
 
 
 
 

 
 
 
 

Statistical Physics of Water in Hydrophobic 
Nano-Confinement and at Proteins Interfaces 

 
Valentino Bianco 

 
 
 

�
�
�
�
�
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB 
(diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro 
ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza 
la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta 
reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de 
partes de la tesis es obligado indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the 
TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the 
intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative 
aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital 
Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not 
authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or 
citation of parts of the thesis it’s obliged to indicate the name of the author. 



Statistical Physics of Water in Hydrophobic

Nano-Confinement and at Proteins Interfaces

Valentino Bianco

Tesis Doctoral

Programa de Doctorado en F́ısica

Departament de F́ısica Fonamental

Facultat de F́ısica Universitat de Barcelona

2013

Supervisor Dr. Giancarlo Franzese



ii



iii

... to Ginevra.



iv



Contents

Abstract 1

Resumen en Castellano 3

1 Introduction on water 7

1.1 Importance of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Polymorphism and polyamorphism . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Different scenarios for supercooled water behavior . . . . . . . . . . . . . . 10

1.4 State of the art on hydration water at low temperature . . . . . . . . . . . 13

2 A coarse-grain model for a confined water monolayer 17

2.1 The need of coarse-grain approach . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Coarse grain of the volume . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Isotropic interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Directional HB interaction . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 HB cooperativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Volume dependence on HBs . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Wolff algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Internal units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Thermodynamic results 29

3.1 TMD line and Spinodals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Thermodynamic response functions . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Isothermal compressibility . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Isobaric specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Thermal expansion coefficient . . . . . . . . . . . . . . . . . . . . . 35

3.3 The Widom line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 The Liquid-Liquid 1st order phase transition and the Liquid-Liquid critical
point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



vi CONTENTS

4 Percolation approach to supercooled water 47
4.1 Site-bond correlated percolation . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Percolation probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Cluster distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Mean cluster size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Connectivity length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Scaling analisys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Role of interfacial HBs on protein stability 65
5.1 Overview on protein stability . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Thermodynamics of proteins unfolding . . . . . . . . . . . . . . . . 66
5.1.2 Protein phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Models for protein unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Hydrophobic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Pressure effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Coarse-graining the water-water interaction at protein interface . . . . . . 74
5.3.1 Monte Carlo algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Phase diagram of a solvated homopolymer . . . . . . . . . . . . . . . . . . 78
5.4.1 Tune of strength of interfacial HB and hydration shell density . . . 82

6 Conclusions 87

Appendix A: Usefull thermodynamic relations 89

Appendix B: Theory of scaling fields 91

Appendix C: Histogram reweighting method 95

Bibliography 95

Curriculum Vitae 119



List of abbreviations

HB hydrogen bond

HDL high-density liquid

LDL low-density liquid

LG liquid-gas

LL liquid-liquid

LLCP liquid-liquid critical point

MC monte carlo

n.n. next neighbor

SR stability region

TMD temperature of maximum density



viii CONTENTS



Abstract

Water is commonly associated with life. This substance affects the living beings in countless

aspects and length scales, ranging from molecular biology to climatology. Water exhibits a

long series of anomalous behaviors. These anomalies can be rationalized as a consequence

of a second critical point in the supercooled region of the liquid phase. Nevertheless, the

large part of the phase diagram of supercooled water is to date experimentally inaccessible

for the inevitable crystallization of the bulk liquid. Confinement of water in nano-structures

is a possible way to prevent the crystallization of molecules.

In this thesis we present a coarse-grain model to describe the physical behavior of water

at hydrophobic interfaces. The essential feature of the model is the description of water-

water interaction via directional and cooperative components of the hydrogen bond (HB).

We explore the phase diagram of supercooled water nanoconfined between hydrophobic

walls. Our results, grounded in statistical physics methods and Monte Carlo simulations,

show the presence of a line of first order phase transition in the temperature-pressure

plane separating two liquid phases and ending in a liquid-liquid critical point (LLCP).

The LLCP universality class approaches the one of the Ising model in two dimensions

in the thermodynamic limit, while large deviations are observed for strong confinement.

Below the LLCP we find the locus of maxima of correlation length (the Widom line) of the

system. Near the LLCP we find a large increase of the thermodynamic response functions

consistent with the anomalous behaviors of water.

These predictions are confirmed by a percolation description of water molecules based

on the definition of cluster of correlated degrees of freedom. Along the phase transition line

and the Widom line we recover a power law cluster distribution. At the LLCP the scaling

of the percolation quantities agree with the Ising critical exponents.

The density, energy and entropy fluctuations that are at the base of the anomalies of

water and the existence of its LLCP have also consequences in the context of protein sta-

bility. General thermodynamic prediction asserts the existence of a close stability region

(SR) in temperature-pressure plane for the native folded state of a protein. Experimental
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evidences support this theory showing hot-, cold- and pressure-denaturation. Water be-

havior at the protein interface is expected to be the driving force for the folding-unfolding

process. To shed light on this mechanism we study the SR of a folded hydrophobic polymer

solvated in the coarse-grain water. Tuning the water-water interaction at the interface and

the density of the hydration shell we find an elliptic protein SR in the temperature-pressure

plane, qualitatively consistent with available experimental data. Our work contributes to

the ongoing debate about the role of hydration water in stabilizing the native protein

state. We show here that the physics of water, and in particular its energy, density and

entropy fluctuations are sufficient to rationalize the existence of a protein SR with respect

to temperature and pressure.



Resumen en Castellano

El agua recubre 2/3 de la Tierra, afecta su clima y morfoloǵıa, es fundamental en muchas

tecnoloǵıas y disuelve casi todas las sustancias qúımicas, por lo menos en parte. A pesar

de ser la sustancia más corrosiva, es fisiológicamente inocua y es el componente principal

de los seres vivos: el 60% del peso del cuerpo humano de un adulto se debe a su contenido

de agua. La mayor parte de este porcentaje de agua se encuentra confinada en las células,

y la restante fluye en la sangre y en estrecho canales debajo de los tejidos finos. Muchos

seres vivos necesitan agua debido al hecho que ésta participa en la mayoŕıa de los procesos

biológicos: en el metabolismo de los nutrientes y su transporte a los tejidos, en la eliminación

de los residuos celulares y en la comunicación entre células. Datos recientes demuestran

que la dinámica del agua desarrolla un papel fundamental en los procesos biológicos, como

la determinación de la tasa de plegamiento de las protéınas.

A pesar de su importancia y abundancia, y de innumerables estudios, su compor-

tamiento sigue siendo dif́ıcil de entender respecto a los fluidos simples, del tipo argón.

El agua tiene más de sesenta anomaĺıas. Por ejemplo, su fluidez aumenta al aumentar la

presión y su densidad disminuye al bajar la temperatura; tiene una capacidad extraor-

dinaria de absorber calor, esencial para regular la temperatura de máquinas, de nuestro

cuerpo y del planeta mismo. Su capacidad caloŕıfica y su compresibilidad presentan un

mı́nimo en 35◦C y 46◦C respectivamente, y ambas aumentan al bajar la temperatura como

si fueran divergentes a una temperatura alrededor de −45◦C, aśı como su expansividad

térmica que se hace negativa debajo de 0◦C. El agua puede permanecer ĺıquida, en un

estado metaestable a temperaturas tan bajas como −20◦C en insectos, −37◦C en gotas

suspendidas en las nubes y −47◦C en plantas. Además en laboratorio es posible observar

el agua sobreenfriada a −41◦C a presión atmosférica y a −92◦C a 2 kbar.

Entre las posibles explicaciones de este comportamiento anómalo encontramos cuatro

teorias basicas

• El escenario del ĺımite de estabilidad, que está fundado sobre el hipótesis de un
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cambio de la pendiente de la espinodal ĺıquido-gas, de positiva a altas temperaturas

a negativa a bajas temperatura.

• El escenario del punto cŕıtico ĺıquido-ĺıquido, que supone la existencia de una tran-

sición de fase del primer orden entre dos ĺıquidos metaestables en la región súper-

enfriada. Esta transición acaba en un punto cŕıtico ĺıquido-ĺıquido.

• El escenario sin singularidad, que relaciona el incremento anómalo de la compresibil-

idad con el comportamiento de la linea de temperatura de máxima densidad.

• El escenario sin punto cŕıtico, que se basa en la existencia de una transición de fase

orden-desorden, con una posible discontinuidad en la densidad, que se extiende a

presión negativa hasta el ĺımite de estabilidad del agua sobre-enfriada.

Los objetivos de esta tesis son: i) explorar el diagrama de fases de baja temperatura

de aguas confinadas; ii) investigar el comportamiento del agua de hidratación en la inter-

faz con protéınas; iii) analizar como la region de estabilidad de las protéınas depende de

las interacciones interfaciales. Conforme a esto hemos desarrollado un modelo de grano-

grueso capaz de captar algunas caracteŕısticas microscópicas de la interacción agua-agua

in una interfaz hidrofobicas que permiten entender el papel del agua en la stabilidad de las

protéınas.

Resultados obtenidos

A continuación, mostramos una lista de todos los resultados principales obtenidos en esta

tesis. La mayoŕıa de los resultados se obtuvieron utilizando simulaciones Monte Carlo

En el caṕıtulo 3, hemos analizado el diagrama de fases por baja temperatura de una

mono-capa de agua confinada entre paredes paralelas hidrófobas. Hemos calculado las lineas

de temperatura de máxima y mı́nima densidad, y la región donde se encuentra el máximo

de la longitud de correlación, que define la ĺınea de Widom. Encontramos dos lineas de

extremos para cada función de respuesta termodinámicas: una ĺınea, a baja temperatura,

de extremos más fuerte , que se solapa con la ĺınea Widom, otra ĺınea, a alta temperatura,

de extremos más débiles. Esos resultados están de acuerdo con resultados experimentales

y validan el modelo. Encontramos un punto cŕıtico ĺıquido-ĺıquido en la región sobre-

enfriada, al final de una ĺınea de transición de primer orden entre dos fases ĺıquidas que se

caracterizan por diferentes valores de la enerǵıa y densidad. El punto critico pertenece a la

clase de universalidad Ising en dos dimensiones sólo por tamaño de las paredes muy grandes.
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Sorprendentemente, reduciendo el tamaño de la monocapa confinada sin variar la distancia

entre las paredes, es decir aumentando el confinamiento, la clase de universalidad desvia

hacia la de Ising en tres dimensiones. Este efecto es debido a (i) la elevada cooperatividad de

la red de puentes de hydrogeno y (ii) a su bajo número de coordinación a bajas temperaturas

que hace que la monocapa tenga un comportamiento similar a lo del agua no confinada

dentro de la primera capa de coordinación.

En el caṕıtulo 4, presentamos una descripción geométrica de la región de moléculas

correladas en la monocapa sobreenfriada. Los clusters de moléculas están construidas sigu-

iendo el enfoque de percolación propuesto por Kastelein-Fortuin y Coniglio-Klein. La prob-

abilidad de que dos moléculas pertenescan al mismo grupo depende de las condiciones

termodinámicas de temperatura y presión. Nuestros resultados enseñan que la ĺınea de

transición ĺıquido-ĺıquido y la ĺınea Widom se caracterizan por una ĺınea de percolación,

donde la distribución de los clúster decae segun ley de potencia. Esta ĺınea marca la región

donde las fluctuaciones de puentes de hydrogeno se extienden por toda la red. A baja

presión la percolación está relacionada con la reordenación tetraédrica local de la red de

puentes de hydrogeno. A alta presión la linea de percolación se asocia a la rapida formación

de puentes de hydrogeno, dando lugar a descontinuidad en la densidad, asociado a la tran-

sición de fase ĺıquido-ĺıquido. Las análisis de las cantidades de percolación en la región

cŕıtica confirman la existencia de un punto cŕıtico que pertenece a la clase de universalidad

de Ising en dos dimensiones.

En el caṕıtulo 5, hemos adoptado el modelo de grano-grueso en el contexto de plegamiento

de protéınas. Sin entrar en el complejo mecanismo de plegamiento de protéınas hemos es-

tudiado cómo la red de puentes de hydrogeno puede estabilizar el estado nativo de una

protéına. Los elementos fundamentales del model son: la variación de la interacción agua-

agua en la interfaz hidrofóbica, el aumento de densidad del agua interfacial al aumentar

la presión. El modelo muestra que la protéına se desnaturaliza a alta temperatura, a baja

temperatura, a alta presión y a baja presión, reproduciendo las caracteŕısticas de desnat-

uralización observadas en los experimentos. La región de estabilidad de la protéına, tiene

una forma eĺıptica de acuerdo con la teoŕıa. Hemos estudiado por fin la dependencia de

la región de estabilidad de los parametros, encontrando que la variación de la enerǵıa

de puentes hydrogeno a la interfaz y la compresibilidad de la capa de hidratación son

mecanismos fundamentales para reproducir una región de estabilidad cerrada en el plano

temperatura-presión.
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Chapter 1

Introduction on water

1.1 Importance of water

Water covers 2/3 of the Earth, affect its climate and morphology, it is critical in many

technologies and dissolves almost all chemicals, at least in part [1]. Despite being the most

corrosive substance, it is physiologically harmless and is the main component of living

beings: approximately 60% by weight of an adult human body is due to its water content.

Most of this water ( � 60%) are confined in cells, while the remaining water flows below

tissues and in narrow blood vessels [2,3]. Living beings need water because it is involved in

most biological processes: in the metabolism of nutrients and their transport to the tissues,

in the disposal of cellular waste, and in the communication between cells [4]. Enzymes and

proteins need to be suspended in solution to change their conformation and to adopt

their active structures, and water governs the rate of recognition that proteins, nucleic

acids and membranes have of ligands and drugs [5]. Our failure in fully understanding the

behavior of water is one of the main limitation we have in predicting protein structures

and in designing drugs. For example, recent data show that the dynamics of water plays a

fundamental role in biological processes, such as determining the proteins-folding rate [6].

Also, the hydrophobic collapse of proteins and the rapid folding of their secondary structure

are mediated by the water molecules that are in the proximity of the amino acids [7]. Other

examples come from the protein-protein interactions that are affected by the dynamics of

the hydration-water layer [8].

Despite its importance and countless studies, the behavior of water remains poorly

understood with respect to simple fluids, such as argon [9]. Water has more than sixty

anomalies. For example, its diffusion increases with increasing pressure and its density

decreases with decreasing temperature below 4 ◦C. As a consequence, the ice floats on
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liquid water and lakes freeze from the top when the outside temperature goes down, while

water at 4 ◦C sinks toward the bottom allowing the fish to keep swimming and living.

Water has, also, an extraordinary capacity to absorb heat, essential for regulating the

temperature of engines, of our body and of our planet [10]. Again, this property is essential

for the life in cold waters, because it makes water, near freezing, not much susceptible to

temperature changes, keeping the bottoms of lakes at 4 ◦C despite the outside temperature

can go far below 0 ◦C, thanks to the ice layer on the surface.

The anomalous behavior of heat transfer and volume changes in water is emphasized

by its heat capacity and compressibility that have a minimum at 35 ◦C and 46 ◦C, re-

spectively. Both quantities increase upon decreasing temperature as if they were diverging

at a temperature around -45 ◦C [10]. Furthermore, its thermal expansion coefficient turns

negative below 0 ◦C [10] (Fig. 1.1).

Another peculiar property of water is that, contrary to what we could think, water does

not freeze easily at 0 ◦C and tends to stay liquid at moderately negative temperatures.

How far below 0 ◦C water can remain liquid in a supercooled, metastable state depends

on several conditions. For example, water can be liquid at temperatures as low as -20 ◦C

when confined in insects bodies, or -37 ◦C in the drops forming the clouds [11], or -47 ◦C

when confined in plants [12]. The best records for bulk are achieved in laboratory where it

is possible to observe supercooled water at -41 ◦C at atmospheric pressure [13] and at -92
◦C at 2 kbar [14].

1.2 Polymorphism and polyamorphism

The possible explanations for this anomalous behavior are numerous and controversial [15].

It is clear that the main characteristic of the molecules of H2O is its ability to form

hydrogen bonds (HB), but the very definition of this type of bond is controversial as much

as its experimental measurement [16]. The common understanding is that on average each

molecule forms four HBs, each with very short life-time in a such a way that they are

continuously formed and broken while water molecules diffuse in the liquid phase.

These bonds strengthen the attraction among molecules, resulting in values for the

melting point, boiling point and enthalpy of vaporisation of H2O higher than what would

be expected by comparing with hydrides of elements in the same groups as O, i.e. S, Se,

and Te [16]. Being the typical bond distance smaller than the van der Waals radius, the

formation of HBs implies a balance among dispersive forces–at their repulsive distance–and
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Figure 1.1: Schematic dependence on temperature at atmospheric pressure of (a) the
isothermal compressibility KT ≡ −(1/V )(∂V/∂P )T proportional to fluctuations of mo-
lar volume, (b) the specific heat CP ≡ (∂H/∂T )P proportional to the fluctuations of
entropy and (c) the thermal expansion coefficient αP ≡ (1/V )(∂V/∂T )P proportional to
the cross-fluctuations of volume and entropy. The behavior of a normal fluid (indicated by
the dashed line) is approximately an extrapolation of the behavior of liquid water at high
temperature. Anomalies exhibited by water are apparent above the melting temperature
Tm and become more striking when the fluid is supercooled below Tm.
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electrostatic attractive forces [17] with a partial covalent nature [18]. As a consequence, the

four water molecules, that are H-bonded to a central one, tend to repel each other and to

form a tetrahedral structure. This structure possibly propagates at the second shell of the

central water molecule, giving origin to an “open” structure. This tetrahedral structure is

characterized by a density that is lower than the “closed” structure achieved when the HBs

are broken at high pressure [19]. A fully developed tetrahedral network is well observed in

ice Ih (hexagonal ice) and Ic (cubic ice). These are only two of the more than 16 crystal

forms of water. Water is, therefore, a polymorph [20].

Just as there are crystalline polymorphs, there are also polyamorphic forms of water,

i.e. different forms of amorphous ice (glass) of water. These are observable below -123 ◦C

when the liquid is cooled with a rate of 106 ◦C/sec. To date, there have been observed

three distinct forms of amorphous ice: low, high and very high density (LDA, HDL and

VHDA) with discontinuity in volume of 27% (LDA -HAD) and 11% (VHDA-HAD) [21].

1.3 Different scenarios for supercooled water behavior

The presence of open and closed structures, has led to different interpretations of the

behavior of supercooled water (Fig. 1.2). These can be divided into two main categories:

1. one hypothesizes that water separates into two liquid phases of different density

through a transition analogous to the transformation between gas and liquid and

with a possible singularity;

2. another assumes that the two local configurations are never separated into two phases.

Interpretations of type (i) account for the coexistence of a low density liquid (LDL)

phase, with a structure similar to LDA ice, and a high density liquid (HDL) phase, similar

to HDA ice. Due to the anti-correlation between the fluctuation of molecular volume and

entropy, the HDL-LDL transition has a negative slope in the pressure-temperature (P -T )

plane. Among the scenarios that involve the liquid-liquid (LL) phase transition are

(a) the scenario with a LL critical point at P > 0 [22];

(b) the scenario with a LL critical point at P < 0 [23];

(c) the “critical point-free” scenario, in which the LL transition extends to the limit of

stability (spinodal) of the liquid with respect to the gas at P < 0 [15].
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In these scenarios the anomalous increase of response functions is a consequence of

approaching the LL coexistence line, with a real divergence at the LL critical point or

along the LL spinodal line. For the cases (a) and (b), at temperatures above the LL

critical temperature the thermodynamic response functions increase near the temperature

TW (P ) of maximum correlation length. The line TW (P ) in the P -T plane is called “Widom

line” [24,25] and departs from the critical point, being its analytic continuation 1. Extremely

close to the Widom line, the functions are rounded and remain finite.

In the critical point-free scenario [15], on the other hand, the liquid-gas spinodal at

P < 0 crosses the LL spinodal leading to a change of slope of the stability limit of the liquid.

A similar mechanism, with a reentrant spinodal was originally proposed in the “stability-

limit” scenario [29], that relates the increase in response functions to the reentrant behavior

of the temperature of maximum density (TMD) line. Nevertheless this scenario reveals some

thermodynamic inconsistencies [30], that can be cured by interpreting the low-T spinodal

as a LL spinodal. Hence, although absent in its original formulation, the LL transition phase

was introduced later for thermodynamic consistency also in the stability-limit scenario [31].

To the category (ii) belongs the “singularity-free” interpretation [41]. In this scenario

the anomalies are the effect of anti-correlation between the fluctuation of molecular volume

and entropy, due to the fact that forming a H-bonded structure leads to a volume increase

with an entropy decrease. The large increase in the response functions (Fig. 1.1) observed

in experiments, in this interpretation, is an apparent singularity rounded in a maximum in

correspondence to the continuous density change.

Recently, it has been shown [42] that the singularity-free interpretation holds for a

coarse-grained water-like model (the mono-atomic-water model [43]), in contrast to another

scenario called “weak crystallization theory” [44]. In Ref. [42] it is shown that the coupling

constant required for fitting the results with the weak crystallization theory would be

1A fluid-fluid critical point (CP) is found generally at the end of a first order phase transition line
characterized by the coexistence of two thermodynamic distinct phases. In correspondence of the CP the
correlation length ξ diverge. From classical thermodynamics it is known that beyond the critical point, in
the supercritical region, does not exist any physical observable able to distinguish one phase respect to the
other. Nevertheless, in this region is it possible to find a locus spanning from the critical point where ξ has
a maxima. This locus in known as “Widom line” [24] and can be considered as the analytic continuation
of the coexistence line.
The Widom line does not define a transition between two distinct thermodynamic phases, in the sense

that no singularity is present in internal energy or in its derivative crossing this locus. However it marks
a change in dynamical and structural properties of the system [26] analogous to the one observed crossing
the coexistence line.
Curiously, in the original works of Widom, Rowlison and Stillinger [27,28] the authors study the liquid-

vapor phase transition finding a line of symmetry, comparable with those found hitherto only in lattice
models (particle-hole symmetry), that is not strictly related with the supercritical behavior of ξ.
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Figure 1.2: Schematic view of different thermodynamic models on the origin on water
anomalies in the T − P plane.
a) The stability limit scenario [29] hypothesizes that the liquid-to-gas spinodal, with pos-
itive slope at high T , merges with the stability limit of stretched and supercooled water,
with negative slope at low T . The reentrant behavior originates from the intersection of
the spinodal with the TMD line.
b) The liquid-liquid critical point scenario [22] supposes the existence of a second critical
point for liquid water in the supercooled region as ending point of a negatively sloped
first order transition line, separating two metastable liquids at different densities: the
low-density liquid (LDL) at low P and T , and the high-density liquid (HDL) at high
P and T . Several numerical results with different water models are consistent with this
scenario [22, 23, 32–39].
c) The critical-point-free scenario [40] hypothesizes an order-disorder transition, with a
possible discontinuity in density, that extends at negative pressure up to the stability limit
of supercooled water.
d) The singularity-free scenario [41] relates the anomalous increase in KT with the reen-
trant behavior of the TMD line, without any divergence in KT and with a locus of constant
maxima in CP .



1.4 State of the art on hydration water at low temperature 13

unphysical. The weak crystallization theory has been proposed also for another water model

[44], the ST2 model [45], however several works have shown with different approaches that

the ST2 model follows the scenario with a metastable LL critical point [35, 37–39,46–48].

Recently, it has been shown [49] that the all the scenarios in categories (i) and (ii)

result from a common physical mechanism, and that two key physical quantities determine

which scenario describes water: (i) the strength of the directional component of the HB

and (ii) the strength of the cooperative component of the HB. Furthermore, estimates from

experimental data for HBs [49] lead to predict the occurrence of the scenario described in

(a).

1.4 State of the art on hydration water at low temperature

All these scenarios rationalize the anomalies of water and compare well with the experimen-

tal data, but predict different phase diagrams, with different implications for the behavior

of the water interface. For example, the presence of a LL critical point implies the presence

of a Widom line. Along this line the density fluctuations determine structural changes that

could explain recent experimental results of water confined in nanoscopic structures [50–52]

and hydration water of proteins and DNA to almost -53 ◦C [53–58].

At these low temperatures, “bulk” water exists only in the solid state, but the con-

finement and the presence of interfaces distorts the formation of the network of HBs and

lowers the freezing temperature [59]. This allows to explore the dynamics and thermo-

dynamics of confined water, although the interpretation of experimental results is still

controversial [53, 56, 59–66].

Liquid water hydrating proteins has been found at temperatures as low as -113 ◦C,

at atmospheric pressure [52]. At these extremely low temperatures some interesting dy-

namic phenomena occur [67–71] suggesting a possible relationship between the dynamics

of biological macromolecules and water around them [72,73].

At low T , proteins exist in a state without conformational flexibility and are biologically

inactive. In the literature, this state is commonly called “glass”. At approximately -53
◦C hydrated proteins regain their flexibility and their biological activity. This dynamic

transition is common in many biopolymers and is understood to be due to the strong

coupling with the mobility of hydration water, which shows a similar dynamic transition

at the same T [53,56,57,62,63,69,74–76]. Experiments studying the translational correlation

time of the hydration water of a lysozyme protein [53], DNA [56] and RNA [57] have shown
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that at about -53 ◦C (220 K) the dynamics of hydration water changes from non-Arrhenius

(at high T ) to Arrhenius (at low T ), i.e. the dynamics has an activation energy that depends

on T at high T , and is a constant at low T .

Simulations of lysozyme and DNA in hydration water (using the TIP5P-water model)

[77] have found (i) that the fluctuations of mean square deviation for the hydrogens of

lysozyme and DNA change functional form at Tp ∼ 245 K, (ii) the specific heat of the

total system (water and biopolymer) exhibits a maximum at T ∼ 250 ± 10 K for both

molecules, (iii) the structure of hydration water, as measured by a local tetrahedral order

parameter, has a maximum increase around the same temperature, TQ = 245 ± 10 K,

(iv) the diffusivity of hydration water exhibited a dynamic change from a non-Arrhenius

to Arrhenius at a temperatures Tx ∼ 245 ± 10 K for lysozyme and Tx ∼ 250 ± 10 K

for the DNA. These temperatures are much higher than the glass transition temperature,

estimated for TIP5P at Tg = 215 K [78]. The coincidence of these temperatures, all higher

than Tg, suggests an interesting relationship between the thermodynamics and structural

changes of the hydration water and fluctuations of proteins.

Similar results have been found also in confined water. Confined water is of fundamental

importance in biological, geological and technological processes, including disciplines such

as electro-chemistry or photo-catalysis [79]. In the past years experiments have revealed a

dynamic change at T � 223 ± 2 K for water confined in silica nano-pores (with a radius

of 2 nm) by studying the structural relaxation time (with neutron scattering) [50] and the

self-diffusion coefficient (with nuclear magnetic resonance) [52]. These dynamical changes

observed in water confined in silica nanopores disappear at a pressure between 1200 and

1600 bar [70].

Results from simulations of water models (TIP5P and ST2) and of water-like models [24]

have suggested that a possible explanation for disappearance of the dynamical changes may

be the presence of a LL critical point. The simulations exhibit the same physical behavior

as the experiments, and the change in the diffusion coefficient in the simulations vanishes

at pressures higher than the pressure of the LL critical point. The authors interpret their

simulation results as a consequence of the shape of the low-T LL spinodal line that flattens

out above the LL critical point [24].

Therefore, although the results are argument of debate [60–63,77], numerical and exper-

imental evidences point to a strong dynamic effect of the first layers of water molecules on

macromolecules, due to the hydration interaction. Understanding these interactions, which

play a dominant role in many physical, chemical and biological agents requires knowledge
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of the structure of the first layers of interfacial water at the molecular level [80]. Depend-

ing on whether the surface is hydrophilic or hydrophobic, the structure of the network of

HBs of water is affected, being characterized by interruptions that give water its unique

interface (e.g., surface tension) [81].

The study of the properties of water near a hydrophobic surface is a strong topic of

debate, e.g. [82–84]. Understanding the water structure at the interface of a hydrophobic

surface of nanoscopic size [85, 86] has important implications for the folding of proteins

[87–90].

Experiments for water hydrating hydrophobic surfaces have been interpreted sometimes

in favor of the formation of a depletion layer of water molecules [91–93], sometimes in favor

of the reorientation of molecules [6,83,94–96] and sometimes only indicating the formation

of “nano-bubbles” of local depletion [97,98].

Water near hydrophilic surfaces behaves in a way that could be quite different from wa-

ter at hydrophobic interfaces. Some authors suggest that near a hydrophobic surface water

has a local LDL structure (low density and tetrahedral), while near a hydrophilic surface

is more closed, as in regions of high density (HDL) [99]. Experiments show that water

molecules close to hydrophilic surfaces have residence times longer than near hydropho-

bic surfaces [100], and that water confined between two hydrophilic surfaces, separated

by 2nm, has a viscosity several orders of magnitude greater than “bulk” water [101, 102].

These differences have important implications in applications such as microfluidics or the

development of biomaterials, where water produces a hydrophilic pressure that favors the

adherence of bone grafts [103].

Simulations can substantiate hypothesis (see for example ref. [104]), but are based on

specific models [105] and it is difficult to see whether their results have the character of

universality that experimental data suggest. To this goal it could be relevant to analyze

the results of a coarse-grained water model that can be studied analytically and, by tuning

a few parameters, could be able to reproduce the results of different atomistic models.
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Chapter 2

A coarse-grain model for a confined water mono-

layer

2.1 The need of coarse-grain approach

In the previous chapter we have seen that the anomalies properties of water can be inter-

preted as related to the occurrence of a liquid-liquid critical point (LLCP) in the super-

cooled region. However, to date it is experimentally unfeasible to keep bulk water liquid

in the region where the LLCP is predicted. The reason is that the homogeneous nucle-

ation time 1, at that thermodynamic conditions, is smaller with respect to the resolution

time of the experiments. A possible way to prevent crystallization is to confine water in

hydrophilic or hydrophobic nano-structures [65, 66, 106]. In particular, the confinement of

water in quasi-one or two dimensions (2D) is allowing to the discovery of new and con-

troversial phenomena in experiments [70, 107–110] and the relationship between confined

water and bulk water is presently widely debated. For these reasons it is important the

study models that allows us to change and tune at will parameters that would be difficult

to handle experimentally. These studies could shed light on the underlying mechanics that

are responsible for the peculiar properties of water.

In this chapter we define a coarse-grained model for a water monolayer confined be-

tween two hydrophobic flat walls. In the second part of the chapter we describe the method

1In a liquid system, due to thermal fluctuations, there is non-zero probability that particles form a
nucleus of ordered crystalline phase. Below the melting temperature Tm the crystal phase is thermody-
namically favored having a smaller free energy with respect a liquid droplet with the same number of
particles. Nevertheless there is a competition between the free energy gain, proportional to volume cluster,
and the free energy cost to form an a crystal-liquid interface proportional to the nucleus surface. The
critical radius Rc represents the minimum size of a stable crystal cluster and the homogeneous nucleation
time τ is the time needed to form such critical nucleus.
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L

h

Figure 2.1: Schematic view of a section of the water mono-layer confined between hydropho-
bic walls of size L× L separated by h ∼ 0.5 nm.

we adopt to study the model. Specifically, we use here Monte Carlo (MC) simulations to

generate an artificial dynamic in order to bring the system to thermodynamic equilibrium,

according to the Boltzmann statistic, as quickly as possible. To this goal, we adopt a ”clus-

ter” MC dynamics. Methods based on cluster move [111–113], i.e. contemporary change of

the status of several degrees of freedom, can speed up computation, especially near a criti-

cal point. In particular, we follow a cluster MC dynamics based on a percolation approach

that will be introduced in details in Chapter 4, where we will show how the approach allows

us to estimate relevant thermodynamic quantities, beside speeding up the simulations.

In particular we combine the cluster MC dynamics with standard Metropolis MC to

explore the accessible phase space in a very efficient and fast way. Our simulation approach

is less expensive, in terms of CPU time, than other MC techniques and is able to equilibrate

at very low temperatures also systems made of millions of molecules, something that is

unfeasible with other methods, including Molecular Dynamics.

2.2 The model

To analyze the thermodynamic properties of water in confinement we consider a mono-

layer of water molecules between hydrophobic walls of area L2 separated by h ≈ 0.5 nm

(Fig. 2.1). Atomistic simulations [114–117] show that water under these conditions does

not crystallize, but arranges in an disordered liquid layer, whose projection on one of the

surfaces has square symmetry (Fig. 2.1), with each water molecule having four nearest

neighbors. The molecules maximize their intermolecular distance by occupying different

distances from the two walls.
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Figure 2.2: Coarse-graining of
space divided in 72 cells. Grey
cells are considered to be liquid-
like cells, with occupation num-
ber n = 1. White cells repre-
sent gas-like cells corresponding
to n = 0.

2.2.1 Coarse grain of the volume

The first step in formulating the model is to discretize space dividing the total available

volume V into a fixed number N0 of cells, each with volume v ≡ V/N0. This is done on a

length scale such that each cell contains at most one molecule, with hard core volume v0.

Because we consider the constant pressure P , constant temperature T , constant number

of molecules N , the volume V is a function of P and T , with V ≥ Nv0 where v0 is the

hard-core volume of a molecule. We neglect the position of the water molecules inside the

cell and associate to the cell a variable n = 0 if the cell density v0/v ≤ 0.5 (gas-like cell)

and n = 1 if v0/v > 0.5 (liquid-like cell). A representative picture is given in Fig. 2.2.

2.2.2 Isotropic interaction

The long range and isotropic interaction between water molecules occupying cells i and

j at distance rij is given by two main components: the electrostatic attraction due to

fluctuating induced dipoles (van der Waals forces); the hard core repulsion due to the

Pauli exclusion principle. Such effects are well described by the truncated Lennard-Jones
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potential U(r) [118] (Fig. 2.3)

U(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞ for rij < r0

4ε

[(
r0
rij

)12

−
(
r0
rij

)6
]

for r0 ≤ rij ≤ 25r0

(2.1)

modified introducing an hard wall at the hard core radius r0 ∼ v
1/3
0 and a cutoff at distance

25r0. ε represents the characteristic energy and in internal units it is equal to 1. The distance

rij is measured in cell size unit.

0

2rr
00

U�r�

�ε

Figure 2.3: Truncated Lennard-Jones Po-
tential.

2.2.3 Directional HB interaction

Hydrogen bonding accounts for many of the peculiar properties of water. It is a special

directional interaction which occurs when hydrogen atoms are covalently bonded to an elec-

tronegative atom such as oxygen. The hydrogen atom has a small size and a single electron,

because of this the electronegative and electro-positive parts of the atom, separated fur-

thest away one other, are significantly unshielded and can interact other charged atoms.

In order to describe HB formation we associate to each water molecules i four bonding

variables σij = 1, . . . , q facing nearest neighbors molecules j. Each variable σi,j can partic-

ipate to a HB, being four the maximum number of HBs. From experiments we learn that

a water molecule can form more than four HBs, but that only four can be associated to

the low-energy tetrahedral configuration made of a water molecule and its hydration shell.
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Figure 2.4: Scheme of directional
interaction of HB. The state of
a molecule i is completely char-
acterized by the occupation num-
ber ni, and four bonding variables,
each one for the next neighbor cell.
A HB is formed when two facing
bonding variables (represented here
by squares with numbers, with an
arrow pointing toward the facing
molecule) are in the same bond-
ing state (represented by the num-
ber within the square). For exam-
ple, the two molecules i and j in the
figure form a HB, being their facing
bonding variables in the same state
σij = σji = 5.

Additional (“bifurcated”) HBs will increase the energy associated to the molecule and will

form at angles that are inconsistent with the tetrahedral configuration. We include in our

description only “tetrahedral” HBs. The tetrahedral HBs can be associated to a configu-

ration where the O-H–O atoms deviates less than 30◦ from the perfect alignment. Hence,

the bonded state corresponds to 1/6 of all the possible configurations of the O-H–O atoms

in the plane they define. We, therefore, choose q = 6 in such a way that only 1/6 of the

σij states is associated to a bonded state. As a consequence each molecule has q4 = 1296

bonding states. From the experiments we know that the formation of a HB decreases the

energy of the system and its entropy [30]. The model includes this behavior by assuming

that two nearest neighbor molecules i and j form a HB, reducing the energy of the system

by a quantity J > 0, if the variables σi,j and σj,i, one on each molecule and each facing the

other, are in the same state. Hence we add to the Hamiltonian the term (sketched in Fig.

2.4)

JNHB ≡ J
∑
〈ij〉

ninjδσij ,σji
(2.2)

where NHB is the number of HBs.

2.2.4 HB cooperativity

Experiments suggest that the formation of HB is a cooperative process [119, 120], as dis-

cussed in Ref. [49]. Formation of a single bond leads to further polarization of the atoms
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Figure 2.5: Scheme of cooperative interac-
tion of HB involving all the bonding vari-
ables σij of the molecule i at the center of
the figure.

involved [121]. As a result, successive bonds have a lower energy, and form more readily. To

include this effect, the model assumes that the energy decreases of a quantity 0 < Jσ < J

when any two of the four variables σi,j on the same molecules i are in the same state

JσNcoop ≡ Jσ
∑
i

ni

∑
(l,k)i

δσik,σil
(2.3)

where the first sum is over all occupied cells, the second sum is over each of the six different

pairs of the four indices σij of a molecule i (Fig. 2.5). The fact that Jσ < J guarantees that

this interaction implies a rearrangement of all the HBs formed by the molecule i, being an

effective many-body interaction.

Hence the Hamiltonian of the model is

H = U(r)− JNHB − JσNcoop = U(r)− J
∑
〈ij〉

ninjδσij ,σji
− Jσ

∑
i

ni

∑
(l,k)i

δσik,σil
. (2.4)

2.2.5 Volume dependence on HBs

Experimental interpretations suggest that tetrahedrally bonded water molecules form lo-

cally a low density structure up to the second shell [19]. Increasing the pressure or the
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temperature, the local density increases as a consequence of the disruption of the tetra-

hedral structure, i.e. as a consequence of the breaking of the tetrahedral HBs considered

here. A simple way to include this effect in the model is to assume that the volume per

molecule v = V/N depends linearly on the number of HBs NHB

v = V/N ≡ (V0 +NHBvHB)/N (2.5)

where v0 = V0/N is the molecular volume without accounting for the HBs, depending on

P and T , and vHB is the volume increase per HB given by the difference in volume between

the local low-density tetrahedral structure and the compact structure in absence of HBs.

Experiments show that vHB = v0/2 is a reasonable choice [122].

Without loss of generality, we set 4ε = 1 and v0 = 1, which set only absolute scales for

temperature T and pressure P . As discussed in ref [49], we estimate the covalent component

of HB to be J/4ε = 0.5 and cooperative HB term to be Jσ/4ε = 0.05.

2.3 Monte Carlo simulation

The system is studied using MC simulations in NPT thermodynamic ensemble (constant

number of particles N , pressure P and temperature T ). The phase space is sampled using

the Metropolis algorithm [123] and Wolff algorithm [112]. We assume the system to be

homogeneous setting all occupation number ni = 1 because we are not interested in study

the diffusive dynamic of the model. Nevertheless our results do not change significantly

considering partially hydrated surface. Simulations are carried out for square systems with

size L ranging from 50 to 400, i.e. the number of water molecules N ranges from 2500 to

160.000. The total number of degrees of freedom is 4N + 1.

The general scheme of MC simulation is to evolve the system generating new config-

urations that can be accepted or rejected with a certain probability. Depending on the

thermodynamic ensemble, such probability is calculated in order to get the expected mi-

crostate distribution probability at the equilibrium. In the NPT ensemble, the probability

of a microstate with energy E and volume V is proportional to

p = e−β(E+PV ) (2.6)

where β ≡ 1/(kBT ) and kB is the Boltzmann constant. The partition function is given

by the sum (or the integral in case of continuum spectrum of degrees of freedom) of the



24 2. A coarse-grain model for a confined water monolayer

microstate probability over all possible configurations of energy and volume. The thermo-

dynamic potential associate to the NPT ensemble is the Gibbs free energy

G ≡ E − TS + PV (2.7)

where S is the entropy of the system. In general the acceptance probability to pass from a

configuration xm to a configuration xn is proportional to exp[−β(G(xn)−G(xm))].

2.3.1 Metropolis algorithm

Metropolis algorithm consists in select randomly one of the 4N bonding variables σij or the

molecular volume v trying to change its value. In a single MC step 4N spin flips and one

volume change are performed. Spin flip entails a possible change in number of cooperative

bonds ΔNcoop and in number of HBs ΔNHB. The acceptance probability pv depends on

enthalpy variation

ΔH ≡ ΔE + PΔV = (J − PvHB)ΔNHB + JσΔNcoop (2.8)

with the following relation

pv ≡
⎧⎨
⎩1 if ΔH ≤ 0

e−βΔH if ΔH > 0
. (2.9)

Small cell size variations are chosen such that Δr/r0 ∈ [−0.01; 0.01], and the move is

accepted with probability pv

pv =

⎧⎨
⎩1 if ΔG ≤ 0

e−βΔG if ΔG > 0
(2.10)

where ΔG is the Gibbs energy change

ΔG = ΔELJ + PΔVLJ − TΔS (2.11)

and ΔELJ is the change in Lennard-Jones energy, ΔVLJ = N [(r + Δr)2 − r2] the volume

change and ΔS = −2NT ln(1+Δr/r) the entropy change associate to the volume change.



2.3 Monte Carlo simulation 25

2.3.2 Wolff algorithm

Wolff algorithm is based on the definition of cluster of correlated degrees of freedom,

described in section 4.1. A cluster is built with the following step:

1. choose randomly a molecule i and at random one of its four variable σij; this is the

first element of the cluster; let be q̃ its bonding state;

2. if the remaining arms of the molecule i are in the bonding state q̃ add them to the

cluster with probability pJσ = 1− exp(−βJσ);

3. check the value q∗ of the arm of the next neighbor (n.n.) molecule facing the initial

arm. If Jeff = J − PvHB > 0 and q̃ = q∗, add it to the cluster with probability

pJ = 1− exp(−βJeff); if Jeff < 0 and q̃ 
= q∗, add it to the cluster with probability pJ ;

4. repeat steps 1, 2 and 3 with the new elements added to the cluster, checking new

variables that have not been checked before in all directions, until no more variables

are added to the cluster;

5. if Jeff > 0, choose randomly a new bonding value q′ and flip all the elements of the

cluster; otherwise if Jeff < 0 change each arm according to the rule

σnew ≡ (σold + q′) mod q . (2.12)

The update of the volume is done with same procedure described in the previous section.

It is possible to prove that the MC dynamics described by the previous steps respects the

requirements of detailed balance and ergodicity of a valid MC dynamics and guarantee the

correct exploration of phase space according to the Boltzmann distribution [124].

Independently of the adopted algorithm, simulations are carried out along isobars starting

from high T (T ∼ 1ε/kB) with a random initial condition. Once the system is equili-

brated, the final configuration is adopted as initial configuration for T ′ ≡ T − ΔT with

a ΔT ∈ [10−6; 0.05], following an annealing procedure. The thermodynamic equilibrium is

reached when all the average thermodynamic quantities remain constant, within a given tol-

erance (∼ 106 MC steps), over many successive MC steps, and probing that the fluctuation-

dissipation relations (3.5) and (3.7) are satisfied. Each state point is sampled over 103÷105

(depending on the size L) statically independent configurations. Two configurations are
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Figure 2.6: Time-correlation function C(t) for N = 10000 water molecules at the pressure
P = 0.6 using the Wolff algorithm. Below the percolation threshold, here for 0.05834 ≤
T < 0.05838 the correlation time τ drastically reduces. Pressure is expressed in ε/v0,
temperatures in ε/kB and C(t) is dimensionless.

assumed to be uncorrelated after a time 2τ (in Monte Carlo step unit) so that the auto-

correlation function C(τ) = 1/e

C(t) ≡ 1

4N

N∑
i=1

4∑
j=1

〈σij(t)σij(0)〉 − 〈σij〉2
〈σ2

ij〉 − 〈σij〉2 . (2.13)

The calculation of τ allows us to estimate how many MC steps are necessary in order to get

a statistically independent new configuration. At high T there is no particular advantage

in using Wolff algorithm. In this conditions, as we will see later, the average cluster size

is small and the routine used to build up the cluster takes more CPU time respect the

simplest scheme of Metropolis resulting in slightly longer simulations. Reversely, at low T ,

and in particular close a critical point, Wolff algorithm is particularly useful because it

avoids the critical-slowing down (Fig. 2.6).
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2.3.3 Internal units

All the calculated quantities we show in chapters 3, 4 and 5 are expressed in internal units.

• Temperature unit: 4ε/kB;

• Pressure unit: 4ε/v0;

• Density unit: 1/v0;

• Specific heat unit: kB;

• Compressibility unit: v0/4ε;

• Thermal expansivity unit: kB/4ε;

• Free energy unit: 4ε.
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Chapter 3

Thermodynamic results

In this chapter we show the thermodynamic results and the phase diagram for confined

water within the framework of the model introduced in Chapter 2. We analyze the behavior

of density, thermodynamic response functions and correlation length identifying the critical

region and the Widom line. By finite size scaling of the appropriate order parameter, we

find a liquid-liquid critical point (LLCP) in the universality class of the two-dimensional

(2D) Ising model in the limit of infinite walls.

3.1 TMD line and Spinodals

We calculate the density ρ of the system

ρ ≡ N

V
(3.1)

as function of T along isobars. For a broad range of P , we find a maximum and a minimum

of density along each isobar 3.1 according to experimental evidences 1. These maxima

and minima identify for each P the temperature of maximum density (TMD) and the

temperature of minimum density (TminD) (Fig. 3.2). At low values of T a discontinuous

change in ρ is observed for 1 > P ≥ 0.5, as it would be expected in correspondence of

the HDL-LDL phase transition. At very high pressures (P > 1) the system behaves as a

normal liquid, with monotonically increase of ρ upon decrease of T.

We estimate the liquid-to-gas (LG) spinodal at P < 0 for low T (Fig. 3.1) as the

temperature along an isobar at which we find a discontinuous jump of ρ to zero value. LG

1For an exhaustive collection of experimental data look at the reference [12] and the Martin Chaplin
web site http://www.lsbu.ac.uk/water/index.html.
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spinodal identifies the locus of the stability limit of liquid phase with respect to the gas

phase: below this curve is no longer possible to equilibrate the system in the liquid phase.

The (LG) spinodal continues at positive pressures merging with the liquid-gas critical point

(data not shown).

The LG spinodal is recovered also as envelope of isochores [12], shown in panel (b) of

Fig. 3.1. Indeed we can write

dP =

(
∂P

∂T

)
ξ

dT +

(
∂P

∂ξ

)
T

dξ (3.2)

being ξ a generic intensive property. Along the spinodal we have

(
dP

dT

)
sp

=

(
∂P

∂T

)
ξ

+

(
∂P

∂V

)
T

(
∂V

∂ξ

)
T

(
∂ξ

∂T

)
sp

. (3.3)

At the spinodal isothermal compressibility (see eq 3.5) diverge, so that (∂P/∂V ) = 0.

Therefore eq. 3.3 means that the P − T projection of spinodal curve is an envelope of

constant-ξ lines as long as both (∂V/∂ξ)T and the ξ − T projection of the spinodal have

finite slopes. Because volume, enthalpy and entropy vary smooth along the spinodal, the

former condition is satisfied when ξ is one of these three quantities.

A second envelope of isochores is found at lower T and higher P , pointing out the

liquid-to-liquid (LL) spinodal. Actually the HDL-LDL spinodal collapse on the top of the
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LDL-HDL spinodal and it is not possible to distinguish inside our numerical resolution.

Nevertheless we clearly see that isochores are gathering around the points (T ∼ 0.06, P ∼
0.5) and (T = 0, P = 1), marking two possible critical regions.

The TMD approaches the LG spinodal, without touching it, and continues in the TminD

as in experiments [125] and other models [126, 127].

3.2 Thermodynamic response functions

3.2.1 Isothermal compressibility

We calculate the isothermal compressibility by its definition and by the fluctuation-dissipation

theorem

KT ≡ −
(
∂ ln〈V 〉
∂P

)
T

(3.4)

and by the fluctuation-dissipation theorem

KT =
〈ΔV 2〉
kBTV

(3.5)
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Figure 3.3: Top-left panel: The isothermal compressibility KT (T ) at constant P displays
strong maxima KsMax

T (T ) at low T and high P (main panel), weak maxima KwMax
T (T ) at

higher T extending at lower P and merging with minimaKmin
T (T ) occurring at higher T and

higher P (inset). Top-right panel: Also the isothermal compressibility KT (P ) at constant
T displays strong maxima KsMax

T (P ) and weak maxima KwMax
T (P ) merging with minima

Kmin
T (P ) (inset), but the minima in this case extend to lower T and in a wide range of

P . Bottom panel: The strong maxima (symbols), weak maxima (solid lines) and minima
(dashed lines) of KT (T ) (orange) and KT (P ) (blue) form loci in TP plane that relate to
each other and intersect with the TMD line following thermodynamic relations discussed
in the text. The large yellow circle with label A identifies the region where KsMax

T (T ) and
KsMax

T (P ) converge and display the largest maxima, consistent with the occurrence of a
critical point in a finite-size system.
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along isobars KT (T ) and along isotherms KT (P ) (Fig. 3.3), where 〈V 〉 is the average

volume, 〈ΔV 2〉 the volume fluctuations and kB the Boltzmann constant. We find two loci

of extrema for each quantity KT (T ) and KT (P ): one of strong maxima and one for weak

maxima. The loci of stronger maxima in KT (T ) and KT (P ), respectively KsMax
T (T ) and

KsMax
T (P ), overlap within the error bar with the LL spinodal. The maxima KsMax

T (T ) and

KsMax
T (P ) increase in the range of P ∈ [0.55; 0.6] and T ∈ [0.05; 0.06] (Fig. 3.3), consistent

with the existence of a critical region. The stronger maxima disappear at low P for P < 0.4.

We find also loci of weaker maxima, KwMax
T (T ) and KwMax

T (P ) and minima Kmin
T (T )

and Kmin
T (P ). The loci of extrema of KT (T ) and KT (P ) do not coincide in the T −P plane:

• the locus of weaker maxima along isotherms KwMax
T (P ) merges with the locus of min-

ima Kmin
T (P ) in the point where the slope of both loci is ∂P/∂T →∞. Furthermore,

both loci approach to the LL spinodal at high P ;

• the locus of weaker maxima along isobars KwMax
T (T ) approaches the LL spinodal

where KT exhibits the strongest maxima, and merges with the locus of minima

Kmin
T (T ) where the slope of both loci is ∂P/∂T → 0 (data at high P and T not

shown in Fig 3.3). This locus intersects the TMD in its turning point. Indeed, as

reported in ref. [41] and in the section 6, the temperature dependence of KT along

the TMD line is related to the slope of TMD line

(
∂KT

∂T

)
P,TMD

=
1

V

∂2V/∂T 2

(∂P/∂T )TMD

(3.6)

where (∂KT/∂T )P,TMD is the derivative of KT calculated at the TMD line and

(∂P/∂T )TMD is the slope of TMD line. Hence the locus of extrema in KT , where

(∂KT/∂T )P = 0, crosses TMD line where the slope (∂P/∂T )TMD is infinite. The

change from maxima to minima in weak extrema of KT (T ) is consistent with the

change in slope of the TMD line, as described in Ref. [41, 128].

The weak maxima of KT (T ) and KT (P ) increase as they approach the LL spinodal. All

loci of extrema in KT are summarized in Fig. 3.3.

3.2.2 Isobaric specific heat

Next we calculate the isobaric specific heat

CP ≡
(
∂〈H〉
∂T

)
P

=
〈ΔH2〉
kBT

(3.7)
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isotherms. Bottom panel: projection of CP maxima in T −P plane. The large circle with
A identifies the region where CP shows the strongest maximum.
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along isotherms and isobars (Fig. 3.4), where 〈H〉 ≡ 〈H 〉+ P 〈V 〉 is the average enthalpy,
〈ΔH2〉 the enthalpy fluctuations. We find two maxima at low P . At high-T the maxima

are broader and weaker than those at low-T . As discussed in Ref. [129,130], the maxima at

high T are related to maxima in fluctuation of the HB number NHB, while the maxima at

low T are a consequence of maxima in the number Ncoop of cooperative HBs. The strong

maxima at constant P CsMax
P (T ) and constant T CsMax

P (P ) overlap for all the considered

pressures, and are more pronounced in the range P ∈ [0.5; 0.6] and T ∈ [0.06; 0.07]. The

weak maxima CwMax
P (P ) and CwMax

P (T ) increase approaching the LL spinodal and have

their larger maxima at the same state points of the strong maxima, consistent with the

occurrence of a critical point for a finite system (Fig. 3.4). The weak maxima overlap for

all positive pressures, branching off at negative pressures. At negative pressures CwMax
P (P )

bends toward the turning point of the TMD line, as discussed in section 6 and in Ref. [127].

Indeed, according to the relation

(
∂CP

∂P

)
T

= T

(
∂P

∂T

)
TMD

∂2V

∂P∂T
(3.8)

in case of intersection between the locus of extrema (∂CP/∂P )T = 0 and the TMD line, it

results that (∂P/∂T )TMD = 0.

3.2.3 Thermal expansion coefficient

We calculate also the the thermal expansivity

αP ≡
(
∂ ln〈V 〉
∂T

)
P

(3.9)

along isotherms and isobars (Fig. 3.5). As for the other response functions, we find two

locus of strong minima, αsMin
P (P ) and αsMin

P (T ) respectively along isotherms and isobars,

showing a divergent behavior in the same region where we find the strong maxima of KT

and CP . From this region two loci of weaker minima depart:

• We find that the locus of weak minima along isobars αwMin
P (T ) bends toward the

turning point of the TMD.

• The locus of weaker minima along isotherms αwMin
P (P ), merges with the locus of

maxima αwMax
P (P ) at the state point where the slope of both loci is ∂P/∂T → ∞.
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Figure 3.5: Top-left panel: loci of extrema in αP along isobars. Weaker minima are shown
in the inset. Top-right panel: loci of extrema in αP along isotherms. Weaker minima are
shown in the inset. Bottom panel: projection of extrema in αP in T − P plane. Orange
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According to the thermodynamic relation, discussed in Appendix A,

(
∂αP

∂P

)
T

= −
(
∂KT

∂T

)
P

(3.10)

we find that the locus of extrema in thermal expansivity along isotherms coincides,

within the error bars, with the locus of extrema of isothermal compressibility along

isobars.

3.3 The Widom line

All the loci of extrema of response functions converge toward the same region (labeled A

in Fig. 3.3, 3.4 and 3.5). Moreover, all the maxima along these loci increase in their values

by approaching the region A. Because the increase of response functions is related to the

increase of fluctuations and this is, in turn, related to the increase of correlation length ξ,

we calculate the spatial correlation function

G(r) ≡ 1

4N

∑
|�ri−�rl|=r

〈σij(�ri)σlk(�rl)〉 − 〈σij〉2 (3.11)

to estimate ξ. The states of the water molecule, as well as the density ρ, the energy E and

the entropy S of the system, are completely described by the bonding variables σij. The

function G(r) accounts for the fluctuations in ρ, E and S and allows us to evaluate the

correlation length because the order parameter of the LLPT should be related to a linear

combination of density and energy, as we will discuss later. The function G(r) is, therefore,

better than the density-density correlation function for estimating the correlation length

of the system.

We observe an exponential decay of G(r) at high temperatures in a broad range of

pressures.

G(r) ∼ e−r/ξ . (3.12)

Approaching the region A, the correlation function can be written as

G(r) ∼ rd−2+ηe−r/ξ (3.13)

where d is the dimension of the system. When ξ is of the order of the system size, the

exponential prefactor approaches a constant leaving the power-law as the dominant con-
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tribution for the decay. Our calculations (Fig. 3.6) at T ∼ 0.06 and P ∼ 0.6 show that the

behavior of G(r) is consistent with the one expected near a critical point belonging to the

Ising universality class in two dimension.

We estimate ξ using relations (3.12) and (3.13). Our calculations are consistent within

the error bars with the values that can be calculated from the relation [131]

ξ2 =

∫
r2G(r)dr∫
G(r)dr

. (3.14)

We observe that ξ has a maximum along isobars (Fig. 3.7), and the strongest maxima

in ξ falls in the critical region, that coincides with the region A that we find based on

our response fucntion analysis (Fig.s 3.3-3.5) The line of maxima coincides with the low-T

locus of maxima in CP for all pressures, and overlap with low-T extrema in KT and αP

close the critical region. At higher P and lower T the maxima in correlation length marks
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monotonic behavior in correlation length ξ. Right panel: Correlation function G(r) for
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the occurrence of a first order phase transition, associate with a maxima in all response

functions. At lower P the maxima in ξ identifies the Widom line of the system [24,25,27],

observed as long as the metastable liquid phase exists. Along the Widom line a large

deviation of G(r) with respect the exponential decay is observed (Fig. 3.8).

3.4 The Liquid-Liquid 1st order phase transition and the Liquid-

Liquid critical point

The observation of convergence of loci of stronger maxima and ξMax to the point A, and

the increase of extrema along these loci is consistent with the identification of A with a

LLCP at the end of a first-order LLPT line in the P -T phase diagram along which the

density, the energy and the entropy of the liquid are discontinuous, as discussed in previous

works [49, 89, 90, 129,130,132–137].

According to mixed-field finite-size scaling theory [138–141], a density-driven fluid–fluid

phase transition is described by an order parameter

M ≡ ρ+ su (3.15)

where ρ represents the leading term, u is the energy density (both in internal units) and s

is the field mixing parameter. Such linear combination is necessary in order to get the right
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symmetry of the order parameter distribution, at the critical point, between the ordered

and disordered phases. This order parameter accounts for the change in density and energy

between the HDL and LDL close the critical point (Fig. 3.9).
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Figure 3.9: Color-coded Gibbs free
energy G/kBT in the energy-density
plane, close the liquid-liquid critical
point. We calculate G from the rela-
tion G/kBT = − lnP (E, ρ), where
kB is the Boltzmann constant and
P (E, ρ) is the probability distribu-
tion of states with given values of
E and ρ. The Gibbs free energy un-
der these conditions has two basins
separated by a barrier ΔG � kBT .
This is the order of magnitude of the
free-energy barrier expected near a
critical point, where the system has
enough thermal energy kBT to freely
cross the barrier ΔG between the
two coexisting phases. The order pa-
rameter M characterizing the phase
transition is related to the line join-
ing the two minima of Gibbs free
energy.

At the critical point the probability distribution of M is PN(M) ∝ p̃d(x), i.e. scales

as an universal function p̃d, characteristic of the Ising fixed point in d dimensions, of

x ≡ B(M −Mc), where B ≡ a−1M Nβ/dν , β is the critical exponent that governs M , ν is

the critical exponent that governs ξ, both defined by the universality class, and aM is a

non-universal system-dependent parameter. We adjust B and Mc so that PN(M) has zero

mean and unit variance.

By combining a set of 3 × 104 MC simulations for ∼ 300 state points with 0.04 ≤
T ≤ 0.07 and 0.3 ≤ P ≤ 0.8 with the multiple histogram reweighting method [142–144]

(see section 6), and tuning s, T and P we verify that in the vicinity of the state point A

the calculated PN(x) has a symmetric shape with respect to x = 0 (Fig. 3.10). We find

s = 0.25 ± 0.03 for our range of N . The resulting critical parameters Tc(N), Pc(N) (Fig.

3.11) and the normalization factor B(N) (Fig. 3.12) follow in fare agreement the expected

finite-size behaviors with 2D Ising critical exponents [138–141]. From the finite-size analysis
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we extract the asymptotic values Tc = 0.0597± 0.0001 and Pc = 0.555± 0.002, consistent

with the state point A.
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The presence of a 1st order transition ending in a critical point, with respect the order

parameter M , is confirmed by the finite size analysis of the Binder cumulant [145, 146] of

M

UM = 1− 〈M4〉N
3〈M2〉2N

(3.16)

where the symbol 〈〉N refers to the thermodynamic average for a N water molecules system.

U quantifies the bimodality in PN(M). The isobaric value of UM shows a minimum at the

temperature where PN(M) mostly deviates with respect to a symmetric distribution (Fig.

3.13). Minimum of UM converges to 2/3 in the thermodynamic limit away from a first order

phase transition, while it approaches to a value < 2/3 at a first-order phase transition,

where the bimodality of PN(M) indicates the presence of phase coexistence.

These results are consistent with the behavior of Gibbs free energy G (Fig. 3.14). The

histogram reweighting method allows to calculate G for simulated state points, as described
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in the caption of Fig. 3.14. In particular, we calculate G along isobars, for T crossing the

loci of maxima in ξ and CP . We find that the isobaric G(T )P bends for P > 0.65 (Fig.

3.14), consistent with the occurrence of a kink in the thermodynamic limit. This behavior

would implies a discontinuity in entropy S = ∂G/∂T , that would correspond to the latent

heat of a first-order phase transition. Therefore, the calculation of G is consistent with

the occurrence of a first-order phase transition at high P that disappears for P � 0.65,

consistent with our estimate of a critical point occurring at Pc � 0.55.

The distribution PN(N) adjust well to the data only for large N . We, therefore, perform

a more systematic analysis. For each N , we quantify the deviation of the calculated p̃(N)

from the expected p̃2 for the 2D Ising. Furthermore, due to the behavior of data for small

N in Fig. 3.10, we calculate the deviation from the 3D Ising p̃3 [138–141]. We estimate the

Kullback-Leibler divergence [147]

DKL
d (N) ≡

n∑
i=1

ln

(
p̃d,i

p̃i(N)

)
p̃d,i (3.17)

of the probability distribution p̃i(N) of xi from the theoretical value p̃d,i for xi, with n total

number of points for x, and the Liu et al. deviation [148]

Wd(N) ≡ 1

n

∑n
i=1

√
p̃i(N)|p̃i(N)− p̃d,i|

p̃d,peak − p̃d,x=0

(3.18)
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with p̃d,peak − p̃d,x=0 difference between the distribution peak and its value at x = 0 (Fig.

3.15 and Fig. 3.16).

We confirm s � 0.25 for p̃2 and find s = 0.10± 0.02 for p̃3 for our range of N . For both

DKL
d and Wd, with d = 2 and d = 3, we find minima that become stronger for increasing N

and are always close to Tc � 0.06 and Pc � 0.55, i.e. at approximately constant ρc. We find

that DKL
2 and W2 decrease with increasing N , vanishing for N → ∞ (Fig. 3.15 and Fig.

3.16). Therefore, for an infinite monolayer confined between hydrophobic walls separated

by h ≈ 0.5 nm, the system has a LLCP that belongs to the 2D Ising universality class,

consistent with our coarse-graining of the monolayer in 2D.
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However, by increasing the confinement, i.e. reducing N and L at constant ρ, DKL
2 and

W2 become larger than DKL
3 and W3, respectively. For N = 2500 we find that both DKL

3

andW3 have values approximately equal to those we calculate for a system ten times larger,

with DKL
3 � 0. In other words, by increasing the confinement of the monolayer at constant

ρ, the LLCP has a behavior that approximates better the bulk [23, 36–38, 46, 149], with a

crossover between 2D and 3D-behavior occurring at N � 104.

This dimensional crossover is confirmed by the finite-size analysis of the Gibbs free

energy cost ΔG/(kBTc) to form an interface between the two liquids in the vicinity of the

LLCP, calculated as

ΔG(N) ≡ −kBTc(N) [lnPN(x = 0)− lnPN(xMAX)] (3.19)

with PN reaching a maximum at xMAX. This quantity is expected to scale as ΔG ∝ N
d−1
d .

We find that our data can be fitted as N
2
3 for small sizes and as N

1
2 for large sizes with

a crossover around N = 104 (Fig. 3.17). Considering the value of the estimated ρc in real

units (� 1g/cm3) [134,135], the corresponding crossover wall-size is L � 25 nm.

Our rationale for this dimensional crossover at fixed h is that, when h/L increases, the

characteristic way the critical fluctuations spread over the system, i.e. the universality class

of the LLCP, resembles closely the bulk because the asymmetry among the three spatial

dimensions is reduced. A similar result was found recently by Liu et al. for the gas-liquid

critical point of a Lennard-Jones liquid confined between walls by fixing L and varying

h [148]. However, in the case considered by Liu et al. the crossover was expected because
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the number of layers of particles was increased from one to several, making the system

more similar to the isotropic 3D case. Here, instead, we consider always one single layer,

changing the proportion h/L by varying L instead of h. Therefore, it could be expected

that the system belongs intrinsically to the 2D universality class for any L.

Furthermore, the extrapolation of the results for the LJ liquid to the case of a monolayer

with h/r0 � 1.7, as in our case, would predict a dimensional crossover at L/h � 5 [148].

For our water monolayer, instead, we find the crossover at L/h � 50, i.e. one order of

magnitude larger than the LJ case. This implies that the presence of a cooperative HB

network and its low coordination number, the main differences between water and a LJ

fluid, enhance drastically the spreading of the critical fluctuations along a network that,

at least for the first shell, is similar to the one in 3D, lifting the effective dimensionality of

the confined monolayer.



Chapter 4

Percolation approach to supercooled water

In the past years different percolating description of water been proposed [152–155] where

the dynamic is led back to behavior of cluster of H-bonded molecules. In this chapter

we propose a site-bond correlated description, based on a mathematical mapping between

physical and geometric properties [156–159], to characterize the formation of HB network

in relation with the regions of correlated water molecules.

Before to introduce the the percolation description of the model we briefly resume how

percolation theory and statistical physics have woven together. The general problem of the

percolation theory concerns with the study of geometrical objects randomly placed, with

an occupation probability p, on a d-dimensional lattice. Such objects have a characteristic

connectivity radius r such as two objects communicate if their distance is smaller than

r. A contiguous region of connected objects is a cluster. Percolation theory studies the

geometrical properties of such clusters and, in particular, when the cluster spans the space

becoming infinite. It is well known that the percolation problem on large lattices displays

the features of a system undergoing a second-order phase transition where p is the order

parameter. Indeed it is possible to define quantities which diverge (or vanish), with char-

acteristic critical exponents, as the critical occupation probability is approached [131,160].

It is precisely this aspect of percolation that makes it interesting in the study of critical

phenomena and, more in general, in statistical physics.

Theory of condensation proposed by Mayer [161,162] and further developed by Frenkel

[163, 164], was one of the first attempt to introduce the idea of clusters of particles in

the description of phase transition and nucleation. This phenomenological theory, based

on perfect gas of clusters model, expresses the equation of state as series expansion in

the density in the form P =
∑

s nskBT , where ns is the distribution of clusters of s

particles per unit volume (and kB the Boltzmann constant). Different clusters, assumed
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to be compact region of interacting particles, are treated as non interacting objects. In

order to recover the critical behavior of particles, Fisher [165] modified the theory listing

the properties of such droplets in proximity of LG critical point [131, 166]: i) an infinite

droplets is formed only at the critical point; ii) the order parameter of the phase transition

is related to the size of the infinite droplet; iii) the compressibility (or susceptibility for

magnetic systems) of the order parameter is proportional to mean cluster size; iv) the

statistical correlation length ξ, quantifying the spatial extent of thermal fluctuations, is

proportional to the average radius of the clusters ξc. This picture recovered the expected

scaling relations at the critical point, but it remained the problem how to calculate such

clusters (or droplets). Even if the simplest definition of cluster could be the compact region

of interacting particles - n.n. occupied sites - it has been shown by Sykes and Gaunt [171]

that thermodynamic and geometrical critical points do not coincide for the Ising model

in three dimensions. After all, using such definition, at infinite temperature we still have

cluster with size bigger then one despite that ξ = 0. In 1969 and 1972 Kasteleyn and Fortuin

(KF) shown that it is possible to map a ferromagnetic Potts model onto a corresponding

percolating model [156, 157]. Using a site-bond correlated description of the Ising model,

based on the KF theory, Coniglio and Klein [158,159] (CK) proved the equivalence between

the thermodynamic and geometrical critical behaviors. They shown that the critical point

(Curie point) coincides with the percolating threshold, that ξ and ξc diverge with same

critical exponent ν and that the susceptibility and the mean cluster size diverge with the

same critical exponent γ. For magnetic system the CK description was further improved

by Swendsen and Wang [111] with the introduction of ghost spin external to the system,

in order to avoid unphysical percolation lines spreading from the Curie point.

4.1 Site-bond correlated percolation

Following the CK approach, we want to superimpose a percolating description on our

water cell model. In general, we can say that it is possible to map the physical system in a

percolating system as long as it is possible to find a mathematical function, depending on

the Hamiltonian, allowing to build cluster of statistically correlated degrees of freedom. It

means that two interacting variables σ have a certain probability, depending on the specific

interaction, to belong to the same cluster. In our model the HB interaction is described by

two terms, with coupling constants J and Jσ, so we anticipate finding two probabilities,

namely pJ and pJσ . In order to calculate such probabilities lets consider the enthalpy of
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the system

H = U(r)− Jeff
∑
<i,j>

ninjδσij ,σji
− Jσ

∑
i

ni

∑
(k,l)i

δσik,σil
+ Pv0 (4.1)

where we put Jeff = J − PvHB. In the NPT ensemble the partition function of the system

is

Z(β, P ) =
∑
{σ}{r}

e−βH (4.2)

where the sum is over all the possible configurations of variables {σ} and of cell dimension

{r}. Eq. 4.2 can be rewritten as

Z(β, P ) = e−βPv0
∑
{r}

e−βU(r) × Z{σ} (4.3)

with

Z{σ} =
∑
{σ} e

βJeff
∑

<i,j> ninjδσij ,σji × eβJσ
∑

i ni
∑

(k,l)i
δσik,σil =

=
∑
{σ}

∏
<i,j>

[
1 +

(
eβJeff − 1

)
ninjδσij ,σji

]×∏N
i=1

{
1 + ni

∏
(k,l)i

[
1 +

(
eβJσ − 1

)
δσik,σil

]}
(4.4)

where
∏

<i,j>,
∏N

i=1 and
∏

(k,l)i
extend respectively over all next neighbors, all sites and all

variables σ of a specific site. To simplify calculations we consider an homogeneous system,

such that all cells are occupied (ni = 1 for i = 1...N), so eq. 4.4 reduces to

Z{σ} =
∑
{σ}

∏
<i,j>

[
1 +

(
eβJeff − 1

)
δσij ,σji

]×∏N
i=1

∏
(k,l)i

[
1 +

(
eβJσ − 1

)
δσik,σil

]
.

(4.5)

The partition function can be equally expressed as a sum over all possible clusters of

a given configuration σ [172]. A cluster C is a region of σ variables connected by artificial

bonds. The bonds do not affect the interaction energy or the particles distribution, they

just define the connectivity between variables σ, independently on the specific bonding

state of connected variables [173]. The variables σ, in our coarse-grain description, do not

depend on the average distance r between n.n. water molecules (as long as we are in the

liquid phase), so we carry out such mapping only on the term Z{σ}. We focus on the first

term of the eq. 4.5, 1 + (eβJeff − 1)δσij ,σji
. We can interpret 1 as the factor we have in case

of non-bonded configuration, and (eβJeff − 1)δσij ,σji
as the factor in case we have a bond bJ

between n.n. σ. Similarly, considering the second term of eq. 4.5, for each water molecule
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occurs the terms 1 and (eβJσ − 1)δσik,σil
, the first for non-bonded configuration and the

second for bonded configuration via bond bJσ . If two σ are connected through a bond,

they belong to same cluster. A given configuration {σ} generally contains a large number

of clusters, included isolated variables, each one with q possible states. Actually, in the

summation of all σ states, only clusters of variables σ in the same bonding state will give a

nonzero contribution. Hence, we can rewrite 4.5 as sum on the cluster configurations {C}

Z{σ} =
∑

C⊆{σ}
(eβJeff − 1)bJ (C)(eβJσ − 1)bJσ (C)qn(C) (4.6)

where bJ(C) and bJσ(C) are respectively the number of bonds bJ and bJσ in the cluster C,

and n(C) the number of cluster of a given configuration {σ}. In particular, choosing the

energy to be 0 at T = 0 [156,157], i.e. subtracting the maximum number of interactions J

and Jσ, we can write

Z{σ} =
[
eβ(2Jeff+6Jσ)

]N ∑
C⊆{σ}

p
bJ (C)
J (1− pJ)

2N−bJ (C)p
bJσ (C)
Jσ

(1− pJσ)
6N−bJσ (C)qn(C) (4.7)

where

pJ = 1− e−βJeffδσij ,σji (4.8)

pJσ = 1− e−βJσδσik,σil . (4.9)

Such transformation replaces each pair n.n. σ variables with a bond on the equivalent

system with a probability pJ or pJσ . In the general case where not all cells are occupied we

have pJ = 1− exp(−βJeffninjδσij ,σji
). The quantities (1− pJ) and (1− pJσ) are simply the

probabilities that no bonds, respectively bJ or bJσ , exists between n.n. σ and the number

of missing bonds are respectively 2N − bJ(C) and 6N − bJσ(C). In such a way the system

is described via site-bond correlated percolation where the clusters act as independent

degrees of freedom.

Ultimately we have to say that even if the CK mapping between geometry and ther-

modynamics is not extensible to metastable systems [174], ours is not the case. The pro-

posed model is adapted to describe highly confined water where crystal phase is no longer

permitted [114–116], hence in this approximation the two observed liquid phase are ther-

modynamically stable.
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Figure 4.1: Left panel: σ configuration for N = 104 water molecules for P = 0.6 and
T = 0.058. Each color represents a different σ state.Right panel: we select all variables in
the same bonding state (yellow points of the left panel) and build the clusters of correlated
variables (region with the same color) following the prescription given in the text.

4.2 Percolation probability

The size s of a cluster is defined as the number of σ variables belonging to the cluster.

Each four σ variable, on average, an entire water molecule belongs to a cluster. In figure 4.1

we show clusters of a specific configuration. The occurrence of a percolating transition is

marked by the appear of a percolating cluster, i.e. a clusters connecting two opposite sides

of the system. The probability for an arbitrary site to belong to the percolating cluster is

P∞ = 1−
∑
s

sns (4.10)

where ns is the average number of non-percolating clusters of size s per site. The probability

that an arbitrary variable is part of a cluster of size s is given by nss. Therefore the

probability that an arbitrary variable belongs any non-percolating cluster is
∑

s nss, as

expressed in Eq. (4.10). The quantity P∞ represents the order parameter for the percolating

transition.

The quantity P∞ increases from 0 to 1 at a temperature that is function of P and

displays a clear finite-size effect at any P : its change with T becomes sharper for increasing

size L (Fig. 4.2). In particular it approaches a discontinuous change for P < 1.
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Figure 4.2: Top panel: percolating probability P∞ as function of T for N = 104 water
molecules. The color code along lines represents the value of P∞. Lines join simulated
state points - � 150 for each value of P with a statistic of � 104 independent configura-
tions.Bottom panels: variation of the percolation order parameter P∞ with temperature
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P > 1.
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Defining the percolation threshold at fixed P as the T where P∞ = 0.5, we locate the

locus of percolation thresholds for different P , the percolation line, in the P -T plane (Fig.

4.4).

For P < 1 the percolation line has a negative slope that decreases in absolute value

for increasing P , while for P > 1 the slope is positive and increases for increasing P . The

percolation line extends down to the stability limit of stretched liquid at negative pressure.

Next we show that the percolation line marks the threshold for the formation of a

structured network of HBs. NHB increases monotonically in this range of pressures (Fig.

4.3). In particular for 1 < P � 0.5 the clusters percolate when the number of HBs increase

sharply. The jump in NHB points out an abrupt decrease of density (Fig. 3.1), due to the

thermodynamic phase transition between HDL and LDL.

For P < 0.5 the HB network is gradually formed and the percolation threshold occurs

when the the system is highly H-bonded (Fig. 4.5). In this thermodynamic conditions

the spanning clusters are associated to a local tetrahedral reordering of HB network. At

these pressures the percolation line coincides with the locus of strong maxima in isobaric

specific heat and the LL Widom line. When the pressure is approaching the LLCP value

from lower pressures, the same locus approximate also the strong maxima in isothermal

compressibility and the absolute value of the thermal expansivity, as described in Chap. 3.

At P < 0.5 the percolation line could be identified with the ”Kertész line” or ”Coniglio-

Klein line” [175, 176], due to the KF percolating approach. The Kertész line starts at the
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critical point independently on the dimensionality of the system and no thermodynamic

singularity occurs along this line. It is still under debate if the Kertész line has corresponds

to a thermodynamic locus. In particular, it has been proposed that this line exists in the

supercritical phase of simple fluid [177, 178] and it is related to the locus where vanishes

the surface tension of droplets made of the denser fluid. Our results here suggest that the

Kertész line coincides with the Widom line of the LLCP for supercooled water.

We find the percolation lines also for P > 1 (Fig. 4.2 and 4.4). At these pressures

the percolation line is characterized by a smooth change in the order parameter P∞. At

these pressures the HB formation is enthalpically disadvantageous and the percolating

transition indicates the break down in NHB (Fig. 4.3). This part of the percolation line at

P¿1 represent a second Kertész line extending from a percolation critical point at T = 0

and P = 1 up to P = ∞. Indeed, at T = 0 the system is frozen with all σ in the same

bonding state and the CK approach falls into bond-percolation problem, undergoing a

critical percolation transition [131].

The analisys of probability to find a cluster of size s (Fig. 4.5), confirms the hypothesis

on the different mechanism underling the percolating transition for low pressures (below

P ∼ 0.5) and high pressures (0.5 � P < 1). Clusters of size 1 represent isolated uncor-

related variables σ. Clusters of size 2 are given by two correlated variables σ connected

by bond of type bJ or bJσ . In particular, the analysis of clusters of size 2 reveals that at

low P they are composed in large majority by bJ bonds (J-interacting σ), related to the

average number of correlated HB. For such pressures, the derivative of 2-size clusters show

maxima in correspondence to the CP maxima, elucidating the connection between 2-size

cluster fluctuation and NHB fluctuations. On the contrary, at high P , 2-size clusters are

mostly composed by bond bJσ (Jσ-interacting σ).

More in general all s-size clusters for P < 0.5 are mainly composed of bJ bonds, while

for P > 0.5 they are mainly composed of bJσ bonds. Hence, the percolation mechanism is

leaded by bJ bonds for P < 0.5 and by bJσ bonds for P > 0.5.

4.3 Cluster distribution

At the percolation threshold a spanning cluster appears as a fractal object, with linear

size comparable with L. Along the percolation lines we observe power law molecule cluster
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Figure 4.4: Top panel: Percolation lines in the T − P plane, for N = 10000 system size,
compared with LL-phase transition line and Widom line calculated with thermodynamic
analysis [179]. Yellow circle identifies the thermodynamic critical point. Letters refer to the
thermodynamic state points whose molecule cluster distribution ns is shown in the bottom
panels. Bottom panels: we show In particular we show data for pressures P = 1.5,
P = 0.9, P = 0.6 and P = 0.3 and temperatures T = 0.4, T = 0.2, T = 0.1 and the
percolation temperature. Lines in bottom panels are exponential fits of the data. At the
percolation threshold data are fitted with power law function giving τ = 2.23 ± 0.05 for
P = 0.3 (r), τ = 2.06±0.03 for P = 0.6 (q), τ = 2.03±0.03 for P = 0.9 (p), τ = 2.05±0.02
for P = 1.5 (o).
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distribution 1 (Fig. 4.4), corresponding to the absence of a characteristic size s for the

clusters, according to the relation

ns ∝ s−τ (4.11)

The exponent τ is related to the fractal dimension D of the clusters by the relation [131]

τ = 1 +
d

D
(4.12)

where d = 2 is the effective dimensionality of the system. We find τ ∼ 2.23± 0.05 for P �
0.5. For P ∼ PC (∼ 0.6) it results τ = 2.06±0.03 that is consistent with the expected value

for Ising universality class in two dimensions [180]. Increasing the pressure τ approaches to

∼ 2.0 for P = 1. This is consistent with clusters that become more compact as the pressure

is increased above the thermodynamic critical pressure. For P > 1 we find τ ∼ 2.05±0.02 in
agreement with site percolation universality class. Along the LL coexistence line the cluster

distribution decays as power law unlike simulation results on simple fluid [166] where no

geometrical critical behavior is observed along the LG coexistence line. This result could

be related with the cooperative behavior of HB interaction that enhance the spread of

fluctuations along the HB network.

Moving away from the percolation threshold at higher T , ns deviates from the power

law behavior (see data (i), (l), (m) and (n) in Fig. 4.4) and the system appears strongly

heterogeneous with the coexistence of large and small clusters. By further increasing T

the cluster distribution is well described by exponential decay function ns ∝ exp(−s) (Fig.
4.4). These termperatures are characterized by a large quantity of small clusters and by a

structural correlations among the molecules that extends only to short distances.

At T below the percolation threshold the network of tetrahedrally ordered molecules is

built up and the majority of the molecules belongs to a single percolating cluster. and the

distribution ns becomes again exponential. A significant number of small clusters is still

present pointing out the heterogeneity of the system.

Cluster configuration at different values of T along the critical isobar are shown in Fig.

4.6.

It is interesting to note that various percolation studies in supercritical water [167–169]

1We focus on molecule cluster and not on cluster of variables σ for two reasons: i) variables σ are internal
degrees of freedom of a molecule having no direct correspondence with a physical observable while we are
interested to know the number of correlated molecules; ii) near the percolation threshold the distribution of
σ-clusters is bimodal whenever |Jeff | � Jσ because odd-size σ-clusters are strongly inhibited, introducing
a spurious effect on the cluster distribution.
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and supercitical water-CO2 mixture [170], based on a definition of cluster as contiguous

region of HB-interacting molecules, show the presence of a percolation line which divide

two structurally different fluids. Along this line the distribution of clusters follows a power

law decay as we observe at the LL Widom line.

4.4 Mean cluster size

In percolation theory, the physical quantity equivalent to the compressibility for fluid sys-

tems (or to the susceptibility for a magnetic system) is represented by the mean cluster

size S [131]

S ≡
∑
s

s2ns (4.13)

that quantifies the average dimension of non-percolating clusters. The percolating transi-

tion matches with maxima in the mean cluster size S (Fig. 4.8), sharper for P < 1, broader

and higher for P > 1. The maxima in S increase along the percolation line as T decreases

and apparently diverge at T = 0 and P = 1, highlighting a possible percolating critical

point. Moreover the maxima in S remain almost constant for P � 0.6 (in agreement with

the thermodynamic critical pressure PC ∼ 0.55), showing an elbow in correspondence to

the thermodynamic critical point (see the projection of S in the top panel of Fig. [?]) [179].

For 0.6 � P < 1 the increase in S is stronger than at lower P as a consequence of the is

related the HDL-LDL phase transition. The locus of maxima in S coincides with locus of

maxima in isothermal compressibility for P � 0.5 [179].

The size of the largest non-percolating cluster Smax, shown in bottom panel of Fig. 4.8,

is related to the fractal dimension D by the relation [131]

Smax ∼ N
D
d . (4.14)

The estimate of D from power law fits of the data are consistent (even if smaller with

respect the estimate from power law decay of ns) with the hypothesis that clusters are

more compact as the pressure is increased above PC . Moreover the scaling analysis confirms

the different behavior of S as P ∼ 0.6 is crossed, consistently with the thermodynamic

estimation of critical pressure.

At the critical pressure S diverge with a power law function

S ∼ |T − TC |−γ (4.15)
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Figure 4.6: Cluster configurations for N = 10000 water molecules. Data are taken at
P = 0.6 for (beginning at the top left): T = 0.4, T = 0.2, T = 0.1, T = 0.07 , T = 0.05636,
T = 0.058354 (percolation threshold), T = 0.05834 and T = 0.057.
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Figure 4.7: Mean cluster size for
P = 0.6 and N = 10000 water
molecules. Data are fitted with
eq. (4.15) giving γ ∼ 1.7.

where TC is the critical temperature, where spanning cluster is observed. Estimation of

γ = 1.7± 0.15 is in good agreement with the value of 2D Ising universality class γ = 7/4,

as shown in Fig. 4.7.

4.5 Connectivity length

The connectivity length ξC is the average distance between two σ variables belonging to

the same non percolating cluster [131]

ξ2c ≡
∑
r

Pij(r)r
2
ij (4.16)

where Pij is the probability that two molecules i and j, at distance rij belong to the same

cluster. The sum extends over all cells i and j whose distance satisfies rij < L/2. We

consider that the distance between variables σ of two molecules is constant. ξC sharply

increase at the percolating threshold and the maximum value ξmax
C is constant, inside the

error bar, along the percolation line. Following the CK approach described in Sec. 4.1, it

is possible to show that ξC coincides with the statistical correlation length ξ, calculated as

ξ2 ≡
∑
r

G(r)r2/
∑
r

G(r) (4.17)

where

G(r) ≡ 1

N

∑
|i−j|=r

〈σiσj〉 − 〈σi〉2
〈σ2

i 〉 − 〈σi〉2 (4.18)
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Figure 4.8: Top panel: isobaric mean cluster size S as function of temperature for N = 104

water molecules. The color code along the lines represents the value of S. Black points are
the projection of the maxima. Central panels: S for different system sizes L and pressures
across the percolating transition. Note as the behavior of S for P = 1.5 differs completely
with respect the ones for P < 1. Bottom panel: scaling of maxima in S. Lines are power
law fits with relation (4.14). We find values of D ranging from D = 1.15±0.2 for P = 0.01,
to D = 1.35 ± 0.20 for P = 0.9. For higher P we have D = 1.9 ± 0.1 consistent with
compact clusters.
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Figure 4.9: Connectivity length
ξC along isobars for N = 13225
water molecules. Values of ξC are
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Figure 4.10: Comparison between correla-
tion length ξ and connectivity length ξC
along the critical isobar (P = 0.6) for
N = 13225 water molecules.

is the correlation function of the σ variables. The loci of maxima of both quantities coincide.

Around the critical pressure we find ξ ∼ ξC for all T , as shown in figure 4.10. At a distance

of ∼ 30% away from the critical region (P � 0.4 and P � 0.75) we find that ξmax is ∼ 30%

smaller than ξmax
C , outside the numerical error bar (Fig. 4.11). Moreover at low pressure,

maxima in ξC are independent on the formation of HB network.

4.6 Scaling analisys

By definition of critical exponents β and γ, at the percolation threshold the following

relations hold for P∞ and S

P∞ ∼ |p− pc|β (4.19)
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S ∼ |p− pc|−γ (4.20)

where pc is the critical probability. In our site-bond percolation description we introduce

two probabilities, pJ and pJσ . Around the critical region it is pJσ < pJ , hence we adopt

pJσ as relevant field. Moreover pJσ is associated to the cooperative component of the HB,

responsible of spreading of fluctuations along the HB network.

The ansatz for finite size scaling of S and P∞ in the NPT ensemble are [141,181]

S ∼ fS(|e−Jσ/T − e−Jσ/TC(N)|N1/dν)Nγ/dν (4.21)

P∞ ∼ fP (|e−Jσ/T − e−Jσ/TC(N)|N1/dν)N−β/dν (4.22)

where fS and fP are universal size-independent functions. Via data collapse we estimate the

size-dependent values of the percolation temperature TC(N) and of the critical exponents

β, ν and γ. In figures 4.12 and 4.13 we show the scaling of data respectively at the critical

pressure, and for P = 1.5 along the Kertész line. Values of critical exponents at the critical

point are consistent with the Ising universality class in two dimensions, while along the

Kertész line for P > 1 they coincides with site percolation exponents [131]. Along the

Widom line we find that scaling relation are satisfied, although with smaller values of

exponents ν and γ with respect the 2d-Ising ones (data not shown). We interpret this

deviation as due to the fact that along the Widom line, away from the critical point, the

system does not undergoes any phase transition, hence the critical exponent description is

no longer valid.



64 4. Percolation approach to supercooled water

-0,02 0 0,02

(e-Jσ/T - e-Jσ/Tc(L))N(1/dν)

0

0,2

0,4

0,6

0,8

1

PN
(β

/d
ν)

L=250
L=280
L=310
L=330
L=350

-0,01 0 0,01 0,02

(e-Jσ/T - e-Jσ/Tc(L))N(1/dν)

0

0,2

0,4

0,6

0,8

SN
(−

γ/
dν

)

Figure 4.12: Scaling
of percolation proba-
bility P∞ and mean
cluster size S at the
critical point. We es-
timate ν ∼ 1.11 ±
0.15, γ ∼ 1.5 ± 0.2
and β = 0.15 ± 0.05.
Those values are in
good agreement with
the 2D Ising critical
exponents, ν = 1,
γ = 7/4 and β = 1/8.

-1 -0,5 0 0,5 1

(e-Jσ/T - e-Jσ/Tc(L))N(1/dν)

0

0,2

0,4

0,6

0,8

1

1,2

PN
(β

/d
ν)

L=200
L=250
L=280
L=310
L=330
L=350

-1 -0,5 0 0,5 1

(e-Jσ/T - e-Jσ/Tc(L))N(1/dν)

0

0,03

0,06

0,09

0,12

SN
(−

γ/
dν

)

Figure 4.13:
Scaling of S and
P∞ for P = 1.5.
We estimate
ν ∼ 1.33 ± 0.10,
γ ∼ 2.39 ± 0.11,
β ∼ 0.14 ± 0.04.
These values coin-
cide with the ones
of the site perco-
lation universality
class, ν = 4/3,
γ = 43/18 and
β = 5/36.



Chapter 5

Role of interfacial HBs on protein stability

The mechanisms of cold- and pressure-denaturation of proteins are matter of debate but

it is commonly accepted that water plays a fundamental role in the process. It has been

proposed that the denaturation process is related to an increase of hydrogen bonds among

hydration water molecules. Other theories suggest that the cause of denaturation are the

density fluctuations of surface water, or the destabilization of hydrophobic contacts as a

consequence of water molecules inclusions inside the protein, especially at high pressures.

In this chapter we review some theories that have been proposed to give insight into this

problem, and extent the water cell model for a homopolymer in contact with the water

mono-layer in the attempt to understand how the interplay of water cooperativity and

interfacial hydrogen bonds affects the protein stability.

5.1 Overview on protein stability

One of the most intriguing challenge in biological physics is the nature of protein folding-

unfolding processes. The temperature range of stability of a folded protein is in general

small. For example, staphylococcal nuclease (Snanse–a small protein containing 149 amino-

acids) folds at low pressure approximately between 260 K and 320 K [182].

Heat destabilizes proteins. By increasing the bath temperature T , thermal fluctuations

increase and disrupt the folded configurations of proteins. By decreasing T , proteins can

crystallize, but surprisingly some proteins unfold at sufficient low temperature instead of

crystallizing [182–188]. Cold denaturation seems to be a general phenomenon for proteins,

generally occurring well below 0◦C, the freezing point of water. In some cases, for example

for Snase [182], the cold denaturation cannot be directly observed, but experimental data

can be extrapolated to predicted the lower temperature of protein stability. In general,
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destabilizing agents can be used to make the cold denaturation observable. Interestingly,

Pastore et al. [188] observed that Yeast frataxin under physiological conditions undergoes

cold denaturation below 7◦C and remains folded up to 30◦C. Hence, Yeast frataxin is an

excellent prototype for studying folding transition under accessible conditions for both hot-

and cold-unfolding. The study could help in understanding the mechanism of cold-unfolding

that, as we will discuss in the next sections, is still matter of debate.

Proteins can unfold also by pressurization. It has been observed that the increase of

pressure induces the unfolding of protein [189–191]. The pressure-unfolding process can be

rationalized by considering that the folded structure usually includes cavities. High pres-

sure can induce elastic response of the protein, deforming its structure and pushing water

molecules inside the cavities. The water molecules from inside would swell the protein, with

consequent loss of protein functionality [190]. Because it is difficult to separate the protein

response to high hydrostatic pressure from the response of the aqueous environment, the

understanding of the pressure-unfolding is still under debate.

5.1.1 Thermodynamics of proteins unfolding

By increasing the thermal energy kBT (kB is the Boltzmann constant), the protein residues

vibrate faster, accessing new possible configurations, i. e. increasing the entropy S of the

system. This increase leads to hot denaturation, in the same way an increase of kBT leads

to the melting of a crystal, at expenses of the energy of the system, compensated by an

increase of entropy.

The cold denaturation, instead, cannot be explained as the effect of an increase of

entropy. By decreasing T , the entropy of the system decreases. Hence, in the case of proteins

there must be a complex mechanism that induces the cold denaturation.

General principles of thermodynamics tell us that at any value of T and P the system

minimizes its Gibbs free energy, G ≡ H − TS, where H ≡ U + PV is the enthalpy of

the system, U the internal energy of the system, V the volume and P the pressure. In our

case the system is the solution of proteins and water. Hence, the free energy balance must

take into account both water molecules and protein residues. The experimental fact that

solvated proteins unfolds by decreasing T means that at lower T the difference

ΔG ≡ Gu −Gf (5.1)
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between the unfolded (u) and folded (f) states is

ΔG = ΔH − TΔS < 0, (5.2)

where ΔH ≡ Hu −Hf and ΔS ≡ Su − Sf .

The total variation of the entropy of the system is given by ΔS = ΔSp+ΔSw where ΔSp

and ΔSw are the entropy variation of protein residues and water molecules, respectively.

By unfolding, the protein entropy increases, ΔSp > 0. On the other hand, the protein

contribution to ΔH is positive, ΔHp > 0, because the enthalpy of the protein increases

when the protein unfolds (Hp decreases when the number of contact points of the protein

increases). Therefore, the protein contribution to ΔG does not guarantees that Eq. (5.2)

is satisfied, because ΔHp − TΔSp, could be negative or positive depending on the relative

variations at the given T . Hence, water contribution to the total balance of Eq. (5.2) could

be relevant. A commonly proposed idea is that the native–folded state is stabilized by the

quasi–ordered network of water molecules hydrating the non–polar monomers [192–195].

5.1.2 Protein phase diagram

In this section we summarize the main theoretical calculations, due to Hawley [196] and

reviewed by Smeller et al. [197] and Meersman et al. [198], predicting a close stability region

(SR) in P −T plane for proteins, consistent with experiments (Fig. 5.1) [182,183,185,186,

188,199]. Outside the elliptic region the protein unfolds, loosing its biological function 1.

Following Hawley [196, 197], we can calculate ΔG of the whole system (protein and

water) assuming that a protein can stay in only two distinct states, folded and unfolded

as in eq. 5.1. Differentiating G, we get

dG = −SdT + V dP ≡ dG(T, P ) . (5.3)

Hence, it is

dΔG = −ΔSdT +ΔV dP (5.4)

with ΔV ≡ Vu − Vf . By expanding ΔS and ΔV to the first order around ΔS0 and ΔV0,

1Actually there are a few classes of materials which are characterized by elliptically shaped phase
diagrams. For instance, in some liquid crystalline materials the phase boundary between the nematic to
smectic-A transition falls into this category [200].
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Figure 5.1: Schematic representation of the phase diagram of a protein. Within the elliptic
region the protein is folded, while it unfolds by increasing temperature T (hot denatura-
tion), by decreasing T (cold denaturation), by increasing or decreasing pressure P (pressure
denaturation). Each folding–unfolding process is characterized by different variation of en-
tropy ΔS and variation of volume ΔV as indicated in the figure. The axes of the ellipse
are loci where ΔS = 0 and ΔV = 0 (see text for discussion). Adapted from [190].

we get

ΔS = ΔS0 +

(
∂ΔS0

∂T

)
P

(T − T0) +

(
∂ΔS0

∂P

)
T

(P − P0) (5.5)

ΔV = ΔV0 +

(
∂ΔV0

∂T

)
P

(T − T0) +

(
∂ΔV0

∂P

)
T

(P − P0) (5.6)

and from Eq. (5.4)–(5.6), by integration,

ΔG(P, T ) =
Δβ

2
(P − P0)

2 + 2Δα(P − P0)(T − T0)+

−ΔCP [(T − T0)− T0 ln(T/T0)] + ΔV0(P − P0)−ΔS0(T − T0) + ΔG0

(5.7)

where α ≡ (∂V/∂T )P = −(∂S/∂P )T is the thermal expansivity factor, related to the

isobaric thermal expansion coefficient αP by αP = α/V ; CP ≡ T (∂S/∂T )P is the isobaric

heat capacity and β ≡ (∂V/∂P )T is the isothermal compressibility factor related to the

isothermal compressibility KT by the relation KT = −(β/V ). All the quantities with

the subscript equal to zero are usually referred to ambient conditions. By developing the
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logarithm to the second order around (T0, P0)

ln

(
T

T0

)
∼ T − T0

T0

− (T − T0)
2

2T 2
0

(5.8)

we get

ΔG(P, T ) =
Δβ

2
(P − P0)

2 + 2Δα(P − P0)(T − T0)+

−ΔCP

2T0

(T − T0)
2 +ΔV0(P − P0)−ΔS0(T − T0) + ΔG0 .

(5.9)

Hence, assuming that the u −→ f is a first order phase transition, along the coexistence

line it holds the Clapeyron equation dP/dT = ΔS/ΔV and dΔG = 0, for which the

coexistence line is given by

Δβ

2
(P − P0)

2 + 2Δα(P − P0)(T − T0)+

−ΔCP

2T0

(T − T0)
2 +ΔV0(P − P0)−ΔS0(T − T0) + ΔG0 = 0

(5.10)

that is the equation of en ellipse, as in Fig. (5.1), given the constraint

Δα2 > ΔCPΔβ/T0 . (5.11)

This condition is guaranteed by the different sign of ΔCP and Δβ, as can be observed for

some proteins, as reported by Hawley [196].

The eq. 5.10 is the Taylor expansion of ΔG(P, T ) arrested to the second order, holding

for Δα, Δβ and ΔCP independent of T and P . These assumptions are generally valid and

adding third order terms in the expansion has minimal effects on the elliptic shape of the

SR.

At maximum pressure Pmax of stability for the protein, dΔG/dT = ΔS = 0, while at

the maximum temperature Tmax of stability, dΔG/dP = ΔV = 0. Therefore, based on

Hawley’s theory it is possible to make general predictions about the changes of ΔV and

ΔS as schematically summarized in Fig. 5.1. This phenomenological theory does not take

into account the explicit informations about the protein structure, and makes strong as-

sumptions, such as, for example, that the protein only has two states, or that equilibrium

thermodynamics holds during the denaturation. The last assumption, in particular, im-
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plies that the whole process would be reversible. Nevertheless, consistency with Hawley’s

theory is a good test for models of protein unfolding. More details about the arguments

summarized here can be found in Ref. [198].

In the next section we review some of these models. The review does not pretend to be

exhaustive, but it has the aim of mentioning a number of positive results of the theories

formulated to understand protein folding.

5.2 Models for protein unfolding

5.2.1 Hydrophobic effect

To date is widely shared the idea that hydrophobic interactions play an important role in

protein folding. A solute is considered hydrophobic if it binds to water in weaker way then

water itself.

A model for protein folding taking into account implicitly the hydrophobic effect was

proposed in 1989 by Lau and Dill, known as HP model [201]. By assuming that the exposed

surface of hydrophobic residues is energetically unfavorable at low T , the model reproduces

the folding of the protein (hydrophobic collapse). The protein is represented as a self-

avoiding chain on a lattice. The chain is composed by two different categories of amino

acids: H (hydrophobic non-polar) and P (polar). The presence of the aqueous environment

is taken into account introducing an attractive contact interaction between H monomers.

This interaction captures the hydrophobic effect between water molecules and non polar

amino acids. No other interactions are present in the system.

Under these hypothesis, the authors show that the features of the folding process depend

on the HH energy interaction, the length of the chain, and the specific sequence of H and

P monomers. Moreover, for long chains one folded state dominates.

The model has the virtue to reduce the complexity of the folding process to a manage-

able level. All the electrostatic and chemical properties of each amino-acid are simplified

by allowing only two possible states. The degrees of freedom of the solvent are not explic-

itly included. Nevertheless, the HP model cannot describe cold denaturation. Therefore,

the experimental evidence of cold denatured proteins calls for a reconsideration of the

hydrophobic interaction and its dependence on temperature and structure of hydration

water [184–187].

Back in 1945, Frank and Evans [192] discussed the tendency of water to form ordered

structures around non-polar solutes to minimize the free energy cost of solvation. As a
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consequence, hydrophobic solutes are “structure makers” for water, facilitating the forma-

tion of cages around the solute. The effect of these structures around hydrophobic solutes

is to reduce the entropy with respect to the bulk and to compensate, approximately, the

enthalpy cost for the creation of a cavity to allocate the solute.

As discussed by Muller in 1990 [194], the compensation of the enthalpy implies that

water-water hydrogen bonds (HBs) at the interface with the hydrophobic solute are stronger

than those in the bulk. This is consistent with the experimental observation that the ex-

cess molar heat capacity for a non-polar solute at infinite dilution in water is positive.

This quantity, defined as the difference of the partial molar heat capacity in solution with

respect to the heat capacity of the pure liquid solute, is far larger at 25 ◦C when the solvent

is water than for any other solvent [194,202].

The statement that HBs are stronger at the hydrophobic interface has led to the mis-

conception that water around a hydrophobic solute has an iceberg-like structure. Computer

simulations [203,204], theoretical analysis [205,206], and neutral scattering studies [207] are

inconsistent with iceberg-like structures. Hence, the restructuring of water around a sol-

vent seems not to play a relevant role in the hydrophobic effect. Nevertheless, Muller [194]

shown that if hydration HBs are enthalpically stronger but fewer than in bulk, a model

with two-states HBs can reproduce the sign reversal of the proton NMR chemical shift

with T and the heat capacity change upon hydration.

On the other hand, a common opinion [208] is that the large free–energy change associ-

ated to the hydrophobic effect is due to the small size of the water molecules with respect

to the solutes, and that the free–energy change associated to the network reorganization

around hydrophobic particles is negligible due to compensation of enthalpy and entropy,

although it may account for the large heat capacity change upon hydration. This observa-

tion apparently ruled out Muller model, where the enthalpy-entropy compensation upon

hydration was not present.

Nevertheless, Lee and Graziano in 1996 [209] shown that Muller model can be slightly

modified to recover also the enthalpy-entropy compensation upon hydration. The Muller-

Lee-Graziano model was further simplified by De los Rios and Caldarelli in 2000 [210,

211] in order to reduce the number of parameters. Simplifying the description of bulk

water, they recovered hot and cold denaturation for a protein represented as a hydrophobic

homopolymer. A development of this model has been used in 2005 to study the effective

interaction between chaotropic agents and proteins [212].

The model of De los Rios and Caldarelli has been generalized by Bruscolini and Casetti
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[213, 214] in 2001 by allowing each monomer of non-polar homopolymer to be in contact

with a cluster of water molecules. Each cluster has an infinite number of possible states

and only one state minimizes the free–energy cost of the interaction with the hydrophobic

monomers. The model reproduces the trends of thermodynamic averages in accordance

with experiments [215] and simulations [195], and predicts the hot and cold denaturation.

These results are qualitatively similar to those of the Muller-Lee-Graziano model, further

supporting the relevant role of the solvent in the folding-unfolding process.

Cold denaturation and T -dependence of the hydrophobic effect were also observed by

Dias et al. in 2008 analyzing a non-polar homopolymer in the Mercedes-Benz (MB) model

for water [216]. The MB model, originally introduced by Ben-Naim [217] 1971, represents

water molecules as disks in two-dimensions with three possible HBs (arms) as in a Mercedes-

Benz logo. Water molecules interact via van der Walls potential and HB interactions. HB

interaction is modeled with a Gaussian potential, favoring a fixed value for the water-

water distance and aligned arms for facing molecules. Simulations show that the average

HB energy is higher for shell water than for bulk water at high T , while is lower at lower T .

Therefore, by cooling the solution, is energetically more convenient to increase the protein

surface exposed to water, inducing protein unfolding. In this model, the water molecules

forming a cage around the protein monomers are strongly H-bonded to each other. The

highly ordered structure of the solvent around the monomers decreases the entropy of

water, compensating the increase of the entropy associated to the protein unfolding.

This model has been criticized [218] because it assumes, without proof, that the en-

thalpy gain dominates at low T , giving rise to free–energy gain upon unfolding of the

protein. In particular, Yoshidome and Kinoshita in 2009 [218] analyzed by integral equa-

tion theory the behavior of a non-polar homopolymer composed by fused hard-spheres of

different diameters immersed in smaller hard spheres, with permanent electrostatic multi-

ple moments, representing the solvent [219]. The protein–water interaction is represented

by a hard sphere potential and water–water interaction by a hard sphere potential and

an electrostatic contribution given by the electrostatic multipole expansion. The author

found that denaturation is characterized by large entropy loss and large enthalpy gain.

However, these two contributions to the free energy almost completely cancel out and

make no significant contribution to the free-energy change. They found that the driving

mechanism for cold denaturation is the translational entropic-loss of water due to the large

excluded volume of the hydrophobic particles. They observed that at low T water diffuses

less, therefore the hydrophobic effect is weaker and the protein unfolds.
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In a recent work [220], Matisyak and coworkers present a three-dimensional lattice

model for an hydrophobic homopolymer in explicit water. They observe that the T -folding

process is due by either attractive interactions between the monomers or by modeling the

entropic cost of forming interfacial hydrogen bonds. In particular, cold denaturation is

only observed when the enthalpic benefit of forming additional interfacial water molecules

overcomes the enthalpic benefit of forming monomermonomer interactions.

A different approach to the role of hydrophobic interaction in polymer collapse and

nanoparticles self-assembly is represented by the theory proposed Lum, Chandler and

Weeks in 1999 [221], further developed by ten Wolde and Chandler in 2002 [222] and

recently by Varilly, Patel and Chandler in 2011 [223]. They start from the observation

that, at ambient conditions, the solvation free energy of hard sphere solutes increases: a)

with the solute volume for solutes of small radius; b) with the solute surface for solute of

large radius.

Hence, the solvation free energy exhibits a crossover between two regimes: for small

solute the entropy leads to the dispersion of hydrophobic particles, while for large solute

the enthalpy drives to hydrophobic collapse of the particles. The authors associate the

enthalpy change responsible for the hydrophobic collapse to dewetting transition, i.e. to

a microscopic liquid-gas phase separation of water molecules at the interface with the

solute. Therefore, the average number of water molecules in a probe volume close to the

solute decreases respect to bulk and a liquid-gas interface is formed near the hydrophobic

particles, i.e. the solute is surrounded by vapor bubble. In order to reduce the free energy

cost to form a liquid-gas interface, the solutes collapse. To take into account the crossover

at different length-scale, the authors propose a mean field model for the water solvent.

Water density is modeled as a sum of two scalar field, representing the large and the small

length-scale contribution to water density. This decomposition is valid in thermodynamic

conditions far away from critical regions of water, where density fluctuations are expected

to be strong. The Hamiltonian for the water system is a bilinear form, coupling the two

components of the density field. The solute-water coupling is represented by an excluded

volume term or by an external tuning potential. The hydrophobic collapse of a polymer

[222] and the dewetting transition of confined water [223] are studied at ambient conditions

with interesting predictions. In particular, the tendency of vapor formation at the solute

interface decreases as the system is moved away from liquid-vapor equilibrium, i.e. by

lowering the temperature or increasing the pressure. Therefore, the authors offer a rationale

for protein unfolding at low T and high P , as a consequence of destabilization of the
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hydrophobic collapse.

5.2.2 Pressure effects

Pressure effects have been also considered in microscopic theoretical models for protein

denaturation. For example, in 2003 Marqués and coworkers [224] considered a model in

two dimensions with a hydrophobic homopolymer, represented as a self-avoiding random

walk, embedded in water at constant P . They adopted the Sastry et al. water model [41]

for water–water interactions. They considered that polymer–water interaction is repulsive,

hypothesizing that is proportional to the density number of HBs and to the number of

missed native contact points among monomers of the protein. The model displays hot

denaturation, cold denaturation and denaturation at high pressure, in agreement with

stability diagram of some proteins [225]. A peculiarity of this model is that the effective

repulsion between protein and solvent is mean field because it depends on the average

number of HBs of bulk water, that is an average property of the bulk.

To remove this coupling in 2007 Patel and coworkers [226] proposed a model where

water at the interface with protein has a restricted number of accessible orientations for

the HBs compared to the bulk. Along with this entropic reduction, the interfacial HBs

also have an additional enthalpic bonus with respect to bulk water, following the ideas

discussed by Muller, Lee and Graziano. The model displays a stability phase diagram

with hot, cold and pressure denaturation. However, it does not reproduce all the expected

features of the schematic phase diagram of Fig. (5.1). In particular, the model does not

reproduce the elliptic shape of the phase diagram and the low-P region with ΔV > 0 for

hot denaturation. These results were confirmed by extending the model to the case with

heteropolymers.

5.3 Coarse-graining the water-water interaction at protein inter-

face

Following our discussion about how could be relevant to take into account the HB free

energy to explain the lost of stability of folded proteins, we test if the proposed water

model could give insight into the mechanism of unfolding.

To this goal we modify the water model to introduce the effect of the protein-water

interface. For sake of the simplicity, we will limit our discussion to the case of a single

protein embedded into a water mono-layer. Although this case is far from the complex



5.3 Coarse-graining the water-water interaction at protein interface 75

Figure 5.2: Example of configuration of a
homopolymer in the coarse-grained model
of a protein suspended in water. Each cell
is occupied either by a water molecule
(white and gray cells) or a hydrophobic
homopolymer monomer (cells with a full
black circle). The gray cells represents the
sites occupied by shell water. The enthalpy
gain for HB formation between shell wa-
ter molecules is larger than that between
bulk water molecules, according to the Eq.
(5.13). Shell water molecules cannot form
hydrogen bonds with nearest neighbor hy-
drophobic monomers.

studies of a protein embedded into bulk water, the model gives instructive results.

The water Hamiltonian is

H = U(r)− JNHB − JσNcoop (5.12)

Data reproducing elliptic shape of protein SR are usually taken in solution, where a consis-

tent percentage of ions are present. It is known that the structure of water HB network is

perturbed by the presence of ions, but a common interpretation on the “structure-maker“

or “structure-breaker“ role played by ions is still lacking. Some works state that ions lead to

a decrease of the average number of HB in the first and second hydration shells [227–230],

with small effects observed even in the bulk. Nevertheless, in this conditions the LLCP is

expected to shift at higher T and lower P [231]. According to ref. [49], in our cell model

this effect is observed when the ratio J/Jσ decreases. We account for this fixing J/4ε = 0.3.

The simplest protein that we can consider is a hydrophobic homopolymer, schematized

as a self avoiding chain (Fig. 5.2), which monomers occupy nearest-neighbor sites. Each

element of the polymer occupies an entire cell without affecting its volume. The protein

has no self-interaction aside from excluded volume effects. The polymer interaction with

water is through its indirect effect on water-water hydrogen-bonding.

Following the discussion of Muller [194], we require that, consistent with experiment,

water molecules in contact with a hydrophobic monomer have larger decrease of enthalpy

upon HB formation than bulk water. Also consistent with Muller-Lee-Graziano discussion
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[209], the fraction of broken HBs at the hydrophobic interface is larger than the fraction

of broken HBs in the bulk.

The first requirement is achieved by adding a term to the water Hamiltonian Eq. (5.12)

Hsurf = −λJ
∑

<ij>surf

ninjδσij
δσji

, (5.13)

where the sum is taken over nearest neighbor water molecules in the protein hydration

shell (Fig. 5.2), and λ > 0 is an adjustable parameter accounting for the larger enthalpy

decrease for HBs in the hydration shell. Hence, for a HB formed between water molecules

in the shell, the energy variation is

Jsurf ≡ −J(1 + λ) . (5.14)

The presence of the hydrophilic interface entails a decrease of hydration water density

[91, 221, 232, 233], a phenomenon that can be interpreted as a dewetting transition, with

consequent formation of vapor-like bubbles at the interface. It has been observed that

increasing P suppresses formation of such bubbles by reducing water fluctuations in the

hydration shell, making the hydration shells of unfolded proteins more compressible than

the folded ones [191,234–237] and shortening the most protein-water HBs [238]. Indicating

with vsurf the volume increase due to interfacial water-water HB, we incorporate the denser

hydration shell upon pressurization with

vsurf ≡ ṽ − kP (5.15)

where ṽ and k are two adjustable parameters. As initial guess we fix ṽ = vHB and k = 0.5.

Hence the enthalpy variation in the hydration shell is −Jsurf + vsurfP .

The second requirement of Muller-Lee-Graziano approach, i.e. a larger number of broken

HBs at the interface, is achieved by volume exclusion. Once a cell of our system is occupied

by a protein monomer, it cannot be occupied by a water molecule. Therefore, a water

molecule, in the hydration shell cannot form the HB in the direction of the monomer and

looses at least one HB (it can loose more if it has more monomers as nearest neighbors, as

shown in Fig. 5.2).
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Figure 5.3: A) Monomer 2 is in a corner configuration and can be displaced from the
configuration on the left to the configuration on the right and vice versa. B) Homopoly-
mer configuration with two contact points, indicated with dotted lines. C) Homopolymer
configuration without contact points.

5.3.1 Monte Carlo algorithm

We perform MC simulations in the NPT ensemble for a system size L = 60 and a polymer

length l = 30. In every MC step we choose a cell at random. If it is occupied by a water

molecule, we change randomly one of its σ variables. If it is occupied by a monomer and

if the monomer is in a corner configuration (Fig. 5.3A) then we swap its position with the

position of the water molecules in the cell in the opposite corner. By doing this, we keep

the inter-monomer distances constant.

If the cell, picked at random, is occupied by a monomer not in a corner configuration,

no displacement is performed because it would change the inter-monomer distance. This

limitation is introduced in order to avoid in the enthalpy expression any term accounting

for the elastic energy of the homopolymer. The effects of this elastic contribution are for

the moment outside of the scope of the present work.

The phase space of a polymer is known to be complex and many local minima of free

energy are present. When the free energy barrier is to high the polymer gets trapped. In

this cases the exploration of new configurations is strongly inhibited because the system

should pass through a series of statistically unlikely conformations before to run into new

local minima. To avoid this hurdle, if the polymer configuration remains unchanged for a

long series of Monte Carlo steps we allow it to jump directly in a new configuration through

random moves of the monomers. Than the water is equilibrated blocking the polymer. The

macro-move is accepted according to the global free energy change.

Finally, as in the cases discussed in the previous section, to keep the pressure of the

system constant, every N random changes of the cell variables (where N is the total
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Figure 5.4: Time correlation of quantities Cr1,l(t), Cr l
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(t), Cr 2l

3 ,l
(t) and Cr 3l

4 ,l
(t) for P = 0.5.

number of cells in the system), we attempt to rescale all the system volume by a factor

that is tuned in a way to guaranty 50% of acceptance ratio. All the MC moves described

above are accepted or rejected according to the Boltzmann factor associated to the enthalpy

change caused by the move.

Simulations are carried out along isobars, adopting a folded state as initial polymer

conformation and random values of variables σ. Each state point (T, P ) is sampled with

∼ 103 ÷ 104 independent configurations.

5.4 Phase diagram of a solvated homopolymer

To ensure the right exploration of phase space by the polymer, inside our simulation time,

we calculate the time correlation of the cosine between unit vectors r̂i,l joining the ith and

the final element of the polymer

Cri,l(τ) ≡
∑
t

r̂i,l(t) · r̂i,l(t+ τ) . (5.16)

In particular we consider the vectors r̂1,l, r̂ l
2
,l, r̂ 2l

3
,l, r̂ 3l

4
,l, where the end-to-end vector r̂1,l

is the mode of the polymer that relaxes slower [239]. Data for four T at fixed P are shown
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Figure 5.5: Left panel: Average number of contact points Ncpts as function of T for
different pressures. Right panel: Average radius of gyration rg. Error size are twice of
symbol dimension.

in Fig. 5.4. For the lowest T the polymer does not relax.

In order to study the folding-unfolding process of the proteins we calculate the number

of contact points Ncpts as illustrated in Fig. 5.3. In this calculation we do not count the

monomers that are adjacent along the homopolymer. We define the folded configuration

when Ncpts ≥ 1
2
Nmax

cpts , being Nmax
cpts the maximum number of contact points. In Fig. 5.5

we report Ncpts for different isobars. The temperature range, within which the polymer is

folded, exhibits a non-monotonic behavior with P , whit a maximum range for P ∼ 0.2.

Analogous behavior is observed in the radius of gyration rg, (Fig. 5.5)

r2g ≡
1

2l2

l∑
i,j=1

|�ri − �rj|2 (5.17)

where �ri is the position vector of the ith monomer.

Fig. 5.6 shows the phase diagram with different level curves representing the folded per-

centages for Jsurf = 0.55. The native configuration stays inside the 50% curve. The model

protein exhibits heat-, cold-, and pressure-unfolding and the shape of the curves is con-

sistent with an ellipse. The folded protein is stabilized by minimizing the exposed surface

area of hydrophobic monomers, thereby limiting the number of interfacial water molecules

forced to pay an entropic cost for hydrogen-bonding around the protein. This corresponds

to the more compact conformations shown in bottom panels of Fig. 5.7. Upon increasing
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Figure 5.6: Stability region for the initial set of parameters J = 0.3, Jsurf = 0.55, vsurf =
0.5− 0.5P .

temperature, the protein gradually unfolds exposing more hydrophobic monomers to the

solvent. Thermal fluctuations dominate the system, overcoming the entropic cost of form-

ing additional interfacial HBs around the exposed monomers. Conformations of thermally

denatured protein are shown in top panels of Fig. 5.7. At low T the denaturation process is

led by the enthalpy bonus, due to the additional formation of HBs in the hydration shell.

The open protein conformation allows to maximize the HB number ot the interface.

The change of interfacial density with P makes it increasingly favorable the unfolding

because of decrease in enthalpy −Jsurf+P ṽ−kP 2 upon pressurization and depressurization.

Consistently with the theory, at high P the denaturation is accompanied by decrease of

volume ΔVsurf < 0 while ΔVsurf > 0 at low P . Actually in our model the unfolding is

associated with a break of some HBs in the bulk and with the formation of new HBs in

the hydration shell. The corresponding volume change is

ΔV = vHBΔNHB + ṽΔN
(s)
HB − kPΔN

(s)
HB (5.18)
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Figure 5.7: Protein configurations with 0%, 25%, 50% and 85% of the possible contact
points. Different colors represent different bonding state of σ variables.

where ΔNHB and ΔN
(s)
HB are the change in the HB number respectively in the bulk and at

the interface. The sign of ΔV is negative in the limit of high P and turn to be negative in

the opposite limit.

It is possible to calculate an anlalytic expression for the coexistence line. Infact the free

energy change ΔG ≡ Gu −Gf must be zero at the transition point, so that we can write

Uu + PVu − TSu = Uf + PVf − TSf (5.19)

Substituting the energy and volume in terms of the Hamiltonian model we find

kΔN
(s)
HBP

2−(vHBΔNHB+ ṽΔN
(s)
HB)P +JΔNHB+JsurfΔN

(s)
HB+JσΔNcoop+TΔS = 0 (5.20)
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Figure 5.8: Comparison between stability region of Fig. 5.6 (dotted lines) and the stability
regions for lower interfacial HB strength Jsurf = 0.20 (left panel) and for still higher Jsurf =
0.75 (right panel).

Equation (5.20) explicitly links the transition temperature and pressure with the model

parameters and the variation of bulk and interfacial HBs.

5.4.1 Tune of strength of interfacial HB and hydration shell density

The importance of the entropic penalty and the enthalpic bonus in cold and pressure

denaturation is given by the combination of two terms Jsurf and vsurf . Changing the strength

of the interfacial HB Jsurf distorts the phase diagram. In Fig. 5.4.1 we evaluate the change

of phase diagram considering two values Jsurf = 0.2 and Jsurf = 0.75, respectively smaller

and bigger with respect to J . In the first case there is no enthalpic gain in the unfolding

process as long as vHB ∼ vsurf , because interfacial HBs are weaker than bulk HBs. The

SR is strongly stretched toward lower T and higher P , increasing the range of T and P

where the native state is stable. The eccentricity of the ellipses tends toward 1 and its

transverse diameter increases the negative slope. Cold-denaturation is still observable at

low P (eventually negative) where the polymer partially opens, while it is lost at high P .

For further increase of Jsurf the SR is lost, due to the fact that formation of interfacial

HBs is even more favorable. The contour lines, while manteining the shape, are pushed

and shifted at higher T .

The density of water molecules in the hydration shell depends on the volume vsurf ≡
ṽ−kP associate to interfacial HBs. Changing the functional form manteining dvsurf/dP < 0
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Figure 5.9: Comparison between stability region of Fig. 5.6 (dotted lines) and the stabil-
ity regions for lower (left panel) and higher (right panel) compressibility factor, related
respectively to k = 0.4 and k = 1.

does not affect substantially the obteined results 2. The volume change associate to the

f −→ u process is given by eq. 5.18. At high T the thermal denaturation is an entropy

driven process and the HB dynamic is not relevant for the process because the average

number of HB per molecule is small. So we can approximate ΔNHB ∼ 0 and consider

ΔN
(s)
HB as a function slowly varing with the pressure 3 (these approximations are confirmed

by simulation results). Then we can relate the parameter k to the compressibility factor β

at high T

β ≡ −∂V

∂P
∼ 2kΔN

(s)
HB (5.21)

Changing k determines a stretching of the SR along the P direction and a rotation of

the ellipse axes. Decrease in compressibility factor (left panel of Fig. 5.4.1) results in an

extension of the SR area in the T − P plane, with an increase of the negative slope of the

transverse diameter. On the contrary, an increase of k (right panel of Fig. 5.4.1) rotates

the coexistence line counterclockwise and reduces the SR area. The lines where ΔS = 0

and ΔV = 0, joining the points where of the slope of the coexistence line is respectively

∂P/∂T = 0 and ∂P/∂T = ∞ (Fig. 5.1), increase the slope turning to be positive, as

observed in the experiments [191].

2We considered exponential and quadratic decay of vsurf with P getting in both cases a close SR, even
if with a distorted shape.

3Actually ΔN
(s)
HB depends on the length l of the protein.
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Figure 5.10: Comparison between stability region of Fig. 5.6 (dotted lines) and the stability
regions for ṽ = 0.3 (left panel) and higher (right panel) ṽ = 0.7.

The parameter ṽ represents the volume associate to the HB in the hydration shell at

P = 0. An increase or decrease of ṽ shifts the SR respectively at higher P (expanding also

the SR) and at lower P . In Fig. 5.10 we show the case of ṽ = 0.3 (left panel) and ṽ = 0.7

(right panel).

If no energetic gain and no pressure change of hydration density are taken into account

the SR loses completely its shape. The case J = Jsurf and vsurf = vHB, equivalent to embed

the polymer in water without affecting its dynamic, is shown in the left panel of Fig.

5.4.1. The SR has a negative slope at low P , turning to infinite slope at high P . No cold

denaturation is observed (even if Ncpts along isobars shows a maximum at T 
= 0) and the

folding is completely driven by enthalpy of bulk water.

Interestingly, if we consider that no volume change takes place at the interface (vsurf =

0), the cold- and pressure- denaturation is observed, but with a dome in the SR resembling

the results of model proposed by Patel et al. [226] (right panel of Fig. 5.4.1) . The SR

enlarges at higher T as Jsurf > J . This happens in the model because the effective covalent

component of the HBs in the bulk J − vHBP decreases with pressure while the interfacial

bonds are P -independent making the unfolding process energetically favorable whenever

J − vHBP > 0. Further decrease of vsurf < 0 results in a still broader T -range of the SR

and lower value of the its maximum P , shifted at higher T (data not shown).
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Figure 5.11: Left panel: phase diagram of the polymer without any effect on water. Right
panel: Phase diagram for J = Jsurf and vsurf = 0.
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Chapter 6

Conclusions

In this thesis we presented a coarse-grained model for a mono-layer of water and its ex-

tension to the case of solvated proteins. The model takes into account the cooperativity

between HBs and has been studied by Monte Carlo simulations.

In chapter 3, we analyze the low-T phase diagram of a water mono-layer confined

between hydrophobic parallel walls of size L separated by h ≈ 0.5 nm. We calculate the

loci of temperature of maximum and minimum density, and the locus of maxima in ξ that

defines the Widom line. We found two loci of extrema for each thermodynamic response

functions: the stronger one at low-T , coinciding with the Widom line, and the weaker and

broader one at high-T . Such results about the phase diagram, and the response functions

CP , αP and KT of the model and the connection of these quantities with the HBs dynamics

are in agreement with experimental results and validate the model. We find a liquid-liquid

critical point in the deep supercooled region, at the end of a line of first order transition

between two liquid phases characterized by different values of energy and density. The

LLCP belongs to the 2D Ising universality class only for L/h ≥ 50. Surprisingly, we show

that by confining the mono-layer within walls with small L one “lifts”, instead of decreasing,

the class of the LLCP to 3D, bulk-like, Ising universality. We rationalize this effect as a

consequence of (i) the high cooperativity of the HB network and (ii) its low coordination

number at low T that makes the mono-layer similar to bulk within the first coordination

shell.

In chapter 4, we present a geometric description of correlated region of water molecules

to typify the liquid phase. Cluster of molecules are built following the percolation approach

proposed by Kastelein-Fortuin and Coniglio-Klein. The probability that two interacting

molecules belong to the same cluster depends on the thermodynamic conditions of T and

P . We find that the LL-phase transition line and the Widom line are characterized by
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continuous percolation line where cluster distribution decays as power law function. This

line marks the region where the fluctuations of HB spans all over the network. At low P

the percolation, related to local tetrahedral rearrangement of HB network, happens when

the system already has formed a great number of HBs. Loci of maxima in correlation and

connectivity length point out that in our model Widom line and Kertész line coincide. At

high P the percolation is associated to the sharp formation of HBs, giving rise to discon-

tinuous change in density in turn associated to the HDL-LDL phase transition. Scaling of

the percolation order parameter and of the mean cluster size at the LLCP agrees with Ising

universality class in 2D. The presence of LLCP is also marked by different size behavior of

mean cluster size and fractal dimension of the spanning clusters.

In chapter 5, we adapt the water cell model in the context of protein folding. Without

entering in the complex mechanism of protein folding we study how the HBs network

stabilizes the native state of protein. For the sake of simplicity we consider the case of a

protein schematized as a self-avoiding hydrophobic homopolymer and limit our discussion

to a 2D model. We assume that the network of HBs is perturbed by the presence of

hydrophobic solute with large size leading to interaction among the water molecules at

the interface that are stronger than in the bulk, and to a larger number of broken HBs

with respect to the bulk. We also assume that the density of hydration shell increase

upon pressurization. The model protein denatures at high temperature, low temperature,

high pressure and low pressure showing many of the same denaturation characteristics

observed in experiments. The stability region, where the native state of protein is stable,

has an elliptic-like shape according to theory. We study also the dependence of the stability

region on the parameters of the model finding that both energetic gain for interfacial HBs

and compressible hydration shell are essentially the underling mechanism leading to a close

stability region in the T − P plane.



Appendix A: Usefull thermodynamic relations

We report here the calculations for the thermodynamic relations in eq. 3.6, 3.8 and 3.10 [41].

To verify the relation 3.10 we calculate the derivative of KT along isobars

(
∂KT

∂T

)
P

=
∂

∂T

(
− 1

V

∂V

∂P

)
=

1

V 2

(
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V

∂2V

∂P∂T
(6.1)

and the derivative of αP along isotherms

(
∂αP

∂P

)
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∂
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(
1
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= − 1
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∂KT
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(6.2)

Following [41,128] the TMD line is characterized by dαP = 0 and α = 0. Hence

dαP = 0 =

(
∂αP

∂T

)
P

dT +

(
∂αP

∂P

)
T

dP =

(
1

V

∂2V

∂T 2

)
P

dT +

(
1

V

∂2V

∂P∂T

)
T

dP (6.3)

which gives the slope ∂P/∂T of TMD

(
∂P

∂T

)
TMD

= −
∂2V

∂T 2

∂2V

∂P∂T

(6.4)

from which, using eq. 6.1 for αP = 0, we get rel. 3.6.

To calculate the rel. 3.8 we start from CP and αP written in terms of Gibbs free energy

CP

T
= −∂2G

∂T 2
, V αP =

∂2G

∂P∂T
(6.5)
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from which results

∂

∂P

(
CP

T

)
T

=
1

T

(
∂CP
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T

= − ∂

∂T
(V αP )P = −
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P

αP − V

(
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P
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T

= −T ∂2V

∂T 2
(6.6)

Substituting in eq. 6.4 we get the rel. 3.8.
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The renormalization group (RG) studies the set of mathematical transformations of cou-

pling constants of a physical system, in correspondence of a change in length (or energy)

scale x −→ x′ = x/b and in lattice space a −→ a′ = ab. To each RG transformations is

associated a blocking reduction of the degrees of freedom. The basic assumption of RG is

that a physical system has different length scales that are locally coupled. It means that

fluctuations on a scale of 1− 2 Å influence fluctuations on a scale of 2− 4 Å, in turn these

influence fluctuations on a scale of 4 − 8 Å, and so on. For each length scale we have an

effective Hamiltonian, characterized by a set of coupling constant. In the renormalization

process it is possible that the new Hamiltonian does not have the same functional form of

the previous one. This could happen when the set of coupling constant is finite 1.

Let state with C the initial set of n coupling constants Ci with i = 1...n of the Hamil-

tonian H(s). Under RG transformation the old couplings determine the the new ones

C′ = R(C) (6.7)

so that the ith coupling is given by C ′i = Ri(C). R in general is a complicated non linear

transformation. At length scales smaller with respect the statistical correlation length

ξ a system exhibits a symmetry known as scale invariance 2. Close a critical point the

correlation length ξ diverge and statistical fluctuations spread over all distances and the

scale invariance holds at all length scales. The critical phase can be described by a special

set of couplings C∗ which are invariant under RG transformation. Hence the condition of

criticality is

C∗ = R(C∗) . (6.8)

C∗ is a fixed point in the space of couplings. A fixed point can be determined with a first

1For this reason it is good to enlarge the set of coupling constants to all those compatible with the
nature of the variables and the symmetry of the system.

2This is true as long as we do not consider fluctuations of atomic scales, of the order of lattice space.
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order expansion of the eq. 6.7

C∗ + δC′ = R(C∗ + δC) � R(C∗) +MδC (6.9)

yielding

δC ′i =
∑
j

MijδCj (6.10)

where the matrix M, defined by

Mij =
∂Ri

∂Cj

(6.11)

is not necessary symmetric. To analyze the eq. 6.11 we diagonalize M

∑
j

Ki
jMij = λiKi (6.12)

where Kis are the eigenvectors given by a linear combination of δCi and λis are the eigen-

values (applied on the left of M). The scaling fields ui are defined as linear combination of

vectors Ki and deviations δCi

ui ≡
∑
j

Ki
jδCj . (6.13)

Apply RG transformation to the fields ui results in

u′i =
∑
j

Ki
jδC

′
j =

∑
j,l

Ki
jMjlδCl =

∑
l

λiKi
l δCl = λiui . (6.14)

It means that the renormalization process acts multiplicatively with respect the fields ui.

The corresponding operator, conjugate of the field ui is given by ∂/∂ui (for more details

see ref [150]).

The eigenvalues are usually written as λyi where the exponent yi are improperly called

eigenvalues. Depending if yi > 0, yi = 0 or yi < 0 the corresponding scaling field is said

respectively “relevant”, “marginal” or “irrelevant”. This naming follows from behavior of

these fields under the scale changes of the RG. The relevant fields tend to grow under

RG transformation and become more and more important as larger distance scales are

reached 3. The irrelevant fields diminish with successive renormalization becoming effec-

3In the standard critical phenomena problem there are three relevant fields: i) the field that breaks
the system symmetry, like the magnetic field in the Ising model; ii) the ordering field represented by the
temperature; iii) the constant field that scales as λd.
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tively zero at large scales. These fields makes irrelevant changes to criticality and produce

the universality. The marginal fields, if they exist, do not change with the scale breaking

the universality.

Case study: Liquid-Gas critical point in Lennard-Jones system

It is known that Ising model, viewed as lattice gas, has a particle-hole symmetry at the

critical point. However more realistic models of fluids loose this symmetry. In a Lennard-

Jones system, described by the potential

U(r) = 4ε

[(r0
r

)12

−
(r0
r

)6
]

(6.15)

the LG critical point is described by two non-trivial parameters values, the chemical po-

tential μc and the critical well depth εc. The scaling field which are appropriate to describe

the critical behavior are given by a linear combinations of μ and ε from their critical values

τ = εc − ε+ s(μ− μc) (6.16)

h = μ− μc + r(εc − ε) (6.17)

where s and r are system dependent parameters. We can define two relevant densities

which are conjugate to the fields τ and h (conjugate operators)

〈E〉 = 1

〈V 〉
∂ lnZN

∂τ
=

1

1− rs
(u− rρ) (6.18)

〈M〉 = 1

〈V 〉
∂ lnZN

∂h
=

1

1− rs
(ρ− su) (6.19)

where ZN is the gran canonical partition function. 〈E〉 and 〈M〉 are recognizable in the

Ising context as the energy density and magnetization respectively. The joint distribution

of energy and density is simply related to the joint distribution of the mixed operators:

pL(ρ, u) =
1

1− sr
pL(M,E) . (6.20)

At the critical point the the distribution pL(M) =
∫
dEpL(M,E) recovers the right sym-

metry [138,139,141,151].
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Appendix C: Histogram reweighting method

The idea of using histograms to extract information from Monte Carlo simulations was

applied with success by Ferrenberg and Swendsen [142, 143] to study critical phenomena.

We consider an initial set of n independent simulations in a small range of T and P . For

each one we calculate the histograms hi(E, V ) in the energy-volume plane (i = 1...n) with

common bins. The histograms hi(E, V ) provide an estimation of the equilibrium probability

distribution; this estimations become correct in the limit of infinite run. This method allows

to calculate histograms, i.e. new probability distribution of the system, for new values of

β′ = 1/kBT
′ and P ′ close the simulated ones. In the case on NPT ensemble, the new

histogram h(V,E, P ′, β′) is given by relation

h(V,E, P ′, β′) =
∑n

i=1 hi(V,E)e−β
′(E+P ′V )∑n

i=1 Nie−βi(E+PiV )−Ci
(6.21)

where Ni is the sum of independent measurements of the run i. The constants Ci, related to

the Gibbs free energy value at Ti and Pi, are self-consistently calculated from the equation

eCi =
∑
V

∑
E

h(V,E, Pi, βi) ∼ Z(Pi, βi) = −G(Pi, βi)/kBT . (6.22)

A good initial set of parameters is Ci = 0. Eq. 6.21 and 6.22 are recursively calculated

until the difference between values of couples of parameters Ci, calculated at iteration k

and k + 1, is constants inside the desired numerical resolution.
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