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Resum

En aquesta tesi, estudiem les famı́lies d’interpolació i sampling en espais de funcions de
banda limitada en varietats compactes. Les nocions de sampling i interpolació juguen un
rol fonamental en problemes com ara recuperar un senyal continu a través de les mostres
discretes. Aquestes dues nocions són, en part, de caràcter oposat: un conjunt de sampling
ha de ser suficientment dens per tal de poder recuperar la informació i, en un conjunt
d’interpolació, els punts han de ser suficientment separats per tal de poder trobar una
funció que interpola certs valors.

Considerem l’espai de Paley-Wiener, PW 2
[−π,π], que consisteix en funcions de banda limi-

tada amb banda π, és a dir, funcions de quadrat integrable tal que la transformada de
Fourier té suport en l’interval [−π, π]. Pels espais de Paley-Wiener, diem que una suc-
cessió Λ = {λn} és de sampling si existeixen constants 0 < A ≤ B < ∞ tal que per tota
f ∈ PW 2

[−π,π],

A‖f‖2
2 ≤

∑
λn∈Λ

|f(λn)|2 ≤ B‖f‖2
2.

Diem que Λ és d’interpolació per PW 2
[−π,π] si el problema d’interpolació

f(λn) = cn, per tot n,

admet alguna solució amb f ∈ PW 2[−π, π], on {cn}n és qualsevol successió de quadrat
sumable. Un resultat fonamental en la història és el teorema de sampling de Whittaker-
Shannon-Kotelnikov que conclou que qualsevol funció de l’espai de Paley-Wiener es pot
recuperar a través dels valors que pren la funció en els enters, és a dir,

f(x) =
∑
n∈Z

f(n)
sin π(x− n)

π(x− n)
, ∀f ∈ PW 2

[−π,π].

Per tant, els enters formen una successió tant d’interpolació com de sampling per PW 2
[−π,π].

Si en lloc de prendre els enters, considerem successions Λ = {λn}n tals que

sup
n
|λn − n| < δ,

amb δ suficientment petit, encara obtenim una successió de sampling i interpolació per
l’espai de Paley-Wiener. En 1932, aquest fet va ser provat per Paley-Wiener amb δ < 1/π2.

xi



xii RESUM

El seu treball va donar lloc al començament de l’estudi de les sèries de Fourier no
armòniques i la geometria de les successions d’interpolació i sampling.

El cas de les funcions amb transformada de Fourier amb suport en un interval està ben
estudiat. Per un cas més general, com ara les funcions amb banda limitada en un con-
junt acotat E ⊂ Rm, H.J. Landau va trobar condicions necessàries per les successions de
sampling i interpolació en termes de les densitats superiors i inferiors de Λ = {λn}n que
es defineixen com:

D+(Λ) = lim sup
r→∞

supx∈Rm #(Λ ∩Qr(x))

rm
,

D−(Λ) = lim inf
r→∞

infx∈Rm #(Λ ∩Qr(x))

rm
,

on Qr(x) és el cub centrat a x amb llargària r del costat. Aquestes nocions s’anomenen
les densitats de Beurling-Landau ja que Beurling les va introduir en una dimensió i Lan-
dau les va generalitzar a dimensions superiors. Quan un conjunt Λ és separat (és a dir,
|λn − λm| ≥ δ > 0 per tot n 6= m), Landau va provar que una condició necessària per a
què Λ sigui d’interpolació (o sampling) és que la densitat sigui inferior (o superior) que
un valor cŕıtic, la raó de Nyquist.

Un problema semblant però diferent és caracteritzar les successions d’interpolació i sam-
pling per l’espai de polinomis restringits a S1. Considerem per tot n ∈ N, l’espai de
polinomis de grau menor o igual que n:

Pn =

{
q(z) =

n∑
k=0

akz
k, z ∈ S1

}
,

dotat de la norma L2:

‖q‖ =

(
1

2π

ˆ 2π

0

|q(eiθ)|2dθ
)1/2

.

Els polinomis juguen el paper de les funcions de banda limitada de banda donada pel grau
del polinomi. Els espais Pn tenen propietats semblants a les de l’espai de Paley-Wiener
però no els hem de confondre ja que hem passat d’una situació no compacta a una de
compacta. Un problema natural és estudiar la interpolació i sampling per l’espai de poli-
nomis Pn. En aquest nou context, no podem prendre successions de punts donat que una
successió separada en S1 seria finita i, per tant, el problema de sampling per polinomis
de qualsevol grau no tindria sentit. Doncs, sembla natural reemplaçar les successions de
punts per famı́lies de punts en S1 de manera que cada nivell n de la famı́lia recupera la
norma de qualsevol polinomi p ∈ Pn (amb constants independents de n). El concepte
de famı́lia separada s’entén com que la distància entre dos punts de la generació n és
almenys δ/n > 0. Per tant, el rol d’una successió de sampling el fa una famı́lia triangular
anomenada famı́lia de Marcinkiewicz -Zygmund (M-Z). La definició formal és la següent.

Definició. Donada una famı́lia triangular de punts Z = {Z(n)}n≥0 ⊂ S1 amb Z(n) =
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{znj}j=0,...,mn
, diem que Z és M-Z per Lp (1 ≤ p < +∞) si per tot n ∈ N i q ∈ Pn se

satisfà:
C−1
p

n

mn∑
j=0

|q(znj)|p ≤
ˆ 2π

0

|q(eiθ)|pdθ ≤ Cp
n

mn∑
j=0

|q(znj)|p,

amb Cp independent de n.

Per exemple, les arrels (n + 1)-èssimes satisfan la desigualtat anterior. Aquest tipus
de desigualtats són similars a les de ser successions de sampling en el context de Paley-
Wiener. De fet, aquesta similitud és més que superficial. La primera desigualtat en la
definició de M-Z s’anomena desigualtat del tipus Plancherel-Pólya i és conseqüència d’una
caracterització de les mesures de Carleson. La segona desigualtat és la més complicada
de caracteritzar. En [OCS07], J. Ortega-Cerdà i J. Saludes van estudiar amb detall el cas
de S1. Van provar condicions necessàries i suficients per a què una famı́lia sigui de M-Z
en termes de les densitats de Beurling-Landau.

Teorema (J.Ortega-Cerdà, J. Saludes). Sigui Z una famı́lia separada, és a dir,

d(znj, znk) ≥ C/n, ∀j 6= k, n ∈ N.

Si

D−(Z) = lim inf
R→∞

lim inf
n→∞

minx∈[0,2π] #(Z(n) ∩ (x, x+R/n))

R
>

1

2π
,

on (x, y) simbolitza l’arc en la S1 amb extrems eix i eiy, aleshores Z és una famı́lia M-Z
per qualsevol p ∈ [1,∞]. Si Z és M-Z per algun p ∈ [1,∞], aleshores D−(Z) ≥ 1/2π.

Amb aquest treball i les idees de Landau, J. Marzo va provar, en la seva tesi [Mar08],
condicions necessàries per a què una famı́lia sigui d’interpolació o sampling en termes
de les densitats de Beurling-Landau. J. Marzo va considerar espais de funcions que con-
sisteixen en combinacions lineals d’armònics esfèrics de Sm de grau més petit que L.
Aquestes funcions són de banda limitada i la banda ve donada pel grau L.

L’objectiu d’aquest treball és generalitzar els resultats obtinguts en la tesi d’en J. Marzo
al cas d’una varietat compacta de dimensió m ≥ 2 arbitrària (el cas 1-dimensional està
completament estudiat en [OCS07]). Els armònics esfèrics es caracteritzen com els vectors
propis de l’operador de Laplace-Beltrami de la Sm. Doncs, la generalització natural dels
armònics esfèrics són els vectors propis de l’operador de Laplace-Beltrami associat a la
varietat. Ens concentrarem en la norma L2. La dificultat i diferència principal amb el cas
de Sm és el fet que un no pot fer el producte de dues funcions de banda limitada i obtenir
una altra funció dels espais considerats. També, en una varietat compacta arbitrària, no
tenim una expressió expĺıcita del nucli reproductor dels espais que considerem. Per tant,
una de les dificultats més importants és la construcció de funcions de banda limitada
amb un control del seu decäıment fora d’una bola geodèsica fixada. En moltes ocasions,
el nucli reproductor sol ser una funció test per provar condicions necessàries en alguna
caracterització. Aquesta funció, també anomenada com la funció espectral associada al
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Laplacià, ha sigut tema de recerca de molts autors, dels quals destaca L. Hörmander
que va provar algunes estimacions de la funció espectral associada a qualsevol operador
el·ĺıptic en varietats compactes (vegeu [Hör68] per més detalls).

Aquest treball s’estructura en quatre caṕıtols.

En el primer caṕıtol, introdüım el context del nostre problema i els resultats principals
provats al llarg d’aquesta tesi. També descrivim el comportament asimptòtic del nucli
reproductor i la construcció de nous nuclis associats als nostres espais amb un decäıment
fora de la diagonal. A més a més, explicarem algunes eines que jugaran un paper fona-
mental en les proves dels nostres resultats.

En el segon caṕıtol, estudiem el problema del sampling continu. El rol d’una famı́lia
discreta de sampling el realitza una successió de conjunts en la varietat anomenada suc-
cessió de Logvinenko-Sereda. Un problema més dèbil és trobar una caracterització de
les mesures de Carleson. Aquesta qüestió també s’ha resolt en termes d’una condició
geomètrica.

En el tercer caṕıtol, provem algunes condicions (qualitatives) necessàries i suficients per
a la interpolació i sampling. Definim l’anàleg a la densitat de Beurling-Landau i provem,
seguint les idees de Landau en el context dels espais de Paley-Wiener, condicions quanti-
tatives necessàries per a què una famı́lia sigui de sampling o d’interpolació.

En el quart caṕıtol, donem una aplicació dels resultats de densitat obtinguts en el Caṕıtol
3. Estudiem les famı́lies de punts de Fekete en varietats compactes amb certa propietat
(vegeu la Definició 4.1 per a més informació). Els punts de Fekete són punts que maxi-
mitzen un determinant del tipus Vandermond que apareix en la fórmula d’interpolació del
polinomi de Lagrange. Són punts adients per les fórmules d’interpolació i la integració
numèrica. Els punts de Fekete tenen la propietat que són casi d’interpolació i M-Z. Per
tant, aquest tipus de punts estan ben distribüıts en la varietat ja que contenen informació
suficient per recuperar la norma L2 d’una funció de banda limitada i, són suficientment
separats per tal d’interpolar alguns valors fixats.

Els resultats d’aquest treball són part dels següents articles:

• J. Ortega-Cerdà, B. Pridhnani. Carleson measures and Logvinenko-Sereda sets on
compact manifolds. Forum Mathematicum, to appear ([OCP11b]).

• J. Ortega-Cerdà, B. Pridhnani. Beurling-Landau’s density on compact manifolds.
Preprint ([OCP11a]).



Introduction

In this monograph we study the interpolating and sampling families for the spaces of
bandlimited functions on compact manifolds. Sampling and interpolation play a funda-
mental role in problems such as recovering a continuous signal from discrete samples or
assessing the information lost in the sampling process. Somehow, sampling and interpo-
lating sequences are opposite in nature. A set of sampling should be dense enough in
order to recover the information and, in an interpolating set, the points should be far
enough so that one can find a function that interpolates any given data.

A bandlimited function is a function such that its Fourier transform has compact sup-
port. We denote by PW 2

[−π,π] the space of bandlimited functions with bandwidth π (i.e.

square integrable functions with Fourier transform vanishing outside [−π, π]). For the
Paley-Wiener space, PW 2

[−π,π], a set Λ = {λn}n is a set of sampling if there are constants

0 < A ≤ B <∞ such that for any f ∈ PW 2
[−π,π],

A‖f‖2
2 ≤

∑
λn∈Λ

|f(λn)|2 ≤ B‖f‖2
2.

We say that Λ is an interpolating set for PW 2
[−π,π] if the interpolation problem

f(λn) = cn for all n,

has a solution f ∈ PW 2
[−π,π] for every square-summable sequence {cn}n. The well known

Whittaker-Shannon-Kotelnikov sampling theorem states that any function belonging to
the Paley-Wiener space can be recovered from its values at the integers:

f(x) =
∑
n∈Z

f(n)
sin π(x− n)

π(x− n)
, ∀f ∈ PW 2

[−π,π].

Thus, the integers are both sampling and interpolating for the Paley-Wiener spaces
PW 2

[−π,π].

If, instead of the integers, we take a set Λ = {λn}n such that

sup
n
|λn − n| < δ,

with δ small enough, we still get a sampling and interpolating set for the Paley-Wiener
space. This fact was proved by Paley-Wiener in 1934. They proved the result for δ < 1/π2.

1



2 INTRODUCTION

Their work gave birth to the study of non-harmonic Fourier series and the geometry of
interpolating and sampling sequences.
In 1964, M.I. Kadec proved that one can have this property for δ < 1/4 (this is called the
Kadec’s 1/4-theorem) and this bound is sharp.

Thus, the case of functions with Fourier transform supported in an interval is well ex-
plored. For a more general case, like functions bandlimited to some general bounded
set E ⊂ Rm, H.J. Landau found necessary conditions for sampling and interpolation for
functions in PW 2

E in terms of the upper and lower density of the set Λ = {λn}n given by

D+(Λ) = lim sup
r→∞

supx∈Rm #(Λ ∩Qr(x))

rm
,

D−(Λ) = lim inf
r→∞

infx∈Rm #(Λ ∩Qr(x))

rm
,

where Qr(x) is the cube centered at x of sidelength r. These are called the Beurling-
Landau densities, because Beurling introduced them in one dimension and Landau gene-
ralized them for higher dimensions. For a separated set Λ (i.e. |λn − λm| ≥ δ > 0 for all
n 6= m), Landau proved that a necessary condition for Λ to be interpolating (or sampling)
is that the density is smaller (or bigger) than a critical value, the Nyquist rate.

A similar problem but yet very different is characterizing the interpolating and sam-
pling sequences for the spaces of polynomials restricted to S1. Consider for all n ∈ N, the
space of polynomials of degree less than n:

Pn =

{
q(z) =

n∑
k=0

akz
k, z ∈ S1

}
,

endowed with the L2-norm:

‖q‖ =

(
1

2π

ˆ 2π

0

|q(eiθ)|2dθ
)1/2

.

The polynomials play the role of bandlimited functions with band given by the degree
of the polynomial. We remark that these spaces share many properties with the Paley-
Wiener spaces but they are not to be confused with them, because we have moved from
a non-compact setting to a compact one. A natural question is to ask for interpolation
and sampling. In this context, we cannot take sequences because a separated sequence in
S1 would be finite and thus the sampling problem for polynomials of any degree will not
make sense. It seems very natural to replace the sequences by families of points in S1 so
that each level n of the family recovers the norm of any polynomial p ∈ Pn (with constants
independent of n). The notion of a separated family is now translated into the fact that
the distance between two points of the n-th generation is at least δ/n > 0. Thus, the role
of a sampling sequence is developed by a triangular family called Marcinkiewicz-Zygmund
(M-Z) family. The precise definition is the following.
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Definition. Given a triangular family of points Z = {Z(n)}n≥0 ⊂ S1 with Z(n) =
{znj}j=0,...,mn

, we say that Z is M-Z for Lp (1 ≤ p < +∞) if the following inequality
holds for all n ∈ N and q ∈ Pn,

C−1
p

n

mn∑
j=0

|q(znj)|p ≤
ˆ 2π

0

|q(eiθ)|pdθ ≤ Cp
n

mn∑
j=0

|q(znj)|p, (1)

with Cp independent of n.

For instance, the (n+1)-roots of unity satisfy (1). These sort of inequalities are similar to
the sampling sequences estimates in the Paley-Wiener setting. In fact, this similarity is
more than superficial. The first inequality in (1) is called Plancherel-Pólya type inequa-
lity and follows from a characterization of the Carleson measures. The second inequality
in (1) is the harder one to characterize (the so-called reverse Carleson inequality). In
[OCS07], J. Ortega-Cerdà and J. Saludes studied in detail the case of the S1. In this
direction, they proved necessary and sufficient conditions for a family to be M-Z in terms
of the Beurling-Landau densities.

Theorem (J.Ortega-Cerdà, J. Saludes). Let Z be a separated family, i.e.

d(znj, znk) ≥ C/n, ∀j 6= k, n ∈ N.

If

D−(Z) = lim inf
R→∞

lim inf
n→∞

minx∈[0,2π] #(Z(n) ∩ (x, x+R/n))

R
>

1

2π
,

where (x, y) denotes the arc in S1 with endpoints eix and eiy, then Z is a M-Z family for
any p ∈ [1,∞]. Conversely, if Z is M-Z family for some p ∈ [1,∞], then D−(Z) ≥ 1/2π.

Taking into account the case of the circle and following the ideas of Landau, J. Marzo
proved, in his thesis (see [Mar08]), the necessary condition for interpolation and sampling
in terms of density in a more general space. He considered the spaces of linear combi-
nations of spherical harmonics in Sm of degree less than L. These functions are again
bandlimited and the band is given by the degree L.

The goal of this monograph is to extend the results in the thesis of J. Marzo to a general
compact manifold of dimension m ≥ 2 (the one-dimensional case is completely studied
in [OCS07]). The spherical harmonics have an intrinsic characterization as the eigen-
functions of the Laplace-Beltrami operator on Sm. Thus, the natural generalization of
the spherical harmonics, on an arbitrary compact manifold, are the eigenfunctions of the
Laplacian associated to the manifold. We will focus our attention on the case of the L2-
norm. The major difficulty and difference from the case of Sm is that one cannot multiply
two bandlimited functions and obtain another function in our spaces. Furthermore, in
a general compact manifold, we lack of an explicit expression of the reproducing kernel
of the spaces under consideration. Hence, one of the main difficulties is to construct
bandlimited functions with a control of their decay outside a fixed geodesic ball. Usu-
ally, a test function to prove necessary conditions of a characterization is the reproducing
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kernel. This function, also called the spectral function associated to the Laplacian, has
been subject of research for many authors, specially L. Hörmander in his paper [Hör68].
He proved some estimates for the spectral function associated to any elliptic operator
on compact manifolds. All the information about the reproducing kernel is useful in our
context because one can express the notion of being interpolating or M-Z in terms of the
reproducing kernel (see Chapter 3, Section 3.1 for more details).

Till now, we have been discussing about estimating the L2-norm of a bandlimited function
by a discrete norm of its evaluation on some sequence of points. One can think about
controlling the L2-norm of a function in our space by the L2-norm restricted to some sets,
i.e. can we study a continuous sampling? This turns out to be an easier problem than
discrete sampling. Thus, a natural question is to find for which sequences of sets {AL}L
in the manifold,

‖f‖2 ' ‖χALf‖2,

for any function f in our spaces, with constants independent of L and f . These compa-
rison of norms are called the Logvinenko-Sereda sets inequality. In the case of the Sm, in
[MOC08], a geometric characterization has been obtained. Intuitively, Logvinenko-Sereda
sets should be relatively dense in order to recover the L2-norm of any bandlimited function.

Beyond interpolating and sampling, there are other families of points, called the Fekete
points, that have their own interest. Fekete points are the points that maximize a
Vandermonde-type determinant that appears in the polynomial Lagrange interpolation
formula. They are well suited points for interpolation formulas and numerical integration.
The geometric properties of the distribution of the Fekete points on the sphere has been
studied by many authors like in [Rei90], [BLW08] or [SW04]. In the circle, the roots of
unity are simultaneously interpolating and M-Z arrays. On higher dimension, i.e. in the
Sm, it has been proved (see [Mar07, Theorem 1.7]) that there are no arrays which are
simultaneously interpolating and M-Z for the Lp-norm (p 6= 2) when m ≥ 2. But, in
[MOC10], it was showed that the Fekete points are a very reasonable substitute of the
roots of unity. In the beginning, we said that sampling and interpolating sequences are
of opposite nature. Fekete points have the property that they are almost interpolating
and M-Z. Thus, these kind of points are well distributed in the manifold because they
have enough information in order to recover the L2-norm of a bandlimited function and
they are far enough in order to interpolate some given data. Furthermore, understanding
the densities of M-Z and interpolating arrays will help to get some geometric information
about the Fekete families. The main difficulty here is that in our proofs, we need func-
tions, in the spaces under consideration, with a desired decay and such that they preserve
certain values. The technique we use, is to multiply two bandlimited functions and still
obtain a function in our spaces. Thus, we will analyze the Fekete points on compact
manifolds with some restriction.

This monograph is structured in four chapters.

In Chapter 1, we present the context of our problem and the main results proved in
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this work. We describe the asymptotic behaviour of the reproducing kernel and the con-
struction of new kernels associated to our spaces with a decay away from the diagonal.
We shall also explain some tools that will play a fundamental role in the proof of our
results.

In Chapter 2, we study the problem of a continuous sampling. The role of a discrete
family of sampling is played now by a sequence of sets in the manifold called Logvinenko-
Sereda sets. We give a complete geometric characterization. A weaker problem is to find
a characterization of the Carleson’s measures. This question has been also answered in
terms of a geometric condition.

In Chapter 3, we provide some (qualitative) necessary and sufficient conditions for inter-
polation and sampling. We define an analog of the Beurling-Landau’s density and prove
a quantitative necessary condition for sampling and interpolation following the scheme of
Landau in the context of the Paley-Wiener spaces.

In Chapter 4, we give an application of the density results obtained in Chapter 3 and
study the Fekete arrays on compact manifolds with some restriction. Furthermore, we
prove from the results of Chapter 3, the equidistribution of the Fekete families on compact
manifolds that have a product property (see Definition 4.1 for more details).

The results of this monograph are part of the following articles:

• J. Ortega-Cerdà, B. Pridhnani. Carleson measures and Logvinenko-Sereda sets on
compact manifolds. Forum Mathematicum, to appear ([OCP11b]).

• J. Ortega-Cerdà, B. Pridhnani. Beurling-Landau’s density on compact manifolds.
Preprint ([OCP11a]).
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Chapter 1

Main results and Preliminaries

In this chapter, we present the context and notation of our problem. In the first section,
we explain the motivation of our work and the main results obtained. In the second
section, we define the reproducing kernel of the spaces under consideration and state
its asymptotics proved by L. Hörmander. Furthermore, we consider Bochner-Riesz type
kernels associated to our spaces with a certain decay off the diagonal. In the last section,
we illustrate a technical tool in order to obtain gradient estimates of functions in the
spaces under consideration.

1.1 Notation and statement of the results

Let (M, g) be a smooth, connected, compact Riemannian manifold without boundary,
of dimension m ≥ 2. Let dV and ∆M be the volume element and the Laplacian on M
associated to the metric g, respectively. The Laplacian is given in local coordinates by

∆Mf =
1√
|g|
∑
i,j

∂

∂xi

(√
|g|gij ∂f

∂xj

)
,

where |g| = |det(gij)| and (gij)ij is the inverse matrix of (gij)ij. Since M is compact, gij
and all its derivatives are bounded and we assume that the metric g is non-singular at
each point of M .

By the compactness of M , the spectrum of the Laplacian is discrete and there is a sequence
of eigenvalues

0 ≤ λ2
1 ≤ λ2

2 ≤ . . .→∞
and an orthonormal basis φi of smooth real eigenfunctions of the Laplacian i.e. ∆Mφi =
−λ2

iφi (without loss of generality, we assume that λi ≥ 0). Thus, L2(M) decomposes into
an orthogonal direct sum of eigenfunctions of the Laplacian.

We consider the following subspaces of L2(M).

EL =

{
f ∈ L2(M) : f =

kL∑
i=1

βiφi, ∆Mφi = −λ2
iφi, λkL ≤ L

}
,

7
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where L ≥ 1 and kL = dimEL. We see that EL consists of functions in L2(M) with a
restriction on the support of its Fourier transform. It is, in a sense, the Paley-Wiener
space on M with bandwidth L.

The motivation of this work is to show that the spaces EL behave like the spaces de-
fined in Sm (m > 1) of linear combinations of spherical harmonics of degree not exceeding
L. In fact, the space EL is a generalization of the spherical harmonics and the role of
them are played by the eigenfunctions. The cases M = S1 and M = Sd (d > 1) have been
studied in [OCS07] and [Mar07], respectively.

This similarity between eigenfunctions of the Laplacian and polynomials is not new; for
instance, Donnelly and Fefferman showed in [DF90, Theorem 1] that on a compact mani-
fold, an eigenfunction of eigenvalue λ2 behaves essentially like a polynomial of degree λ.
In this direction they proved the following stated below local L∞-Bernstein inequality.

Theorem (Donnelly-Fefferman). Let M be as above with m = dimM . If u is an eigen-
function of the Laplacian ∆Mu = −λ2u, then there exists r0 = r0(M) such that for all
r < r0 we have

max
B(x,r)

|∇u| ≤ Cλ(m+2)/2

r
max
B(x,r)

|u|.

The proof of the above estimate is rather delicate. Donnelly and Fefferman conjectured
that it is possible to replace λ(m+2)/2 by λ in the inequality. If the conjecture holds, we
have in particular, a global Bernstein type inequality:

‖∇u‖∞ . λ ‖u‖∞ . (1.1)

In fact, this weaker estimate holds and a proof will be given later. This fact suggests that
the right metric to study the space EL should be rescaled by a factor 1/L because in balls
of radius 1/λ, a bounded eigenfunction of eigenvalue λ2 oscillates very little.

In Chapter 2, we study for which measures µ = {µL}L one has

ˆ
M

|f |2dµL '
ˆ
M

|f |2 dV, ∀f ∈ EL, (1.2)

with constants independent of f and L.
We also consider a weaker inequality

ˆ
M

|f |2dµL .
ˆ
M

|f |2dV,

that defines the Carleson measures and we present a geometric characterization of them.
Inequality (1.2) will be studied only for the special case dµL = χALdV , where A = {AL}L
is a sequence of sets in the manifold. In case (1.2) holds, we say that A is a sequence of
Logvinenko-Sereda sets. Our two main results are the following:
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Theorem 1.1. The sequence of sets A = {AL}L is Logvinenko-Sereda if and only if there
is an r > 0 such that

inf
L

inf
z∈M

vol(AL ∩B(z, r/L))

vol(B(z, r/L))
> 0.

Theorem 1.2. Let µ = {µL}L be a sequence of measures on M . Then µ is L2-Carleson
for M if and only if there exists a C > 0 such that for all L ≥ 1,

sup
ξ∈M

µL(B(ξ, 1/L))

vol(B(ξ, 1/L))
≤ C.

In Chapter 3 we consider the interpolating and M-Z families associated to the spaces
{EL}L≥1. In this context, we say that a triangular family Z = {Z(L)}L≥1 with Z(L) =
{zLj}mLj=1, is M-Z (or interpolating) if for each level L, the sequence Z(L) is sampling (or
interpolating) for the space EL with constants independent of L (see Definitions 3.1 and
3.2).
As explained in the introduction, intuitively an interpolating family is sparse and a M-Z
family is dense. We formalize these notions in this chapter. More precisely, we prove:

• A necessary condition for a family Z to be interpolating is that Z should be uni-
formly separated (see Definition 2.4 and Proposition 3.4 for a precise statement).

• If a family Z is enough separated then it is interpolating (check Proposition 3.6 for
a proof).

• A M-Z family contains a subfamily that is uniformly separated and M-Z (see The-
orem 3.7).

• If a family Z is dense enough then it is M-Z (see Theorem 3.9 for a precise formu-
lation and proof).

The results mentioned above are qualitative. We lack of a precise quantity for measuring
how much sparse or dense a family should be in order to be interpolating or M-Z. The
second goal of Chapter 3 is to extend the theory of Beurling-Landau on the discretization
of functions in the Paley-Wiener space on Rn to functions in M . This should be possible
because there is already a literature on the subject in the case M = Sm (see [Mar07] for
more details). In terms of the Beurling-Landau’s density, we prove a quantitative result
that is a necessary condition for interpolating and M-Z families. More precisely, our main
result in this direction is:

Theorem 1.3. Let Z be a triangular family in M . If Z is an L2-M-Z family then there
exists a uniformly separated L2-M-Z family Z̃ ⊂ Z such that

D−(Z̃) ≥ 1.

If Z is an L2-interpolating family then it is uniformly separated and

D+(Z) ≤ 1,

where D+ and D− are the upper and lower Beurling-Landau’s density (see Definition 3.10
for more details), respectively.
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The proof of this result relies on the scheme used by Landau for the Paley-Wiener spaces.
We define a concentration operator over a set A ⊂M that maps EL onto EL. There is a
relation between the number of big eigenvalues of this operator with the Beurling-Landau
density. To this end, the number of big eigenvalues of the concentration operator can
be controlled by the trace of this operator. Thus, estimating the density is reduced to
estimating the trace of the concentration operator.

In Chapter 4, we consider the Fekete arrays on compact manifolds with a certain product
property. The Fekete points are the points that maximize a Vandermonde-type deter-
minant that appears in the polynomial Lagrange interpolation formula. There is a huge
literature for the case M = Sm. As explained before, in the circle the roots of unity are si-
multaneously interpolating and M-Z. On higher dimensions, Sm (m > 1) there is no model
of points like the roots of unity. In [MOC10], it has been showed that the Fekete points
are a very reasonable substitute of the roots of unity. Thus, they are well distributed
points in Sm. In [MOC10], J. Marzo and J. Ortega-Cerdà proved that as L → ∞, the
number of Fekete points in a spherical cap B(z,R) gets closer to kLσ̃(B(z,R)), where
σ̃ is the normalized Lebesgue measure on Sm. The key idea in proving this result is a
connection between the Fekete points and the M-Z and interpolating arrays. Following
their approach, we define the Fekete points on M and show their connection with the
interpolating and M-Z families and prove the asymptotic equidistribution of the Fekete
points on the manifold. Intuitively, the Fekete families are almost interpolating and M-Z.
Another main tool for the proof of the equidistribution of the Fekete families is the nec-
essary condition for the interpolating and Marcinkiewicz-Zygmund arrays in terms of the
Beurling-Landau densities. More precisely, we prove:

Theorem 1.4. Let M be an admissible manifold and Z = {Z(L)}L≥1 be any array such

that Z(L) is a set of Fekete points of degree L. Consider the measures µL = 1
kL

∑kL
j=1 δzLj .

Then µL converges in the weak-∗ topology to the normalized volume measure on M .

By admissibility we mean that there exists a constant C > 0 such that for all 0 < ε < 1
and L ≥ 1:

EL · EεL ⊂ EL(1+Cε).

We need to restrict to these kind of manifolds because our proof requires to construct a
bandlimited function with a certain decay that preserves some given values. This has been
done by taking the product of two bandlimited functions. Examples of such manifolds are
the two-point compact homogeneous spaces, the torus, the Klein bottle and many more
can be constructed by taking products of admissible manifolds (check Chapter 4, Section
4.3 for a complete description).

In what follows, when we write A . B, A & B or A ' B, we mean that there are con-
stants depending only on the manifold such that A ≤ CB, A ≥ CB or C1B ≤ A ≤ C2B,
respectively. Also, the value of the constants appearing during a proof may change, but
they will be still denoted by the same letter. A geodesic ball in M and an Euclidean ball
in Rm are represented by B(ξ, r) and B(z, r), respectively.
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1.2 Kernels associated to EL

Let

KL(z, w) :=

kL∑
i=1

φi(z)φi(w) =
∑
λi≤L

φi(z)φi(w).

This function is the reproducing kernel of the space EL, i.e.

f(z) = 〈f,KL(z, ·)〉, ∀f ∈ EL.

Note that dim(EL) = kL = # {λi ≤ L} . The function KL is also called the spectral func-
tion associated to the Laplacian. Hörmander proved in [Hör68] the following estimates:

1. KL(z, z) = σm
(2π)m

Lm +O(Lm−1) (uniformly in z ∈M), where σm = 2πm/2

mΓ(m/2)
.

2. kL = vol(M)σm
(2π)m

Lm +O(Lm−1).

In fact, in [Hör68] there are estimates for the spectral function associated to any elliptic
operator of order n ≥ 1 with constants depending only on the manifold.

So, for L big enough we have kL ' Lm and

‖KL(z, ·)‖2
2 = KL(z, z) ' Lm ' kL

with constants independent of L and z.

We will also make use of the Bochner-Riesz kernel associated to the Laplacian that is
defined as

SNL (z, w) :=

kL∑
i=1

(
1− λi

L

)N
φi(z)φi(w).

Here N ∈ N is the order of the kernel. Using the definition, one has that for all g ∈ L2(M),
the Bochner-Riesz transform of g is

SNL (g)(z) =

ˆ
M

SNL (z, w)g(w)dV (w) =

kL∑
i=1

(
1− λi

L

)N
ciφi(z) ∈ EL,

where ci = 〈g, φi〉. Observe that ‖SNL (g)‖2 ≤ ‖g‖2.

Note that S0
L(z, w) = KL(z, w). The Bochner-Riesz kernel satisfies the following esti-

mate.
|SNL (z, w)| ≤ CNL

m (1 + LdM(z, w))−N−1 , (1.3)

where CN is a constant depending on the manifold and the order N . This estimate has
its origins in Hörmander’s article [Hör69, Theorem 5.3]. Estimate (1.3) can be found also
in [Sog87, Lemma 2.1].
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Note that on the diagonal, SNL (z, z) ' CNL
m. The upper bound is trivial by the definition

and the lower bound follows from

SNL (z, z) ≥
∑

λi≤L/2

(
1− λi

L

)N
φi(z)φi(z) ≥ 2−NKL/2(z, z) ' CNL

m.

Similarly we observe that
∥∥SNL (·, ξ)

∥∥2

2
' CNL

m.

We can consider other Bochner-Riesz type kernels. From now on, we fix an ε > 0 and Bε
L

will denote a transform from L2(M) to EL with kernel

Bε
L(z, w) =

kL∑
i=1

βε

(
λi
L

)
φi(z)φi(w), (1.4)

i.e. for any f ∈ L2(M),

Bε
L(f)(z) =

ˆ
M

Bε
L(z, w)f(w)dV (w) =

kL∑
i=1

βε

(
λi
L

)
〈f, φi〉φi(z),

where βε : [0,+∞)→ [0, 1] is a function of class C∞ supported in [0, 1] such that βε(x) = 1
for x ∈ [0, 1− ε] and βε(x) = 0 if x /∈ [0, 1).

0 L(1− ε) L

βε(x/L)

Observe that for ε = 0, the transform B0
L is just the orthogonal projection of the space

EL i.e. the kernel B0
L(z, w) = KL(z, w).

We recall now an estimate for the kernel Bε
L(z, w) that is similar to the Bochner-Riesz

kernel estimate (1.3).

Lemma 1.5. Let H : [0,+∞) → [0, 1] be a function with continuous derivatives up to
order N > m with compact support in [0, 1]. Then there exists a constant CN independent
of L such that∣∣∣∣∣

kL∑
i=1

H(λi/L)φi(z)φi(w)

∣∣∣∣∣ ≤ CNL
m 1

(1 + LdM(z, w))N
, ∀z, w ∈M. (1.5)

For a proof see [FM10b, Theorem 2.1] and some ideas can be traced back from [Sog87].
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1.3 Harmonic extension

Now we will explain a technical tool in order to have gradient estimates for functions of
the spaces EL. Consider the product manifold N = M × R endowed with the product
metric denoted by g̃ = (g̃ij)ij. Thus, for i = 1, . . . ,m+ 1,

(g̃ij)i,j=1,...,m+1 =

(
(gij)

m
i,j=1 0

0 1

)
.

Using this matrix, we can calculate the gradient and the Laplacian for N . If h(z, t) is a
function defined on N then

|∇Nh(z, t)|2 = |∇Mh(z, t)|2 +

(
∂h

∂t
(z, t)

)2

and

∆Nh(z, t) = ∆Mh(z, t) +
∂2h

∂t2
(z, t).

Note that |∇Mh(z, t)| ≤ |∇Nh(z, t)|.

Let f ∈ EL, we know that

f =

kL∑
i=1

βiφi, ∆Mφi = −λ2
iφi, 0 ≤ λi ≤ L.

Define for (z, t) ∈ N ,

h(z, t) =

kL∑
i=1

βiφi(z)eλit.

Observe that h(z, 0) = f(z). Moreover |∇Mf(z)| ≤ |∇Nh(z, 0)|.

The function h is harmonic in N because

∆Nh(z, t) =

kL∑
i=1

[
βie

λit∆Mφi(z) + βiφi(z)∆R(eλit)
]

= 0.

In what follows, given f ∈ EL, we will denote by h the defined harmonic extension in
N of f . Observe that there are other possible ways of defining an harmonic extension of
functions of EL.
We don’t have the mean-value property for an harmonic function, because it is not true
for all manifolds (only for the harmonic manifolds, see [Wil50] for a complete characteri-
zation of them). What is always true is a “submean-value property” (with a uniform
constant) for positive subharmonic functions, see for example [SY94, Chapter II, Section
6]).

Observe that since h is harmonic on N , |h|2 is a positive subharmonic function on N . In
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fact, |h|p is subharmonic for all p ≥ 1 (for a proof see [GW74, Proposition 1]). Therefore,
we know that for all r < R0(M),

|h(z, t)|2 .
 
B(z,r/L)×Ir(t)

|h(w, s)|2dV (w)ds,

where R0(M) > 0 denotes the injectivity radius of the manifold M and Ir(t) = (t −
r/L, t+ r/L). In particular,

|f(z)|2 ≤ CrL
m+1

ˆ
B(z,r/L)×Ir

|h(w, s)|2dV (w)ds, (1.6)

where Ir = Ir(0).

Remark 1.1. The injectivity radius on M is defined as:

R0(M) = inf
ξ∈M

R0(ξ),

where

R0(ξ) = sup
{
r > 0 : expξ is defined on B(0, r) ⊂ TξM and is injective

}
.

By the compactness of M , R0(M) > 0 and the coordinate map expξ maps B(0, r) to
B(ξ, r) diffeomorphically for all r ≤ R0(M). Thus,

vol(B(ξ, r)) =

ˆ
B(0,r)

√
|g|(expξ(w))dm(w) ' |B(0, r)| ' rm,

where | · | denotes the euclidean volume and the constants are uniform in ξ and r. Hence,
if r ≤ R0(M), then

C1r
m ≤ vol(B(ξ, r)) ≤ C2r

m,

with constants depending only on the manifold. This last estimate is enough for the major
part of this work. But, much more is known. For instance, in [Blü90, Lemma 2], it is
proved that for all ξ ∈M , ∣∣∣∣∣

vol(B(ξ,r))
vol(M)

|B(0, cr)| − 1

∣∣∣∣∣ ≤ Cr2,

with c and C independent of ξ and r. This estimate will be used in the last part of this
work.

The following result relates the L2-norm of f and h.

Proposition 1.6. Let r > 0 be fixed. If f ∈ EL, then

2re−2r ‖f‖2
2 ≤ L ‖h‖2

L2(M×Ir) ≤ 2re2r ‖f‖2
2 . (1.7)

Therefore, for r < R0(M),
L

2r
‖h‖2

L2(M×Ir) ' ‖f‖
2
2 ,

with constants depending only on the manifold M .
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Proof. Using the orthogonality of {φi}i we have

‖h‖2
L2(M×Ir) =

ˆ
Ir

ˆ
M

∣∣∣∣∣
kL∑
i=1

βiφi(z)eλit

∣∣∣∣∣
2

dV (z)dt

=

ˆ
Ir

kL∑
i=1

ˆ
M

|βi|2|φi(z)|2dV (z)e2λitdt ≤
ˆ
Ir

e2Ltdt ‖f‖2
2 .

Similarly, one can prove the left hand side inequality of (1.7).

We have a relation between the L2-norm and L∞-norm for functions of our spaces. It is
clear that ‖f‖2 . ‖f‖∞, for all f ∈ EL. The reverse inequality is true with a dependance
on L. More precisely,

Proposition 1.7. Given f ∈ EL,

k−1
L ‖f‖2

∞ . ‖f‖2
2 .

Proof. By the submean-value inequality for |h|2, we know that for 0 < r < R0(M),

|f(z)|2 .
 
B(z,r/L)×Ir

|h(w, s)|2dV (w)ds . e2r ‖f‖2
2

Lm

rm

' e2r

rm
kL ‖f‖2

2 = CrkL ‖f‖2
2 ,

where we have used Remark 1.1.
Taking r = R0(M)/2 we get ‖f‖2

∞ ≤ CkL ‖f‖2
2 with C a constant depending only on M .

Alternatively, we can prove this estimate using the reproducing property. Indeed, for
any z ∈M ,

f(z) =

ˆ
M

f(w)KL(z, w)dV (w).

Thus, using Hölder inequality,

|f(z)|2 ≤ ‖f‖2
2

ˆ
M

|KL(z, w)|2dV (w) = ‖f‖2
2KL(z, z) ' ‖f‖2kL, ∀z ∈M.

We recall now a result proved by Schoen and Yau that estimates the gradient of harmonic
functions.

Theorem (Schoen-Yau). Let N be a complete Riemannian manifold with Ricci curvature
bounded below by -(n-1)K (n is the dimension of N and K a positive constant). Suppose
Ba is a geodesic ball in N with radius a and h is an harmonic function on Ba. Then

sup
Ba/2

|∇h| ≤ Cn

(
1 + a

√
K

a

)
sup
Ba

|h|, (1.8)

where Cn is a constant depending only on the dimension of N .
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For a proof see [SY94, Corollary 3.2., page 21].

Remark 1.2. We will use Schoen and Yau’s estimate in the following context. Take
N = M ×R. Observe that Ricc(N) = Ricc(M) which is bounded from below because M
is compact. Note that N is complete because it is a product of two complete manifolds.
We put a = r/L (r < R0(M)) and Ba = B(z, r/L) × Ir (this is not the ball of center
(z, 0) ∈ N and radius r/L, but it contains and it is contained in such ball of comparable
radius).

Using Schoen and Yau’s theorem, we deduce the global Bernstein inequality for a single
eigenfunction.

Corollary 1.8 (Bernstein inequality). If u is an eigenfunction of eigenvalue λ2, then

‖∇u‖∞ . λ ‖u‖∞ . (1.9)

Proof. The harmonic extension of u is h(z, t) = u(z)eλt. Applying inequality (1.8) to h
(taking a = R0(M)/(2λ)),

|∇u(z)| . λ ‖h‖L∞(M×IR0/2
) ' λ ‖u‖∞ .

We conjectured that in inequality (1.9), one can replace u by any function f ∈ EL, i.e.

‖∇f‖∞ . L ‖f‖∞ . (1.10)

This estimate has been proved recently in a work of F. Filbir and H.N. Mhaskar (see
[FM10b, Theorem 2.2] for more details). The proof is rather delicate and it requires an
estimate like (1.5) of the gradient of the kernels Bε

L(z, w).
For instance, as a direct consequence of Green’s formula, we have the L2-Bernstein inequa-
lity for the space EL:

‖∇f‖2 . L ‖f‖2 ∀f ∈ EL.
For our purpose, it is sufficient to have a weaker Bernstein type inequality that compares
the L∞-norm of the gradient with the L2-norm of the function.

Proposition 1.9. Let f ∈ EL. Then there exists a universal constant C such that

‖∇f‖∞ ≤ C
√
kLL ‖f‖2 .

For the proof, we need the following lemma.

Lemma 1.10. For all f ∈ EL and 0 < r < R0(M)/2,

|∇f(z)|2 ≤ CrL
m+2+1

ˆ
B(z,r/L)×Ir

|h(w, s)|2dV (w)ds.
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Proof. Using inequality (1.8) and the submean-value inequality for |h|2, we have

|∇f(z)|2 ≤ |∇h(z, 0)|2 .
L2

r2
sup

B(z,r/L)×Ir
|h(w, t)|2

.
Lm+1+2

r̃m+2+1

ˆ
B(z,r̃/L)×Ir̃

|h(ξ, s)|2dV (ξ)ds,

where r̃ = 2r.

Proof of Proposition 1.9. By Lemma 1.10, given 0 < r < R0(M)/2, there exists a constant
Cr such that

|∇f(z)|2 ≤ CrkLL
2L

ˆ
M×Ir

|h(w, s)|2dV (w)ds ' CrkLL
2 ‖f‖2

2 ,

where we have used Proposition 1.6. Taking r = R0(M)/4, we get |∇f(z)|2 ≤ CkLL
2 ‖f‖2

2

for all z ∈M .

Alternatively, we can prove this result using the Bernstein inequality (1.10) for EL. In-
deed, given f ∈ EL we have:

‖∇f‖∞ . L‖f‖∞ . L
√
kL‖f‖2,

where we have used Proposition 1.7.
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Chapter 2

Carleson Measures and
Logvinenko-Sereda sets

In this chapter, we want to give a complete geometric characterization for the Carleson
measures on M . A straight forward application is the Plancherel-Pólya inequality that
says that a family is a finite union of uniformly separated families if and only if the nor-
malized reproducing kernels form a Bessel sequence. This will be used later on, to prove
that a M-Z family contains a separated family which is also M-Z.

We will focus our attention on the reverse Carleson’s inequalities that are also called
Logvinenko-Sereda (L-S) sets inequality when the measures are the characteristic func-
tion of a set with the usual Lebesgue measure. Thus, M-Z inequalities can be seen as
the “discrete” versions of the L-S sets. Moreover, one can obtain a sequence of L-S sets
starting by a M-Z family, just by taking unions of balls centered at the points of the
family of radius smaller than their separation. Consequently, these comparison results
seem easier than the M-Z inequality.

The outline of the chapter is the following. In the first section, we define the Carleson
measures and prove a geometric characterization of them. In the second section, we give
the precise definition of the L-S sets and prove their characterization. In this later case,
for an easy read, the proof is divided in two propositions: the necessity and the sufficiency.

2.1 Characterization of Carleson measures

Carleson measures are of its own interest. Let us recall a bit of history and the intrinsic
relation of the Carleson measures with the interpolating sequences. The theory of Carleson
measures and interpolating sequences has its roots in L. Carleson’s paper of 1958 (see
[Car58]). Carleson characterized completely the interpolating sequences Λ = {λn} for
the space of bounded analytic functions H∞(D). He showed that Λ is interpolating for
H∞(D) if and only if

19
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• A separation condition on the sequences of points holds:

β(λj, λk) ≥ c > 0, k 6= j,

where β is the hyperbolic distance.

• The measure
µ :=

∑
j

(1− |λj|2)δλj

is a Carleson measure.

In this context, we say that µ is a Carleson measure for Hp(D) if

ˆ
D
|f(z)|pdµ(z) . ‖f‖pHp(D), ∀f ∈ Hp(D).

There is a geometric characterization for the Carleson measures, sometimes easier to check
(for more details, see [Car62, Theorem 1]):

µ(S) ≤ Cl,

for all sets S of the form

S =
{
reiθ; r ≥ 1− l, θ0 ≤ θ ≤ θ0 + l

}
, l ≤ 1.

Now, the Hardy space H2(D) is a Hilbert space with reproducing kernel, i.e. for any z ∈ D,
there is a function kz ∈ H2(D), the reproducing kernel for z, which is characterized by
the fact that for any f ∈ H2(D), f(z) = 〈f, kz〉. A result of Shapiro and Shields yields
that interpolating sequences for H2(D) are characterized by the following two conditions:

• Λ is uniformly separated.

• The measure

µ :=
∑
j

1

‖kλj‖2
δλj

is a Carleson measure for H2(D).

Thus, the Carleson measures are strongly related with the interpolating sequences.

Motivated by this intrinsic relation, we study the Carleson measures on M . The pre-
cise definition is the following.

Definition 2.1. Let µ = {µL}L≥0 be a sequence of measures on M . We say that µ is
an L2-Carleson sequence for M if there exists a positive constant C such that for all
L ≥ 1 and fL ∈ EL, ˆ

M

|fL|2dµL ≤ C

ˆ
M

|fL|2dV.
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It is easy to check that if a triangular family of points Z is interpolating (see Definition
3.2 for a precise description), then the measures

µL =

mL∑
j=1

1

kL
δzLj

form a sequence of Carleson measures (this follows from the definition of an interpolating
family in terms of the reproducing kernel, see Remark 3.4). We want to give a geometric
characterization that should be easy to check. Our main result is:

Theorem 2.2. Let µ be a sequence of measures on M . Then, µ is L2-Carleson for M if
and only if there exists a C > 0 such that for all L ≥ 1,

sup
ξ∈M

µL(B(ξ, 1/L)) ≤ C

kL
' 1

Lm
. (2.1)

This characterization is known in the case of the M = Sm (a detailed discussion can
be found in [Mar07, Theorem 4.5]). To the best of our knowledge, for the general case,
Theorem 2.2 is new.

Remark 2.1. Condition (2.1) can be viewed as

sup
ξ∈M

µL(B(ξ, 1/L))

vol(B(ξ, 1/L))
. 1.

First, we prove a technical result that allows us to modify slightly the condition (2.1).

Lemma 2.3. Let µ be a sequence of measures on M . Then, the following conditions are
equivalent.

1. There exists a constant C = C(M) > 0 such that for each L ≥ 1,

sup
ξ∈M

µL(B(ξ, 1/L)) ≤ C

kL
.

2. There exist c = c(M) > 0 (c < 1 small) and C = C(M) > 0 such that for all L ≥ 1,

sup
ξ∈M

µL(B(ξ, c/L)) ≤ C

kL
.

Proof. Obviously, the first condition implies the second one since

B(ξ, c/L) ⊂ B(ξ, 1/L).

Let’s see the converse. The manifold M is covered by the union of balls of center ξ ∈ M
and radius c/L. Taking into account the 5-r covering lemma (see [Mat95, Chapter 2, page
23] for more details), we get a finite family of disjoint balls, denoted by Bi = B(ξi, c/L),
such that M is covered by the union of 5Bi. Let ξ ∈ M and consider B := B(ξ, 1/L).
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Denote by n the number of balls B̄i such that B̄ ∩ ¯5Bi 6= ∅. Since B̄ is compact, we have
a finite number of these balls so that

B̄ ⊂
n⋃
i=1

5Bi.

We claim that n is independent of L. In this case, we get

µL(B) ≤
n∑
i=1

µL(B(ξi, 5c/L)) .
n

kL

and thus our statement is proved. Indeed, using the triangle inequality, for all i = 1, . . . , n,

B(ξi, c/L) ⊂ B(ξ, 10/L).

Therefore,
n⋃
i=1

B(ξi, c/L) ⊂ B(ξ, 10/L),

where the union is a disjoint union of balls. Now,

10m

Lm
' vol(B(ξ, 10/L)) ≥

n∑
i=1

vol(Bi) ' n
cm

Lm
,

where we have used Remark 1.1.
Hence, n . (10/c)m and we can choose it independently of L.

Now we can prove the characterization of the Carleson measures.

Proof of Theorem 2.2. Assume condition (2.1) holds. We need to prove the existence of
a constant C > 0 (independent of L) such that for each f ∈ EL,

ˆ
M

|f |2dµL ≤ C

ˆ
M

|f |2dV.

Let f ∈ EL with L and r > 0 (small) fixed. Using (1.6) and Proposition 1.6, we have:

ˆ
M

|f(z)|2dµL ≤ CrL
m+1

ˆ
M

ˆ
B(z,r/L)×Ir

|h(w, s)|2dV (w)dsdµL(z)

= CrL
m+1

ˆ
M×Ir

|h(w, s)|2µL(B(w, r/L))dV (w)ds

≤ CrL
m+1 1

kL

ˆ
M×Ir

|h(w, s)|2dV (w)ds ' ‖f‖2
2

with constants independent of L. Therefore, µ = {µL}L is L2-Carleson for M .

For the converse, assume that µ is L2-Carleson for M . We have to show the existence of
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a constant C such that for all L ≥ 1 and ξ ∈ M , µL(B(ξ, c/L)) ≤ C/kL (for some small
constant c > 0). We will argue by contradiction, i.e. assume that for all n ∈ N there
exists Ln and a ball Bn of radius c/Ln such that µLn(Bn) > n/kLn ' n/Lmn (c will be
chosen later). Let bn be the center of the ball Bn. Define Fn(w) = KLn(bn, w). Note that

the function L
−m/2
n Fn ∈ ELn and ‖Fn‖2

2 = KLn(bn, bn) ' Lmn . Therefore,

C '
ˆ
M

|L−m/2n Fn|2dV &
ˆ
M

|L−m/2n Fn|2dµLn &
ˆ
Bn

|L−m/2n Fn|2dµLn

≥ inf
w∈Bn

|L−m/2n Fn(w)|2µLn(Bn) & inf
w∈Bn

|Fn(w)|2 n

L2m
n

.

Now we will study this infimum. Let w ∈ Bn = B(bn, c/Ln). Then, by Proposition 1.9,

||Fn(bn)| − |Fn(w)|| ≤ |Fn(bn)− Fn(w)| ≤ c

Ln
‖∇Fn‖∞

≤ c

Ln
C1

√
kLnLn ‖Fn‖2 ' cC1kLn .

We pick c small enough so that

inf
Bn
|Fn(w)|2 ≥ CL2m

n .

Finally, we have shown that C & n for all n ∈ N. This leads to a contradiction.

Using the characterization of the Carleson measures, we can prove a Plancherel-Pólya
type inequality for the spaces EL. We recall that in the context of the Paley-Wiener
spaces PW 2

(−π,π), the Plancherel-Pólya inequality bounds the discrete norm given by the

evaluation at the integers in terms of the L2-norm:

∞∑
j=−∞

|f(j)|2 ≤ C‖f‖2
2, ∀f ∈ PW 2

(−π,π).

Moreover, there exists a constant C such that∑
j

|f(zj)|2 ≤ C‖f‖2
2, ∀f ∈ PW 2

(−π,π),

if and only if the sequence {zj}j can be expressed as a finite union of separated sequences.
In our setting, a similar result can be proved. Before we give the precise statement, we
shall introduce the concept of a separated family of points.

Definition 2.4. Let Z = {zLj}j∈{1,...,mL},L≥1 ⊂M be a triangular family of points, where
mL →∞ as L→∞. We say that Z is uniformly separated if there exists ε > 0 such that

dM(zLj, zLk) ≥
ε

L
, ∀j 6= k, ∀L ≥ 1,

where ε is called the separation constant of Z.
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The following result is a Plancherel-Pólya type theorem but in the context of the Paley-
Wiener spaces EL. To the best of our knowledge, this result is new.

Theorem 2.5 (Plancherel-Pólya Theorem). Let Z be a triangular family of points in
M , i.e. Z = {zLj}j∈{1,...,mL},L≥1 ⊂ M . Then Z is a finite union of uniformly separated
families, if and only if there exists a constant C > 0 such that for all L ≥ 1 and fL ∈ EL,

1

kL

mL∑
j=1

|fL(zLj)|2 ≤ C

ˆ
M

|fL(ξ)|2dV (ξ). (2.2)

Remark 2.2. The above result is interesting because the inequality (2.2) means that the
sequence of normalized reproducing kernels is a Bessel sequence for EL, i.e.

mL∑
j=1

|〈f, K̃L(·, zLj)〉|2 . ‖f‖2
2 ∀f ∈ EL,

where
{
K̃L(·, zLj)

}
j

are the normalized reproducing kernels. Note that |K̃L(·, zLj)|2 '
|KL(·, zLj)|2k−1

L . That is the reason why the quantity kL appears in the inequality (2.2).

Proof. This is a consequence of Theorem 2.2 applied to the measures

µL =
1

kL

mL∑
j=1

δzLj , L ≥ 1.

2.2 Characterization of Logvinenko-Sereda Sets

Before we state the characterization, we would like to recall some history of these kind
of inequalities. The classical Logvinenko-Sereda (L-S) theorem describes some equiva-
lent norms for functions in the Paley-Wiener space PW p

Ω. The precise statement is the
following:

Theorem 2.6 (L-S). Let Ω be a bounded set and 1 ≤ p < +∞. A set E ⊂ Rd satisfiesˆ
Rd
|f(x)|pdx ≤ Cp

ˆ
E

|f(x)|pdx, ∀f ∈ PW p
Ω,

if and only if there is a cube K ⊂ Rd such that

inf
x∈Rd
|(K + x) ∩ E| > 0.

One can find the original proof in [LS74] and another proof can be found in [HJ94, p.
112-116].

Luecking studied in [Lue83] this notion for the Bergman spaces. Following his ideas,
in [MOC08], the following result has been proved.
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Theorem 2.7. Let 1 ≤ p < +∞, µ be a doubling measure and let A = {AL}L≥0 be a

sequence of sets in Sd. Then A is Lp(µ)-L-S if and only if A is µ-relatively dense.

For the precise definitions and notations see [MOC08]. Using the same ideas, we prove
the above theorem for the case of an arbitrary compact manifold M and the measure
given by the volume element (p = 2).

In what follows, A = {AL}L will be a sequence of sets in M .

Definition 2.8. We say that A is L-S if there exists a constant C > 0 such that for any
L ≥ 1 and fL ∈ EL, ˆ

M

|fL|2dV ≤ C

ˆ
AL

|fL|2dV.

Definition 2.9. The sequence of sets A ⊂M is relatively dense if there exists r > 0 and
ρ > 0 such that for all L ≥ 1,

inf
z∈M

vol(AL ∩B(z, r/L))

vol(B(z, r/L))
≥ ρ > 0.

Remark 2.3. It is equivalent to have this property for all L ≥ L0 for some L0 fixed.

A natural example of relatively dense sets is the following. Consider a separated fa-
mily in M , Z = {zLj}j=1,...,mL;L≥1 with separation constant s. Let us denote by AL =
M \ ∪mLj=1B(zLj,

s
10L

). It is easy to check that the family A = {AL}L is relatively dense.

Our main statement is the following:

Theorem 2.10. A is L-S if and only if A is relatively dense.

A straight forward consequence is the stated below uncertainty principle for functions
in L2(M) modelled after the uncertainty principle proved by Havin and Joricke in the
context of the Paley-Wiener spaces (see [HJ94]).

Corollary 2.11. The sequence of sets A is relatively dense if and only if there exists a
constant C > 0 such that for all f ∈ L2(M) and L ≥ 1,

ˆ
M

|f |2dV ≤ C

(ˆ
AL

|f |2 +
∑
λ>L

‖fλ‖2
2

)
, (2.3)

where fλ is the orthogonal projection of f into the eigenspace of eigenvalue λ2.

Proof. For any f ∈ L2(M), the decomposition f =
∑

λ fλ holds with fλ = 〈f, φλ〉φλ,
where ∆Mφλ = −λ2φλ. AssumeA is relatively dense. Then, using Theorem 2.10, estimate
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(2.3) is satisfied because

‖f‖2
2 =

∑
λ≤L

‖fλ‖2
2 +

∑
λ>L

‖fλ‖2
2 =

ˆ
M

|PEL(f)|2dV +
∑
λ>L

‖fλ‖2
2

≤ C

(ˆ
AL

|PEL(f)|2dV +

ˆ
AL

|P⊥EL(f)|2dV +
∑
λ>L

‖fλ‖2
2

)

= C

(ˆ
AL

|f |2dV +
∑
λ>L

‖fλ‖2
2

)
.

Conversely, if (2.3) holds then it is trivial that A is relatively dense. Indeed, for any
L ≥ 1 and fL ∈ EL, 〈fL, φλ〉 = 0 if λ > L. Thus, condition (2.3) applied to functions of
the space EL is reduced to the fact that A is a sequence of L-S sets. Hence, by Theorem
2.10 A is relatively dense.

We shall prove the two implications in the statement of Theorem 2.10 separately. First
we will show that this condition is necessary. Before proceeding, we construct functions
in EL with a desired decay of its L2-integral outside a ball.

Proposition 2.12. Given ξ ∈ M and ε > 0, there exist functions fL = fL,ξ ∈ EL and
R0 = R0(ε,M) > 0 such that

1. ‖fL‖2 = 1.

2. For all L ≥ 1, ˆ
M\B(ξ,R0/L)

|fL|2dV < ε.

3. For all L ≥ 1 and any subset A ⊂M ,

ˆ
A

|fL|2dV ≤ C1
vol(A ∩B(ξ, R0/L))

vol(B(ξ, R0/L))
+ ε,

where C1 is a constant independent of L, ξ and fL.

Remark. In the above Proposition, the R0 does not depend on the point ξ.

Proof. Given z, ξ ∈ M and L ≥ 1, let SNL (z, ξ) denote the Bochner-Riesz kernel of index
N ∈ N associated to the Laplacian, i.e

SNL (z, ξ) =

kL∑
i=1

(
1− λi

L

)N
φi(z)φi(ξ).

Note that S0
L(z, ξ) = KL(z, ξ). Recall that the Bochner-Riesz kernel satisfies the following

inequality.

|SNL (z, ξ)| ≤ CLm(1 + LdM(z, ξ))−N−1. (2.4)
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Also, on the diagonal, SNL (z, z) ' CNL
m and

∥∥SNL (·, ξ)
∥∥2

2
' CNL

m.

Given ξ ∈M , define for all L ≥ 1,

fL,ξ(z) := fL(z) =
SNL (z, ξ)

‖SNL (·, ξ)‖2

.

We will choose the order N later. Each fL belongs to the space EL and has unit L2-norm.
Let us verify the second property claimed in Proposition 2.12. Fix a radius R. Using the
estimate (2.4),

ˆ
M\B(ξ,R/L)

|fL|2dV ≤ CNL
m

ˆ
M\B(ξ,R/L)

dV

(LdM(z, ξ))2(N+1)
= (?)

For any t ≥ 0, consider the following set.

At :=

{
z ∈M : dM(z, ξ) ≥ R

L
, dM(z, ξ) <

t−1/(2(N+1))

L

}
.

Note that for t > R−2(N+1) we have At = ∅, and for t < R−2(N+1) we obtain At ⊂
B(ξ, t−1/(2(N+1))/L). Using the distribution function and Remark 1.1, we have:

(?) = CNL
m

ˆ R−2(N+1)

0

vol(At)dt ≤ CN
1

R2(N+1)−m ,

provided N + 1 > m/2. Thus if we pick R0 big enough we get

ˆ
M\B(ξ,R0/L)

|fL|2dV < ε. (2.5)

Now the third property claimed in Proposition 2.12 follows from (2.5). Indeed, given any
subset A in the manifold M ,

ˆ
A

|fL|2dV ≤
ˆ
A∩B(ξ,R0/L)

|fL|2dV + ε.

Observe that
ˆ
A∩B(ξ,R0/L)

|fL|2dV . CNL
m

ˆ
A∩B(ξ,R0/L)

dV (z)

(1 + LdM(z, ξ))2(N+1)

. CNR
m
0

vol(A ∩B(ξ, R0/L))

vol(B(ξ, R0/L))
.

Now we are ready to prove one of the implications in the characterization of the L-S sets.

Proposition 2.13. Assume A is L-S. Then A is relatively dense.
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Proof. Assume A is L-S, i.e.
ˆ
M

|fL|2dV ≤ C

ˆ
AL

|fL|2dV.

Let ξ ∈M be an arbitrary point. Fix ε > 0 and consider the R0 and the functions fL ∈ EL
given by Proposition 2.12. Using the third property of Proposition 2.12 for the sets AL,
we get for all L ≥ 1,

1 = ‖fL‖2
2 ≤ C

ˆ
AL

|fL|2 ≤ CC1
vol(AL ∩B(ξ, R0/L))

vol(B(ξ, R0/L))
+ Cε,

where C1 is a constant independent of L, ξ and fL. Therefore, we have proved that there
exist constants c1 and c2 such that

vol(AL ∩B(ξ, R0/L))

vol(B(ξ, R0/L))
≥ c1 − c2ε.

Hence, A is relatively dense provided ε > 0 is small enough.

Now, we shall prove the sufficient condition of the main result. Before we continue, we
will prove a fact concerning the uniform limit of harmonic functions with respect to some
metric.

Lemma 2.14. Let {Hn}n be a family of uniformly bounded real functions defined on the
ball B(0, ρ) ⊂ Rd for some ρ > 0. Let g be a non-singular C∞ metric such that g and
all its derivatives are uniformly bounded and gij(0) = δij. Define gn(z) = g(z/Ln) (the
rescaled metrics) where Ln is a sequence of values tending to ∞ as n increases. Assume
the family {Hn}n converges uniformly on compact subsets of B(0, ρ) to a limit function
H : B(0, ρ) → R and Hn is harmonic with respect to the metric gn (i.e. ∆gnHn = 0).
Then, the limit function H is harmonic in the Euclidean sense.

Proof. Let ϕ ∈ C∞c (B(0, ρ)). We have
ˆ

B(0,ρ)

∆gfϕdV =

ˆ
B(0,ρ)

f∆gϕdV.

Let ∆ be the Euclidean Laplacian. We claim that ∆gnϕ → ∆ϕ uniformly and ∆gnϕ is
uniformly bounded on B(0, ρ). Then

0 =

ˆ
B(0,ρ)

Hn∆gnϕdVgn →
ˆ

B(0,ρ)

H∆ϕdm(z) =

ˆ
B(0,ρ)

∆Hϕdm(z).

Therefore, the limit function H is harmonic in the weak sense. Applying Weyl’s lemma,
we conclude that H is harmonic in the Euclidean sense.
In order to finish the statement, we shall prove the claim. The uniform boundedness of
∆gnϕ is clear since gn is the rescaled metric of g that has derivatives uniformly bounded.
It only remains to check that ∆gnϕ tends to the Euclidean Laplacian of ϕ. Observe the
following facts.
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1. Since gn is the rescaled metric of g, we have gn,ij(z) = gij(z/Ln)→ gij(0) = δij (also
gijn (z)→ δij). Therefore, gn is converging (uniformly) to the Euclidean metric.

2. All the derivatives of gn,ij and gijn are going to 0 uniformly since∣∣∣∣ ∂∂xi gn,ij(z)

∣∣∣∣ =

∣∣∣∣∂gij∂xi
(z/Ln)

∣∣∣∣ 1

Ln
≤ C

1

Ln
→ 0, n→∞.

3. The determinant of the metric gn tends to 1 since |gn|(z) = |g|(z/Ln) and |g| is a
combination of gij(z/Ln)→ δij.

4. ∂xi |gn|(z)→ 0 (as the derivative of |gn|(z) is a combination of products of the form
(∂xign,jk)gn,lm which tends to 0). Therefore we have

1√
|gn|

∂

∂xi

√
|gn| =

1

2

1

|gn|
∂

∂xi
|gn| →

1

2
· 0 = 0.

Now using the above observations,

∆gnϕ =
∑
i,j

(
∂2ϕ

∂xi∂xj

)
gijn +

∑
i,j

(
1√
|gn|

gijn
∂

∂xi

√
|gn|
)
∂ϕ

∂xj
+
∑
i,j

∂gijn
∂xi

∂ϕ

∂xj
→ ∆ϕ,

that proves the claim.

Remark 2.4. The above argument also holds if we have a sequence of metrics gn converging
uniformly to g whose derivatives also converge uniformly to the derivatives of g. In this
case, the conclusion would be that the limit is harmonic with respect to the limit metric
g.

Now, we have all the tools to prove the sufficient condition of the main result.

Proposition 2.15. If A is relatively dense then it is L-S.

Proof. Fix ε > 0 and r > 0. Let D := Dε,r,fL be

D =
{
z ∈M : |fL(z)|2 = |hL(z, 0)|2 ≥ ε

 
B(z, r

L
)×Ir
|hL(ξ, t)|2dV (ξ)dt

}
,

where hL is the harmonic extension of fL defined as

hL(z, t) =

kL∑
i=1

βiφi(z)eλit, fL(z) =

kL∑
i=1

βiφi(z).

The norm of fL is almost concentrated on D becauseˆ
M\D
|fL(z)|2dV (z) .

. ε
1

l(Ir)

ˆ
M×Ir

|hL(ξ, t)|2L
m

rm

ˆ
(M\D)∩B(ξ,r/L)

dV (z)dV (ξ)dt

. ε
1

l(Ir)

ˆ
M×Ir

|hL(ξ, t)|2dV (ξ)dt . e2rε

ˆ
M

|fL|2dV,
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where we have used Proposition 1.6.
It is enough to prove ˆ

D

|fL|2dV .
ˆ
AL

|fL|2dV (2.6)

with constants independent of L and for this, it is sufficient to show that there exists a
constant C > 0 such that for all w ∈ D

|fL(w)|2 ≤ C

vol(B(w, r/L))

ˆ
AL∩B(w,r/L)

|fL(ξ)|2dV (ξ). (2.7)

Because then, (2.6) follows by integrating (2.7) over D. So we need to prove (2.7).

This is the outline of the proof: we assume that (2.7) is not true in order to construct
functions that satisfy the opposite inequality. Then we parametrize these functions and
prove that their limit is harmonic with unit norm and is zero in a subset of positive mea-
sure. This will lead to a contradiction. Now we proceed with the details.

Step 1. Parametrization and rescalement of the functions.

If (2.7) is not true, then for all n ∈ N there exists Ln, functions fn ∈ ELn and wn ∈
Dn = Dε,r,fn such that

|fn(wn)|2 > n

vol(B(wn, r/Ln))

ˆ
ALn∩B(wn,r/Ln)

|fn|2dV.

By the compactness of the manifold M , there exists ρ0 = ρ0(M) > 0 such that for
all w ∈ M , the exponential map, expw : B(0, ρ0) → B(w, ρ0), is a diffeomorphism and
(B(w, ρ0), exp−1

w ) is a normal coordinate chart, where w is mapped to 0 and the metric g
verifies gij(0) = δij.
For all n ∈ N, take expn(z) := expwn(rz/Ln) which is defined in B(0, 1) and act as follows:

expn : B(0, 1) −→ B(0, r/Ln) −→ B(wn, r/Ln)

z 7−→ rz
Ln

7−→ expwn

(
rz
Ln

)
=: w

Consider Fn(z) := cnfn(expn(z)) : B(0, 1) → B(wn, r/Ln)
cnfn→ R and the corresponding

harmonic extension hn of fn. Set

Hn(z, t) := cnhn(expn(z), rt/Ln),

defined on B(0, 1) × J1 (where J1 = (−1, 1)), where cn is a normalization constant such
that ˆ

B(0,1)×J1

|Hn(z, s)|2dµn(z)ds = 1

and µn is the measure such that

dµn(z) =
√
|g|(expwn(rz/Ln))dm(z).
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Step 2. The functions Hn are uniformly bounded.

Note that ˆ
B(wn,

r
Ln

)

|fn|2dV =
rm

Lmn

1

|cn|2
ˆ

B(0,1)

|Fn(z)|2dµn(z).

Therefore, we have
 
B(wn,r/Ln)

|fn|2dV '
1

|cn|2
ˆ

B(0,1)

|Fn|2dµn.

As wn ∈ Dn, we obtain

|Fn(0)|2 = |cn|2|fn(wn)|2 ≥ |cn|2ε
 
B(wn,r/Ln)×Ir

|hn(w, t)|2dV dt

' ε

ˆ
B(0,1)×J1

|Hn(w, s)|2dµn(w)ds = ε.

Since |hn|2 is subharmonic,

|Fn(0)|2 = |cn|2|hn(wn, 0)|2 .
ˆ

B(0,1)×J1

|Hn(w, s)|2dµn(w)ds = 1.

Hence, we have 0 < ε . |Fn(0)|2 . 1 for all n ∈ N.

Using the assumption,

1

n
&

|cn|2
vol(B(wn, r/Ln))

ˆ
ALn∩B(wn,

r
Ln

)

|fn|2dV '
ˆ
Bn∩B(0,1)

|Fn|2dµn,

where Bn is such that expn(Bn ∩ B(0, 1)) = ALn ∩B(wn, r/Ln). So we have that{
∀n 0 < ε . |Fn(0)|2 . 1

∀n
´

B(0,1)∩Bn |Fn|
2dµn . 1

n

.

In fact, 0 < ε . |Hn(0, 0)|2 . 1 (by definition) and one can prove that |Hn|2 . 1. Indeed,
if (z, s) ∈ B(0, 1/2)× J1/2, let w = expn(z) ∈ B(wn, r/(2Ln)) and t = rs/Ln ∈ Ir/2. Then

|Hn(z, s)|2 = |cn|2|hn(w, t)|2 . |cn|2
 
B(w,r/(2Ln))×Ir/2(t)

|hn|2

. |cn|2
 
B(wn,r/Ln)×Ir

|hn|2dV dt ' 1.

Therefore, working with 1/2 instead of 1 we have |Hn|2 . 1 for all n.

Step 3. The family {Hn}n is equicontinuous in B(0, 1)× J1.
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Consider (w, t) ∈ B(wn, r/(4Ln)) × Ir/4 and (w̃, t̃) ∈ B(w, r̃r/Ln) × Ir̃r(t), then there
exists some small δ > 0 such that

|cn||hn(w, t)− hn(w̃, t̃)| ≤ |cn|
r̃

Ln
r sup
B(w,δ/Ln)×Iδ(t)

|∇hn| ≤ (?)

Taking r̃ small enough so that δ ≤ r/4 and using Schoen and Yau’s estimate (1.8), we
have

(?) ≤ |cn|
r̃r

Ln
sup

B(wn,r/(2Ln))×Ir/2
|∇hn| .

r̃r

Ln

1
r
Ln

sup
B(wn,r/Ln)×Ir

|cn||hn| . r̃.

So we have proved that |cn||hn(w, t)−hn(w̃, t̃)| ≤ Cr̃. Take r̃ small enough so that Cr̃ < ε.
Let (z, s) ∈ B(0, 1/4) × J1/4 and (z̃, s̃) ∈ B(z, r̃) × (s − r̃, s + r̃). Consider w = expn(z),
t = rs/Ln, w̃ = expn(z̃) and t̃ = rs̃/Ln. Then, we have proved that for all ε > 0 there
exists r̃ > 0 (small) such that for all (z, s) ∈ B(0, 1/4)× J1/4:

|Hn(z, s)−Hn(z̃, s̃)| < ε if |z − z̃| < r̃, |s− s̃| < r̃ ∀n ∈ N.

Change 1/4 to 1. So the sequence Hn is equicontinuous.

Step 4. There exists a limit function of Hn that is real analytic.

The family {Hn}n is equicontinuous and uniformly bounded on B(0, 1) × J1. Therefore,
by Ascoli-Arzela’s theorem there exists a partial sequence (denoted as the sequence itself)
such that Hn → H uniformly on compact subsets of B(0, 1)× J1. Since Fn(z) = Hn(z, 0),
we get a function F (z) := H(z, 0) : B(0, 1) → R which is the limit of Fn (uniformly on
compact subsets of B(0, 1)).

Now we will prove that H is real analytic. In fact, we will show that H is harmonic.
We have the following properties:

1. The family of measures dµn converges uniformly to the ordinary Euclidean measure
because gij(expwn(rz/Ln)) → gij(expw0

(0)) = δij, where w0 is the limit point of
some subsequence of wn (recall that we are taking normal coordinate charts).

2. If gn(z) := g(rz/Ln) (i.e. gn is the rescaled metric), then ∆(gn,Id)Hn(z, s) = 0 for all
(z, s) ∈ B(0, 1)× J1, by construction.

3. The functionsHn are uniformly bounded and converge uniformly on compact subsets
of B(0, 1)× J1.

We are in the hypothesis of Lemma 2.14 that guarantees the harmonicity of H in the
Euclidean sense.

Step 5. Using the hypothesis, we will construct a measure τ such that |F | = 0 τ -a.e. and
τ(B(a, s)) . sm for all B(a, s) ⊂ B(0, 1). These two properties and the real analyticity of
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F will lead to a contradiction.

By hypothesis, the sequence {AL}L is relatively dense. Taking into account that

vol(B(wn, r/Ln)) =
rm

Lmn
µn(B(0, 1)),

we get that
inf
n
µn(Bn) ≥ ρ > 0, (2.8)

where we have denoted Bn ∩ B(0, 1) by Bn.
Let τn be such that dτn = χBndµn. From a standard argument (τn are supported in
a ball), we know the existence of a weak-∗ limit of a subsequence of τn, denoted by τ .
This subsequence will be noted as the sequence itself. Using (2.8), we know that τ is not
identically 0. Now we have that ˆ

B(0,1)

|F |2dτ = 0.

Therefore, F = 0 τ -a.e. in B(0, 1). Now for all K ⊂ B(0, 1) compactˆ
K

|F |2dτ = 0,

therefore F = 0 in suppτ . Let B(a, s) ⊂ B(0, 1) satisfy B(a, s) ∩ suppτ 6= ∅. Then using
the fact Bn ⊂ B(0, 1), we obtain

τn(B(a, s)) ≤
ˆ

B(a,s)

dµn '
Lmn
rm

vol(B(expn(a), sr/Ln)) ' sm.

Therefore τn(B(a, s)) . sm for all n. Hence, in the limit case τ(B(a, s)) . sm. In short,

1. We have sets Bn ⊂ B(0, 1) such that

ρ ≤ µn(Bn) ≤ µn(B(0, 1)) ' 1.

2. We have measures τn weakly-∗ converging to τ (not identically 0).

3. τ(B(a, s)) . sm for all B(a, s) ⊂ B(0, 1).

4. |F | = 0 τ -a.e. in B(0, 1).

5. |F (0)| > 0 and |F | . 1.

We know that H is real analytic, then F (z) is real analytic. Federer ([Fed69, Theo-
rem 3.4.8]) proved that the (m − 1)-Hausdorff measure Hm−1(F−1(0)) < ∞. Hence
Hm−1(suppτ) ≤ Hm−1(F−1(0)) < ∞. As a consequence, we get an upper bound for
the Hausdorff dimension of suppτ : dimH(suppτ) ≤ m − 1. On the other hand, using
Frostman’s Lemma, since τ(B(a, s)) . sm and τ(suppτ) > 0, we have

0 < Hm(suppτ).

Thus, dimH(suppτ) ≥ m. So we reached to a contradiction and the proof is complete.
This concludes the proof of the proposition.
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The following remark shows us the interest for studying the relatively dense sets.

Remark 2.5. A natural question is if one can replace the condition of being L-S, i.e.
ˆ
M

|f |2dV ≤ C

ˆ
AL

|f |2dV, ∀f ∈ EL, (2.9)

by a weaker condition like
ˆ
M

|f |2dV ≤ C

ˆ
AL

|f |2dV, ∀f ∈ WL, (2.10)

and still obtains the fact that {AL}L are relatively dense, where WL is the eigenspace of
∆M with eigenvalue −L2 endowed with the L2-norm. If this was achieved, one could try
to use this fact together with the recent work of Colding-Minicozzi (see [CM11]) in order
to make some progress towards a proof of the lower bound in Yau’s conjecture on the size
of nodal sets. More precisely, the nodal set of an eigenfunction uL of eigenvalue −L2 is
its set of zeros. The conjecture of Yau claims that

Hm−1({uL = 0}) ≥ CL, ∆MuL = −L2uL.

The authors in [CM11] proved that

Hm−1({uL = 0}) ≥ CL
3−m

2 . (2.11)

We sketch the idea of their proof (see [CM11] for a detailed discussion). Let Bi be balls
of radius a/L so that M ⊂ ∪iBi, where a is a fixed constant given by [CM11, Lemma 1].
Given a constant d > 1, Bi is d-good if

ˆ
2Bi

|uL|2 ≤ 2d
ˆ
Bi

|uL|2.

Let Gd be the union of d-good balls:

Gd = Gd(L) := ∪{Bi; Bi is a d-good ball} .

In [CM11, Lemma 3] it is proved that most of the L2-norm of uL comes from the dM -good
balls, where dM is a large constant that depends only on M and not on L. Thus, if we could
replace the condition of being L-S by (2.10), we would obtain that {Gd(L)}L is a sequence
of relatively dense sets. Let N be the number of dM -good balls. By [CM11, Lemma 4],
N ≥ CL(m+1)/2. Now, the idea in proving (2.11) relies on the following estimate (check
[CM11] for a proof):

Hm−1({uL = 0}) ≥ CL1−mN. (2.12)

Thus, obtaining better estimates of N will improve the lower bound for the m−1 Hausdorff
measure of the nodal set of uL. Observe that the number of balls Bξ = B(ξ, R/L) (pairwise
disjoint) so that 5Bξ cover M is of order Lm/Rm. If GdM (L) is relatively dense, then at
least in each Bξ we have a dM -good ball. Therefore, N ≥ CLm with C depending on the
manifold. As a consequence, replacing this lower bound in (2.12), we would get a proof
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for Yau’s conjecture.
Unfortunately, a simple example shows that condition (2.9) cannot be replaced by (2.10).
Indeed, take M = S1. Thus, we are considering the space of polynomials of the form
pn(z) = azn + bzn. Note that |pn(z)| = |az2n + b| for all z ∈ S1. Now consider the sets

An =
{
z ∈ S1; Im(z) < 0

}
.

Trivially, ˆ
S1

|pn|dV ≤ 2

ˆ
An

|pn|dV ∀n ∈ N,

but the sets An are not relatively dense.
Of course an interesting question which is left open is a geometric/metric description of
the L-S sets for WL.
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Chapter 3

Interpolating and
Marcinkiewicz-Zygmund families.

In the previous chapter, we studied inequalities that represents a continuous sampling.
Now we pay attention to a more delicate question of a discrete sampling.

This chapter is devoted to prove the intuitive facts about the interpolating and M-Z
arrays in the Paley-Wiener spaces EL mentioned in the Introduction. We prove neces-
sary and sufficient conditions for interpolation and M-Z. These results do not provide
quantitative conditions. For this reason, in this chapter we focus our attention on the
Beurling-Landau densities and the conditions that measure the density of interpolating
and M-Z families. In the special case of the Sm (m ≥ 2), J. Marzo in [Mar07], found
necessary conditions in terms of the Beurling-Landau densities for M-Z and interpolating
families, adapting H.J. Landau’s approach developed for the Paley-Wiener case. His result
provides a critical density (the Nyquist rate) necessary for being a M-Z and interpola-
ting family. Following the ideas in [Mar07] and [Lan67a], we are able to find necessary
density conditions for interpolation and sampling in the general case of compact manifolds.

Outline of the chapter: in the first section, we state the main definitions of M-Z and
interpolating families. In the second section, we provide qualitative results about the in-
terpolating and M-Z arrays. The goal of the third section is to study the Beurling-Landau
densities and provide necessary conditions for families in order to be interpolating or M-Z.
In the last section, we discuss the main difference from the case of Sm (the reader may
want to skip, in a first lecture, the proof of the main result for a general compact manifold
and read this last section, where we explain the scheme used for M = Sm that works for
some compact manifolds).

3.1 Definitions and Notations

Given L ≥ 1 and mL ∈ N, we consider a triangular family of points in M , Z = {Z(L)}L,
denoted as

Z(L) = {zLj ∈M : 1 ≤ j ≤ mL} , L ≥ 1,

37
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and we assume that mL →∞ as L increases.

Recall that we say that a family Z is uniformly separated if there exists a positive ε
such that for all L ≥ 1,

dM(zLj, zLk) ≥
ε

L
, j 6= k,

and ε is called the separation constant of Z.

Remark 3.1. The natural separation is of order 1/L in view of Proposition 3.4 (see be-
low) that shows that a necessary condition for interpolation is that the family should be
uniformly separated with this order of separation. The key idea is Bernstein’s inequality:

‖∇fL‖∞ . L‖fL‖∞, ∀fL ∈ EL.

This estimate has been proved recently in [FM10b, Theorem 2.2]. Thus, on balls of radius
1/L, a bounded function of EL oscillates little.

Definition 3.1. Let Z = {Z(L)}L≥1 be a triangular family in M with mL ≥ kL for
all L ≥ 1. Then Z is a L2-Marcinkiewicz-Zygmund (M-Z) family, if there exists a
constant C > 0 such that for all L ≥ 1 and fL ∈ EL,

C−1

kL

mL∑
j=1

|fL(zLj)|2 ≤
ˆ
M

|fL|2dV ≤
C

kL

mL∑
j=1

|fL(zLj)|2.

Remark 3.2. The condition of being M-Z can be expressed in terms of the reproducing
kernel of EL: a family Z is M-Z if and only if the normalized reproducing kernels form a
frame with uniform bounds in L, i.e.

mL∑
j=1

|〈fL, K̃L(zLj, ·)〉|2 ' ‖fL‖2
2,

with constants independent of L, where K̃L(z, w) = KL(z,w)
‖KL(z,·)‖2 .

Definition 3.2. Let Z = {Z(L)}L≥1 be a triangular family in M with mL ≤ kL for all
L. Then Z is an L2-interpolating family if for all family of values c = {c(L)}L≥1,
c(L) = {cLj}1≤j≤mL such that

sup
L≥1

1

kL

mL∑
j=1

|cLj|2 <∞,

there exists a sequence of functions fL ∈ EL with

sup
L≥1
‖fL‖2 <∞

and fL(zLj) = cLj (1 ≤ j ≤ mL). That is, fL(Z(L)) = c(L) for all L ≥ 1.



3. INTERPOLATING AND M-Z FAMILIES 39

Remark 3.3. Equivalently, a family is interpolating if the normalized reproducing kernels
form a Riesz sequence, i.e.

1

kL

∑
j

|cLj|2 ' ‖
∑
j

cLjK̃L(zLj, ·)‖2
2,

with constants independent of L, whenever c = {cLj}j,L is a family satisfying

sup
L

1

kL

mL∑
j=1

|cLj|2 <∞.

Remark 3.4. The interpolating families are strongly related to the Carleson measures (see
Definition 2.1). If Z is interpolating then the measures

µL =
1

kL

mL∑
j=1

δzLj

are L2-Carleson measures.

Proof. Let G be the Grammian matrix associated to a family Z, i.e. G = (Gij)ij with

Gij =
〈KL(zLj, ·), KL(zLi, ·)〉
‖KL(zLj, ·)‖‖KL(zLi, ·)‖

.

A family Z is interpolating if the normalized reproducing kernels form a Riesz sequence.
This is equivalent to the fact that the Grammian associated to Z, G, is bounded above
and below. In particular, G is bounded above. This last property is equivalent to the fact
that µL are Carleson measures (see [AM02, Proposition 9.5] for a proof).

Alternatively, if a family Z is interpolating then it is uniformly separated (see Propo-
sition 3.4 below). Thus, µL are Carleson measures by the Plancherel-Pólya inequality
(Theorem 2.5).

Intuitively, a M-Z family should be dense in order to recover the L2-norm of functions of
the space EL and an interpolating family should be sparse.

3.2 Interpolating and M-Z families

In this section we present some qualitative results about the interpolating and M-Z fam-
ilies.
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3.2.1 Interpolating families

In this section, we consider the following Banach spaces.

• E := {EL}L endowed with the norm

‖f‖2
E := sup

L
‖fL‖2

2 .

•
`2
L :=

{
vL = {vLk}k=1,...,mL

; ‖vL‖2
`2L

:=
1

kL

mL∑
k=1

|vLk|2(<∞)

}
.

• A = {v = {vL}L ; vL ∈ `2
L, ‖v‖A <∞}, where

‖v‖2
A = sup

L
‖vL‖2

`2L
= sup

L

1

kL

mL∑
j=1

|vLj|2.

The result stated below shows that the interpolation can be done in a stable way.

Lemma 3.3. Let Z be a triangular family in M . Assume Z is interpolating. Then the
interpolation can be done by functions fL ∈ EL such that

‖fL‖2
2 ≤

C

kL

mL∑
j=1

|fL(zLj)|2,

where C is independent of L.

Proof. For all L ≥ 1, define the operator TL : `2
L → EL/IL as TL(vL) = [fL] such that

fL(zLj) = vLj, where

IL = [KL(zL1, ·), . . . , KL(zLmL , ·)]⊥.
Thus, [fL] = [gL] if fL(zLj) = gL(zLj). The operator TL is well defined because Z is an
interpolating sequence.
Let us consider the following Banach space.

D := {[f ] = ([fL])L, [fL] ∈ EL/IL} ,

endowed with supremum norm, i.e.

‖[f ]‖D = sup
L
‖[fL]‖EL/IL = sup

L
min
gL∈[fL]

‖gL‖2.

Now define the operator T : A → D as T (v) := (TL(vL))L = ([fL])L = [f ], where
[fL] = TL(vL), i.e fL(zLj) = vLj with minimal norm. T is well defined by the definition of
an interpolating sequence.
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We claim that T is bounded. Thus, the operators TL are bounded with uniform con-
stant in L. This means that there exists fL ∈ EL such that fL(zLj) = vLj and

‖fL‖2
2 .

1

kL

mL∑
j=1

|vLj|2,

i.e. fL is the solution of the interpolation problem with minimal norm and the proof is
finished. Now we proceed in order to prove the claim. We will use the Closed Graph’s
theorem to prove that T is bounded. Obviously T is a linear operator between two Banach
spaces. We claim that the graph of T is closed. Indeed, let vn = {vnL}L ⊂ A be such that

vn
‖·‖A−→ v = (vL)L ∈ A. Let [fn] = ([fnL ])L = (TL(vnL))L

‖·‖D−→ [f ] = ([fL])L ∈ D. We have
to prove that for all L ≥ 1, [fL] = TL(vL). Let L ≥ 1 be fixed. By hypothesis, we know
that ‖vn − v‖A → 0 as n→∞ and

0← ‖[fn]− [f ]‖D = sup
L

min
gnL∈[fnL ],gL∈[fL]

‖gnL − gL‖2 =: sup
L
‖hnL − hL‖2,

where hnL(zLj) = fnL(zLj) and hL(zLj) = fL(zLj). Using Proposition 1.7, we get

0 ≤ |hL(zLj)− vLj| ≤ |hL(zLj)− hnL(zLj)|+ |hnL(zLj)− vLj|
≤ ‖hL − hnL‖∞ + |vnLj − vLj|
≤ C

√
kL(‖hL − hnL‖2 + ‖vn − v‖A)→ 0, n→∞.

Hence, TL([vL]) = [hL] = [fL] for all L ≥ 1 and the graph of T is closed. Now the Closed
Graph’s theorem guarantees the boundedness of T .

Now, we provide a necessary condition for an interpolating family.

Proposition 3.4. Let Z be an L2-interpolating triangular family in M . Then Z is
uniformly separated.

Proof. Fix L0 ≥ 1 and 1 ≤ j0 ≤ mL0 . Using Lemma 3.3, there exist functions fL0 ∈
EL0 such that fL0(zL0j) = δjj0 and ‖fL0‖2

2 ≤ C/kL0 (C independent of L). Applying
Proposition 1.9, we get the following.

1 = |fL0(zL0j0)− fL0(zL0j)| ≤ ‖∇fL0‖∞ dM(zL0j0 , zL0j)

.
√
kL0L0 ‖fL0‖2 dM(zL0j0 , zL0j) . L0

√
kL0

1√
kL0

dM(zL0j0 , zL0j)

' L0dM(zL0j0 , zL0j).

Thus,

dM(zL0j0 , zL0j) &
1

L0

, ∀L0 ≥ 1, j 6= j0,

where the constant does not depend on L0 and j0.
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Theorem 3.5. Let Z and Z ′ be two triangular families in M . Assume that Z is an
L2-interpolating family. Then there exists δ0 > 0 such that for all 0 < δ ≤ δ0, Z ′ is also
L2-interpolating provided

dM(z′Lj, zLj) < δ/L, ∀j = 1, . . . ,mL;L ≥ 1.

Proof. Let v = {vL}L≥1, vL = {vLk}k=1,...,mL
be such that

sup
L≥1

1

kL

mL∑
k=1

|vLk|2 ≤ 1.

Define v0 = v and v0
L = vL. Since Z is interpolating, we know that there exists f0 ={

fL0
}
L
∈ E such that fL0 (Z(L)) = v0

L i.e. fL0 (zLj) = v0
Lj for all L ≥ 1 and j = 1, ...,mL.

We also know, by Lemma 3.3, that we can take fL0 such that∥∥fL0 ∥∥2

2
≤ C

∥∥v0
L

∥∥2

`2L
≤ C.

Now consider v1
L = v0

L − fL0 (Z ′(L)) = fL0 (Z(L)) − fL0 (Z ′(L)). We need to check that
{v1

L}L ∈ A. Observe that Z is uniformly separated in view of Proposition 3.4. The family
Z ′ is also uniformly separated because it is close to Z. Indeed,

ε

L
< dM(zLj, zLk) ≤ dM(zLj, z

′
Lj) + dM(z′Lj, z

′
Lk) + dM(z′Lk, zLk)

≤ 2δ

L
+ dM(z′Lj, z

′
Lk).

Hence, if δ is small enough,

dM(z′Lj, z
′
Lk) ≥

ε− 2δ

L
> 0.

Thus, the family Z ′ is uniformly separated. Applying the Plancherel-Pólya estimate
(Theorem 2.5) to Z ′, we get

1

kL

mL∑
j=1

|fL0 (z′Lj)|2 .
∥∥fL0 ∥∥2

2
≤ ‖f0‖2

E <∞,

with constants independent of L and f0. Using this fact, we get that v1 ∈ A. Indeed,

1

kL

mL∑
j=1

|v1
Lj|2 .

1

kL

mL∑
j=1

|v0
Lj|2 +

1

kL

mL∑
j=1

|fL0 (z′Lj)|2

≤ ‖v0‖2
A +

1

kL

mL∑
j=1

|fL0 (z′Lj)|2 . 1 + ‖f0‖2
E <∞.

Therefore, v1 ∈ A.
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We claim that ‖v1
L‖`2L ≤ γ ‖v0

L‖`2L , for some γ < 1 (γ independent of L). In such case,

consider fL1 ∈ EL such that fL1 (Z(L)) = v1
L and

∥∥fL1 ∥∥2
≤ C ‖v1

L‖`2L ≤ Cγ ‖v0
L‖`2L ≤ Cγ.

Now take {v2
L}L :=

{
v1
L − fL1 (Z ′(L))

}
L
∈ A. Then ‖v2

L‖`2L ≤ γ ‖v1
L‖`2L ≤ γ2 ‖v0

L‖`2L . Ite-

rating this process, we get for all j a function fLj ∈ EL such that fLj (Z(L)) = vjL =

vj−1
L − fLj−1(Z ′(L)),

∥∥fLj ∥∥2
≤ Cγj ‖v0

L‖`2L ≤ Cγj. Let fL =
∑

j f
L
j . This sum is well

defined (the series converges absolutely) and fL ∈ EL. Furthermore,

fL(Z ′(L)) =
∑
j

fLj (Z ′(L)) =
∑
j≥0

(vjL − vj+1
L )

= v0
L − v1

L + v1
L − v2

L + ... = v0
L.

This shows that Z ′ is interpolating. The only thing left is to check the claim: ‖v1
L‖`2L ≤

γ ‖v0
L‖`2L , for some γ < 1.

∥∥v1
L

∥∥2

`2L
=

1

kL

mL∑
k=1

|v1
Lk|2 =

1

kL

mL∑
k=1

|fL0 (zLk)− fL0 (z′Lk)|2

≤ 1

kL

mL∑
k=1

|∇fL0 (ξLk)|2dM(zLk, z
′
Lk)

2

≤ δ2

L2

1

kL

mL∑
k=1

|∇fL0 (ξLk)|2 ≤ (?)

Let hL0 be the harmonic extension of fL0 ∈ EL. Using Lemma 1.10 we know that

|∇fL0 (ξLk)|2 ≤ C
Lm+2

r(m+2)

L

r

ˆ
B(ξLk,r/L)×Ir

|hL0 |2.

Let r be small enough (independent of L) such that B(ξLk, r/L) are pairwise disjoint
(such r exists because {ξLk}L,k is uniformly separated since ξLk ∈ B(zLk, δ/L) and Z is
uniformly separated). Hence

mL∑
k=1

|∇fL0 (ξLk)|2 .
Lm+2

r(m+2)

L

r

ˆ
∪mLk=1B(ξLk,r/L)×Ir

|hL0 |2

≤ Lm+2

r(m+2)

L

r

ˆ
M×Ir

|hL0 |2 .
kLL

2

rm+2
e2r
∥∥fL0 ∥∥2

2
.

Using this last estimate, we get

(?) .
δ2e2r

rm+2

∥∥fL0 ∥∥2

2
.
δ2e2r

rm+2

∥∥v0
L

∥∥2

`2L
.

This shows that ∥∥v1
L

∥∥2

`2L
≤ C

δ2e2r

rm+2

∥∥v0
L

∥∥2

`2L
.

Let δ be small enough so that γ := δ
√
Cer

r(m+2)/2 < 1 (γ is independent of L).
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Proposition 3.6. Let Z = {Z(L)}L = {zLj}L≥1,j=1,...,mL
⊂ M be a triangular family of

points with mL ≤ kL. Assume Z is separated enough, i.e. there exists R > 0 (big enough)
such that

dM(zLj, zLk) ≥
R

L
, ∀j 6= k, ∀L.

Then Z is an interpolating family.

Proof. Let R : E → A be the evaluating operator, i.e. if v := R(f) for some f ∈ E,
then vLj = fL(zLj). This operator is linear and continuous by the Plancherel-Pólya type
inequality (Theorem 2.5). Now, consider the operator S : A → E defined as follows: if
v ∈ A, then S(v) =: f with

fL(z) :=

mL∑
j=1

vLj
SNL (zLj, z)

SNL (zLj, zLj)
,

where SNL (z, w) is the Bochner-Riesz Kernel of order N associated to the Laplacian (see
Chapter 1, Section 1.2 for the definition). The order N will be chosen later. Note that
the functions fL belong to EL and

fL(zLk) = vLk +
∑
j 6=k

vLj
SNL (zLj, zLk)

SNL (zLj, zLj)
.

The operator S is well defined. Indeed, let v ∈ A and f := S(v). We need to prove that
f ∈ E. Using Cauchy-Schwarz inequality, we obtain:

‖fL‖2 = sup
‖g‖2=1

|〈fL, g〉| = sup
‖g‖2=1

∣∣∣∣∣
mL∑
j=1

vLj
〈SNL (zLj, ·), g〉
SNL (zLj, zLj)

∣∣∣∣∣
. ‖v‖A sup

‖g‖2=1

‖SNL g‖2 ≤ ‖v‖A,

where we have applied Theorem 2.5 to SNL (g). Therefore, ‖f‖E . ‖v‖A <∞. This proves
that S is well defined and continuous. Obviously this operator is linear.

If ‖R ◦ S − Id‖ < 1, then R is invertible. Furthermore, R is exhaustive and as a conse-
quence the family Z is interpolating. We only need to check that ‖R ◦ S − Id‖ < 1. We
claim that ∑

j 6=k

∣∣∣∣SNL (zLj, zLk)

SNL (zLj, zLj)

∣∣∣∣ << 1, (3.1)

uniformly in L for R big enough, provided N + 1 > m. Thus,

‖R ◦ S − Id‖2 = sup
v∈A;‖v‖A=1

‖R(S(v))− v‖2
A = sup

v∈A;‖v‖A=1

‖w‖2
A,

where w = {wLk}k;L with

wLk =
∑
j 6=k

vLj
SNL (zLj, zLk)

SNL (zLj, zLj)
.
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Using the claim (3.1), we get a control of the L∞-norm of w:

sup
L
|wLk| ≤ sup

L

∑
j 6=k

∣∣∣∣SNL (zLj, zLk)

SNL (zLj, zLj)

∣∣∣∣ << 1,

for all v = {vLj}j;L such that supL |vLj| = 1. Moreover, using again (3.1), we have the

same control of the L1-norm of w:

sup
L

1

kL

mL∑
k=1

|wLk| . sup
L

1

kL

mL∑
j=1

|vLj|
∑
k 6=j

∣∣∣∣SNL (zLk, zLj)

SNL (zLk, zLk)

∣∣∣∣ << 1,

for all v = {vLj}j;L such that supL
1
kL

∑
j |vLj| = 1. Thus, interpolating between the

L1-norm and L∞-norm, we get the same result for the L2-norm of w and the proof is
complete. Now we will proceed in order to prove the claim (3.1). Let

gk(z) :=
1

(1 + LdM(z, zLk))N+1

and Bj := B(zLj, 1/L). It is easy to check that

inf
Bj
gk(z) ≥ 1

2N+1
gk(zLj).

Using the fact that Z is separated enough, we know that Bj are pairwise disjoint and
∪j 6=kBj ⊂M \B(zLk, (R− 1)/L). Therefore, applying (1.3),

∑
j 6=k

∣∣∣∣SNL (zLj, zLk)

SNL (zLj, zLj)

∣∣∣∣ ≤ CN
∑
j 6=k

gk(zLj) ≤ CNL
m
∑
j 6=k

ˆ
Bj

gk(z)dV (z)

≤ CNL
m

ˆ
M

1

(LdM(z, zLk))N+1
χM\B(zLk,(R−1)/L)(z)dV.

Consider for any t ≥ 0, the following set At.

At =

{
z ∈M : dM(z, zLk) ≥

R− 1

L
, dM(z, zLk) <

t−1/(N+1)

L

}
.

Using the distribution function, one can compute that

∑
j 6=k

∣∣∣∣SNL (zLj, zLk)

SNL (zLj, zLj)

∣∣∣∣ ≤ CNL
m

ˆ (R−1)−(N+1)

0

vol(At)dt

. CN
1

(R− 1)(N+1)−m ,

provided N + 1 > m. Taking R big enough we get the desired claim.
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3.2.2 Marcinkiewicz-Zygmund families

In what follows, we will present some qualitative results concerning the M-Z families. The
proof of these results follows from standard techniques and the ideas in [Mar07, Theorem
4.7], replacing the corresponding gradient estimates by the ones obtained in Chapter 1,
Section 1.3.

The following theorem allows us to assume, without loss of generality, that a M-Z family
is uniformly separated.

Theorem 3.7. Let Z ⊂M be an L2-M-Z family. Then there exists a uniformly separated
family Z̃ ⊂ Z which is also an L2-M-Z family.

Proof. By Theorem 2.5, we may assume that Z is a finite union ofN uniformly ε-separated
families, denoted by Z(j), j = 1, ..., N . Using a standard argument (see for example [Sei95,
Page 141]), we can construct for 0 < δ < ε/4 a uniformly separated family Z̃ ⊂ Z such
that for all L ≥ 1 and j = 1, ...,mL,

dM(zLj, Z̃(L)) <
δ

L
.

Let z̃ ∈ Z̃(L) be the closest point to z ∈ Z(L). For any fL ∈ EL we have that

|fL(z)− fL(z̃)| ≤ sup
B(z,r/L)

|∇fL(ξ)|dM(z, z̃) ≤ δ

L
sup

B(z,r/L)

|∇fL(ξ)|.

Using Lemma 1.10, we have

|fL(z)− fL(z̃)|2 ≤ δ2

L2
sup

B(z,r/L)

|∇fL(ξ)|2

.
δ2

L2
sup

B(z,r/L)

Lm+2+1

rm+2+1

ˆ
B(ξ,r/L)×Ir

|hL|2

.
δ2Lm

rm+2

L

2r

ˆ
B(z,2r/L)×I2r

|hL|2.

Using the fact that the family Z is L2-M-Z, we get

‖fL‖2
2 '

1

kL

∑
z∈Z(L)

|fL(z)|2

.
1

kL

N∑
j=1

∑
z∈Z(j)(L)

(|fL(z)− fL(z̃)|2 + |fL(z̃)|2)

≤ 1

kL

N∑
j=1

∑
z∈Z(j)(L)

δ2

rm+2+1
Lm+1

ˆ
B(z,r/L)×Ir

|hL|2

+
CN

kL

∑
z∈Z̃(L)

|fL(z)|2 = (?)
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Since Z(j) is ε-separated, we can take r < ε so that the balls B(z, r/L) for z ∈ Z(j)(L)
are pairwise disjoint. Hence

(?) =
δ2

rm+2

Lm

kL

L

r

N∑
j=1

ˆ
∪
z∈Z(j)(L)

B(z,r/L)×Ir
|hL|2 +

CN

kL

∑
z∈Z̃(L)

|fL(z)|2

.
Nδ2

rm+2

1

l(Ir)

ˆ
M×Ir

|hL|2 +
CN

kL

∑
z∈Z̃(L)

|fL(z)|2

' N

rm+2
δ2 ‖fL‖2

2 +
CN

kL

∑
z∈Z̃(L)

|fL(z)|2.

Thus,

‖fL‖2
2 ≤ Cε,r,M,Nδ

2 ‖fL‖2
2 +

CN

kL

∑
z∈Z̃(L)

|fL(z)|2, ∀δ > 0.

Letting δ → 0 in the last estimate, we get

‖fL‖2
2 .

1

kL

∑
z∈Z̃(L)

|fL(z)|2.

The reverse inequality is obvious using the fact that Z̃ is uniformly separated and Theorem
2.5.

The next result shows us that a small perturbation of a M-Z family is still a M-Z family.

Theorem 3.8. Let Z be a L2-M-Z family. There exists ε0 > 0 such that if Z ′ is a
uniformly separated family with

dM(zLj, z
′
Lj) <

ε

L
,

for some ε ≤ ε0, then the family of points Z ′ is L2-M-Z.

Proof. Recall that Z = {zLj}L≥1,j=1,...,mL
is L2-M-Z family if and only if for all L ≥ 1 and

for all fL ∈ EL, ˆ
M

|fL|2dV '
1

kL

mL∑
j=1

|fL(zLj)|2,

with constants independent of L and fL. We will prove that

1

kL

mL∑
j=1

|fL(z′Lj)|2 '
1

kL

mL∑
j=1

|fL(zLj)|2,

with constants not depending on L and fL. This shows that the family Z ′ is L2-M-Z.
Using the following inequality( n∑

j=1

a2
j

)1/2

−
(

n∑
j=1

b2
j

)1/2
2

≤
n∑
j=1

(aj − bj)2, 1

1This is equiv. to
∑
j ajbj ≤

√∑
j a2

j

∑
j b2
j (i.e. the Cauchy-Schwarz inequality)



48 3. INTERPOLATING AND M-Z FAMILIES

we get ∣∣∣∣∣∣
(

1

kL

mL∑
j=1

|fL(zLj)|2
)1/2

−
(

1

kL

mL∑
j=1

|fL(z′Lj)|2
)1/2

∣∣∣∣∣∣
≤
(

1

kL

mL∑
j=1

|fL(zLj)− fL(z′Lj)|2
)1/2

.

Now we are going to estimate the right hand side of the above inequality. We know that
there exists points z̃Lj in the segment joining zLj and z′Lj (therefore, dM(z̃Lj, zLj) ≤ 2ε/L)
such that

1

kL

mL∑
j=1

|fL(zLj)− fL(z′Lj)|2 ≤
1

kL

mL∑
j=1

|∇fL(z̃Lj)|2dM(zLj, z
′
Lj)

2

≤ ε2

L2

1

kL

mL∑
j=1

|∇fL(z̃Lj)|2 ≤ (?)

The separation of Z implies that

s

L
≤ dM(zLj, zLk) ≤ dM(zLj, z̃Lj) + dM(z̃Lj, z̃Lk) + dM(z̃Lk, zLk)

≤ 4ε

L
+ dM(z̃Lj, z̃Lk).

Hence we have that dM(z̃Lj, z̃Lk) ≥ (s− 4ε)/L (take ε < s/4). Therefore, the sequence of
points {z̃Lj} is uniformly separated. Using this fact and the gradient estimate (see Lemma
1.10) we have for r small enough (so that the balls B(z̃Lj, r/L) are pairwise disjoint)

(?) .
ε2

L2

1

kL

LmL2

rm+2

1

l(Ir)

ˆ
∪jB(z̃Lj ,r/L)×Ir

|hL|2 . ε2
ˆ
M

|fL|2,

where we have used Proposition 1.6. Therefore we have obtained that∣∣∣∣∣∣
(

1

kL

mL∑
j=1

|fL(zLj)|2
)1/2

−
(

1

kL

mL∑
j=1

|fL(z′Lj)|2
)1/2

∣∣∣∣∣∣ . ε

(ˆ
M

|fL|2
)1/2

Z is M-Z

. ε

(
1

kL

mL∑
j=1

|fL(zLj)|2
)1/2

≤ (?)

Taking ε small enough we get

(?) ≤ 1

4

(
1

kL

mL∑
j=1

|fL(zLj)|2
)1/2

.
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At this end, the desired result is clear:

1

kL

mL∑
j=1

|fL(z′Lj)|2 '
1

kL

mL∑
j=1

|fL(zLj)|2

with constants not depending on L and fL.

Now we will provide a sufficient condition for a family to be L2-M-Z. Intuitively, a family
should be dense in order to be M-Z.

Theorem 3.9. There exists ε0 > 0 such that if Z is an ε-dense family (not necessarily
uniformly separated), i.e. for all L ≥ 1

sup
ξ∈M

dM(ξ,Z(L)) <
ε

L
, (ε ≤ ε0),

then there exists a uniformly separated subfamily which is ε̃-dense and is an L2-M-Z family
provided that ε̃ ≤ ε0.

Proof. First, we will prove the result when the family Z is uniformly separated and then
we will generalize it for any family not necessarily separated.

Assume Z is uniformly separated. We want to prove that there exists a constant
C > 0 such that for any L ≥ 1 and fL ∈ EL we have

C−1

kL

mL∑
j=1

|fL(zLj)|2 ≤
ˆ
M

|fL|2dV ≤
C

kL

mL∑
|fL(zLj)|2.

The left hand side follows easily from the fact that the family of points is uniformly sepa-
rated and Theorem 2.5.

Thus, we just need to verify the right-hand side inequality, i.e.

ˆ
M

|fL|2 .
1

kL

mL∑
j=1

|fL(zLj)|2.

Observe that since the family Z is ε-dense we have that

M ⊂
mL⋃
j=1

B(zLj, ε/L).

Therefore,

ˆ
M

|fL|2 ≤
mL∑
j=1

ˆ
B(zLj ,ε/L)

|fL(w)|2dV (w)

.
mL∑
j=1

ˆ
B(zLj ,ε/L)

|fL(w)− fL(zLj)|2dV +
εm

kL

mL∑
j=1

|fL(zLj)|2.
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Using the gradient estimate for the harmonic extension of fL (see Lemma 1.10) we have

mL∑
j=1

ˆ
B(zLj ,ε/L)

|fL(w)− fL(zLj)|2dV (w)

≤ ε2

L2

mL∑
j=1

ˆ
B(zLj ,ε/L)

|∇fL(ξw,zLj)|2dV (w)

.
ε2

L2

mL∑
j=1

ˆ
B(zLj ,ε/L)

LmL2

rm+2

1

l(Ir)

ˆ
B(ξw,zLj ,r/L)×Ir

|hL|2 ≤ (?)

Note that B(ξw,zLj , r/L) ⊂ B(zLj, Cε/L) (for some C ≥ 1 independent of L). Hence,

(?) ≤ ε2
mL∑
j=1

ˆ
B(zLj ,ε/L)

Lm

rm+2

1

l(Ir)

ˆ
B(zLj ,Cε/L)×Ir

|hL|2

=
ε2Lm

rm+2

mL∑
j=1

vol(B(zLj, ε/L))
1

l(Ir)

ˆ
B(zLj ,Cε/L)×Ir

|hL|2

' εm+2

rm+2

mL∑
j=1

1

l(Ir)

ˆ
B(zLj ,Cε/L)×Ir

|hL|2

=
εm+2

rm+2

1

l(Ir)

ˆ
M×Ir

[
mL∑
j=1

χB(zLj ,Cε/L)(ξ)

]
|hL(ξ, t)|2dV (ξ)dt.

Observe that there exists a constant C1 > 0 (independent of L) such that for all ξ ∈ M
and L,

mL∑
j=1

χB(zLj ,Cε/L)(ξ) ≤ C1,

because the family of points Z is uniformly separated. Indeed, if ξ ∈ M then we know
that there exists j ∈ {1, ...,mL} such that ξ ∈ B(zLj, ε/L)(because these balls covers
M). Fix r > 0. Let n be the number of balls B(zLj, ε/L) for j = 1, ...,mL such that

B(ξ, r/L) ∩ B(zLj, Cε/L) is not empty. Since B(ξ, r/L) is compact we know that n is
finite. We claim that this n does not depend on L. Let us prove it. Observe that by the
triangle inequality we know that B(zLj, ε/L) ⊂ B(ξ, ((C + 1)ε+ r)/L) for all j = 1, ..., n.
Therefore we have

n⋃
j=1

B(zLj, ε/L) ⊂ B(ξ, ((C + 1)ε+ r)/L).

Let s be the the separation between the family Z. Note that the balls B(zLj, s/L) are
pairwise disjoint.
In the case when s ≥ ε, the balls B(zLj, ε/L) are also pairwise disjoint. Thus, in such
situation,

((C + 1)ε+ r)m

Lm
' vol

(
B

(
ξ,

(C + 1)ε+ r

L

))
≥ vol

(
n⋃
j=1

B(zLj, ε/L)

)
'n ε

m

Lm
.
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Therefore n ≤ C2(ε) ≤ C2 (taking a proper r). Now if s < ε then we have

((C + 1)ε+ r)m

Lm
' vol

(
B

(
ξ,

(C + 1)ε+ r

L

))
≥ vol

(
n⋃
j=1

B(zLj, ε/L)

)

≥ vol

(
n⋃
j=1

B(zLj, s/L)

)
'n s

m

Lm
.

Hence, in this case also n ≤ C2(ε). So we can take n independent of L. This implies that
each point of M can be at most in n balls B(zLj, Cε/L), so that

mL∑
j=1

χB(zLj ,Cε/L)(ξ) = n ≤ C1.

Using this last estimate we get

mL∑
j=1

ˆ
B(zLj ,ε/L)

|fL(w)− fL(zLj)|2dV (w)

. εm+2 1

l(Ir)

ˆ
M×Ir

|hL(ξ, t)|2dV (ξ)dt ' εm+2

ˆ
M

|fL|2dV.

Now
ˆ
M

|fL|2 ≤ C3ε
m+2

ˆ
M

|fL|2 + C4
εm

kL

mL∑
j=1

|fL(zLj)|2

= εm

(
C3ε

2

ˆ
M

|fL|2 + C4
1

kL

mL∑
j=1

|fL(zLj)|2
)

≤ C3ε
2

ˆ
M

|fL|2 + C4
1

kL

mL∑
j=1

|fL(zLj)|2.

Therefore we got

(1− ε2C3)

ˆ
M

|fL|2 .
1

kL

kL∑
j=1

|fL(zLj)|2.

Now for ε small enough (take for example ε < 1/(2
√
C3) we have

ˆ
M

|fL|2 .
1

kL

mL∑
j=1

|fL(zLj)|2.

General case of a family Z not necessarily separated. Let Bj := B(zLj, ε/L). Since
the family Z is ε-dense we know that

M ⊂
mL⋃
j=1

Bj.
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By the 5-r covering Lemma we know that there exists a subsequence {Bj}nLj=1 (nL ≤ mL)
pairwise disjoint such that

M ⊂
mL⋃
j=1

Bj ⊂
nL⋃
j=1

5Bj.

Take Z̃ =
{
Z̃(L)

}
L

to be the family Z̃(L) = {zLj}nLj=1. Clearly this is a subfamily of

Z and since Bj are pairwise disjoint for j = 1, ..., nL this family is uniformly separated.
Moreover, Z̃ is ε̃-dense because 5Bj for j = 1, ..., nL are covering M . Now applying the
case of a uniformly separated family, we get that this subfamily Z̃ is L2-M-Z if ε̃ is small
enough.

Remark 3.5. Theorem 3.9 has been also proved by F. Fibir and H.N. Mhaskar using other
techniques (see [FM10a, Theorem 5.1]).

3.3 Beurling-Landau density

In this section, we prove necessary conditions for a family to be interpolating or sampling
in terms of the following Beurling-Landau type densities.

Definition 3.10. Let Z be a triangular family of points in M . We define the upper and
lower Beurling-Landau density, respectively, as

D+(Z) = lim sup
R→∞

(
lim sup
L→∞

(
max
ξ∈M

(
1
kL

#(Z(L) ∩B(ξ, R/L))
vol(B(ξ,R/L))

vol(M)

)))
,

D−(Z) = lim inf
R→∞

(
lim inf
L→∞

(
min
ξ∈M

(
1
kL

#(Z(L) ∩B(ξ, R/L))
vol(B(ξ,R/L))

vol(M)

)))
.

Remark 3.6. Let µL be the normalized counting measure, i.e.

µL =
1

kL

mL∑
j=1

δzLj

and σ the normalized volume measure, i.e. dσ = dV/vol(M) . Then the densities defined
above can be viewed as the asymptotic behaviour of the quantity

µL(B(ξ, R/L))

σ(B(ξ, R/L))
.

Our main result is:

Theorem 3.11. Let M be an arbitrary smooth compact Riemannian manifold without
boundary of dimension m ≥ 2 and Z a triangular family in M . If Z is an L2-M-Z family
then there exists a uniformly separated L2-M-Z family Z̃ ⊂ Z such that

D−(Z̃) ≥ 1.
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If Z is an L2-interpolating family then it is uniformly separated and

D+(Z) ≤ 1.

This result was proved in the particular case when M = Sm in [Mar07]. Following the
ideas in [Mar07], we prove Theorem 3.11 in the general case of a manifold. In [Mar07],
the key idea to prove this result was the comparison of the trace of the concentration
operator and its square with an estimate of the eigenvalues of this operator. In general,
the main difference from the case of the Sphere is that we lack of an explicit expression of
the reproducing kernel. Thus, in the general setting, we need to work with a “modified”
concentration operator. In Section 3.4, we show that Theorem 3.11 can be proved, using
the same procedure as in [Mar07] with the classical concentration operator, for manifolds
that have a decay of its reproducing kernel off the diagonal. Before we proceed, we shall
introduce the concept of the classical and modified concentration operator.

3.3.1 Classical Concentration Operator

Definition 3.12. The classical concentration operator KLA, over a set A ⊂M , is defined
for fL ∈ EL as

KLAfL(z) =

ˆ
A

KL(z, ξ)fL(ξ)dV (ξ). (3.2)

This operator is the composition of the restriction operator to A with the orthogonal
projection of EL, i.e. KLA(fL) = PEL(χAfL) for all fL ∈ EL. The operator KLA is self-
adjoint. Indeed, if fL, gL ∈ EL then:

〈KLAfL, gL〉 = 〈PEL(χA · fL), gL〉 = 〈χA · fL, PEL(gL)〉 = 〈χA · fL, gL〉
= 〈fL, χA · gL〉 = 〈PELfL, χA · gL〉 = 〈fL,KLA(g)〉.

Alternatively, we can view the action of the concentration operator as a matrix acting on
a sequence β = {βi}i=1,...,kL

that are the Fourier coefficients of a function fL ∈ EL (with

respect to the orthonormal basis {φi}). If we denote by DL := (dij)
kL
i,j=1, where

dij =

ˆ
A

φiφj,

then KLA(fL) ≡ DL(β).
Using the spectral theorem, we know that the eigenvalues of KLA are all real and EL has
an orthonormal basis of eigenvectors of KLA. The trace of KLA is

tr(KLA) =

kL∑
i=1

dii =

ˆ
A

KL(z, z)dV (z).

Similarly, we can compute the trace of KLA ◦ KLA.

tr(KLA ◦ KLA)=

kL∑
i,j=1

dijdji =

ˆ
A×A
|KL(z, w)|2dV (w)dV (z).
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We will choose A as B(ξ, R/L) for some fixed point ξ ∈ M (note that all the constants
in the estimates will not depend on the fixed point ξ ∈M). Taking into account that

vol(B(ξ, R/L)) ' Rm

Lm

and using Hörmander’s estimates for the reproducing kernel and kL (see Chapter 1, Section
1.2), we get

tr(KLB(ξ,R/L)) = kL
vol(B(ξ, R/L))

vol(M)
+
o(Lm)

Lm
. (3.3)

3.3.2 Modified Concentration Operator

From now on, we fix an ε > 0 and consider the transform Bε
L defined in Chapter 1, Section

1.2 associated with the kernel

Bε
L(z, w) =

kL∑
i=1

βε

(
λi
L

)
φi(z)φi(w),

i.e. for all f ∈ L2(M),

Bε
L(f)(z) =

ˆ
M

Bε
L(z, w)f(w)dV (w) =

kL∑
i=1

βε

(
λi
L

)
〈f, φi〉φi(z).

Definition 3.13. The modified concentration operator T εL,A, over a set A ⊂M , is defined
for fL ∈ EL as:

T εL,AfL(z) = Bε
L(χA ·Bε

L(fL))(z) =

ˆ
M

Bε
L(z, w)χA(w)Bε

L(fL)(w)dV (w).

Observe that for ε = 0, the modified concentration operator is just the classical concen-
tration operator defined previously.

An advantage of T εL,A in contrast of KLA is that we have a nice estimate of its kernel:
using Lemma 1.5, we know that for any N > m, there exists a constant CN independent
of L such that

|Bε
L(z, w)| ≤ CNL

m 1

(1 + LdM(z, w))N
, ∀z, w ∈M.

It is easy to check (as was done in the case of KLA) that the operator T εL,A is self-adjoint
and by the spectral theorem its eigenvalues are all real and EL has an orthonormal basis
of eigenvectors of T εL,A. In fact, the main reason to do the first smooth projection in
T εL,A is to ensure the self-adjointness of the operator (but the calculations work even if we
consider only Bε

L(χA·)).
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As before, we can compute the trace of T εL,A and T εL,A ◦ T εL,A that will be used later
on.

tr(T εL,A) =

kL∑
i=1

β2
ε

(
λi
L

) ˆ
A

φ2
i (z)dV (z) =:

ˆ
A

B̃ε
L(z, z)dV (z),

where B̃ε
L(z, w) is a kernel defined as

B̃ε
L(z, w) =

kL∑
i=1

α

(
λi
L

)
φi(z)φi(w),

with α(x) := β2
ε (x). Note that the function α has the same properties as βε and therefore

we know that B̃ε
L(z, w) has the estimate (1.5).

Similarly we can compute the trace of T εL,A ◦ T εL,A.

tr(T εL,A ◦ T εL,A) =

ˆ
A×A
|B̃ε

L(z, w)|2dV (z)dV (w).

Since the modified concentration operator is a small perturbation of KLA, one can estimate
tr(T εL,A) in terms of tr(KLA). Indeed, using the definition of βε(x),

tr(KL(1−ε)
A ) ≤ tr(T εL,A) ≤ tr(KLA).

Applying this computation to A = AL := B(ξ, R/L) and using (3.3), we get the following.

tr(T εL,B(ξ,R/L))

kL
vol(B(ξ,R/L))

vol(M)

≥
kL(1−ε)

vol(B(ξ,R/L))
vol(M)

kL
vol(B(ξ,R/L))

vol(M)

+
o(Lm(1− ε)m)

Lm(1− ε)m
1

kL
vol(B(ξ,R/L))

vol(M)

.

Since vol(B(ξ, R/L)) ' Rm/Lm, the second term tends to 0 when L → ∞. Thus, using
the expression for kL (see Chapter 1, Section 1.2), we get:

lim inf
L→∞

tr(T εL,AL)

kL
vol(B(ξ,R/L))

vol(M)

≥ (1− ε)m, ∀ε > 0. (3.4)

The upper bound for this quantity is trivial since tr(T εL,AL) ≤ tr(KLAL) and has been
computed previously. Hence, using (3.3) we have

lim sup
L→∞

tr(T εL,AL)

kL
vol(B(ξ,R/L))

vol(M)

≤ 1. (3.5)

Similarly, if ρ > 0 is a fixed number, then

lim sup
L→∞

tr(T εL(1+ρ),AL
)

kL
vol(B(ξ,R/L))

vol(M)

≤ (1 + ρ)m. (3.6)
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3.3.3 Proof of the main result

In the spirit of the original work of Landau, the proof of Theorem 3.11 relies on a trace
estimate of T εL,A and two technical lemmas (Lemma 3.15 and 3.16 below) that estimate
the number of big eigenvalues of the modified concentration operator. First we state these
technical results and show the proof of the main result and in Sections 3.3.4 and 3.3.5 we
present a proof of them.

The following result is an estimate of the difference of the trace of T εL,AL and T εL,AL ◦T εL,AL .
It will show us, later on, that most of the eigenvalues are either close to 1 or to 0.

Proposition 3.14. Let AL = B(ξ, R/L). Then

lim sup
L→∞

(
tr(T εL,AL)− tr(T εL,AL ◦ T εL,AL)

)
≤ C1(1− (1− ε)m)Rm + C2R

m−1,

where C1 (independent of ε) and C2 are constants independent of R.
Similarly, if ρ > 0 then

lim sup
L→∞

(
tr(T εL(1+ρ),AL

)− tr(T εL(1+ρ),AL
◦ T εL(1+ρ),AL

)
)

≤ C1(1 + ρ)m(1− (1− ε)m)Rm + C2R
m−1,

where C1 (independent of ε and ρ) and C2 are constants independent of R.

Given L ≥ 1 and R > 0, let AL, A
+
L = A+

L(t) and A−L = A−L(t) be the balls centered at a
fixed point ξ ∈ M and radius R/L, (R + t)/L and (R − t)/L, respectively, where t is a
parameter such that s << t << R << L and s is the separation constant of the family
Z. The value of t will be chosen later on. We denote the eigenvalues of the modified
concentration operator T εL,AL as

1 > λL1 ≥ . . . ≥ λLkL > 0.

Lemma 3.15. Let Z be an s-uniformly separated L2-MZ family. Then there exist t0 =
t0(M, s) > 0 and a constant 0 < γ < 1 (independent of ε, R and L) such that for all
t ≥ t0,

λLNL+1 ≤ γ,

where
NL := NL(t) = #(Z(L) ∩ A+

L) = #(Z(L) ∩B(ξ, (R + t)/L)).

Remark 3.7. In the conditions of Lemma 3.15,

#
{
λLj > γ

}
≤ NL = #(Z(L) ∩ A+

L) ≤ #(Z(L) ∩ AL) +O(Rm−1), R→∞,

where the constant in O(Rm−1) does not depend on L.

Proof of Remark 3.7. The first inequality is trivial by Lemma 3.15 and the second in-
equality follows using the separation of the family Z. Moreover, NL . Rm/sm.
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Lemma 3.16. Let Z be an L2-interpolating family with separation constant s and ρ > 0.
Then there exist t1 = t1(M, s) > 0 and a constant 0 < δ < 1 independent of R and L such
that for all t ≥ t1,

λ
L(1+ρ)
nL−1 ≥ δ := Cβ2

ε

(
1

1 + ρ

)
,

where λ
L(1+ρ)
k are the eigenvalues associated to T εL(1+ρ),AL

, C is independent of ρ and ε
and

nL := nL(t) = #(Z(L) ∩ A−L) = #(Z(L) ∩B(ξ, (R− t)/L)).

Remark 3.8. In the conditions of Lemma 3.16 we have

#(Z(L) ∩ AL)−O(Rm−1) ≤ nL = #(Z(L) ∩ A−L) ≤ #
{
λ
L(1+ρ)
j ≥ δ

}
+ 1,

where the constant in O(Rm−1) does not depend on L.

Proof of Remark 3.8. The second inequality is trivial by Lemma 3.16 and the first in-
equality follows using the separation of Z.

In what follows, we pick the parameter t in the range max(t0, t1) ≤ t << R, where t0 and
t1 are the values given by Lemmas 3.15 and 3.16.

Now we have all the tools in order to prove the main result concerning the notion of
densities.

Proof of Theorem 3.11. Assume Z is an L2-M-Z family. Without loss of generality, we
may assume that Z is uniformly separated (see Theorem 3.7). Consider the following
measures:

dµL =

kL∑
j=1

δλLj .

Note that

tr(T εL,AL) =

ˆ 1

0

xdµL(x), tr(T εL,AL ◦ T εL,AL) =

ˆ 1

0

x2dµL(x).

Let γ be given by Lemma 3.15. We have

#
{
λLj > γ

}
=

ˆ 1

γ

dµL(x) ≥
ˆ 1

0

xdµL(x)− 1

1− γ

ˆ 1

0

x(1− x)dµL(x)

= tr(T εL,AL)− 1

1− γ (tr(T εL,AL)− tr(T εL,AL ◦ T εL,AL)),
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Using the remark following Lemma 3.15 and (3.4), we have

lim inf
L→∞

#(Z(L) ∩ AL) +O(Rm−1)

kL
vol(B(ξ,R/L))

vol(M)

≥ lim inf
L→∞

[
tr(T εL,AL)

kL
vol(B(ξ,R/L))

vol(M)

− 1

1− γ
tr(T εL,AL)− tr(T εL,AL ◦ T εL,AL)

kL
vol(B(ξ,R/L))

vol(M)

]

≥ (1− ε)m − 1

1− γ lim sup
L→∞

tr(T εL,AL)− tr(T εL,AL ◦ T εL,AL)

kL
vol(B(ξ,R/L))

vol(M)

Observe that

kL
vol(B(ξ, R/L))

vol(M)
' Rm. (3.7)

Applying (3.7) and Proposition 3.14, we have

lim inf
L→∞

#(Z(L) ∩ AL) +O(Rm−1)

kL
vol(B(ξ,R/L))

vol(M)

≥ (1− ε)m − C

1− γ
lim supL→∞(tr(T εL,AL)− tr(T εL,AL ◦ T εL,AL))

Rm

≥ (1− ε)m − C

1− γ (1− (1− ε)m)− 1

1− γ
O(Rm−1)

Rm
.

Taking inferior limits when R→∞ in the last estimate, we get that

D−(Z) ≥ (1− ε)m − C

1− γ (1− (1− ε)m) ∀ε > 0,

where C and γ are independent of ε. Therefore, letting ε→ 0 we get the claimed result:

D−(Z) ≥ 1.

Assume now that Z is an L2-interpolating family, in particular it is uniformly separated
by Proposition 3.4. Fix ρ > 0. Let δ > 0 be the value given by Lemma 3.16.

#
{
λ
L(1+ρ)
j ≥ δ

}
≤ −1

δ
tr(T εL(1+ρ),AL

◦ T εL(1+ρ),AL
) +

1 + δ

δ
tr(T εL(1+ρ),AL

)

= tr(T εL(1+ρ),AL
) +

1

δ
(tr(T εL(1+ρ),AL

)− tr(T εL(1+ρ),AL
◦ T εL(1+ρ),AL

)).

Using the remark following Lemma 3.16, (3.7), (3.6) and Proposition 3.14 we have

lim sup
L→∞

#(Z(L) ∩ AL)−O(Rm−1)

kL
vol(B(ξ,R/L))

vol(M)

≤ lim sup
L→∞

tr(T εL(1+ρ),AL
)

kL
vol(B(ξ,R/L))

vol(M)

+
1

δ
lim sup
L→∞

tr(T εL(1+ρ),AL
)− tr(T εL(1+ρ),AL

◦ T εL(1+ρ),AL
)

kL
vol(B(ξ,R/L))

vol(M)

+
C1

Rm

≤ (1 + ρ)m +
C(1 + ρ)m

δ
(1− (1− ε)m) +

1

δ

O(Rm−1)

Rm
+
C1

Rm
.
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Taking superior limits in R →∞ in the last estimate and using the expression for δ, we
get

D+(Z) ≤ (1 + ρ)m +
C(1 + ρ)m

β2
ε

(
1

1+ρ

) (1− (1− ε)m), ∀ε, ρ > 0,

where C is independent of ε > 0 and ρ. Thus, taking limits in ε→ 0 and then in ρ→ 0,
we get the claimed result:

D+(Z) ≤ 1.

3.3.4 Trace estimate

In this section, we will give a proof of Proposition 3.14. For this purpose, we need the
following computation.

Lemma 3.17. Let H : [0,∞) → [0, 1] be a C∞-function with compact support in [0, 1].
Let B(ξ, R/L) be a ball in M . Then

I :=

ˆ
B(ξ,R/L)

ˆ
M\B(ξ,R/L)

∣∣∣∣∣
kL∑
i=1

H(λi/L)φi(z)φi(w)

∣∣∣∣∣
2

dV (w)dV (z)

≤ CRm−1,

where C is independent of L and R.

Proof. The proof follows by using Lemma 1.5 and working in local coordinates. Indeed,
using Lemma 1.5, we have

I ≤ CL2m

ˆ
B(ξ,R/L)

ˆ
M\B(ξ,R/L)

dV (w)

(1 + Ld(z, w))2(m+1)
dV (z) = (?)

Let

rz = L

(
R

L
− d(z, ξ)

)
/2.

Then, B(z, rz/L) ⊂ B(ξ, R/L) and hence

(?) ≤ CL2m

ˆ
B(ξ,R/L)

ˆ
M\B(z,rz/L)

dV (w)

(1 + Ld(z, w))2(m+1)
dV (z).

We claim that

ˆ
M\B(z,r/L)

dV (w)

(1 + Ld(z, w))2(m+1)
≤ C

1

Lm(1 + r)m+2
. (3.8)
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Using this fact and coordinates in B(ξ, R/L), we get

I . Lm
ˆ

B(0,R/L)

1

(1 + rexpξ(w))m+2

√
|g|(expξ(w))dm(w)

. Lm
ˆ

B(0,R/L)

1

(1 + rexpξ(w))m+2
dm(w) . Lm

ˆ R/L

0

rm−1(2 +R− rL)−m−2dr

.
ˆ R

0

sm−1(2 +R− s)−m−2ds = C

ˆ 2+R

2

(2 +R− t)m−1t−m−2dt

≤ C(2 +R)m−1

ˆ 2+R

2

t−m−2 =
C

m+ 1
(2 +R)m−1

[
2−m−1 − (2 +R)−m−1

]
≤ C

2−m−1

m+ 1
(2 +R)m−1 ≤ CRm−1.

Now we just need to prove the claim (3.8). Let

f(w) = χM\B(z,r/L)(w)
1

(1 + Ld(z, w))2(m+1)
.

Then,
ˆ
M\B(z,r/L)

dV (w)

(1 + Ld(z, w))2(m+1)
=

ˆ
M

f(w)dV (w)

=

ˆ ∞
0

vol({w ∈M ; f(w) > t})dt =:

ˆ ∞
0

vol(At)dt.

Observe that

At =

{
w ∈M ; d(w, z) ≥ r

L
,

1

(1 + Ld(z, w))2(m+1)
> t

}
=

{
w ∈M ;

r

L
≤ d(w, z) <

t−1/(2(m+1)) − 1

L

}
.

Note that for t > (1+r)−2(m+1) (i.e. t−1/(2(m+1))−1 < r), At = ∅ and for t ≤ (1+r)−2(m+1),
At = B(z, (t−1/(2(m+1)) − 1)/L) \B(z, r/L). Thus,

vol(At) ≤ C
(t−1/(2(m+1)) − 1)m

Lm
, ∀t ≤ 1

(1 + r)2(m+1)
.

Therefore,

ˆ
M\B(z,r/L)

dV (w)

(1 + Ld(z, w))2(m+1)
≤ C

Lm

ˆ (1+r)−2(m+1)

0

(t−1/(2(m+1)) − 1)mdt

≤ C

Lm

ˆ (1+r)−2(m+1)

0

t−m/(2(m+1))dt =
C

Lm
1

(1 + r)m+2
.

This proves the claim and the desired result.
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Taking into account this last result, we can prove Proposition 3.14.

Proof of Proposition 3.14. Recall the definition of the kernels Bε
L(z, w) and B̃ε

L(z, w):

Bε
L(z, w) =

kL∑
i=1

βε

(
λi
L

)
φi(z)φi(w),

B̃ε
L(z, w) =

kL∑
i=1

α

(
λi
L

)
φi(z)φi(w) :=

kL∑
i=1

β2
ε

(
λi
L

)
φi(z)φi(w).

Let A = B(ξ, R/L). First, we will compute the trace of T εL,A ◦ T εL,A.

tr(T εL,A ◦ T εL,A) =

ˆ
A×A
|B̃ε

L(z, w)|2dV (w)dV (z)

=

ˆ
A

kL∑
i=1

α2

(
λi
L

)
φ2
i (z)dV (z)−

ˆ
A

ˆ
M\A
|B̃ε

L(z, w)|2dV (w)dV (z).

Thus, we have

tr(T εL,A)− tr(T εL,A ◦ T εL,A) =

ˆ
A

kL∑
i=1

[
α

(
λi
L

)
− α2

(
λi
L

)]
φ2
i (z)dV (z)

+

ˆ
A

ˆ
M\A
|B̃ε

L(z, w)|2dV (w)dV (z) =: I1 + I2.

By Lemma 3.17, I2 = O(Rm−1) with constants independent of L (the constant may
depend on ε). Now we need to estimate I1. Note that α(x) ≡ 1 for 0 ≤ 0 ≤ 1− ε. Hence,

I1 =

ˆ
A

∑
λi∈(L(1−ε),L]

[
α

(
λi
L

)
− α2

(
λi
L

)]
φ2
i (z)dV (z)

≤
ˆ
A

∑
λi∈(L(1−ε),L]

φ2
i (z)dV (z) =

ˆ
A

(KL(z, z)−KL(1−ε)(z, z))dV (z).

Using the expression of the reproducing kernel (see Chapter 1, Section 1.2), we obtain:

KL(z, z)−KL(1−ε)(z, z) = cmL
m(1− (1− ε)m) +O(Lm−1)(1− (1− ε)m−1).

Thus,

I1 ≤ cm(1− (1− ε)m)Lmvol(B(ξ, R/L)) +
o(Lm)

Lm
(1− (1− ε)m−1)

≤ C(1− (1− ε)m)Rm +
o(Lm)

Lm
(1− (1− ε)m−1),

where C is independent of L, R and ε. Therefore,

lim
L→∞

I1 ≤ C(1− (1− ε)m)Rm.

If ρ > 0 then a similar computation, working with L(1+ρ) instead of L, shows the second
claim of Proposition 3.14.
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3.3.5 Technical results

In this section, we present a proof of Lemma 3.15 and 3.16. First, we shall prove a
localization type property of the functions fL of the space EL.

Lemma 3.18. Let Z be a s-separated family. Given fL ∈ EL and η > 0, there exists
t0 = t0(η) such that for all t ≥ t0,

1

kL

∑
zLj /∈A+

L (t)

|fL(zLj)|2 ≤ C1

ˆ
M\AL

|fL|2 + C2η

ˆ
AL

|fL|2,

where A+
L = A+

L(t) = B(ξ, (R + t)/L), C1 and C2 are constants depending only on the
manifold M and the separation constant s of Z.

Proof. Let fL ∈ EL. Consider the kernel

B2L(z, w) := B
1/2
2L (z, w),

where Bε
L(z, w) is defined in (1.4). Note that the transform B2L|EL is the identity trans-

form, by construction. Thus,

fL(z) = B2L(fL)(z) =

ˆ
M

B2L(z, w)fL(w)dV (w), ∀z ∈M. (3.9)

By Lemma 1.5, for any N > m, there exists a constant CN such that

|B2L(z, w)| ≤ CNL
m 1

(1 + 2LdM(z, w))N
. (3.10)

We will choose N later on.

In order to prove the claimed result, we will show that

1. Given η > 0 there exists t0 = t0(η) such that for all t ≥ t0,

1

kL

∑
zLj /∈A+

L

|fL(zLj)| ≤ C1

ˆ
M\AL

|fL|+ C2η

ˆ
AL

|fL|, (3.11)

where Ci are uniform constants.

2. Given η > 0 there exists t0 = t0(η) such that for all t ≥ t0,

max
zLj /∈A+

L

|fL(zLj)| ≤ C1‖fL‖L∞(M\AL) + C2η‖fL‖L∞(AL), (3.12)

where Ci are uniform constants.
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Hence, by interpolating between the L1-norm and L∞-norm, we will have the claimed
result for the L2-norm. Let us prove first that this is true in the L∞-norm.

Observe that the set of points zLj /∈ A+
L is contained in M \B(ξ, (R + t)/L). Thus,

max
zLj /∈A+

L

|fL(zLj)| ≤ ‖fL‖L∞(M\B(ξ,(R+t)/L)) ≤ ‖fL‖L∞(M\B(ξ,R/L)).

Hence, (3.12) is trivially true.

Now we just need to prove (3.11). Let

0 ≤ hj(w) :=
1

(1 + 2LdM(zLj, w))N
≤ 1.

Using (3.9) and (3.10), we obtain:

1

kL

∑
zLj /∈A+

L

|fL(zLj)| ≤ CN

{ˆ
M\B(ξ,R/L)

+

ˆ
B(ξ,R/L)

}
|fL(w)|

∑
zLj /∈A+

L

hj(w)

=: I1 + I2.

Observe that for all w ∈M ,

hj(w) .
Lm

sm

ˆ
B(zLj ,s/L)

dV (z)

(1 + 2LdM(z, w))N
.

Note that B(zLj, s/L) are pairwise disjoint and for w ∈ B(ξ, R/L),⋃
zLj /∈A+

L

B
(
zLj,

s

L

)
⊂M \B

(
ξ,
R + t− s

L

)
⊂M \B

(
w,
t− s
L

)
,

Therefore, if w ∈ B(ξ, R/L),∑
zLj /∈A+

L

hj(w) .
Lm

sm

ˆ
M\B(w, t−sL )

dV (z)

(1 + 2LdM(z, w))N
.

CN
sm(t− s)N−m ≤ η

for all t ≥ t0(η,N), provided N > m. This implies that

I2 ≤ C2η

ˆ
B(ξ,R/L)

|fL|.

The only thing left is to bound the integral I1. Given w, let

#J := # {j : B(w, 2s/L) ∩B(zLj, s/L) 6= ∅} .
Then there exists a uniform constant C(s) (depending only on s) such that #J ≤ C(s).
Hence, ∑

zLj /∈A+
L

hj(w) =
∑

zLj /∈A
+
L

j∈J

hj(w) +
∑

zLj /∈A
+
L

j /∈J

hj(w) ≤ C(s) +
∑
j /∈J

hj(w).
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Note that for any w ∈M ,

∪j /∈JB(zLj, s/L) ⊂M \B(w, s/L).

Hence, ∑
j /∈J

hj(w) .
Lm

sm

ˆ
M\B(w,s/L)

dV (z)

(1 + 2LdM(z, w))N
. Cs,N ,

provided N > m. So we have that

I1 ≤ (C(s) + Cs,N)

ˆ
M\B(ξ,R/L)

|fL|dV

and the claim is proved.

Lemma 3.19. Let Z be a s-separated family. Given fL ∈ EL and η > 0, there exists
t1 = t1(η) such that for all t ≥ t1

1

kL

∑
zLj∈A−L (t)

|fL(zLj)|2 ≤ C1

ˆ
AL

|fL|2 + C2η

ˆ
M\AL

|fL|2,

where A−L = A−L(t) = B(ξ, (R − t)/L), C1 and C2 are constants depending only on the
manifold M and the separation constant s of Z.

The proof of this Lemma is similar to the one of Lemma 3.18.

Now we will prove Lemma 3.15.

Proof of Lemma 3.15. Given FL ∈ EL, assume that

FL(zLj) = 0, ∀zLj ∈ A+
L = B(ξ, (R + t)/L).

Then, using the fact that Z is L2-MZ and Lemma 3.18, we have

‖FL‖2
2 .

1

kL

mL∑
j=1

|FL(zLj)|2 =
1

kL

∑
zLj /∈A+

L

|FL(zLj)|2

≤ C1

ˆ
M\AL

|FL|2 + C2η

ˆ
AL

|FL|2 ≤ C1

ˆ
M\AL

|FL|2 + C2η‖FL‖2
2.

Picking η > 0 small enough (note that it is independent of ε, L and R), we get a t0(η)
given by Lemma 3.18 so that for all t ≥ t0,

‖FL‖2
2 ≤ C3

ˆ
M\AL

|FL|2dV, (3.13)

where FL ∈ EL is any function vanishing at the points zLj that are contained in A+
L .

Observe that C3 > 1.
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Now, we consider an orthonormal basis of eigenvectors GL
j corresponding to the eigen-

values λLj of the modified concentration operator. Let

fL(z) =

NL+1∑
j=1

cLj G
L
j ∈ EL.

Note that fL ∈ EL since NL ≤ CRm ≤ kL for L big enough, in view of the separation of
Z. Consider now FL := Bε

L(fL) ∈ EL. We will apply inequality (3.13) to FL. We pick cLj
such that FL(zLj) = 0 for all zLj ∈ A+

L . Observe that

NL+1∑
j=1

λLj |cLj |2 = 〈T εL,ALfL, fL〉 =

ˆ
AL

|Bε
LfL(w)|2dV (w).

Now, using inequality (3.13),

λLNL+1

NL+1∑
j=1

|cLj |2 ≤
NL+1∑
j=1

λLj |cLj |2 =

{ˆ
M

−
ˆ
M\AL

}
|Bε

LfL(z)|2dV

≤
(

1− 1

C3

)
‖Bε

L(fL)‖2
2 ≤

(
1− 1

C3

)
‖fL‖2

2 =

(
1− 1

C3

)NL+1∑
j=1

|cLj |2.

where the constant C3 comes from (3.13) (independent of ε, L and R). Hence,

λLNL+1 ≤ 1− 1

C3

=: γ < 1.

Now we are going to prove the technical lemma corresponding to the interpolating case.

Proof of Lemma 3.16. Let I =
{
j; zLj ∈ A−L

}
and ρ > 0 fixed.

Recall that, by Lemma 3.3, if Z is an interpolating sequence, then for each sequence
{cLj}Lj such that

sup
L

1

kL

mL∑
j=1

|cLj|2 <∞,

we can construct functions fL ∈ e(L) with supL ‖fL‖2 <∞ and fL(zLj) = cLj, where

e(L) :=

{
fL ∈ EL; ‖fL‖2

2 .
1

kL

mL∑
j=1

|fL(zLj)|2
}
.

In fact, these functions fL are the solution of the interpolation problem with minimal
norm.
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Since we have an interpolating family, we can construct for each zLj ∈ Z(L) a function
fj ∈ e(L) such that

fj(zLj′) = δjj′ .

Clearly these functions fj are linearly independent. Note that, since Bε
L(1+ρ)|EL is bijective,

for each j there exists a function hj ∈ EL such that

fj = Bε
L(1+ρ)hj.

Let
F := span

{
hj; zLj ∈ A−L

}
.

Note that F has dimension nL. Let fL ∈ F an arbitrary function and gL := Bε
L(1+ρ)fL.

Since fL ∈ F , we know that

fL =
∑
j∈I

cjhj.

Hence,

gL = Bε
L(1+ρ)fL =

∑
j∈I

cjB
ε
L(1+ρ)hj =

∑
j∈I

cjfj ∈ e(L),

where we have used that each fj ∈ e(L) and so this gL is the function of minimal norm
that solves the interpolation problem with data cjδjj′ . Therefore,

‖gL‖2
2 .

1

kL

mL∑
j=1

|gL(zLj)|2,

where the constant do not depend on ε and L.

Note that, by construction, fj vanishes in the points zLj′ with j 6= j′. Therefore, for
each j ∈ I fixed, we have that fj(zLk) = 0 for all k /∈ I. Thus,

gL(zLk) =
∑
j∈I

cjfj(zLk) = 0, ∀k /∈ I,

This shows that gL = 0 for zLk /∈ A−L . Hence, applying Lemma 3.19 to gL = Bε
L(1+ρ)fL,

we get

‖Bε
L(1+ρ)fL‖2

2 .
1

kL

mL∑
j=1

|gL(zLj)|2 =
1

kL

∑
j∈I

|gL(zLj)|2

≤ C1

ˆ
AL

|Bε
L(1+ρ)fL|2dV + C2η

ˆ
M\AL

|Bε
L(1+ρ)fL|2dV

≤ C1

ˆ
AL

|Bε
L(1+ρ)fL|2dV + C2η‖Bε

L(1+ρ)fL‖2
2.

Picking η small enough (note that it is independent of ρ, ε, L and R because all the
constants appearing in the above computation are independent of these parameters), we
get from Lemma 3.19 a value t1 = t1(η) such that for all t ≥ t1,

‖Bε
L(1+ρ)fL‖2

2 ≤ C1

ˆ
AL

|Bε
L(1+ρ)fL|2dV. (3.14)
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Thus, using this last estimate (3.14), we get the following.

β2
ε

(
1

1 + ρ

)
‖fL‖2

2 ≤
kL∑
i=1

β2
ε

(
λi

L(1 + ρ)

)
|〈fL, φi〉|2

=

kL(1+ρ)∑
i=1

β2
ε

(
λi

L(1 + ρ)

)
|〈fL, φi〉|2 = ‖Bε

L(1+ρ)fL‖2
2

≤ C1

ˆ
AL

|Bε
L(1+ρ)fL|2dV = C1〈T εL(1+ρ),AL

fL, fL〉.

We have proved that for all fL ∈ F ,

〈T εL(1+ρ),AL
fL, fL〉

〈fL, fL〉
≥ δ := Cβ2

ε

(
1

1 + ρ

)
, (3.15)

where C does not depend on L, ρ, ε and fL. Now, applying Weyl-Courant Lemma (see
[DS67, Part 2, p. 908]), we know

λ
L(1+ρ)
k−1 ≥ inf

g∈EL(1+ρ)∩E

〈T εL(1+ρ),AL
g, g〉

〈g, g〉
for each subspace E ⊂ EL(1+ρ) with dim(E) = k. Take E := F ⊂ EL ⊂ EL(1+ρ) defined
previously. Note that dim(E) =dim(F ) = nL and hence, using (3.15)

λ
L(1+ρ)
nL−1 ≥ inf

fL∈F

〈T εL(1+ρ),AL
fL, fL〉

〈fL, fL〉
≥ δ.

Note that 0 < δ = Cβ2
ε (1/(1 + ρ)) < 1.

3.4 Difference from the classical case

In the Paley-Wiener space PW 2
[−π,π] and M = Sm, the study of the classical concentration

operator KLA is enough. In the general case, we don’t have proper estimates of the repro-
ducing kernel. That is the reason of the replacement of KLA by a smooth version of it. We
can still prove Theorem 3.11 using the classical concentration operator in the special case
where the reproducing kernel has some L2-decay away from the diagonal (we call such
manifolds permissible, see Definition 3.20 below).

Definition 3.20. We say that a manifold M is permissible if its normalized reproducing
kernel, i.e.

PL(z, w) :=
KL(z, w)

Lm/2
(‖PL(z, ·)‖2 ' 1),

satisfies the following condition for some α ∈ (0, 1),

lim sup
L→∞

ˆ
M\B(z,r/L)

|PL(z, w)|2dV (w) .
1

(1 + r)α
,∀r ≥ 1, (3.16)

where the constant does not depend on r and z.
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We will provide some examples of permissible manifolds in the last part of this section.

Using the same notation as in Section 3.3.3, Proposition 3.14 is easier to prove when
M is permissible and can be stated as:

Proposition 3.21. Let M be a permissible manifold and AL = B(ξ, R/L). Then

lim sup
L→∞

(
tr(KLAL)− tr(KLAL ◦ KLAL)

)
= O(Rm−α),

where α is given as in (3.16). In particular,

lim inf
L→∞

(
tr(KLAL)− tr(KLAL ◦ KLAL)

)
= O(Rm−α),

Considering the eigenvalues associated to KLAL , Lemma 3.15 and 3.16 with the corres-
ponding remarks remain true (in fact, the proofs are more simple). Thus, the proof of
Theorem 3.11 follows using the same calculations as in Section 3.3.3. We sketch the proof
of Proposition 3.21 for completeness.

Proof of Proposition 3.21. Since M is permissible, we know that for some α ∈ (0, 1),
(3.16) holds. Let PL(z, w) be the normalized kernel for the space EL, i.e.

KL(z, w) = Lm/2PL(z, w), ‖PL(z, ·)‖2 ' 1.

Let us compute the trace of KLAL ◦ KLAL . Using the reproducing property, we have

tr(KLAL ◦ KLAL) =

ˆ
AL

ˆ
AL

|KL(z, w)|2dV (w)dV (z)

=

ˆ
AL

ˆ
M

|KL(z, w)|2dV (w)dV (z)

−
ˆ
AL

ˆ
M\AL

|KL(z, w)|2dV (w)dV (z)

= tr(KLAL)− Lm
ˆ
AL

ˆ
M\AL

|PL(z, w)|2dV (w)dV (z).

Since AL = B(ξ, R/L), we have

tr(KLAL)− tr(KLAL ◦ KLAL) = Lm
ˆ
B(ξ,R/L)

ˆ
M\B(ξ,R/L)

|PL(z, w)|2dV (w)dV (z).

Thus, we need to bound this last integral. Observe that if z ∈ B(ξ, R/L), then it is easy
to check that B(z, rz/L) ⊂ B(ξ, R/L), where

rz
L

=
1

2

(
R

L
− r
)
, r = d(z, ξ).
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Therefore,

Lm
ˆ
B(ξ,R/L)

ˆ
M\B(ξ,R/L)

|PL(z, w)|2dV (w)dV (z)

≤ Lm
ˆ
B(ξ,R/L)

ˆ
M\B(z,rz/L)

|PL(z, w)|2dV (w)dV (z)

= Lm
ˆ
B(ξ,R/L)

ˆ
M\B(z,rz/L),rz≥1

|PL(z, w)|2dV (w)dV (z)

+ Lm
ˆ
B(ξ,R/L)

ˆ
M\B(z,rz/L),rz<1

|PL(z, w)|2dV (w)dV (z)

=: I1 + I2.

We will deal first with the second integral. Note that

rz < 1 ⇐⇒ r >
R− 2

L
.

Hence,

I2 ≤ Lm
ˆ
B(ξ,R/L)

χ{d(z,ξ)>(R−2)/L}(z)

ˆ
M

|PL(z, w)|2dV (w)dV (z)

' Lm
ˆ
B(ξ,R/L)

χ{d(z,ξ)>(R−2)/L}(z)dV (z)

' Lm
ˆ R/L

(R−2)/L

rm−1dr = O(Rm−1).

Now, we turn our attention to the first integral. Note that

rz ≥ 1 ⇐⇒ r ≤ R− 2

L
.

Let

QL(z) =

ˆ
M\B(z,rz/L)

|PL(z, w)|2dV (w).

Using local coordinates in the ball B(ξ, R/L) we get

I1 = Lm
ˆ
B(ξ,R/L)

χ{d(z,ξ)≤(R−2)/L}(z)QL(z)dV (z)

. Lm
ˆ

Sm−1

g(θ)

ˆ (R−2)/L

0

rm−1QL(r, θ)drdθ

=

ˆ
Sm−1

g(θ)

ˆ R−2

0

sm−1QL(s/L, θ)dsdθ

=

ˆ
Sm−1

g(θ)

ˆ R−2

0

sm−1

(ˆ
M\B(z,R−s2L )

|PL(z, w)|2dV (w)

)
dsdθ.
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Using the Reverse Fatou Lemma and estimate (3.16) (note that (R − s)/2 ≥ 1 for all
s ∈ [0, R− 2]), we have

lim sup
L→∞

I1

≤
ˆ

Sm−1

g(θ)

ˆ R−2

0

sm−1

(
lim sup
L→∞

ˆ
M\B(z,R−s2L )

|PL(z, w)|2dV (w)

)
dsdθ

.
ˆ

Sm−1

g(θ)

ˆ R−2

0

sm−1 1

(1 + 1
2
(R− s))αdsdθ

'
ˆ R−2

0

sm−1(2 +R− s)−αds =

ˆ 2+R

4

(2 +R− r)m−1r−αdr

= O(Rm−α).

Since α ∈ (0, 1), we have that

lim sup
L→∞

(
tr(KLAL)− tr(KLAL ◦ KLAL)

)
. I1 + lim sup

L→∞
I2

= O(Rm−α) +O(Rm−1) = O(Rm−α).

3.4.1 Examples of permissible manifolds

h
In this subsection, we provide some examples of manifolds that are permissible. The
fundamental example is Sm that has been extensively studied in [Mar07]. For the sake of
completeness we will state the calculations that prove that Sm is permissible.

To proceed with the examples, we focus our attention on the compact two-point ho-
mogeneous manifolds (of dimension m ≥ 2) that coincides with the compact Riemannian
symmetric spaces of rank one (see for instance, [Hel62, IX.5] for definitions and basic
facts). These have been classified and fall into the following types.

1. The Sphere Sm, m ≥ 2.

2. The real projective spaces RPm, m ≥ 2.

3. The complex projective spaces CPm, m ≥ 1.

4. The quaternionic projective spaces HPm, m ≥ 2, where H is the quaternionic field.

5. The Cayley elliptic plane P16(Cayley). This space can be viewed as OP2, where O
is the octonionic field.

Later we will give the proper definitions of the projective spaces.
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The compact two-point homogeneous manifolds share many properties. For instance,
all geodesics on these manifolds are closed and have the same length ([Hel62, p. 356]).
The main reason to work with these manifolds is that one can compute explicitly the
reproducing kernel. Moreover, it comes out that the reproducing kernel depends only on
one variable: the geodesic distance. For a general compact manifold, one does not have
explicit formulas for the kernel and hence, the condition of permissibility cannot be easily
checked. Furthermore, in the compact two-point manifolds we have more advantages than
the general case. For instance, one can multiply two polynomials (eigenfunctions) in order
to obtain another polynomial. This fact gives us a tool to work with these manifolds as
was done in [Mar07] for the specific case of Sm.

The Spheres

On the m-dimensional sphere Sm (m ≥ 2), we know that the reproducing kernel has the
explicit form (for instance, see [Mar07, Page 565]):

KL(z, w) = Cm,LP
(α,β)
L (〈z, w〉),

where Cm,L � Lm/2, α = 1 +λ, β = λ, λ = (m− 2)/2 and P
(α,β)
n is the Jacobi polynomial

of order n and parameters α and β. So, the normalized kernel is just the Jacobi polyno-
mial. Now we proceed in order to prove that Sm is permissible.

Let B(ξ, R/L) be a ball in Sm (i.e. a spherical cup). Let φ be a rotation that maps
the north pole to ξ (we know that the jacobian of this change of variables is one and
〈ξ, φ(z)〉 = 〈φ−1(ξ), z〉 = 〈N, z〉, where N is the north pole). Therefore,

ˆ
Sm\B(ξ,R/L)

|P (1+λ,λ)
L (〈ξ, z〉)|2dV (z)

=

ˆ
φ−1(Sm\B(ξ,R/L))

|P (1+λ,λ)
L (〈ξ, φ(w)〉)|2|Jφ(w)|dV (w)

=

ˆ
Sm\B(N,R/L)

|P (1+λ,λ)
L (〈N, z〉)|2dV (z)

= vol(Sm)

ˆ π

R/L

|P (1+λ,λ)
L (cos(θ))|2 sinm−1(θ)dθ

'
ˆ π−R/L

R/L

|P (1+λ,λ)
L (cos(θ))|2 sinm−1(θ)dθ

+

ˆ π

π−R/L
|P (1+λ,λ)
L (cos(θ))|2 sinm−1(θ)dθ =: I1 + I2.

We always assume that R >> 1 and L >> R, so that R/L ' 0. We deal first with the
second integral. In what follows, the stated below relations will be used.

1. There exists ε > 0 such that for all π − ε ≤ θ ≤ π, sin θ ' (π − θ), and for all
0 ≤ θ < ε, cotan(θ) = cos θ/ sin θ ' (1− θ2/2)/θ ≤ 1/θ.
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2. For all c/L ≤ θ ≤ π − θ/L, sin θ ≥ c/L.

3. sin2(θ/2) = (1− cos θ)/2, cos2(θ/2) = (1 + cos θ)/2.

Using Szegö’s estimate (see [Sze39, p. 168]), we know that for −1 ≤ x ≤ 0,

|P (1+λ,λ)
n (x)| = O(nλ).

Hence,

I2 . L2λ

ˆ π

π−R/L
sinm−1 θdθ ' Lm−2

ˆ π

π−R/L
(π − θ)m−1dθ

= Lm−2

ˆ R/L

0

xm−1dx ' Rm

L2
→ 0, L→∞.

Now we turn our attention to the first integral. Szegö (see [Sze39, p. 198]) proved that
fixed c, for all c/n ≤ θ ≤ π − c/n, we have

P (1+λ,λ)
n (cos θ) =

k(θ)√
n

[
cos((n+ λ+ 1)θ + γ) +

O(1)

n sin θ

]
,

where γ = − (λ+ 3/2) π/2 and

k(θ) =
1√
π

(
sin

θ

2

)−λ−3/2(
cos

θ

2

)−λ−1/2

.

Therefore, applying this estimate to our case, we get for all θ ∈ [R/L, π −R/L],

|P (1+λ,λ)
L (cos θ)|2 sinm−1 θ ≤ k(θ)2

L

(
1 +

O(1)

L2 sin2 θ

)
sinm−1 θ

' 1

L

1

sin2(θ/2)

(
1 +

O(1)

L2 sin2 θ

)
.

Note that L2 sin2 θ ≥ R2 ≥ 1. Hence,

|P (1+λ,λ)
L (cos θ)|2 sinm−1 θ .

1

L

1

sin2(θ/2)
.

Thus,

I1 .
1

L

ˆ π−R/L

R/L

1

sin2(θ/2)
dθ. (3.17)

Computing this last integral, we get

I1 .
1

L

ˆ π−R/L

R/L

cosec2(θ/2)dθ =
2

L

ˆ π
2
− R

2L

R
2L

cosec2(x)dx

=
2

L
[−cotan(x)]

π
2
− R

2L
R
2L

=
2

L

[
cotan

R

2L
− cotan

(
π

2
− R

2L

)]
.

1

L

1
R
2L

' 1

R
.

1

1 +R
.
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Observe that for any α ∈ (0, 1), (1 +R)α ≤ (1 +R), thus

1

1 +R
≤ 1

(1 +R)α
.

Hence, we have that the normalized kernels satisfy

lim sup
L→∞

(ˆ
Sm\B(ξ,R/L)

|P (1+λ,λ)
L (〈ξ, z〉)|2dV (z)

)
.

1

1 +R
≤ 1

(1 +R)α
.

The Projective Spaces

We will follow the notations and some basic facts used in [Rag71, Section 4].
Let K be any one of the (skew) fields

O = {x = x0 + x1i1 + · · ·+ x7i7 : xi ∈ R} the octonions,

H = {x ∈ O : xl = 0 ∀l = 4, · · · , 7} the quaternions,

C = {x ∈ H : x2 = x3 = 0} the complex numbers,

R = {x ∈ C : x1 = x2 = x3 = 0} the reals.

Let d = dimR K. The projective space over K of dimension m over K is defined as a
quotient of the unit sphere in Km+1 with an equivalence relation, i.e.

KPm :=
{
x ∈ Km+1, |x| =

√
x̄x = 1

}
/ ∼,

where x ∼ y ⇐⇒ x = λy with λ ∈ K, |λ| = 1. Without loss of generality, we denote the
class of an element by the element itself. Note that the real dimension of KPm is dm and
16 for P16(Cayley) = OP2 (d = 8 and m = 2).
The projective space KPm can be naturally provided with a Riemannian metric ρ (see
[Rag71, Page 166]). We state some properties of ρ (for a proof see [Rag71, Lemma 4.1]).

Lemma 3.22 (Ragozin). Let x, y ∈ KPm. The following properties are satisfied.

1.
√

2ρ(x, y) = arccos(2|〈x, y〉|2 − 1).

2. max(ρ(x, y)) = π/
√

2.

Now we will present a result of D.L. Ragozin that shows how to compute integrals involving
the normalized Riemannian measure on KPm denoted by µ. For a proof see [Rag71, Proof
of Lemma 4.4]. If f is a radial function, i.e. f(y) = g(ρ(x, y)), then choosing polar
coordinates about x we have

ˆ
KPm

f(y)dµ(y) =

ˆ π/
√

2

0

g(r)A(r)dr, (3.18)

where A(r) is the “area” of the sphere (in KPm) about x and radius r. The expression of
A(r) is

A(r) = c′ sinmd−d(r/
√

2) sind−1(
√

2r),
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with c′ a constant depending on the volume of the unit ball in Rmd. For more details, see
[Rag71, Page 168], [AB77, Section 3] and [Hel65, Section 6]. In fact, the Laplace-Beltrami
operator on KPm of a radial function is the operator

1

A(r)

∂

∂r

(
A(r)

∂

∂r

)
,

that is also called as the radial part of ∆KPm (see [Hel65, Section 6] for further details).

In Chapter 4, Section 4.3, we prove that the space EL on KPm is identified with the
space of polynomials on KPm of degree at most L. Now we recall a result of D.L. Ragozin
that gives an explicit expression of the reproducing kernel for the space of real polynomi-
als on KPm of degree at most L. For a proof see [Rag72, Theorem 4’] (and [Mea82, Page
112]).

Theorem 3.23 (Ragozin). Let KPm be the dm-dimensional projective space over K
(dm ≥ 2) and let KL(x, y) be the reproducing kernel for the space PL of real polyno-
mials on KPm of degree at most L. Then

KL(x, y) =
L∑
k=0

{
h

(α,β)
k

}−1

P
(α,β)
k (1)P

(α,β)
k (cos(

√
2ρ(x, y))),

where α = (dm− 2)/2, β = (d− 2)/2, P
(α,β)
k is the Jacobi polynomial of degree k,

h
(α,β)
k = c

ˆ 1

−1

[
P

(α,β)
k (t)

]2

(1− t)α(1 + t)αdt

and
1

c
=

ˆ 1

−1

(1− t)α(1 + t)αdt.

One can compute explicitly the reproducing kernel using the Christoffel-Darboux formula
(see [Sze39, Page 71]):

n∑
k=0

{
h

(α,β)
k

}−1

P
(α,β)
k (1)P

(α,β)
k (t) = Aα,β

Γ(n+ α + β + 2)

Γ(n+ β + 1)
P (α+1,β)
n (t).

Note that the normalized reproducing kernel PL(x, y) is the respective Jacobi polynomial
of parameters α + 1 and β and degree L. Recall that

d =


1, K = R,
2, K = C,
4, K = H,
8, K = O

.

We summarize these results for KPm in Tables 3.1 and 3.2.
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α β A(r)

RPm m−2
2

−1
2

c′ sinm−1(r/
√

2)

CPm m− 1 0 c′ sin2m−2(r/
√

2) sin(
√

2r)

HPm 2m− 1 1 c′ sin4m−4(r/
√

2) sin3(
√

2r)

OP2 7 3 c′ sin8(r/
√

2) sin7(
√

2r)

Table 3.1: Results for the Projective Spaces

PL(x, y)

RPm P
(m/2,−1/2)
L (cos(

√
2ρ(x, y)))

CPm P
(m,0)
L (cos(

√
2ρ(x, y)))

HPm P
(2m,1)
L (cos(

√
2ρ(x, y)))

OP2 P
(8,3)
L (cos(

√
2ρ(x, y)))

Table 3.2: Normalized kernel for the Projective Spaces

Now we will proceed to prove that the projective spaces are permissible. For this, we will
first show the computation of the integrals of the form

I :=

ˆ
KPm\B(N,R/L)

|P (α+1,β)
L (cos(

√
2ρ(x,N)))|2dµ(x).

In what follows, R >> 1 and L >> R so that R/L ' 0. Without loss of generality, we
can work with the north pole N of KPm as we did in the case of the sphere.

Observe that using (3.18), we can compute the above integral.

I =

ˆ π/
√

2

R/L

|P (α+1,β)
L (cos(

√
2r))|2A(r)dr

= c′
ˆ π/

√
2

R/L

|P (α+1,β)
L (cos(

√
2r))|2 sinmd−d

(
r√
2

)
sind−1(

√
2r)dr

= c

ˆ π

√
2R/L

|P (α+1,β)
L (cos(θ))|2 sinmd−d(θ/2) sind−1(θ)dθ

= c

[ˆ π−
√

2R
L

√
2R
L

+

ˆ π

π−
√

2R
L

]
|P (α+1,β)
L (cos(θ))|2 sinmd−d

(
θ

2

)
sind−1(θ)dθ

=: I1 + I2.

We will deal first with the second integral.

Szegö proved that for −1 ≤ x ≤ 0,

|P (a,b)
n (x)| = O(nmax(b,−1/2)).
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Thus,

I2 . L2β

ˆ π

π−
√

2R
L

sinmd−d
(
θ

2

)
sind−1(θ)dθ ≤ L2β

ˆ π

π−
√

2R
L

sind−1(θ)dθ

' L2β

ˆ π

π−
√

2R
L

(π − θ)d−1dθ ' Rd

Ld−2β
.

Note that d− 2β = 2 in any of the projective spaces. Thus,

I2 ≤ C
Rd

L2
→ 0, L→∞.

Now we will compute the first integral I1. For this, we will use an estimate proved by
Szegö ([Sze39, p. 198]): for c > 0 fixed, let c/n ≤ θ ≤ π − c/n. Then

P (a,b)
n (cos θ) =

1√
n
k(θ)

{
cos(Nθ + γ) +

O(1)

n sin θ

}
,

where N = n+ (a+ b+ 1)/2, γ = −(a+ 1/2)π/2 and

k(θ) =
1√
π

(
sin

θ

2

)−a−1/2(
cos

θ

2

)−b−1/2

,

We will apply this estimate to our normalized kernels P
(α+1,β)
L (cos(θ)). Note that

I1 .
1

L

ˆ π−
√

2R
L

√
2R
L

k(θ)2 sinmd−d
(
θ

2

)
sind−1(θ)dθ.

Now we compute the quantity k(θ)2 sinmd−d
(
θ
2

)
sind−1(θ).

k(θ)2 sinmd−d
(
θ

2

)
sind−1(θ)

=
1

π
sin−d−1

(
θ

2

)
cos−d+1

(
θ

2

)
sind−1(θ)

=
1

π

1

sin2
(
θ
2

) [1− cos2 θ

4

]− d−1
2

sind−1 θ =
2d−1

π

1

sin2
(
θ
2

) .
Thus, we have:

I1 .
1

L

ˆ π−
√

2R
L

√
2R
L

dθ

sin2(θ/2)
.

This is just the integral appearing in (3.17). So we have for any α ∈ (0, 1),

I1 .
1

1 +R
≤ 1

(1 +R)α
.
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Hence, we have that the normalized kernels for the projective spaces verify the condition
of permissibility, i.e.

lim sup
L→∞

(ˆ
KPdm\B(N,R/L)

|PL(x,N)|2dµ(x)

)
. lim sup

L→∞
I1 + lim sup

L→∞
I2 .

1

(1 +R)α
.
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Chapter 4

Fekete arrays on some compact
manifolds

In this chapter, we study the Fekete arrays on some compact manifolds. As explained in
the introduction, Fekete arrays are well distributed points that are almost sampling and
interpolating. Consider the case of M = Sm (m > 1). The spaces EL for the sphere are
identified with the spaces of spherical harmonics of degree at most L, usually denoted by
ΠL:

ΠL = span
L⋃
l=0

Hl,

where Hl is the space of spherical harmonics of degree l in Sm. These vector spaces
have dimensions πL ' Lm. Let

{
QL

1 , . . . , Q
L
πl

}
be any basis in ΠL. The points Z(L) =

{zL1, . . . , zLπL} maximizing the determinant

|∆(x1, . . . , xπL)| = |det(QL
i (xj))i,j|

are called the Fekete points of degree L for Sm (these points are sometimes called extremal
fundamental systems of points as in [SW04]). They are not to be confused with the
elliptic Fekete points that are a system of points that minimize the potential energy. The
interest for studying the Fekete points is that they are better suited nodes for cubature
formulas and for polynomial interpolation (check [SW04] for a detailed discussion). The
interpolatory cubature rule associated with a system of points x1, . . . , xπL ∈ Sm is the rule

QL(f) :=

πL∑
j=1

wjf(xj), (4.1)

obtained by integrating exactly the polynomial that interpolates f ∈ C(Sm) at the points
x1, . . . , xπL . For L = 2 it is proved in [Rei94] that all cubature weights of the rule QL(f)
are positive. For larger values of L, less is known. A cubature rule that have all the
weights positive is of interest for numerical integration.
The condition that the cubature rule (4.1) is exact for all polynomials in ΠL can be writ-
ten as a linear system Gw = e, where w is the vector of cubature weights, e is the vector

79



80 4. FEKETE ARRAYS ON SOME COMPACT MANIFOLDS

of 1’s in RπL and G is the matrix with components Gij = KL(zLi, zLj). In [SW04, Section
2.2], it is observed that G = ATA, where A is the basis matrix obtained from the spherical
harmonic basis. Thus, G is positive semi-definite for any set of points x1, . . . , xπL and
det(G) = (det(A))2 ≥ 0. Note that a set of Fekete points can be obtained also as the one
maximizing the determinant of G. In order to compute the weights wj, we need to solve
a linear system Gw = e. This is possible whenever det(G) > 0. For numerical integration
it is convenient that the determinant of G should be as big as possible. Thus, a natural
candidate of {x1, . . . , xπL} is a set of extremal fundamental system of points. This is a
reason why a set of Fekete points is of interest.

A natural problem is to find the limiting distribution of points as L → ∞. In [MOC10],
J. Marzo and J. Ortega-Cerdà proved that as L → ∞, the number of Fekete points in
a spherical cap B(z,R) gets closer to πLσ̃(B(z,R)), where σ̃ is the normalized Lebesgue
measure on Sm. They emphasize the connection of the Fekete points with the M-Z and
interpolating arrays. In [BB08], Berman and Boucksom have found the limiting distri-
bution in the context of line bundles over complex manifolds. The proof is based on a
careful study of the weighted transfinite diameter and its differentiability.
Following the approach in [MOC10], we define the Fekete points for an arbitrary compact
manifold associated to spaces EL and study their distribution as L → ∞. The main
difficulty in relating the Fekete points with the M-Z and interpolating families is to con-
struct a weighted interpolation formula for EL where the weight has a fast decay off the
diagonal. That is the reason why, we restrict our attention to manifolds that satisfy a
product property (see Definition 4.1, below). Under this hypothesis, we are able to prove
the equidistribution of the Fekete points.

The outline of the chapter is the following. In the first section we give the precise defini-
tion of the Fekete points and the manifolds that are going to be considered. In the second
section, we relate the Fekete families with the interpolating and M-Z arrays and prove
the main result. In the last section, we provide some examples of manifolds that satisfy
the product property.

4.1 Definitions and statement of the results

Definition 4.1. We say that a manifold is admissible if it satisfies the following product
property: there exists a constant C > 0 such that for all 0 < ε < 1 and L ≥ 1:

EL · EεL ⊂ EL(1+Cε). (4.2)

From now on, M will denote an admissible manifold. Thus we are assuming that we may
multiply two functions of our spaces and still obtain a function which is in some space
EL. In the last section, we provide some examples of such manifolds.

Given L ≥ 1 and mL ∈ N, we consider a triangular family of points in M , Z = {Z(L)}L,
denoted as

Z(L) = {zLj ∈M : 1 ≤ j ≤ mL} , L ≥ 1,
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and we assume that mL →∞ as L increases.

The Fekete points are the points that maximize a Vandermonde-type determinant that
appears in the polynomial Lagrange interpolation formula. We will show their connection
with the interpolating and M-Z families and prove the asymptotic equidistribution of the
Fekete points on the manifold. But before that, we give the precise definition and notation
for the Fekete arrays.

Definition 4.2. Let
{
φL1 , . . . , φ

L
kL

}
be any basis in EL. The points

Z(L) = {zL1, . . . , zLkL}

maximizing the determinant

|∆(x1, . . . , xkL)| = |det(φLi (xj))i,j|

are called a set of Fekete points of degree L for M .

4.2 Fekete points

Now we proceed to prove the equidistribution of a set of Fekete points (see Theorem 4.6).
The scheme is to explore the connection of the Fekete arrays with the interpolating and
M-Z families. Then, making use of a density result (see Theorem 4.5 below), known for
the interpolating and M-Z arrays, we will be able to prove the equidistribution of the
Fekete points.

The following two results give the relation of the Fekete points with the interpolating
and M-Z arrays. Intuitively, Fekete families are almost interpolating and M-Z.

Theorem 4.3. Given ε > 0, let Lε = [(1 + ε)L] and

Zε(L) = Z(Lε) = [zLε1, . . . , zLεkLε ],

where Z(L) is a set of Fekete points of degree L. Then Zε = {Zε(L)}L is a M-Z array.

Proof. Assume that Z is a Fekete family. We will prove that they are uniformly separated.
Consider the Lagrange polynomial defined as

lLi(z) :=
∆(zL1, . . . , zL(i−1), z, zL(i+1), . . . , zLkL)

∆(zL1, . . . , zLkL)
.

Note that

• ‖lLi‖∞ = 1.

• lLi(zLj) = δij.

• lLi ∈ EL.
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Thus, using the Bernstein inequality for the space EL (see (1.10)), we have for all j 6= i,

1 = |lLi(zLi)− lLi(zLj)| ≤ ‖∇lLi‖∞dM(zLi, zLj)

. L‖lLi‖∞dM(zLi, zLj) = LdM(zLi, zLj).

Therefore,

dM(zLi, zLj) ≥
C

L
,

i.e. Z is uniformly separated. This implies that Zε is also uniformly separated because

dM(zLεi, zLεj) ≥
C

Lε

Lε≤(1+ε)L

≥ C/(1 + ε)

L
.

Using Theorem 2.5 we get for any fL ∈ EL,

1

kL

kLε∑
j=1

|fL(zLεj)|2 .
ˆ
M

|fL|2dV.

In order to prove that Zε is M-Z, we only need to prove the converse inequality, i.e.

1

kL

kLε∑
j=1

|fL(zLεj)|2 & ‖fL‖2
2.

Consider the Lagrange interpolation operator defined in C(M) as

ΛL(f)(z) :=

kL∑
j=1

f(zLj)lLj(z).

Note that
‖ΛL(f)‖∞ ≤ kL‖f‖∞.

This estimate isn’t enough. In order to have better control on the norms, we will make
use of a weighted interpolation formula. Fix a point z ∈ M and let p(z, ·) be a function
in the space E ε

C
L such that p(z, z) = 1, where C is the constant appearing in (4.2). Then

given fL ∈ EL one has
R(w) = fL(w)p(z, w) ∈ ELε .

Note that R(z) = fL(z)p(z, z) = fL(z). Thus, we have a weigthed representation formula

fL(z) =

kLε∑
j=1

p(z, zLεj)fL(zLεj)lLεj(z).

We define the operator QL from CkLε → EL2ε
1as

QL[v](z) =

kLε∑
j=1

vjp(z, zLεj)lLεj(z), ∀v ∈ CkLε .

1EL(1+ε) · EL ε
C
⊂ EL(1+ε)(1+ε/(1+ε)) ⊂ EL(1+2ε) ⊂ EL2ε .
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We want to prove that

ˆ
M

|QL[v](z)|2dV (z) .
1

kL

kLε∑
j=1

|vj|2, (4.3)

with constant independent of L. Once we have proved this estimate, choosing vj =
fL(zLεj) we will have

QL[(fL(zLεj))j](z) =

kLε∑
j=1

fL(zLεj)p(z, zLεj)lLεj(z)

=

kLε∑
j=1

R(zLεj)lLεj(z) = R(z) = fL(z).

Hence, applying the claimed inequality (4.3) we will obtain

‖fL‖2
2 .

1

kL

kLε∑
j=1

|fL(zLεj)|2,

and thus Zε is M-Z.
In order to prove (4.3), we need to choose the weight p with care. We shall construct
p ∈ ELε/C with a fast decay off the diagonal.

Let δ > 0 and consider the kernels BL(z, w) := Bδ
L(z, w) defined in Section 1.2. Let

p(z, w) =
BL ε

C
(z, w)

BL ε
C

(z, z)
∈ EL ε

C
.

Observe that

• p(z, z) = 1.

• ˆ
M

|p(z, w)|dV (w) =
1

BL ε
C

(z, z)
‖BL ε

C
(z, ·)‖1

.
1

kL
,

where we have used ‖BL(z, ·)‖1 . 1 (see [FM10b, Equation (2.11), Theorem 2.1] for
a proof).

Now we are ready to prove (4.3). Note that

ˆ
M

|QL[v](z)|dV (z) ≤
ˆ
M

kLε∑
j=1

|vj||p(z, zLεj)||lLεj(z)|dV (z)

≤
kLε∑
j=1

|vLj|‖p(·, zLεj)‖1 .
1

kL

kLε∑
j=1

|vLj|.
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On the other hand,

|QL[v](z)| ≤ sup
j
|vj|

kLε∑
j=1

|p(z, zLεj)|.

Let s be the separation constant of ZLε and

h(z, w) =
1

(1 + LεdM(z, w))N
≤ 1.

Note that,
inf

w∈B(zLεj ,s/Lε)
h(z, w) ≥ Csh(z, zLεj).

Therefore,

kLε∑
j=1

|p(z, zLεj)| =
1

BL ε
C

(zLεj, zLεj)

kLε∑
j=1

|BL ε
C

(zLεj, z)| .
kLε∑
j=1

1

(1 + L ε
C
dM(z, zLεj))

N

.
Lmε
sm

ˆ
∪
kLε
j=1B(zLεj ,s/Lε)

h(z, w)dV (w)

=
Lmε
sm

ˆ
∪
kLε
j=1B(zLεj ,s/Lε)∩B(z,2s/Lε)

h(z, w)dV (w)

+
Lmε
sm

ˆ
∪
kLε
j=1B(zLεj ,s/Lε)∩B(z,2s/Lε)c

h(z, w)dV (w)

≤ Cs,ε + CsL
m
ε

ˆ
M\B(z,2s/Lε)

h(z, w)dV (w) . 1,

where we have used that
ˆ
M\B(z,r/Lε)

h(z, w)dV (w) .
1

Lmε (1 + r)N−m
.

This computation follows by integrating h(z, w) using the distribution function.
Hence, we have proved that

‖QL[v]‖∞ . sup
j
|vj|.

The claimed estimate (4.3) follows by the Riesz-Thorin interpolation theorem.

The following result relates the Fekete points with the interpolating families.

Theorem 4.4. Given ε > 0, let L−ε = [(1− ε)L] and let

Z−ε(L) = Z(L−ε) =
{
zL−ε1, . . . , zL−εkL−ε

}
,

where Z(L) is a set of Fekete points of degree L. Then the array Z−ε = {Z−ε(L)}L is an
interpolating family.
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Proof. Given any array of values
{
vL−εj

}kL−ε
j=1

, we consider

RL[v](z) =

kL−ε∑
j=1

vL−εjp(z, zL−εj)lL−εj(z) ∈ EL,

where p(·, z) ∈ ELε/C defined in the proof of the previous Theorem. Note that

RL[v](zL−εk) =

kL−ε∑
j=1

vL−εjp(zL−εk, zL−εj)lL−εj(zL−εk)

= vL−εkp(zL−εk, zL−εk) = vL−εk.

Also, as in the proof of the previous theorem we have

kL−ε∑
j=1

|p(z, zL−εj)| . 1

and ˆ
M

|p(z, zL−εj)|dV (z) .
1

kL
.

Thus, as before we have that

|RL[v](z)| ≤ sup
j
|vL−εj|

kL−ε∑
j=1

|p(z, zL−εj)| . sup
j
|vL−εj|.

Hence
‖RL[v]‖∞ . sup

j
|vL−εj|.

Also,

‖RL[v]‖1 ≤
kL−ε∑
j=1

|vL−εj|‖p(·, zL−εj)‖1 .
1

kL

kL−ε∑
j=1

|vL−εj|.

By the Riesz-Thorin interpolation theorem we get

‖RL[v]‖2
2 .

1

kL

kL−ε∑
j=1

|vL−εj|2.

Now we are ready to prove the equidistribution of the Fekete points. Since the Fekete
families are, essentially, interpolating and M-Z, we will make use of Theorem 3.11, proved
in the previous chapter, that gives a necessary condition for interpolation and sampling.
In what follows, σ will denote the normalized volume measure, i.e. dσ = dV/vol(M).
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Recall that the upper and lower Beurling-Landau density of a uniformly separated family
Z in M are defined as:

D−(Z) = lim inf
R→∞

(
lim inf
L→∞

(
min
ξ∈M

(
1
kL

#(Z(L) ∩B(ξ, R/L))

σ(B(ξ, R/L))

)))
,

D+(Z) = lim sup
R→∞

(
lim sup
L→∞

(
max
ξ∈M

(
1
kL

#(Z(L) ∩B(ξ, R/L))

σ(B(ξ, R/L))

)))
.

We proved in the previous chapter the following theorem.

Theorem 4.5. Let M be an arbitrary compact manifold, without boundary, of dimension
m ≥ 2 and Z a uniformly separated family. If Z is M-Z, then D−(Z) ≥ 1. On the other
hand, if Z is an interpolating family, then D+(Z) ≤ 1.

From this result and the relation of the Fekete points with the M-Z and interpolating
families, we will prove the equidistribution of the Fekete points.

Theorem 4.6. Let Z = {Z(L)}L≥1 be any array such that Z(L) is a set of Fekete points

of degree L and µL = 1
kL

∑kL
j=1 δzLj . Then µL converges in the weak-∗ topology to the

normalized volume measure on M .

Proof. We know that for any ε > 0 the array Zε = {Zε(L)}L≥1 is M-Z, so if we use the
density results (see Theorem 4.5), we get for any ε > 0, a large R = R(ε) and L(R(ε))
such that for all L ≥ L(R(ε)) and ξ ∈M ,

1
kL

#(Z(L) ∩B(ξ, R/L))

σ(B(ξ, R/L))
≥ (1− ε). (4.4)

Similarly, since Z−ε is interpolating (because Z is a family of Fekete) we know that there
exist R = R(ε) and L(R(ε)) such that for all L ≥ L(R(ε)) and ξ ∈M ,

1
kL

#(Z(L) ∩B(ξ, R/L))

σ(B(ξ, R/L))
≤ (1 + ε). (4.5)

Note that

µL(B(ξ, R/L)) =
1

kL
#(Z(L) ∩B(ξ, R/L)).

Thus, for any ε > 0 there is a large R such that for any L big enough and ξ ∈M ,

(1− ε)σ(B(ξ, rL)) ≤ µL(B(ξ, rL)) ≤ (1 + ε)σ(B(ξ, rL)), (4.6)

where rL = R/L. Hence, we have that

lim
L→∞

µL(B(z, rL))

σ(B(z, rL))
= 1, rL → 0, (4.7)
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uniformly in z ∈ M . This is enough to prove the equidistribution of the Fekete points.
We proceed now with the details. Let f ∈ C(M). We will use the notation

ν(f) :=

ˆ
M

f(z)dν(z),

where ν is a measure and fr will denote the mean of f over a ball B(z, r) with respect to
the volume measure, i.e.

fr(z) =
1

σ(B(z, r))

ˆ
B(z,r)

f(w)dσ(w).

We want to show that µL(f)→ σ(f), when L→∞, for all f ∈ C(M).

|µL(f)− σ(f)| ≤ |(µL − σ)(f − frL)|+ |(µL − σ)(frL)|
≤ (µL(M) + σ(M))‖f − frL‖∞ + |(µL − σ)(frL)|
≤ 2‖f − frL‖∞ + |(µL − σ)(frL)|.

We will estimate the second term using [Blü90, Lemma 2] that says

sup
z∈M

∣∣∣∣σ(B(z, r))

|B(0, cr)| − 1

∣∣∣∣ = O(r2), (4.8)

uniformly in z ∈M , where |·| denotes the Euclidean volume and c is a constant depending
only on M . Similarly, one has

sup
z∈M

∣∣∣∣ |B(0, cr)|
σ(B(z, r))

− 1

∣∣∣∣ = O(r2), (4.9)

because, by the compactness of M (see Remark 1.1),

C1 ≤
σ(B(z, r))

|B(0, cr)| ≤ C2, (4.10)

thus, ∣∣∣∣ |B(0, cr)|
σ(B(z, r))

− 1

∣∣∣∣ =

∣∣∣∣∣1−
σ(B(z,r))
|B(0,cr)|

σ(B(z,r))
|B(0,cr)|

∣∣∣∣∣ ≤ Cr2

C1

= O(r2).

Similarly,

sup
w,z∈M

∣∣∣∣σ(B(w, r))

σ(B(z, r))
− 1

∣∣∣∣ = O(r2). (4.11)

Indeed, using (4.8), (4.9) and (4.10)∣∣∣∣σ(B(w, r))

σ(B(z, r))
− 1

∣∣∣∣ =

∣∣∣∣σ(B(w, r))

|B(0, cr)|

( |B(0, cr)|
σ(B(z, r))

− 1 + 1

)
− 1

∣∣∣∣
≤
∣∣∣∣σ(B(w, r))

|B(0, cr)| − 1

∣∣∣∣+
σ(B(w, r))

|B(0, cr)|

∣∣∣∣ |B(0, cr)|
σ(B(z, r))

− 1

∣∣∣∣ ≤ Cr2.
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Using Fubini, we obtain the following.

|(µL − σ)(frL)| =
∣∣∣∣ˆ
M

 
B(z,rL)

f(w)dσ(w)d(µL − σ)(z)

∣∣∣∣
=

∣∣∣∣ˆ
M

f(w)

ˆ
B(w,rL)

dµL(z)− dσ(z)

σ(B(z, rL))
dσ(w)

∣∣∣∣
≤
ˆ
M

|f(w)|
∣∣∣∣ˆ
B(w,rL)

dµL(z)− dσ(z)

σ(B(z, rL))

∣∣∣∣ dσ(w) = (1)

Now we will deal with the second integral.

ˆ
B(w,rL)

dµL(z)− dσ(z)

σ(B(z, rL))
=

ˆ
B(w,rL)

dµL(z)− dσ(z)

σ(B(w, rL))

σ(B(w, rL))

σ(B(z, rL))

=

ˆ
B(w,rL)

dµL(z)− dσ(z)

σ(B(w, rL))
+

ˆ
B(w,rL)

dµL(z)− dσ(z)

σ(B(w, rL))

(
σ(B(w, rL))

σ(B(z, rL))
− 1

)
Thus, ∣∣∣∣ˆ

B(w,rL)

dµL(z)− dσ(z)

σ(B(z, rL))

∣∣∣∣ ≤ 1

σ(B(w, rL))
|µL(B(w, rL))− σ(B(w, rL))|

+

ˆ
B(w,rL)

1

σ(B(w, rL))

∣∣∣∣σ(B(w, rL))

σ(B(z, rL))
− 1

∣∣∣∣ (dµL(z) + dσ(z)).

Hence, using (4.11),

(1) ≤ sup
w∈M

∣∣∣∣µL(B(w, rL))

σ(B(w, rL))
− 1

∣∣∣∣ ‖f‖1

+ sup
z,w∈M

∣∣∣∣σ(B(w, rL))

σ(B(z, rL))
− 1

∣∣∣∣ ˆ
M

|f(w)|
(
µL(B(w, rL))

σ(B(w, rL))
+ 1

)
dσ(w)

≤ ‖f‖1

(
sup
w∈M

∣∣∣∣µL(B(w, rL))

σ(B(w, rL))
− 1

∣∣∣∣+ Cr2
L

(
sup
w∈M

∣∣∣∣µL(B(w, rL))

σ(B(w, rL))

∣∣∣∣+ 1

))
.

Briefly, we have obtained

|µL(f)− σ(f)| ≤ 2‖f − frL‖∞

+ ‖f‖1

(
sup
w∈M

∣∣∣∣µL(B(w, rL))

σ(B(w, rL))
− 1

∣∣∣∣+ Cr2
L

(
sup
w∈M

∣∣∣∣µL(B(w, rL))

σ(B(w, rL))

∣∣∣∣+ 1

))
Letting L→∞ and using (4.7), we obtain the desired result:

µL(f)→ σ(f), L→∞,∀f ∈ C(M).
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4.3 Examples of admissible manifolds

The basic examples are the compact two-point homogeneous spaces. These spaces, essen-
tially are Sm, the projective spaces over the field K = R,C,H and the Cayley Plane. In
these spaces we can multiply two functions of the spaces EL and obtain another function
of some bigger space EL. Indeed, in the case of the Sphere, EL represents the spherical
harmonics of degree less than L, usually denoted by ΠL. In such spaces, we know that

Π2L = spanΠLΠL,

(see [Mar08, Lemma 4.5]). Moreover, in Sm,

ΠL · ΠεL ⊂ ΠL(1+ε).

Thus, the product property holds trivially in Sm.

Projective Spaces.

The case of the Projective spaces is similar to the Sphere. In [Sha01, Sections 3.2 and
3.3], there is a description and an orthogonal decomposition of the harmonic polynomials
on the projective spaces.

Let K be the field of R, C or H. Consider the sphere Sm−1 ⊂ Km ≈ Rdm, where
d = dimRK. We define the projective space KPm−1 over the field K (of dimension m− 1)
as the quotient

KPm−1 = Sm−1/ ∼,
where x ∼ y if and only if y = γx with γ ∈ K and |γ| = 1. Consider the space of
homogeneous polynomials of degree less than L on the projective spaces:

PolL =
{
p(x)|Sm−1 ; x ∈ Rdm, deg(p) ≤ L, p(γx) = |γ|Lp(x),∀γ ∈ K

}
.

It is immediate that PolL verify the product property (4.2). We will show that the
spaces EL associated to KPm−1 are identified with the spaces PolL. This proves that the
projective spaces are admissible. It is observed in [Sha01, Section 3.2], that PolL coincide
with its subspace of harmonic polynomials of degree less than L:

PolL = HarmL = {p ∈ PolL; ∆Rdmp ≡ 0}

and an orthogonal decomposition holds:

HarmL = Harm(0)⊕ Harm(2)⊕ . . .⊕ Harm(2[L/2]),

where Harm(2k) is the subspace of PolL of harmonics of degree 2k. We claim that the
spaces EL associated to the projective spaces are identified with the spaces HarmL. Thus,
we need to show that Harm(2k) are the eigenspaces of ∆KPm−1 . For this purpose, it is
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sufficient to prove that its reproducing kernel, f(x, y), is an eigenfunction because then
for any Y ∈ Harm(2k),

∆KPm−1Y (x) = ∆KPm−1〈Y, f(x, ·)〉 = 〈Y,∆KPm−1f(x, ·)〉 = −λ2〈Y, f(x, ·)〉 = −λ2Y (x).

Let h2k be the dimension of Harm(2k) and (ski)
h2k
I=1 be an orthonormal basis in Harm(2k).

Its kernel, can be expressed as the function

f(x, y) =

h2k∑
i=1

ski(x)ski(y), x, y ∈ Sm−1.

It is proved, in [Sha01, Section 3.3], that f(x, y) is a function of |〈x, y〉|2,

f(x, y) = qk(|〈x, y〉|2),

where qk : [0, 1] → C. Moreover, in [Sha01, Section 3.3], we can find an explicit form of
this function:

h2k∑
i=1

ski(x)ski(y) = bdkP
(α,β)
k (2|〈x, y〉|2 − 1) = bdkP

(α,β)
k (cos(

√
2ρ(x, y))),

where ρ is the geodesic distance, bdk is a constant of normalization and

α =
dm− d− 2

2
, β =

d− 2

2
, d = dimRK.

Note that, since the reproducing kernel f(x, y) depends only on |〈x, y〉|2, we only need to
take account of the radial part of the Laplacian, i.e.

1

A(r)

∂

∂r

(
A(r)

∂

∂r

)
, (4.12)

where A(r) = c′ sind(m−2)(r/
√

2) sind−1(
√

2r) (see [Rag71, p. 168]). Since we want to
calculate the radial part of the Laplacian of functions of the form f(cos(

√
2r)), we will

make a change of variable t = cos(
√

2r) in (4.12). We proceed with the details taking
into account these basic identities:

sin(θ/2) = ±
√

1− cos(θ)

2
, sin(arccos(x)) =

√
1− x2.

A(r) = c′ sind(m−2)(
√

2r/2) sind−1(
√

2r)

= c′(1− cos(
√

2r))
d(m−2)

2 sind−1(arccos(t))

= c′(1− t) d(m−2)
2 (1− t2)

d−1
2 = c′(1− t) d(m−1)−1

2 (1 + t)
d−1
2 .
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Now the radial part of the Laplacian can be written also in the variable t and it turns out
to be:

1

A(r)

∂

∂r

(
A(r)

∂

∂r

)
= c′(1− t)− d(m−1)−2

2 (1 + t)−
d−2
2
∂

∂t

(
(1− t) d(m−1)

2 (1 + t)
d
2
∂

∂t

)
.

Thus, defining

α =
d(m− 1)− 2

2
, β =

d− 2

2
,

we get that the radial part of the Laplacian is of the form

c′(1− t)−α(1 + t)−β
∂

∂t

(
(1− t)α+1(1 + t)β+1 ∂

∂t

)
.

It is well known (see [Sze39]) that the precise eigenfunctions of this operator are the Ja-
cobi polynomials P (α,β)(t) with eigenvalues −k(k + α + β + 1) = −k(k + dm/2− 1).

Observe that since the polynomials are dense in L2(KPm−1),

L2(KPm−1) =
⊕
l≥0

Harm(2l),

For further details check [Rag72, Page 87]. Therefore, we know that all the eigenvalues
of ∆KPm−1 are of the form −k(k+ dm/2− 1). A simple calculation shows that the spaces
EL in the projective spaces are identified with the space of spherical harmonics (of the
projective spaces) with degree less than L. More precisely,

EL = HarmL∗ =

[L∗/2]⊕
l=0

Harm(2l) = PolL∗ ,

where L∗ =
√

(dm/2− 1)2 + 4L2 − (dm/2 − 1) > 0 for L > 0 (note that L∗

2L
→ 1, as

L → ∞). Therefore, EL satisfies the product property (4.2) because the spaces PolL∗
verify it. As a consequence, the projective spaces KPm−1 are admissible.

Other examples.

Another example with a different nature is the Torus (Figure 4.1) A Torus can be rep-
resented as the unit rectangle [0, 1]× [0, 1] with the identification (x, y) ∼ (x, y + 1) and
(x, y) ∼ (x + 1, y) (as shown in Figure 4.2). The eigenfunctions of the Laplacian are of
the form e2πi(mx+ny) with m,n ∈ N. Now we are ready to prove the product property. Let
f1 ∈ EL, i.e. f1 is a linear combination of eigenvectors of eigenvalues less than L2, i.e. we
are taking pairs (n,m) such that

4π2
(
n2 +m2

)
≤ L2,
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Figure 4.1: Torus

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 4.2: Parametrization of a Torus

and let f2 be a linear combination of eigenvectors of eigenvalue less than ε2L2 (0 < ε < 1),
i.e. we are taking pairs (k, l) such that

4π2
(
k2 + l2

)
≤ ε2L2,

We can compute the product of f1 and f2:

f1(x, y)f2(x, y) =
∑
n,m,k,l

cn,mdk,le
i2π((n+k)y+x(m+l)).

Thus, we have eigenvalues

V 2 := 4π2
(
(n+ k)2 + (m+ l)2

)
.

We will estimate V by computing (a+ b)2 and using the fact that
n,m ≤ L

2π

k, l ≤ εL
2π√

1 + x ≤ 1 + x/2, ∀x ≥ 0

.

Then we get that V 2 ≤ L2(1+ε2 +4ε) ≤ L2(1+5ε). Hence, V ≤ L
√

1 + 5ε ≤ L(1+5/2ε).
Therefore, a Torus is admissible.

Another example is the Klein bottle (see Figure 4.3). We take the parametrization of
the Klein Bottle as [−1/2, 1/2] × [−1/2, 1/2], identifying the points (x, y) ∼ (x, y + 1)
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Figure 4.3: Klein Bottle

(−1/2,−1/2)

(−1/2, 1/2)

(1/2,−1/2)

(1/2, 1/2)

Figure 4.4: Parametrization of the Klein Bottle

and (x + 1, y) ∼ (x,−y) (as shown in Figure 4.4). We recover the Klein Bottle by a
2 → 1 covering, getting a torus defined in [−1, 1] × [−1/2, 1/2] with the identification
(x + 2, y) ∼ (x, y) and (x, y + 1) ∼ (x, y) as shown in Figure 4.5. Thus, we can make
use of the results we have in a torus. Each eigenfunction of the Klein Bottle generates an
eigenfunction on the torus. We know that the eigenfunctions of the torus are precisely
ei2π(mx+ny). Now we just need to look which of these functions can reproduce a function
in the Klein Bottle and these will be all the eigenfunctions we can have. Since we have
identified the points (x, y + 1) ∼ (x, y) and (x+ 2, y) ∼ (x, y), the only eigenfunctions of
the Laplacian in the torus are

ei2π(m
2
x+ny), ∀m,n ∈ N.

with eigenvalues −4π2(n2 +m2/4). We can compute which of these functions make sense
in the Klein Bottle, i.e. if

g(x, y) =
∑
m,n

cn,me
i2π(ny+mx/2),

then imposing that g(x, y + 1) = g(x, y) and g(x+ 1, y) = g(x,−y) we get that∑
n,m

(−1)mcn,me
i2π(ny+mx/2) =

∑
n,m

c−n,me
2πi(−ny+m/2x).
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(−1,−1/2)

(−1, 1/2)

(0,−1/2)

(0, 1/2)

(1,−1/2)

(1, 1/2)

Figure 4.5: Recovering of the Klein Bottle

Solving this, we get that the coefficients cn,m must satisfy (−1)mcn,m = c−n,m. Thus, the
functions in the Klein Bottle are of the form

f(x, y) =
∑
n,m

cn,me
i2π(ny+m/2x),

where {
cn,2k = c−n,2k,

cn,2k+1 = −cn,2k+1

.

Now we are ready to prove the product property for the Klein Bottle. Let f1 be a linear
combination of eigenvectors of eigenvalues less than L2, i.e. we are taking pairs (n,m)
such that

4π2

(
n2 +

m2

4

)
≤ L2,

and let f2 be a linear combination of eigenvectors of eigenvalue less than ε2L2 (0 < ε < 1),
i.e. we are taking pairs (k, l) such that

4π2

(
k2 +

l2

4

)
≤ ε2L2,

We can compute the product of f1 and f2:

f1(x, y)f2(x, y) =
∑
n,m,k,l

cn,mdk,le
i2π((n+k)y+xm+l

2
).

Thus, we have eigenvalues V 2 := 4π2
(

(n+ k)2 + (m+l)2

4

)
. Proceeding as in the case of

the Torus, one can compute that V ≤ L(1 + 5/2ε). Hence, the Klein bottle is admissible.

Product of admissible manifolds.

More examples can be constructed by taking products of manifolds that satisfy the pro-
duct assumption because if f1 and f2 are functions defined on two manifolds M and N ,
respectively, then

∆M×N(f1 · f2) = f2∆Mf1 + f1∆N(f2).
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More precisely, let M and N be admissible manifolds, i.e.

EM
L · EM

εL ⊂ EM
L(1+C1ε)

,

and

EN
mL · EN

εL ⊂ EN
L(1+C2ε)

,

where

EM
L = 〈

{
φi; ∆Mφi = −λ2

iφi, λi ≤ L
}
〉,

and

EN
L = 〈

{
ψi; ∆Nψi = −µ2

iψi, µi ≤ L
}
〉.

Thus, if we consider the product manifold M ×N , then

EM×N
L = 〈

{
φiψj; λ2

i + µ2
j ≤ L2

}
〉,

Let f ∈ EM×N
L and g ∈ EM×N

εL . Then, the product can be expressed as

f · g =
∑

λ2
i
+µ2

j
≤L2

λ2
k+µ2

l≤ε2L2

cijdklφiψjφkψl.

We need to show that φiψjφkψl ∈ EM×N
L(1+Cε), whenever λ2

i + µ2
j ≤ L2 and λ2

k + µ2
l ≤ ε2L2.

Note that since λi ∈ [0, L] and λk ∈ [0, εL], we can put λi = riL and λk = skεL for
some ri, sk ∈ [0, 1]. Thus, once we fix the indices i and k, then µj ≤ L

√
1− r2

i and

µl ≤ Lε
√

1− s2
k. Now we compute the product φiψjφkψl.

φiφk ∈ EM
riL
· EM

skεL
⊂ EM

L(ri+C1εsk),

ψjψl ∈ EN

L
√

1−r2i
· EN

Lε
√

1−s2k
⊂ EN

L(
√

1−r2i+C2ε
√

1−s2k)
.

Therefore, we know that

φiψjφkψl =
∑
n,t

cndtφnψt,

where the sum runs for all indices n, t with

λn ≤ L(ri + C1εsk),

µt ≤ L(
√

1− r2
i + C2ε

√
1− s2

k).

Now, the functions φnψt are eigenvectors of ∆M×N with eigenvalues −(λ2
n + µ2

t ). Thus,
in order to prove that M ×N is admissible, we need to show that the following estimate
holds for some constant C > 0:

λ2
n + µ2

t ≤ L2(1 + Cε)2.
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Indeed,

λ2
n + µ2

t

L2
≤ [ri + C1εsk]

2 +

[√
1− r2

i + C2ε
√

1− s2
k

]2

= 1 + ε2
[
C2

1s
2
k + C2

2(1− s2
k)
]

+ 2ε

[
C1risk + C2

√
1− r2

i

√
1− s2

k

]
=: 1 + ε2I1 + 2εI2.

Let C := 2 max(C1, C2). Using the fact that ri, sk ∈ [0, 1], we obtain the following.

I2 ≤ C1 + C2 ≤ C.

I1 ≤ C2
1 + C2

2 ≤ (C1 + C2)2 ≤ C2.

Hence,

λ2
n + µ2

t ≤ L2
[
1 + C2ε2 + 2εC

]
= L2(1 + Cε)2.

Thus, φiψjφkψl ∈ EM×N
L(1+Cε) with C = 2 max(C1, C2) and we conclude that the product

manifold M ×N is admissible.

Remark 4.1. Note that the example of the torus can be reduced to this later case because
it is the product of two S1.
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[Sze39] G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York,
1939, American Mathematical Society Colloquium Publications, v. 23. MR
0000077 (1,14b)

[Wil50] T. J. Willmore, Mean value theorems in harmonic Riemannian spaces, J. Lon-
don Math. Soc. 25 (1950), 54–57. MR 0033408 (11,436f)

[You80] R. M. Young, An introduction to nonharmonic Fourier series, Pure and Ap-
plied Mathematics, vol. 93, Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], New York, 1980. MR 591684 (81m:42027)



102 BIBLIOGRAPHY



Notation

−λ2
i , Eigenvalues of ∆M , 7

Bε
L, Smooth projection to EL, 12

Bε
L(z, w), Bochner-Riesz type kernels of EL,

12
D+(Z), Upper Beurling-Landau density, 52
D−(Z), Lower Beurling-Landau density, 52
EL = 〈φi; ∆Mφi = −λ2

iφi, λi ≤ L〉, 7
KL(z, w), Reproducing kernel of EL, 11
M , Compact Riemannian manifold without

boundary, 7
PW 2

[−π,π], Paley-Wiener space with band-
width π, 1

P
(α,β)
n , Jacobi polynomial of degree n and

parameters α, β, 71
PEL , Orthogonal projection of EL, 53
SNL (z, w), Bochner-Riesz kernel of order N

associated to EL, 11
T εL,A, Modified concentration operator ofEL,

54
∆M , Laplacian on M , 7
KLA, Classical concentration operator defined

on EL, 53
ΠL, Spherical harmonics of degree at most

L in Sm, 79
Z, Triangular family of points, 37
KPm, Projective space of dimension m over

the field K, 73
µL, Normalized counting measure associated

to a family Z = {zLj}j=1,...,mL;L, 52
φi, Eigenfunctions of ∆M with eigenvalue

−λ2
i , 7

σ, Normalized volume measure of M , 52
K̃L(z, w), Normalized reproducing kernel of

EL, 38
g = (gij)ij, Metric of M , 7
kL = dim(EL), 8
m, Dimension of the manifold M , 7

Harmonic extension of functions in EL, 13

L-S, Logvinenko-Sereda, 25

M-Z, Marcinkiewicz-Zygmund, 38
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