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ABSTRACT

Introduction: Methylone (3,4-methylenedioxymethcathinone) is a new psychoactive 

substance and an active ingredient of “legal highs” or “bath salts”. We studied the 

pharmacokinetics and locomotor activity of methylone in rats at doses equivalent to 

those used in humans.  Material and methods: Methylone was administered to male 

Sprague-Dawley rats intravenously (10 mg/kg) and orally (15 and 30 mg/kg). Plasma 

concentrations and metabolites were characterized by LC/MS and LC–MS/MS 

fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results: 

Oral administration of methylone induced a dose-dependent increase in locomotor 

activity in rats. The plasma concentrations after i.v. administration were described by a 

two-compartment model with distribution and terminal elimination phases of α=1.95h
-1

 

and β=0.72h
-1

. For oral administration, peak methylone concentrations were achieved 

between 0.5- 1 h and fitted to a flip-flop model. Absolute bioavailability was about 80% 

and the percentage of methylone protein binding was of 30%. A relationship between 

methylone brain levels and free plasma concentration yielded a ratio of 1.42 ± 0.06, 

indicating access to the central nervous system. We have identified four Phase I 

metabolites after oral administration.  The major metabolic routes are N-demethylation, 

aliphatic hydroxylation and O-methylation of a demethylenate intermediate. Discussion: 

Pharmacokinetic and pharmacodynamic analysis of methylone showed a correlation 

between plasma concentrations and enhancement of the locomotor activity. A 

contribution of metabolites in the activity of methylone after oral administration is 

suggested. Present results will be helpful to understand the time course of the effects of 

this drug of abuse in humans. 

Key words Methylone; Pharmacokinetics; Locomotor activity; PK/PD modeling; Rat.
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1. Introduction 

A new generation of designer phenethylamine derivatives, known as “legal highs” or 

“research chemicals” has emerged and has been marketed as a legal alternative to 

“ecstasy” (3,4-methylenedioxymethamphetamine or MDMA) or cocaine. Their 

chemical structure is related to cathinone, the main psychoactive constituent of khat 

(Sørensen, 2011). These products are also advertised as “bath salts”, the active 

ingredients of which include mephedrone, methylone and MDPV (3,4-

methylenedioxypyrovalerone) alone or mixed (Spiller et al., 2011), available for 

purchase on line, at convenience stores or truck stops. In October 2011, the Drug 

Enforcement Administration (DEA) placed these three synthetic cathinones 

(mephedrone, methylone and MDPV) and their salts and isomers into the Schedule I of 

the Controlled Substances Act, to avoid an imminent hazard to the public safety. In 

October 2012, the DEA extended the temporary placement of methylone into this 

schedule. 

The most commonly available cathinone derivatives sold on the recreational market 

appear to be mephedrone (4-methyl-methcathinone) and methylone (3,4-

methylenedioxymethcathinone) (Brunt et al., 2010). Methylone was first synthesized as 

an antidepressant and taken orally or nasally, as drug of abuse, emerged under the trade 

name “explosion” around 2004 thus making it one of the first products to be marketed 

via on-line (Bossong et al., 2005). 

Previous studies have described that cathinone users consider the effects of these 

new drugs of abuse to be superior to those of cocaine and MDMA (Winstock et al., 

2010, Vardakou et al., 2011) and it may explain their rapid rise in popularity.  

To our knowledge, very little is known about the pharmacology of methylone. 

Results from in vitro studies hypothesized that the mechanism of action of methylone, 

was similar to that of d-amphetamine (Cozzi et al., 1999, Baumann et al., 2012), by 

binding to the monoamine transporters (Nagai et al., 2007, Simmler et al., 2012). More 

recently, some studies on the pharmacological targets of cathinones have been published 

by our group (Martinez-Clemente et al., 2012) and others (Kehr et al., 2011, Hadlock et 

al., 2011, Motbey et al., 2011, Simmler et al., 2013). It has been demonstrated that 

methylone increased the spontaneous locomotor activity in mice in a dose-dependent 
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manner, this effect is prevented by ketanserin or haloperidol pre-treatment. Methylone 

compared to mephedrone and butylone, was the most potent cathinone to inhibit 

serotonin and dopamine uptake, an effect which partially persists after withdrawal 

(López-Arnau et al., 2012). 

Human pharmacokinetics data on methylone are obtained from consumer reports 

(Shimizu et al., 2007, Boulanger-Gobeil et al., 2012), on-line reports also indicate that 

150-300 mg is a common oral dose of methylone. Some reports describe that in humans 

the onset of effect of methylone appears at 15–30 min with a 2–3.5 h duration, but 6–24 

h to return to “normal” status. Kamata et al. (2006) identified the characteristic human 

and rat urinary metabolites of methylone that were of great importance in forensic 

analysis (Zaitsu et al., 2009). Moreover, some human sudden deaths related to 

methylone intake have been reported (Cawrse et al., 2012, Pearson et al., 2012) and 

some reported cases met the Hunter criteria for serotonin syndrome (Boyer and 

Shannon, 2005, Warrick et al., 2012). Methylone concentration- and time-effect 

relationships in laboratory animals and/or humans after different doses and routes of 

administration have not been adequately characterized and further research will be 

necessary to develop adequate prevention and treatment policies. 

The aim of the present study was to characterize the pharmacokinetic profile of 

methylone in rats after intravenous and oral administration and to correlate it with a 

pharmacodynamic evaluation of the psychostimulant effect of this drug of abuse, thus 

establishing a PK/PD model. Furthermore, another goal of this study was to analyze the 

in vivo Phase I metabolites in rat blood and the brain/plasma concentration of this 

cathinone after an oral administration to assess its penetration into the central nervous 

system. Because ethical considerations considerably limit the administration of this 

addictive substance to humans, animal models that mimic human use are essential. 

Accordingly, the oral doses used in this study were selected in the attempt to emulate 

those used by human drug abusers. To our knowledge, all published papers on 

pharmacokinetics of methylone are of a forensic nature (urinary collected specimens) 

(Crawse et al., 2012, Kamata et al., 2006) or from in vitro experiments (Mueller and 

Rentsch, 2012). This study constitutes the first approach to the kinetics of methylone 

based on in vivo blood sample data from laboratory animals and will be helpful to 
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design different treatment regimes in rodents in order to evaluate methylone’s effects as 

well as to understand the time course of the effects of this drug of abuse in humans. 

2. Material and methods 

2.1. Drugs and Reagents 

Pure racemic methylone and mephedrone HCl were synthetized and characterized by us, 

as described previously (López-Arnau et al., 2012). Methylone solutions for injection 

were prepared in saline immediately before administration. Isoflurane was from 

Laboratories Dr. Esteve (Barcelona, Spain). Reagents required for LC/MS assays were 

obtained from Sigma-Aldrich (St. Louis, MO, USA). 

2.2. Animals 

The experimental protocols for the use of animals in this study were approved by the 

Animal Ethics Committee of the University of Barcelona, following the 86/609/EEC 

guidelines. Male Sprague-Dawley rats (Janvier, Le Génest, France) weighing 225-250 g 

were used. Animals were housed at 22 ± 1 ºC under a 12-h light/dark cycle with free 

access to food and drinking water. 

2.3. Pharmacokinetic experiments 

For oral pharmacokinetic experiments, methylone was administered at doses of 15 and 

30 mg/kg to animals previously fasted for 18 h and for intravenous pharmacokinetic 

analysis, methylone was administered at a dose of 10 mg/kg. A total of 8-10 animals per 

dose were used. 

Blood samples (150-200 µl) were collected from isoflurane anesthetized rats through 

a venipuncture of the external jugular vein in a time schedule from 5 min to 8 h (or 24 h 

in some cases) and transferred to 1 ml glass tubes (containing 10 µl EDTA 20 mg/ml) 

on ice. A total of 4-5 blood samples were obtained from one animal. After each blood 

extraction an equal volume of sterile saline was infused to maintain volume and osmotic 

homeostasis.  

 

Blood samples were centrifuged at 1,000 x g for 10 min to obtain the plasma. 90 µl 

of plasma samples were mixed with 10 µl of internal standard (IS) solution (methylone, 

200 ng/ml). The mixture was extracted by adding 250 µl of methanol up to a final 

concentration of 70%. The denatured proteins were precipitated by centrifugation at 
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10,000 x g for 5 min. 250 µl of clear supernatant was acidified with formic acid (50% 

v/v) to a pH of 2.5-3.0 to obtain stable extracts, because in non-acidified live-blood 

extracts, cathinones degraded relatively fast (Sørensen 2011). The mixture was 

transferred to an ultrafiltration filter cup and high-molecular-weight components were 

removed by means of filtration through a 30-kDa regenerated cellulose membrane 

(Microcon 30
®
, Millipore, Bedford, MA, USA). The ultrafiltration unit was centrifuged 

at 20,000 × g for 10 min and 100 µl of the filtrate were transferred to an auto sampler 

vial. 

An HP 1100 Liquid Chromatography (LC) system equipped with an autosampler, a 

column oven set to 40
 o

C and coupled API 3000 triple-quadrupole mass spectrometer 

(MS), with a turbo ion spray source was used to quantify the corresponding cathinone. 

Chromatographic separation was achieved on a Luna HST C18 (100 x 2mm, i.d., 2.5 

µm) column. The mobile phase was water (A) and methanol (B) with 0.1% of formic 

acid in both solvents. An increasing linear gradient (v/v) of B was used (t(min),%B), as 

follows, (0, 5), (20, 95), (22, 95), (22.5, 5) and (32.5, 5), at a constant flow rate (150 

µl/min). The biological samples were refrigerated at 4
 o

C and 5µl were injected into the 

LC-MS/MS system. The LC-ESI (electrospray ionization)-MS/MS conditions were 

optimized by direct infusion of cathinone standards (1 µg/ml) dissolved in 50,50 (v/v) 

water (0.1% formic acid)/methanol (0.1% formic acid) into the MS at a constant flow 

rate (5 µl/min). Two transitions were followed for methylone (m/z 208.1 → 190.1 and 

208.1→ 160.0) (collision energies of 17 and 22 V) and both were used for the 

quantification. For mephedrone one transition was followed (m/z 178.1→ 160.0, 17V).  

2.4. Blood Metabolite determination 

Blood samples were collected at 60, 120 and 180 min after oral administration at a dose 

of 30 mg/kg. Samples were treated as described above, without IS. For metabolite 

identification, a Linear Trap Quadrupole Orbitrap Velos MS equipped with an ESI 

source was used. This system was coupled to an Accela chromatograph, a refrigerated 

auto sampler and a photodiode array detector. Chromatographic separation was 

achieved on a Luna C18 (100 x 2.1mm, i.d., 3µm) column. The mobile phase was the 

same as the one used in the pharmacokinetic studies. In this case, an increasing linear 

gradient (v/v) of B was used (t(min),%B), as follows, (0, 2), (20, 95), (22, 95), (25, 2) 

and (30, 2) at a constant flow rate (150 µl/min). The injection volume was 10 µl. The 

data were acquired in Fourier transform mass spectrometry mode (FT MS) and ranged 
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from m/z 50 to 1,000 in both positive and negative ion modes. Operation parameters 

were as follow, source voltage, 3.5 (kV) in positive mode, S-Lens RF levels, 60%, 

capillary temperature was fixed at 275 
o
C, sheath gas at 40 (arbitrary units) and 

auxiliary gas at 10 (arbitrary units). MS
2
 acquisition was carried out under collision-

induced dissociation conditions using collision energy between 35 and 50%.  

2.5. Protein binding and brain levels 

Blood samples were obtained 45 min after oral administration (dose of 30 mg/kg) 

followed by decapitation and removal of the whole brains. In protein binding 

experiments blood samples were divided by half. One half was filtered through 

centrifugal filter units (Centrifree
®
 YM-30, Millipore, Bedford, MA, USA) for 

comparison with the other unfiltered half.  Plasma samples were extracted as described 

above. The extraction of brain samples was carried out as described by Hadlock et al. 

(2011) and brain methylone levels and protein binding assays were quantified as 

described in the pharmacokinetic experiments. 

 

 2.6. Calibration 

Plasma and brains from untreated rats were used to obtain the calibration curves. In the 

plasma analysis, seven standards were prepared daily in 100 µl of blank plasma (from 

10 to 6,000 ng/ml). To determine brain methylone levels, five standards were prepared, 

also daily, in 0.5 ml of brain homogenate (from 10 to 250 ng/ml). Mephedrone was used 

as IS at the final concentration of 200 ng/ml for plasma levels and 50 ng/ml for brain 

levels. The method showed linearity within the concentration range studied and the limit 

of quantification was considered lower than 10 ng/ml. Quality control samples were 

prepared at 50, 1,000, 5,000 ng/ml and 20, 50, 200 ng/ml for plasma and brain analysis, 

respectively. The accuracy of the assay was 90 - 110%. The intra- and inter-assay 

coefficients of variation (CV) were less than 15%.  

2.7. Pharmacokinetic analysis. 

Mean plasma concentration time profiles were analyzed by bi-compartmental modeling. 

The distribution and elimination characteristics of methylone were determined after the 

i.v. administration. Fixing the parameters obtained in the i.v. model, oral methylone 

profiles were analyzed simultaneously by using a bi-compartmental model with oral 

delay and Michaelis-Menten metabolism kinetics.  The best fit line was selected after 
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visual inspection of the fitting, the analysis of the objective function and the AIC 

(Akaike’s information criterion), the precision of the estimates (mean and CV) and the 

weighted residuals plot analysis.  

The i.v. data were described by and open two-compartmental model and fit to the 

following equation, 

 

Where Cp is the total plasma drug concentration at time t, A and B are the 

extrapolated zero intercepts, and  and  represent the apparent first-order elimination 

rate constants. The half-life (t1/2) for the elimination phase and the volume of 

distribution in the central compartment (Vc) were calculated as follows, t1/2β = 0.693/k10 

where k10 is an overall elimination rate constant, Vc = Dose/(A+B). For the oral route, 

absorption rate constant, ka, was fitted. The parameters Clp (total plasma clearance) and 

Vss (steady state apparent volume of distribution) were calculated using non-

compartmental methodology. The area under the concentration-time curve (AUC0-∞) 

and area under the first moment of the plasma drug concentration-time curve (AUMC0-

∞) were calculated by the following equations, 

 

 

The values reported as the Cmax and Tmax are the actual observed values. The F 

(absolute bioavailability) value for oral administration can be calculated by the 

following formula, 

 

Where, for the oral and i.v. routes Doral and Div are the respective doses, (AUC0-∞) 

oral and (AUC0-∞ ) i.v. are the respective AUCs from 0 to infinity. 

Oral pharmacokinetic parameters were calculated with the following equations,   
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Where ka and t1/2abs are the absorption constant and the absorption constant half-life 

obtained after oral administration. MRT and MAT are the mean resident time and the 

mean absorption time, respectively. Initial estimates of Clp and Vss were those of i.v. 

route. The microconstants k12 and k21 used for the calculation of Vss are the terms that 

describe the distribution of the drug between the central and peripheral compartments. 

When Michaelis-Menten fitting was applied, the first order elimination constant from 

the central compartment was substituted by the following equation,  

 

Where Ct is the methylone concentration at time t, the Vmax the maximum metabolic 

capacity achieved and Km the Michaelis-Menten constant. Clmet is the metabolic 

clearance calculated as follows (Barrett et al., 1998), 

 

2.8. Locomotor activity experiments 

Prior to experiments, all rats received two habituation sessions (48 and 24 h before 

testing). During these sessions, each rat received saline and was placed in a Plexiglas 

cage. This cage constituted the activity box that was later placed inside a frame system 
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of 16 infrared photocells (LE8811, PANLAB, Barcelona, Spain) mounted according to 

the x, y axis coordinates and 2.5 cm above the wire mesh floor. Occlusions of the photo 

beams (breaks) were recorded and sent to a computerized system (SedaCom32, 

PANLAB, Barcelona, Spain). The interruption counts, over a 10 min-block, were 

measured. After intravenous or oral drug administration, locomotor activity was 

monitored for 180 min and 360 min, respectively. On the testing day, the animals 

received methylone intravenously (10 mg/kg), or orally (15 or 30 mg/kg), and were 

immediately placed in the activity box. Registration of horizontal locomotor activity 

then began. Results are expressed as area under the curve (AUC), which was measured 

as the total changes from baseline at each recording interval over 360 min, 

2.9. Pharmacokinetic/pharmacodynamics modeling 

PK/PD analysis was carried out on mean and standard deviation data. Because 

experimental observed data were obtained in parallel assays, data fitting were performed 

with the aggregates of the different doses (data pooling) in order to estimate a unique set 

of parameters. PK and PK/PD analysis was achieved by use of the compartmental 

modeling SAAM II software system (SAAM Institute, Seattle, WA, USA). 

2.10. Pharmacokinetic/Pharmacodynamics analysis. 

A link compartment representing stimulation of the locomotor behavior was used to 

describe the data (Sheiner et al., 1979). Integration of methylone pharmacokinetics and 

pharmacodynamics was based on the relationship between mean plasma methylone 

concentration-time profile for i.v. and oral dosages. PK/PD modeling was also 

performed by using SAAM II. The pharmacokinetic model includes central and 

peripheral compartments, the inter-compartmental rate constants of absorption and 

elimination and the input rate for i.v. and oral administration.  The effect site was 

connected by a fixed rate constant from the central plasma compartment. A dummy 

compartment provides the concentrations in the effect site (Ce).  The simulation PK/PD 

model proposed is an additive sigmoid Emax equation expressed in terms of Ce such that, 
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The baseline value E0 is the effect when methylone concentration is zero. EC50 is the 

concentration that increases E0 to 50% of the Emax or maximal response and “n” 

determines the sigmoid shape of the function (Hill coefficient). 

 

3. Results 

3.1. Methylone pharmacokinetics 

The observed and model-fitted plasma concentrations of methylone at each time point 

are shown in Figure 1. The plasma concentrations versus time curve after intravenous 

administration of methylone were adequately described by a two-compartment model 

(α=1.95 h
-1

 and β=0.72 h
-1

) (Fig. 1). Pharmacokinetic parameters (Table 1) showed that 

the t1/2β was about 1 h. The Vss and Clp resulted in values of 2.39 l/kg and 0.53 l/h 

respectively. 

For oral dosing conditions, pharmacokinetic parameters derived from the methylone 

curves are summarized in Table 2. Cmax values were achieved rapidly, usually within 

0.5 to 1 h, and declined to undetectable levels at 24 h. As might be expected, absolute 

AUC value increased proportionally with dose. Bioavailability was calculated of 78-

89% after oral administration of the two doses. The standard errors of the majority of 

pharmacokinetic parameters were relatively small (coefficients of variation < 20%). 

Interindividual variability in the experimental Cmax value was evident from the high 

value of CV.  

3.2. Methylone protein binding and brain levels 

Results from blood samples obtained near Tmax yielded a percentage of methylone 

protein binding of 30.82 ± 2.23%. Whole brain levels of 349.2 ± 26.7 ng methylone/g 

tissue (n = 3) were found. The relationship between brain levels and free plasma 

concentration yielded a ratio of 1.42 ± 0.06, indicating access of methylone to the 

central nervous system. 

3.3. Identification of methylone and metabolites in rat blood 

In the present study, we have identified four metabolites that are detected in all 

collected samples at 60, 120 and 180 min. The identification of methylone and the 

observed metabolites by mass spectrometry is provided below. 
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3.3.1. Methylone 

The calculated [M+H
+
] m/z for methylone (C11H13NO3) was 208.09737, the found 

[M+H
+
] m/z was 208.09720 (0.17 mDa). The peak at m/z 190 is attributable to the 

typical H2O loss (18 Da). The loss of methylamine group (31 Da) gave a fragment with 

low intensity at m/z 177. We also observed the loss of the methylenedioxy group 

(CH4O2, 48 Da). The presence of the fragment at m/z 149 indicates the loss of C3H9N 

(59 Da), the intensity of which was found to be considerably low.  

3.3.2. 3,4- Methylenedioxycathinone (MDC) 

We identified the corresponding N-demethylation metabolite, MDC, with formula 

C10H11NO3. The calculated [M+ H
+
] m/z was 194.08117, the found [M+ H

+
] m/z was 

194.08142 (0.25 mDa). The peak at m/z 176 is corresponding to the H2O loss (18 Da). 

The C2H6N and CH4O2 loss (45 Da and 48 Da) gave two peaks at m/z 149 and 146, 

respectively, suggesting that this mass spectrum is in accordance with the metabolite 

structure proposed. 

3.3.3. 4-Hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC) and 3-Hydroxy-3-

methoxymethcathinone (3-OH-4-MeO-MC) 

Two metabolites were detected with the same chemical formula C11H15NO3 and mass 

spectrum, but with different retention times (Fig. 2). For 4-OH-3-MeO-MC and 3-OH-

4-MeO-MC the calculated [M+ H
+
] m/z was 210.11247, the found [M+ H

+
] m/z was 

210.11319 (0.72 mDa) and 210.11355 (1.08 mDa) respectively. Both compounds gave a 

peak at m/z 192 (H2O loss). In this case, the loss of the methylenedioxy group was not 

found, however the peak at m/z 160 shows the CO2H6 loss (50 Da) reflecting the 

aperture of the methylenedioxy ring. Based on studies by Kamata et al. (2006), we 

assumed that 4-OH-3-MeO-MC was the first compound to be eluted out of the two, due 

to that the chromatography conditions were similar. 

3.3.5. 3’-Hydroxy-methylenedioxymethcathinone (3’-OH-MDMC) 

A compound with chemical formula C11H13NO4 was detected, and the calculated 

[M+H
+
] m/z was 224.09173, the found [M+H

+
] m/z was 224.09154 (0.19 mDa). 

Typical loss of water was also observed giving a peak at m/z 206. Furthermore, a 

double water loss (36 Da) was detected, indicating the possible presence of a hydroxyl 

group in this structure. The peak at m/z 176, which shows the loss of 48 Da, can be 

attributed to the methylenedioxy group. In order to confirm the proposed structure, the 
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loss of the methylenedioxybenzoylcation fragment (149 Da) gave a peak at m/z 74, 

which corresponds to a hydroxylated immonium cation (Fig. 2). 

We ensured that the mass found did not correspond to endogenous compounds by 

comparing each metabolite mass from treated and untreated rat blood samples. From the 

metabolites detected, the proposed in vivo phase I metabolic pathway for this cathinone 

is displayed in Figure 3. 

3.4. Locomotor activity 

Intravenous administration of methylone induced an increase in the rat locomotor 

activity (AUC Saline, 8683 ± 98, Methylone, 95078 ± 19953, n = 3, p<0.01, Student-t 

test, independent samples) that lasted for 150 min. 

Similarly, an overall ANOVA demonstrated a significant effect of oral methylone in 

the locomotor activity in rats (F2,8 = 6.015, p<0.05). The post-hoc Tukey-Kramer test 

revealed that methylone increased the locomotor activity in a dose-dependent manner 

(AUC saline, 20760 ± 2002, Methylone 15 mg/kg, 95767 ± 23537, p<0.05, Methylone 

30 mg/kg, 133354 ± 32878, p<0.05, n = 3). As can be seen in Figure 4, this increase is 

due mainly to a different time-course profile. The higher dose (30 mg/kg) induced a 

maximum break response (2011 ± 750, n = 3) that did not differ significantly from that 

of 15 mg/kg (2005 ± 344, n = 3), but the disappearance of the effect becomes much 

slower. After the dose of 15 mg/kg, break values were not significantly different from 

animals treated with saline after 180 min. At the highest dose tested, the 

psychostimulant effect of methylone persisted for 270 min (Fig. 4). 

3.5. Pharmacokinetic/Pharmacodynamic analysis. 

A plot of locomotor activity versus methylone concentrations over time shows a direct 

relationship between concentrations and pharmacological effect after i.v. administration 

of methylone (Fig. 5A). A counter-clockwise hysteresis behavior was observed after the 

oral administration (Figs. 5B and 5C). With the developed PK/PD model the mean EC50 

and Emax values obtained ranged from 3.1 to 6.7 ng/ml and from 508.42 to 1280.86 

breaks, respectively (Table 3). Good agreement between the predicted and observed 

values was noted for the locomotor activity data (mean objective function of 7.60 ± 0.52 

and mean AIC of 7.04 ± 0.57). Methylone plasma concentration profile and predicted 

%Emax versus time are shown in Fig 6. A delay between these plasma concentrations 
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and the effect can be observed at the dose of 15 mg/kg, but this delay is reduced at the 

highest dose. This does not occur when effect site-concentration is displayed. The 

values of methylone concentration in the effect-site were approximately twice when 

doubling the dose.  

4. Discussion 

To our knowledge, no research on the pharmacokinetics of methylone in rats is 

presently available. Therefore, in this study we have characterized the pharmacokinetics 

and pharmacodynamics of methylone in male Sprague–Dawley rats. High levels of 

locomotor activity, which measures the psychostimulant effect, occurred after 

methylone administration and are consistent with the onset of subjective and 

physiological effects in humans. The oral doses used, 15 and 30 mg/kg, are equivalent 

to 158 and 315 mg respectively, according to the FDA guidelines (Food and Drug 

Administration, Center for Drug Evaluation and Research, 2005), to those frequently 

declared as very usual in humans. 

Our results show that the blood levels of methylone in rats declined in a biphasic 

fashion after intravenous administration at a dose of 10 mg/kg. The large Vss indicates 

that methylone is distributed extensively into tissues and the Clp value explains the 

rapid elimination half-life (1 h). At administered oral doses, methylone displayed linear 

pharmacokinetics since the observed concentrations in blood were directly proportional 

to the administered dose. This observation suggests that, at present doses, the processes 

involved in the disposition of methylone were not saturated. At the highest dose tested, 

the reduction in the ka value and increased tlag explained that Tmax moves from 30 to 

60 min. 

The terminal plasma half-life of methylone after oral administration was significantly 

higher than after i.v. administration, suggesting a pharmacokinetic flip-flop model. Flip-

flop pharmacokinetics is a phenomenon often encountered with extravascular 

administered drugs (Yáñez et al., 2011). Flip-flop occurs when the rate of absorption is 

slower than the rate of elimination. When flip-flop is expected, a longer duration of 

sampling may be necessary. Accordingly, in some animals, we collected blood samples 

24 h after drug administration. Our fitted model confirmed that a flip-flop phenomenon 
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was taken place, since absorption rate (t1/2abs between 2–3 h) of methylone is 

considerably slower than its elimination rate (t1/2β of 0.55 h).  

It is well recognized that compounds with a brain/plasma concentration ratio greater 

than 1 freely cross the blood-brain-barrier (Hitchcock and Pennington, 2006). Hence, 

the obtained brain/plasma ratio for methylone at Tmax of 1.42 demonstrates the access 

to central nervous system. 

The rate of clearance and protein binding are acknowledged could cause discrepancy 

between in vitro and in vivo values (Halifax and Houston, 2012). In this study, 

methylone, at a plasma concentration near T max, binds to serum proteins at a low rate 

of about 30% and the metabolic clearance averages a 29% of total clearance. The 

calculated Clp for methylone averaged 0.5 l/h after both oral doses. Because it appeared 

to exceed both hepatic and renal blood flow in the rat (Birnie and Grayson, 1952, Heller 

and Hollyová, 1977), these in vivo data suggest that the liver, kidney, and possibly other 

clearing organs are involved in methylone elimination at these two oral doses. 

We have investigated the in vivo Phase I metabolism of methylone after oral 

administration of a 30 mg/kg dose. We identified the existence of four metabolites in rat 

blood at three times after administration (60, 120 and 180 minutes) and we propose a 

first step phase I metabolism for methylone consisting of demethylation reaction, 

yielding the corresponding methylenedioxycathinone metabolite. Moreover, we propose 

that, in rats, methylone is a substrate of an aliphatic hydroxylation process resulting in 

the corresponding 3’-hydroxy-methylenedioxymethcathinone. Mueller and Rentsch 

(2012) proposed these methylone metabolites by an automated online metabolism 

method using human liver microsomes, but this is the first time that 3’-hydroxy-

methylenedioxymethcathinone metabolite has been identified in vivo. The same authors 

found a third metabolite corresponding to the reduction of the beta-keto group which we 

did not detect in rat blood probably due to its low half-life. 

 We have also identified two hydroxylated metabolites (4-hydroxy-3-

methoxymethcathinone and 3-hydroxy-4-methoxymethcathinone) with the same 

chemical formula and mass spectrum, resulting from a demethylenated intermediate that 

had lost the methylenedioxy group to the respective diol and which has not been found, 

probably due to its short half-life. Moreover, the amounts of these metabolites were 
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very low. This is also in agreement with results from the same authors who found that 

over 80% of these two metabolites were conjugated when excreted through urine. 

Surprisingly, we have not found the corresponding demethyl compounds of the 

hydroxylated metabolites but these was also not found by Mueller and Rentsch (2012), 

which studied Phase I metabolites. The results indicate that the metabolism of 

methylone contributes significantly to its plasmatic clearance and this contribution is 

especially evident when the drug is administered orally, as a result of a hepatic first-pass 

effect, as is suggested by the differential pharmacokinetic profile observed in both 

routes of administration. 

Pharmacodynamic experiments demonstrated that intravenous and oral 

administration of methylone induced a psychostimulant effect, measured as an increase 

in locomotor activity in rats. It is important to note that the increase in the locomotor 

activity elicited by oral administration of methylone is due mainly to a different time-

course profile. The 30 mg/kg dose induced a maximum break response which was not 

significantly different to that of 15 mg/kg, but the psychostimulant effect lasted longer. 

This is in agreement with previous published results in mice (López-Arnau et al., 2012; 

Marusich et al., 2012). 

 The PK/PD relationship established in the study allows performing an estimation of 

the EC50 and Emax parameters, and provides information about the onset, magnitude 

and duration of the locomotor activity with relation to the time course of methylone 

plasma concentrations. An increase in locomotor activity was observed immediately 

after methylone administration in accordance with the immediate onset of its effects in 

humans (Shimizu et al., 2007). There is a delay between drug response and methylone 

plasma levels after oral administration. Thus, in presence of delay, the methylone 

plasma concentration profile may not be directly related to the pharmacological effect. 

When defining in the model an effect site-compartment, a close relationship between 

the effect and the obtained concentration curve becomes evident. 

 At the dose of 15 mg/kg, the plot of locomotor activity as a function of plasma 

methylone concentrations shows a counter-clockwise hysteresis loop. This hysteresis 

can be explained by the appearance of active metabolites (Mandema et al., 1992); by 

indirect mechanisms of drug action (Dayneka et al., 1993) or by an imbalance between 

the site of action (the brain) and the plasmatic compartment (Sheiner et al., 1979).  
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 In this study the presence of some metabolites of methylone, similar to active 

metabolites of MDMA (De la Torre and Farre, 2004), strongly suggests their 

participation in the overall locomotor activity, but other possibilities cannot be 

discarded (Csajka and Verotta, 2006). Further studies with individual metabolites will 

determine which structural species have the highest likelihood of contributing to the 

locomotor activity caused by methylone. 

Additionally, we have previously described that methylone inhibits monoamine 

uptake by competing with the substrate (López-Arnau et al., 2012). Consequently, it 

induces hyperlocomotion mainly by an indirect mechanism (increasing extra-cellular 

dopamine) and by also a direct mechanism through activation of 5-HT2A receptors could 

be evidenced. The lower affinity of methylone for 5-HT2A receptors than for dopamine 

transporter lead us to hypothesize that direct activation of this receptor type can 

contribute to the final effect when high concentrations in the effect-site compartment are 

achieved. Then, at the oral dose of 30mg/kg, the lack of hysteresis can be explained by 

a) this additional direct mechanism of action or b) the low imbalance between brain and 

plasma concentrations at this dose.   

The variability obtained in the pharmacodynamic estimates can be explained by the 

use of an Emax model without a clear maximum effect, seeing as it was obtained 

experimentally and taking into account that in this model maximum effect must be 

reached (Schoemaker et al., 1998). The experimental design followed in this study does 

not allow the assessment of the within and between variability of the PK/PD 

relationship and this drawback may contribute to the overall variability of the 

pharmacodynamic parameter estimates. 

 

5. Conclusion 

PK/PD analysis of methylone showed a correlation between plasma concentrations and 

enhancement of the locomotor activity. The identification of some metabolites of 

methylone, similar to active metabolites of MDMA strongly suggests their participation 

in the overall locomotor activity. We have previously described that methylone induces 

hyperlocomotion mainly by an indirect mechanism (increasing extra-cellular 
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dopamine). At the highest oral dose assayed, direct activation of 5-HT2A receptor seems 

also to contribute to the final psychostimulant effect. The present research provides, for 

a first time, useful information on the in vivo pharmacokinetics of methylone, and can 

help design new experiments in rodents with kinetics data as well as provide a better 

understanding of the effects of this cathinone in humans. 

 

Contributors 

EE and JC were responsible for the study concept and design. RLA, JMC. MC and 

DP assisted with data analysis. All authors critically reviewed content and approved 

final version for publication. 

 

Acknowledgements 

Authors acknowledge A. Ciudad-Roberts for revising the language of the 

manuscript. Funding for this study was provided by grants from Generalitat de 

Catalunya (SGR977), Plan Nacional sobre Drogas (2010/005) and Ministerio de Ciencia 

e Innovación (SAF2010-15948). Any of these institutions had no role in study design, in 

the collection, analysis and interpretation of data, in the writing of the report, and in the 

decision to submit the paper for publication. 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

19 

 

 

References 

Barrett PH, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II, 

Simulation, Analysis and Modeling Software for tracer and pharmacokinetics studies. 

Metabolism 1998;47:484-492. 

Baumann MH,  Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, et al. The 

designer methcathinone analogs, mephedrone and methylone, are substrates for 

monoamine transporters in brain tissue. Neuropsychopharmacology 2012;37:1192-

1203. 

Birnie JH, Grayson J. Observations on temperature distribution and liver blood flow in 

the rat. J Physiol 1952;116:189-201. 

Bossong MG, Van Dijk JP, Niesink RJ. Methylone and mCPP, two new drugs of abuse? 

Addict Biol 2005;10:321-332. 

Boulanger-Gobeil C, St-Onge M, Laliberté M, Auger PLJ. Seizures and hyponatremia 

related to ethcathinone and methylone poisoning. Med Toxicol 2012;8:59-61. 

Boyer EW, Shannon M. The serotonin syndrome. New Engl J Med 2005;352:1112–

1120. 

Brunt TM, Poortman A, Niesink RJ, Van den Brink W. Instability of the ecstasy market 

and a new kid on the block, mephedrone. J Psychopharmacol 2010;25:1543-1547. 

Cozzi NV, Sievert MK, Shulgin AT, Jacobill, P., Rhuolo, A.E., 1999. Inhibition of 

plasma membrane monoamine transporters by betaketoamphetamines. Eur J Pharmacol 

38, 63–69. 

Cawrse BM, Levine B, Jufer RA, Fowler DR, Vorce SP, Dickson AJ, et al. Distribution 

of Methylone in Four Postmortem Cases. J Anal Toxicol 2012;36:434-439. 

Csajka C, Verotta D. Pharmacokinetic-pharmacodynamic modelling, history and 

perspectives. Clin Pharmacokinet Pharmacodyn 2006;33:227-279. 

Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect 

pharmacodynamic responses. J Pharmacokinet Biopharm 1993;21:457-478. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

20 

 

 

De la Torre R, Farré M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling 

from animals to humans. Trends Pharmacol Sci 2004;25:505-508.  

Food and Drug Administration Center for Drug Evaluation and Research (2005). 

Guidance for Industry. Estimating the Maximum Safe Starting Dose in Initial Clinical 

Trials for Therapeutics in Adult Healthy Volunteers. Available at 

http,//www.fda.gov/cder/guidance/index.htm. Accessed 14 October 2012. 

Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, et al. 4-

Methylmethcathinone (mephedrone), neuropharmacological effects of a designer 

stimulant of abuse. J Pharmacol Exp Ther 2011;339:530-536. 

Halifax D, Houston BJ. Evaluation of hepatic clearance prediction using in vitro data. 

Emphasis of fraction unbound in plasma and drug ionisation using a dataset of 107 

drugs. J Pharm Sci 2012;101:2645–2652. 

Heller J, Hollyová J.  Autoregulation of renal blood flow in the rat. Pflügers Arch Eur J 

Physiol 1977;370:81-85. 

Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem 

2006;49:7559–7583. 

Kamata HT, Shima N, Zaitsu K, Kamata A, Miki M, Nishikawa M, et al. Metabolism of 

the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 

2006;36:709–723. 

Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, et al. Mephedrone, 

compared to MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 

serotonin levels in nucleus accumbens of awake rats. Br J Pharmacol 2011;64:1949-

1958. 

López-Arnau R, Martínez-Clemente J, Pubill D, Escubedo E, Camarasa J. Comparative 

neuropharmacology of three psychostimulant cathinone derivatives, butylone, 

mephedrone and methylone. Br J Pharmacol 2012;167:407-420. 

Mandema W, Tuk B, van Steveninck AL, Breimer DD, Cohen AF, Danhof M. 

Pharmacokinetic-pharmacodynamic modelling of the central nervous system effects of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

21 

 

 

midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. 

Clin Pharmacol Ther 1992;51:715-728. 

Martínez-Clemente J, Escubedo E, Pubill D, Camarasa J. Interaction of mephedrone 

with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol 2012;22:231-

236. 

Marusich JA, Grant KT, Blough BE, Wiley JL. Effects of synthetic cathinones 

contained in “bath salts” on motor behavior and a functional observational battery in 

mice. Br J Pharmacol 2012;33:1305-1313. 

Motbey CP, Hunt GE, Bowen MT, Artiss S, McGregor IS. Mephedrone (4-

methylmethcathinone, 'meow'), acute behavioural effects and distribution of Fos 

expression in adolescent rats. Addict Biol 2011;7:409-422. 

Mueller DM, Rentsch KM. Generation of metabolites by an automated online 

metabolism method using human liver microsomes with subsequent identification by 

LC-MS(n), and metabolism of 11 cathinones. Anal Bioanal Chem 2012;402:2141-2151. 

Nagai F, Nonaka R, Satoh K, Kamimura SHK. The effects of non-medically used 

psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 

2007;559:132-137.  

Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee CC, Garg U, et al. Three fatal 

intoxications due to methylone. J Anal Toxicol 2012;36:444-451. 

Schoemaker RC, van Gerven JM, Cohen AF. Estimating potency for the Emax model 

without attaining maximal effects.  J Pharmacokinet Biopharm 1998;26:581-593. 

Sheiner LB, Stanki DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of 

pharmacokinetics and pharmacodynamics, application to d-tubocurarine. Clin 

Pharmacol Ther 1979;25:358-371. 

Shimizu E, Watanabe H, Kojima T, Hagiwara H, Fujisaki M, Miyatake R, et al. 

Combined intoxication with methylone and 5-MeO-MIPT. Prog 

Neuropsychopharmacol Biol Psychiatr 2007;31:288–291. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

22 

 

 

Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. 

Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 

2013;168:458-470. 

Sørensen LK. Determination of cathinones and related ephedrines in forensic whole-

blood samples by liquid-chromatography–electrospray tandem mass spectrometry. J 

Chromatogr B 2011;879:727-736. 

Spiller HA, Ryan ML, Weston RG, Jansen J. Clinical experience with and analytical 

confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United 

States. Clinical Toxicology 2011;49:499-505. 

Vardakou I, Pistos C, Spiliopoulou CH. Drugs for youth via Internet and the example of 

mephedrone. Toxicol Lett 2011;201:191-195. 

Warrick BJ, Wilson J, Hedge M, Freeman S, Leonard K, Aaron C. Lethal serotonin 

syndrome after methylone and butylone ingestion. J Med Toxicol 2012;8:65-68. 

Winstock A, Mitcheson L, Masden J. Mephedrone, still available and twice the price. 

Lancet 2010;376:1537. 

Yáñez JA, Remsberg CM, Sayre CL, Forrest ML, Davies NM. Flip-flop 

pharmacokinetics-delivering a reversal of disposition, challenges and opportunities 

during drug development. Ther Deliv 2011;2:643-672. 

Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, et al. Determination of 

the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. 

Forensic Sci Int 2009;188:131-139.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

23 

 

 

Legends of Figures 

Fig. 1. Time-course of experimental and fitted plasma methylone levels after 

intravenous (10 mg/kg) and oral (15 and 30 mg/kg) administration. Rats received 

methylone at time 0, and blood specimens (0.2 mL) were collected through the external 

jugular vein from 0.08 to 8 h after administration. Plasma levels of methylone were 

quantitated by LC-MS as described in Materials and Methods section. Data are 

expressed as mean for n, 4 to 5 rats/group. SEM values are not displayed for clarity. 

Fig. 2. LC-MS Orbitrap data for fragmentation of methylone and their metabolites in rat 

plasma after a single oral dose of 30 mg/kg at three different times after administration 

(60, 120 and 180 min). Scheme of proposed fragmentation patterns for methylone and 

its metabolite 3’-OH-MDMC. 

Fig. 3. In vivo metabolic pathways proposed for methylone in rat plasma after a single 

oral administration of 30 mg/kg. 

Fig. 4. Time-course of locomotor activity induced after oral (15 and 30 mg/kg) and 

intravenous (10 mg/kg) administration of methylone. For this behavior, the interruption 

counts in the frame of the apparatus were registered and displayed in a 30 min-block. 

Vertical axis shows breaks/animal in 30 minutes intervals. Locomotor activity was 

monitored for 360 min and 180 min for oral and intravenous administration, 

respectively. Data are expressed as the mean ± SEM of values from 3 rats. 

Fig. 5. Observed plasma concentrations of methylone versus observed %Emax in 10 

min-block. Panel A, after intravenous administration (10 mg/kg). Panel B, after oral 

administration (15 mg/kg).  Panel C, after oral administration (30 mg/kg).  Data points 

show experimental time (in h) of pharmacokinetic and pharmacodynamic data.  

Fig. 6. Methylone plasma concentration profile (
......

), effect site-concentration curve (
___

) 

and predicted %Emax (----) versus time. Panel A, after intravenous administration (10 

mg/kg). Panel B, after oral administration (15 mg/kg).  Panel C, after oral 

administration (30 mg/kg).  
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Figure 6 
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Table 1: Main pharmacokinetic parameter estimates of methylone after i.v.  

administration (10 mg/Kg) to male Sprague-Dawley rats. 

 

Parameter Units Estimate CV(%) 

A ng/ml 3483.84 12.3 

B ng/ml 1787.75 21.8 

 h-1 1.95 11.7 

 h-1 0.72 7.1 

K10 h-1 1.22 4.2 

K12 h-1 0.28 24.7 

K21 h-1 1.15 16.4 

AUC 0-∞ ng.h/ml 4251.89 1.9 

AUC 0-t ng.h/ml 4241.6 0.2 

Co
p ng/ml 5271.60 4.7 

Vc ml 426.81 4.7 

Vss ml 537.68 1.54 

t1/2 h 0.95 7.1 

CLp ml/h 529.18 1.9 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

31 

 

 

Table 2: Main pharmacokinetic parameter estimates of methylone after oral 

administration to male Sprague-Dawley rats at a dose of 15 mg/Kg (Value 15) and 30 

mg/Kg (Value 30). Results are expressed as mean and the corresponding coefficient of 

variation (CV) in %. 

Parameter Units Value 15 (CV) Value 30 (CV) 

Cmax obs ng/ml 1456.67 (15.8) 1896.00 (69.2) 
Tmax obs h 0.50 (0.0) 0.97 (55.3) 
AUC 0-∞ ng.h/ml 5740.30 (24.4) 9988.80 (10.1) 
AUC 0-t ng.h/ml 4942.50 (2.4) 8092.60 (9.9) 
t1/2abs app h 2.15 (7.0) 3.14 (10.7) 

t1/2app h 0.55 (4.5) 0.55 (4.5) 

tlag h 0.17 (7.7) 0.28 (9.8) 
Vss ml 433.31 (4.9)  
F* % 89.00 (-) 78.40 (-) 

CLmet ml/h 154.80 (18.7) 154.80 (18.7) 
MRT h 0.79 (4.5) 0.82 (4.2) 
MAT h 0.46 (7.0) 0.20 (10.7) 
Km /ml 2.68 (122) 2.68 (122) 

Vmax g/h 414.30 (104) 414.30 (104) 

CLp ml/h 529.52 (2.05) 530.96 (1.9) 

*Calculated as F = (AUC0-oral  x Dose i.v.)/( AUC0-i.v.  x Dose oral) 
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Table 3. Estimates of the pharmacodynamic parameters, according to the proposed 

additive sigmoid Emax equation PKPD model. In parentheses the corresponding 

coefficient of variation (CV) in %. 

 

  dose  

Parameter units 10 mg/kg i.v. 15 mg/kg p.o. 30 mg/kg p.o.  

E0 breaks 29.43 (112) 185.63 (28.20) 10.80 (*)  

EC50 ng/ml 6.68 (11.3) 1.32 (6.05) 0.90 (6.50)  

Emax breaks 1280.86 (8.97) 1985.30 (8.90) 1733.84 (6.60)  

n - 3.13 (**) 5.23 (**) 4.96 (**)  

O.F.  6.91 5.68 5.25  

AIC  7.77 6.60 7.85  

 

O.F.: Objective Function; AIC: Akaike information criterion; (*): CV > 150%; (**)  CV 

not  determined 
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Highlights 

 

 We study the in vivo pharmacokinetics of methylone in rats 

 Intravenous methylone kinetics were adjusted to a two-compartment model  

 Bioavailability was about 80% and four Phase I metabolites were identified 

 There exists a correlation between plasma concentrations and enhancement of 

the locomotor activity. 


