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BACKGROUND

Since Imidacloprid release in 1991, neonicotinoid pesticides have continually increased

their market share till nowadays, beating consolidated products like carbamates or

organophosphates. They comprise an effective solution to the increasing problem of

some species cross-resistance to common insecticides. This and the fact that, from the

very beginning of the production process, they are conceived as products less harmful

than their predecessors, not just for the users, but also for the consumers of the treated

crops, the manufacturers and the environment, are advantages that justify a constant

improve in sells.

A new concept of protected cropping is being developed in the last few years, known as

Advanced Greenhouses. Among other technological improvements, this facilities

comprise a semi-closed system of water reuse that recovers lixiviates from irrigation,

physically treats that effluent by a reverse osmosis step and resends the permeate to the

greenhouse. The main drawback to these devices is the fact that the brine coming from

the membrane separation is highly concentrated on pesticides and salts, so it is hardly

degraded at conventional wastewater treatment plants.

The aim of this work is to perform a preliminary study of the effects of the photo-

Fenton reaction, an Advanced Oxidation Process, as a pretreatment for this new

generation pesticide polluted water. The final scope will be to adapt those brines to be

re-circulated into the greenhouse or to be emitted towards a wastewater treatment plant.

For this research, in order to work in a more real scenario, Imidacloprid was not used as

pure substance (Segura et al. 2008) but a commercial formula supplied by Aragonesas

Agro S.A., with this neonicotinoid (200g·L-1) as active ingredient. The so called non-

active ingredients that it contains, small esters mainly, could cause interferences along

the process, which couldn’t be observed nor taken into account while working with the

pure substance.

mailto:mmarmico@angel.qui.ub.es
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METHODS

Photo-Fenton reaction was carried out in a 2 L jacketed stirred vessel with three 8W

black light lamps (λmáx. 365 nm), axially arranged. Pesticide and ferrous ion

concentration, 20mg·L-1 and 15mg·L-1, respectively haven been selected taking into

account a previous stage of reverse osmosis. On the other hand, concentrations of

hydrogen peroxide were chosen in order to include the ratio [Imidacloprid]/[H2O2]

suggested by Segura et al. 2008 inside the range tested, and to establish a comparison

btween the results of the cited reference and the obtained at the experiments with the

commercial formulation. The concentration of pesticide along the reaction and the

possible formation of intermediates were monitored by a high performance liquid

chromatographer with photodiode array detector. The column used was a Mediterranea

Sea18, 5 μm 25x0.46 cm (Teknokroma). The mobile phase, composed by a mixture of 

water and acetonitrile (60:40), was delivered at a flowrate of 1 mL.min-1. The

wavelength of the UV absorbance detector was 269.5 nm. Total Organic Carbon (TOC)

was monitored by means of a Shimatzu TOC-VCSN analyzer. Biodegradability was

measured in terms of BOD5/COD ratio.

RESULTS AND DISCUSSION

Figure 1 shows the evolution of pesticide concentration along the photo-Fenton

reaction. Y represents the percentage of Imidacloprid eliminated in process,

ܻ(%) =
ሾூ௠ ௜ௗǤሿబିሾூ௠ ௜ௗǤሿ

ሾூ௠ ௜ௗǤሿబ
· 100 (Equation 1).

Imidacloprid is totally depleted with 75 mg.L-1 of H2O2. There is no improvement of the

reaction rate with higher H2O2 doses.

The biodegradability mesurements (BOD5/COD ratio) coincide with this behaviour. The

initial ratio of 20 mg·L-1 solutions increases from 0.12 to 0.16 after photo-Fenton

reaction with [H2O2]0=25mg·L-1, while the values reach a top and remains the same

from the experiment with 75 mg·L-1 to the last one (0.21, 0.22 and 0.21, for 75, 100 and

150mg·L-1).

These facts could be due to a phenomena of scavenging that is taking part at the

reaction, consuming the free radicals in competition with the pesticide. This effect could

derivate from the hydrogen peroxyde itself, but also from the innert compounds of the

commercial formula.

Fig.1 Profile of the elimination of Imidacloprid through performance of the experiments.

[Imid.]0=20mg·L-1, [Fe2+]=15mg·L-1.
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The Total Organic Carbon (TOC) measurements give more information about pesticide

oxidation. On one hand , there is the fact that the concentrations of initial TOC is much

higher than the expected for solutions of 20mg·L-1 of the pure compound (24,5

mgTOC·L-1 versus 8,2 mgTOC·L-1). There is a high contribution on carbonic matter by

innerts that can interfer with the reaction, consuming free radicals itself. On the other

hand, along the process of elimination, the final depletion of TOC is really low (a 10%

in highest quantity of peroxyde case), although pesticide depletion is completed when

using 75mg·L-1 initial hydrogen peroxide concentration and higher. The scavenging

effect by the non-active ingredients could still be present, but it doesn’t contributes

noticeably to their mineralisation. At Segura et al. 2008, the experiment corresponding

to [Imid.]0=100mg·L-1, [H2O2]=150mg·L-1 and [Fe2+]=15mg·L-1, achieves a TOC

removal yield of 21%, although, as sayed, the experiments were performed with the

pure specie.

CONCLUSIONS

Photo-Fenton reaction can be considered as a successful way of treating Imidacloprid in

commercial formula in the tested conditions. An optimum initial concentration of

hydrogen peroxide for the complete pesticide removal can be established between 25

and 75 mg·L-1 ([Fe2+]=15mg·L-1
). By the other hand, the possible interferences of non-

active ingredients or hydrogen peroxide scavenging were observed and low

mineralization was obtained. Pesticide itself shows a moderate biodegradability related

with the fact that it was conceived as more environmental respectful than precedents. In

any case, BOD5/COD ratio is not high enough to consider the effluent partially or fully

biodegradable. Thus, the AOP is needed.
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Abstract

Interferences from many sources can affect photo-Fenton reaction performance. Among

them, catalyst inhibition can be caused by the complexation and/or precipitation of iron

species by the organic matter and salts present in the reaction media. This is the case of

the oxidation of effluents containing organophosphorous fosetyl-Al. The degradation of

this fungicide generates phosphate anions that scavenge iron and hinder Fe(II)

availability. Experimental design was applied to artificially enlighten photo-Fenton

reaction, in order to evaluate fosetyl-Al degradation. The performed experiments

suggested how iron inhibition takes place. The monitoring of photo-Fenton reaction

over a mixture of fosetyl-Al with other two pesticides also showed the interferences

caused by the presence of the fungicide on other species degradation. Solar empowered

photo-Fenton was also essayed for comparison purposes. Artificial and solar light

photo-Fenton reactions were revealed as effective treatments for the elimination of

tested fungicide. However, the phosphate ions generated during fosetyl oxidation

decrease iron availability, what hampered organic matter degradation. Performed

BOD5/COD tests showed how fosetyl-Al biodegradability increases thanks to the

oxidation treatment.

1. Introduction

Light empowered Advanced Oxidation Processes, such as photo-Fenton reaction or

photo-catalysis, are based on the light enhancement of the production of highly reactive

radical species. They has been proven as efficient processes for the decontamination of

waters polluted with different origin emergent pollutants [1, 2] such as endocrine

disruptors [3, 4], pharmaceuticals [5, 6], pesticides [7-9], etc. They have been recently

shown as promising for the treatment of industrial wastewater [2, 3] and the prevention

of groundwater contamination [4, 5]. One of the main advantages of these techniques

among other AOPs has to do the versatility of their light/energy source. Although most

studies are performed in artificial UV light reactors, very positive results are being

obtained in the last two decades from works on solar light empowered devices [1, 10-

mailto:mmarmico@angel.qui.ub.es
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13], which makes them optimum for outdoor installation, especially in rural areas,

which in turn reduces both costs and risks.

This work is specially focused on the photo-Fenton reaction and certain factors

influencing the efficiency of this process. It faces a new perspective of the study of

photo-Fenton applied over pesticide polluted water due to the fact that takes into

account the direct interferences that the target contaminant to treat can exert over the

process.

As said before, photo-Fenton reaction is based on the generation of highly reactive

transient species, mainly hydroxyl radical, ·OH, that can rapidly oxidize most organic

substances [6]. Reaction (a) shows how hydroxyl radical is obtained from the

decomposition of hydrogen peroxide by means of the oxidation of dissolved ferrous

ions. The presence of UV light photo-reduces Fe3+, reaction (b), thereby recovering Fe2+

and contributing to an additional pathway leading to a greater generation of free radicals

in comparison to the dark Fenton reaction [7, 9].

ଶା݁ܨ ൅ ଶܱଶܪ ՜ ଷା݁ܨ ൅ ܱܪ ൉൅ିܱܪ (dark Fenton) (a)

ܨ ଶ(ܪܱ݁)
ା ൅ ାܪ ൅ ՜ߥ݄ ଷା݁ܨ ൅ ܱܪ ൉ (b)

Diverse sources of interferences in these reactions have been reported in literature and

could be classified into ·OH scavenging effects and precipitation and/or complexation of

iron species:

·OH scavenging:

One of the most reported sources of influence are halide salts. According to Pignatello

et al. [14] Cl- and Br- consume hydroxyl radical in detriment of the target organic

matter, according to the pH dependent reversible reaction (c) [15]. However, there are

some cases in which the halide radical generated in the middle of the reaction can

contribute enhancing the depletion of certain species from the organic load [9, 16].

൉ܱ ܪ ൅ ܺି ֖ ܱܺܪ������� ൉ି ⇌⏟
ுశ(ିுమை)

ܺ ൉�֖ณ
௑ష

�ܺ ଶ
ି · (c)

Halide anions can also exert certain complexing effect over Fe(III) nonetheless they can

be considered as relatively weak ligand of ferrous ion [14].

An excess of hydrogen peroxide in comparison to the organic matter content can also

act as a hydroxyl radical sink itself [17, 18].

Fe complexing or precipitation:

The existence of strong interactions between Fe(II) and Fe(III) with major and minor

ligands SO4
2-, OH-, HCO3

-, CO3
2- and HS- is well known [19]. In the case of sulfate
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salts, they can hinder organic matter oxidation [20-22], even though they are poor ·OH

scavenger, and sulfate iron complexes are soluble. However the SO4
2-coordinated iron

species inhibit the ulterior complexation with H2O2 needed previous to reaction (a), so

they have to be taken into account if sulfate concentration is considerable.

Organic substances and their degradation by-products can also complex Fe(III); some of

them compose labile complexes which undergo thermal or photochemical reduction to

Fe(II) [23, 24]. Nevertheless certain ligands could stabilize the Fe(III), inactivates its

recycling [9, 25] and jeopardizes organic matter oxidation.

Among other inorganic salts Photo-Fenton process seems to be quite sensitive to the

presence of phosphate [4]. In the presence of H2PO4
2- (predominant specie at pH~3)

ferric ions undergo a complex reaction with this salt, causing Fe(III) to lose the ability

to be recycled to Fe(II) and catalyze hydrogen peroxide decomposition into ·OH

radicals [26, 27].

Regarding to the target compound, due to its simple structure, fosetyl-Al is easy to

produce, cheap to sell; therefore it is widely used as systemic fungicide against

oomycetes (mainly root-attacking phytophtora and downy mildews) in a variety of

crops, both in agricultural environment and in gardening. The possibility of interfere in

photo-Fenton reaction due to its phosphate group components makes it interesting for

the study of mentioned endogenous inhibition.

According to all this, the main aim of this study is to evaluate the degradation of the

fungicide fosetyl-Al by means of photo-Fenton reaction, and its role as catalyst inhibitor

affecting its oxidation and the oxidation of other pesticides coexisting in the same

mixture. For the accomplishment of the first purpose, experimental design in an

artificially enlightened reactor was used, followed with biodegradability tests. Also

solar photo-Fenton experiments were carried out in relation to the results obtained from

the experimental design in order to complete the picture.

The second objective pursued in this work was to assess the behavior of fosetyl in the

mixture of pesticides. This was accomplished by essaying photo-Fenton reaction over a

mixture of fosetyl with other two pesticides structurally very different, methomyl and

imidacloprid.

2. Experimental

2.1. Photo-Fenton reaction

The photo-Fenton reaction was carried out in different devices depending on the

radiation source. For artificially enlightened reaction, a 2 L jacketed stirred vessel with

three 8 W black light lamps (λmax=.365 nm) axially arranged to the reactor was used.

This device was connected to a thermostatic bath that permitted the experiments to
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evolve at a controlled temperature of 21 ºC. A more detailed description of the device

and the procedure can be found elsewhere [5]. The pH was set to 2.7 (optimum for the

equilibrium [Fe2+]/[Fe3+] to achieve its highest ratio) at the beginning of the reaction

with H2SO4 (Panreac) diluted solution. No interference is expected from this sulfate due

to its low concentration in the final mixture [14]. This value was monitored during the

process and kept constant between 3 and 2.5 by the reaction itself. All the trials were

carried out until reaching the total consumption of hydrogen peroxide. Every set and

every sample was withdrawn and then quenched with NaHSO3, 40% w/v (Panreac) to

remove the remaining hydrogen peroxide.

In the case of solar-photo-Fenton, the experiments were performed in two different

locations. The smaller device consisted on a bench-scale plant located in University of

Barcelona (latitude 41º28’N, longitude 2º06’E, sea level). The photo-reactor comprises

a module of 6 parallel CPCs (theoretical concentration factor of 1, CCPC=1) made of

polished aluminum, with a total mirror´s area of solar irradiation caption-reflection of

0.228 m2, tubular quartz receivers, attached to a galvanized surface angled 41º. The

irradiated volume was 0.95 L from a total reaction volume of 5 L allocated in a

mechanically stirred reservoir tank of 10 L. The solution was continuously recirculated

employing a pump (peristaltic pump Ecoline VC-380, ISMATEC) through the photo-

reactor piping and the reservoir tank. Temperature was not controlled and it could vary

from 20 to 30 ºC.

The pilot photo-reactor was sited in Tabernas, Almería (Spain), at Plataforma Solar de

Almería. Based also in CPC’s [28], it is made up of two twin systems of three

collectors. Each collector (1.03 m2 each) consists of eight series-connected tubes,

mounted on a fixed platform tilted 37º (Local Latitude). The 22 L of a total of 35 L was

the irradiated volume. More details of this device can be found elsewhere [2, 29].

2.2. Chemicals

Fosetyl-Al or aluminum ethylphosphonate was chosen as a possible source of

interference during its degradation due to its phosphorous derived structure, fig. 1. It is a

pesticide with systemic fungicide activity. Fosbel 80 was the source of fosetyl-

aluminum. The commercial formulation is a wettable product with 80% of the active

principle and around a 19% of kaolin.
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Figure 1: Dissociated molecular structure of fosetyl-Al.

Methomyl and imidacloprid were chosen as model compounds in the mixture due to

their extended application in horticulture and the previous experience of the research

group. They present different chemical structure and properties. While methomyl is an

N-carbamate, imidacloprid is a neonicotinoid, a third-generation pesticide. Commercial

formulations of both products were used with no further purification. Tomilo-20L was

the carbamate source and Kohinor the neonicotinoid’s; 200 g·L-1 of active principle in

each product. Both were obtained from Aragonesas Agro S.L. (Spain).

FeSO4·7H2O was the source for ferrous ions, and hydrogen peroxide was dispensed as a

commercial solution of 30% w/v. All of these substances were purchased from Panreac.

Deionized water was used to prepare every solution.

2.3. Chemical analyses

Insecticides depletion in each experiment was monitored using high performance liquid

chromatography with a photodiode array detector. The column used was a

Mediterranean Sea18, 5μm 25x0.46 cm (Teknokroma). The mobile phase was 

composed of a mixture of water and acetonitrile (both from Merck). The wavelength of

the UV maximum absorbance was 232.5 nm for methomyl, while for imidacloprid, it

was 269 nm. Detection limit for both compounds was 0.5 mg·L-1. Fosetyl-Al is

determined by liquid chromatography with electrospray tandem mass spectrometry after

the addition of tetrabutylammonium acetate (Sigma-Aldrich) as the ion-pairing reagent,

according to Hernández et al., [30]. Detection limit for fosetyl was established around

0.05 mg·L-1

Dissolved organic carbon (DOC) was also monitored by a Shimatzu TOC-VCSN TOC

analyzer. Dissolved ferrous ion (together with total iron) and hydrogen peroxide were

followed by spectrophotometric methods [31, 32]. 1,10-phenantroline was purchased

from Aldrich, while sodium acetate, acetic acid, and ascorbic acid were purchased from

Panreac, also were NH4VO3 and H2SO4.
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Phosphate was monitored by means of ion‐exchange chromatography with a Dionex

DX-120 ion chromatographer equipped with a Dionex DX-600 ion chromatograph and

4 mm × 250 mm Dionex Ionpac AS11-HC column.

Biodegradability was essayed in the shape of the ratio between Biological Oxygen

Demand, after 5 days, BOD5, and Chemical Oxygen Demand, COD. These last analyses

were carried out following the Standard Method 5220 D [33]; while BOD5 values were

obtained according to the procedures described in Standard Methods 5210D for

respirometry analysis (APHA 1995), using Oxitop® (WTW Chemical) manometric

bottles and BOD-seed capsules supplied by Cole-Palmer.

2.4. Experimental design

In order to determine the level of influence of some of the main experimental

parameters, fosetyl-Al, Fe(II) and H2O2 initial concentrations were selected as

independent variables. Their effects were assessed in the shape of a multivariate

surface-response analysis, already used and described by Micó et al. [8]. This

experimental design is based on a central composite circumscribed set of experiments,

consisting on a factorial design 23 (3 factors: [Fos.]0, [H2O2]0 and [Fe2+]0; and 2 levels:

[10, 50], [15, 100] and [10, 30] mg·L-1 respectively), and 6 star points. Pesticide

concentration range was chosen around the typical dosage of the product in irrigation

for real agricultural applications, while reagents dosage was decided according to

previous experiments, not shown here, that determine minimum concentration of

reagents for total elimination of 30 mg·L-1 fosetyl-Al.

A summary of the experimental design and its results preformed in the lab scale

artificial light reactor is presented in Table 1. Variables were coded on two normalized

levels: 1 as the highest and -1 the lowest value. According to this, the central point of

the design was coded as (0, 0, 0). Three replicates were carried out at that central point,

in order to check the statistical consistency of the data. Star points were distributed at 3

times the distance from the central point 0 to +1; except for the case which that distance

implied negative values of one factor. In that case, identified with a star (*) at table 1,

the negative value was replaced with the corresponding -1 value. Data analysis,

determination of the empirical model and response surface were carried out using Stat

Graphics Plus 5.1 software. Statistical validation was determined by ANOVA test at

95% confidence level.
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Table 1: Central composite design of photo-Fenton oxidation of fosetyl commercial formula

Exp. [Fos.]0 (mg·L-1) [H2O2]0 (mg·L-1) [Fe2+]0 (mg·L-1)

1 10 (-1) 15 (-1) 10 (-1)

2 50 (1) 15 (-1) 10 (-1)

3 10 (-1) 100 (1) 10 (-1)

4 50 (1) 100 (1) 10 (-1)

5 10 (-1) 15 (-1) 30 (1)

6 50 (1) 15 (-1) 30 (1)

7 10 (-1) 100 (1) 30 (1)

8 50 (1) 100 (1) 30 (1)

9 10 (-1)* 57.5 (0) 20 (0)

10 63.6 (3) 57.5 (0) 20 (0)

11 30 (0) 15 (-1)* 20 (0)

12 30 (0) 130 (3) 20(0)

13 30 (0) 57.5 (0) 3.18 (-3)

14 30 (0) 57.5 (0) 36.82 (3)

15 30 (0) 57.5 (0) 20 (0)

16 30 (0) 57.5 (0) 20 (0)

17 30 (0) 57.5 (0) 20 (0)

(*) Point (-3, 0, 0) and (0, -3, 0) had to be replaced by (-1, 0, 0) and (0, -1, 0) because the real variable value for (-

3) was lower than 0 in both cases.

3. Results and discussion

3.1. Previous tests

First of all, stability tests were performed in order to essay if there could be any

decomposition of aqueous fosetyl due to the direct effect of light, temperature or

stripping. Solar photolysis was dismissed after 10 h stirred batch experiment under

direct sun light in a quartz container, in which no diminishment of the concentration

was detected. This resistance was also confirmed comparing solar spectrum with

absorption spectrum of a solution of 50 mg·L-1 of fosetyl-Al. The maximum absorbed

wave length for the solution was located around 210 nm while solar spectrum only gets

the 10% of its total radiance. Also thermal decomposition and evaporation were ruled

out. 2 batch reactors of 500 mL of 10 mg·L-1 of fosetyl were heated to 70 ºC during 2 h,

one of them was sealed in order to prevent evaporation. No change in concentration

was found, establishing that fosetyl-Al solutions are resistant to degradation by heat

and no volatile enough to suffer evaporation at the essayed temperature (far from which

is going to be used in the performed experiments and from which it would be submitted

in a real scenario). No stripping was either detected after submitting a 10 mg·L-1

solution to an air flow of 100 L·h-1 during 6 h.

According to this, it could be supposed that fosetyl degradation detected in the

following experiments, was strictly due to the radical reactions involved in photo-

Fenton reaction.
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3.2. Experimental design application

Table 2 summarizes the experimental plan and gathers the results for every evaluated

response, t50%, half-life of the pesticide, ΔDOC (%), percentage of depleted Dissolved 

Organic Carbon, tF, time for the total consumption of hydrogen peroxide, and Y (%), the

remaining percentage of fosetyl-Al when all the H2O2 was consumed, just for the essays

in which the depletion of the fungicide was not complete.

Table 2: Experimental plan followed according to the experimental design, and results obtained.

Shadowed cells indicate which experiments did not arrived to a total depletion of the fungicide.

Exp.
([Fos.]0, [H2O2]0, [Fe2+]0)

(mg·L-1)
DOC0

(mg·L-1)
t50%

(min)
ΔDOC 

(%)
tF

(min)
Y(%)

1 (10, 15, 10) 2.6 3.3 26.2 165 1.01
2 (50, 15, 10) 12.7 74.4 24.7 1100 2.01
3 (10, 100, 10) 2.6 2.9 79.7 270
4 (50, 100, 10) 12.7 61.1 37.8 1380 1.30
5 (10, 15, 30) 2.6 1.6 30.2 75
6 (50, 15, 30) 12.8 4.76 42.0 90 8.01
7 (10, 100, 30) 2.6 1.36 84.4 130 1.19
8 (50, 100, 30) 12.7 2.36 77.6 800
9 (10, 57.5, 20) 2.7 1.5 55.2 130

10 (63.6, 57.5, 20) 16.2 14.1 34.6 600
11 (30, 15, 20) 7.6 2.1 36.4 130
12 (30, 130, 20) 7.7 2.1 78.9 1380
13 (30, 57.5, 3.18) 7.6 60.7 34.6 1350
14 (30, 57.5, 36.82) 7.6 1.6 69.7 150
15 (30, 57.5, 20) 7.6 1.9 49.2 510
16 (30, 57.5, 20) 7.5 2.0 48.3 450
17 (30, 57.5, 20) 7.4 2.4 50.8 510

As can be seen, half -life of pesticide, t50%, ranges from 1 to 74 min, with the majority of

the experiments laying in the lower values. It is difficult to directly find a pattern that

determine which is the combination of factors related to a low rate of fosetyl

degradation. However, a quadratic mathematical model, eq. 1, could be obtained,

relating this response with the experimental conditions, in order to predict the values of

this variable.

tହ଴Ψ =

22.37 + 2.35∗[Fos. ]– 0.22[HଶOଶ]– 3.97∗[Fe(II)]– 1.5 · 10ିଷ
∗
[Fos. ]ଶ – 2.21 ·

10ିଷ[Fos. ][HଶOଶ]– 78.28 · 10ିଷ
∗
[Fos. ][Fe(II)] + 1.45 · 10ିଷ[HଶOଶ]ଶ + 3.24 ·

10ିଷ[HଶOଶ][Fe(II)] + 11.10 · 10ିଷ
∗
[Fe(II)]ଶ (1)

Submitting the mathematical formula parameters to an ANOVA test, the significance

evaluation indicates that only the variables marked with * have a p-value lower than

0.05, so only those can be considered of significance for the model. According to this,
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the model can be simplified into eq. 2 (parameters are accompanied by their respective

confidence semi-interval).

tହ଴Ψ =

15.97(±24.37) + 2,2(±0.6)[Fos. ] − 3,70(±1.97)[Fe(II)] −

0,078(±0.028)[Fos. ][Fe(II)] + 0,109(±0.043)[Fe(II)]ଶ (2)

The R2 statistics for this multivariate regression is 0.96.

Depending on the value of each parameter, the magnitude of the influence can be

determined, in the same way their signs identify the sense of that influence. The higher

parameter, with lower p-value, is related to ferrous ion concentration, which seems to

have the strongest weigh over t50%, due to the fact that also its quadratic value and its

interaction with the fungicide concentration are both significant to the mathematical

model. The presence of the quadratic term indicates that the negative relationship

between this factor and half- life is not linear. Taking into account that the sign of its

parameter influence of Fe(II) principal effect is negative, the higher this variable the

lower the final value of t50% is. In opposition to this, the second more important term,

with positive sign, is the principal effect of fosetyl-Al initial concentration.

Unexpectedly the amount of hydrogen peroxide or its related values do not have

mathematically significant effects over the response, which does not mean that the

process does not depend also in this reagent, photo-Fenton reaction cannot take place

without it, but the influences of the other terms are so high that mask peroxide’s.

The contour plot represented by this model is depicted in Figure 3. It can be seen how

the model predicts an area where the half time values are <0, what have no physical

meaning. Due to the quite high standard deviations of the residues, 7.18, and the

dispersion of the results themselves, it could be expected that a realistic prediction could

not be made in this region. Nevertheless, these negative values point out the region

where the minimum half time is expected, although its value cannot be truly predicted.

Optimizing the mathematical model, the optimum point is characterized by the

following combination of parameters ([Fos.]0 , [H2O2]0, [Fe2+]0) as (10, 44, 21) mg·L-1,

although, as have been said and can be seen in Fig. 2, the correspondent half time,

mathematically is lower than 0; what lacks of practical value but indicates a region

where good conditions can be found.
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Figure 2: Contour plot representing the behavior of fosetyl half- life according to the concentration of
ferrous ion and the fungicide (both expressed in mg·L-1) for experiments with 100 mg·L-1 of hydrogen
peroxide.

Fig. 3 depicts the comparison of fosetyl-Al degradation profiles for different

experiments. One with the closest conditions to the calculated optimum, (10, 57.5, 20)

mg·L-1, another also with a low t50% value, but lower [H2O2], (10, 15, 30), and the

experiment with the highest t50% measured (50, 15, 10).

a) b)

Figure 3: 3a and 3b. 3a. Comparison of fungicide degradation in different experiments. ([Fos.], [H2O2],

[Fe2+]) mg·L-1. 3b. X axis is reduced for better understanding.

In these figures, it can be seen how the depletion is almost immediate in the case of the

lower quantity of fosetyl together with a higher ferrous ion concentration, as was

expected according to the model, and taking into account the signs of their associated

parameters. In the case of two experimental points similar in [Fos.] and [Fe2+] to the

optimum, the depletion is also very quick and the half- life of the pesticide is lower than

1.6 min. However, just looking at the values of fosetyl and ferrous iron, a lower t50% and

quicker degradation were expected for (10, 15, 30), not for (10, 57.5, 20), which is

slightly faster as can be seen in 3b. H2O2 concentration seems to exert a certain

influence, despite the fact that its effect has not significance in the mathematical model.

It seems that low hydroxyl radicals availability in the first case (due to lower initial

peroxide concentration) could compensate the benefic effect of lower [Fos.]/[Fe2+] ratio.

While for most of the experiments the fungicide was totally depleted, only in some of

them the mineralization exceeded 70%. In general, low DOC depletion was achieved,

being (50.6±10.4) % the average remaining percentage of DOC. However, a different
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mathematical model can also be obtained for this response data. Ec. 3 represents this

model once the non-significant terms (ANOVA test, 95.0%, p-value<0.05) had been

excluded.

ΔDOC (%) = 18.77(±15.63) − [Ǥݏ݋ܨ](±0.46)0.40 + [ଶܱଶܪ](±0.14)0.69 +

[ଶା݁ܨ](±0.61)0.01 − [ଶܱଶܪ][Ǥݏ݋ܨ](±0.0042)0.0087− +

[ଶା݁ܨሾ[Ǥݏ݋ܨ](±0.018)0.030 (3)

Once again, the sign and value of the parameters let determine the character of their

influence. In this case, the strongest effect is exerted by hydrogen peroxide initial

concentration, stating that it is the most important factor in mineralization as the main

source of hydroxyl radicals. The second most important factor is the concentration of

ferrous ion, which also plays an important role in the generation of radicals. As it was

expected, the influence of the initial concentration of fosetyl-Al, although it is lower in

absolute value compared to the interaction between the fungicide and H2O2 is negative.

The last factor taking part in the mathematical model is the interaction between [Fos.]

and [Fe2+], which is positive.

Fig. 4 represents response surfaces of the mathematical model for DOC. It can be seen

how the tendencies according to parameters values are reflected, consistently with the

interpretation of the parameters of the equation 3. As in the case of t50%, DOC

representation for [Fe2+]=10 mg·L-1 also includes a region with no physical meaning,

with percentages over 100%. Although the values cannot be accurately calculated, the

shape of the surface indicates the tendency of obtaining the best values around 10 and

30 mg·L-1 of fosetyl-Al and hydrogen peroxide over 120 mg·L-1. However, this fact

does not warranty better results with higher concentration of H2O2 than the essayed in

this study, due to the risk of scavenging exerted by the hydrogen peroxide itself, over

the hydroxyl radical [34].

Figure 4: Surface plots representing the remaining DOC (recorded here as TOC) according different

combinations of concentrations of fosetyl and hydrogen peroxide, for experiments with 10 mg·L-1 of

ferrous ion and [H2O2]=15 mg·L-1, respectively.
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From the point of view of a maximum DOC mineralization, the optimum value for total

DOC depletion was obtained mathematically for ([Fos.]0, [H2O2]0, [Fe2+]0) as (15, 130,

37). The concentration of the reagents is quite high, despite the low concentration of

fosetyl, what implies an economical drawback. However, taking into account the good

results for pesticide degradation in almost every case, and so it is expected also for this

set of conditions, the coupling with a posterior biological treatment could be suggested

(depending on biodegradability resulsts), where total DOC depletion is not required but

contraidicated. With this integrated system, the doses of reagents could be reduced This

will be detrimental to DOC depletion, nevertheless the bioreactor is expected to be able

to metabolize that remaining organic load not mineralized by the chemical process.

The named mathematical inconsistencies of the models could not be attributed to the

range of reagents concentration tested. The evaluated intervals for hydrogen peroxide an

iron concentration were chosen around previous experiences that showed that central

values could cope with 30 mg·L-1 of the fungicide. Moreover, they included such high

values (compared to fosetyl-Al concentrations) in order to prove that not always the

highest reagent conditions guarantee the best results, what it is especially evident in the

case of fosetyl degradation.

Regarding to tF, acquired data was so disperse that a representative mathematical model

could not be presented. However, submitting the data to ANOVA test, the strongest

influences could be determined according to the p-value of the different factors, their

quadratics terms and their interactions. Table 3 summarizes those parameters and their

p-values with other parameters of the statistical test. As can be seen, the most important

parameter in this case is the concentration of fosetyl (lowest p-value), followed by

ferrous ion concentration, H2O2 concentration and the interaction H2O2 and Fe2+.

Table 3: ANOVA tests for responses. R2, coefficient R squared, R2* adjusted coefficient R squared,

related to the number of degrees of freedom (17-1=16 d.f.).

tF

parameters p-values
[Fos.] 50.32 0.0008

[H2O2] -9.43 0.0087
[Fe2+] -42.94 0.0010
[Fos.]2 -0.40 0.0547

[Fos.][H2O2] 0.12 0.1700
[Fos.][Fe2+] -0.85 0.0406

[H2O2]
2 0.07 0.0937

[H2O2][Fe2+] 0.11 0.5063
[Fe2+]2 0.85 0.1622

R2 93.13
R2* 78.68
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3.3. Iron endogenous inhibition

Taking into account the evaluation of the three responses it can be observed that Fe2+

and fosetyl concentrations appears as critical factors in the observed parameters, and

always with opposite sign. This is due to a verified chemical interaction between both of

them due to the molecular formula of the fungicide. Fosetyl-Al oxidation ends up in the

release of phosphate salts, these anions precipitate ferric ions, inhibiting their recycling

into Fe2+. This effect reduces the rate of catalytic decomposition of H2O2, causing a low

availability of radicals that can affect the rate of elimination of the very fungicide and

hinder the mineralization of the organic matter.

Figure 5: Evolution of the iron and phosphates along the reaction. Belongs to the experiment (25, 50, 20)

mg·L-1.

Fig. 5 represents an example of the evolution of dissolved iron, in the shape of Fe(II)

and total iron, together with the concentration of fosetyl and free phosphates. Despite

fosetyl is quickly degraded, corresponding phosphates (3 times initial molarity of

foestyl-Al) are not released to the media at the same rate but gradually, during the first

minutes of the reaction. Although in general Fe3+ and PO4
3- tend to precipitate as ferric

phosphate, the small fraction of total iron concentration reduced during those first

minutes cannot be blamed for the precipitation of all the missing phosphates. Saturated

fosetyl carbon bonds of suggest that its main reaction mechanism with hydroxil radical

will run through hydrogen abstraction followed by a subsequent possible formation of

phosphate containingpolimeric by-products, among others (Samuni and Neta 1973).

Only through the advance of the oxidation these species end up decomposing and

releasing PO4
3- to the media.

In fig. 5 also can be seen how Fe(II) is rapidly converted into Fe(III) at the beginning of

the reaction. This phenomenon takes place in every experiment with the presence of

fosetyl in the moment the hydrogen peroxide is added. In a solution free of other

interferences, at the acid pH, ferric ion remains soluble and photoactive in the shape of

hydroxyl complexes. These complexes are susceptible to undergo photoreduction by

ligand-to-metal charge transfer (MLT) (Pignatello et al. 2006) to release Fe2+ and
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hydroxyl radical to the media. This enables the progress of the degradation of the

pesticide and its intermediates. In this particular case, when noticeable amounts of

phosphates and iron are present in the media, a rapid precipitation of FePO4 is expected,

causing the decomposition of hydroxyl-ferric ion complexes and preventing it from

MLT process. Nevertheless, as can be seen in fig. 5, this precipitation takes place more

progressively than anticipated. According to inorganic chemistry literature (Lente et al.

2000), a plausible explanation suggests the presence of another kind of complexes

generated by the interaction between Fe (III), water and phosphates that prevent

phosphate salt from precipitate. Fig. 6 intends to illustrate the sequence of the main

chemical species which can influence the degradation of Fosetyl-Al in the studied

conditions.

Figure 6: Schematic figure of the chemical evolution of iron and phosphate species during photo-Fenton

reaction. (Fe3+)x(PO4
3-)y(H2O)z refers to complexes proposed, while (PO4

3-)n-Rm stands degradation

phosphate containing degradation by-products.

Table 4 shows how the molar mass balance between total dissolved iron and dissolved

phosphate is fulfilled after surpassing the point to maximum concentration of phosphate,

the moment from when iron removed from the solution closely corresponds to the

precipitated phosphate. This confirms that although the possible existence of PO4
3-

stabilizing complexes, the depletion of phosphates and iron are related to their

precipitation. Table 5 summarizes the final mass balances of other two similar

experiments which are also equilibrated.

Fosetyl-Al

PO4
3-

(PO4
3-)n-Rm

Other degradation products

FePO4

(Fe3+)x(PO4
3-)y(H2O)z

Reaction Time

Fe(II)

h
Fe(III)-hydroxyl complexes
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Table 4: Mass balance of phosphates and iron depletion with time for (25, 50, 20) experiment.

[Fos.]0

(mM)
[PO4

3-]máx.

(mM)
[Fe]0

(mM)
0.07 0.21 0.36

t (min)
[PO4

3-]t

(mM)
[Fe]t

(mM)
[Fe]
(mM)

[PO4
3-]

(mM)

40 0.12 0.25 0.11 0.09

60 0.03 0.19 0.18 0.17

90 0.02 0.15 0.19 0.21

120 0.01 0.13 0.20 0.23

150 0.01 0.12 0.20 0.24

Table 5: Mass balance of phosphates and iron final depletion for (15, 30, 15) and (50, 100, 30)
experiments.

[Fos.]0

(mM)
[PO4

3-]máx.

(mM)
[Fe]0

(mM)
[PO4

3-]f

(mM)
[Fe]f

(mM)
[Fe]
(mM)

[PO4
3-]

(mM)

(15, 30, 15) 0.04 0.12 0.26 0.01 0.11 0.15 0.11

(50, 100, 30) 0.14 0.42 0.54 0.12 0.15 0.29 0.30

3.4. Biodegradability results

Table 6 recaps values of biodegradability, represented as BOD5/COD, corresponding to

effluents before being treated, and after their treatment under the conditions that gave

best results for t50%. It is worth to mention that in all the essayed cases, the depletion of

the fungicide was complete.

Table 6: Chemical and biochemical oxygen demand for effluents before and after being treated.

Conditions: ([Fos.]0 , [H2O2]0, [Fe2+]0) (mg·L-1).

Previous to treatment After treatment

Conditions
BOD5

(mgO2·L
-1)

COD
(mgO2·L

-1)
BOD5/COD TU

BOD5

(mgO2·L
-1)

COD
(mgO2·L

-1)
BOD5/COD TU

(10, 57.5, 20) 3.26 25.35 0.13 0.52 1.45 5.87 0.25 0.52

(30, 57.5, 36.8) 3.60 61.43 0.06 0.48 1.6 8.32 0.19 0.60

(50, 100, 30) 3.93 95.23 0.04 0.62 5.45 30.45 0.18 0.20

As can be seen, initial higher concentrations of the pesticide imply lower values of

biodegradability due to the fact that, in opposition to the proportional increase of COD,

the value of BOD5 is very similar for every case, probably due to a certain effect of

inhibition exerted by the pesticide or its inert ingredients over the test biomass.

After the treatment, in the case of 10 mg·L-1 of pesticide biodegradability increases,

connected to a noticeable COD diminishment after chemical treatment, that

compensates a slight reduction in BOD5 (due probably to the mineralization of the

organic content by photo-Fenton). In the cases of 30 mg·L-1 of fosetyl-Al,

biodegradability also follows the same pattern, a diminishment of BOD accompanied by
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decrease of COD (not as pronounced as in the case of 10mg·L-1). According to this, the

final biodegradability is higher than at the beginning but lower than for 10mg·L-1

experiments. The same happens with the highest pesticide concentration, the

biodegradability increases noticeably compared to the initial value. In this case, while

the final BOD increases with respect to initial BOD, a diminishment (nearly 50%) of

COD thanks to the chemical treatment is registered.

According to the results obtained, the effluent final biodegradability is determined (at

least partially) by the initial concentration of the pesticide. Only in the case of 10 mg·L-1

of pesticide, the final values achieved make the effluent eligible of being considered at

least partially biodegradable (Ballesteros Martín et al. 2009b). However, the results

point out that although the biodegradability achieved after treatment is not optimum, the

chemical process is essential to adapt the effluent to be sent to the effluent to a

biological post-treatment, either at the public sewage system or to an adapted bioreactor.

3.5. Solar photo-Fenton reaction over fosetyl-Al and mixture of pesticides

The applicability of solar light to enhance the decontamination of fosetyl-Al was also

essayed, compared to the performance of electrically enlighten photo-Fenton. The first

implies an inexpensive source of light that would reduce operational costs and constitute

a more environmental friendly alternative, avoiding the need of an artificial energy

supply to empower the UV lamps.

The UV experiments were performed in the same reactor as previous runs, while solar

light essays were carried out in SOLEX device, a 35 L composed parabolic converter.

pH was fixed around 2.8, and temperature evolved freely (also did for artificial light

experiments in this case). This set comprises the experimental conditions which are

summarized together with the results in Table 7. Pesticide concentration, mineralization,

dissolved and total Fe, and PO4
3- were monitored along the process.

Table 7: Comparison between the results obtained for artificially and solar powered photo-Fenton. .

Conditions: ([Fos.]0, [H2O2]0, [Fe2+]0) (mg·L-1).

UV lamps Solar light

Exp. Conditions
Q50%

(KJ·L-1)
DOC0

(mg·L-1)
DOCf

(mg·L-1)
ΔDOC 

(%)
Q50%

(KJ·L-1)
DOC0

(mg·L-1)
DOCf

(mg·L-1)
ΔDOC 

(%)

A (15, 30, 15) 0.46 3.5 2.0 43.50 0.46 3.4 1.5 55.88

B (25, 50, 20) 1.18 5.7 3.0 48.10 0.26 5.5 0.7 87.27

C (30, 100, 25) 2.07 12.5 6.0 52.35 0.31 11.7 5.0 57.26

Instead of t50%, the parameter compared in this case is Q50%, representing the energy

required to achieve the decomposition of 50% of the pesticide load. This response was

chosen to make it comparable two different sources of light (Tokumura et al. 2008),

obviously different, regarding to their power. Figure 7 shows the evolution of the

concentration of fosetyl-Al versus the accumulated energy for the experiments with
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solar and UV light. At the same time, it is evident how the fastest experiments are those

made under solar radiation. The depletion profiles are similar for every experiment of

this set; the fungicide concentrations have a quick decrease at the beginning. However

the profiles are clearly steeper, what indicates higher reaction rates, and implies lower

Q50%, as can be seen in Table 7. Besides, also DOC depletion percentage is superior,

much more for experiment B, which solar light improves to almost ΔDOC =90%. The 

higher light incidence intensity over the solar device (between 17 to 25 W·m-2, in front

of around 7 in W·m-2 for the UV lamps device), together with possible photo-chemical

reactions that would undergo beneath the visible range of solar light spectrum, could

justify the increase in fosetyl-Al degradation velocities in the case of sun powered

photo-Fenton, in opposition to UV lamp performed process. Regarding to DOC

depletion, the same factors could contribute to its increase, but the temperature could

also play a part, given that the solution suffers a noticeable temperature increase while

being irradiated by sun. In fact, the experiments were performed in October, with an

initial average temperature of 23 ºC, just after 30 minutes of treatment reached around

26 ºC, and arrived to 35ºC at the end of the experiments. No influence is supposed to be

exerted directly by temperature over the degradation of the fungicide due to the fact this

event happens at the beginning of the process, when the temperature change is not

noticeable yet.

Figure 7: Pesticide degradation profiles comparing photo-Fenton processes powered by solar light or by

UV lamps.

Focusing just in the performance of the solar powered process, figure 8a presents scale

reduced degradation profiles for solar experiments. As can be seen, the essay with lower

fungicide concentration suffered a quicker decomposition, followed by experiments B

and C, although in the first minutes of the experiments both profiles were very similar.

According to DOC depletion results, presented in figure 8b, mineralization seems

higher for intermediate values of fosetyl and Fe(II), while is very similar between

experiments A and C.

A mixture of three studied pesticides was also essayed in the bench-scale solar device in

Barcelona, to see the influence that the presence of dissimilar organic substances can

exert on the solar photo-Fenton reaction. The experiment performed had the following
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initial conditions: [Fosetyl], [Methomyl] and [Imidacloprid]=20 mg·L-1; [H2O2]=200

mg·L-1; [Fe2+]=10 mg·L-1. Figure 9 is a representative graphic of these experiments.

a) b)

Figure 8: 8a and 8b; 8a. Fosetyl-Al degradation profiles, the axes have been scaled with respect to fig. 7

in order to distinguish the different curves for solar experiments, due to the quick depletion of the

fungicide in the first minutes of the process. 8b. DOC depletion profiles for solar experiments.

Figure 9: Degradation profiles for the mixture.

The segregation on the elimination rates of the different compounds highlighted that,

even though hydroxyl radical, in which is based this technology, does not react

selectively with organic matter, it does it indeed with different initial degradation rate,

related to the structure of the molecule degraded (Walling 1975). Nevertheless the most

interesting results obtained in this essay are the uncompleted elimination of every

species, and the shape of the shown profiles. In previous works with the pesticides

treated separately and together, but in absence of Fosetyl-Al, by means of photo-Fenton

reaction (Micó et al. 2010a; Micó et al. 2013), their profiles always presented a gradual

concentration decrease from the very beginning of the process. Even in the case of

fosetyl-Al, as seen before, the pesticide suffers an initial notably sharp descent. In

opposition to this, Figure does not show that quick decrease for fosetyl-Al, and for

imidacloprid and methomyl it seems there is a delay in their degradations while fosetyl-

Al is being oxidised. These facts reveal the existence of a competition for the radicals
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between pesticide species (and/or their inert ingredients and by-products); furthermore,

a noticeably influence by the phosphates generated by the degradation of fosetyl could

be expected. It will gradually precipitate iron (III) as discussed before, inhibiting the

characteristic photo-recycling of the photo-Fenton reaction, and preventing the total

depletion of the target compounds.

4. Conclusions

For most of the experiments performed under the fosetyl experimental design, pesticide

degradation is complete and very fast, averaged t50%= 14.13 min (3.14 min excluding

the three experiments with t50% higher than 60 min). DOC degradation is quite low in

general. Only some experiments exceed 70% of mineralization. However, both

responses enables to obtain mathematical models with R2= 96.97 and 97.37

respectively. These models allowed determining the most important parameters that

influence t50% and DOC.

In the case of half-life time model, the most influential factor turned to be Fe2+

concentration, through a non-lineal relationship, for which the higher ferrous [Fe2+] is,

the lower t50% is achieved. The second term in influence is the interaction between

fosetyl and ferrous ion, justified by the importance for the process of the phosphates

released by the degradation of the fungicide, which precipitate Fe3+ preventing it from

being recycled and generate more hydroxyl radicals. The optimum conditions for the

lowest t50% are ([Fos.]0 , [H2O2]0, [Fe2+]0) as (10, 44, 21).

Mathematical model for DOC removal stated that the most influential parameters are

hydrogen peroxide and ferrous ion concentrations, which are both critical factors for the

generation of hydroxyl radicals. Also an optimum trio of conditions was obtained for

maximum mineralization, (15, 130, 37).

Experimental results have shown how phosphates released by fosetyl-Al degradation

interferes with the oxidation process precipitating Fe(III) and disabling it from

recycling. However, the existence of other species related to PO4
3- that avoid an

immediate precipitation of the ferric salt are postulated. Further study should be

performed to obtain more detailed information about the entangled complexation

chemistry.

BOD5/COD results showed an increase of biodegradability of the effluent after the

chemical treatment, encouraging the use of a subsequent biological reactor that could

cope with no mineralized organic load, enabling the reduction of reagents. According to

this, the convenience of a maximum DOC removal, for which an optimal set of
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condition was determined, may be subjected to the interest of integrating the subsequent

bioreactor.

Solar light powered photo-Fenton showed that for every tested case, the pesticide

depletion was complete. The comparison between this technique and UV light photo-

Fenton indicated that solar experiments had better performance regarding to the speed

of the fungicide degradation and DOC depletion. This system is especially advisable for

outdoor environments with high solar irradiation.

The essay of solar photo-Fenton over a mixture of pesticides shows clear influence by

the different coexisting organic species, invalidating one-specie-only experiments if

there is the intention of making an exercise of studying a real scenario, where numerous

substances are expected to coexist.

To sum up, photo-Fenton seems to be an effective way of treating pesticides solutions

containing fosetyl-Al. Its solar version is even more effective than UV light powered

process, which is an advantage regarding to the use of an inexpensive source of

radiation. It has been stated that fosetyl containing effluents compose cases in which

endogenous inhibition should be taken into account, and the optimization of the

working conditions is extremely troubled by it. In this case, regarding to multivariate

analysis results and in opposition to what was expected, the concentration of the

catalyzer (affected by fosetyl degradation) seemed to be more influential than the

oxidant agent itself.
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Abstract

Greenhouses with hydroponics culture usually work in closed and semi-closed irrigation

systems. The addition of water treatments to process the drainage and the eventual

leaching are strongly recommended given its content in crops protection products and

high amounts of salts. This work pretends to study the suitability of the integration of

photo-Fenton reaction and a slow sand filtration column to treat those pesticide

contaminated effluents at different salinity conditions. As a first step the performance of

a series of sequencing batch reactors was monitored in order to check biocompatibility

of photo-Fenton pretreated effluents depending on their salinity content.

On the second step, those same pretreated effluents were loaded to the slow sand

filtration column. Its performance was also monitored to verify if the integration

between this bioreactor and photo-Fenton reaction is plausible. Finally, bacterial 16S

rRNA gene sequencing will be applied to analyze microbial diversity of the biomass

developed in the column depending on the salinity of the load. Results stated that the

coupled system combining the chemical treatment and a subsequent bioreactor is

effective for the treatment of water effluents containing pesticides. Its robustness makes

the integrated system able to deplete more than 80% of the organic load, even for high

salinity contents. Molecular biology techniques allowed determining the diminishment

of the Slow Sand Filtration biomass diversity with the increase of conductivity.

1. Introduction

In hydroponics, traditionally terrestrial plants are grown with their roots submerged in a

mineral nutrient solution (aquaponics or true hydroponics) or in an inert (organic or
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inorganic) medium, such as perlite, gravel, mineral wool, expanded clay or coconut

husk, through which the nutrient solution flows continuously. This soilless culture

requires frequent irrigation and high fertilization rates (Rouphael, et al., 2006), therefore

in order to safe water resources, plantation usually work as closed or semi-closed

irrigation systems. In those schemes the nutrient solution, after its pass through the root

mass, is recovered and recycled back to the system. In the case of semi-closed irrigation

circuit, some fresh nutrient solution is supplied along the circle, while another fraction

is discarded and the rest is recycled. The logical accumulation of salts in the recycled

stream can cause phytotoxicity problems on the crops. This fact is of especial concern in

the case of already saline native irrigation waters, such in coastal area of Mediterranean

climate (Flowers, 1998). On the other hand, although hydroponics avoids possible

soilborne pests, these crops do not escape the need to control other pests and diseases so

rational use of pesticides is inevitable metabolites will also accumulate on the recycled

streams of closed and semi-closed systems, endangering the crops, the producers and

the final consumer. Both salinity and toxic substances accumulations justified the need

of discarding part of the nutrient solution in the semi-closed system. However, these

named characteristics impede to discard directly to the public sewage system, not least

dump it directly to the environment.

From the point of view of the content in phytosanitary products, pesticides, etc., can be

blamed for a major impact on the environment when they are discharged to the

environment without control. In the case of pesticides, they are considered a major

concern due to the fact that most of them are biorecalcitrant substances with a relatively

high average life (Hayasaka, et al., 2012) that hardly degrade in natural ecosystems.

Their presence has been detected in air, water and soil, and at all trophic levels, from

plankton to large mammals, given that these compounds tend to bioaccumulate in many

living beings. This increases their toxic and polluting potential as they move through

food chains (Baranowska, et al., 2005; Hayasaka, et al., 2012; Pérez-Ruzafa, et al.,

2000; Wendt-Rasch, et al., 2004). In intensive farming effluents the concentration of

pesticides may reach considerably high levels (up to several hundred mg·L-1) and the

methods conventionally used in sewage treatment plants, as filtration or secondary

reactors, etc., are insufficient (Malato, et al., 2001). As an answer to this, in the last

decades several research works have been focused on testing the performance of photo-

Fenton reaction over this kind of emerging pollutant (Ballesteros Martín, et al., 2009;

Huston and Pignatello, 1999). Those studies revealed the adequacy of this procedure to

depollute aqueous effluents containing pesticides, even in presence of high salinity

concentrations (Luna, et al., 2012; Micó, et al., 2013).

Though in most of the cases the named chemical treatment is able to degrade

xenobiotics to concentrations lower than 1mg·L-1, organic carbon depletion was

revealed as not very efficient at times, or implied an excessive use of reagents (Muñoz,

et al., 2005; Oller, et al., 2011). In this regard, several works suggested the need of

http://en.wikipedia.org/wiki/Mineral_wool
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implementing a subsequent biological process after the chemical treatment that could

cope with remaining organic matter (Liberatore, et al., 2012; Oller, et al., 2011; Sarria,

et al., 2002). Different biosystems distributions have been tested for the integration:

packed bed bioreactors (Lapertot, et al., 2007), immobilized biomass reactors (Moreira,

et al., 2012; Oller, et al., 2007), membrane biofilm reactors (Sánchez Pérez, et al.,

2013), etc. However, among these technologies, moderate to high salinities are known

to produce inhibitory or toxic effects on bacteria not specifically adapted to high salinity

(Reid, et al., 2006).

(Rittmann 2006)Slow sand filtration column (SSF) is one of the earliest forms of water

treatment. In these devices raw water flows by gravity (0.1-0.3 m·h-1 (Campos, et al.,

2002) ) through a column of sand with high surface area, which is susceptible to be

colonized by microorganisms. The combination of the physical filtration and absorption,

determined by the effective size of the filling; and the activity of the biomass layer that

grows attached to the sand bed, schmutzdecke (Huisman and Wood, 1974), contributes

to the efficiency of this uncomplicated device. This technology is considered a suitable

method for the removal of suspended solids (Ellis, 1987; Logsdon, et al., 2002),

pathogens (Bauer, et al., 2011; Martínez, et al., 2010) and dissolved organic matter

(Linlin, et al., 2011; Zheng, et al., 2009; Zheng, et al., 2010). In fact, in recent years, a

resurgence of interest in this technique has occurred based on its proven efficiency

removing dissolved organic matter remaining after an oxidation pretreatment (Graham,

1999; Moncayo-Lasso, et al., 2012; Moncayo-Lasso, et al., 2008).

According to this, in this particular study, SSF is suggested as part of a photo-

Fenton/bioreactor coupled arrangement. Its simplicity, its low capital requirements and

operating costs (Campos, et al., 2002), together with its robustness against fluctuations

in feed quality (Moncayo-Lasso, et al., 2008) makes it a good candidate for the

integration, even more considering its inexpensive installation in an agricultural media,

where the source of polluted effluents is located. Furthermore, attached grow systems

are specially interesting for the particular matter of this research, due to the fact that

biofilms self-assemble to provide the community with optimal access to substrates in

addition to protecting them from a variety of environmental insults, such as toxicity,

salinity, predation, desiccation and washout. Biofilms also establish gradients of

substrates, creating specialized niches where microorganism with different and

seemingly incompatible metabolic functions can co-exist in the same media (Rittmann,

2006).

2. Objectives

The main aim of the present study is to essay the suitability of the integration between

photo-Fenton reaction and slow sand filtration column to treat pesticide contaminated

effluents at different salinity conditions. This essay comprises a first step in which the



Photo-Fenton and Slow Sand Filtration coupling for hydroponics water reuse

PhD Thesis

228

effect of salinity on the biocompatibility of the different photo-Fenton pre-treated

effluents is tested by means of monitoring the performance of sequencing batch reactors

(SBR) for different conductivity loads. This step is of special importance given that

crucial limitation for using slow sand filtration is the lack of a way to predict a priori the

treatability of source water (Logsdon, et al., 2002). On the second step, photo-Fenton

final effluents are loaded to the slow sand filtration column. Its performance is

monitored to verify that indeed the integration is plausible and robust against salinity

changes in the load. Bacterial 16S rRNA gene sequencing, a culture independent

technique, will be applied to analyze microbial diversity of the schmutzdecke at

different conductivity environments. In opposition to other techniques proposed in

previous works, most of them based on culture dependent techniques (Duncan, 1988;

Nakamoto, 1993; Yordanov, et al., 1996), gene sequencing does not limit the study to

those species susceptible of being culturable in lab conditions, improving the bacterial

diversity monitoring and understanding.

3. Material and methods

Feed composition

The performance of photo-Fenton pesticide removal at high salinities has already been

studied and presented in a previous work (Micó, et al., 2013). Simulated hydroponic

effluents for the current study were prepared with the conditions summarized in Table 1

and submitted to photo-Fenton reaction, as seen in (Micó, et al., 2013), before its load

into the SBR’s. Salt species were chosen according to those that Fornes and colleagues

stated as critical for high salinity issues in hydroponics (Fornes, et al., 2007). B0

solution was tested as a control being submitted to photo-Fenton reaction in absence of

added salts. In opposition to it, BC was nor pretreated before its load but directly loaded

to the bioreactor. Experiments B1, B2 and B3 represents three different levels of salinity

among which B3 averages the maximum conductivity that different plants can cope,

between 10.5 to 14.4 mS·cm-1, according to literature (Fornes, et al., 2007; Montesano, et

al., 2010; Villarino and Mattson, 2011). B4 represents extreme salinity value. It was

tested in order to prove the suitability of the integrated technology to treat the

concentrate of a possible reverse osmosis process applied to hydroponics effluent (to

reduce the volume of the polluted stream and to resend the permeate to the cycle).

Photo-Fenton initial concentration of reagents for the pretreatment were [H2O2]0= 100

mg·L-1 and [Fe2+]= 10 mg·L-1 (in the shape of FeSO4), and commercial formulations of

methomyl and imidacloprid were used as target compounds. As mentioned in (Micó, et

al., 2013), reagent values were chosen according to previous experiments (Micó, et al.,

2010).

Table 1. Summary of averaged conditions previous and after photo-Fenton for the effluents loaded to the sequencing batch reactors.



Photo-Fenton and Slow Sand Filtration coupling for hydroponics water reuse

PhD Thesis

229

10mg·L-1 Imidacloprid
10mg·L-1 Methomyl

44mg·L-1 DOC0 (previous to photo-Fenton treatment)

Exp. Specie
Salts conc.

(g·L-1)
Total salts

conc. (g·L-1)
Conductivity

(mS·cm-1)
DOCf*

(mg·L-1)
[Imid.]*
(mg·L-1)

[Met.]*
(mg·L-1)

BC** Non added salts ~1.5·10-3 45.19 10 10

B0 Non added salts ~1.5·10-3 35.76 0.01
Not

detectable

B1

KNO3 0.60

0.9 1.00 39.57 0.03 0.01

CaCl2 0.10
NH4Cl 0.05
MgSO4 0.05

NaHCO3 0.10

B2

KNO3 0.60

4.6 5.06 41.15 0.03 0.05

CaCl2 0.10
NH4Cl 0.05
MgSO4 0.15

NaHCO3 0.10
NaCl 3.00

CaSO4 0.60

B3

KNO3 1.25

9.05 11.06 42.24 0.13
Not

detectable

CaCl2 0.10
NH4Cl 0.05
MgSO4 0.30

NaHCO3 0.10
NaCl 6.00

CaSO4 1.25

B4

KNO3 1.25

42.13 50.00 43.51 0.77
Not

detectable

CaCl2 0.10
NH4Cl 0.05
MgSO4 0.90

NaHCO3 0.08
NaCl 36.00

CaSO4 3.75

*DOC values after photo-Fenton treatment

** This experiment was not chemically pre- treated at all

As can be seen in Table 1, photo-Fenton pretreatment was able degrade total pesticide

load in all salinity conditions studied (exp. B0, B1, B2, B3 and B4). However,

mineralization of the organic content composed by the pesticides themselves and the

inert ingredients from their respective commercial formulation was not so efficient.

Previous to their addition to any of the bioreactors, all the effluents were neutralized to

pH 6.5-7.5 with KOH solution, and were spiked with nutrients which were not already

part of the processed solutions, including trace elements according to Standard Method

5210D (APHA, 1995).These nutrients are crucial in stimulating the microorganisms to

perform their metabolic functions. If these proper quantities are not present, balanced

biomass growths are unable to occur and treatment performance will be impaired (Chan,

et al., 2010).

Sequencing batch reactors
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Six SBRs in 1 L working volume Pyrex Erlenmeyer flasks, loaded with one type of

solution each, were operated by cycles of four stages: fill, react, settle, and decant. In

the first cycle, 900 mL of fresh effluent was mixed with 100 mL of aerobic sludge

(Volatile Suspended Solids (VSS) = 1720 mg/L) taken from a wastewater treatment

plant placed in Barcelona. For subsequent cycles, again 900 mL of fresh effluent was

mixed with 100 mL of settled biomass from the content of the previous cycle, decanted

beforehand (centrifuged). Therefore the system worked with 90% volumetric exchange

ratio, expecting a fast start-up (De Clippeleir, et al., 2009), which was conducted

directly contacting the effluent with the secondary liquor.

The reactors were operated through different periods of time, the cycles succeeded as

Dissolved Organic Carbon (DOC) values were stabilized, and kept at room temperature

(22 ± 2 ºC). Fine stone air diffusers, connected to aeration pumps, provided oxygen

ensuring aerobic conditions to the six reactors, laying in their bases and supplying 3

L·min-1. Even distribution of the wastewater was achieved through continuous stirring.

The reactors were covered with aluminum foil to prevent light interactions.

Samples from the reactors were taken, filtered, and analyzed regularly, in order to

monitor the concentration of DOC, methomyl and imidacloprid.

Slow sand filtration column

A scheme of the slow sand filtration column is depicted in fig. 1. Filtration device

consisted of a glass cylindrical reactor of 110 cm height, 5 cm diameter, covered with

aluminum foil to avoid light penetration and the development of algae. The column was

filled (up to 101.5 cm) with expanded clay particles (2.5-5.0 mm), Filtralite ®, and

loaded, with an average down flow of 0.3 mL·min-1, supplied by a peristaltic pump,

from a stirred tank constantly aerated ensuring oxygen saturation. The empty volume

not occupied by clay was calculated approximately as 850 mL, the elapsed time for the

effluent front to traverse the column length was about 46h. The SSF was continuously

operated at a filtration rate of 0.01 m·h-1. The filters were not back-washable to make

the application as simple as possible (Zheng, et al., 2009).
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Figure 1. Slow sand filtration scheme.

The column counted with seven sampling points distributed all along its length. First

outlet was 15 cm under the surface of the solid media. Over this surface the supernatant

water column measured just 2.5 cm. Samples were taken around every 20-24 h from

the lowest sample point, to check the global performance of the column in terms of O2

consumption, DOC depletion, and NH4
+ and NO3

- elimination. Samples from all along

the column were taken eventually in order to assess the performance at different

filtering depths.

Analytical procedures

DOC and pesticides concentrations were monitored with the purpose of assessing the

performance of the system. DOC was measured by means of a Shimadzu DOC-VCSN

DOC analyzer. The concentration of the pesticides was quantified through a HPLC with

photodiode array detector, Waters Corporation. The column used was a Mediterranean

Sea18, 5 μm 25x0.46 cm (Teknokroma). The mobile phase, composed by a mixture of 

water and acetonitrile (both from Merck) (60:40), was delivered at a flow rate of 1

mL·min-1. In the cases with higher salinity content, a peak related to NaCl masked

methomyl peak, so another method was used with a mobile phase composed by 2.5 mL

of 80% H3PO4, 25 mL of methanol, diluted to 500 mL with milli-Q water. In this case

the flow was 0.7 mL·min-1. The wavelength of the UV maximum absorbance was 232.5

nm for methomyl, while for imidacloprid it was 269 nm. A dissolved oxygen (DO)

probe (Symphony, VWR) was used to measure this parameter in the feeding tank. NO3
−,

NH4+ and total N concentrations were analyzed to find out the fate of the N contained in

the load. Total Nitrogen was also measured by Shimadzu DOC-VCSN DOC, while

nitrate and ammonia was registered by ionic chromatographer. Finally, volatile

suspended solids, VSS, were determined according to the Standard Method 2540E,

(APHA, American Public Health Association, 1989).

Molecular biology techniques

(1) DNA extraction and purification. Indirect method was used to extract DNA from

active sludge samples. 0.5 g of Filtralite ® sample was added to an Eppendorf tube and

PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Inc.) protocol was applied.

Then the crude DNA was further purified using PowerClean® DNA Clean-Up Kit (MO

BIO Laboratories, Inc.). The ratio between light absorbance at 260 and 280 nm and

agarose gel electrophoresis were used to ensure good quality DNA extraction.

(2) Polymerase chain reaction amplification (PCR) of 16S rRNA gene was performed

using Taq DNA Polymerase (Quiagen), with 8F and 1492R bacterial universal primers,
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according to the quantities from table 2. ABI 9700 (Applied Biosystems) was the

thermocycler device that worked on the conditions described in table 3.

Table 2. PCR ingredients.

v (µL)
Water 10.75
8F 0.25
1492R 0.25
Taq Polymerase 12.50
DNA template 1.25
Total volume 25.00

Table 3. PCR cycling description.

Step T (ºC) t (min)
Preparation from 20 to 95 2

Denaturation 94 0.5
32 cyclesAnnealing 50 0.5

Extension 72 0.5
Hold 68 10

Conservation 4 

As salinity causes lower PCR yields, dilutions of the extracted DNA were needed to

obtain positive results, again checked by gel electrophoresis.

(3) The construction of gene clone library started with the cloning of the PCR products

by TOPO® TA Cloning® Kit for Sequencing with One Shot® TOP10 Chemically

Competent E. coli. The DNA from the resulting colonies was extracted and sequenced

by means of Robosec 4204SE automat robot (Applied Biosystems) with Plasmid

Miniprep Kit (Millipore). That resultant DNA was sequenced with BigDye® Terminator

v3.1 Cycle Sequencing Kit and V3F and V3R primers. Thermal reaction was also

performed in the ABI thermocycler, while the reading took place by means of ABI

PRISM 310 Genetic Analyzer (Applied Biosystems).

(4) The sequences were compared to previously identified organisms using Basic Local

Alignment Tool (BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi, National Centre for

Biotechnology, USA). This free access online app finds regions of local similarity

between query sequences and sequences from GenBank database (National Centre for

Biotechnology, USA) and calculates the statistical significance of matches. Together

with the taxonomic database of National Centre of Biotechnology,

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/, it allows inferring

functional and evolutionary relationships between sequences as well as helping identify

members of gene families, enabling the construction of a graph with the distribution of

the whole bacterial population that was supposed to be in the initial sample.

4. Results and discussion
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a. Sequencing Batch Reactors Results

On the first load, the reactors were feed with 900 mL of the corresponding effluent and

100 mL of secondary liquor from WWTP in Gavà, Barcelona, achieving an initial VSS

average of 172 mg·L-1. This biomass load evolved while metabolizing the organic

content of the effluents along four consecutive cycles of fill-react-settle-decant, after

which bacterial population was considered acclimated to the effluents and stable. Fig. 2

represents the DOC evolution for the successive cycles.

Figure 2: DOC evolution along the four cycles in sequencing batch reactors.

The very first cycle of SBR performance gives an idea of the readily biodegradability

content of the effluents (González, et al., 2008; Servais, et al., 1987). As can be seen

DOC depletion is evident in every case, which is an indication the presence of a fraction

susceptible of being promptly metabolized, even for the non-treated experiment, and the

resistance of the inoculum that did not suffer toxic or osmotic shock that collapse the

system.

For B0, B1, B2, and B3 the capability of biomass to degrade the readily biodegradable

organic fraction seems to be similar from the very first moment of feeding for all the

reactors at different salinity conditions, and final DOC depletion at the end of the cycle

noticeably high, from 60.1% to 69.5% as can be seen in table 4. It is worthy to note how

B4 achieved almost the highest DOC depletion (71.5%) despite its high conductivity, in

opposition to what was seen in previous works (Lefebvre, et al., 2007), where chlorine

content hindered the performance of the studied bioreactor. However a certain influence

could be seen in the slight elapsed time that shows B4 profile at the beginning of the

cycle. In the case of BC, extreme pesticide conditions causes lengthier degradation

profiles and slower DOC depletion, however, more than acceptable percentage of

organic matter depletion was achieved, 72.6%.
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Table 4. Averaged DOC depletion percentages for each load and reactor.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
BC 72.6 72.4 69.2 72.4
B0 60.1 65.2 68.7 74.5
B1 65.2 74.7 72.3 78.2
B2 69.8 78.9 79.7 81.8
B3 69.5 79.2 81.1 85.2
B4 71.5 78.1 80.2 82.3

After this first cycle more uniformity and more DOC removal was achieved for every

experiment as biomass acclimated to each feeding conditions. It can be seen how

maximum carbon depletion is achieve approximately during the first ten days of every

load, and ended up with relative final DOC depletion between 5 and 10% higher that

precedent cycle, achieving 85.2% for almost the highest salinity conditions, B3.

Nevertheless BC keeps a constant final DOC degradation percentage around 72.5%.

The fact that this value is lower than the rest of experiments suggests the capability of

photo-Fenton to increase biodegradability of the effluent.

Good results were obtained also for B4 (83.2%), however, it could be seen how its

degradation rates remained lower than the rest during the first days after reactor feeding,

although final DOC removal reached those high values, more than 80%. This behavior

suggests that hydraulic retention time and organic loading rate of biological reactors

should be adjusted accurately (to avoid an overloading when working at maximum

salinity conditions.

Fig. 3 shows the contribution of each process to final DOC elimination. As said before,

even in the case of no previous pre-treatment, the mineralization achieved by the

biological reactor is quite high. However, pesticide concentrations showed no changes

comparing the effluent and the influent of the reactors. In the cases which their

corresponding concentration was still detectable in the effluent (see table 1), the values

for the influent remained the same, also in the case of BC, where no treatment was

applied. On one hand this reflects the biorecalcitrance of methomyl and imidacloprid;

on the other, it states the no evidence of an inhibitory effect given the performance of

the biomass given the good metabolizing results. According to this it is important to

keep in mind that although the bioreactor itself can considerably diminish organic

content, the pesticide content remains unharmed with the environmental risk that

entails, so chemical oxidation pretreatment is indispensable.
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Figure 3. DOC depletion percentages for photo-Fenton and biological processes.

Fig. 3 shows the contribution of each process to final DOC elimination. As said before,

even in the case of no previous pre-treatment, the mineralization achieved by the

biological reactor is quite high. However, pesticide concentrations showed no changes

comparing the effluent and the influent of the reactors. In the cases which their

corresponding concentration was still detectable in the effluent (see table 1), the values

for the influent remained the same, also in the case of BC, where no treatment was

applied. On one hand this reflects the biorecalcitrance of methomyl and imidacloprid;

on the other, it states the no evidence of an inhibitory effect given the performance of

the biomass given the good metabolizing results. According to this it is important to

keep in mind that although the bioreactor itself can considerably diminish organic

content, the pesticide content remains unharmed with the environmental risk that

entails, so chemical oxidation pretreatment is indispensable.

In line with this, cases B3 and B4 are specially promising due to the fact that pesticide

depletion was almost total through photo-Fenton reaction (results shown (Micó, et al.,

2013)), and the metabolizing of the organic content in both reactors is even higher than

in the case of B0, where no high salinity interferences were taking place. This confirms

the suitability of coupling a chemical/biological systems in high salinity applications

related to pesticide pollution suggested before.
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Figure 4. VSS evolution along the four cycles in sequencing batch reactors.

One of the parameters that reflect the stability of the bioreactor is the biomass content in

the expressed as volatile suspended solids (VSS). The evolution of VSS of the 6 SBR

for the four cycles is depicted in fig. 4. In the first cycle, the biomass, showed initial

decrease on every reactor except for B4. This decrease could be considered an

adaptation of the initial biomass to the organic matter availability of the media. The

descent in VSS is followed also by a certain increase afterwards, which could indicate

the effective acclimation of the microbes’ consortium to the characteristics of every

load. In the case of BC, the significant population recovery in the last cycle indicates

that pesticide load is not exerting a noticeable inhibition to the biomass, which seems to

be quite stable with no indications of collapsing. In the case of B3 batch reactor, loaded

with maximum salinity accepted by the crops, this final increase also indicates that

salinity adaptation of a non-halophile inoculum is possible. It also justifies the

application of this feeding condition to the slow sand filtration column expecting a good

performance at those salinity levels.

Regarding B4, although DOC degradation profile was quite similar to the rest’s, the

evolution of the solids is significantly different given that no decrease was observed in

the first cycle of the SBR but a small descent in the second cycle. However, VSS values

in the last cycles were on the average of the other batch reactors indicating again that

biomass can be considered stable, and the collapse in the working conditions applied is

not expected.

According to all this, it could be concluded that photo-Fenton process increases

biodegradability of pre-pretreated effluent to a certain point. Though it leaves a quite

low biorecalcitrant fraction that could not be metabolized by biomass as represented in

fig. 3, salinity seems not to hinder biodegradation. Once the biomass overcome the

osmotic shock during the first two cycles, the effluents with higher conductivities seems

0

50

100

150

200

250

300

BC B0 B1 B2 B3 B4

V
SS

(m
g·

L-1
)

Cycle 1 Cycle 2 Cycle 3 Cycle 4



Photo-Fenton and Slow Sand Filtration coupling for hydroponics water reuse

PhD Thesis

237

to degrade organic matter until the same or even lower final DOC values achieved in the

batches with the lower salinity effluents. As a result, taking also into account the

pesticide removal achieved by chemical pretreatment, it suggests the suitability of the

photo-Fenton integration and a subsequent chemical treatment in cases of high chlorine

content pesticide polluted waters.

b. Slow Sand Filtration Colum Results

i. SSF Performance

Previous experiments were performed in order to check the capability of column filling

to retain pesticide content or DOC, not noticeable adsorption was observed.

To begin with the operation of the slow sand filtration column, 2 L of chemically pre-

treated effluents from type B1, neutralized with KOH, was mixed with 1L of sewage

from secondary treatment from Gavà WWTP. This mixture was oxygenated to a DO

concentration of 8.5 mgO2·L
-1, then it was continuously recirculated, supplying oxygen

when needed, during 48 h.

After that period, the recycling system was open and the feed was renewed with 2 L of

fresh KOH neutralized chemically pre-treated effluents load from type B1 (table 1), that

were then persistently feed to the surface of the supernatant layer of the column by a

peristaltic pump that dosed it by constant dripping. The feed, recharged every two-three

days, was aerated periodically in order to keep oxygen concentration between 7.8 to 8.5

mgO2·L
-1. Samples were taken from the lowest outlet in order to monitor dissolve

oxygen and measure DOC, pesticide content and concentrations of ammonia, nitrates

and total nitrogen. Experimental time started 48 h after the first drop of the new feed,

according to the calculation that 46 h needed for the column front to reach the last

outlet. The change between one load type to another was drastic in every case. The new

effluent just substituted the old one once its last recharge was about to finish.

In opposition to what was expected (Rooklidge, et al., 2005(Rooklidge et al. 2005), no

clogging was detected along the whole operational period due to the artificial origin of

the effluent. Given that there were no solids in the load, the anticipated clogging was

just due to the biomass growth and it was not enough to block the system. Therefore,

there was no need to clean the filter media draining the filter neither removing the top

layer (Rooklidge, et al., 2005) and no backwash system was necessary after more than a

year of operation of the column.
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Figure 5. DOC evolution along slow sand filtration column performance. On the legend, B1, B2, B3 correspond to the type of

effluent loaded in each different stage, see table 1. Upper lines indicate inlet DOC value.

Fig. 5 represents DOC measures for the different load stages of the column. It can be

seen that from the very first moment, just a few hours of start of the process, DOC

reduction is noticeable and it keeps diminishing till achieves values between 4 and 5

mgC·L-1. According to the assumption of no significant adsorption process is taking

place, the existence of an established biomass could be assumed. This is confirmed by

the fact that DO values at the column outlet for those first hours were around 2.3 and

1.2 mgO2·L
-1, what points out the aerobic biodegradation of this organic matter, and the

fact that this depletion does not take place just to a physical phenomenon of filtration.

Decreasing tendency is followed by the other two higher conductivities loads. Although

DOC values are slightly higher than in the first period, achieved DOC depletion is

around 75%, what indicates the capability of the schmutzdecke to metabolize the

organic matter that remains after oxidation, even for the highest salinity condition

tested. All this shows that the activity and development of microorganism population is

able to metabolize a noticeable amount of organic matter present in Photo-Fenton

effluents, an average of 30 mg·L-1 related to every load DOC content, consuming 6.5

mg·L-1 O2 in the process. No osmotic shock was observed either, given that there were

no stiff changes in the measured parameters for increased salinity. This quick adaptation

and the resistance to relatively harsh conditions could be related to the fact that

supported biomass is more resistant to adverse media conditions compared to suspended

biomass reactors (Bishop, 1997; Shieh and Keenan, 1986), and confirms the

performance response previously observed in the SBR’s.

Although the nutrients were added fulfilling stoichiometric needs, in relation to the

chemical oxygen demand (COD) income, no nitrification or denitrification seemed to

take place significantly (TN, [NH4
+], [NO3

-] differences between inlet and outlet were

negligible). That fact could be explained by the low levels of DO caused by organic

matter biodegradation, together with the continuous low values of DOC disposal,

precisely due to an intense biological oxidation. Furthermore in literature it is already

stated that under normal design and operation, SSF are generally not capable of

removing nitrogen (Amy, et al., 2006).
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Pesticide degradation was not noticed either for the loading effluents B1 and B2 (in type

B3 degradation of pesticide by photo-Fenton reaction was complete previous to the

biological reactor). This indicates that if their concentration after photo-Fenton is not

low enough for the public standards, it should be optimized for achieving higher

depletions. However, the active presence of biomass indicates that remaining pesticides

and metabolites do not inhibit its growing and the second can be mostly depleted.

Results just discussed were obtained analyzing samples acquired from the final

sampling point of the column. In order to check the distribution of this biological

activity along the column, samples from every outlet were also drawn and DOC and DO

were measured. Results showed that most part of DOC consumption and DO decay

takes place just before the first sampling point -only 15 cm under the surface of the

solid- as can be seen in fig. 6. DO measurements also shown a noticeably drop from

7.5-8 mgO2·L
-1 in the feeding tank to 2.5-1.8 mgO2·L

-1 just in the first outlet, keeping

similar values for the rest of them. All this makes evident that the biomass layer activity

is mostly located on the first centimeters of the column, a fact that previous researchers

have already stated (Campos, et al., 2002). This fact could suggest the need of the

optimization of the filtering media depending on the characteristics of the load. High

solid content in real effluents will require higher (or deeper) columns, while in the cases

where the requirements are more related to biomass activity, the column could be

reduced.

Figure 6. Representative DOC measures for samples taken from every outlet in a row. The first

with 1.6 mS·cm-1 effluent, next two were taken during the period of 5.6 mS·cm-1 loading, and

salinity concentration charge. Listed on the left, the number of the outlets, being #1 the closes

from where samples were taken regularly.

Regarding to final DOC elimination, mineralization achieved b

was between a 72% and a 78%. B3 case is especially interesting
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fraction is higher for higher salinity cases (10.3%, 6.48% and 3.99% for B1, B2 and B3,

respectively).

ii. Genomic characterization

Assuming that the attached biomass is mainly established between the surface of the

column and its first inlet, expanded clay samples from the middle point of this region

were withdrawn at the end of every cycle. Those solids are manually grinded in a

ceramic mortar and between 0.5 and 0.9 mg of the resultant milled matrix are

transferred to the first tube of the extraction kit in order to characterize bacterial

diversity in tested samples.

According to Wagner and Loy (Wagner and Loy, 2002), Beta-, Alpha- and

Gammaproteobacteria are frequently retrieved in wastewater treatment plants,

especially Betaproteobacteria that play important roles degrading a variety of

pollutants. Among this order, Rhodocyclales have been stated very important for

bioremediation and agriculture, as many member of this class are considered

responsible for the removal of anthropogenic compounds in the environment or in

biotechnological systemst (Loy, et al., 2005). Particularly, Methyloversatilis are

microorganism able to grow on single carbon compounds (Kalyuzhnaya, et al., 2006),

which presence could be related to the degradation of the photo-Fenton oxidation by-

products loaded to the column. For its part, Lepthothrix, classified as facultative

autotrophic-heterotrophic, seems to be mainly related to iron oxidation and can be found

in biofilters intended for iron and manganese elimination from raw and waste water

(Tekerlekopoulou, et al., 2013). In the case of Burkhoderiales is especially interesting

given that a certain strain of Comamonas was revealed as capable of degrading certain

organochlorine herbicides (Müller, et al., 1999). In this case no pesticide depletion was

(Feng et al. 2012)evident; however this kind of bacteria could be making its living by

degrading oxidation by-products. Other studies indicate that Comamonadaceae could

also be involved in denitrification pathways, but no evidences of nitrogen metabolism

could be observed.

Regarding to Gammaproteobacteria, they are known to exist normally in aerobic

biosystems as the main bacterial groups (Lee, et al., 2003; Wong, et al., 2005; Xia, et

al., 2010) and in DOC degrading in nutrient-rich environment (Poretsky, et al., 2010),

even in sea-salinity media (Manes, et al., 2011). Among them to, bacterial groups such

as Pseudomonas are linked with aquatic environments containing high concentration of

biorecalcitrant species, even in the presence of biocide substances such as

oxytetracycline and penicillin G (Deng, et al., 2012). Its presence has been stated also in

atrazine mineralizing media (Masaphy and Mandelbaum, 1997) and related to parathion,

together with Xanthomonadales. It is not strange then to find Pseudomonas in every

stage of the column. Specially promising is the fact that this order was also identified as

nicotine degrader in tobacco wastes by (Zhong, et al., 2010). This suggests this kind of
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bacteria could also perform neonicotinoid pesticide degradation as imidacloprid, with

structures derived from the alkaloid’s, if the optimal conditions of feed and aeration

could be found.

a)

b) c)

Figure 7. 7a, 7b, 7c. Percentages of the most abundant phylums and groups for the three stages of the slow sand filtration column.

The breakdown of the classes among the Proteobacteria can be also seen, together with the percentage corresponding to the

uncultured marine bacteria in relation with the total uncultured bacteria found for stages 2 and 3. 7a. B1, 1 mS·cm-1. 7b. B2, 5.06

mS·cm-1. 7c. B3, 11.06 mS·cm-1 .

Chlorobi and/or Cholorfelxi bacteria are also present in every sample. These phyla

correspond to photosynthetic prokaryotes, featured with reaction centers that contain

bacterio-chlorophyll, that testify the penetration of light to the column, despite the

aluminum covering. Chlorobi phylum comprises green-brown anaerobic
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photoautotrophs, while chloroflexi are green filamentous anoxygenic phototrophs

(Bryant and Frigaard, 2006). The metabolic limitations of chlorobi phylum restrict their

functions to the oxidation of sulfur compounds (in this case, mainly coming from the

byproducts of chemical degradation of methomyl), and the remaining ferrous iron not

reduced by pH adjustment; and fix carbon by the reverse tricarboxylic acid cycle

(Bryant and Frigaard, 2006; Shah, et al., 2009). In the case of chloroflexi, its metabolic

diversity allows this phylum to grow as an aerobic chemoheterotroph or as an aerobic

photoheterotroph, in both cases fixing CO2 through different routes (Bryant and

Frigaard, 2006; Kunisawa, 2006). According to this, the hererotrophicity of these phyla

exclude them from the function of mineralizing the organic matter contained in the load,

although they undoubtedly contribute to the equilibrium of the media. From the point of

view of the study of the organic content biodegradation, the presence of these

phototrophic phyla may reflect an inevitable negative bias in the PCR performance,

which manifests more abundant but not critical communities in detriment of most

interesting not so numerous organisms.

In addition to referred photosyntetizers, typical heterotrophs such as Bacteroidetes were

also found in B1 and B2. Together with Proteobacteria, these phylums are known to be

the most prominent heterotrophic organisms in marine surface waters (Stevens, et al.,

2005) and exist normally in aerobic biosystems (Deng, et al., 2012), what fits the

envrionment of the column. Bacteroidetes are also found as dominant phylum in 16s

rRNA libraries from agricultural soil samples (Jangid, et al., 2008; Janssen, 2006),

especially Sphingobacteria class, which are common in named stages,

Chitinophagaceae and Saprospiraceae in stage 2, and Terrimonas in stage 1. The

relationship of this phylum with agricultural earth could indicate its resistance to

pesticide products. Furthermore, Deng and colleagues stated that this phylum is

involved in the degradation of a variety of pollutants, and play important roles in

wastewater treatment (Deng, et al., 2012).

Among the uncultured bacteria not associated to any particular specie, especially

numerous in B2, a marine subgroup appeared in this stage and in B3, with higher

salinities. Corresponding sequences showed similarities with bacteria located in sea

samples in relation to marine microbes playing important roles in nitrogen

transformation of denitrification and nitrification (Yang, 2011), although none of these

processes were visible in the present study.

The fact that microbiological testimonies of nitrification and denitrification are present

in all stages of the column, although chemical proves could not be found, could indicate

that the process takes place but in such a small proportion that it was invisible
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analytically. This could be due to the high quantities of nitrates, in the shape of KNO3,

present in the media that could be masking subtle changes in nitrogen content.

5. Conclusions

Regarding to the above commented results and those obtained in (Micó, et al., 2013), it

can be concluded that the integration between photo-Fenton reaction and Slow Sand

Filtration could be an efficient process for the treatment of hydroponics effluents, even

for reasonably high salinities.

SSB performance during the first cycle allowed to determine the readily biodegradable

fraction from every load, and stated that photo-Fenton reaction is able to increase this

fraction for every tested condition. However a refractory portion was also observed in

every case.

The acclimation of the biomass was observed after several loading cycles, with an

increase of DOC depletion. This proved the stability of the bioreactors even for

maximum salinity values, achieving organic matter degradations higher than 80%

Neither SSB nor SSF biomass was able to eliminate the remaining pesticide content

remaining in certain experiments. Although integration is highly recommended, photo-

Fenton reaction needs to be previously optimized to ensure total pesticide depletion in

the effluent previous to its load to the bioreactor.

In the case of SSF, although regarding to DOC depletion, the three cycles run very

similar, with DOC depletion between 72 and 78%, microbial population and its

distribution was quite different and it could be seen how diversity diminishes with

salinity. This fact shows how different microbial consortiums can develop similar

functions in a certain ecosystem.

Proteobacteria, especially  and phyla, were abundant in every case what is explained

by its relationship to aerobic environments and organic matter degrading functions.

Halophile bacteria were found associated to higher salinity effluents, in particular

several clones related to marine uncultured bacteria.

Photosynthetic microorganisms were found also in every case. This fact indicates the

penetration of light into the solid media, at least through the first layers of expanded

clay.

Finally, microbial testimonies of nitrogen metabolizing were found. It could suggest

that the related processes could be indeed taking place (although no chemical proofs

could be found) in such a small proportion that high NO3
- concentration could be

masking it.
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