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Abstract 

Despite the low biodegradability of seawater NOM, problems associated with 

biofouling are common in facilities that handle seawater. In this work, a fixed-film 

aerobic biofilter is proposed as an effective unit for preventing biofouling in such 

facilities. 

A packed-bed biofilter with an EBCT = 6 - 11 min was employed. The results 

demonstrated that the DOC is reduced by 6% and the BOD7 is reduced up to 15%. 

The LC-OCD analysis revealed that biofiltration abates the LMW neutrals and 

biopolymer fractions by 33 and 17%, respectively. However, the fractionation with 

UF membrane showed that the biofiltration process is able to degrade the more 

biodegradable compounds that have molecular weights that are greater than 1 kDa and 

compounds with molecular weights of less than 1 kDa. 

After biofiltration, the biological activity measured in terms of ATP removal was 

reduced by 60%. Finally, a test to evaluate the biofilm formation capacity of a water 

sample revealed reductions of ~94% when comparing biofiltered and non-biofiltered 

seawater. Therefore, a fixed-film aerobic biofiltration process could be a useful 

treatment for the removal of biodegradable organic matter from seawater and for 

improving the water quality in terms of less biofilm formation capacity. 
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Nomenclature 

A254: Ultraviolet absorbance at 254 nm [m
-1

] 

ATP: Adenosine triphosphate [ng ATP L
-1

] 

ATPtotal: Cellular and free adenosine triphosphate [ng ATP L
-1

] 

ATPcell: Cellular adenosine triphosphate [ng ATP L
-1

] 

ATPfree: Extracellular adenosine triphosphate [ng ATP L
-1

] 

BFC: Biofilm formation capacity [pg ATP cm
-2

 day
-1

] 

BFR: Biofilm formation rate [pg ATP L
-1

 day
-1

] 

BOD7: Biochemical oxygen demand at 7 days [mg O2 L
-1

] 

CMIMA: Mediterranean Center for Marine and Environmental Research 

DOC: Dissolved organic carbon [mg C L
-1

] 

EBCT: Empty bed contact time [min] 

F-EEM: Fluorescence excitation-emission matrix 

HLR: Hydraulic loading rate [m h
-1

] 

HMS: High molecular size 

HPC: Heterotrophic plate counts [CFU] 

LC-OCD: Liquid chromatography coupled with organic carbon detection 

LMS: Low molecular size 

LMW: Low molecular weight 

MF: Microfiltration 

MFI: Modified fouling index [s L
-2

] 

MWCO: Molecular weight cut-off [kDa] 
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NH4: Ammonia [mg N L
-1

] 

Ninorg: Dissolved inorganic nitrogen [mg N L
-1

] 

NO2
-
: Nitrite [mg N L

-1
] 

NO3
-
: Nitrate [mg N L

-1
] 

NOM: Natural organic matter  

Norg: Dissolved organic nitrogen [mg N L
-1

] 

Ntotal: Total dissolved nitrogen [mg N L
-1

] 

RLU: Relative light units 

RO: Reverse osmosis 

RU: Raman units 

Sbead: Bead surface [cm
2
] 

SDI: Silt density index [% min
-1

] 

SUVA254: Specific UV absorbance at 254 nm [L mg C
-1

 m
-1

] 

SWRO: Seawater desalination by reverse osmosis 

TDC: Total direct cell counts [cells mL
-1

] 

TDS: Total dissolved solids [g NaCl L
-1

] 

UF: Ultrafiltration 

UV: Ultraviolet light 

 

1. Introduction 

Seawater desalination by reverse osmosis (SWRO) has currently emerged as an 

effective solution to obtain water for human consumption and for industrial and 

agricultural uses (Schneider and Mastrandrea, 2011). In addition to being used for 

desalinated water, seawater is also used, e.g., as a coolant in thermal plants (Parkash, 

2003; Baker, 2004). 

In seawater facilities and particularly in SWRO plants, the most common foulants 

obtained from SWRO membranes are a combination of both organic and microbial 
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deposition (Darton and Fazel, 2001; Xu et al., 2007). Consequently, microorganisms 

start growing at the expense of dissolved NOM and can develop a biofilm that can 

cause operational problems (Flemming, 1997; Matin et al., 2011; Griebe and 

Flemming, 1998; Flemming et al., 1998; Hu et al., 2005). Even with the low and 

mostly non-biodegradable seawater NOM (Volk et al., 1997; Penru et al., 2011), 

marine microorganisms are metabolically active (Egli, 2010). In SWRO plants the 

consequences of fouling include an increase of the membrane resistance coupled with 

a decrease in water production and water quality. All the above factors have an impact 

on the total cost of desalinated water (Flemming et al., 2007; Matin et al., 2011). 

Pre-treatments in SWRO processes are designed to improve the water quality for 

stable and sustainable operation (Shon et al., 2008). A considerable number of reports 

can be found in the literature associated with conventional and membrane pre-

treatments (Rosberg, 1997; Vial et al., 2003; Halpern et al., 2005; Bonnelye et al., 

2008; Voutchkov, 2010, van Hoof et al., 1999; Brehant et al., 2002; Pearce et al., 

2004; Kumar et al., 2006; Xu et al., 2007; Lorain et al., 2007; Bonnelye et al., 2008; 

Shon et al., 2008; Salinas Rodriguez et al., 2009). Nevertheless, dosages of biocides 

(often chlorinated substances) are the currently employed common strategy to prevent 

biofouling because biocides can kill nearly all microorganisms. However, debris are 

not removed from the aqueous phase and they can therefore serve as a substrate for 

the living microorganisms, which is why the use of biocides is only considered to be a 

short-term strategy (Flemming, 1997; Schneider et al., 2005). Moreover, 

microorganisms embedded in a biofilm are more resistant to biocides, which is most 

likely due to selection in favour of more biocide tolerant bacteria; this property 

confers a large inertia to the system (Griebe and Flemming, 1998; Chowdhury, 2012). 

Therefore, the frequent use of biocides results in microorganisms developing 

resistance to the biocides and may also aggravate the biofouling episodes (Flemming, 

2002; Bereschenko et al., 2011). 

In this study, it is proposed the use of a fixed-film aerobic biofilter (herein referred to 

as a biofilter) as an effective unit for preventing organic and biological fouling in 

SWRO plants and, in general, in facilities that handle seawater. As reported by 

Rittman (1990), biofilm technology is advantageous when the concentrations of 

biodegradable substances are low because the retention of cells by attachment allows 

a considerable accumulation of biomass. Furthermore, as emphasised by Cohen 

(2001), fixed-film (attached growth) has some advantages related to metabolic 
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activities compared with suspended growth. Therefore, aerobic degradation is 

proposed due to its simplicity and due to the dissolved oxygen content in seawater. 

The purpose of this study is to evaluate the effectiveness of a biofilter for reducing the 

biodegradable substances in seawater. Moreover, it is also quantified the reduction of 

biological activity downstream of the filter. 

2. Materials and Methods 

2.1. Seawater and pilot biofilter 

The raw seawater was captured from the NW Mediterranean Sea through an open 

intake that was located 300 m offshore at a depth of 10 m. No pre-treatment was 

performed to the raw seawater before it was introduced into the biofilter. Table 1 

summarises the characteristics of the raw seawater. 

 

Table 1. Characteristics of the raw seawater 

 

The pilot biofilter was located in the Mediterranean Centre for Marine and 

Environmental Research (CMIMA, Barcelona). The biofilter was composed of a fixed 

packed bed of expanded clay (Biolite
®
L2.7). It was operated downflow, and it was 

backwashed with both air and water 3 times per week according to Ahmad and 

Amirtharajah, (1998). 

 

A schematic illustration of the pilot biofilter is presented in Figure 1a while Figure 1b 

presents an image of the pilot biofilter. Figure 1c presents the detailed characteristics 

of the filter media (Biolite
®
L2.7) used in the packed-bed. 

The different experimental conditions employed in this study are presented in Table 2. 

The characteristics of the column and the packed bed are summarised in Table 3. 

 

Figure 1. (a) Schematic illustration of the pilot biofilter; (b) Image of the pilot plant; 

(c) Expanded clay - Biolite
®

L2.7 

 

Table 2. Experimental conditions 

Table 3. Characteristics of the column and packed bed 
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Colonisation and acclimatisation of the biomass was achieved through a continuous 

flow of raw seawater for several months. The dissolved oxygen was continuously 

measured to monitor the full development of the biofilm. It was not necessary to 

introduce additional oxygen because the amount of dissolved oxygen in the raw 

seawater was sufficient for the heterotrophic biological activity. 

All analyses were performed on the input and output currents of the biofilter. Due to 

the very small amounts of organic matter that was measured during the experiments 

of this work, all the glass materials were thoroughly cleaned before use. The glass 

materials were first soaked in an aqueous 10% (V/V) HCl solution for 24 hours and 

then rinsed with copious amounts of Milli-Q water. Subsequently, the glass materials 

were covered with aluminium foil and heated to 450 ºC for 4 hours. All the plastic 

materials were also carefully and thoroughly cleaned before use. Then, these materials 

were sterilised by autoclaving (QM 4000 SA-202X, Quirumed Spain) for 30 min at 

121ºC. 

2.2. Analysis 

 

Among the general parameters used to quantify NOM (Matilainen et al, 2011) in this 

study, the conventional analytical techniques for measuring the DOC, BOD7 and A254 

are used to quantify the NOM at the inlet and at the outlet streams of the biofilter and 

therefore, to assess the effectiveness of the biofilter in the removal of NOM. 

The removal of biodegradable NOM was investigated using a seawater biofilter 

operating with an empty bed contact time (EBCT) ranging from 6 to 11 min 

(corresponding to hydraulic loading rates that range from 5 to 10 m h
-1

). Furthermore, 

to elucidate the mechanisms for the operation of the biofilter for an EBCT = 8.1 min, 

more accurate techniques used, such as liquid chromatography coupled with organic 

carbon detection (LC-OCD), fluorescence excitation-emission matrices (F-EEM) and 

membrane fractionation. Finally, we analysed the evolution of nitrogen compounds in 

seawater as a result of the biofiltration process and the biofilm formation capacity 

(BFC) in treated and untreated seawater. 
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Dissolved organic carbon (DOC), total nitrogen (Ntotal), ammonia (NH4
+
), nitrite 

(NO2
-
) and nitrate (NO3

-
) 

The dissolved organic carbon (DOC) analysis consisted of first filtering the sample 

through a 0.7 µm nominal pore GF/F filter (Whatman, Spain), as proposed by Ogawa 

and Tanoue (2003), and then to prevent inorganic carbon, the samples were acidified 

with H3PO4 to a pH = 2 – 3 (50 μL; 2 M). The samples were stored at 4 ºC in 10 mL 

glass vials. The DOC was determined using the high-temperature catalytic oxidation 

method with a Shimadzu (TOC-VCSH) analyser. The total dissolved nitrogen (Ntotal) 

was also analysed using a TN unit according to Álvarez-Salgado and Miller (1998). 

The inorganic forms of nitrogen (ammonia, NH4
+
, nitrite, NO2

-
, and nitrate, NO3

-
) 

were measured following the standard procedure described in Grasshoff et al. (1999). 

A Bran-Luebbe (AA3) auto-analyser was used. The dissolved organic nitrogen (Norg) 

was calculated as the Ntotal minus the sum of the forms of inorganic nitrogen (Ninorg). 

Biochemical oxygen demand at 7 days (BOD7) and the biodegradability ratio 

(BOD7/DOC) 

The biochemical oxygen demand at 7 days (BOD7) was determined using a previously 

described method (Simon et al., 2011). This method is an adaptation of the Closed 

Bottle Method (EPA, 1998) and the Standard Methods 5210 (Standard Methods, 

1999), and it uses concentrated autochthonous inoculum. The seawater samples were 

incubated for 7 days at 20 ± 1 ºC (Medilow Selecta, Spain), and the dissolved oxygen 

content was measured before and after incubation with an IntelliCAL™ LDO probe 

connected to a HQ40d multimeter (Hach, USA). 

The biodegradability of the dissolved carbon was measured from the BOD7/DOC 

ratio in units of mg O2 mg C
-1

(Liu and Lipták, 1997). 

UV absorbance (A254) and specific UV absorbance at 254 nm (SUVA254) 

The ultraviolet absorbance at 254 nm (A254) was measured using a Perkin-Elmer UV-

Vis Lambda 20 spectrophotometer with quartz cuvettes that had a 10-cm path length. 

The A254 was expressed in m
-1

. The specific UV absorbance at 254 nm (SUVA254), 

which is defined as the ratio between A254 and the concentration of DOC (Edzwald 

and Tobiason, 1999), was also calculated. The SUVA254 was expressed in units of L 

m
-1

 mg C
-1

. 
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Measurements of biological activity 

Adenosine Triphosphate (ATP) 

ATP is a biomolecule that is present in all living organisms, and its concentration in 

seawater can be used as an indirect measure of the biological activity in seawater 

(Hammes et al., 2010). The total ATP (ATPtotal) is present in the ecosystem in two 

different forms, which include cellular ATP (ATPcell) that is directly associated with 

the living cells and free ATP (ATPfree) that is dissolved in the media and not 

contained in the cells, which is called extracellular ATP. 

ATPtotal and ATPfree were quantified using the BacTiter-Glo
TM

 Microbial Cell 

Viability Assay (Promega Biotech Iberica, Spain) and a GloMax
®

 20/20 luminometer 

(Promega Biotech Iberica, Spain).  The samples were first filtered through a 0.22 m 

filter (to retain bacterial cells) before measuring the ATPfree. The ATPcell was 

indirectly determined by subtracting the ATPfree from the ATPtotal. The measurements 

were performed by mixing 100 L of the seawater sample with 100 L of an ATP 

reagent in an Eppendorf tube. The mixture was agitated with an orbital mixer at room 

temperature for 3 min, and after 30 s, the luminescence signal was recorded, which 

was measured as relative light units (RLU). The RLU values were converted to ng 

ATP L
-1

 using ATP standard dilutions (A3377, Sigma-Aldrich). All the ATP analyses 

were performed in triplicate. 

 

Biofilm formation capacity (BFC) 

A test has been established to evaluate the biofilm formation capacity (BFC) in 

seawater. The assay is based on the biofilm formation rate (BFR) described elsewhere 

(van der Kooij et al., 1995a). The BFC test consists of a glass non-porous bead chain 

(bead surface area = 28.3 mm
2
) that is immersed in continuously flowing water in a 

vessel (10  12  15 cm) (see Figure 2), and the growth of biofilm on the glass beads 

is recorded over time in terms of the ATP concentration. Periodically, a pearl of the 

chain was carefully removed and analysed for its ATP content. The pearls were 

placed in an Eppendorf tube that contained 100 L of phosphate buffer (pH = 7.0), 

and then 200 L of an ATP reagent was added. After mixing for 3 minutes, 200 L of 

the supernatant was collected and the luminescence signal (in RLU) after 30 seconds 

was recorded. Finally, the RLU values were converted to ATP content. The BFC is 

expressed as pg ATP cm
-2

 day
-1

. 
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Figure 2. Schematic of the BFC monitor 

 

Liquid Chromatography coupled with Organic Carbon Detection (LC-OCD) 

Liquid chromatography coupled with organic carbon detection (LC-OCD) allows the 

pool of NOM to be separated into major fractions of different sizes and chemical 

functionalities and to quantify these fractions on the basis of organic carbon (Huber et 

al., 2011). The fractions obtained with this analysis are biopolymers, humic 

substances, building blocks, low molecular weight (LMW) neutrals, and LMW acids 

(Table 4). 

 

Table 4. Composition of the LC-OCD fractions 

 

Fluorescence Excitation-Emission matrices (F-EEM) 

Approximately 50% of NOM is fluorescent (Beck and Royal Society of Chemistry, 

1993). In this study, excitation wavelengths were varied from 220 to 470 nm, and the 

emission wavelengths were varied from 280 to 580 nm. The fluorescence intensities 

were corrected by normalising with the Raman spectra of water according to Lawaetz 

and Stedmon (2009) and subtracting the signal of Milli-Q water. 

The excitation and emission data are presented in the form of a fluorescence 

excitation-emission matrix (F-EEM) according to the fluorescent regions proposed by 

Chen et al. (2003) (see Table 5). 

 

Table 5. Fluorescence regions (according to Chen et al., 2003) 

 

Membrane fractionation 

Samples of seawater before and after biofiltration were fractionated using a ceramic 

nanofiltration membrane with a molecular weight cut-off (MWCO) of 1 kDa (TAMI, 

France) in the tangential-flow mode. 

The fraction that can pass through the membrane, which is also referred to as the 

permeate, is composed of NOM that has molecular weights less than 1 kDa (Amon 

and Benner, 1996; Ogawa and Tanoue, 2003; Kaiser and Benner, 2009). Therefore, 
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the permeate is the low molecular size fraction (LMS) (Equation 1). Then, to fulfil the 

mass balance, the fraction that has molecular weights greater than 1 kDa, which 

represents the high molecular size (HMS) fraction, was calculated using Equation 1. 

Note that DOC appears in Equation 1 and 2, but the same calculations are performed 

for BOD7 and A254.  

 

DOCLMS = DOCpermeate    [Equation 1] 

 

DOCHMS = DOCseawater – DOCpermeate   [Equation 2] 

 

The SUVA254 (A254/DOC) and biodegradability (BOD7/DOC) ratios were also 

calculated using the previously described parameters.  

 

3. Results and discussion 

3.1. DOC, A254, BOD, turbidity, biodegradability and SUVA254 for different 

EBCT 

Biofiltration was performed at three different EBCTs, including 5.7, 8.1 and 11.3 min. 

Table 1 presents the values of DOC, A254, BOD7, SUVA254 and BOD7/DOC obtained 

at the inlet and outlet streams of the biofilter for each EBCT. The removals for each 

parameter were also calculated and are presented in Table 6.  

The first observation from Table 6 is the low content of organic matter in seawater 

(DOC = 0.93 – 1.13 mg C L
-1

) compared to natural freshwater (1 – 30 mg C L
-1

), 

(Jaffe et al., 2008; Baghoth et al., 2008). Additionally, the low values of BOD7 (1.00 – 

1.11 mg O2) and BOD7/DOC (0.98 – 1.17 mg O2 mg C
-1

) reveal that the seawater 

contains only a small fraction of biodegradable matter. Furthermore, the values of 

SUVA254 < 1 reveal the lower hydrophobic character of NOM (Edzwald and 

Tobiason, 1999). These results are consistent with those previously obtained by Penru 

et al. (2011). However, although most NOM observed in seawater is resistant to 

microbial oxidation (Ogawa et al., 2001), the biological filtration with EBCTs from 

values as low as 5.7 to 11.3 min allows the removal of DOC, A254 and BOD7 ranging 

from 4 to 15%. In the investigated EBCT range, the SUVA254 at the inlet and at the 

outlet streams of the biofilter remain almost invariable due to no preferential removal 
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of UV absorbing substances. As expected, the biodegradability (BOD7/DOC) at the 

output of the biofilter is always small in comparison to the input. 

Low consumptions of DOC have also been reported by other authors (Sndergaard and 

Worm, 2001), and it has been observed that these consumptions are significantly 

affected by the source of NOM (Hozalski et al., 2001).  The DOC in seawater is 

primarily recalcitrant and at most 19% (SD = 12%) of this DOC can be used by 

heterotrophic microorganisms (Søndergaard and Middelboe, 1995). 

 

Table 6. Inlet and outlet concentrations of the different analytical parameters and the 

removals attained in the biofiltration process 

 

Note that the NOM removed by the biofiltration process corresponds to the easily 

biodegradable fraction, as evidenced by the fact that the removal of DOC is almost 

independent of the EBCT in the investigated range. Presumably, this fraction of NOM 

is the one that can cause biofouling in downstream processes (Carlson and Amy, 

1997). 

The hydraulic loading rates (HLR), which are directly associated with the EBCT, 

ranged from 5 to 10 m h
-1

, and it does not appear to have any effect on the removal of 

NOM, as reported elsewhere (Carlson and Amy, 1998). 

The results obtained in a seawater environment enable a classification of the overall 

NOM depending on the lability of the carbon (Carlson and Ducklow, 1996; Ogawa 

and Tanoue, 2003). Therefore, seawater NOM can be classified in three fractions that 

are named labile, semi-labile and recalcitrant. The use of a biofilter can remove the 

more labile fraction in few minutes (most likely less than 5 min). These labile 

compounds are those that support bacterial growth (Hozalski et al., 1995). The semi-

labile fraction is susceptible to be removed depending on the applied EBCT. Finally, 

the refractory fraction cannot be removed by biofiltration and some type of pre-

oxidation process could be required to remove this fraction (Lamsal et al., 2011). 

3.2. Nitrogen 

The measurements of the concentration of organic and inorganic nitrogen at the inlet 

and the outlet streams of the biofilter revealed the preferential use of organic nitrogen 

during the biological activity of the biofilter ( 
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Figure 3). It was observed that 18% of organic nitrogen (Norg) was consumed in the 

biofilter, whereas the amount of inorganic nitrogen (Ninorg) remained almost constant. 

These results are consistent with those published by Cherrier et al. (1996). 

 

Figure 3. Concentration of Ninorg and Norg at the inlet and outlet streams of the 

biofilter operating at EBCT = 8.1 min 

 

 

Figure 4 provides a breakdown of the inorganic nitrogen composition. Nitrate (NO3
-
) 

is the predominant (70%) species in seawater. Furthermore, the amount of nitrate in 

the outlet of the biofilter is greater than in the inlet due to the biological oxidation of 

NH4
+
 and NO2

-
 by the nitrification reactions (Hellinga et al., 1999). Therefore, 

autotrophic nitrifying bacteria are also present in the filter. However, due to the low 

concentration of ammonia in seawater, it may be concluded that autotrophic biomass 

represents only a small part of the total biomass of the biofilter. 

 

Figure 4. Inorganic nitrogen (NH4
+
, NO2

-
, and NO3

-
) distribution in the inlet and 

outlet streams of the biofilter operating at EBCT = 8.1 min 

 

3.3. Evolution of ATP in the biofiltration process 

Analyses of the ATP concentrations were performed at the inlet and the outlet of the 

biofilter.  It was observed that the biofilter reduces the amount of ATP in seawater by 

60%; the concentration of ATP at the outlet was 16 ng ATPcell L
-1

 whereas that at the 

input was 41 ng ATPcell L
-1

 (Figure 5). From the above mentioned ATP 

concentrations, it is possible to estimate the cell number at both the inlet and outlet of 

the biofilter. Assuming that a marine cell has an ATP content of 0.5 – 6.5 10
-6

 ng ATP 

(Hamilton and Holm-Hansen, 1967), the active cell number observed at the inlet is 6.3 

10
6
 – 8.2 10

7
 cells L

-1
, whereas in the outlet the active number of cells is 2.5 10

6
 – 3.2 

10
7
 cells L

-1
. However, the amount of ATP trapped in the biofilter during the period 

between two consecutive backwashings is considerably less than the amount of ATP 

extracted in the backwashing process itself. Therefore, autochthonous biomass is 

established and developed in the biofilter. 
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Figure 5. Concentrations of ATPcell and ATPfree at the inlet and outlet streams of the 

biofilter operating at EBCT = 8.1 min. 

 

3.4. Evolution of LC-OCD in the biofiltration process 

The LC-OCD reveals that seawater has a low content of organic matter that is 

primarily composed of LMW neutrals, humic substances and building blocks, which 

represent approximately 90% of the total DOC (Baghoth et al., 2008; Penru et al., 

2011; Simon et al., 2012). All fractions, except the LMW acids, were removed to 

some extent by the biofiltration process (Figure 6). The maximum removals were 

achieved for LMW neutrals (33%), which essentially consist of alcohols, aldehydes, 

ketones, sugars and amino acids (Huber et al., 2011). In principle, all these 

compounds can be easily degraded by heterotrophic biomass (Amon et al., 2001). 

Building blocks were better removed than humic substances (21% and 9%, 

respectively), which was most likely because of their lower complexity and greater 

hydrophilicity (Huck, 1999; Baghoth et al., 2008; Penru et al., 2011). For biopolymers 

with high molecular weights, the concentration of 64 µg C L
-1

 in seawater was 

reduced to 53 µg C L
-1

 by the biofilter. 

 

Figure 6. Results of LC-OCD for the inlet and outlet streams of the biofilter operating 

at EBCT = 8.1 min 

 

3.5. Membrane fractionation 

The fractionation of the seawater using membranes revealed that the majority of 

NOM in seawater has a molecular weight that is less than 1 kDa (Figure 7). 

Therefore, it was observed that 67% BOD7, 90% DOC and 77% of A254 are in this 

majority fraction, which is consistent with the results published elsewhere (Kaiser and 

Benner, 2009; Ogawa and Tanoue, 2003; Amon and Benner, 1996; Dittmar and 

Kattner, 2003; Amon and Benner, 1996; Dittmar and Kattner, 2003). Furthermore, the 

results reveal that the biodegradability and the aromaticity of seawater contain a 

greater proportion of high molecular size fraction (HMS) material compared with the 

total of the DOC. Accordingly, although the LC-OCD analysis revealed that the LMW 

neutrals fraction was better reduced fraction (see Figure 6), this is only a slight 
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fraction of the DOC pool. Therefore, HMS are better degraded than LMS. All these 

results confirm the size-reactivity continuum model, which suggests that NOM found 

in HMS is more bioreactive than LMS (Tranvik, 1993; Amon and Benner, 1996; 

Ogawa and Tanoue, 2003; Kaiser and Benner, 2009). 

 

Figure 7. LMS and HMS fractions distribution at the inlet and outlet streams of the 

biofilter, expressed in terms of  BOD7, DOC, and A254 (EBCT = 8.1 min). Note that in 

the case of the outlet stream, the distribution between LMS and HMS is referred to 

inlet parameters. 

 

3.6. Fluorescence excitation-emission matrices 

. 

 

Figure 8 presents the F-EEM of the seawater at the input and output of the biofilter 

when the EBCT was 8.1 min. ¡Error! No se encuentra el origen de la referencia.7 

shows the accumulated fluorescence intensities, expressed as Raman Units (RU), with 

their percentage on the five aforementioned groups and the fluorescence reduction 

due to the biofiltration process. 

 

Figure 8. Density plots of fluorescence intensities for seawater at the input (a) and 

output (b) of the biofilter (EBCT = 8.1 min) 

 

Table 7. Fluorescence intensity distribution at the inlet and outlet streams of the 

biofilter and removals operating at EBCT = 8.1 min 

 

The fluorescence signal from seawater primarily arises from humic and fulvic acids, 

which represent approximately 90% of the total observed intensity. All five distinct 

regions of the fluorescence excitation-emission matrix undergo a reduction in 

intensity due to the biofiltration process, and the overall reduction is 12%. The highest 

reduction (21%) was observed in region [I], which is primarily composed of aromatic 

protein-like substances. Aromatic protein-like substances are susceptible to being 

biologically degraded and are hypothesised to be a principal foulant together with the 

polysaccharides (Salinas Rodriguez et al., 2009). Furthermore, the tyrosine-like and 
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tryptophan-like fluorescence peaks are contained in the protein-like regions, which 

were first described by Coble (1996) and are characteristic of microbial activity and 

associated with labile organic matter. 

 

3.7. Biofilm formation capacity (BFC) 

The potential capacity of seawater to cause biofouling was measured in seawater 

before and after the biofiltration process. To measure this capability, the BFC assay 

was used as described above. Figure 9 shows the concentration of ATP over 40 days 

of the test. 

The average concentration of ATP in the biofilm exposed to unfiltered seawater was 

greater than 100 pg ATP cm
-2

 day
-1

. In contrast, the average concentration in the 

biofilm exposed to the biofiltered seawater was less than 7 pg ATP cm
-2

 day
-1

. 

Therefore, the biofilter is capable of reducing biological activity by approximately 

95%. 

 

Figure 9. ATP concentrations on the surface of the beads versus time obtained with 

the BFC assay performed in the seawater before (inlet) and after (outlet) the 

biofiltration process (EBCT = 8.1 min) 

 

Vrouwenvelder et al.(2001; 2003) observed that ATP concentrations greater than 100 

pg ATP cm
-2

 day
-1

, which were measured using the biofilm formation rate (BFR) test, 

involve problems related to biofouling. Although there are some differences between 

the BFR and BFC tests (e.g., in the BFR test, the supports are small circular bands, 

whereas in the BFC test, the supports are beads; furthermore, the hydraulic rates are 

greater in the BFR tests), the obtained values could be compared.  

Using this comparison, in terms of biofouling capacity, it can be stated that the 

biofiltered seawater is better than treated freshwater (groundwater or river water) (van 

der Kooij et al., 1995a). However, biofiltration does not appear to reduce the 

biofouling capacity of seawater to less than 1 pg ATP cm
-2

 day
-1

, which can be 

observed in treated freshwaters that have very low contents of easily biodegradable 

substances (van der Kooij et al., 1995b). 
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4. Conclusions 

A biofilter operated with an EBCT of 5.7 – 11.3 min is able to reduce the small 

amount of biodegradable NOM observed in seawater. These reductions correspond to 

removals of DOC, BOD7 and A254 ranging from 6 to 15%. 

 

NOM fractions obtained by LC-OCD analysis in the inlet and outlet of the biofilter 

have shown reductions through the biofiltration process of 33% of LMW neutrals, 21 

% of building blocks and 17% of biopolymers. 

 

NOM fractions obtained by membrane separation in the inlet and outlet of the 

biofilter have shown that the biofiltration process reduces the molecular weight of the 

NOM. The percentage of compounds with molecular weights greater than 1 kDa is 

effectively reduced.  

 

Fluorescent analysis (F-EEM) of seawater has shown the presence of fulvic acid-like 

substances, humic acid-like substances and aromatic protein-like compounds. Fulvic 

and humic acid-like substances are more abundant than the aromatic protein-like 

compounds, but in the biofiltration process, the aromatic protein-like compounds are 

reduced in a greater proportion than the fulvic and humic acid-like substances. 

 

The organic nitrogen content of seawater is the nitrogen source to fulfil the metabolic 

processes of the microorganisms that developed in the biofilter. Furthermore, 

seawater contains a slight quantity of inorganic nitrogen as ammonia, which is almost 

fully oxidised to nitrate in the biofiltration process. 

 

Biofiltration significantly reduces the ability of seawater to generate a biofilm. 
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Table 2. Characteristics of raw seawater 

Parameter Unit Value 

pH - 8.2 ± 0.1 

TDS g NaCl L-1 32.5 ± 0.6 

Conductivity mS cm-1 57.4 ± 0.4 

BOD7 mg O2 L
-1 1.11 ± 0.32 

DOC mg C L-1 0.96 ± 0.11 

A254 m-1 0.67 ± 0.03 

Temperature ºC 21 ± 4 

Turbidity NTU 1.06 ± 0.28 
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Table 3. Characteristics of the column and packed bed 

Parameter Units Value 

height (h) mm 940 

diameter (d) mm 80 

h / d - 12 

bed volume L 4.7 

porosity - 0.4 

interfacial area m-1 1,333 

bulk density kg m-3 0.73 – 0.90 
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Table 4. LC-OCD fraction composition 

 

 

 

 

 

 

 

 

 

 

Fraction Size Range (Da) Composition 

Biopolymers > 20,000 Polysaccharides and protein 

Humic substances ~ 1,000 Humic and fulvic acids 

Building blocks 300 – 500 Weathering and oxidation products of humics 

LMW neutrals < 350 Alcohols, aldehydes, ketones and amino acids 

LMW organic acids < 350 Aliphatic low-molecular-weight organic acids 
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Table 5. Fluorescence regions (accordingly to Chen et al., 2003) 

Region Excitation Emission Description 

I 220-250 280-332 Aromatic proteins I 

II 220-250 332-380 Aromatic proteins II 

III 220-250 380-580 Fulvic acid-like 

IV 250-470 280-380 Microbial by-products 

V 250-470 380-580 Humic acid-like 
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Table 6. Inlet and outlet concentrations of the different analytical parameters and the removals attained in the biofiltration process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 

Experiment 1 

EBCT = 5.7 min 

Experiment 2 

EBCT = 8.1 min 

Experiment 3 

EBCT = 11.3 min 

INLET OUTLET 
Removal 

[%] 
INLET OUTLET 

Removal 

[%] 
INLET OUTLET 

Removal 

[%] 

DOC 

[mg C L
-1

] 

0.94 

(± 0.10) 

0.88 

(± 0.11) 
6 

1.13 

(± 0.06) 

1.07 

(± 0.05) 
5 

0.93 

(± 0.08) 

0.87 

(± 0.07) 
6 

A254 

[m
-1

] 

0.68 

(± 0.03) 

0.65 

(± 0.04) 
4 

0.65 

(± 0.02) 

0.61 

(± 0.02) 
6 

0.68 

(± 0.04) 

0.64 

(± 0.04) 
6 

BOD7 

[mg O2 L
-1

] 

1.10 

(± 0.21) 

0.94 

(± 0.21) 
15 

1.11 

(± 0.26) 

0.98 

(± 0.32) 
12 

1.00 

(± 0.23) 

0.88 

(± 0.20) 
12 

SUVA254 

[L mg C
-1

 m
-1

] 
0.72 0.74 -2 0.58 0.57 1 0.73 0.74 -1 

BOD7/DOC 

[mg O2 mg C
-1

] 
1.17 1.07 9 0.98 0.92 7 1.08 1.01 6 
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 1 

Table 7. Fluorescence intensity distribution at the inlet and outlet streams of the biofilter and removals operating at EBCT = 8.1 min 2 

3 

Fractions 

INLET 

Σ int [R.U.] 

(Distribution, %) 

OUTLET 

Σ int [R.U.] 

(Distribution, %) 

Removal 

[%] 

I - Aromatic Protein I 
132 

(2) 

105 

(2) 
21 

II - Aromatic Protein II 
404 

(7) 

361 

(8) 
11 

III  - Fulvic acid-like 
3603 

(66) 

3215 

(67) 
11 

IV - Microbial by-product 
81 

(2) 

69 

(1) 
14 

V - Humic acid-like 
1268 

(23) 

1086 

(22) 
14 

TOTAL 5489 4837 12 
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Figure 10. (a) Scheme of the biofiltration pilot; (b) Image of the pilot plant; (c) Expanded clay - Biolite®L2.7 20 

21 

(a) 
(b) 

(c) 
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Figure 11. Scheme of the BFC monitor 3 

4 
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Figure 12. Concentration of Ninorg and Norg at the inlet and outlet streams of the biofilter operating at EBCT = 8.1 min 15 
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17 
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Figure 13. Inorganic nitrogen (NH4
+
, NO2

-
, NO3

-
) distribution in the inlet and outlet streams of the biofilter operating at EBCT = 8.1 min 14 
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16 
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 13 

Figure 14. Concentrations of ATPcell and ATPfree at the inlet and outlet streams of the biofilter operating at EBCT = 8.1 min. 14 

15 
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Figure 15. Results of LC-OCD for the inlet and outlet streams of the biofilter operating at EBCT = 8.1 min 16 
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 1 

Figure 16. LMS and HMS fractions distribution at the inlet and outlet streams of the biofilter, expressed in terms of  BOD7, DOC, and A254 (EBCT = 8.1 min). Note that in 2 

case of the outlet stream the distribution between LMS and HMS is referred to inlet parameters. 3 

4 
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Figure 17. Density plots of fluorescence intensities for seawater at the input (a) and output (b) of the biofilter (EBCT = 8.1 min) 20 
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Figure 18. ATP concentrations on the surface of the beads versus time obtained with the assay BFC performed in the seawater before (inlet) and after (outlet) of biofiltration 17 

process (EBCT = 8.1 min). 18 
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