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Abstract 

 

Hot-Wire Chemical Vapor Deposition has led to microcrystalline silicon solar cell efficiencies 

similar to those obtained with Plasma Enhanced CVD. The light-induced degradation behavior 

of microcrystalline silicon solar cells critically depends on the properties of their active layer. In 

the regime close to the transition to amorphous growth (around 60% of amorphous volume 

fraction), cells incorporating an intrinsic layer with slightly higher crystalline fraction and [220] 

preferential orientation are stable after more than 7000 hours of AM1.5 light soaking. On the 

contrary, solar cells whose intrinsic layer has a slightly lower crystalline fraction and random or 

[111] preferential orientation exhibit clear light-induced degradation effects. A revision of the 

efficiencies of Hot-Wire deposited microcrystalline silicon solar cells is presented and the 

potential efficiency of this technology is also evaluated. 
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1.  Introduction 
 

Hot-Wire Chemical Vapor Deposition (HWCVD or Cat-CVD) has led to solar cell 

efficiencies similar to those obtained with Plasma Enhanced CVD (PECVD) [1]. The main 

advantages of HWCVD are higher deposition rates, suitability for scaling up in large area 

industrial applications, and absence of powder formation and ion bombardment. 

Depending on the deposition sequence, two structures are considered: p-i-n and n-i-p. The 

former is commonly used on transparent substrates, whereas n-i-p structures are usually 

deposited on opaque substrates. Transparent conductive oxide (TCO) is also a key material in 

these cell structures, as glass/TCO, stainless steel (SS) and SS/metal/TCO are the most usual 

substrates used. µc-Si:H is grown in atomic hydrogen rich atmospheres, what can cause the 

chemical reduction of the TCO [2]. ZnO:Al has turned out to be resistant to this reduction 

process. 

A suitable surface roughness also contributes to enhance the optical absorption in the thin 

intrinsic layer, and commercial SnO2 (Asahi-U) covered with a thin ZnO:Al layer or textured 

ZnO:Al have shown good results in p-i-n solar cells.  

Despite the fact that a growing number of research groups are developing p-i-n or n-i-p 

µc-Si:H solar cells fully deposited with HWCVD, the highest efficiencies up to now have been 

obtained using doped layers grown by PECVD [1].  

Fig. 1 presents an overview of the evolution of the efficiency and the rest of the parameters 

obtained from the J(V) curve of µc-Si:H solar cells deposited by HWCVD, as a function of the 

year of publication of the result. The contributions included are from University of Barcelona [3-

5], Forschungszentrum Jülich [1,6], University of Kaiserslautern [7], CNRS-École Polytechnique 

de Palaiseau [8,9], Utrecht University [10-12], Tokyo Institute of Technology [13,14] and 

National Renewable Energy Laboratory (NREL) [15]. 

µc-Si:H solar cells deposited with HWCVD have been developed during a much shorter 

period than that devoted to PECVD deposited ones. In spite of this fact, the efficiency of the best 

cells incorporating the intrinsic µc-Si:H layer deposited with HWCVD have reached 9.4% 

efficiency [1], which is close to the record of 10.1% achieved in µc-Si:H solar cells deposited 

using plasma techniques [16]. Besides, devices having all the µc-Si:H layers deposited by 

HWCVD have led to efficiencies above 5% [5,7,15]. 
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In order to summarize the main aspects that influence the efficiency of solar cells deposited 

by HWCVD, two different approaches should be distinguished: the low substrate temperature 

approach (Ts ≤ 350ºC) and the high temperature one (Ts > 350ºC).  

The high temperature regime avoids grain boundaries with high densities of hydrogen and, 

therefore, makes it easier to grow dense material. This regime allowed the deposition of dense 

material with [220] orientation [17]. Early cells deposited at high Ts at Utrecht University [10] 

where stable but suffered from moderate open circuit voltage (Voc). Further developments in the 

same group led to higher Voc with high deposition rates (1.3 nm/s) by lowering the wire 

temperature (Tf) [12]. 

In first attempts, low temperature solar cells were unstable due to oxygen contamination of 

the porous silicon layers. Accurate selection of deposition parameters was, thus, necessary to 

grow dense µc-Si:H at low Ts [18]. The key parameters in the low Ts approach are Tf, the silane 

concentration (SC), and the pressure (P). Device-quality µc-Si:H is obtained at Tf between 

1500ºC and 1700ºC, SC between 3% and 15 % in hydrogen and P·d ~ 10 Pa·cm, where d is the 

distance between the filament and the substrate. 

 

2.  Light induced degradation 

 
The effect of light-induced degradation in amorphous silicon (a-Si:H) has been the center of 

many studies. Even if there is some controversy on the detailed local sites and energies involved, 

it is a general agreement that such effect is caused by a change in the hydrogen bonding leading 

to a change in the density of dangling bonds [19]. On the contrary, light soaking experiments 

performed on n-i-p and p-i-n µc-Si:H solar cells with high crystalline volume fraction evidenced 

a stable behavior [7,20].  

Recent results regarding µc-Si:H solar cells have shown that best device performance is found 

using µc-Si:H obtained in a regime close to the transition to amorphous growth [21,6]. This kind 

of material has a significant amount of amorphous tissue which can turn out to enhance the 

degradation of the device when exposed to long time illumination due to the so-called Staebler-

Wronski effect [22] (SWE). The recombination properties of µc-Si:H are attributed to 

recombination in the dangling bond defects present in the amorphous phase among the 
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crystallites. Light-induced degradation up to 10% of the initial cell efficiency has been reported 

in p-i-n cells with high amorphous fractions [6]. 

We present here the degradation effects imputable to (meta-stable) defect creation within the 

active layer of the µc-Si:H solar cells. Apart from these reversible instabilities, a µc-Si:H solar 

cell has a tendency to suffer from irreversible instabilities (mainly chemical). Fortunately, the 

analysis techniques used in this work allow the discrimination of the different degradation 

mechanisms, thus making it possible to concentrate our studies on those effects concerning the 

intrinsic layer of the device. The effective carrier mobility-lifetime product (µτeff) is a relevant 

magnitude in the characterization of the recombination process in p-i-n solar cells [23-25]. The 

Variable Illumination Measurement technique (VIM) allows the determination of the µτeff [26] 

from which the defect density within the active layer of the device can be evaluated. 

p-i-n solar cells were completely deposited by HWCVD in a multichamber set-up [27] on 

ZnO:Al coated Asahi-U substrates. Structural differences in the microstructure of the active layer 

were achieved by changing SC, i.e. the percentage of silane in the total gas flow, close to the 

transition to amorphous growth. The rest of the deposition conditions were the ones leading to 

compact material at low tantalum wire temperature [18]. Several silane gas phase concentrations 

values were considered in this study, but only cells having the active layer deposited using SC = 

6.2 % and 5.6 % are presented here in detail, as they had different behavior when long exposed 

to AM1.5 illumination. Devices deposited at lower SC exhibited the same behavior than that at 

5.6%, whereas those deposited using less hydrogen behaved like that grown at SC = 6.2%. The 

thickness of the active layer was 1 µm in both cases. The microstructure of the cells was 

analyzed by Raman spectroscopy, from which the crystalline fraction was estimated, and 

Transmission Electron Microscopy (TEM). Stability of the devices during light soaking process 

was evaluated from the evolution of the µτeff obtained from VIM measurements [26]. 

Fig. 2 shows the evolution of µτeff with AM1.5 exposure for the two cells considered. 

Surprisingly, that deposited at SC = 5.6 % had a constant µτeff value around 8·10-8 cm2/V, which 

meant that no light-induced defects were created during almost 7000 hours of illumination. On 

the contrary, the µτeff value of the cell deposited using SC = 6.2% decreased from 1.1·10-7 to 

3·10-8 cm2/V (solid symbols) after 1000 hours of light soaking. This degradation was partially 

reversed after a thirty-minute annealing at 180ºC (µτeff = 4.6·10-8 cm2/V), evidencing the 

coexistence of two different degradation mechanisms: an irreversible one –imputable to chemical 
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changes or doping diffusion- and a meta-stable one, associated to SWE-like light-induced defect 

creation. After the annealing, the sample was exposed to illumination again, and a second 

annealing took place after 6000 hours of illumination (open circles in Fig. 2), causing µτeff to 

return to a value of 4.1·10-8 cm2/V. 

Raman measurements showed that both cells had a very similar amount of amorphous 

fraction. Raman spectra of the solar cells, as well as their difference can be seen in Fig. 3. 

Crystalline fractions calculated from these spectra resulted in a difference of around 5% (Xc ~ 

0.45 for SC = 5.6 % and Xc ~ 0.40 for SC = 6.2 %). Thus, it was very unlikely that such a small 

divergence could be the cause of a sharp edge regarding light-induced degradation. 

TEM cross-section images allowed a more thorough study of the microstructure of the cells. 

A larger amount of grains was observable at SC = 5.6 %, having a broader distribution of sizes –

from several nanometers to a few tens and closer to each other. The medium distance between 

grains was 3 nm in this case, whereas grains were an average of 10 nm apart in the cell deposited 

at SC = 6.2 %. 

The presence of the different possible crystalline orientations was seen from the Fast Fourier 

Transform (FFT) treatment of High-Resolution TEM (HRTEM) images at different depths of the 

active layer (close to the p/i interface, in the middle of the i-layer and close to the i/n interface). 

As can be seen in Fig. 4, a significant difference between both samples was clearly observable. 

In the case of the cell deposited at SC = 6.2 %, (111) crystalline orientation was seen throughout 

the whole layer, and (220) orientation was only very dimly observable close to the interface with 

the n-layer. Conversely, analyzing the images of the cell at SC = 5.6 %, even though only (111) 

was observed close to the p/i interface –during the first growth stages of the i-layer-, (220) 

orientation was soon detected and became more intense as the i/n interface was approached.  

Analyzing the structural properties of the two p-i-n solar cells considered, and taking into 

account the similar amount of amorphous tissue measured in both cases, it seemed to point out 

that the orientation of the grains played a role regarding the stability of the material against light 

exposure. In special, µc-Si:H solar cells with preferential crystalline orientation in the (220) 

direction had a stable µτeff value –and, therefore, a stable defect density- after 7000 hours of 

AM1.5 light exposure. This result contrasted with those of the Jülich [1] and the Kaiserslautern 

group [7], where high efficiency and stability, respectively, were achieved incorporating µc-Si:H 

randomly orientated in their solar cells. 
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On the other hand, cells with different crystallographic orientation presented clear light-

induced defect creation that was partially recovered after thermal annealing. As already 

mentioned, even if the stable cell had a slightly lower amount of amorphous volume fraction, it 

would be difficult to impute the different degradation behavior to this fact. One possible 

explanation could be that some change in the transport mechanism between the crystalline grains 

happened with the change in preferential orientation. Further experimental research is necessary 

to elucidate the physical origin of this surprisingly abrupt change in the light-induced 

degradation of µc-Si:H solar cells. 

The stable solar cell presented here, that deposited at SC = 5.6 %, had an efficiency of 5.2% 

(Jsc = 17.4 mA/cm2, Voc = 0.47 V and FF = 0.63). Fig. 5 presents the J(V) curve under AM1.5 

(100 mW/cm2) illumination (a) and the wavelength dependence of the external quantum 

efficiency (b). 5.2% efficiency is, to our knowledge, the highest value reported for a completely 

Hot-Wire deposited microcrystalline silicon p-i-n solar cell. Higher efficiencies [15, 7] and 

enhanced stability [7] have been reported for fully Hot-Wire grown devices using the substrate 

(n-i-p) configuration. 

 

3.  Efficiency limits of µc-Si:H solar cells 
 

The efficiency of µc-Si:H solar cells is mainly limited by the low absorption in the thin 

intrinsic layer and by recombination. The optical absorption within the intrinsic layer can be 

enhanced using optical confinement strategies: best solar cells present a short circuit current of 

25 mA/cm2, and the theoretical limit is 40 mA/cm2. 

The short circuit current (Jsc) equals the generation in the intrinsic zone minus the 

recombination. In short circuit conditions in good solar cells –those with low recombination-, Jsc 

is close to the generation in the intrinsic layer. Voc and the fill factor (FF) are strongly affected by 

both transport and recombination. A numerical simulation using the program and parameters for 

the dangling bond distribution described in [23] is presented in Table 1 for a µc-Si:H solar cell 

with a 1 µm-thick intrinsic layer, using different mobilities (same value for both holes and 

electrons was considered) and dangling bond density (Nd) values. The integrated generation in 

the intrinsic layer considered in all cases was 25 mA/cm2. 
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It can be seen that the main parameter affecting the efficiency is the defect density. When Nd 

is very high, the electric field is screened and the efficiency of the cell dramatically drops. Only 

in this case (high Nd), the efficiency of the solar cell significantly depends on the mobility of the 

carriers. These results strongly point out that low defect density material and improved optical 

confinement is necessary to increase the efficiency of µc-Si:H solar cells. These requirements are 

easier to achieve at low temperature. Minimization of the heat coming from the wire is necessary 

to increase the efficiency of µc-Si:H solar cells deposited with HWCVD. 

 

4.  Conclusions 

    
The development of µc-Si:H solar cells deposited by HWCVD is leading to higher 

efficiencies year after year.  

Preferential (220) crystalline orientation seemed to be required to avoid light induced 

degradation. After 1000 hours of light soaking, the FF was still degrading for the unstable cells, 

whereas the stable ones remained so after 7000 h of illumination. 

Low temperature deposition and light confinement are the approaches that can probably lead 

to higher cell efficiencies in the near future. 
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List of table and figure captions 

 

Table 1 Simulated solar cell efficiencies as a function of mobility (µ) and Nd. 

 

Fig. 1 Evolution of the efficiency of µc-Si:H solar cells deposited by HWCVD. Solid symbols 

correspond to cells having the doped layers deposited by PECVD whereas the rest are of 

completely Hot-Wire grown devices. 

 

Fig. 2 Evolution of µτeff with AM1.5 light exposure for p-i-n solar cells deposited at SC = 5.6 % 

(squares) and 6.2 % (circles). Solid circles correspond to the first light soaking period and open 

ones to that performed after 30 minutes of thermal annealing at 180ºC. 

 

Fig. 3 Normalized Raman spectra of the solar cells considered and the difference between them. 

 

Fig. 4 Fast Fourier Transform (FFT) treatment of High-Resolution TEM images at different 

depths of the intrinsic layer of two p-i-n solar cells with i-layers deposited at SC = 5.6% and 

6.2%. 

Fig. 5 a) J(V) characteristics of the stable solar cell under AM1.5 (100 mW/cm2) illumination, b) 

External quantum efficiency of the same cell. 
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Table 1 

 

 
Nd 

(cm-3) 

µ 

(cm2/Vs) 

Voc 

(V) 

Jsc 

(mA/cm2) 

FF η 

1014 1 0.656 24.6 0.725 11.7% 

1015 1 0.544 21.7 0.570 6.7% 

1016 1 0.394 8.14 0.363 1.2% 

1014 10 0.656 24.9 0.742 12.1% 

1015 10 0.544 24.4 0.680 9.0% 

1016 10 0.419 19.9 0.519 4.3% 

 
 

11 



HW3-56 
 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5a 
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Figure 5b 
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