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Abstract

Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-
related death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like
coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal
intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid
treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups:
control group and MA group, fed with a maslinic acid–supplemented diet for six weeks. MA treatment reduced total
intestinal polyp formation by 45% (P,0.01). Putative molecular mechanisms associated with suppressing intestinal
polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice
and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA
suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These
changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA
treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and
underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its
chemopreventive potential against colorectal cancer.
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Introduction

Chemoprevention based on the use of bioactive plant

compounds has emerged as a practical approach to decrease the

risk of various cancers, including colorectal cancer, which is one of

the most frequent malignancies and one of the leading causes of

cancer-related death in western countries. Familial adenomatous

polyposis (FAP), a hereditary colorectal cancer predisposition

syndrome, is caused by a mutated adenomatous polyposis coli (Apc)

gene. FAP patients develop numerous colonic adenomas progress-

ing to colorectal cancer and small intestinal adenomas in most

cases. Interestingly, the ApcMin/+ mouse, a common animal model

of intestinal tumorigenesis, harbors a mutation in the same gene

that causes FAP and, like FAP patients, develops large numbers of

intestinal tumors at an early age [1]. Therefore, the ApcMin/+

mouse model is considered to be an analog of human intestinal

tumorigenesis and is extensively used to study chemotherapeutic

agents for humans.

Natural products have been exploited for treatment of human

diseases for thousands of years. Maslinic acid (MA), a natural

pentacyclic triterpene, is widely present in dietary plants, especially

in olive fruit skins. This compound has attracted much interest due

to its proven pharmacologic safety and its many biological

activities, such as anti-viral [2] and antidiabetogenic [3] functions.

More recently, some studies have shown that MA has anti-cancer

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e59392



capacity in different cell types, including melanoma [4], liver

cancer [5], astrocytoma [6] and colon cancer. Specifically in colon

malignancies, MA possesses potent differentiating and anti-

proliferation properties, inducing cell-cycle arrest in the G0/G1

phase and apoptosis in colon cancer cells without affecting non-

tumor cells [7]. However, because only a few, mainly in vitro,

studies have aimed to characterize the mechanisms of action of

olive components in colon cancer, further research is required.

Therefore, the main objective of the current study was to

determine the efficacy of MA consumption in preventing

spontaneous intestinal tumorigenesis in ApcMin/+ mice and to

characterize the mechanisms by which MA executes its function.

Materials and Methods

Animals and Treatment
A total of 22 male 4-week-old ApcMin/+ mice were purchased

from the Jackson Laboratories (Bar Harbor, ME) and maintained

in the animal facility at the University of Barcelona. Animal care

was strictly in accordance with the European Union Regulations.

The experimental protocols were approved by the Experimental

Animal Ethical Research Committee of the University of

Barcelona in accordance with current regulations for animal care

and use for experimental purposes. MA was obtained from olive

pomace by using the method described by Garcia-Granados et al.

[8]. The extract used was a white powder comprising 98%

maslinic acid and 2% oleanolic acid. This extract is stable when

stored at 4uC. After a 7-day acclimatization period receiving the

standard diet (Teklad Global 18% Protein rodent diet), animals

were randomly divided into two groups of 12 and 10 mice per

group (Control and MA, respectively). Control mice were fed with

the standard diet, and the MA-treated group was fed with the

same diet supplemented with 100 mg of MA/kg feed in order to

mimic the effective concentration inhibiting colon cancer cell

growth [7]. Diets were purchased from Harlan Interfauna Iberica

S.L (Barcelona, Spain). Animals were maintained for 12 h light/

dark cycles, with free access to water and food. Throughout the 6-

week treatment period, animals were observed for any signs of

toxicity; body weights and food and water intake were recorded

weekly. At the end of the 6 weeks, the animals were starved

overnight and anesthetized with volatile isoflurane (ESTEVE,

Barcelona, Spain) before blood samples were obtained by cardiac

puncture. Finally, mice were killed by an overdose of anesthesia.

Measurement of Intestinal Polyps
ApcMin/+ mice develop polyps in both the small and large

intestine, with a greater incidence of intestinal adenomas observed

in the former. Therefore, immediately after the mice were killed,

the small intestine was excised from each mouse, cut longitudi-

nally, and rinsed with phosphate-buffered saline solution (pH 7.4)

to remove intestinal contents. Intestines were pinned flat on

cardboard and then were fixed for 1 day in 4% neutral-buffered

formalin solution (v/v; pH 7.4). Intestinal sections were stored at

room temperature in 1% neutral buffered formalin solution (v/v)

until further analysis. To facilitate tumor quantification and

identification, the small intestine was divided into three equal-

length sections: proximal, medial, and distal. Thereafter, the small-

intestine sections were stained in phosphate-buffered saline

solution (pH 7.4) containing 0.1% (v/v) methylene blue. By using

a stereomicroscope and a measured grid, tumor number and

dimensions were determined for each small-intestine section. The

size of each intestine tumor was categorized as ,1 mm, 1–

1.9 mm, or $2 mm.

RNA Isolation and Gene Profiling by Affymetrix
Microarrays

The large intestine of each dead mouse was removed and placed

on a plastic plate, which was kept at 4uC. After removal of the

rectum, the colon was opened longitudinally with fine scissors, and

mucus and feces were washed away. The colonic mucosal layer

was incubated in Trizol (Invitrogen, Carlsbad, CA) for 3 min and

scraped off of the muscle layer with the edge of a sterile glass slide.

Cells were transferred into 800 mL Trizol, homogenized by

pipetting, and stored at 280uC until RNA extraction. RNA was

isolated by using a combination of two methods. First, total RNA

was isolated by using the Trizol method according to the

manufacturer’s protocol (Invitrogen, Carlsbad, CA). Subsequently,

it was purified by using the RNeasy Mini kit and digesting it with

DNase I (Qiagen, Germantown, MD) according to the manufac-

turer’s protocol. RNA pellets were resuspended in DEPC-treated,

RNase-free water, and their purity and quantity were determined

spectrophotometrically by using the NanoDrop ND-1000 (Nano-

Drop Technologies). RNA samples were considered suitable for

further processing if their absorbance ratio 260/280 was higher

than 1.9. Integrity was tested by using lab-on-a-chip technology on

the BioAnalyzer 2100 (Agilent, Palo Alto, CA, USA). Samples

were considered intact if they had an RNA integrity number (RIN)

above 8. Affymetrix microarrays on the Mouse Genome 430 2.0

platforms were performed according to the protocols published by

the manufacturer (Affymetrix). Five RNA samples chosen

randomly from the control and the MA group were analyzed.

Microarray Data Analyses
Data was standardized by using the Robust Multi-array

Average method [9] and quantile normalization. Differential gene

expression was assessed using the limma [10] package from

Bioconductor. Multiple testing adjustment of p-values was carried

out as described by Benjamini and Hochberg [11]. Biochemical

pathway analysis was conducted using Kyoto Encyclopedia of

Genes and Genomes (KEGG) Mapper, a collection of KEGG

mapping tools for KEGG pathway mapping. The Search&Color

Pathway tool was used to overlay gene expression results from

microarrays onto biochemical pathways found in KEGG. Gene

expression levels were denoted by color codes displayed on the

pathway by gene symbol boxes. Different shapes and pattern

boxes were used to represent induced and suppressed gene

expression. Enrichment analysis was based on MetaCore, an

integrated knowledge database and software suite for pathway

analysis of experimental data and gene lists. Enrichment analysis

consisted of matching gene IDs of possible targets for the

‘‘common’’, ‘‘similar’’, and ‘‘unique’’ sets with gene IDs in

functional ontologies in MetaCore. The probability of a random

intersection between a set of IDs and the size of target list with

ontology entities was estimated by the p-value of hypergeometric

intersection. A lower p-value indicates higher relevance of the

entity to the dataset, which shows in a higher rating for the entity.

The use of the False Discovery Rate (adjusted p-value) allowed

processes with doubtful significance in the experiment to be

rejected and ensures that findings are not contaminated with false

positives.

RT Real-Time PCR
The cDNA was synthesized in a total volume of 20 mL by

mixing 1 mg of total RNA, 125 ng of random hexamers

(Roche), 0.01 M dithiothreitol (Invitrogen), 20 units of RNAsin

(Promega), 0.5 mM dNTPs (Bioline), 200 units of M-MLV

reverse transcriptase (Invitrogen), and 4 mL 56 First-Strand

Maslinic Acid Prevents Intestinal Tumorigenesis

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e59392



Buffer (375 mM KCl, 15 mM MgCl2, 250 mM Tris-HCl,

pH 8.3) (Invitrogen). The reaction mixture was incubated at

37uC for 60 min. The cDNA product was used for subsequent

real-time PCR amplification. The mRNA levels of the selected

genes were determined in an ABI Prism 7000 Sequence

Detection System (Applied Biosystems) by using 9 mL of the

cDNA mixture and 11 mL of the specific primers in Master mix

(all from Applied Biosystems). b2 microglobulin (B2M) RNA

was used as an endogenous control. The reaction was

performed following the manufacturers recommendations.

Fold-changes in gene expression were calculated by using the

standard DDCt method. Experiments were carried out twice

using four samples each time for each condition.

Serum Sampling and NMR Metabolic Analysis
Blood samples were obtained by cardiopuncture of anesthetized

mice, and serum samples were obtained by centrifuging blood at

600 g at 4uC for 10 min. Macromolecules were removed from the

serum samples by using the ultrafiltration method described by

Günther et al. [12]. Briefly, NanoSep 3 K Omega centrifugal

devices were prepared by washing them 10 times with 0.5 mL

water +0.75 g/L sodium azide at 1100 g and 30uC for 1 h. Prior

to use, the mouse samples were stored at 280uC. When needed,

samples were thawed, filtered, and then spun at 9000 g at 4uC for

45 min. Then, 150 mL of the filtrate was diluted to obtain a 600-

mL NMR sample in buffer (60 mmol/L sodium phosphate,

10 mmol/L sodium azide, 0.5 mmol/L TMSP, 10% D2O,

pH 7.0). The samples were analyzed using a Bruker 500

spectrometer operating at 500.18 MHz with a 5 mm triple

resonance probe at 25uC. One-dimensional 1H NMR spectra

were obtained by using 128 transients, 16 steady-state scans, a

spectral width of 6009 Hz, 8192 pairs data points, and a 4.3 s

recycling time. Excitation sculpting was used for water suppres-

sion. The data were processed in NMRLab [13]. An exponential

line-broadening function of 0.3 Hz was applied, and the dataset

was zero-filled to 16384 data points prior to Fourier transforma-

tion. Spectra were phase-corrected manually and referenced to

TMSP (at 0 ppm). To compare peak volumes, the total area of

each spectrum, excluding the regions containing the residual water

signal and the TMSP signal, was normalized to 1. The peaks were

identified and quantified using the Chenomx NMR Suite with

associated libraries (version 4.5; Chenomx Inc., Edmonton,

Canada).

Results

MA Inhibits Intestinal Tumorigenesis in APCMin/+ Mice
During the experiment, all mice were monitored for body

weight and diet consumption. For the last three weeks, ApcMin/+

mice fed with MA showed significantly lower body weight gains

than did controls (Figure 1A). Moreover, MA-treated mice

showed a reduced food intake for the last two weeks (Figure 1B).

However, none of the animals fed with MA produced any sign

of distress or any gross changes in any organ, including liver,

lung, and kidney.

As shown in Figure 2A, MA prevented spontaneous intestinal

polyposis in ApcMin/+ mice. Dietary feeding with MA at 100 mg/

kg of feed significantly (P,0.01) suppressed intestinal polyp

formation by about 45% (9 tumors per mouse) when compared

with the control diet group (16 tumors per mouse). The most

important MA chemopreventive effect was observed on proximal

polyps (69%), followed by medial (4%) and distal polyps (28%)

(Figure 2B). In size distribution analysis of polyps, MA reduced the

occurrence or growth of ,1 mm diameter polyps by 44%, of 1–

2 mm diameter polyps by 33%, and of .2 mm diameter polyps

by 50% (Figure 2C).

Gene Expression Profile Induced by MA
To elucidate the underlying mechanisms by which MA inhibits

intestinal tumorigenesis in ApcMin/+ mice, we determined the

transcriptional profile of the ApcMin/+ mice’s colonic mucosa by

performing cDNA microarray analysis after MA feeding.

In the present study, we analyzed the expression profile of

45101 genes by performing whole mouse genome cDNA

microarrays. MA supplementation changed the expression of

2375 genes (p-value ,0.05), with an absolute fold-change of 1.5 or

more. Of these 2375 differentially expressed genes, 193 were

upregulated, and 2182 were downregulated (Table S1).

First, the list of differentially expressed genes between non-

treated and MA-treated mice was subjected to a KEGG molecular

pathway analysis using the KEGG Mapper tool to identify possible

enrichment of genes with specific biological activities. Figure 3

depicts the KEGG colorectal cancer pathway using KEGG

Mapper and shows that MA downregulated glycogen synthase

kinase 3b (Gsk3b), a protein involved in Wnt/b-catenin signaling

that is affected in ApcMin/+ mice. Interestingly, MA also inhibited

Cyclin D (Ccnd1) (Figure 3), a gene expressed after the

transcriptional activation of b-catenin.

Moreover, MA treatment downregulated the expression of the

Akt1 gene, which codes for the protein AKT (protein kinase B,

PKB) (Figure 3), a serine/threonine kinase critical in controlling

cell survival, insulin signaling, angiogenesis, and tumor formation;

the Tpr53 gene (Figure 3), encoding protein p53, which regulates

cell cycle, apoptosis, senescence, metabolism, and DNA repair; the

Msh6 gene (Figure 3), involved in the post-replicative DNA

mismatch repair system (MMR) and the Tgfb1 gene and its

receptor (Tgfb1r1) (Figure 3).

On the other hand, MA caused upregulation of deleted in

colorectal carcinoma (Dcc) gene (Figure 3), encoding the pro-

apoptotic protein DCC. However, MA also downregulated

DIP13a (Appl1), a mediator of the DCC apoptotic pathway

(Figure 3). Furthermore, MA reduced the expression of the anti-

apoptotic protein Bcl-2 (Figure 3).

Pathway analysis performed using KEGG Mapper was com-

plemented with an independent analysis by MetaCore to obtain a

p-value for each pathway. According to the GeneGO Maps Folder

in Metacore, the maps containing genes corresponding to

cytoskeleton remodeling, transcription, cell cycle, cell adhesion,

immune response, apoptosis, and survival in normal and

pathologic TGF-b-mediated regulation of cell proliferation were

the most significantly modulated (Table 1). In addition to the

aforementioned cell-cycle-associated genes, Metacore analysis

identified downregulation of Cdk4, Cdk6, Btrc, Junb, and Ppp2r4

(Table 1, cell cycle). On the other hand, apart from the apoptosis-

related genes already mentioned, Metacore analysis revealed the

downregulation of the anti-apoptotic gene Bcl2l1 (Bcl-XL) (Table 1,

apoptosis and survival). Moreover, diverse genes involved in signal

transduction pathways that avoid apoptosis have been shown to be

modulated in MA-treated mice. Concretely, MA downregulated

Shc1, Grb2, Sos1, Rps6ka2, Ywhae, Ywhag, Prkar2b, and Prkaca gene

expression.

Validation of Microarray Data by RT-PCR
The changes in mRNA expression observed in the micro-

arrays for Ccnd1, Cdk4, Bcl2, Shc1, Cd44 and Sorbs1 were

validated by performing RT real-time PCR assays (Figure 4).

These targets were selected for RT real-time PCR analysis on
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the basis of their significant participation in the chemopreven-

tive effects produced in ApcMin/+ mice by MA supplementation.

Metabolic Profile of Blood Serum Induced by MA
1H NMR spectroscopy detected a wide range of metabolites in

ApcMin/+ mice blood serum. Upon analyzing the spectra, several

metabolites were seen to vary between MA-treated and control

groups. Whereas glucose and 3-hydroxybutyrate were clearly

different between the two groups, some metabolites, such as

acetoacetate, acetate, acetone, lactate, valine, alanine, leucine,

lysine and creatine, followed an imperfect trend with sample

dependent variations (Table 2). Quantification and comparison of
1H NMR results for well-resolved peaks showed that MA

supplementation gave 3-hydroxybutyrate levels of 125612% in

the MA group compared to the control group whereas it reduced

the levels of glucose to 8969% of that of the control group

(Table 2). Moreover, other metabolites, including citrate, pyru-

vate, glutamine, phenylalanine, tyrosine, isoleucine, urea and

allantoin, were clearly identified but did not show differences

between the MA and control groups (Table 2).

Discussion

MA supplementation inhibits spontaneous intestinal polyposis

without producing any sign of distress or toxicity in APC Min/+

mice. MA-treated mice showed a loss of weight (Figure 1A) that, at

least partly, could be attributed to the reduced food intake

(Figure 1B). In turn, the decrease in food intake might be related to

a satiety effect or differences in energy metabolism produced by

MA [14].

MA treatment significantly reduced total intestinal polyp

formation in ApcMin/+ mice (Figure 2A). However, this effect

was statistically nonsignificant, probably due to fewer polyps and

high variability, when polyps were classified by size or zone, except

for polyps in the proximal small intestine (Figure 2B & C). MA

showed differential efficacy suppressing intestinal polyp formation

depending on small-intestine segment (Figure 2B). This is in

agreement with previous evidence that some dietary and

pharmaceutical compounds provide cancer protection only in

parts of the small intestine [15]. These effects could be related to

several physiologic conditions through the gastrointestinal tract,

such as pH, expression pattern of several enzymes, microbiota,

and concentration due to intestinal content. All these conditions

can modify the chemical structure of a chemopreventive agent and

Figure 1. Body weight and diet consumption monitoring. A) Effects of MA treatment on body weight. B) Effects of MA feeding in food intake.
Data represented as mean 6 SEM (* *, p,0.01).
doi:10.1371/journal.pone.0059392.g001
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Figure 2. MA feeding inhibits intestinal polyposis in APCMin/+ mice. A) Total number of polyps/mouse in the small intestine of ApcMin/+ mice.
B) Number of polyps/mouse in proximal, medial and distal sections. C) Number of polyps/mouse shown by polyp size distribution (,1 mm diameter
polyps, 1–2 mm and .2 mm). Data represented as mean 6 SEM (* *, p,0.01).
doi:10.1371/journal.pone.0059392.g002
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influence its final metabolism and, consequently, its anticancer

effect. For example, resveratrol is almost completely conjugated

upon oral administration, and the most bioactive metabolites are

its glucuronide and sulfate derivatives [16,17]. The inhibitory

efficacy depending on polyp size was more homogeneous,

suggesting that MA inhibits both the appearance and development

of intestinal polyps (Figure 2C).

Comparison of microarray expression profiles of MA-treated

and control mice revealed that MA downregulates the expression

of the Gsk3b (GSK3b) gene (Figure 3). As mentioned above,

ApcMin/+ mice contain a mutation in APC that, together with

Axin and GSK3b, operates by activating b-catenin degradation in

Wnt/b-catenin signaling pathway. Therefore, the mutation of the

Apc gene present in the ApcMin/+ mouse produces a cytosolic

accumulation and an increase in nuclear translocation of b-

catenin. In the nucleus, b-catenin interacts with the transcription

factor T cell factor/lymphoid enhancer factor (TCF/LEF), leading

to an increase in the expression of survival genes, including c-Myc,

Cyclin D1, and Cyclooxygenase-2 (Cox-2) [18]. However, GSK3b has

also been linked to a prosurvival signal in a Wnt/b-catenin-

independent manner. In this regard, GSK3b is constitutively

activated in colon cancer cells, where it is implicated in

tumorigenesis and cancer progression. Accordingly, the downreg-

ulation of GSK3b inhibits proliferation and enhances apoptotic

cell death in chronic lymphocytic leukemia B cells, renal cancer

cells, pancreatic cancer cells, and colon cancer cells [19,20]. These

results may indicate that MA confers a protective effect by

inhibiting GSK3b.

Overexpression of Akt is an early event in colorectal carcino-

genesis [21], thus the lower expression of Akt in MA-treated mice

may be related to the inhibition of intestinal polyp growth in

ApcMin/+ mice. Another common clinicopathologic feature of

colorectal carcinoma is the presence of mutations in p53 (Tpr53).

Regarding APCMin/+ mice, p53 inactivation has been reported to

have little effect on the incidence or the progression and apoptosis

of adenomas [22]. Nevertheless, inhibition of p53 in mice treated

with MA indicates that the death process is p53-independent.

Furthermore, advanced colorectal adenomas usually present

changes in transforming growth factor beta (TGFb) signaling.

Generally, cancerous cells increase their production of TGFb,

which acts on the secreting cancerous cells themselves and on

surrounding cells regulating cell growth, differentiation, and

apoptosis [23]. Thus, reduction of TGFb signaling induced by

MA through the downregulation of Tgfb1 and Tgfb1r1 may be

involved in the inhibition of tumorigenesis in ApcMin/+ mice. Also

in the advanced stages of colorectal pathogenesis, deleted in

Figure 3. Adaptation of KEGG colorectal cancer pathway using KEGG Mapper. Circular pathway members were significantly up-regulated
and rectangular members were found to be down-regulated in the intestinal mucosa of ApcMin/+ mice treated with MA. Horizontal lines indicate a
fold change (FC) of between 1.5 and 2 and vertical lines a FC of more than 2.
doi:10.1371/journal.pone.0059392.g003
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colorectal carcinoma (Dcc) gene expression appears to be lost or

markedly reduced. This gene encodes a netrin 1 receptor that

functions as a tumor suppressor via its ability to trigger tumor cell

apoptosis [24]. MA caused upregulation of DCC, indicating a pro-

apoptotic effect. However, a mediator of the DCC apoptotic

effect, DIP13a (Appl1), was downregulated by MA treatment.

DIP13a interacts with a region on the DCC cytoplasmic domain

that is required for the induction of apoptosis [25]. However,

DIP13a also binds many other proteins, including RAB5A,

AKT2, PI3KCA, and adiponectin receptors to regulate cell

proliferation and adiponectin and insulin signaling. Given that

little is known about DIP13a, its inhibition by MA could indicate a

beginning of MA-resistance in ApcMin/+ mice, antagonizing DCC

apoptotic activation but also modulating other DIP13a biological

functions.

Moreover, expression analysis revealed that the induction of

apoptosis by MA is based on the downregulation of the anti-

apoptotic genes Bcl-2 and Bcl2l1 (Bcl-XL) (Table 1, apoptosis and

survival). Therefore, this downregulation by MA acts as a pro-

apoptotic stimulus. This finding is in agreement with that of a

recent study where western blotting analysis showed that the

treatment of the HT29 human colon adenocarcinoma cell line

with MA induced the repression of Bcl2 [26]. Besides, different

signal transduction pathways that save cells from apoptosis were

inhibited by MA. For instance, MA downregulated epidermal

growth factor receptor (EGFR) signaling, which is related to

mitogenesis and tumorigenesis. After EGFR activation, a trimeric

complex between tyrosine phosphorylated Shc, Grb2, and Sos is

formed and this, in turn, triggers downstream mitogenic signaling

[27]. MA exerted this action by downregulating Shc1, Grb2, and

Sos1 gene expression. Furthermore, MA treatment reduced the

expression of the Rps6ka2 gene, coding for the protein p90Rsk, a

downstream mediator of the mitogen-activated protein kinase

(MAPK) pathway, which has been reported to inhibit apoptosis via

the stimulation of binding of Bad to 14-3-3 and the inactivation of

Bad-mediated cell death [28]. Interestingly, MA also triggered this

apoptotic action by inhibiting the expression of Ywhae and Ywhag,

which code for different members of the family of 14-3-3 proteins,

and thus reducing Bad sequestration and increasing Bad-induced

apoptosis via the mitochondrial death pathway [29]. In addition,

MA reduced the expression of Prkar2b and Prkaca coding for the

regulatory subunit type II-beta of the cAMP-dependent protein

kinase (PKA RII-beta) and the catalytic subunit alpha of the

cAMP-dependent protein kinase (PKA C-alpha), respectively.

PKA is a serine/threonine kinase that is activated by cyclic

adenosine monophosphate (cAMP). Effects of PKA on apoptosis

are likely to be largely dependent on the cell type and the

mechanisms by which apoptosis is induced [30]. In the case of

ApcMin/+ mice, treatment with a PKA antagonist, Rp-8-Br-

cAMPS, reduces tumor promotion and b-catenin levels, nuclear

Table 1. Pathways modified in the colon mucosa of ApcMin/+ mice by MA treatment as found in Metacore.

GeneGO Maps/Modulated pathways $p-value {Significant/total genesModulated genes

Cytoskeleton remodeling

TGF, WNT and cytoskeletal remodeling (Q) 3,57E209 23/111 Ncl, Tgfb1, Tgfbr1, Wnt5a, Fzd7, Dvl1, Dock1, Akt1, Gsk3b,
Map3k7, Mapk14, Limk2, Ppard, Trp53, Ccnd1, Cfl1, Actn1,
Arpc4, Sos1,Grb2, Pxn, Tln1, Shc1

Cytoskeleton remodeling (Q) 4,91E207 16/102 Ncl, Tgfb1, Tgfbr1, Dock1, Gsk3b, Map3k7, Mapk14, Limk2,
Cfl1, Actn1, Arpc4, Sos1,Grb2, Pxn, Tln1, Shc1

Transcription

CREB pathway (Q) 1,18E207 16/44 Akt1, Mapk14, Ccnd1, Sos1, Grb2, Shc1, Clca2, Camk2g,
Gprc5a, Prkcb, Prkar2b, Rps6ka2, Cdo1, Prkaca, Fbxw5,
Fbxw11

Cell cycle

Regulation of G1/S transition (part 1) (Q) 1,61E207 11/38 Cdk4, Cdk6, Junb, Btrc, Ppp2r4, Anapc1, Tgfb1, Tgfbr1,
Gsk3b, Ccnd1, Ccnd2

Cell adhesión

Chemokines and adhesion (Q) 3,55E207 19/100 Dock1, Akt1, Gsk3b, Limk2, Cfl1, Actn1, Arpc4, Sos1,Grb2,
Pxn, Tln1, Shc1, Thbs1, Cd44, Cd47, Itga3, Msn, Flot2, Eif4g1

Immune response

Signaling pathway mediated by IL-6 and IL-1 (Q) 3,56E206 9/27 Sos1,Grb2, Shc1, Il6st, Jak1, Ikbkap, Nfkbie, Irak1, Cebpb

IL-15 signaling (Q) 2,19E206 12/64 Akt1, Mapk14, Sos1,Grb2, Shc1, Il2rg, Adam17, Nfkbie, Prkce,
Ets1, Bcl2, Bcl2l1

MIF - the neuroendocrine-macrophage connector (q) 1,92E204 3/46 Plcb2, Pla2g4c, Itpr2

PIP3 signaling in B lymphocytes (q) 1,34E204 5/42 Plcb2, Pik3r1, Itpr2, Foxo3, Igh-6

Apoptosis and survival

BAD phosphorylation (Q) 4,21E206 11/42 Bcl2, Bcl2l1, Sos1, Grb2, Shc2, Rps6ka2, Ywhae, Ywhag,
Ppm1g, Prkar2b, Prkaca

Normal and pathological TGF-beta-mediated regulation of cell proliferation

Normal and pathological TGF-beta-mediated
regulation of cell proliferation (Q)

2,71E206 10/33 Tgfb1, Tgfbr1, Gsk3b, Mapk14, Trp53, Ccnd1,Sos1,Grb2, Shc1,
Map2k6

More significantly modulated pathways in Metacore using genes with FC.1.5 and adjusted p-value,0.01. q/Q, activation/inhibition of the biological process by MA;
$p-value that corresponds to the GeneGO Map/Pathway.
{Ratio between the number of significantly modulated genes by MA and the total number of genes per GenenGO Map/Pathway in Metacore.
doi:10.1371/journal.pone.0059392.t001
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translocation, and expression of some of its target genes, such as c-

Myc and cyclooxygenase-2 (Cox-2) [31].

On the other hand, MA inhibited the expression of some genes

related to cell cycle (Table 1, cell cycle). Cell cycle progression is

highly controlled by a complex network of signaling pathways that

eventually converge to regulate the activity of cyclin/cyclin-

dependent kinase (CDK) complexes. There are different members

of the CDK family, and each CDK is dependent on a particular

cyclin partner [32]. In this regard, MA downregulated the gene

expression of Cyclin D (Ccnd1), which drives the G1 phase

progression. In agreement with this result, the results of other

studies have related MA antitumor activity to an inhibition of

Cyclin D1 expression [33]. Moreover, MA reduced the expression

of Cyclin D partners during G1 phase, Cdk4 and Cdk6, inhibiting

the G1 cyclin-CDK complexes and leading to G1-phase cell-cycle

arrest. Specific and timely proteolysis of cell-cycle regulators by the

ubiquitin-proteasome system represents an important mechanism

that ensures proper progression through the cell cycle in a

unidirectional and irreversible manner. Furthermore, in cancer

cells, deregulation or suppression of the proteasome is supposed to

induce uncontrolled proteolysis and is linked to having a more

sensitive profile to drugs than that of normal cells [34]. MA

inhibited the ubiquitin ligase SKP1–CUL1–F-box-protein (SCF)

complex by downregulating the Btrc gene. bTrCP protein

pertaining to the F-box family is the substrate-recognition

component of the SCF ubiquitin ligase complex, which mediates

the ubiquitination and subsequent proteasomal degradation of

target proteins involved in cell-cycle checkpoints, protein transla-

tion, cell growth, and survival. Interestingly, bTrCP plays an

important role allowing G1/S transition and also mediates the

degradation of the pro-apoptotic protein BimEL to promote cell

survival [35] and has been reported to be overexpressed in

colorectal tumors [36]. Hence, its downregulation by MA could be

related to cell cycle arrest and subsequent inhibition of spontane-

ous polyposis in ApcMin/+. Additionally, MA modulates other cell-

cycle regulatory proteins. For example, MA suppresses the

expression of the gene encoding the oncogenic protein JunB,

which is an essential component of the activating protein-1 (AP-1)

transcription factor that is involved in the control of cell growth,

differentiation, inflammation, and neoplastic transformation. It is

noteworthy that a recent study demonstrated that the chemopre-

ventive effects of MA in Raji cells depends on the inhibition of

nuclear factor-kB (NF-kB) and the activation of Activator protein

(AP-1) [37]. Another protein controlling cell growth and division

that was downregulated in ApcMin/+ mice after treatment with MA

was a regulatory subunit of protein phosphatase 2A (PP2A)

(Ppp2r4). This protein has been described to dephosphorylate b-

catenin, acting as a positive regulator of Wnt signaling [38,39].

Moreover, Ppp2r4 function is essential for cell survival [38,39].

Therefore, MA’s downregulation of the gene encoding this protein

could be involved in its antitumor effect.

Additionally, evidence is accumulating to suggest that proteins

involved in regulating actin cytoskeleton and cell adhesion also

participate in mitogenesis, either as unique transducers of growth

signals or as monitors of anti-apoptotic conditions, or both [40,41].

In this regard, MA downregulated several genes related to

cytoskeleton remodeling and cell adhesion such as Cd44 (Table 1,

cytoskeleton remodeling and cell adhesion). A recent study using

short hairpin RNA against CD44 to silence its expression in

SW620 colon cancer cells showed that reduced expression of the

protein inhibited cell proliferation, migration, and invasion. In

agreement with our results, reduced expression of CD44 induced

Figure 4. Validation of genes that were differentially expressed in the colon mucosa of ApcMin/+ mice after MA treatment by RT-
PCR. Mean 6 SD are shown. *, p,0.05; * *, **p,0.01, versus the untreated condition. n = 8/group.
doi:10.1371/journal.pone.0059392.g004

Maslinic Acid Prevents Intestinal Tumorigenesis

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e59392



the same effects that we describe for MA, cell cycle arrest in the

G1 phase and apoptosis via the downregulation of Bcl-2 and Bcl-

xL, and also via the upregulation of BAX [42].

Regarding DNA repair system, MA inhibited the expression of

the Msh6 gene (Figure 3). DNA repair is associated with the

prevention of mutagenesis and cancer but can also be associated

with the detection and repair of mismatches derived from

chemically induced DNA damage with genotoxic agents. In this

regard, the utility of genotoxic drugs is often limited by the

enhanced ability of cancer cells to repair their DNA. Therefore,

attenuation of the DNA repair system sensitizes tumor cells to

DNA-damaging agents [43]. Notably, MA has been reported to

interfere with DNA integrity in HT29 cells [26]; hence, it could be

acting, at least in part, as a genotoxic agent. In this case, Msh6

downregulation could trigger DNA damage and posterior

apoptosis. Anyway, inhibition of only one DNA repair system

would hardly affect final repairing activity due to the functional

redundancy of MMR proteins.

Finally, MA also downregulated immune system–related genes

(Table 1, immune response). Inflammation and immune system

responses have controversial effects in cancer, either by preventing

and inhibiting tumor development or, when inflammation

becomes chronic, by promoting the growth and progression of

cancer [44]. In this regard, chronic inflammation plays a decisive

role in the development and sustenance of intestinal adenomatous

polyps in the ApcMin/+ mice [45]. Accordingly, MA has been

implicated in anti-inflammatory and immune-attenuating actions

via suppression of NFkB [46]. Therefore, in this case, the

downregulation of immune system responses by MA may reduce

tumor growth. Regarding also immune function, it is noteworthy

that MA inhibits the expression of Cxcr4 gene (Table S1), encoding

for chemokine (C-X-C motif) receptor 4, which allows HIV

infection [47]. Hence, this result may explain the anti-HIV activity

of MA [48].

On the other hand, 1H NMR spectroscopy results can be

explained by some of the genetic modulations induced by MA.

The decrease in serum glucose concentration in ApcMin/+ mice

treated with MA could be a consequence of the upregulation of the

c-Cbl–associated protein (CAP) encoded by Sorbs1. CAP plays a

critical role in insulin-regulated GLUT4 translocation [49] and

hence, its activation by MA promotes glucose cellular uptake.

Moreover, low glucose levels in mice serum can be due to a

glycogen accumulation triggered by MA treatment. First, glycogen

reservoirs are regulated by the aforementioned GSK3b. This

protein, apart from its role in Wnt and pro-survival signaling, is

able to phosphorylate and inhibit glycogen synthase activity,

impairing glycogen synthesis. Thus, inhibiting GSK3b by MA

implies an activation of glycogen accumulation. Second, MA also

reduced Phka1 expression. Because the Phka1 gene encodes PHK

protein, which activates glycogen phosphorylase and leads to the

conversion of glycogen into glucose-1-phosphate, by downregu-

lating PHK MA inhibits glycogen degradation. In addition to

these transcriptional modifications, MA has been described as a

potent direct inhibitor of glycogen phosphorylase, thus triggering

glycogen reservoir accumulation [50]. A significantly increase in

the ketone body 3-hydroxybutyrate level was also found in serum

Table 2. List of metabolites identified for 1H NMR data by Chenomx database in ApcMin/+ mice serum.

Serum samples from maslinic acid-treated mice were:

Perfect trends AUC Control AUC MA {% MA/Control $p-value

Q Glucose 3.930e+0961.531e+08 3.504e+0962.353e+08 8969 0,0229

q 3-Hydroxybutyrate 3.168e+0861.182e+07 3.960e+0862.206e+07 125612 0,0007

Imperfect trends

q Acetoacetate

q Acetate

q Acetone

Q Lactate

Q Valine

Q Alanine

Q Leucine

Q Lysine

Q Creatine

No pattern

Citrate

Pyruvate

Glutamine

Phenylalanine

Tyrosine

Isoleucine

Urea

Allantoin

q/Q Higher/Lower in MA-fed group when compared with the control diet group.
{Ratio between the area under the curve (AUC) in MA and the AUC in controls for the corresponding metabolite.
$p-value relative to difference between MA and control.
doi:10.1371/journal.pone.0059392.t002
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from MA-treated mice. The decrease in serum glucose may

contribute to the increase in serum ketone body concentrations

because, although ketone body synthesis occurs normally under all

conditions, its formation increases as glucose availability drops. To

support the elevated ketone body synthesis in MA-treated mice,

high fatty acid oxidation is necessary for the production of acetyl-

CoA used as substrate. In mice treated with MA, fatty acid

degradation is activated by the upregulation of Cpt1, which

encodes carnitine palmitoyltransferase I (CPT I), the mitochon-

drial gateway for fatty acid entry into the matrix and, thus, the

main controller of fatty acid oxidation. It is noteworthy that this

observation may be involved in the loss of weight detected in

ApcMin/+ mice after MA treatment. Moreover, our results are in

agreement with previous studies describing antihyperlipidemic

[51] and antihyperglycemic [14] activities for MA. Given that

accumulating evidence suggests that obesity [52] and hyperglyce-

mia [53] are associated with increased risk of colorectal cancer, the

metabolic changes induced by MA treatment are potentiating its

chemoprotective effect in ApcMin/+ mice.

Taken together, our data show that MA is a nontoxic agent that

effectively inhibits intestinal polyposis in genetically predisposed

ApcMin/+ mice. The cancer chemopreventive effects of MA are

mainly related to the modulation of cancer progression–related

genes, suggesting an induction of a G1-phase cell-cycle arrest and

activation of apoptosis by a p53-independent mechanism.

Moreover, the expression of genes related to energy metabolism

is altered by MA to support a protective metabolic profile. In

summary, our findings provide the first in vivo evidence that MA is

a promising nutraceutical for colon cancer prevention.

Supporting Information

Table S1 Differentially expressed genes by MA treat-
ment in the colon mucosa of APCMin/+ mice. List of

differentially expressed genes assessed using the limma package

from Bioconductor (Fold change.1.5 and adjusted p-val-

ue,0.05).
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