait of the motion of Ag
in a 4He1000 droplet after its dipole excitation to the 2P1/2

state at the classical turning point. Results for R0 = 1, 10,
14, 18, 22, and 25 Å are shown. The empty circles follow the
Ag trajectory as a free particle moving in the 2P1/2 potential
shown in Fig. 4.

of the droplets exhibits a small and unsystematic varia-
tion of a few m/s as function of the initial position. Since
the interaction potential is a smooth function, see Fig. 4,
we attribute this variation to the strangling motion of
the Ag in the initial phase of the trajectory and the non-
adiabatic energy transfer between the impurity and the
surrounding helium.

The most interesting feature of Fig. 8 is the appear-
ance of a limiting velocity for Ag of about 87 m/s, which
matches closely the range of velocities detected in the
experiment, see Fig. 2. It is instructive to compare this
value with the final speed calculated from the interac-
tion potential assuming that the silver atom experiences
no drag during its motion through the superfluid helium.
This is equivalent to describing the motion of Ag as that
of a free particle. Assuming a hydrodynamic mass of 107
amu, one finds a final speed of 116 m/s, a value signif-
icantly higher than that found both by the dynamical
calculations and the experiments. One could argue that
this difference is due to the hydrodynamic mass used. In
order to bring the two results into agreement a hydrody-
namic mass of 192 amu would be required, a value judged

too large for Ag in a bubble of only 5 Å radius. Insight
into the origin of the different final speeds can be ob-
tained from the phase space trajectories. The trajectory
for R0 = 1 Å calculated for a free particle using the inter-
action potential shown in Fig. 8 matches very well that of
the dynamical calculations for low speeds, except for the
straggling discussed above. This indicates that the Ag
during the first part of the evolution experiences no drag
and that the helium droplets are indeed superfluid. It is
at higher speeds that a deviation between the two results
is observed. This raises the question whether this differ-
ence is related to the existance of a critical velocity. The
limiting speed of 87 m/s in the dynamical calculations is
noticeably larger than the experimental Landau velocity
of ∼ 60 m/s. However, it is close to the Landau velocity
of vL = 94 m/s calculated from the OT density functional
neglecting the term that mimics backflow effects.48 We
recall that the complete OT functional has been adjusted
to reproduce the experimental value of vL but that in the
present work we have not considered the backflow term
term as its evaluation requires unaffordable small time-
steps. In spite of the excellent agreement between the
expected and calculated maximum velocity, it is not evi-
dent to attribute the limiting velocity to the existence of
a critical Landau velocity in the droplets because before
achieving this velocity the bubble bursts open and the in-
teraction potential becomes attractive. Nonetheless, the
above results clearly demonstrate that dynamical calcu-
lations are essential to correctly determine the velocity
of the ejected Ag.

These theoretical results and conclusions are expected
to be largely independent of the helium droplet size.
The rationale for this claim is the “universality” of the
Ag@4HeN energies as function of the distance from the
droplet surface, R0 − R1/2. This universality has been
found to be nearly perfect for very weakly interacting
impurities like Mg.36 For the stronger interacting Ag in-
vestigated in the present study, we have also found that
the difference in the 2S1/2 and 2P1/2 energy curves for
N = 1000 and 3000 is very small, i.e. less than 6 K, at the
surface region. Consequently, the classical turning points
of ground silver measured with respect to the droplet sur-
face, R1/2, will be largely independent of droplet size and
therefore also the dynamical evolution of the system after
excitation to the 2P1/2 state.

B. Ag 2P3/2 dynamics

The most characteristic experimental findings for ex-
citation to the 2P3/2 state are the efficient relaxation of
the system to the lower spin-orbit state, the detection of
AgHe and AgHe2 exciplexes and the significant fraction
of excited silver atoms that remain solvated.10 The for-
mation of AgHe2 exciplexes had already been observed
before in bulk He and dense helium gas.5,49 These stud-
ies indicate that that the 2D5/2 state, which lies between
the 2P3/2 and 2P1/2 states, plays an important role in
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the complex formation and the decay of the 2P3/2 state.
Like in previous work that used a quantum molecular
dynamics approach11, the 2D5/2 state is not included in
the present theoretical treatment. Hence, it is unclear to
what extend the calculations can correctly describe the
relaxation dynamics of the 2P3/2 excited state. In addi-
tion, it is a priori not obvious that the present TDDF
calculations can correctly describe exciplexes formation,
as the OT functional was not devised for addressing con-
figurations requiring an atomic-like description for a part
of the system. Inhomogeneous configurations as these
may be addressed by adding extra terms to the func-
tional which, however, come at a significant computa-
tional cost.53,54 Having these shortcomings in mind, we
present next some exploratory calculations pushing the
present formalism to its very limit and leaving a more re-
alistic description of exciplexes formation within TDDF
theory to a forthcoming study.

We start our discussion by considering the mixed 2P3/2

configuration. As the V
3̃/2

potential is very similar to
the V

1̃/2
potential, see Fig. 5, excitation to the mixed

2P3/2 state is expected to yield similar dynamics as found
for the 2P1/2 state. The most noticeable difference be-
tween the two potentials is the slightly more profound
ring well for the V

3̃/2
potential. One might therefore ex-

pect that excitation to the mixed state leads to the ejec-
tion of Ag carrying along some helium atoms, i.e. the
ejection of AgHe exciplexes. Fig. 9 displays the evolu-
tion of Ag@4He1000 when Ag, initially at rest at R0 = 18
Å, is suddenly excited to this mixed state.42 As expected,
the Ag is ejected from the helium droplet with a phase
space trajectory, and thus also a final velocity, very sim-
ilar to that of Ag 2P1/2 when excited at the same initial
position. Closer inspection of Fig. 9 reveals the appear-
ance of a high helium density in the close proximity of the
silver atom, which might be interpreted as the dynami-
cal appearance of an AgHe exciplex. It should be noted
that the number of He atoms corresponding to the he-
lium density is fractional and smaller than one. In view of
the limitations of the current TDDF method, this num-
ber should be interpreted with care. Since within TDDF
theory He is continuously drawn into the well of the 2P3/2

potential, it is not evident to determine the time for ex-
ciplex formation. Inspecting Fig. 9 we conclude that it
takes about 20 ps.

Excitation of the Ag to the pure 2P3/2 state is expected
to yield very different results, as the corresponding V3/2

potential, shown in the top panel of Fig. 5, is character-
ized by two deep potential wells. Excitation to this state
is expected to give rise to exciplex formation. However,
in view of the attractive character of this potentials it is
not obvious that these exciplexes will be ejected from the
droplets. Fig. 10 shows the dynamical evolution of the
system after exciting the silver atom to the pure 2P3/2

configuration at a distance of R0 = 18 Å. The results for
excitation at R0 = 25 Å can be found in the support-
ing information.42 Inspection of the figures reveals the
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FIG. 9: (Color online) Starting from the top left frame, dy-
namic evolution of the Ag@4He1000 complex when the Ag
atom initially at rest 18 Å off center of the droplet is sud-
denly excited to the mixed 2P3/2 state. The time between
frames is 8 ps.

formation of a high helium density in the close proxim-
ity of the silver atom, which again can be interpreted as
the dynamical appearance of an AgHe exciplex. Also in
this case the number of He atoms corresponding to the
helium density is fractional and smaller than one. It is
worth recalling, as Fig. 5 shows, that the exciplex per-
taining to the mixed state grows as a ring around the
waist of the mixed 2P3/2 electronic state whereas the ex-
ciplex pertaining the pure 2P3/2 electronic state discussed
here consists of two localized He density spots. The time
scale for the exciplex formation is estimated to be less
than 4 ps, which is significantly faster than found for the
mixed 2P3/2 state. The fast exciplex formation can be
attributed to the depth of the wells for the V3/2 potential.
The calculations furthermore reveal that in neither of the
two examples discussed here the exciplex is ejected from
the droplets. This could be expected for the R0 = 25
Å case, but is at variance with the observed ejection for
the 2P1/2 and mixed 2P3/2 configurations at R0 = 18 Å,
see Figs. 6 and 9. Analysis of the excited state evolution
reveals that the systems remains a pure 2P3/2 configura-
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FIG. 10: (Color online) Starting from the top left frame, dy-
namic evolution of the Ag@4He1000 complex when the Ag
atom initially at rest 18 Å off center of the droplet is suddenly
excited to the pure 2P3/2 state. The time between frames is
4 ps.

tion at all times. As this configuration is characterized
by a strong attractive interaction with the helium, the
silver atom is not expected to leave the droplet.

Summarizing we find that the Ag atom is ejected from
the droplets with a small quantity of 4He –less than one
atom– attached when excited to the |3̃/2〉 but remains
solvated when excited to the |3/2〉 state. Overall, these
results compare well with experiment where it was found
that 42% of the 2P3/2 excited Ag atoms remain solvated
and a significant fraction is ejected as AgHe exciplexes.
Whereas the calculations indicate that the ejected species
are 2P3/2 excited, experiment reveals that most of them
have relaxed to the 2P1/2 state. This discrepancy might
be attributed to the absence of the 2D5/2 state in the
calculations. Its inclusion would introduce an additional
decay channel that could result in efficient relaxation be-
fore ejection from the droplets.

Photoelectron and ZEKE spectra revealed that a large
fraction of the excited Ag atoms remains solvated in the
droplets.10 The experiments did not provide conclusive
evidence on the state distribution of the solvated atoms

Ag�4He1000 AgAgHe

Experimen t
Theory �R0�10 ��
Theory �R0�26 ��

31 000 31 200 31 400 31 600
0.

0.2

0.4

0.6

0.8

1.

Energy �cm �1�

In
te
ns
ity
�a
rb
.u
ni
ts
�

FIG. 11: (Color online) Experimental ZEKE spectrum of
Ag recorded following excitation via the D2 transition of Ag
atoms in helium droplets consisting on average of 2750 atoms
and the theoretical ZEKE spectrum for Ag(2P1/2)@He1000

calculated with the helium density profile corresponding to
the energy minimum at R0 = 26 Å and at R0 = 10 Å.

nor did they allow to determine whether these atoms are
located on the surface or in the bulk of the droplets. The
present calculations on the Ag 2P1/2 energy as function
of position, see Fig. 4, reveal that the minimum energy
configuration for this state corresponds to a Ag atom lo-
cated in a dimple on the surface of the droplet at about
a distance R0 ∼ 26 Å. Using this configuration we have
computed the corresponding ZEKE spectrum by substi-
tuting the He-Ag V1/2 potential by the He-Ag+ ground
state potential10,50 and then proceeding as in the calcula-
tion of the dipole absorption spectrum.39 This approach
fully takes into account the three-dimensional character
of the problem and shape fluctuations of the helium bub-
ble around the impurity.40 A comparison of the calcu-
lated and experimental ZEKE spectrum is presented in
Fig. 11. The agreement between the spectra is excellent,
which indicates that there are indeed 2P1/2 Ag atoms
located on the surface of the droplets. Only the experi-
mental width turns out to be slightly larger than the the-
oretical prediction, even though density fluctuations –the
main mechanism underlying the width of the line40– are
included. The broad feature in the experimental ZEKE
spectrum at about 31200 cm−1 has tentatively been as-
signed to Ag 2P3/2.10 Unfortunately, it is not possible to
accurately calculate ZEKE spectra for the 2P3/2 state.
As mentioned before, the OT functional used in the
present calculations is not well adapted to describe con-
figurations requiring an atomistic description, like that
resulting from the interaction of 2P3/2 with the helium.
In spite of this, we have used some of the dynamic con-
figurations shown in Fig. 10 to estimate the ZEKE tran-
sition for Ag 2P3/2. In this way we find a transition fre-
quency of about 30300 cm−1, i.e., 1200 cm−1 to the red
of the 2P1/2 transition. Although only an estimate, this
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result clearly rules out that experimental feature at 31200
cm−1 originates from Ag 2P3/2. Photoionization studies
on doped helium droplets have found that the ionization
threshold generally is several 100 cm−1 lower in energy
for solvated species than for those located at the surface
of helium droplets.51,52 Hence, it is very likely that the
31200 cm−1 feature corresponds to solvated Ag 2P1/2.
This suggestion is confirmed by calculations where Ag is
located at R0 = 10 Å, i.e., in the bulk of the droplet. As
can be seen in Fig. 11, the agreement between the cal-
culated and experimentally observed ZEKE transition is
excellent. This assignment implies that the 2P3/2 excited
Ag atoms relax very efficiently to the 2P1/2 state. The
fact that the dynamical calculations do not reveal such
a relaxation process can be attributed to the simplifica-
tion not to include the 2D5/2 state in the simulations.
This assignment raises the question as why Ag 2P1/2 is
observed in the bulk of the droplets even though the in-
teraction of Ag 2P1/2 with helium is repulsive, see Fig.
5. One possible explanation would be that the ionization
rate is sufficiently high that the Ag atoms are ionized
before they have been ejected from the droplets. This
would also explain why the fraction of solvated Ag 2P1/2

was found to increase with droplet radius.10

V. SUMMARY AND OUTLOOK

We have carried out a combined experimental and the-
oretical investigation of the translational dynamics of Ag
atoms in helium droplets photoexcited to the 2P mani-
fold. An analysis of the experimental results has been
carried out within a full dynamical, three dimensional
approach that combines a time-dependent DFT descrip-
tion of the droplet with a classical dynamics description
of the impurity. Our theoretical approach has a broad
applicability. In particular, it is well suited to describe
the solvation and desolvation of Ba+ cations in helium
droplets.21

The experiments have revealed that the 5p 2P1/2 ←
5s 2S1/2 (D1) and 5p 2P3/2 ← 5s 2S1/2 (D2) transitions
are significantly blue-shifted with respect to the corre-
sponding gas phase transitions, and that they do not
overlap. These observations are quantitatively repro-
duced by the static calculations, which allows us to have
confidence in the theoretical model.

In qualitative agreement with experiment, the dynam-
ical calculations reveal the existence of a limiting velocity
for silver atoms ejected from the droplets following exci-
tation to the 2P1/2 state. The calculations furthermore
reveal that at low velocities the Ag does not experience
any drag by the surrounding helium, which can be taken
as evidence of superfluidity of the helium droplets. At
higher velocities, a clear deviation from this behavior is
observed. The limiting velocity attained by the silver
atom is close to the Landau velocity associated with the
used OT density functional. However, we cannot conclu-
sively attribute the limiting velocity to the critical Lan-

dau velocity because, by the time the Ag atom has ac-
celerated enough to potentially excite rotons or nucleate
vortices in the liquid, the bubble has already burst open.
Nonetheless, we would like to stress that the employed
method makes use of a dynamical framework that allows
for roton excitation and ring vortex nucleation, albeit
at velocities about 50 % larger than found experimen-
tally. The observed maximum speed could therefore well
be related to the critical velocity associated with these
processes. In this respect it is worth noting that ring vor-
tex nucleation by neutral impurities or cations moving in
liquid helium has never been addressed by realistic meth-
ods. The huge structural changes neutral impurities in-
duce in the surrounding liquid at small length scales will
render the development of any vorticity around a neu-
tral impurity very difficult. Hence, before considering
the possibility of ring vortex nucleation as a dissipation
mechanism of the translational energy of impurities in
droplets, a realistic attempt to generate them in liquid
helium is called for.

The calculations indicate that excitation of Ag via the
D2 transition leads to exciplexes formation. Those ex-
cited to the mixed |3̃/2〉 state are found to be ejected
from the droplets, whereas those excited to the pure |3/2〉
state remain solvated. Although these results qualita-
tively agree with the experimental findings, experimen-
tally a strong relaxation to the 2P1/2 state is observed.
This discrepancy likely comes from the absence of the
2D5/2 state in the calculations. Although evidence for ex-
ciplex formation is found in the calculations, an accurate
description of the dynamical exciplex formation is still a
challenge. Within TDDFT, a possible way to achieve this
is to use a test particle description of the helium droplet,
generalizing the approach of Ref. 4. Alternatively, one
might use the solid-like density functional approach of
Refs. 53,54 that allows to describe localized bunches of
He atoms while the rest of the cluster is still delocalized.
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Appendix

It is interesting to see the effect on the spectrum of
the solvation structure surrounding the impurity, which
is always overlooked within the standard bubble model
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approach, see e.g. Refs. 55–57 and Refs. therein. To
this end, we have repeated the calculation of the ground
state of Ag@4He1000 using the original local density func-
tional of Stringari and Treiner.58 This functional includes
a (∇ρ)2 term whose intensity was adjusted to reproduce
the surface tension of the liquid free surface; it also repro-
duces the equation of state of liquid 4He at zero tempera-
ture. Solving for this functional the corresponding Euler-
Lagrange equation constitutes a more elaborate way of
determining the structure of the liquid around the sol-
vated impurity than the standard bubble model, which
also implies an energy minimization but uses instead a
simple trial function as density profile.

Figure 3 shows that the local functional yields a helium
bubble around the Ag impurity with a radius similar to
that of the Orsay-Trento functional, but fails to describe

the oscillations of the helium density profile, even under-
estimating their average. One thus would expect that it
yields a less blueshifted absorption spectrum, and this
is what Fig. 1 shows. Since the Ag-He pair potentials
are the same in both OT and local density functional
calculations, one should conclude that the standard bub-
ble model cannot quantitatively account for the atomic
shifts in the absorption spectrum of the impurity, in spite
of being conceptually and qualitatively correct. The case
of electrons in liquid He is an interesting exception in
this respect. As the e-He interaction is very repulsive,
the electron bubbles are large and they hardly display
any shell structure. Consequently, the description of the
absorption spectrum of electron bubbles by the standard
bubble model yields similar results, yet worse than den-
sity functional calculations.59
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Chapter 4

Summary and Conclusions

This thesis presents a collection of four papers published in peer-reviewed scientific
journals plus a manuscript yet to be submitted, all of them in the field of low temperature
physics and quantum fluids. Each of these works reports a step forward in the ever-
developing theoretical description of helium systems by means of density functional theory.

The first two papers [11, 12] are labelled as “structure” and deal with questions
related to the groundstate description of helium complexes around atomic impurities. We
have computed such structure and determined its effect on the dipole absorption spectrum
of Na in 3He–4He clusters and of Mg in the homogeneous, isotopically mixed liquid. For
the case of Na in clusters we have found that even though a large amount of 3He is
needed for the density in the outer shell of the mixed droplet to reach the bulk liquid
3He value, the spectrum of the impurity is very insensitive to the isotopic composition
and it rapidly saturates to the value of pure 3He droplets when the quantity of 3He is
increased. For Mg in the mixed liquid, the presence of 3He in the liquid induces shifts in
the spectrum much smaller than its typical width so we have found the spectroscopic
effect of the isotopic composition to be minor.

We have also explored the limits of density functional calculations for a small number
of helium atoms interacting with a linear carbonyl sulfide (OCS) molecule. To this
end we have implemented a Kohn-Sham scheme for 3He and computed the structure of
OCS@3HeN clusters for N up to to 40. We have compared the results for 4He clusters
with the same N value and found that the high anisotropy of the OCS molecule magnifies
the effect of the different statistics of each isotope. Our estimate of the moments of
inertia for these clusters is consistent with the interpretation of experimental data[13]
suggesting an 11 atoms shell structure rigidly rotating with the OCS molecule.

The next three papers [10, 14, 15], labelled as “dynamics”, deal with the real-time
description of dynamical processes in helium systems of experimental interest. While
the publications on statics are a steady completion of a well established line of work,
the papers of this section open a new front for theoretical exploration of dynamical
processes with picosecond resolution. We present an efficient and quantitatively accurate

59



60 CHAPTER 4. SUMMARY AND CONCLUSIONS

procedure to compute the dynamics of an excited electron bubble and of an excited silver
impurity, following a time-dependent density functional theory (TDDFT) approach for
helium coupled to the appropiate dynamics for the impurity. The “appropiate” dynamics
depends on the properties of the impurity: for the 1P electron bubble one can use a
purely quantum mechanical description of the electron within an adiabatic approximation,
whereas for the 2P bubble the adiabatic approximation must be lifted. For a heavy
impurity such as Ag a classical description of its motion is enough, but its spin-orbit
strength is large enough for the electronic state of the atom to be taken into account as
a quantized degree of freedom. Our work shows that the use of TDDFT provides a good
compromise between quantitative accuracy and computational efficiency, allowing to carry
on the dynamical evolution of drops with thousand He atoms for hundred picoseconds.

In the case of the electron bubble, we have related the experimental disappearance
of 1P bubbles at high pressures[9] with the existence of a nonradiative de-excitation
path involving the bubble splitting about 20 picoseconds after the excitation. Our claim
is sustained by the fact that our calculation predicts the splitting only for pressures
above 1 bar, which is the same pressure threshold of the experimental disappearance.
This agreement shows the remarkable accuracy of the calculations, as increasing the
liquid pressure by 1 bar increases its density by a mere 1%. We have also found a
marked change in the behavior of the time-resolved absorption spectrum of the 1P
bubble depending on whether the bubble fissions or not, i.e., on the liquid pressure. This
change is in principle an experimentally accessible observable whose determination may
complement the information obtained from cavitation and photoconductivity experiments.

In the case of the desorption of a silver atom from a He drop, our dynamical calcula-
tions predict a range of velocities for the ejected impurity consistent with the experimental
velocity distribution. This velocity is the result of how much energy is transferred from
the impurity to the droplet, which depends on the accesible excitation modes. Our
description of helium only allows for collective excitations such as density waves and
surface oscilaltions, thus the agreement in the impurity velocity can be taken as indirect
evidence of the superfluidity of helium nanodroplets. Besides, we have also ruled out
vortex nucleation as a likely mode for energy transfer in such small drops doped with
Ag. The huge structural changes in the surrounding liquid at the nanoscale induced by
attractive impurities (neutral atoms or cations for instance) will render the development
of any vorticity extremely difficult in such small systems. In this respect it is worth
noting that ring vortex nucleation by attractive impurities moving in liquid helium has
never been addressed by realistic methods.

In the course of our research we have developed and implemented several numerical
tools, to mention a few: a Kohn-Sham implementation for 3He clusters that fully
takes into account the symmetries of the system while still using the power of Fast
Fourier Transform techniques to compute convolution integrals,[12] the coupling of two
wavefunctions evolving at very different time-scales through an adiabatic approach,[14]
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the implementation of an efficient damping scheme to prevent bouncing waves from
spoiling the calculation,[15] and the inclusion of a time-evolving electronic configuration
(limited to the P manifold) of an impurity moving through helium.[10]

4.1 Outlook

There are dynamical processes in doped helium systems at the picosecond scale where
the methodology presented here could be applied after some further developments are
introduced. Situations where highly-localized structures appear –such as exciplexes[31] or
snowballs[32]– are particularly challenging as they push the TDDFT formalism to its lim-
its of application. How many atoms conform the snowball around an ion? When and how
does the exciplex appear? How long does it take to form these structures? These are exam-
ples of open questions calling for improvements in the present implementation of TDDFT.
It is worth mentioning the existence of methods to handle solid-like configurations within
DFT,[33] and test particle-like methods[34] that could be tried in dynamical situations
involving these very localized structures. Work along these lines is in progress in the group.
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Pi, and Maŕıa Pilar de Lara-Castells. J. Chem. Phys. 136, 124703 (2012)

• Theoretical modeling of ion mobility in superfluid 4He. Steven L. Fiedler, David
Mateo, Tatevik Aleksanyan, and Jussi Eloranta. Phys. Rev. B 86, 144522 (2012)

2013

• A density functional study of the structure of small OCS@3HeN clusters. David
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