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Abstract 

 

Polysilicon Thin Film Transistors (TFT) are of great interest in the field of large area 

microelectronics, especially because of their application as active elements in Flat Panel Displays. 

Different deposition techniques are in tough competition with the objective to obtain device-quality 

polysilicon thin films at low temperature. In this paper we present the preliminary results obtained 

with the fabrication of TFT deposited by Hot Wire Chemical Vapor Deposition (HWCVD). Some 

results concerned with the structural characterization of the material and electrical performance of 

the device are presented. 
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Introduction 

 

Thin Film Transistors are a prime interest topic because of their application in imagers, printers, and 

mainly as active elements in large active matrix liquid crystal displays (AMLCD)[1]. These devices 

are usually obtained using hydrogenated amorphous silicon (a-Si:H) since this material can be 

easily deposited over large areas at low temperature allowing the use of cheap substrates. However, 

a-Si:H presents a low mobility and is unstable upon illumination and injection of charge. These 

aspects cause a-Si:H TFT to be slow devices, sensitive to light and heat. Among the different 

deposition techniques, Plasma Enhanced Chemical Vapour Deposition (PECVD) is the most used to 

obtain a-Si:H. 
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The use of polycrystalline silicon (poly-Si) solves some of the problems previously cited. 

Polycrystalline silicon does not suffer from metastability and has better mobilities,  that translate to 

display technology with a higher speed, inherent stability, brighter and higher resolution. These 

advantages are limited by the high processing temperature needed to obtain the poly-Si. For these 

reasons, there is a lot of research in order to obtain thin film material with properties that combine 

the advantage of the a-Si:H tecnology (large area deposition and low temperature) with  the good 

electronic properties of polycrystalline silicon (stability and higher mobility). The use of 

microcrystalline silicon (c-Si:H) thin film material deposited at low temperature is a good 

alternative to substitute either for a-Si:H or for polycrystalline silicon. Among the different 

deposition techniques that are being investigated, the Hot Wire Chemical Vapour Deposition 

(HWCVD) has drawn a lot of attention because of its capability to obtain device-quality 

hydrogenated microcrystalline silicon (c-Si:H) at low temperature  over large area [2,3,4]. In the 

HWCVD technique, gases are dissociated by the catalytic effect in a tungsten filament heated to 

high temperature (1700ºC). At first, this technique was basically used to obtain hydrogenated 

amorphous silicon, and its effectiveness for obtaining silicon thin film material with 

microcrystalline structure was not showed until recently. In this technique, the substrate 

temperature, process pressure and the gas composition (silane/hydrogen ratio) determine the 

structure (ranging from amorphous to microcrystalline) of the film. Recent experimental results 

reported by different groups confirm the potentiality of the HWCVD technique to obtain intrinsic 

and doped layers with grain sizes ranging from 0.3 m to 1  m  at substrate temperatures as low as 

200ºC. The good results obtained have encouraged some groups [5,6] to the fabrication of devices 

(solar cells and thin film transistors). 

 

Experimental 

 

The samples were deposited in a Hot Wire reactor as described elsewhere [7].  The reaction gases, a 

mixture of SiH4 and H2, were dissociated by a tungsten filament (0.5 mm diameter) heated to 

1700ºC and the substrates were placed 2 cm above the filament. The substrate temperature was 

measured by a thermocouple attached to the sample. Deposition parameters were: substrate 

temperature 280ºC, silane flux 4 sccm and hydrogen flux 76 sccm, and the process pressure was 

8·10
-2

 mbar. Under these technological parameters the deposition rate was of 2 Å/s. Samples were 

structurally characterized by Raman Spectroscopy, X-Ray Difraction (XRD) and Transmission 

Electron Microscopy (TEM).  

The TFT used in this work presented an inverted staggered structure which is the most commonly 

used configuration for flat panel applications. In this structure (figure 1) the gate dielectric is 

deposited before the c-Si:H layer. A thermally oxidized n-type (100) silicon wafer with a 
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Figure 1. Cross section of the inverted staggered Thin Film 

Transistor 



resistivity of 1-10 ·cm was used as a substrate. The thickness of the oxide was 250 nm. The 

cSi:H (250 nm) was deposited at 280 ºC by Hot Wire Chemical Vapour Deposition. Finally, a 

Chromium layer was thermally evaporated and the metallic contacts (drain and source) were 

delimited using photolitographic techniques. The channel width (W) was 137 m and the length (L) 

55 m, giving an aspect ratio for the device (i.e. gate width/length) of 2.5. It is known that the TFT 

characteristics are dominated by the first nanometers of the layer adjacent to the dielectric interface. 

For this reason, a pre-treatment of the silicon dioxide surface was done prior to the deposition of the 

undoped c-Si:H film. This treatment consisted of exposing the substrate to the influence of atomic 

hydrogen atmosphere for 15 minutes in the Hot Wire CVD reactor. With this treatment we sought 

to eliminate surface defects and improve the adhesion of the c-Si:H film on silicon dioxide. The 

electrical properties of the TFT were measured under dark conditions at ambient temperature (25ºC) 

using a semiconductor parameter analyzer (Hewlett Packard 41452B) and a programmable 

temperature controller (MMR Technologies, inc. K-20). 

 

Results 

 

1. Material properties 

 

In this section we present the structural characteristics of the c-Si:H film used for the fabrication 

of the TFT device. Figure 2 displays the Raman spectrum of a cSi:H film (0.5 m) deposited on 

Corning glass in the same run we deposited the TFT. The sharp peak at 520 cm
-1

 is due to the 

crystalline phase, whereas the broad peak centered about 480 cm
-1

 is related to the amorphous phase 

present in the layer. The ratio between the Raman intensities at 520 cm
-1

 and 480 cm
-1

 is usually 

used as a measure to determine the crystallinity of the film. In our sample the absence of  the peak 

at 480 cm
-1

 together with the presence of a narrow peak at 520 cm
-1

 indicate the crystalline structure 

of the film. We have also measured the Raman spectrum with the beam incident through the glass, 

which allows to study the structural characteristics of the films at the first stages of the growth. The 

results were similar to those on the top surface, confirming the homogeneous structure of the film, 

and allowing us to ensure the microcrystalline structure of the TFT channel. The TO Raman peak of 

this layer presented a relative shift of around 3 cm
-1

 and a FWHM of 9 cm
-1

 which corresponds to 
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Figure 2. Raman spectrum of the microcrystalline silicon film. 



domain sizes of 8 nm by using the confinement model [8]. This fact has also been corroborated by 

TEM observations. 

The crystallinity of the film was also observed by XRay diffraction. The /2 plot (figure 3) 

shows the main crystalline silicon difraction peaks. However the relative intensities of the (111), 

(220) and (311) peaks do not coincide with those obtained for powder c-Si, which indicate that 

crystallites are not randomly oriented in the film. The layer has a (111) preferential orientation, 

although some presence of the (220) is also observed. 

The optoelectronic properties of the undoped c-Si:H layer were: dark conductivity at room 

temperature: 2·10
5

 
-1

cm
-1

; dark conductivity activation energy: 0.5 eV; density of defect states 

from the Photothermal Deflection Spectroscopy (PDS):< 10
16

 cm
-3

. 

 

2. Device characteristics 

 

In figure 4 the output characteristics IDS versus VDS at different VGS are shown. The output 

characteristics show small current crowding (a drainsource current which increases anomolously 

with increasing VG, such that the output characteristics for different VG appear to crowd together) 

near the origin. This crowding indicates an appreciable influence of the contact resistance of the 

source and drain electrodes. This effect would be reduced by improving the contact resistance, for 

example by inserting an n
+ 

layer between the source/drain and the c-Si:H layer. Good saturation of 

the output characteristics for all the gate voltages is also observed. The absence of the kink effect (a 

rapid rise of the IDS current above a high VDS applied) indicates that the electron injection at the 

contacts is very small.  

 

In figure 5 the transfer characteristics of  the transistor are presented. The application of a gate-

source  voltage (VGS) leads to an approximately exponential increase of the drain-source current 

(IDS), followed by a linear increase in current at higher voltages. Drain currents of 1 A can be 

obtained for gate voltages lower than 20 V even though the geometry of these devices is not 

optimized; in particular the aspect ratio is only 2.5. It is known that by increasing the aspect ratio of 

the device, the on-current and the transconductance would be improved. The relatively high value 

of the off-current (i.e. for negative gate voltage) is due to the hole current coming from the drain 
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Figure 3. XRD spectrum of the microcrystalline film. 
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Figure 4. Output characteristics. 

Figure 5. Transfer characteristics of the TFT 



and source contacts. This current can be reduced by incorporating a n
+ 

doped layer between the c-

Si:H layer and the metal contacts. The addition of this n
+
 layer not only would reduce the off-

current by blocking the hole current, but also would increase the value of on-current by reducing the 

contact resistance. 

 

The field-effect mobility (s) and the threshold voltage (Vt) can be obtained from the current-

voltage characteristics in the saturation regimen, i.e. VGS=VDS, where the drain-source current can 

be approximated by the following expression: 

2)(
2

1
tGSoxsDS VVC

L

W
I       (2) 

 

where W and L are the gate width and length of the TFT respectively, and Cox is the capacitance of 

the insulator. By plotting the square root of IDS vs. VG in the saturation regime (see figure 6) we 

have obtained a mobility value of 0.7cm
2
·V

-1
·s

-1
 and a threshold voltage of approximately 0.3 V. 

These values of mobility and threshold voltage are comparable to those reported in the literature [5], 

for TFT deposited by HWCVD with similar structure but incorporating  an n
+
 layer between the 

drain and source contacts and the c-Si:H layer . 

We have also measured the temperature dependence of the field-effect mobility. Figure 7 shows the 

mesured s as a function of temperature (from 0 ºC to 80ºC). It is observed that s is thermally 

activated with an activation energy of 0.1 eV. This value of the activation energy corresponds to an 

effective charge trap density of about 10
17

 cm
-3

 (see for example Cap. 5 in ref. [9]), in concordance 

0 10 20 30 40
Gate Voltage (V)

0

1

2

3

4

5

6

S
q

u
a
re

 r
o
o

t 
o

f 
I 
 (

1
0

  
 A

  
  
)

-3
0

.5
S

V   = V
DS GS

 

Figure 6. Transfer characteristics of the TFT 



with standard Capacitance-Voltage measurements performed on a Schottky structure ZnO/c-

Si:H/Cr [10]. 

Our future work will focus on two aspects: The first one will be the improvement of the electrical 

characteristics of the TFTs by incorporating a n
+
 doped layer between the electrodes and the 

c­Si:H film. The second one will consist of the deposition of the c-Si:H semiconductor on glass 

substrates using silicon nitride as a gate dielectric, that should allow us to study TFTs with the same 

boundary conditions to those of TFTs used as active elements in AMLCD.  

 

Conclusions 

 

In this paper we have presented the preliminary results obtained for TFTs using c-Si:H deposited 

at low temperature by Hot Wire CVD. The TFTs had a staggered structure and silicon dioxide was 

used as a dielectric layer. Microcrystalline thin film material can be obtained by HWCVD at 

temperatures as low as 280 ºC with good structural and electronic properties. The transistors present 

satisfactory electrical performance with output characteristics with small crowding effect and good 

saturation level. A field-effect mobility of 0.7 cm
2
/V·s and a threshold voltage of approximately 0.3 

V demonstrate the capability of the HWCVD technique to obtain  device quality silicon thin film 

material.  
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Figure 7. Dependence of the field-effect mobility with the temperature. 
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