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Abstract  10 

As a constituent of selenoproteins, selenium (Se) is considered an essential element for human 11 

health. The main way that Se enters the body is via the consumption of vegetables, whose 12 

concentration of this element depends on soil Se content. We grew cabbage, lettuce, chard and 13 

parsley, in peat enriched in Se by means of the additive Selcote Ultra
®
 and Na2SeO3 and 14 

Na2SeO4. Total Se in plants was determined by acidic digestion and Se speciation by an 15 

enzymatic extraction. Both were measured by ICP/MS. The concentration ranges were between 16 

0.1 mg Se kg
-1

 and 30 mg Se kg
-1

 for plants grown in Selcote Ultra
®
 media, and between 0.4 mg 17 

Se kg
-1

 and 1606 mg Se kg
-1

 for those grown in peat enriched with Se sodium salts. We found Se 18 

(IV), Se (VI) and SeMet in all the extracts. Peat fortified with Selcote Ultra® gave slightly 19 

higher Se concentration than natural content values. For plants grown with selenium sodium 20 

salts, Se content increases with the Se added and part of the inorganic Se was converted mainly 21 

to SeMet. A high Se fortification can damage or inhibit plant growth. Cabbage showed the 22 

greatest tolerance to Se. 23 

 24 
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 29 

Selenium (Se) is an essential element for humans and higher animals, since it is present in 30 

several selenoproteins that contribute to preventing oxidative cellular degradation (Zeng and 31 

Combs, 2008). This element is incorporated into the primary structure of these proteins as the 32 

amino acid selenocysteine (SeCys). In the 1970s, it was discovered that Se was a constituent of 33 

the anti-oxidant enzyme glutathione peroxidase (GPX). In addition, it is involved in thyroid 34 

hormone homeostasis, immunity, and fertility, among other activities (Reilly 2006). Se generates 35 

nutritional and toxicological concerns as the difference between its essentiality and toxicity in 36 

dose-response curves is very narrow. The European Directive 2008/100/CE determines the RDA 37 

(Recommended Daily Amount) of this element at 55 µg day
-1

, and the maximum Se 38 

consumption without risk to health is 300 µg day
-1

 in adults. According with the literature, the 39 

NOAEL (Non Observed Adverse Effects Level) is considered to be about 800 µg Se day
-1

 while 40 

the LOAEL (Lowest Observed Adverse Effects Level) is 1500 µg Se day
-1

 and symptoms of 41 

toxicity are observed with an intake of 6300 µg Se day
-1

 (Scientific Committee on Food, 2000; 42 

Wangher et al., 1996). 43 

Se deficiency in humans causes ailments such as Keshan disease, a heart disorder, and Kaschin-44 

Beck disease, a degenerative disorder that affects bone. However, at elevated doses Se can cause 45 

toxic effects (Tan et al., 2002; Hartikanen, 2005; Lenz and Lens, 2009). Furthermore, the 46 

essential or toxic effect of this element in humans depends on its chemical form (Reilly, 2006). 47 

The major source of Se in most human diets is provided by plants. The availability of Se to the 48 

plant is determined by soil properties and conditions. Thus Se can occur as inorganic (selenite 49 

and selenate) or organic forms. Selenate, which is more soluble than selenite, can pass directly 50 

into plant roots; in contrast the uptake mechanism for selenite is unclear (Sager, 2006; Lin, 51 

2009). Selenate competes with sulphate transport in the root plasma membrane and it is much 52 
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more abundant in leaves than selenite (Reilly, 2006). Inorganic Se absorbed by plants is 53 

metabolised in a variety of ways to organic Se compounds, the distinct molecular structures of 54 

which depend on the plant species (Gammelgaard and Jackson, 2011). Soils differ greatly in Se 55 

content, and in some geographical zones low concentrations lead to a decrease in plant Se uptake 56 

(Moreno Rodriguez et al., 2005; Hawkesford and Zhao, 2007; Spadoni et al., 2007). In some 57 

countries, inorganic Se compounds are commonly used as additives in fertilisers to improve the 58 

nutritional quality of local foodstuffs. This practice of Se fertilisation has been applied mainly in 59 

Finland and New Zealand (Eurola, 2000). A number of studies have addressed the effects of 60 

distinct forms of Se and cultivation conditions on edible plants. These studies mainly used 61 

selenite and selenate as sodium salts or barium salts (Iwashita and Nishi, 2004; Rayman et al., 62 

2008; Broadley et al., 2010). Other strategies have been proposed to enhance the uptake of Se by 63 

plants, thus the generation of wetting and drying cycles in soil can convert more Se into soluble 64 

selenate, which is more amenable for uptake by plants (Shrestha et al., 2006). Several dominant 65 

species have been identified in plant foods. The main one is SeMet, and its behaviour has been 66 

examined widely due to interest in its biological activity (Reilly, 2006; Mechora et al., 2012; 67 

Mazej et al., 2007). Here we addressed Se speciation in vegetables. For this purpose, we grew 68 

cabbage (Brassica oleracea), lettuce (Lactuca sativa), chard (Beta vulgaris) and parsley 69 

(Petroselinum crispum) in peat subjected to two fortifying treatments, namely the additive 70 

Selcote Ultra® (Vereinigte kreidewerke Damman KG) (which has a Se content commonly found 71 

for non-contaminated soils) and mixtures of sodium salts of selenite and selenate at Se 72 

concentrations widely found in seleniferous areas. Several studies of Se speciation in cabbage 73 

and lettuce have been reported (Iwashita and Nishi, 2004; Ahmed, 2010). Our study also 74 

includes chard and parsley to widen the information in the literature regarding Se speciation. We 75 

analysed Se speciation in distinct parts of plants and along the growing period. Moreover, we 76 
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also measured Se in the original seeds. Our results provide further knowledge of the 77 

effectiveness of soil Se amendment and of the transformations and further availability of Se 78 

species in plants for human consumption.   79 

 80 

2. Materials and methods 81 

 82 

2.1 Plant culture 83 

A commercial peat provided by Plantaflor Humus Verkaufs-GMbH was used. This peat               84 

(composed by perlite and vermiculite) contains more than 90% organic matter (dry matter), 1% 85 

N (dry matter), and 60% moisture. It is free from Cl
-
 and its conductivity is less than 175 µS/cm. 86 

Seeds of lettuce, cabbage, chard and parsley were sowing in multi-pots (depth 6cm). The 87 

cultivation was carried out in a plant growth chamber (Ibercex, Spain) in a walk-in configuration, 88 

for three weeks, under controlled environmental conditions with relative humidity of 70%, 89 

temperature 22ºC and 16 h of photoperiod (110 µmol m
-2

 s
-1

 photosynthetically active reaction 90 

(PAR) ). Next, at a greenhouse (temperature range was 18-30ºC), individual plants were 91 

transplanted in individual pots (14 cm upper diameter, 9.5 cm lower diameter, 16 cm in height) 92 

of 2 L volume, filled with peat, and the pots were then placed on a tray to collect irrigation water. 93 

All vegetables were irrigated on the basis of their water demands. 94 

 95 

2.2 Exposure of plants to selenium 96 

Three series of cultivation media were prepared: peat without fortification, as a control; peat 97 

fortified with Selcote Ultra
®
 (which contains 10 g Se kg

-1
 with a minimum of 90% as Se (VI) and 98 

a maximum of 10% as Se (IV), BaSeO4 (1-5%), Na2SeO4 (< 2.5%), Na2SeO3 and BaSeO3         99 

(~ 0.5%) ), and peat fortified with Se sodium salts. Furthermore, the peat was fortified with 100 
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Selcote Ultra
®
 at two concentration ranges, namely level A: 0.05-0.08 mg Se kg

-1
,
 
which is the 101 

recommended concentration, and level B: 0.21-0.27 mg Se kg
-1

. In contrast, the peat was 102 

fortified with sodium selenite and sodium selenate (1:9) at three concentration ranges, namely 103 

level C: 2-8 mg Se kg
-1

, level D: 9-17 mg Se kg
-1

; and level E: 83-158 mg Se kg
-1

. All of these 104 

concentrations were prepared in triplicate. Three pots without Se fortification were prepared as 105 

controls for each plant species. In order to improve growth, 1 g of an NPK fertiliser (which 106 

contains NO3
-
, P2O5 and K2O at the same ratio (15%)) was added to all the growth media 3 times 107 

every 2 months. The vegetables were harvested at 4 or 6 months, depending on the growth cycle 108 

of each species. 109 

After collection, vegetable samples were cleaned, and leaves, stems and roots were separated. 110 

This material was then dried at 40ºC. Then the samples were milled with a glass mortar, 111 

transferred to a HDPE bottle, and stored at room temperature until analysis (from 2 days to 2 112 

weeks). 113 

 114 

2.3 Characterisation of Selcote Ultra
®
 and peat 115 

 A Phillips PW 2400 X-ray spectrometer with Rh and Au excitation tubes was used to measure 116 

the main compounds in the commercial additive Selcote Ultra
®
 and in the peat. After drying at 117 

500ºC, samples were diluted (1:20) with lithium tetraborate and melted at 1125ºC in a radio-118 

frequency inductive oven (Panalytical PERLE’X3 Micro-processing System) to obtain pearls 119 

with a 30-mm diameter. Major elements were determined by means of a series of international 120 

geological reference samples for calibration. 121 

 122 

2.4 Total selenium 123 
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Extractable Se in seeds, peat and Selcote Ultra
®
 by aqua regia. A P/Selecta model RAT 4000051 124 

with temperature control was used. The method was applied following ISO 11466 1995 using 1 g 125 

of sample. The reagents were HCl 35% and HNO3 69% (Hiperpur Panreac). Once at room 126 

temperature, the resulting suspension was passed through an ashless filter (Whatman 40), and the 127 

solid residue was washed several times in 0.5 mol L
-1

 HNO3. The resulting filtrate, together with 128 

the washings, were diluted to 50 mL, transferred to a HDPE bottle and stored at 4ºC until 129 

analysis. 130 

Acidic microwave digestion of plants. 0.2 g of vegetable samples were weighed in PTFE vessels 131 

containing 8 mL of HNO3 (Hiperpur Panreac) and 2 mL of H2O2 (Prolab). The resulting mixture 132 

was digested using a microwave (Milestone Ethos Touch Control, 1000 W) by the following 133 

program: 10-min ramp from room temperature to 90ºC; 5 min at 90ºC; 10-min ramp from 90ºC 134 

to 120ºC; 10-min ramp from 120ºC to 190ºC; and 10 min at 190ºC. After digestion, the samples 135 

were filtered (Whatman 40) and diluted to 20  mL with double deionised water, transferred to a 136 

HDPE bottle and stored at 4ºC until analysis.   137 

Total Se measurement. Se was measured by a 7500ce series Octopole Reaction System 138 

inductively coupled plasma mass spectrometer (ICP/MS) with a concentric micro-flow nebuliser 139 

(Agilent Technologies, Waldbronn, Germany). Hydrogen was used as reaction gas to prevent 140 

possible interferences, and Rh was used as internal standard. The ion intensity at m/z 78 (
78

Se) 141 

was monitored by time-resolved analysis software. 142 

 143 

2.5 Selenium speciation in vegetables 144 

Water extraction of Se from Selcote Ultra
®
. 1 g of Selcote Ultra

®
 was placed in a 40 mL HDPE 145 

tube with 25 mL of double deionised water in an end-over-end system. The mixture was 146 

continuously shaken for 3 months. In order to determine Se species over time, aliquots were 147 
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periodically extracted and analysed. The total volume of the extractant was completed with 148 

doubly deionised water throughout the experiment. 149 

Enzymatic digestion of plants.  0.3 g of vegetable samples and 30 mg of Protease XIV (Sigma 150 

Aldrich) were placed in a 40 mL HDPE tube with 10 mL of a 25 mmol L
-1

  NH4H2PO4 solution 151 

at pH 7.5. The mixture was shaken for 16 h in a thermo-agitator water bath (Clifton NE5-28D) at 152 

37ºC. The resulting solution was firstly centrifuged for 10 min at 3000 rpm, then passed  through 153 

0.45 µm filters and then through 0.20 µm filters (to prevent chromatographic column damage). 154 

Se species were measured immediately after extraction. The extraction was performed by 155 

enzymatic digestion using Protease XIV, as recommended in the literature (Kahakachchi et al., 156 

2004).  157 

Se species measurement. 1000 mg L
-1

 of Se stock solutions was prepared from selenite 99% 158 

Na2SeO3 (Aldrich, Milwaukee, WI, USA) and selenate 99% Na2SeO4 (Aldrich). 1000 mg l
-1

 of 159 

the Se stock solutions was prepared from selenocystine (SeCys2) and selenomethionine (SeMet) 160 

with HCl 0.5% and kept at 4ºC. All the standard solutions were prepared daily by dilution. 161 

Measurements were carried out by LC-ICP/MS (Quaternary Agilent Technologies 1200 series 162 

LC system and 7500ce series Octopole Reaction ICP/MS System). An anion exchange pre-163 

column and column (Hamilton PRP-X100 (Reno, NV, USA)) were used. The mobile phase 164 

comprised 40 mmol L
-1

 of (NH4)H2PO4 buffer (Merck Suprapur) adjusted at pH 7.0. 165 

We considered that most organic Se species are oxidised during the extraction, as reported in 166 

some studies (Ayouni et al., 2008). Thus the standard of SeMet was oxidised with hydrogen 167 

peroxide (H2O2 33%) to identify the chromatographic peak of SeOMet.  168 

 169 

3. Results 170 

 171 



 8 

Moisture content was determined gravimetrically for all the samples stored (dried at 40ºC). At 172 

105ºC, seeds showed 9-19% of moisture content while plants showed 10-23%. All the results are 173 

expressed as the range of values and as mg Se kg
-1

 dry mass.  174 

Seeds, Selcote Ultra
®
 and peat were analysed for total Se contents. Seeds showed very low 175 

values (seeds from cabbage, 212 ± 14 µg Se kg
-1

; from
 
lettuce, 57 ± 2 µg Se kg

-1
; from chard, 30 176 

± 7 µg Se kg
-1

; and from parsley, 82 ± 18 µg Se kg
-1

). Se content in peat was 251 ± 4 µg Se kg
-1

 177 

of Se. For Selcote Ultra
®

, total Se was 11 ± 2 g Se kg
-1

 and only Se (VI) was found in the water 178 

extracts of this additive.  179 

Leaves, stems and roots were analysed in vegetables. Table 1 shows the total Se content and 180 

speciation results for the samples. Data are shown for different parts of the plants and according 181 

to enriched peat concentration ranges: control samples (not fortified), Selcote Ultra
®
 and Se 182 

sodium salts. The results are expressed as a range of the Se content of each medium (control, A, 183 

B, C, D and E) in triplicate. In some cases, mainly in cabbage, the wide ranges were attributed to 184 

biological variability within the specimens. Figure 1 also presents some examples of 185 

chromatograms from vegetables (leaves were selected) grown in control, Selcote Ultra® and 186 

soluble salt media. 187 

   188 

4. Discussion 189 

 190 

Preliminary studies. The present study required previous characterisation of the materials used. 191 

We considered it relevant to measure the Se content of the seeds in order to evaluate their 192 

contribution to the presence of Se in the plants. Few studies report data of this kind. Furthermore, 193 

there are several data on Se-enriched seeds (Ferri et al., 2000, Thavarajah et al., 2008; 194 
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Lintschinger et al., 2000). The seed Se contents were, in all cases, very low and were considered 195 

to reflect natural values.  196 

The Se content of peat (251 ± 4 µg Se kg
-1

) fell within the range of those found in non-197 

contaminated soils, these showing averages between 0.05 mg Se kg
-1

 to 1.27 mg Se kg
-1

, 198 

depending on soil composition (Kabatas-Pendias, 2001). We used Selcote Ultra® as an additive 199 

to increase the Se content in peat. This practice is commonly used in regions with soil Se 200 

deficiency. To determine the extent to which the Se species of Selcote Ultra
®
 could be extracted 201 

over time, we performed an extraction with water over 90 days. The maximum percentage (35-202 

40%) of total Se was reached at day 5, and this element was present only as Se (VI). Se (IV) was 203 

not detected in the extracts because of the low water solubility of BaSeO3. Thus, when Selcote 204 

Ultra
®
 is used in field conditions, it releases Se to the soil solution at a very slow rate and mainly 205 

as selenate. The Se content in Selcote Ultra
®
 reported here is consistent with the technical data 206 

sheet of this product.  207 

Soluble salts were added into the peat to increase the Se concentration to levels similar to those 208 

found in seleniferous areas. Reported values for these areas are between 1.3 mg Se kg
-1 

– 138 mg 209 

Se kg
-1

 (Kabatas-Pendias, 2001). 210 

Total Se and Se species in edible plants growing in the different media (see Table 1) are 211 

discussed below. 212 

Plants grown on non-amended peat (controls). Total Se are natural values from plants grown in 213 

non-contaminated soils (Ellis and Salt 2003). Control vegetables showed mainly Se (VI) in all 214 

the parts analyzed. 215 

Plants grown in peat fortified with Selcote Ultra
®

. In the literature, a range of concentrations of 216 

this additive has been studied in pasture, cereals and forage crops (Valle et al., 2002); however, 217 

in the present study, this additive was used for the first time to spike peat. 218 
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The total Se contents of the vegetables were slightly higher than those of controls, except for 219 

cabbage which did not show any difference. Slight differences were observed for the total Se 220 

content in plants grown at the two levels of fortification (A and B). These results indicate that 221 

Selcote Ultra® releases Se very slowly as a result of poorly soluble components. We did not 222 

measure Se species in most of the enzymatic extracts. Se (VI) was quantified in all vegetables 223 

except cabbage. Chard and parsley were the plants that contained Se (IV), Se (VI) and SeMet, 224 

although the values were close to the limit of detection. 225 

Plants grown in peat fortified with soluble Se salts. All plants grew in peat media fortified at 226 

levels C and D. However some toxic effects, resulting in withering and rotting on leaves and a 227 

decrease of biomass with respect to control plants, were observed in plants subjected to level D. 228 

Moreover, plants presented growth inhibition at the highest Se fortification level (E). Lettuce and 229 

parsley were the vegetables most affected and SeMet was present in the enzymatic extracts from 230 

these plants, as shown by the chromatograms in Figure 1. As a detoxification mechanism, these 231 

kinds of plants usually convert inorganic Se to SeMet by volatilization to form dimethyl selenide 232 

(Tapiero et al., 2003; Dumont 2006). Our results support the findings of those studies. Se toxicity 233 

in non-accumulator plants in the present study (lettuce, chard and parsley) was also due to the 234 

incorporation of SeCys and SeMet into proteins in place of Cystine (Cys) and Methionine (Met), 235 

respectively (Terry et al. 2000). However, although cabbage was the plant with the higher Se 236 

content, no toxic symptoms were observed. The tolerance of accumulator plants to inorganic Se 237 

is attributed to its conversion to non-protein seleno amino acids (Terry et al., 2000). 238 

The total Se content in plants increased with the concentration of Na2SeO4 and Na2SeO3 in the 239 

peat. Among all plants grown with soluble Se salts, cabbage was the plant with the highest Se 240 

content. These results are consistent with Se accumulation reported in Brassica species which 241 

generally accumulate several hundred milligrams of Se per kilogram of dry weight (Lin, 2009; 242 
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Ximènez-Embn et al., 2004; Seo et al., 2008). For cabbage, Se concentration in leaves was 243 

higher than in roots. This is in agreed with other studies about Se accumulator plants grown in Se 244 

enriched soil (Dumont et al., 2006).  Regarding speciation, the concentration of Se species rose 245 

with increased Se fortification of the growth media. For all the vegetables, Se (VI) was one of 246 

the main inorganic species present. This finding is attributed to the high fortification in peat. A 247 

high percentage of inorganic species were converted to SeMet, which was the major organic 248 

species in the enzymatic plant extracts as in other studies (Polatajco et al., 2006; Mazej et al., 249 

2007; Mechora et al., 2012).  The occurrence of SeCys2 in enzymatic extracts has been also 250 

studied and the results showed that the concentration of this species was lower than its detection 251 

limit (0.03 mg kg
-1

). 252 

Considering all supplemented media, for a global discussion on the results Figure 2 and 3 are 253 

showed. Results from those plants which presented growth inhibition or concentrations lower 254 

than limit of detection have been not considered in these Figures. Presented data correspond to 255 

the higher Se content of the obtained ranged of values (Table 1). Figure 2 shows how increased 256 

the Se content in leaves from different vegetables grown respect the Se added in peat. In general, 257 

Se was more available to plants and was absorbed faster than Selcote Ultra® by roots. Cabbage 258 

(Brassica oleracea) had the highest Se concentration and in case of parsley (Petroselinum 259 

crispum), the Se uptake by plant was lower than for others. Figure 3 indicates the percentage of 260 

(a) SeMet and (b) Se (VI) in the enzymatic extracts from leaves of cabbage and parsley, which 261 

obtained the highest and lowest Se content according to Se added in peat, respectively. This 262 

Figure shows that extracts from parsley contained high SeMet concentration and a low Se (VI) 263 

content and for cabbage the species distribution was reversed. 264 

 265 

5. Conclusions  266 



 12 

 267 

Here we report on the total Se and its species content for cabbage, lettuce, chard and parsley 268 

grown in peat fortified with Selcote Ultra® and sodium selenite and selenate mixtures. In all 269 

cases, leaves and roots (also stems for lettuce) were considered. 270 

Selcote Ultra® is commonly used in fertilisers for fodder crops or for forage for animal diets. 271 

Here we used this additive for the first time to increase Se in plants for human consumption. Peat 272 

fortified with Selcote Ultra® gave slightly higher total Se and Se species than natural content 273 

values, even when twice the recommended amount of Selcote Ultra® was added. 274 

For plants grown in peat fortified with selenium sodium salts at concentrations similar to those 275 

found in seleniferous soils, the content of Se increases with the supplementation. During plant 276 

growth, part of the inorganic Se was converted mainly to SeMet. 277 

Soluble salts are the fastest strategy to enrich peat with Se. However, Se concentrations of 278 

approximately 10 mg Se kg
-1

 or higher in fortified peat can damage or inhibit plant growth. 279 

Cabbage, which was the vegetable with the highest Se content, showed the greatest tolerance to 280 

Se, among the plants studied. 281 

 282 
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TABLES 

 

Table 1. Total Se and Se species in parts of vegetables grown in peat fortified with Selcote Ultra® and sodium salts, at a range 

of concentrations, as described in the experimental design: A, B, C, D and E expressed as mg Se kg
-1

. All measurements were 

made in duplicate.  na: not analyzed.  

Total Se: 

 LOD (mg kg
-1

): 0.03; LOQ (mg kg
1
): 0.1 

Se speciation:  

LOD (mg kg
-1

)  Se (IV): 0.01; SeMet: 0.1; Se (VI): 0.03  

LOQ (mg kg
-1

)  Se (IV): 0.04; SeMet: 0.5; Se (VI): 0.09 
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Plant species 
Concentration ranges of fortifier 

mg Se kg-1 (n=3) 
Vegetable part Total Se   

Speciation 

Se (IV) SeMet Se (VI) 

Cabbage 

Control 
Leave 0.8 – 1.3 < 0.01 < 0.1 < 0.09 

Root 1.0 – 1.4 < 0.01 < 0.1 < 0.09 

Selcote Ultra® 

A 
Leave 0.8 – 1.6 < 0.01 < 0.1 < 0.03 

Root 1.3 – 2.4 < 0.01 < 0.1 < 0.03 

B 
Leave 0.9 – 1.4 < 0.01- < 0.04 < 0.1 < 0.09 

Root 1.4 -1.7 < 0.01 < 0.1 < 0.09 

Na2SeO3 

+ 

Na2SeO4 

C 
Leave 11 – 76 0.21 – 1.5 2.4 – 8.11 4.7 – 47.2 

Root 12 - 40 0.03 – 0.22 3.4 – 10.6 0.9 – 2.1 

D 
Leave 64 – 98 0.63 – 1.1 2.4 – 10.8 < 0.09 – 43.1 

Root 52 – 72 0.24 – 0.8 10.6 – 15.8 2.1 – 8.2 

E 
Leave 952 – 1606 22.7 – 32.8 102 – 168 653 – 1188 

Root 414 - 793 12.9 – 20.8 153 - 194 29.9 - 141 

Lettuce 

Control 

Leave < 0.1 – 0.1 < 0.01 < 0.1 < 0.09 
Stem < 0.1 – 4.1 < 0.01 < 0.1 < 0.09 
Root < 0.1 – 1.1 < 0.01 < 0.1 < 0.09 

Selcote Ultra® 

A 

Leave < 0.1 – 2.8 < 0.01 - < 0.04 < 0.1 - < 0.5 < 0.09 – 0.24 

Stem 0.8 – 1.7 < 0.01 < 0.1 - < 0.5 < 0.09 – 0.28 

Root 0.5 – 2.3 na na na 

B 

Leave 0.8 – 1.0 < 0.01 < 0.1 < 0.09 – 0.1 
Stem 0.6 – 1.0 < 0.01 < 0.1 < 0.09 – 0.1 
Root 1.7 – 2.1 na na na 

Na2SeO3 

+ 

Na2SeO4 

C 

Leave 34 – 113 0.06 – 0.18 4.5 – 12.4 6.9 – 19.9 

Stem 29 – 66 0.15 – 0.24 6.1 – 11.5 3.4 – 9.3 

Root 82 – 197 na na na 

D 

Leave 108 – 171 0.09 – 0.2 15.8 – 19.7 22.7 – 40.8 

Stem 103 – 117 0.3 – 0.7 13.9 – 19.4 14.3 – 16.4 

Root 175 – 244 na na na 

E 

Leave na na na na 

Stem na na na na 
Root na na na na 

Chard 

Control 
Leave < 0.1 < 0.01 < 0.1 - < 0.5 < 0.03 - < 0.09 

Root < 0.1 - 0.4 < 0.01 < 0.1  < 0.03 

Selcote Ultra® 

A 
Leave 0.1 - 0.7 < 0.01 < 0.1 – 5.1 < 0.09 – 0.3 

Root 0.3 - 0.5 < 0.01 < 0.1 < 0.09 

B 
Leave 0.5 - 0.7 < 0.01 – 0.06 < 0.1 – 12.2 0.36 – 0.37 

Root 0.2 - 0.3 < 0.01 < 0.1 – 0.8 0.1 – 0.8 

Na2SeO3 

+ 

Na2SeO4 

C 
Leave 26 – 31 0.09 – 0.9 4.8 – 9.9 3.4 – 18.6 

Root 11.2 - 11.8 0.1 – 0.4 3.0 – 5.1 1.2 – 4.4 

D 
Leave 0.4 – 59 < 0.01 – 2.0 < 0.1 – 12.3 0.2 – 33 

Root 19 - 26 < 0.01 – 0.2 4.4 – 4.7 5.7 – 14.6 

E 
Leave 753 - 817 1.9 – 2.0 187 – 254 621 – 686 

Root na na na na 

Parsley 

Control 
Leave < 0.1 < 0.01 < 0.1 – 0.7 < 0.03 – 0.2 

Root < 0.1 < 0.01 < 0.1 < 0.09 

Selcote Ultra® 

A 
Leave < 0.1 - 0.8 0.05 - 0.07 0.4 - 0.9 < 0.09 – 0.1 

Root < 0.1 - 0.4 < 0.04 < 0.5 < 0.09 

B 
Leave 0.3 - 0.6 0.04 - 0.07 0.7 - 1.2 < 0.09 – 0.2 

Root 0.4 - 0.5 < 0.04 - 0.07 < 0.5 - 0.8 < 0.09 – 0.2 

Na2SeO3 

+ 

Na2SeO4 

C 
Leave 16 -26 < 0.04 13.1 - 21.9 3.5 – 5.1 

Root 12 - 23 < 0.04 6.4 – 16.1 12.8 – 26.7 

D 
Leave 21 -74 0.4 - 2.1 25.1 9.7 – 16.7 

Root 20 - 71 < 0.04 9.7 14.6 

E 
Leave na na na na 

Root na na na na 
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FIGURE CAPTION 

 

Figure 1. Example of chromatograms corresponding to Se speciation in leaf extracts of vegetables grown in control 

peat (without Se), in peat with Selcote Ultra®, and in peat with soluble salts (at level C: 10 mg Se kg
-1

; level D: 100 

mg Se kg
-1

). 

 

Figure 2. Total selenium content in leaves of vegetables, according to selenium fortification in peat.  

 

Figure 3. Percentage of the main species in enzymatic extracts from leaves of cabbage and parsley, respect to the 

selenium fortification in peat. (a)Percentage of SeMet; (b)Percentage of Se (VI). 
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