
PHYSICAL REVIEW A 88, 012333 (2013)

Unidirectional quantum walks: Evolution and exit times
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In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative
version of the currently widespread discrete-time quantum walk on a line. Here the walker at each time step
can either remain in place or move in a fixed direction, e.g., rightward or upward. While both formulations are
essentially equivalent, the present approach leads us to consider discrete Fourier transforms, which eventually
results in obtaining explicit expressions for the wave functions in terms of finite sums and allows the use of
efficient algorithms based on the fast Fourier transform. The wave functions here obtained govern the probability
of finding the particle at any given location but determine as well the exit-time probability of the walker from a
fixed interval, which is also analyzed.
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I. INTRODUCTION

Quantum walks [1–4], the quantum-mechanical version of
the classical random walk (the trajectory of a particle that
at each time step moves either leftward or rightward a fixed
distance) have attracted the interest of many researchers from
heterogeneous areas in recent times (see, e.g., [5] and refer-
ences therein). We can trace back the origins of quantum walks
to quantum computation, the scientific field devoted to building
and managing quantum computers, information-processing
systems whose operation cannot be properly understood
without the aid of quantum mechanics. The great potential
of such quantum computing devices lies in their capability
of running quantum algorithms, algorithms that can be more
efficient than those executed by digital computers [6,7].

The design of new quantum algorithms is not an easy
task, as many quantum properties are striking and strongly
counterintuitive. A possible approach to this issue is through
random walks since random walks have proved in the past
to be a very powerful method for developing algorithms for
dealing with a wide range of situations [8]. Among them,
search algorithms deserve special consideration: The left-right
random movements of the walker are very well suited to
this problem. Therefore, it is not surprising that some of
the first applications of quantum walks had this particular
purpose [9–12].

Within this context and considering the translational invari-
ance of the system, it is quite natural to disregard different
alternative formulations for the quantum random walk, such
as the one we are going to present here: in our version
the particle may either move rightward or remain still. This
mere change of perspective can encourage, on the one hand,
the use of computational methods not exploited before and,
on the other hand, the search for new applications of quantum
walks: For instance, thanks to its nondecreasing nature, our
process could serve as a quantum subordinator [13].

Subordination replaces each clock tick by the time interval
that needs a certain stochastic process (the subordinator)
to reach or surpass a given point. Once again, hitting-time
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problems are not new within the framework of bidirectional
quantum walks [14,15], including analysis in the presence of
moving boundaries [16]: The unidirectional process with a
fixed threshold maps to the bidirectional one with a target that
approaches with a constant velocity, one length unit per time
unit. In fact, Ref. [16] considers specifically this particular
choice for the velocity and rates the instance as trivial because
the walker eventually reaches the boundary. As we will show,
there are still striking features to uncover.

This paper is organized as follows. In Sec. II we introduce
the process under study, a one-dimensional discrete-time
unidirectional quantum walk, and show the connections to
previous works. In Sec. III we present explicit formulas for
computing the wave functions in the position domain and
the corresponding probability mass functions. In this section
we also introduce approximate analytic expressions that
provide relevant insights into the most noticeable properties.
Section IV is devoted to the analysis of the exit-time question:
We define the problem, present the solution, compare it with
its classical counterpart, and, finally, introduce asymptotic and
heuristic approximations. Conclusions are drawn in Sec. V,
where future perspectives are also sketched. We have left for
the appendices the most technical aspects of our mathematical
derivations to prevent any distraction from the main discussion.

II. THE PROCESS

We begin this paper with a brief review of the general
framework of quantum walks. Most of the information
contained in this section may be found in (or easily inferred
from) standard references in this field [2–5]. However, since
the formulation we adopt here differs slightly from the one
used most, we have tried to compose a self-contained text.

Let HP be the Hilbert space of discrete particle positions in
one dimension, spanned by the basis {|�n〉 : n ∈ {0} ∪ Z+}.
Let HC be the Hilbert space of chirality, or “coin” states,
spanned by the orthonormal basis {|0〉,|1〉}, a qubit. A
unidirectional discrete-time, discrete-space quantum walk on
the Hilbert spaceH ≡ HC ⊗ HP consists of a unitary operator
ÛC acting on the coin state, the throw of the quantum
coin, followed by the deterministic updating of the position
depending on the qubit value: B̂(|q〉 ⊗ |�n〉) = |q〉 ⊗ |�n+q〉.
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Explicitly, B̂ is a nondecreasing shift operator defined in
H, which takes the following form:

B̂ ≡ |0〉〈0| ⊗
∞∑

n=0

|�n〉〈�n| + |1〉〈1| ⊗
∞∑

n=0

|�n+1〉〈�n|

≡ |0〉〈0| ⊗ ÎP + |1〉〈1| ⊗ ŜP , (1)

where ÎP and ŜP are the identity operator and the incremental
shift operator, respectively, defined in the position space HP .
The most general expression for the unitary operator ÛC is

ÛC ≡ eiα cos ϕ|0〉〈0| + eiβ sin ϕ|0〉〈1| + e−iβ sin ϕ|1〉〈0|
− e−iα cos ϕ|1〉〈1|, (2)

but, as is commonly done, we will choose a fair coin:

ĤC ≡ 1√
2
|0〉〈0| + 1√

2
|0〉〈1| + 1√

2
|1〉〈0| − 1√

2
|1〉〈1|, (3)

which corresponds to setting ϕ = π/4 and α = β = 0 in
Eq. (2). The unitary operator ĤC thus defined is called
the Hadamard operator due to its clear connection with the
Hadamard transform.

Based upon the above, the time-evolution operator T̂ of the
unidirectional quantum walker reads

T̂ ≡ B̂(ĤC ⊗ ÎP ). (4)

When T̂ is applied reiteratively on the initial state of the
quantum walker, |ψ〉0 ≡ |ψ〉t=0, one recovers the state of the
system at time t , |ψ〉t ,

|ψ〉t = [B̂(ĤC ⊗ ÎP )]t |ψ〉0. (5)

In our case, as the time increases in discrete steps, we set
the time units so that the variable t is a nonnegative integer
quantity, i.e., t ∈ {0} ∪ Z+.

We will assume that the initial position of the quantum
walker is totally defined and located at the origin:

M̂0|ψ〉0 = |ψ〉0, (6)

with

M̂n ≡ (|0〉〈0| + |1〉〈1|) ⊗ |�n〉〈�n|, (7)

but, by contrast, that the coin state is in a general superposition
of the two possible qubit values, that is,

|ψ〉0 = (a|0〉 + b|1〉) ⊗ |�0〉, (8)

where a and b are two complex coefficients such that

|a|2 + |b|2 = 1.

Before presenting the main results of this work, let us
comment on how all our expressions can be eventually
connected to those corresponding to a more conventional
version of the discrete-time quantum walk, in which the |0〉
state in the qubit causes the walker to move leftward. The
simplest way is through the following rule of thumb: for any
expression valid at time t , replace |�n〉 with |�2n−t 〉 and extend
the position space to include the states |�m〉, with m ∈ Z−,
HE . In other words, one has to apply the time-dependent shift
operator D̂t defined in HE ,

D̂t ≡ ÎC ⊗
∞∑

n=−∞
|�2n−t 〉〈�n|, (9)

to |ψ〉t to recover the bidirectional results at time t .

III. WAVE FUNCTIONS AND PROBABILITIES

We proceed with our work by introducing the wave
functions ψ0,1(n,t), the two-dimensional projection of the
walker state into the position basis:

ψ0(n,t) ≡ 〈0| ⊗ 〈�n|ψ〉t , (10)

ψ1(n,t) ≡ 〈1| ⊗ 〈�n|ψ〉t . (11)

The evolution operator T̂ , Eq. (4), induces the following set of
recurrence equations on the wave-function components:

ψ0(n,t) = 1√
2
ψ0(n,t − 1) + 1√

2
ψ1(n,t − 1), (12)

ψ1(n,t) = 1√
2
ψ0(n − 1,t − 1) − 1√

2
ψ1(n − 1,t − 1), (13)

which are to be solved under the assumption that the walker is
initially at n = 0, that is, ψ0(n,0) = a δn,0, ψ1(n,0) = b δn,0,
where δn,m is the Kronecker delta.

In Appendix A we show how the answer to the posed
problem reads

ψ0(n,t) = a

N

{
1 + (−1)t

2
+ 1 − (−1)t

2
√

2
+

N−1∑
r=1

cos[π (2n − t)r/N + ωr/N t]

2 − √
2 cos[ωr/N − πr/N ]

}

+ b

N

{
1 − (−1)t

2
√

2
+

N−1∑
r=1

√
2 cos ωr/N − cos πr

N

2 − √
2 cos[ωr/N − πr/N ]

cos[π (2n − t + 1)r/N + ωr/N t]

}
(14)

and

ψ1(n,t) = a

N

{
1 − (−1)t

2
√

2
+

N−1∑
r=1

√
2 cos ωr/N − cos πr

N

2 − √
2 cos[ωr/N − πr/N ]

cos[π (2n − t − 1)r/N + ωr/N t]

}
,

+ b

N

{
1 + (−1)t

2
− 1 − (−1)t

2
√

2
+

N−1∑
r=1

(√
2 cos ωr/N − cos πr

N

)2

2 − √
2 cos[ωr/N − πr/N ]

cos[π (2n − t)r/N + ωr/N t]

}
, (15)
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FIG. 1. (Color online) Probability mass function of the process
for t = 30 time steps. The red solid line connects the points obtained
by direct application of the evolution operator on the initial state. The
blue circles were computed by means of Eqs. (14) and (15).

where n ∈ {0, . . . ,t}, N is any natural number greater than t ,
and ωr/N is the only solution that

ωr/N = arcsin

(
1√
2

sin
πr

N

)
(16)

has in the [0,π/4] range. Since the final outcome of Eqs. (14)
and (15) does not depend on the particular value of N , as long
as N > t , two natural choices arise: N = t + 1 and N = 2k ,
with k being the smallest integer for which t < 2k holds. In
Appendix A we discuss the convenience of the second option,
in particular for large values of t because in this case one can
benefit from the power of the fast Fourier transform algorithm.
By contrast, since in every illustrative instance we are going
to consider the value of t to be moderately small, we choose
N = t + 1 in practice.

In Fig. 1 we present evidence in support of the soundness of
the solution shown in Eqs. (14) and (15). There, as in the rest of
the forthcoming examples, we have considered the following
initial state:

|ψ〉t=0 = 1√
2

[|0〉 + i|1〉] ⊗ |�0〉, (17)

where we have subsequently computed |ψ〉t by systematic
application of the translation operator T̂ and evaluated the
probability that the walker is at any given position, ρ(n,t), the
probability mass function (PMF) of the process,

ρ(n,t) ≡ 〈ψ |M̂n|ψ〉t . (18)

The result is in excellent agreement with the one obtained
through the numerical evaluation of Eqs. (14) and (15) for
a = 1/

√
2 and b = i/

√
2, with

ρ(n,t) = |ψ0(n,t)|2 + |ψ1(n,t)|2. (19)

The intricate nature of the formulas shown in Eqs. (14)
and (15) motivates the search for simpler expressions, even
at the cost of obtaining mere approximations. To this end,
it is very convenient to consider the limit t 
 1, n 
 1, but
keeping ν ≡ n/t finite. In Appendix B we show how, under the

previous assumptions, ρ(n,t) can be approximated by ρ̄(n,t),

ρ̄(n,t) ≡ 1

t

1

2πν(1 − ν)
√

1 − 2(1 − 2ν)2

×{1 + 2(1 − 2ν)2 sin[2φ0(ν)t]}, (20)

where

φ0(ν) ≡ (2ν − 1) arcsin

⎛
⎝

√
1 − 2(1 − 2ν)2

4ν(1 − ν)

⎞
⎠

+ arcsin

⎛
⎝

√
1 − 2(1 − 2ν)2

8ν(1 − ν)

⎞
⎠ , (21)

as long as the expressions under the root signs remain positive,
that is, for

1

2

(
1 − 1√

2

)
< ν <

1

2

(
1 + 1√

2

)
. (22)

Let us analyze the structure of Eq. (20). The presence of
a sinusoidal term in ρ̄(n,t) leads to the natural definition of
ρ̄max(n,t),

ρ̄max(n,t) ≡ 1

t

1 + 2(1 − 2ν)2

2πν(1 − ν)
√

1 − 2(1 − 2ν)2
, (23)

and ρ̄min(n,t),

ρ̄min(n,t) ≡ 1

t

1 − 2(1 − 2ν)2

2πν(1 − ν)
√

1 − 2(1 − 2ν)2

= 1

t

√
1 − 2(1 − 2ν)2

2πν(1 − ν)
, (24)

in such a way ρ̄min(n,t) � ρ̄(n,t) � ρ̄max(n,t).
Unlike ρ̄(n,t) itself, ρ̄max(n,t) and ρ̄min(n,t) are different

from what has previously been reported in the literature and
clarify the origin of some of the most distinctive traits of the
position PMF.1 In particular, they are well suited to quantify
the “quasiuniform behavior” [5] of ρ(n,t), its apparent lack
of dependence on n for n ∼ t/2, which was already present
in Fig. 1. If one expands ρ̄max(n,t) and ρ̄min(n,t) for a fixed t ,
around n = t/2, one finds

ρ̄max(n,t) ∼ 2

πt
[1 + 16 ε2], (25)

ρ̄min(n,t) ∼ 2

πt
[1 − 8 ε4], (26)

with ε ≡ ν − 1/2. Since we have ε4 < 1/64 [cf. Eq. (22)],
this means that ρ̄min(n,t) ∼ 2

πt
is a good approximation for the

entire region.
In Fig. 2 we have evolved the initial state in Eq. (17) up

to time t = 100 and have represented ρ(n,t). Observe how
all the points almost perfectly accommodate within the limits
marked by ρ̄max(n,t) and ρ̄min(n,t), which is nearly flat along
the domain where this function is well defined.

1The key point to understand this fact can be found in the functional
form of earlier expressions of ρ̄(n,t), which, although ultimately
equivalent to the present one, failed to concentrate all the oscillatory
behavior in a single term.
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FIG. 2. (Color online) Probability mass function of the process
for t = 100 time steps. The blue circles were obtained by direct
evaluation of ρ(n,t) [Eq. (19)]. The black dashed line corresponds
to ρ̄max(n,t) [Eq. (23)], whereas the red solid line indicates the lower
approximate value ρ̄min(n,t) [Eq. (24)].

IV. EXIT-TIME PROBABILITIES

The expressions in Eqs. (14) and (15) completely determine
the evolution of the system, not just the spatial PMF, and
therefore we can use them to solve a different but related
problem: the computation of the exit-time probability.

The concepts of exit time TD and exit-time probability

PD(t) ≡ Pr{TD = t} (27)

are clear within the context of stochastic processes: they are
related to the random instant at which the process leaves a
given domain D for the first time. The quantum nature of
the walker forces us to consider a more accurate definition
because one cannot know if the walker has left the region unless
some measure is performed. Since the measuring act modifies
the state of the system, the way in which we determine if the
process remains within the region will affect the very exit time.

In this case, we consider that the domain is set equal to the
interval D ≡ [0,n0), with n0 � 1, and the entire probability is
initially concentrated at the origin [Eq. (17)]. The only way
our quantum walker can escape form the interval is through n0.
Note that ψ0(n0,t) = 0 for t � n0 and ψ1(n0,t) = 0 for t < n0.
Therefore, the first chance for the system to leave the region is
when t = n0 because ψ1(n0,n0) �= 0. Let us assume that at this
time we measure if the walker is at n = n0. If the answer is yes,
the exit time is simply T[0,n0) = n0, and the corresponding exit-
time probability readsP[0,n0)(n0) = |ψ1(n0,n0)|2. If the answer
is no, the wave function is filtered, the ψ1(n0,n0) contribution is
removed from the wave function, ψ∗

1 (n0,n0) = 0, ψ∗
0 (n0,n0) =

ψ0(n0,n0) = 0, and

ψ∗
0,1(n,n0) ≡ ψ0,1(n,n0)√

1 − |ψ1(n0,n0)|2
(28)

for n < n0. At the next time step we will have

ψ∗
0 (n0,n0 + 1) = 0,

ψ∗
1 (n0,n0 + 1) = ψ1(n0,n0 + 1)√

1 − |ψ1(n0,n0)|2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 100  200  300  400  500  600  700  800

|ψ
1
(n

0 
,t)

|2

t  (time steps)

10-5

10-4

10-3

10-2

10-1

 100  200  400  800

~ t -11/4

FIG. 3. (Color online) Exit times for n0 = 100. The main plot
shows the exit-time probability of the quantum walker; the blue solid
line is compared with the classical result, the green dashed line. The
inset shows the same probabilities in a double-logarithmic scale. The
red dotted line is the approximate lower bound [Eq. (32)], whereas
the black dot-dashed line serves as a guide for the eye [cf. Eq. (33)].

[cf. Eqs. (12) and (13)]. Following the same reasoning
as above, the conditional exit-time probability is equal to
|ψ∗

1 (n0,n0 + 1)|2, and thus the exit-time probability reduces to

P[0,n0)(n0 + 1) = |ψ1(n0,n0 + 1)|2. (29)

Now we can simply iterate the argument and conclude that

P[0,n0)(t) = |ψ1(n0,t)|2 (30)

for t � n0.
In Fig. 3 we present the exit-time probability when

n0 = 100. As can be observed, the probability P[0,n0)(t)
noticeably differs from its classical counterpart

Pclas
[0,n0)(t) =

(
t − 1
t − n0

)
pn0 (1 − p)t−n0 , (31)

where p is the probability that the walker changes its
location, p = 1/2 here, and t � n0 � 1. The classical exit-
time probability is bell shaped around t = 2n0, whereas the
quantum probability attains its maximum shortly after t = n0,
a reminder of the functional form of ρ(n,t). In fact, the time
t = 2n0 marks the instant after which the behavior of P[0,n0)(t)
changes qualitatively. Equation (B17) in Appendix B shows the
origin of this point of inflexion. Note that t = 2n0 corresponds
to ν = 1/2 and the two cosine terms in Eq. (B17) have exactly
the same weight, whereas for ν �= 1/2 the global behavior is
dominated by either one or the other. Also in Appendix B we
can find that for t > 2n0 we have the following approximate
lower bound for P[0,n0)(t):

P[0,n0)(t) � 1

4π

√
8n0(t − n0) − t2

(t − n0)2
, (32)

an expression that captures the decay rate of the exit-time
probability, as can be checked in the inset in Fig. 3. As a final
curiosity, this decay rate seems to be in good agreement with
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the heuristic expression

P[0,n0)(t) ∼ 1

2πn0

(
2n0

t

) 11
4

, (33)

a fact without a clear explanation.

V. CONCLUSION

In this paper we have analyzed the unidirectional quantum
walk, an alternative formulation of the discrete-time, discrete-
space quantum walk on a line in which the walker can either
remain in place or proceed in a fixed direction but never
move backward, which is the main difference with respect
to the most typical setup where the particle can move in either
direction. The translational invariance of the problem makes
both formalisms essentially equivalent, and every formula or
property can be easily rephrased, a fact that adds value to our
results.

The most prominent of these results is the derivation of
exact algebraic expressions for the wave functions that govern
the probability of finding the particle at any given location,
the probability mass function. These formulas were originally
based on the discrete Fourier transform, which allows the use
of efficient algorithms based on the fast Fourier transform to
evaluate them.

A second interesting result, related to the previous one, is
obtaining two approximate functions that limit the range of
variation of the probability mass function. These functions
contain the clue to understanding the quasiuniform behavior
of this probability.

The third outstanding result is the possible use of uni-
directional quantum walks as stochastic subordinators. The
study of the probability of the exit time of the process
out of a fixed interval indicates the presence of a transient
period in which the exit probability decays algebraically, with
an effective rational exponent of uncertain origin. Clearly,
this phenomenon deserves further attention but is left for a
future work.
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APPENDIX A: GENERAL SOLUTION

In this Appendix we provide further details on the derivation
of the explicit expressions for the two components of the wave
functions given in the main text, Eqs. (14) and (15), starting
from the recurrence formulas (12) and (13). The approach
that follows, like the one taken in Ref. [5], is based on the
Fourier analysis. The main difference lies in an apparently
subtle change: we have decided to use the discrete Fourier
transform (DFT) instead of the discrete-time Fourier transform
(DTFT). This choice is inspired (but not forced) by the fact that
within our formulation ψ0(n,t) and ψ1(n,t) only take values
different from zero when n is a nonnegative integer.

Let f (n) be a complex function, n ∈ {0, . . . ,N − 1}, and
denote its DFT by f̃ (r),

f̃ (r) ≡
N−1∑
n=0

f (n)ei2πrn/N (A1)

for r ∈ {0, . . . ,N − 1}. Then, it is well known that one
can recover f (n) from f̃ (r) by means of the inverse DFT
expression,

f (n) ≡ 1

N

N−1∑
r=0

f̃ (r)e−i2πrn/N . (A2)

The inversion formula contains the most perceptible dis-
crepancy between DFTs and DTFTs: in the latter, r is a
continuous index, and the inversion procedure involves the
computation of definite integrals instead of finite sums. The
truth is that, whereas DTFTs assume that the original function
is a periodical magnitude sampled at regular intervals, DFTs
impose no restriction on f (n), not even that f (n) = 0 when
n < 0 or n � N : all the information contained in the N

complex numbers f (n) is directly mapped to the N complex
quantities f̃ (r).

Thus, our next step is to decide a suitable value for N . In
this case, since ψ0,1(n,t) = 0 for n � t + 1, we could simply
set N = t + 1. However, this is not a very convenient choice
if we want to transform our set of two recurrence equations
in the position domain into a set of algebraic equations in the
Fourier domain: These recurrence formulas involve not only
different locations but different instants of time [cf. Eqs. (12)
and (13)], and linking N and t prevents us from achieving our
goal.

To avoid that, let us introduce the auxiliary time horizon T ,
T � 0, set N ≡ T + 1, and consider the following definition
for the DFT of ψ0,1(n,t), valid for any t , t ∈ {0, . . . ,T }:2

ψ̃0,1(r,t ; T ) ≡
N−1∑
n=0

ψ0,1(n,t)ei2πrn/N . (A3)

Note that, while ψ̃0,1(r,t ; T ) is an explicit function of T [that
is, for a fixed value of r and a fixed value of t , different choices
of T lead to different values for ψ̃0,1(r,t ; T )], the final result
of applying the corresponding inversion formula,

ψ0,1(n,t) ≡ 1

N

N−1∑
r=0

ψ̃0,1(r,t ; T )e−i2πrn/N , (A4)

does not depend on T for a fixed choice of n and t , as long
as one restricts these two variables to the set {0, . . . ,T }.
Obviously, given t , if one evaluates Eq. (A4) for n =
t + 1, . . . ,N − 1, one will obtain ψ0,1(n,t) = 0 identically.
Therefore, in principle, there is no reason to compute Eq. (A4)
out of the range n = 0, . . . ,t . We will return to this issue
later on.

2For notational convenience, N and T may alternate or even coexist
in expressions in this Appendix.
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At this point we can move Eqs. (12) and (13) into the Fourier
domain:

ψ̃0(r,t ; T ) = 1√
2
ψ̃0(r,t − 1; T ) + 1√

2
ψ̃1(r,t − 1; T ),

(A5)

ψ̃1(r,t ; T ) = ei2πr/N

√
2

ψ̃0(r,t − 1; T ) + ei2πr/N

√
2

ψ̃1(r,t − 1; T ).

(A6)

The initial values for ψ̃0,1(r,t ; T ) are ψ̃0(r,0; T ) = a,
ψ̃1(r,0; T ) = b for r ∈ {0, . . . ,N − 1}. The resolution of
Eqs. (A5) and (A6) can be tackled through standard matrix
techniques, thus resulting in

ψ̃0(r,t ; T ) = (λ+)t

1 + |1 − √
2λ+|2 [a + (

√
2λ−1

+ − 1)b]

+ (λ−)t

1 + |1 − √
2λ−|2 [a + (

√
2λ−1

− − 1)b]

(A7)

and

ψ̃1(r,t ; T ) = (λ+)t (
√

2λ+ − 1)

1 + |1 − √
2λ+|2 [a + (

√
2λ−1

+ − 1)b]

+ (λ−)t (
√

2λ− − 1)

1 + |1 − √
2λ−|2 [a + (

√
2λ−1

− − 1)b],

(A8)

with the dependence on r and T hidden in λ+and λ−,

λ+ ≡ e−i(ωr/N −πr/N), (A9)

λ− ≡ −ei(ωr/N +πr/N), (A10)

and where ωr/N is an angle that, given r and N , satisfies

sin ωr/N = 1√
2

sin
πr

N
. (A11)

Note that since r ∈ {0 . . . ,N − 1}, we have

0 � sin ωr/N � 1√
2
,

so, to prevent any uncertainty, we consider that ωr/N is the
only solution that Eq. (A11) has in [0,π/4].

Now, we can simply introduce the expressions of
ψ̃0,1(r,t ; T ) in (A7) and (A8) into Eq. (A4) and recover
ψ0,1(n,t) after the computation of a finite sum. To manage
the complexity of these expressions we analyze the particular
case a = 1 and b = 0 first:

ψ0(n,t) = 1

N

N−1∑
r=0

e−i[π(2n−t)r/N+ωr/N t]

1 + |1 − √
2e−i(ωr/N −πr/N)|2

+ (−1)t

N

N−1∑
r=0

ei[−π(2n−t)r/N+ωr/N t]

1 + |1 + √
2ei(ωr/N +πr/N)|2 . (A12)

We begin by detaching the r = 0 term from the summations
above,

ψ0(n,t) = 1

N

1

4 − 2
√

2
+ (−1)t

N

1

4 + 2
√

2

+ 1

N

N−1∑
r=1

e−i[π(2n−t)r/N+ωr/N t]

1 + |1 − √
2e−i(ωr/N −πr/N)|2

+ (−1)t

N

N−1∑
r=1

ei[−π(2n−t)r/N+ωr/N t]

1 + |1 + √
2ei(ωr/N +πr/N)|2 .

Now, we can define s ≡ N − r in the last sum and rearrange
the whole expression to finally obtain

ψ0(n,t) = 1

N

(
1 + (−1)t

2
+ 1 − (−1)t

2
√

2

)

+ 1

N

N−1∑
r=1

cos[π (2n − t)r/N + ωr/N t]

2 − √
2 cos(ωr/N − πr/N )

, (A13)

where the fact that ωs/N = ωr/N has been taken into account.
A similar procedure gives us

ψ1(n,t) = 1 − (−1)t

N

1

2
√

2

+ 1

N

N−1∑
r=1

√
2 cos ωr/N − cos πr

N

2 − √
2 cos(ωr/N − πr/N )

× cos[π (2n − t − 1)r/N + ωr/N t], (A14)

where we have used that
√

2λ+ − 1 =
(√

2 cos ωr/N − cos
πr

N

)
eiπr/N ,

√
2λ− − 1 =

(√
2 cos ωs/N − cos

πs

N

)
e−iπs/N ,

with the same definition for s as before, s = N − r . Analo-
gously, when a = 0 and b = 1, we have

ψ0(n,t) = 1 − (−1)t

N

1

2
√

2

+ 1

N

N−1∑
r=1

√
2 cos ωr/N − cos πr

N

2 − √
2 cos(ωr/N − πr/N )

× cos[π (2n − t + 1)r/N + ωr/N t] (A15)

and

ψ1(n,t) = 1

N

(
1 + (−1)t

2
− 1 − (−1)t

2
√

2

)

+ 1

N

N−1∑
r=1

(√
2 cos ωr/N − cos πr

N

)2

2 − √
2 cos(ωr/N − πr/N )

× cos[π (2n − t)r/N + ωr/N t]. (A16)

We can recover the general solution, Eqs. (14) and (15),
through the superposition of these two cases.

A final remark is needed on the role that N plays in
the computational complexity of the results in Eqs. (14)
and (15). For fixed N and t , the number of complex operations
one needs to obtain each wave function for every value of
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n, n ∈ {0, . . . ,t}, is roughly O(t × N ). Therefore, one can
easily reduce this quantity up to O(t2) by setting N = t − 1.
However, if one chooses N such that N = 2k , k ∈ N, the
whole solution may be recovered by means of the fast
Fourier transform (FFT) algorithm. Since the computational
complexity of this method is just O(k × 2k), it is always worth
considering the FFT approach for large values of t .

APPENDIX B: APPROXIMATE EXPRESSIONS

In this Appendix we obtain alternative equations for
ψ0,1(n,t), expressions that are more compact and readable
than Eqs. (14) and (15), although approximate.

A close analysis of the inner structure of the four pieces that
compose Eqs. (14) and (15) shows us that we must repeatedly
analyze functions like h(n,t),

h(n,t) ≡ �(t)

N
+ 1

N

N−1∑
r=1

g(r/N ) cos[θ (n,r,t ; T ) + επr/N ],

(B1)

where

θ (n,r,t ; T ) ≡ π (2n − t)r/N + ωr/N t (B2)

and ε ∈ {−1,0,1}. In every case g(·) is a smooth function, and
therefore, the behavior of the cosine terms does determine the
overall result of the sum. Due to the presence of ωr/N within
θ (n,r,t ; T ), the argument of these cosine functions does not
change linearly with r but exhibits a maximum, and then the
use of a tailored version of the method of the stationary phase is
the one most indicated in this case [5,17]: Only those terms for
which θ (n,r,t ; T ) attains its maximum are relevant, whereas
the rest of them are negligible.

To this end, let us first define u ≡ r/N and ν ≡ n/t in terms
of which we can rewrite θ (n,r,t ; T ),

θ (νt,u(T − 1),t ; T ) = φ(ν,u)t, (B3)

with

φ(ν,u) ≡ π (2ν − 1)u + ωu. (B4)

Our next step is to consider the function h(n,t) in the
continuum limit, N → ∞,

h(n,t) ∼
∫ 1

0
g(u) cos[φ(ν,u)t + επu]du

∼ Re

{∫ 1

0
g(u)eiεπueiφ(ν,u)t du

}
, (B5)

and to expand φ(ν,u) in the vicinity of u0,

φ(ν,u) ∼ φ(ν,u0) + 1

2

∂2φ(ν,u0)

∂u2
(u − u0)2

= φ0(ν) + 1

2
φ′′

0 (ν)(u − u0)2,

where u0 is the point for which, given ν, φ(ν,u) has its
maximum:

∂φ(ν,u0)

∂u
= π (2ν − 1) + π cos πu0√

1 + cos2 πu0

= 0. (B6)

From Eq. (B6) we have

cos πu0 = 1 − 2ν

2
√

ν(1 − ν)
(B7)

and

sin πu0 = 1

2

√
1 − 2(1 − 2ν)2

ν(1 − ν)
. (B8)

Equation (B8) tells us that the validity of the present ap-
proximation is restricted to values of ν for which one has
1 − 2(1 − 2ν)2 > 0; that is,

1

2

(
1 − 1√

2

)
< ν <

1

2

(
1 + 1√

2

)
. (B9)

Also from Eqs. (16) and (B8) we get

sin ω0 = 1

2

√
1 − 2(1 − 2ν)2

2ν(1 − ν)
, (B10)

as well as

cos ω0 = 1

2
√

2ν(1 − ν)
, (B11)

expressions that will be helpful in forthcoming derivations.
Now we can fully evaluate Eq. (B5) under the above

premises:

h(n,t) ∼ Re

{∫ 1

0
g(u)eiεπueiφ(ν,u)t du

}

∼ Re

{∫ 1

0
g(u0)eiεπu0eit[φ0(ν)+ 1

2 φ′′
0 (ν)(u−u0)2]du

}

∼ Re

{
g(u0)ei[επu0+φ0(ν)t]

∫ ∞

−∞
e

it
2 φ′′

0 (ν)(u−u0)2
du

}

=
√

2π

t |φ′′
0 (ν)|g(u0) cos

[
φ0(ν)t + επu0 − π

4

]
,

(B12)

with

φ′′
0 (ν) = −4π2ν(1 − ν)

√
1 − 2(1 − 2ν)2. (B13)

The approximate versions of Eqs. (14) and (15) are

ψ0(n,t) ∼ a√
t

√
2(1 − ν)

πν
√

1 − 2(1 − 2ν)2
cos[φ0(ν)t − π/4]

+ b√
t

√
2

π
√

1 − 2(1 − 2ν)2

× cos[φ0(ν)t − π/4 + πu0] (B14)

and

ψ1(n,t)

∼ a√
t

√
2

π
√

1 − 2(1 − 2ν)2
cos[φ0(ν)t − π/4 − πu0]

+ b√
t

√
2ν

π (1 − ν)
√

1 − 2(1 − 2ν)2
cos[φ0(ν)t − π/4],

(B15)

012333-7



MIQUEL MONTERO PHYSICAL REVIEW A 88, 012333 (2013)

and they follow from Eq. (B12) once one realizes that if

g(u) = 1

2 − √
2 cos(ωu − πu)

,

one gets

g(u0) = 2(1 − ν);

if

g(u) =
√

2 cos ωu − cos πu

2 − √
2 cos(ωu − πu)

,

one has

g(u0) = 2
√

ν(1 − ν),

and, finally, if

g(u) = (
√

2 cos ωu − cos πu)2

2 − √
2 cos(ωu − πu)

,

one obtains

g(u0) = 2ν.

The case in which a = 1/
√

2 and b = i/
√

2 attracts
much of our interest in the main text, so let us derive

explicit approximate expressions for |ψ0,1(n,t)|2 and ρ(n,t) =
|ψ0(n,t)|2 + |ψ1(n,t)|2:

|ψ0(n,t)|2 ∼ 1

t

1

πν
√

1 − 2(1 − 2ν)2

× [(1 − ν) cos2 A + ν cos2(A + πu0)], (B16)

|ψ1(n,t)|2 ∼ 1

t

1

π (1 − ν)
√

1 − 2(1 − 2ν)2

× [ν cos2 A + (1 − ν) cos2(A − πu0)], (B17)

and

ρ(n,t)∼ 1

t

1

πν(1 − ν)
√

1 − 2(1 − 2ν)2
{[(1 − ν)2 + ν2] cos2 A

+ ν(1 − ν)[cos2(A − πu0) + cos2(A + πu0)]},
(B18)

where we have introduced A ≡ φ0(ν)t − π/4 to keep the
expressions reasonably readable.

The formula for ρ(n,t) can be distilled even more. Let us
expand the cosine terms in Eq. (B18),

cos2(A − πu0) + cos2(A + πu0) = 2 cos2 A cos2 πu0 + 2 sin2 A sin2 πu0

= (1 − 2ν)2

2ν(1 − ν)
cos2 A + 1 − 2(1 − 2ν)2

2ν(1 − ν)
sin2 A,

to obtain first

ρ(n,t) ∼ 1

t

1

2πν(1 − ν)
√

1 − 2(1 − 2ν)2
{[1 + 2(1 − 2ν)2] cos2 A + [1 − 2(1 − 2ν)2] sin2 A},

= 1

t

1

2πν(1 − ν)
√

1 − 2(1 − 2ν)2
[1 + 2(1 − 2ν)2 cos 2A], (B19)

but since

cos 2A = cos[2φ0(ν)t − π/2] = sin[2φ0(ν)t],

we ultimately obtain

ρ(n,t) ∼ ρ̄(n,t) ≡ 1

t

1

2πν(1 − ν)
√

1 − 2(1 − 2ν)2
{1 + 2(1 − 2ν)2 sin[2φ0(ν)t]}. (B20)

Note how from ρ̄(n,t) we can define two new functions,
ρ̄min(n,t) and ρ̄max(n,t),

ρ̄max(n,t) ≡ 1

t

1 + 2(1 − 2ν)2

2πν(1 − ν)
√

1 − 2(1 − 2ν)2
, (B21)

ρ̄min(n,t) ≡ 1

t

√
1 − 2(1 − 2ν)2

2πν(1 − ν)
(B22)

= 2

πt
sin 2ω0, (B23)

in such a way that ρ̄min(n,t) � ρ̄(n,t) � ρ̄max(n,t).
Finally, let us derive Eq. (32). This expression corresponds

to a lower approximate bound of Eq. (B17) when ν < 1/2. To

this end we have to concentrate our attention on the case for
which cos(A − πu0) = 0,

|ψ1(n,t)|2 � 1

t

ν

π (1 − ν)
√

1 − 2(1 − 2ν)2
cos2 A

= 1

t

ν

π (1 − ν)
√

1 − 2(1 − 2ν)2
sin2 πu0

= 1

t

√
1 − 2(1 − 2ν)2

4π (1 − ν)2
. (B24)

Equation (32) follows after the replacement of ν by n/t .
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