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SUMMARY 
The increasing exhaustion of fossil fuels and the environmental concern about the 

consequent increased greenhouse gas emissions have propelled the development of biofuels. 

Because of its similar physicochemical properties, biodiesel is an alternative to diesel fuels 

made from petroleum. Biodiesel consists of a mixture of alkyl esters of long chain fatty acids 

susceptible to oxidation. The quality parameters of biodiesel must be analyzed by well-

established analytical methodologies, rapid and accessible to meet the growing demand for this 

product. 

Several analytical techniques have been used for biodiesel analysis. Within them, the 

spectroscopic techniques have been played an important role, since they allow direct, fast and 

non-destructive analysis of biodiesel samples. One of the main problems of such techniques is 

the lack of selectivity found in the spectroscopic measurements of complex samples, which 

makes classical calibration methods fail. Therefore, chemometric tools have been largely 

applied in combination with spectroscopic data for biodiesel analysis. 

The present work reports the use of chemometric methods for the determination of biodiesel 

content in diesel blends using NIR spectroscopy and the determination of synthetic antioxidant 

and biodiesel in biodiesel mixtures with UV-Visible spectroscopy. Multivariate calibration and 

multivariate curve resolution (MCR) strategies were applied. The standard multivariate 

calibration method, partial least squares (PLS) regression was employed. Strategies of MCR 

with alternating least squares (MCR-ALS) with correlation constraint were explored to process 

the spectroscopic data and to overcome some analytical problems, such as matrix effect and 

determination of minor compounds with very overlapped signal with major compounds. 

Results showed that MCR-ALS with correlation constraint strategies were able to overcome 

the analytical problems found in the data. Comparable or better results than PLS were obtained, 

but better interpretability was assigned to MCR-ALS results, since it provided both qualitative 

and quantitative information about the data. 
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RESUMEN 
El creciente aumento del consumo de combustibles fósiles y la preocupación por el 

consiguiente aumento de la emisión de gases de efecto invernadero han promovido el 

desarrollo de biocombustibles. El biodiésel es una alternativa para el diésel de petróleo debido 

a sus semejantes propiedades físico-químicas. El biodiésel consta de una mezcla de ésteres 

alquílicos de ácidos grasos de cadena larga susceptibles a oxidación. Los parámetros de 

calidad de biodiésel deben ser analizados por metodologías analíticas robustas, rápidas y 

asequibles para cubrir la demanda creciente del producto. 

Diversas técnicas analíticas han sido utilizadas para el análisis de biodiésel. Dentro de las 

cuales, las técnicas espectroscópicas han tenido un papel muy importante, ya que permiten un 

análisis de biodiésel directo, rápido y no destructivo. Uno de los principales problemas de estas 

técnicas es la falta de selectividad en la señal asociada a muestras complejas, lo cual hace que 

los métodos de calibración clásicos fracasen. Por eso, son necesarias herramientas 

quimiométricas en combinación con datos espectroscópicos para el análisis de biodiésel. 

El presente trabajo presenta el uso de métodos quimiométricos para la determinación de 

biodiésel en mezclas con diésel utilizando espectroscopia NIR y para la determinación de 

antioxidante y biodiésel en mezclas de biodiésel utilizando espectroscopia UV-Visible. Se han 

empleado calibración multivariante y estrategias de resolución multivariante de curvas (MCR). 

Se ha empleado el método de calibración multivariante estándar, la regresión por el método de 

los mínimos cuadrados parciales (PLS). También se han utilizado estrategias MCR por 

mínimos cuadrados alternados (MCR-ALS) y la restricción de correlación para procesar los 

datos espectroscópicos y superar problemas analíticos, como el efecto de matriz y la 

determinación de compuestos minoritarios con una señal muy solapada con la de compuestos 

mayoritarios. 

Los resultados indican que MCR-ALS con estrategias de restricción de correlación fue 

capaz de resolver los problemas mencionados anteriormente. Se obtuvieron resultados 

comparables o mejores que con el método PLS. Sin embargo, los resultados obtenidos con 
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MCR-ALS tienen una mayor interpretabilidad, porque este método proporciona información 

cualitativa y cuantitativa acerca de los datos. 
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1. INTRODUCTION 

1.1. BIODIESEL 

Biodiesel is a mixture of alkyl esters from long chain fatty acids that is a renewable 

alternative fuel to diesel from petroleum1. Because of its natural properties, biodiesel can 

partially or completely replace the usage of petroleum-based diesel fuels, mainly used in 

compression engines of transportation vehicles2,3. 

Biodiesel has many advantages when compared with diesel fuel. Biodiesel can reduce the 

engine emission of pollutants, such as sulfur products, particulate matter, aromatic compounds, 

and CO2
2,4. Besides the environmental concerns, other advantages are the better ignition 

characteristics, showing higher cetane number than petrodiesel. Due to the natural origin, 

biodiesel contains oxygen that promotes an enhancement in the combustion reaction increasing 

the engine performance and reducing the emission of CO and particulate matter5. It also shows 

a higher lubricity, which reduces the wearing of the engine mechanical parts. The flash point of 

biodiesel is higher than that of diesel, which means more safety during transportation and 

handling. The disadvantages from biodiesel are the slight increase in nitrogen oxides (NOx) 

emissions comparing to diesel2. Due to the use of edible oils for its production, complaints exist 

about food competition. Another issue is the low stability to oxidation of biodiesel, which reduces 

the capacity of long-term storage5. 

Nowadays, several biodiesel sources can be found. The main sources for biodiesel 

production are the vegetal oils from seeds, such as soybean, corn, sunflower, cotton, etc. 

Biodiesel can also be produced from waste frying oils6, which is a good alternative for reduction 

of environmental contamination. 

Biodiesel is completely miscible with petroleum diesel fuel, since they have similar 

physicochemical properties. The amount of biodiesel is commercially stated as B“X”, where “X” 

is the volume percentage (%v/v) in diesel. Thus, neat biodiesel is referred to as B100. For 

instance, a blend of 5 % of biodiesel and 95 % of petrodiesel is B5; and 20 % of biodiesel and 

80 % of petrodiesel is B20 and so on. Usage up to B20 is possible without minor or any 

modification of diesel engines7. The amount of biodiesel in diesel fuels has been an important 
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parameter of quality, regulated by the fuel quality agencies. For instance, the Brazilian National 

Agency of Petroleum, Natural Gas and Biofuels (ANP) established via Resolution No. 42, 2009 

the specifications for diesel oil type A (without biodiesel) and B (blends of diesel with biodiesel). 

The mandatory usage of 5 % biodiesel mixed with diesel occurs in Brazil since the beginning of 

2010 and the specifications established by the ANP must be met. Therefore, analytical methods 

for biodiesel determination should be well established, rapid and accessible to meet the growing 

demand for this product4. 

Biodiesel is produced by a catalytic transesterification of triglycerides from vegetal oils or 

animal fats with short chain alcohols, such as methanol or ethanol1. The main byproduct of 

biodiesel production is glycerin. The catalyst used could be homogeneous, heterogeneous or 

enzymatic1,6,8–10. The catalysts most used are homogeneous basic and consists of compounds, 

such as NaOH and KOH. Methanol is the alcohol most used, but ethanol has been used due to 

its renewable source in many countries. 

 

Figure 1. Transesterification reaction for biodiesel production. 

Figure 1 shows the catalytic transesterification reaction for biodiesel production. R1, R2 and 

R3 are long-chain hydrocarbons (fatty acid chains) in the triglyceride molecule (1). R4 is a methyl 

or ethyl group, depending on the alcohol. It is an equilibrium reaction; so, to shift the equilibrium 

toward the products (biodiesel (3) and glycerin (4)), an excess of alcohol (2) is used. The 

biodiesel is separated from glycerin by a phase separation process, since these compounds are 

immiscible. The biodiesel needs to be purified by several washes to remove the remaining 

catalyst, alcohol and other contaminants. Biodiesel is also dried to remove the water from the 

washes1,8. 

One of the main biodiesel problems is the low stability to oxidation, because of its high 

content of unsaturated esters11. The oxidation is mainly due to air contact, metallic ions 

contamination, light exposure or long-term storage. Therefore, synthetic antioxidants must be 

added to biodiesel fuels to maintain their quality parameters5,12,13; if not, the oxidation may lead 

to increase of viscosity, corrosion of engine components and formation of gums and sediments 
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that may clog the engine fuel filter. Aromatic amines and phenolic compounds are two families 

of antioxidant compounds that react and stabilize the free radicals formed during the biodiesel 

oxidation. Many works have been devoted to study the effect of adding synthetic antioxidants to 

biodiesel12,14–16. Therefore, determination of the antioxidant concentration is an important task in 

order to evaluate the stability of biodiesel to oxidation. 

1.2. CHEMOMETRICS 

IUPAC defines chemometrics as “the application of statistics to the analysis of chemical 

data (from organic, analytical or medicinal chemistry) and design of chemical experiments and 

simulations”17. A wide definition of chemometrics is found in the “Handbook of Chemometrics 

and Qualimetrics 1997”18: “Chemometrics is a chemical discipline that uses mathematics, 

statistics and formal logic (a) to design or select optimal experimental procedures; (b) to provide 

maximum relevant chemical information by analyzing chemical data; and (c) to obtain 

knowledge about chemical systems”. 

The main areas of chemometrics are devoted to the design and optimization of experiments, 

pattern recognition (exploratory analysis and classification), multivariate calibration and 

multivariate curve resolution methods. 

The aim of the multivariate calibration methods is to find a model with predictive ability that 

relates the useful information from an independent measured multivariate data table (e.g. 

containing spectra, chromatograms, pH-time measurements, etc.) to another table of dependent 

physicochemical parameters (e.g. containing concentrations, density, viscosity, etc.). Partial 

least squares (PLS) regression is the standard method for multivariate calibration19,20. 

Besides the multivariate calibration methods, another way to achieve qualitative and 

quantitative information about a multivariate data table is using multivariate curve resolution 

methods. One of the resolution methods most used is the multivariate curve resolution with 

alternating least squares (MCR-ALS). MCR-ALS decomposes a data table (matrix) of 

multivariate mixed measurements (e.g. spectra) into a bilinear model of meaningful pure 

component contributions. In spectroscopy, this is analogous to recover the underlying Beer-

Lambert model, i.e., extracting the pure spectra of the sample constituents and the related 

concentration profiles from the information contained in the raw measured spectra21,22. MCR-

ALS has been proven to be efficient to resolve and provide relative quantitative information in 
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different types of complex processes and mixtures21, such as liquid chromatography with diode 

array detection23–25 and spectral data from industrial processes26,27. 

Detailed explanation about PLS and MCR-ALS methods and the suitable multivariate data 

structures are provided in section 3. 

1.3. SPECTROSCOPIC AND CHEMOMETRICS APPLICATIONS IN BIODIESEL 

Spectroscopic techniques have been applied for the determination of several parameters in 

biodiesel. All the spectroscopic range from ultraviolet to mid infrared absorption spectroscopy 

has been used in many works for determination of biodiesel parameters from different 

sources28–37, as well as molecular fluorescence spectroscopy38,39. Biodiesel analysis with 

infrared spectroscopy has been the subject of many works, due to the direct, reliable, fast and 

non-destructive sample analysis29,33. Spectroscopic measurements suffer for the lack of 

selectivity when complex samples are analyzed, since the signal are very overlapped which 

makes classical calibration methods fail. Thus, analytical techniques, such as near infrared 

(NIR) spectroscopy need the use of chemometrics tools to solve these analytical problems. 

Several chemometric methods have been applied to spectroscopic biodiesel analysis. 

Linear multivariate calibration methods, such as multivariate linear regression (MLR), principal 

component regression, partial least squares (PLS) regression, and non-linear methods, such as 

support vector machines (SVM) and artificial neural networks (ANN) have been often used to 

extract information from NIR spectra for determination of quality parameters in biodiesel and 

biodiesel/diesel blends29,32,34–36. Chemometric methods for classification, such as soft 

independent modeling of class analogy (SIMCA), hierarchical cluster analysis (HCA), 

successive projections algorithm with linear discriminant analysis (SPA-LDA) and PLS 

discriminant analysis (PLS-DA) have been used to classify biodiesel according to the production 

source37–39. Variable selection methods, such as Genetic Algorithm, interval-PLS, SPA and 

others, have been used to reduce the number of used spectral variables and improve the 

abilities of calibration and classification models29,32,39,40. 

Different analytical methodologies were proposed for biodiesel antioxidant analysis. Tormin 

et. al. developed methods based on the amperometric determination of tert-

butylhydroquinone41, butylated hydroxyanisole42 and mixtures of the two compounds by batch-

injection analysis43 in synthetic samples of biodiesel. The aromatic amine N,N’-Di-sec-butyl-p-

phenylenediamine (PDA) has been proven to be an efficient antioxidant and a versatile artificial 
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marker for biodiesel and has been analyzed by easy ambient sonic-spray ionization mass 

spectrometry44. Peaks in the mid infrared region were also used for calibration and 

determination of PDA antioxidant in sunflower biodiesel mixtures45. 

MCR-ALS has been applied in a few works for biodiesel analysis. Only two works were 

found, where MCR-ALS was used to resolve spectrophotometric sequential injection analysis 

data in the determination of sulphate and acidity of biodiesel samples46,47. 

2. EXPERIMENTAL 

2.1. RAW MATERIALS AND SAMPLE PREPARATION 

Two sets of samples were used in this work. The first set of samples contained mixtures of 

neat diesel and soybean biodiesel provided by the Laboratory of Fuels and Lubricants (LCL) of 

the Federal University of Rio Grande do Norte (UFRN), RN, Brazil. Biodiesel was prepared by 

the basic catalyzed transesterification reaction of commercial soybean vegetal oil with methanol. 

38 samples were prepared in two batches of 30 and 8 samples, respectively. The first batch 

was prepared and submitted to natural aging for about three months before measurement. The 

second batch was freshly prepared and measured. Percentage of biodiesel in samples was 

determined following the European method EN 14078 and ranged from 0 to 20.5% (v/v). 

 

Figure 2. Structure of the synthetic biodiesel antioxidants used in the work. 

The second set of samples was formed by 62 samples containing mixtures of biodiesels 

from four different sources (peanut, sesame, Jatropha curcas and soybean oil seeds) and two 

commercial synthetic antioxidants (butylated hydroxytoluene 5 – BHT48 and N,N’ -Di-sec-butyl-p-

phenylenediamine 6 – PDA49). Figure 2 shows the chemical structure of the two synthetic 

antioxidant compounds. All raw products were provided by the Laboratory of Engines and Fuels 

(Lamoc) in the National Institute of Metrology, Quality and Technology (Inmetro), RJ, Brazil. Oil 
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seed extraction and biodiesel synthesis were carried out by Lamoc following the method used 

in45. A cubic D-optimal mixture design was developed with Design-Expert® (Stat-Ease Inc., 

Minneapolis, MN, USA) software to set the composition of the samples. All samples were 

prepared according to the required composition for a total sample mass of 4 g. The 

concentration of antioxidants covered the range commercially used for biodiesel fuels. To 

achieve low concentration levels for antioxidants, diluted stock solutions of each antioxidant 

were prepared using each biodiesel as solvent. The range of concentrations for each compound 

is described in Table 1. 

Table 1 Experimental concentration statistics for the six components in the 62 mixture samples. 

  Kind of biodiesel [% w/w]  Antioxidant [ppm] 

  PNa SEb JCc SBd  BHTe PDAf 

Min.  0.18 0.19 0.18 0.18  2 1 

Max.  99.38 99.30 99.39 53  2632 1006 

Mean  24.42 26.12 23.56 22.33  892 302 

Std.  18.07 19.71 19.23 15.01  712 232 
(a) PN: peanut. 
(b) SE: sesame. 
(c) JC: Jatropha curcas. 
(d) SB: soybean. 
(e) BHT: butylated hydroxytoluene. 
(f) PDA: N,N’-Di-sec-butyl-p-phenylenediamine. 

2.2. INSTRUMENTATION AND EXPERIMENTAL MEASUREMENTS 

Near infrared spectra of biodiesel blends were recorded using a FT-NIR spectrophotometer 

model MB 160 (Bomem). Spectra were collected in cells with two optical pathlengths: 10 mm 

(for the spectral range between 1105 – 1677 nm) and 1.0 mm (for the spectral range between 

2111 – 3216 nm) to compensate the different signal intensity in the two spectral ranges 

acquired. 

UV-Visible spectra of biodiesel and antioxidant mixtures were acquired with a UV-Visible 

spectrophotometer model Evolution 60S (Thermo Scientific) in the spectral range 370 – 670 nm, 

with a wavelength increment of 2 nm among consecutive measurements. A 10 mm pathlength 

quartz cuvette was used. 

Pure compound NIR and UV-Visible spectrum were also recorded to be used afterwards in 

the chemometric analysis. 
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3. DATA TREATMENT 

3.1. DATASETS 

A dataset matrix formed by multivariate data is usually designed as a matrix � of size �� � ��, where � is the number of rows that represent the different samples and � is the number 

of columns that, in this case, are the wavelengths of the acquired spectra. Figure 3 shows the 

representation of a multivariate data matrix �, where ���,
� means the absorbance of sample � 
at wavelength �. 

 

Figure 3. Structure representation of a multivariate data matrix. 

The first set of samples, which contained the blends of biodiesel and diesel, gave a data 

matrix formed by the NIR spectra collected. Two samples were removed as spectral outliers 

from the first batch; thus, the final size of the matrix was �36 � 1224� , with the rows 

containing the samples spectra and the columns designing the wavelength variables. The first 

28 spectra were from the first aged batch and the last 8 from the second fresh batch. The first 

801 columns were associated with the spectral range (1105 – 1677 nm), referred to spectra 

collected with the 10 mm pathlength cell, and the last 423 columns covered the range (2111 – 

3216 nm), used in the spectra recorded with the 1.0 mm pathlength cell. Figure 4a shows the 

original NIR spectra covering the two spectral ranges used. The spectral preprocessing 

methods applied were the offset correction to remove negative values in the spectra, followed 
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by the Multiplicative Signal Correction (MSC)50 to correct linear baseline fluctuations in the NIR 

spectra, as shown in Figure 4b. 

The multiplicative scatter correction (MSC) is a preprocessing method that corrects the 

effects of the light-scattering problems that occurs mainly in reflectance spectroscopy. When 

using MSC, the preprocessed spectra resemble the original spectra50. MSC regresses each 

spectrum of the data matrix against a chosen reference, usually the mean spectrum of the 

dataset, x���. Eq.(1) is, then, obtained when the spectrum, x�, of sample � is regressed against x���. The coefficients (�, �) are used to correct the given spectrum by the Eq.(2). 

 x� = �x��� + a (1) 

 x�,��� = x� − ��  (2) 

where x�,��� is the MSC corrected spectrum. 

 

Figure 4. NIR spectra of the 36 biodiesel blends a) before and b) after MSC preprocessing. 

The second set of samples, which was formed by the UV-Vis spectra collected from the 

mixtures of biodiesels and antioxidants, was sized (62 × 151), accounting for (samples x 

variables). Figure 5a shows the original UV-Vis spectra. The best preprocessing method found 

for this data set was the first order Savitzky-Golay (SG) derivative51 with a second order 

polynomial fit and 11 points window. Figure 5b shows the preprocessed data. 

The SG derivative preprocessing method uses a window with a certain number of points in 

the spectrum and fit a polynomial function by least squares. This function is derived and the 

original value of the center point is changed to the value of the derived function. This procedure 

is repeated moving the window by dropping one point at the left side and picking up one at the 



Design and application of chemometric methods to the determination of compounds of interest in biodiesels. 15 

right until the entire spectrum is corrected. SG derivative is important to remove baseline 

features and increase the small differences between bands. The noise level, the number of data 

points, and the sharpness of the features should all be considered when applying the SG 

derivative51. 

 

Figure 5. UV-Vis spectra of the 62 antioxidant and biodiesel mixtures a) before and b) after first order 

Savitzky-Golay derivative preprocessing. 

3.2. CHEMOMETRIC METHODS 

3.2.1. Partial least squares (PLS) regression 

Partial least squares regression is the major multivariate calibration method used in 

chemometrics52,53. This method uses both the matrix of data � (e.g. spectra) and the matrix of 

parameters to be predicted � (e.g concentrations) to build a calibration model with predictive 

ability that expresses the maximum covariance between � and �. This covariance information 

is expressed by few successive abstract factors, called latent variables. The PLS algorithm 

decomposes the matrices � and � in factor scores   and ! related to samples in � and �, 

respectively, and factor loadings " and # related to variables in � and �, respectively. The 

factor decomposition can be expressed by the equations below. 

 � =  "$ + % (3) 

 � = !#$ + & (4) 

where, % and & are the residuals in � and �, respectively, not explained by the latent variables 

in the models. 
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The regression model is obtained by the Eq.(5) using   and !. 

 ! =  '"() (5) 

where '"() is the vector of regression coefficients. 

The number of latent variables is an important parameter to be considered during the 

construction of PLS models, since if a lower number than necessary is selected, the model does 

not use the necessary data variability to predict the parameter. On the other hand, if a higher 

number of variables are used, there is an over-fitted model that uses unnecessary information 

about the data, modeling noise and other data variation. Thus, a certain criterion must be taken 

to choose the number of latent variables, such as cross-validation methods or external 

validation samples. More details and description of PLS algorithm can be found 

elsewhere19,20,54. 

 

Figure 6. Scheme of a multivariate calibration model and prediction 

Figure 6 shows a scheme of a general multivariate calibration model, where �*  is the 

multivariate data table with the independent variables per sample (e.g. spectra), �*  is the 

dependent variable(s) per sample (e.g. concentrations) for a calibration set. A multivariate 

calibration model, such as PLS, is constructed correlating �* and �*, as described above. To 

predict the concentration of new samples, a data table, �+, with spectra of new test samples 

uses the constructed calibration model to make predictions of the dependent variables for these 

samples. If the actual values for test samples, �+ , are known, it is also possible to plot a 

regression between the actual and predicted values of dependent variables, as depicted in 

Figure 6 and evaluate the prediction ability. 
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3.2.2. Multivariate curve resolution alternating least squares (MCR-ALS) 

MCR-ALS assumes a bilinear model that is the multiwavelength extension of the Lambert-

Beer’s law25,27,55,56 and is described in matrix form by the expression, 

 � = *)$ + % (6) 

where �	�� � �� is a data matrix containing the NIR or UV-Vis spectra of the � samples for the � 
wavelengths recorded, *	�� � ,� and )$	�, � �� are the matrices with the concentration and 

spectral profile of the , pure components in the samples, respectively. % has the same size of � and contains the variance not explained by the bilinear model, related to the experimental 

error. In contrast to PLS, MCR-ALS does not use the matrix � to decompose the model. The 

information in this matrix could be used after or during the MCR decomposition to construct 

external or internal univariate calibration models with the calibration samples. Prediction of test 

samples can be done during or after optimization. The procedure to make internal univariate 

calibration models during the iteration is called correlation constraint and is explained in detail in 

section 3.2.2.1. 

Figure 7 depicts a scheme of how the matrix � is decomposed and stresses the interpretability 

of * and )$. The variables, in this case, are the spectra wavelengths. % is not shown in Figure 

7, but must be considered to evaluate the model quality. 

 

Figure 7. Scheme of the MCR-ALS decomposition. 

The same bilinear model of MCR-ALS holds for multiset analysis, which consist of the 

simultaneous analysis of multiple data matrices coming from different techniques and/or from 

different experiments or batches24,26,27,55. The matrices can be arranged in a column-wise, row-

wise or column- and row-wise augmented data matrix depending on which mode the individual 
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matrices have in common57,58. A column-wise augmented matrix multiset was used in the 

present work, that obeys also a bilinear model. Thus, Eq.(6) can be extended to a column-wise 

multiset structure as follows: 

 -�.�/�01 = -*.*/*01 )$ +	-
%.%/%01 (7) 

Eq.(7) depicts an example for a column-wise augmented data matrix with three submatrices. 

The components in the different matrices share the same spectral profiles )$, but may have 

different concentration profiles in each subset of the column-wise augmented matrix. This 

advantage is useful when samples analyzed in different conditions are used, e.g. experiments at 

different time, pH or temperature. Submatrices can also have different number of rows. The 

least squares optimization for multiset structure is the same applied to a single data matrix; the 

only difference being that �, %, * and/or )  may be augmented matrices59. 

The first step before MCR-ALS optimization is estimating the number of necessary 

components to describe the data by singular value decomposition (SVD) or other 

methods25,27,55,56. To start the ALS optimization, an initial estimate based on the detection of 

purest variables (SIMPLISMA)60–62 is applied to obtain an )  matrix of initial estimates. Matrices * and )  are alternatingly optimized by the ALS procedure solving the Eq.(6). If the algorithm 

starts with an ) -type initial estimate, the unconstrained least squares solution for the * matrix 

is obtained by the expression, 

 * = ��)$�2 (8) 

If * is used, instead, the unconstrained least squares solution for the )  matrix is obtained 

by the expression, 

 )$ = *2� (9) 

where �)$�2 and *2 are the pseudoinverses of the full rank matrices )  and *, respectively. 

In each iteration some constraints must be applied in order to reduce the number of possible 

solutions for * and )$ and to give physicochemical meaning to the results. Natural constraints, 

such as non-negativity, selectivity and correspondence among species were applied in the 

multiset structure27,56. Non-negativity constraint forces the concentration and/or spectral profile 

to be equal or larger than zero63. Selectivity or local rank constraints are used when some 

species are not present in certain sample, improving the definition of profiles during the 
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iterations25. When multiset data are used, the correspondence among species constraint can be 

used similarly to the selectivity constraint. In this case, a binary coded matrix sized (number of 

subsets x number of components) sets the presence or absence of components in each single *  subset matrix56. Another less common constraint is the correlation constraint that builds 

internal univariate calibration models between reference concentration values in calibration 

samples and the analogous values in MCR concentration profiles. This constraint allows 

prediction of concentration values in unknown samples and provides concentration profiles in 

real concentration units. This methodology has been applied successfully to quantify metal 

ions64, industrial mixtures in the production process of vinyl acetate monomer65, ascorbic acid in 

powder juices and tetracycline in serum samples66, steroid drugs in pharmaceutical samples, 

and moisture and protein in forage samples67. This constraint was further extended for first 

order data in multiset analysis and for correction of matrix effect in the determination of 

paracetamol in tablets contained in blister packages using Raman spectroscopy68. Detailed 

description of the correlation constraint can be found below in section 3.2.2.1. 

The ALS optimization procedure finishes when a certain convergence criterion is 

achieved56. Usually, the convergence is reached when the relative difference between the root 

mean square of the residuals matrix % between consecutive iterations is lower than a threshold 

value, commonly set to 0.1%. The quality of the MCR-ALS fit to the experimental data matrix is 

calculated by the percentage of lack of fit as stated in Eq.(10), 

 345�%� = 1008∑ (��
 − �:�
);�
 ∑ ��
 ;�
  (10) 

where ��
  are the elements of the original data matrix � and �:�
  those reproduced by a MCR-

ALS model (�< = *) ). 

3.2.2.1. Correlation constraint 

Differently to PLS, the correlation constraint builds internal univariate calibration models 

between the concentration values calculated by the MCR models and reference values from 

calibration samples. These models are afterwards used to predict concentration in validation 

and test samples. As a consequence, the concentration profiles are expressed in real 

concentration units. In each iteration, the relative concentration values ==>?@()  of calibration 
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samples, obtained from the suitable MCR * concentration profile, are regressed against the 

respective reference concentration values ==>?ABC of the analyte in these samples. The slope � 

and offset �D are obtained by fitting a linear least squares regression model between ==>?ABC and ==>?@() values. 

 ==>?@() = �==>?ABC + �D (11) 

 =̂FGHF = =FGHFIJK − �D�  (12) 

Once the parameters � and �D in Eq.(11) are obtained, a vector c:M�NM  with the predicted 

concentrations is obtained by Eq.(12) using the relative concentration values in the * profile for 

the test samples, =FGHFIJK . The =@()  vector is updated by the vector of reference values for 

calibration samples, ==>?ABC, and by the predicted values for test and/or unknown samples =̂FGHF. 

The same procedure is repeated in the next ALS iterations until the ALS optimization 

converges. As any other constraint, the correlation constraint can be applied to one or more 

analyte concentration profiles. Therefore, one different calibration model Eq.(11) can be 

obtained for each component. 

When a multiset structure is used, the correlation constraint could be applied in a flexible 

way68, as described below: 

a. Correlation constraint with a global model for all subsets. This is the conventional way 

to apply the correlation constraint, when all the subsets of the multiset structure are 

used to build one global calibration model per analyte; 

b. Correlation constraint with local models per individual subset or group of subsets. 

Three different cases are possible: 

b.i. Global model using selected subsets. Just one regression model is obtained 

per each analyte correlating the real analyte concentration for calibration 

samples of the selected subset matrices, as in the a. case, but modeling 

freely the subsets not considered; for example, when a pure analyte spectral 

profile is used as subset matrix; 

b.ii. Local models. In this case, an independent regression model is calculated for 

each individual subset or group of subsets per analyte. It is also possible not 

to consider a certain subset in the correlation constraint and the 

concentration profile is modeled freely as in b.i.; 



Design and application of chemometric methods to the determination of compounds of interest in biodiesels. 21 

b.iii. Local models with matrix effect correction. The local models could also be 

useful to overcome matrix effect problems between samples in different 

subset matrices68. This means that there is a different relationship between 

the concentration values *O and signal response �O of the analytes for each O subset affected by the matrix effect. So, the common spectral profile matrix )  is different in scale for each subset. To overcome this effect, one subset 

should be taken as reference and a rescaling procedure must be applied in 

the concentration values of the other subset suffering matrix effect before 

updating the constrained concentration profile for the next ALS iteration. The 

nonscaled vectors of real concentrations values predicted by each local 

regression model for calibration and test samples are separately stored 

during the analysis and recovered at the end of the MCR optimization as the 

real quantitative information. 

The matrix effect can be caused by different reasons such as temperature, time, sample 

properties and/or variation of instrumental conditions. This effect was observed in the present 

work for the NIR analysis of the two biodiesel blend batches. Figure 8 shows in detail the 

example of the correlation constraint application when a multiset structure with three subset 

matrices with matrix effect is used. Matrix � is formed by three subset matrices: �.  and �/ 

contain both calibration (cal) and test samples. �0 could be a pure species spectrum vector or 

other subset matrix used to enhance the performance of MCR-ALS, the *0 matrix of which is 

not included in the correlation constraint. 

Once the concentration profile for a certain analyte is selected for the correlation constraint, 

two local regression models are built as described above: one for the concentration profile 

coming from �.  (relating =PQR.IJK  to =PQR.SGT , and with �U  and �D,U  as slope and intercept, 

respectively) and one for the concentration profile coming from �/ (relating =PQR/IJK  to =PQR/SGT , and 

with �; and �D,; as slope and intercept, respectively). These models are used to predict real 

concentration values in test samples, =̂FGHF.  and =̂FGHF/ . 

Since matrix effect exists, direct update in the * matrix by the real concentrations predicted 

by the two models is not possible. Therefore, =̂FGHF.  and =̂FGHF/  are stored in a separate output 

and to obtain the constrained concentration profile to be introduced in the ALS optimization, a 

rescaling step is carried out. Then, the model coming from subset �.  (with �U  and �D,U 

parameters) is adopted as reference, and =PQR/SGT  and =̂FGHF/  are rescaled doing, 
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 */VBW = �; X =PQR/SGT
=̂FGHF/Y + �D,; − �D,U�U  

(13) 

The rescaled values for calibration and test samples, */VBW , are fed in the constrained 

concentration profile and the MCR optimization continues. 

 

Figure 8. Description of the correlation constrain with matrix effect correction in a multiset structure. 

3.2.3. Figures of merit 

In order to evaluate the prediction ability of the models, a set of validation samples was 

used. The number of validation samples was about one third of the total number of samples. 
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From the predicted Ẑ  values for these samples, some figures of merit69 were calculated 

according to the following expressions. 

Root mean square error of prediction (RMSEP), 

 RMSEP = 8∑ �Z� − Ẑ��;�̀aU 	b  (14) 

Standard error of prediction (SEP), 

 SEP = 8∑ �Z� − Ẑ� − ���c�;�̀aU 	b − 1  (15) 

Bias, 

 bias = ∑ (Z� − Ẑ�)�̀aU 	b  (16) 

Relative percentage error in concentration predictions (RE%), 

 RE�%� = 1008∑ (Z� − Ẑ�);�̀aU 	∑ Z�;�̀aU  (17) 

where Z�  and Ẑ�  are the actual and predicted analyte concentration in sample �, respectively, 

and b is the total number of samples used in the validation set. 

A linear regression fit was performed between actual and predicted analyte concentration. 

Slope, offset and squared correlation coefficient were also calculated. To check the similarity 

between experimental and MCR-ALS recovered pure component spectral profile, a correlation 

coefficient was calculated. This parameter gave a measure of how similar the shape of the 

individual recovered spectral profile is to the real experimental pure component spectrum. 

3.2.4. Chemometric software 

Data pre-processing and PLS analysis were carried out using PLS Toolbox software 

package (Eigenvector Research, Manson, WA, USA) for MATLAB (The MathWorks, Natick, MA, 

USA). A graphical user interface for classical MCR-ALS by Jaumot et al.56 was used and can be 

freely downloaded in the MCR web page70. Calculations of figures of merit and MCR-ALS with 

the correlation constraint models were performed with laboratory-written MATLAB routines and 

functions. The author participated in the implementation of the extension of the correlation 
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constraint to deal with high order data, such as 2D fluorescence matrices. Part of the developed 

MATLAB main functions and subroutines are provided in the Appendices 1-4. A digital copy of 

the complete MATLAB functions are recorded in a compact disc attached to the Appendix 5. 
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4. RESULTS AND DISCUSSION 

4.1. ANALYSIS OF DIESEL AND BIODIESEL BLENDS 

Figure 4a and Figure 4b showed the NIR spectra for the 36 diesel and biodiesel blends 

before and after preprocessing, respectively, see page 14. The absorbance of the first spectral 

range were multiplied by a constant scaling factor of 2.5 in order to balance the intensity 

differences between the two ranges. Important bands present in the spectra are the second 

overtone located in the 1150-1250 nm spectral range, the combination region at 1300-1515 nm 

for the C-H stretch, the combination region for the C-H bond and combination bands for the 

C=O and C-H bonds covering overlapping bands in the 2100-2500 nm spectral range33,71. 

The PLS models used the matrix of preprocessed data divided in two input matrices, one 

with the calibration sample spectra and the other with the test samples spectra as required by 

the algorithm. Calibration samples were selected using the most influential samples in the data, 

for this, the Kennard-Stones algorithm was used72. About two thirds of the total number of 

samples were selected for the calibration set, and the rest were used to test the calibration 

model. The leave-one-out cross validation method was used for determination of the number of 

PLS latent variables (LV) by evaluating the evolution of the root mean square error of cross-

validation (RMSECV). The optimum number of latent variables was that with the lowest 

RMSECV. The cross-validation model indicated two latent variables, but better results were 

achieved using three, as explained below. 

Model 1 in Table 2 shows the results obtained when PLS regression with two latent 

variables was employed in the NIR data for prediction of biodiesel concentration. Figure 9a 

shows the regression plot for the predictions of biodiesel content vs. actual values. It was 

observed different linear trends in the representation of predicted versus reference values. The 

samples above the � = g curve were from the second batch and the samples below, from the 

first batch. This indicated that there was a batch-to-batch matrix effect. The reason could be 

assigned to the long time of storage of the first batch that promoted natural ageing of the 

sample mixtures. The strategy to alleviate the matrix effect was including more latent variables 

in the PLS models. Model 2 shows the results when three latent variables were used. A slight 
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reduction in the error parameters was observed; in addition, there were no differences in the 

sensibilities between the two batches, as observed in the Figure 9b. 

 

Figure 9. Plot between actual and predicted biodiesel concentration comparison for PLS models with a) 

two LV (model 1) and b) three LV (model 2). See model description in Table 2. 

Table 2. Figures of merit for MCR-ALS and PLS regression models for prediction of biodiesel 

concentration. 

Model description Nca RMSECb RMSEPb SEPb Biasb RE(%) R2 c 

1. PLS 2LV 2 1.28 1.36 1.37 0.363 13.14 0.938 

2. PLS 3LV 3 0.797 1.02 1.04 0.196 9.82 0.965 

3. MCR-ALS (classical 
with external calibration) 

2 1.43 1.40 1.40 0.392 13.58 0.930 

4. MCR-ALS (global 
model involving the 1st 
and 2nd subsets) 

2 1.43 1.41 1.41 0.411 13.63 0.930 

5. MCR-ALS (global 
model involving the 1st 
and 2nd subsets) 

3 0.866 1.04 1.06 0.210 10.06 0.961 

6. MCR-ALS (local 
models with matrix effect 
correction) 

2 0.442 0.502 0.507 0.126 4.85 0.992 

(a) Nc is the number of components or latent variables used in the MCR-ALS or PLS model, respectively. 
(b) The values are given in [% v/v] units. 
(c) R2 is the coefficient of correlation between predicted and actual concentration values of test samples. 

MCR-ALS models were constructed using the same preprocessed data used in PLS. The 

calibration and test samples were assigned during the optimization and were the same as in 

PLS. Two components were detected in this data set by SVD analysis, assigned to diesel and 

biodiesel, respectively. Spectral initial estimates of NIR data were obtained by applying the 
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SIMPLISMA approach62 to the multiset formed by the two batches. Before starting MCR-ALS, a 

third subset matrix with the pure spectrum of neat biodiesel was input in the multiset structure, 

giving a final multiset structure similar to the matrix � depicted in Figure 8, where �., �/ and �0  were the first batch, the second batch and the pure biodiesel experimental spectrum, 

respectively. 

 

Figure 10. a) Regression between relative concentration profile of biodiesel obtained by classical MCR-

ALS optimization and actual biodiesel concentration. b) MCR-ALS recovered spectral profile. 

Classical MCR-ALS was applied to the multiset data using non-negativity constraint in the 

spectral and concentrations profiles. Figure 10a shows the scatter graph between experimental 

biodiesel concentration and the relative concentration profile obtained by the classical MCR-

ALS algorithm. The MCR-ALS recovered biodiesel and diesel spectral profiles are shown in 

Figure 10b. Correlation coefficients higher than 0.999 were achieved for both components when 

the similarity of the recovered and experimental pure spectra were compared. Figure 10a shows 

the different linear trends between the =@() concentration values and =ABC. values in the two 

batches of biodiesel samples as found in the PLS results. 

An external calibration curve was constructed, similar to a univariate calibration, with the 

relative concentration values obtained in the output of the last ALS iteration and the real 

concentrations of biodiesel in the calibration samples. Thus, the concentrations of test samples 

were predicted using this calibration line and the relative concentration output for these samples 

obtained by ALS. Figures of merit of this prediction model were calculated and are displayed in 

Table 2 (model 3). As suspected, this model did not provide correct results, as can be seen from 

the correlation coefficient (R2 = 0.930) and the high relative error (RE(%) = 13.58 %) for the 

prediction of the test samples. 
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MCR-ALS with a global correlation constraint model was employed using the two batches 

(first and second subsets). Similar results were achieved (Table 2, model 4) showing that the 

problem persisted even if correlation constraint was used, because of the presence of matrix 

effect. Figure 11a shows the low quality prediction for that model. 

 

Figure 11. Plot between actual and predicted biodiesel concentration comparison for MCR-ALS models 

with global correlation constraint with a) two components (model 4), b) three components (model 5) and c) 

MCR-ALS model with local correlation constraint and matrix effect correction (model 6). See models 

description in Table 2. 

A MCR-ALS global correlation constraint model was developed with three components 

(model 5), for comparison with the PLS model with 3 latent variables (PLS 3LV). Results shown 

in Table 2 for this model exhibit similar behavior when compared to PLS 3LV model. Despite of 

the fact that the number of chemical compounds was two, three components were necessary to 

reduce the matrix effect when the global model was applied, as shown in Figure 11b. 

MCR-ALS with the correlation constraint strategy to correct the matrix effect was employed 

(model 6 in Table 2). Two local regression models were developed in each ALS iteration 

correcting the matrix effect by rescaling the concentration output of the second subset by the 

linear regression parameters obtained in calibration model of the first subset as described in 

b.iii. The results shown in Table 2 for model 6 indicate that this strategy was able to overcome 

the matrix effect problem, as it is observed by the improvement of the correlation coefficient (R2 

= 0.992) and the decrease of the relative error (RE(%) = 4.85 %). Figure 11c shows the 

regression plot between the actual and predicted concentration of biodiesel in samples used in 

the training (calibration step) and test sets using the MCR-ALS with the new correlation 

constraint strategy with matrix effect correction between the two batches (model 6 in Table 2). 
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None of the global combination models (PLS or MCR-ALS) with three components 

outperformed the MCR-ALS model with two components and matrix effect correction. However, 

including additional components in calibration models is a good alternative if a variable matrix 

effect among samples exist and local models for separate sample subsets with a common 

matrix effect cannot be performed67. 

4.2. ANALYSIS OF BIODIESELS AND ANTIOXIDANT MIXTURES 

This data was employed to show the application of correlation constraint in a more complex 

situation for the determination of one kind of biodiesel and one antioxidant at low concentration 

level in a mixture with biodiesels from different sources. Figure 5a and Figure 5b showed the 

original and the preprocessed spectra of the 62 sample mixtures, respectively, see page 15. For 

biodiesels, the main contribution for the spectral signal was from the soybean biodiesel due to 

the high absorptivity of chromophores in the broad bands from 400-500 nm. The antioxidants 

concentrations in the samples were very low and only PDA (N,N’-Di-sec-butyl-p-

phenylenediamine) contributed to the overall signal, but with spectral bands very overlapped 

with the soybean (SB) biodiesel. The other compounds had lower signal and were completely 

overlapped by the SB biodiesel compound signal. The first order SG derivative raises the 

overlapped band differences between SB biodiesel and PDA in the original spectra, as 

observed in Figure 5b. 

PLS regression models were constructed using the preprocessed data. Calibration samples 

were selected using the samples that covered the full antioxidant concentration range. About 

two thirds of the total number of samples were selected for the calibration set, and the rest were 

used to test the calibration model. The number of latent variables was chosen by cross-

validation. 5 latent variables were chosen for the calibration models built for the two compounds. 

The results are displayed in Table 3 (models 1 and 4) for prediction of SB biodiesel and PDA, 

respectively. Good prediction results were obtained for both compounds, squared correlation 

coefficient between actual and predicted concentration values were superior to 0.990 and 

relative error lower than 1 % and 2 %, for SB biodiesel and PDA, respectively. 

MCR-ALS models were constructed and compared to PLS results. An SVD analysis was 

applied to determine the number of components in the data. Four to six components could be a 

reasonable choice by SVD analysis, but further analysis of the MCR-ALS and prediction results 

showed that six components provided better results. MCR-ALS spectral initial estimates for the 
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six components were estimated by SIMPLISMA using the non-preprocessed data. That was 

because the SIMPLISMA approach was not suitable for data with negative values present in the 

derivative spectra. The selected initial estimates were submitted to the same preprocessing 

before the MCR-ALS optimization. Due to the presence of negative values in the preprocessed 

spectra, non-negativity constraint was only applied in the concentration profiles. Pure 

experimental SB biodiesel and PDA antioxidant preprocessed spectrum were inserted as a 

subset matrix. This strategy allows a better recovery of the spectral profiles by the MCR-ALS 

models, mainly for PDA, because of the low spectral signal intensity in comparison to the 

soybean (SB) biodiesel spectrum. 

Table 3 Figures of merit of PLS and MCR-ALS models for prediction of SB biodiesel and PDA 

concentration. 

Compound Model description Nca RMSECb RMSEPb SEPb Biasb RE(%) R2 c 

SB biodiesel 

1. PLS 5 0.237 0.2666 0.272 0.028 0.983 0.999 

2. MCR-ALS 
(classical with 
external calibration) 

6 0.986 0.728 0.637 0.38 2.68 0.998 

3. MCR-ALS (global 
model in the first 
subset) 

6 0.585 0.515 0.508 0.140 1.9 0.999 

PDA 

4. PLS 5 6.57 8.75 8.97 0.282 1.99 0.999 

5. MCR-ALS 
(classical with 
external calibration) 

6 82.99 176.4 158.5 -85.2 40.08 0.929 

6. MCR-ALS (global 
model in the first 
subset) 

6 9.16 13.90 14.26 0.432 3.16 0.997 

(a) Nc is the number of components or latent variables used in the MCR-ALS or PLS model, respectively. 
(b) The values are given in [% w/w] and [ppm] units for SB biodiesel and PDA, respectively. 
(c) R2 is the coefficient of correlation between predicted and actual concentration values of test samples. 

Classical MCR-ALS was applied to the data and external univariate calibration models were 

built with the relative concentration profile output from the ALS optimization. Results for the 

classical approach are displayed in Table 3 (models 2 and 5) for SB biodiesel and PDA 

antioxidant, respectively. A high relative error was found for the PDA prediction (RE(%)=40.08 

%), because of its low concentration level in the mixtures and the low contribution to the signal. 

The MCR-ALS with global correlation constraint in the first subset was applied for 

determination of the SB biodiesel and PDA antioxidant concentration. The results, shown in 
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Table 3 (models 3 and 6), proof that the correlation constraint improved significantly the results 

comparing to the classical MCR-ALS model. There was found a slight reduction in the error 

parameters for SB biodiesel calibration, but a great improvement was found for the calibration 

model of the minor compound PDA (model 6). It was observed a reduction of the RE(%) from 

40.08 % to 3.16 % and increasing of the R2 from 0.929 to 0.997 for prediction of the PDA test 

set. The results in Table 3 showed that MCR-ALS with correlation constraint and PLS have a 

comparable performance. However, MCR-ALS provides the additional meaningful information 

associated with the recovered spectral profiles. 
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CONCLUSIONS 
The MCR-ALS method with the correlation constraint in the multiset approach has been 

demonstrated to be a useful and accurate tool for quantification of biodiesel blend level using 

NIR spectroscopy and biodiesel and synthetic PDA antioxidant in biodiesel mixtures using UV-

Visible spectroscopy. The recent modification in the correlation constraint to correct the batch-

to-batch matrix effect found between ageing biodiesel/diesel blends was successfully applied in 

this work. Only slightly worse results were obtained by increasing the number of components in 

the MCR-ALS modeling, as was proven to happen in PLS regression models to alleviate the 

matrix effect. It is useful in cases where there is a variable and insufficient defined matrix effect. 

The correlation constraint was also applied for a complex case where a minor antioxidant 

compound with an overlapped signal with other compounds had to be determined. It was shown 

that the correlation constraint was crucial to improve the recovered profiles and prediction 

results in comparison to classical MCR-ALS models with a posteriori building of calibration 

models. 
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APPENDIX 1. MAIN MCR-ALS FUNCTION 
Below is shown the syntax and the description of the inputs and outputs of the main function 

of the MCR-ALS algorithm. The complete code, written in a .m file (alsregrr.m) is provided in the 

CD attached to Appendix 5. 
function  
[copt,sopt,sdopt,ropt,areaopt,rtopt,ycal,stats]=als regrr(d,x0,nexp,nit,t
olsigma,isp,csel,ssel,vclos1,vclos2,arsel) 
%Syntax:  
%   
[copt,sopt,sdopt,ropt,areaopt,rtopt,ycal,stats]=als regrr(d,x0,nexp,nit,t
olsigma,isp,csel,ssel,vclos1,vclos2,arsel);  
%    
%   Multivariate Curve Resolution (MCR) - Alternati ng Least Squares 
(ALS)  
%   With the Correlation Constraint (yregarearr.m f unction)  
% 
% 
% INPUT VALUES:  
% 
%       d : experimental data matrix  
%       x0: initial estimates of the concentration profiles  
%           or of the species spectra  
%     nexp: number of data matrices analyzed simult aneously  
%      nit: maximum number of iterations (50 is the  default)  
% tolsigma: convergence criterion in the difference  of sd of residuals  
%           between iterations (0.1% is the default )  
%      isp: correspondence among the species in the  experiments  
%     csel: matrix including the equality/correlati on constraints 
(selective channels  
%           or known values) in the conc matrix  
%           0 values = non-present; >0 known values ; 'inf' or 'NaN' 
unknown values  
%     ssel: matrix including the equality constrain ts (selective 
channels  
%           or known values) in the abss matrix  
%           0 values = non-present; >0 known values ; 'inf' or 'NaN' 
unknown values  
%    vclos1: vector of variable closure constants f or conc profiles  
%    vclos2: the same as vclos2 when two closure co nditions are applied  
% 
%    arsel: matrix including in the correlation con straint for areas of 
C 
%           profile, must contain values of known c oncentration values 
for calibration samples  
%           and NaN for unknown or test samples, ar sel must have the 
same size of (isp)  
% 
% OUTPUT VALUES: 
% 
%       copt: optimized species concentrations  
%       sopt: optimized species spectra  
%       ropt: residuals d - copt*sopt at the optimu m 
%      sdopt: standard deviation of fitting residua ls at the optimum  
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%    areaopt: areas of concentration profiles (only  for quantitation)  
%      rtopt: ratio of areas (only for quantitation )  
%       ycal: predictions on calibration and test s amples set  
%      stats: statistical information on ypred vs. yref. models  
%%%%%%%%%%%%%%%%%%%%%%% 
% other important variables  
% nrow number of rows (spectra) in d  
% ncol number of columns (channels, wavelengths) in  d  
% ils kind of initial estimate;  
%     ils = 1 initial estimates of concentrations;  
%     ils = 2 initial estimates of spectra  
% nsign is the total number of significant species  
% nexp number of experiments simultaneously analyze d 
% nspec number of species in each experiment  
% ishape = 0,1,2 data structure (see below)  
% nmlocal= number of local models  
% modelexp= structured matrix with number of exp. p er local model  
% cref= matrix with csel or arsel matrix for correl ation constraint in C  
% values or areas, respectively.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Edited by Rodrigo R. de Oliveira  march 2013                         %  
% Institute of Chemistry,                                              %  
% Applied Chemometrics Research Group                                  %  
% Federal University of Rio Grande do Norte                            %  
% Natal - Brazil                                                       %  
%                                                                      %  
% Faculty of Chemistry, Departament of Analytical C hemistry            %  
% Chemometrics Group                                                   %  
% University of Barcelona                                              %  
% Barcelona - Spain                                                    %  
%                                                                      %  
% email: rodrirochad@gmail.com                                         %  
%                                                                      %  
% Access,                                                              %  
% www.chemometricsufrn.org                                             %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                      %  
% List of Modifications:                                               %  
%   - 6mar2013 Correlation constraint for 2nd order  data               %  
%   - 11mar2013 commented totalconc when trinlinear ity cons. is used   %  
%   - 12jun2013 changed function yregrodrigo.m by y regarearr.m         %  
%   Next:                                                              %  
%                                                                      %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX 2. SUBROUTINE 1 
The code below represents the subroutine written inside the main function (alsregrr.m) to 

interact with the user and initializes the correlation constraint subroutines.  

    %% ******************************************** ******  
    % EQUALITY/CORRELATION CONSTRAINTS IN CONC PROFILES *  
    %************************************************** **  
    cons4 = find(wcons == 4); 
    % in input matrix csel finite values are known  
    if  ~isempty(cons4) 
        iisel=find(isfinite(csel)); 
        if  isempty(csel) && isempty(arsel) 
            disp( ' ' );disp( ' ' );disp( ' ' ) 
            disp( 'conc and area equality/correlation constraint matr ices 
csel and arsel were not input' ) 
            return  
        else  
            disp( ' ' );disp( ' ' );disp( ' ' ) 
            disp( 'CONC EQUALITY/CORRELATION CONSTRAINTS WILL BE APPL IED 
!!!!' ),            
            disp( 'Apply correlation constraint?' )            
            disp( '(0) No;' )                                  
            disp( '(1) in values of C profile;' )              
            if  nexp>1 
                disp( '(2) in areas of C profile;' ) 
                iregr=input( 'Option (0, 1, 2): ' );           
            else  
                iregr=input( 'Option (0, 1): ' ); 
            end  
            %%% Check for correlation/equality constraints inpu ts  
            if  (iregr==1||iregr==0) && isempty(csel) 
                disp( ' ' );disp( ' ' );disp( ' ' ) 
                disp( 'conc equality/correlation constraints matrix csel 
was not input' ) 
                return  
            end                          
            if  iregr==1 || iregr==2 
                compreg=input( 'Compounds to perform regression? e.g. 
only 1st, [1 0 0] ' );                 
                if  matc>1 
                    disp( ' ' ) 
                    regmodel=input( 'Global regression model (0) or local 
regression per C submatrices (1)? ' ); 
                    if  regmodel==0 
                        nmlocal=1; 
                        modelexp{1,1}=input([ 'Which experiments to 
include in the global model? (if all, enter: [1:' ,num2str(nexp), '])' ]); 
% select some experiments for global models  
                    elseif  regmodel==1 
                        disp( 'Local regression per C submatrices!' ) 
                        nmlocal=input( 'How many local models? ' ); 
                        modelexp=cell(nmlocal,1); 
                        disp( ' ' ) 
                        for  mi=1:nmlocal 
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                            disp([ 'Model ' ,num2str(mi)]); 
                            modelexp{mi,1}=input( 'Which submatrices? ' ); 
                        end  
                        if  nmlocal>1 
                            mateffect=input( 'Is there matrix effect 
among models,i.e., different slopes? YES(1), NO(0)' ); 
                        end  
                    end  
                end  
            else  
                disp( ' ' );disp( ' ' );disp( ' ' ) 
                disp( 'ONLY CONC. EQUALITY CONSTRAINTS WILL BE APPLIED 
!!!!' ) 
            end  
        end  
    end  
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APPENDIX 3. SUBROUTINE 2 
The code below is a subroutine inside the main function (alsregrr.m). It runs during the 

MCR-ALS iterations. 

    %% ******************************************** *******  
    % EQUALITY AND CORRELATION CONSTRAINTS IN CONC/AREAS *  
    %************************************************** ***  
    if  ~isempty(cons4) 
        if  iregr==0 % no regression constraint  
            conc(iisel)=csel(iisel); 
        elseif  iregr==1||iregr==2 
            if  nexp==1 %global model for one experiment  
                [yout,ycal,stats,coef]=yregarearr(c onc,csel,compreg,gr); 
                conc=yout; 
            elseif  nexp>1 
                if  iregr==1 
                    cref=csel; 
                else  % iregr==2 average Area of concentration profiles  
                    concorig=conc; %stores original C matrix  
                    conc=ones(nexp,nsign); 
                    cref=arsel; 
                    for  inexp=1:nexp % Average area of samples C profiles  
conc(inexp,:)=sum(concorig(nrinic(inexp):nrfin(inex p),:))/(nrfin(inexp)-
nrinic(inexp)+1); 
                    end  
                end  
                ycal=conc; %initialization of variables  
                ycal(iisel)=cref(iisel); 
                concmod=cell(nmlocal,1); 
                crefmod=concmod; 
                ycalmod=concmod; 
                statsmod={}; 
                coefmod={}; 
                for  mi=1:nmlocal %for global model nmlocal=1  
                    exps=modelexp{mi}; % experiments per model  
                    if  iregr==1 
                        for  i=1:length(exps) 
                            ki=nrinic(exps(i)); 
                            kf=nrfin(exps(i)); 
                            concmod{mi}=[concmod{mi };conc(ki:kf,:)]; 
                            crefmod{mi}=[crefmod{mi };cref(ki:kf,:)]; 
                        end  
                    else  %iregr==2  
                        concmod{mi}=conc(exps,:); 
                        crefmod{mi}=cref(exps,:); 
                    end  
[concmod{mi},ycalmod{mi},statsi,coefi]=yregarearr(c oncmod{mi},crefmod{mi
},compreg,gr); 
                    statsmod=[statsmod;statsi]; 
                    coefmod=[coefmod;coefi]; 
                    if  (regmodel==0||regmodel==1) && mateffect==0 %local 
models per subset of samples                                                                   
                        sell=isfinite(crefmod{mi});  
                        concmod{mi}(sell)=crefmod{m i}(sell); 
                    elseif   mi>1 && regmodel==1 && mateffect==1 
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%Rescaling ALS concentrations according to matrix e ffect  
%concmod{1}=youtmod{1};%Reference samples subset  
                        for  j=1:nsign 
                            if  ~isempty(statsmod{mi,j}) 
concmod{mi}(:,j)=(((concmod{mi}(:,j))*coefmod{mi,j} .slope+coefmod{mi,j}.
offset)-coefmod{1,j}.offset)/coefmod{1,j}.slope; end  
                        end  
                    end  
                    if  iregr==1 
                        sz=0; 
                        for  i=1:length(exps) 
                            ki=nrinic(exps(i)); 
                            kf=nrfin(exps(i)); 
                            conc(ki:kf,:)=concmod{m i}((sz+1):(sz+kf-
ki+1),:); 
                            ycal(ki:kf,:)=ycalmod{m i}((sz+1):(sz+kf-
ki+1),:); 
                            sz=kf-ki+1; 
                        end  
                    else  %iregr==2  
                        conc(exps,:)=concmod{mi}; 
                        ycal(exps,:)=ycalmod{mi}; 
                    end  
                end  
                zerosel=cref==0; 
                conc(zerosel)=0; 
                stats=statsmod; 
                coef=coefmod; 
            end  
%Reconstruction of C matrix for models with correla tion  
%const. in areas of C profile  
            if  iregr==2 %for subsets with equal or different # of rows  
                concreg=ones(size(concorig)); 
                for  inexp=1:matc 
                    cp=(concorig((nrinic(inexp):nrf in(inexp)),:)); % 
sample c profiles  
                    scp=sum(cp); % Area (sum) of c profiles  
                    for  cl=1:size(scp,2) 
                        if  scp(1,cl)~=0 
                            cp(:,cl)=cp(:,cl)/scp(1 ,cl); % do sum of 
sample cprofile  equal to 1  
                        end  
                    end  
concreg(nrinic(inexp):nrfin(inexp),:)=cp.*(ones(siz e(cp,1),1)*conc(inexp
,:)*(nrfin(inexp)-nrinic(inexp)+1)); % Rescales original C profile with 
real (predicted) concentration values  
                end  
                conc=concreg; 
                conc(iisel)=csel(iisel); 
            end  
        end  
    end  
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APPENDIX 4. CORRELATION CONSTRAINT FUNCTION 
This function is used by the MCR-ALS main function to build the correlations and predict the 

concentrations of unknown and/or test samples each iteration. 

function  [yout,ycal,stats,coef]=yregarearr(yinp,ysel,compre g,gr) 
% function [yout,stats]=yregarearr(yinp,ysel,compre g)  
% yout are the values predicted with the rgression constraint for 
unknown  
% samples and the actual values for known samples ( calibration)  
% yinp are the y ALS values;  
% ysel are the values coming from the csel matrix ( reference 
concentrations)  
% compreg is a binary vector setting which compound s should enter the 
regression process  
% ycal are the values predicted for all samples wit h the regression 
model  
% constructed with calibration samples  
% stats contain tha statistics (slope, offset and c orrelation coeficient  
% for regression constraint  
  
% modifications:  
%   - 22MAR2013 output variable coef containing the  slope and offset of  
%    the regression between yimp and ysel  
%   - 11apr2013 relative error output in stats  
if  size(ysel)~=size(yinp) 
    disp( 'dimensions of ysel and y are not the same; stop' ) 
    return  
end  
nc=size(yinp,2); 
yout=yinp; 
ycal=yinp; 
ycalc=yinp; 
stats=cell(1,nc); 
coef=stats; 
for  j=1:nc 
    if  compreg(j)==1 
        isel=find(isfinite(ysel(:,j))); 
        if  isfinite(isel) & length(ysel(isel,j))>=2 
            disp( 'regression for species: ' );disp(j) 
            x=ysel(isel,j); 
            y=yinp(isel,j); 
            [p,S]=polyfit(x,y,1); %regression fit  
            ycalc(:,j)=(yinp(:,j)-p(2))/p(1); 
            coef{1,j}.slope=p(1); 
            coef{1,j}.offset=p(2); 
            if  gr== 'y'  
figure(2+j),plot(ysel(isel,j),ycalc(isel,j), 'r*' ,ysel(isel,j),ysel(isel,
j)) 
                figure(2+j),title([ 'Correlation constraint for component 
'  num2str(j)]),xlabel( 'Actual' ),ylabel( 'Predicted' ),pause(2) 
            end  
            [p2,S2]=polyfit(ysel(isel,j),ycalc(isel ,j),1); 
            stind.slope=p2(1);           
            stind.offset=p2(2);             
            rcoef=corrcoef(ysel(isel,j),ycalc(isel, j)); 
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            stind.r=rcoef(1,2); 
            stind.RMSEC=S2.normr/sqrt(length(x)); 
            dev=ysel(isel,j)-ycalc(isel,j); 
            erel=100*sqrt(dev'*dev/(ysel(isel,j)'*y sel(isel,j))); % 
relative error also useful to know  
            stind.erel=erel; 
            ycal(:,j)=ycalc(:,j); 
            ycalc(isel,j)=ysel(isel,j); 
            yout(:,j)=ycalc(:,j); 
            stats{1,j}=stind; 
        end  
    end  
end  
end 
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APPENDIX 5. COMPACT DISC 
This CD contains the functions developed during the work to perform the MCR-ALS models. 

This version includes extension of the correlation constraint developed to correlate the profiles 

areas obtained by MCR with the concentrations in cases where high order data are employed, 

such as excitation x emission fluorescence matrices. 
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