UNIFORM ESTIMATES IN THE POINCAR E-ARONSZAJN THEOREM ON THE
SEPARATION OF SINGULARITIES OF ANALYTIC FUNCTIONS

V.P. HAVIN, A.H. NERSESSIAN, AND J. ORTEGA-CERR

ABSTRACT. We study the possibility of splitting any bounded analjtiaction f with singulari-
tiesin a closed sef U F' as a sum of two bounded analytic functions with singulasitie’s and
F respectively. We obtain some results under geometridegstrs on the set& and F' and we
provide some examples showing the sharpness of the postuds.

INTRODUCTION

Let O c C be an open set ant , .S, be two relatively closed subsetsdh S = S; U S,. The
following result is due to Aronszajn [Aro35]

Theorem 1. Any functionf analytic inO'\ S coincides with f, + f»)|(0\s) Wheref; are analytic
inO\ S;,j=1,2.

In modern textbooks this fact is treated (if at all) as a &liexample illustrating general sheaf
theoretic and) approaches and related to the first Cousin problem; [Aro85]jever quoted
(see e.g. [BG91, p. 225], [HOr90]) not to mention its famguedecessors Poincaré [P0i92]
and Fréchet [Fré30] although their approaches remaerasting even now. The first version
of Theorem 1 with an ingenious proof appeared in 1892 [Pa@2}- C, S; = [-1,1], Sy =
(—o0, —1] U [1, +00) which is, of course, equivalent t = (—oo, 0], S2 = [0, c0)). The great
author was motivated by his dispute with Borel concerningsidle generalizations of the clas-
sical notion of analytic continuation. It is not quite clegino was right (see the discussion in
[Val54, Chapter IV, section 21-22]), but the explicit (nbnear) construction off;, f» given in
[P0i92] (exposed also in [Val54]) is very elegant (as wasashim [MH71], in the Poincaré situ-
ation there is no linear operatér— (f1, f2) (from Hol(O \ S) — Hol(O \ S1) x Hol(O \ Ss)
whereH ol(G) stands for the space of all functions analytic in an opeii-sgith the usual topol-
ogy). Various aspects of the separation of singularitiehénspirit of the Poincaré-Aronszajn
theorem (Theorem 1) are treated in [Val54], [BG91], [Hav$BRv84] and [Gau98].

The present article deals with a quantitative aspect of fidred. related to spacé$> () of
functionsboundedand analytic in an open sét ¢ C. Namely we are interested in the case
when f in Theorem 1 is bounded (i.ef € H>*(O \ S)) and ask whethef;, f, can be made
bounded as well (i.ef; € H*(O\ S;), j =1,2).
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Definition. Let O, 51, Ss, S be as in Theorem 1. We s&¥,, S,) is a bounded separation pair
(bs-pair) inO ifany f € H>*(O \ S) is representable by the formula

1) f=h+finO\S
wheref; € H*(O \ Sj).

The problem which is implicit in the definition can be resthges follows (just putting>; =
O\ S;, G = O\ 5): given open sets&/;, G, C C is it possible to represent an arbitrary
f e H*(G) by(Q)with f; € H*(G,), j =1,2?

We want more or less efficient (preferably geometric) caodg imposed o S;, S,), resp
(G1,G») and ensuring (1) for anf € H>*(O \ S) with f; € H>*(O\ S;) (resp.f € H*(G1 N
Ga), [ € H>(Gy)).

One of the first results of this kind is due to Polyakov [Poj8Blvas ancillary in his work on
bounded extensions of functiorisc H>(C') to the polydiskD™ (whereD = {|z| < 1}) for an
analytic curveC' C D"; see also [HP84]. Fafr; = DN {3z > 0}, Go = DN {Rz > 0} and
any f € H*(G; N G,) Polyakov proved (1) iriz; N G5 wheref; is analytic inG; and bounded
in Gj N l]D

In [HIiIOl] (whose authors were unaware of [Pol83]) and in [Bvthe bs-pairs were in-
vestigated in a systematic way and in much more generahgetAs in [Pol83], in [HNO1] it
was essential thai;, S; meet transversally (a generic situation is presented belowigure 6
(section 3.2 below); the results of [HNO1] apply to more gah&ansversal configurations). In
[Hav04] a class of tangent bs-pairs was described. Turmnbe present article we start with
some remarks on bs-pairs.

If 51,5, C C are compact and disjoint, thés;, S,) is a bs-pair inC: this is an easy con-
sequence of the Cauchy integral formula. Simple examplggio$ which are not bs it (in
particular the Poincaré pat, = (—oc, 0], So = [0, 00)) are in [HNO1].

The bs-problem is related to the Alice Roth Fusion Lemma [Geé87], [Gam69], [Dou66],
[HNO1]). In particular, the usual localization techniquleq Vitushkin operator) gives the fol-
lowing result (see [HNO1])(.S;, S>) is a bs-pair in a bounded open g@tif dist (.S, S3) > 0.

Dealing with the bs-problem for a pais;, S») we may always assume that N S, = (.
(Indeed,(S;, S2) is a bs-pair inD iff (51 \ 5,52\ s) is a bs-pair inD \ s wheres = S; N 5,.)

A really subtle and interesting situation arises witem S, = () anddist(S;, S2) = 0. Let
us denote the closure of a s€tby Clos £, and putk; = Clos S;, j = 1,2, k = K; N K. |t
is shown in [HNO1] that(S;, S,) is a bs-pair inO iff (S; N v, Sy Nw) is a bs-pair inO for a
neighbourhood with respect taC of k. Thus only “the germs o$; andS; atk” are responsible
for the bs-property ofS;, S2) in O.

In the present paper (as in [HNO1] and [Hav04]) we conceatoatthe simplest case whén
is a singleton.

We continue the study of “transversal” pafrs; , S») meeting at a point and obtain a very gen-
eral result applicable tarbitrary relatively closed parts; of the upper half-plan€* separated
by two raysn = k(,n = k1¢(, ( > 0,0 < arg(k) < arg(k;) < 7. In [HNO1] the transversally
meeting set$; and S, were supposed to be parts of certain rectifiable arcs. Weusglhow-
ever, that the concrete bounded splittings- (f1, f2) (f € H*(O\ S), f; € H*(O\ S;))
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constructed in [HNO1] are of independent interest; theyatse applicable to mamangentpairs
(51, 52), see [Hav04].

Unlike [HNO1], we do not exclude the tangency ®f and.S; and find rather sharp descrip-
tions of tangent bs-pairsS;, S;) in C* whenk = {0}; in some cases these descriptions yield
necessary and sufficient conditions for a tangent pair &f trde bs (Theorem 7).

We mainly putO = C*; note that(Sy, S>) is a bs-pair inC* iff (¢(S51), ¢(S2)) is a bs-pair in
¢(C™) for a conformal homeomorphismof C*.

The article consists of three sections.§lnwe obtain sufficient conditions for a pdis, Ss)
to be bs inC* (Theorem 4). Our approach is a reduction to dagroblem

(2) ou = fox

in an open se® wheref € H>°(O\ S) is a given function to be split as in (1), ands a cutting
factor which is= 1 nearS; and= 0 nearS; in O; the pair(S, .S3) is bs inO if (2) has always
(for any f) a bounded solution.

Theorems 2 and 3 are preparatory; they are corollaries @f ceseilts by Berndtsson, [Ber92]
on bounded solutions of the-problem in a disc. From them we deduce our main result of
§1 (Theorem 4), treating transversal and tangent p&irs, C C* with & = {0}; concrete
examples are discussed in 1.4. In 1.5, we give a direct anlicgxgolution of (2), not using
Berndtsson’s results and thus making §liessentially self-contained. In 1.6 we give yet another
very explicit proof of Theorem 4 for pairsS;, S2) in C* whereS;, S, are separated by a sector
with vertex at the origin. In 1.7 we briefly describe quite ksipbounded splittingy” — (f1, f2)
applicable to a class of paifs, S2), S; € C¥; the splittings of 1.5, 1.7 are linear ifi €
H>(CT\ 9).

The objects o2 are pairg Sy, S2) of smooth arcs in a sectot meeting tangentially at its
vertex, which araotbs in A (and, in fact, in any domai® > A).

The construction is a rather involved “condensation of siagties”, an accumulation of
“badly splittable” pairs of arcs il based on the Banach theorem on surjective operators. The
results are different depending on whether the common tdarge5; and S, at the vertex is a
side of A (Theorem 6) or is strictly insidél (Theorem 5). These theorems show the sharpness
of the results of1.

The results ofs51-2 are combined i3 to state Theorem 7 which includes, among other
things, the tangential case wh#ghis the graph of a real'™=-function¢; on [0, b] such that

6;(0) = ¢,(0) = 0, 0 < ¢1(t) < golt) fort e (0,b].

It turns out that S, Sy) is a bs-pair inC™ iff
. a(r) — di()
e

(i.e. Sy and S, are hyperbollicaly separated @1").

In section 3.2 we show that for a Jordan domé&in= G, N G, where the domainé;; are
Jordan as well, a functiofi € H>(G) may exist which is not representable As+ f, with
f; € H*(G;). In section 3.3, we construct an example illustrating tiieedince between the

>0
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case ofconnectedsetsS,, S, (arcs) we dealt with in Theorem 7, adésconnecteds;’'s where,
apparently, some new results are needed to grasp the bsry.op

1. SOME CLASSES OF BSPAIRS IN THE UPPER HALFPLANE

1.1. Reduction to ad-problem. Let S, S, be disjoint relatively closed subsets of the domain
O,andf € H*(O\ S), S = 51U S,. LetU;, U, be disjoint open neighbourhoods of (resp.)
Sy, S92 In O. Consider a bounded locally Lipschitz functignn O such that

3) x|Up =0, x|Uz = 1.

Extendf to O putting f|.S = 0. Any (distributional) solution; of the 9-problem

4) Ou= fox inO

is a continuous function, sing®y is locally bounded ir0. We assume € C(O) and put

fQIfX—U, flzf(l—X)+U inO,

sothatf = f, + f» in O. Clearly, f; is continuous irO \ S; anddf; = 0in O\ S;, whence itis
analytic inO \ S;. Itis bounded ifu is. We arrive at the following conclusion:

if (2) admits a solutionu € L>(0) forany f € H>*(O \ S), then(S;, S,) is a bs-pair with
respect ta0O

1.2. bs-pairs and a result by Berndtsson.Bounded solvability of a generétequation

(5) du=p

in D was studied in [Ber92]. The result of [Ber92] we need can lséyeadapted tdC ™ = {3z >
0}. By LY(F), E C C, we meanL!(E,dA) wheredA is the area element.

Theorem 2. Suppose that € L'(CT) vanishes irC* N {|z| > R} for a positiveR. If

(@) pdA is a Carleson measure ii*, and
(b) pSz € L>(CH),

then the (distributional) problerts) has a solution: € L>*(C).
Combining this result with section 1.1 we get

Theorem 3. Supposes;, So € C* are bounded, disjoint, and relatively closed. Supposesther
exists a locally Lipschitz real functiopin C* satisfying(3), vanishing inC* n {|z| > R} and
such that

(@) [Vx|dA s a Carleson measure iit,

(b) [Vx(Q)| < C/SC, (€ € C).

Then(S;, S2) is a bs-pair in any domai® C C* containings.

Proof. Note that2|0x| = |Vx|. By Theorem 2 thé-problem 2 has a bounded solutionGn
(thus inO), and section 1.1 applies. OJ
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1.3. Sets Sy, S, separated by graphs.To get a palpable description of some bs-pairs let us
assume that there are a numper 0 and a Lipschitz nonnegative functigron R such that
SicU={{+ineCh:n<g)}

So CUy={E+ineCr:n> 1+ g6}

Theorem 4. Suppose|, S, are relatively closed it©* and bounded. I{6) holds then(S;, Ss)
satisfies the assumptions of Theorem 3 and thus is a bs-pamyi® c C* containings.

(6)

Our assumption (6) means thg, S, are separated by the corridff + in € CT : ¢(§) <
n < (1+pn)g(§)} whose hyperbolic width is positive (since fgf¢) > 0 the hyperbolic distance
betweert +ig(¢) andé +i(1 + p)g(&) exceeds a positive number not depending enR). We
shall see ir§2 that this condition is sharp.

Proof. Put
0 if 0 <n<g(&),
Xo(&m) = 8D if ¢ € R,0 < g(§) < < (1+p)g(§),
1 it > (1+p)g(&).

Thusxo(§,n) = 1if £ € R, g(§) = 0, n > 0. Clearly xo is locally Lipschitz on the set
{€+ineCt: g(&§) >0} If g(§) =0,n > 0,then(1+4 p)g(&') < n' for& ~ ¢, n' ~ nwhence
xo(&',n') = 1. We see that, = 1 in a neighbourhood of any poigtt in € C* with g(£) = 0,
andyy is locally Lipschitz inC*. By definitiony,|U; = 0, xo|Us = 1. Take a largeR > 0 (so
thatS C {|¢| < R}) and then &g°-functionx; which is real and= 1 on{|(| < R}. Then

(7) X = XoX1
satisfies (3). We only have to check (a) and (b) of Theorem 8NBu= 0 onU; U U, and

C(x1) (nlg'(€)|
IVx(& )l < ug(&)( o©) +1) < C(g, 1, x1)/n

foralmostall§ € {g > 0} andn € (g(&), (14 u)g(€)) (recall thaty’ € L>(R)). Thus (b), holds.
To prove (a) consider a Carleson bBx= (a,b) x (0,b — a) (a,b € R, a < b). We have

b (A+m)g(&) dn
/|VX|dA:/ |VX|dA§C/ (/ —dg) = C'log(1+ p)(b—a).
B B{g(&)<n<(1+m)g(€)} a g€ U

O

1.4. Examples.

1.4.1. Example 1.Fork > 0 putg(¢) = k& (£ > 0), g(§) = 0 (£ < 0). In this case Theorem 4
is illustrated by pairg.S;, Ss) separated by sector{¢ +in : £ > 0,k <n < (1 + p)k&é}.
Compared with [HNO1] this result is a progress. In [HNO1] sommansversally meeting bs-pairs
were described with an explicit and elementary splittingrfola f = fi + fo (f € H*(O \
S), f; € H*(O\ S;)). Butin [HNO1] certain regularity conditions were imposed S;, S,

(in particular they had to be contained in a union of rectl&adrcs) whereas Theorem 4 allows
arbitrary relatively closed sets separated by a sector.
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FIGURE 1. Example 1
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FIGURE 2. Example 2

1.4.2. Example 2.Let G C R be a bounded open set. Theorem 4 is applicable(§o =
dist(¢, R\ G) (see figure 2)

1.4.3. Example 3.Theorem 4 is also applicable to sotamgentiallymeeting bs-pair§s;, Ss).
Supposg; € CH(R),g > 0,9(0) = ¢'(0) = 0. On figure 35, and S, meet tangentially at the
origin, but form a bs-pair it * (and in any subdomain @* containings = S; U S5).

1.5. Theorem 2 revisited: an explicit solution. The d-estimates that we needed included uni-
form bounds in the whole sét* and not only on the boundary. That is the reason that we could
not use Carleson estimates, but had to appeal to the moressoated Theorem 2 and we had
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FIGURE 3. Example3

to assume some extra regularity on the data (5) apart from the Carleson condition. The es-
timates by Berndtsson rely on some a priori estimates andftire the solution is not explicit.
Nevertheless Jones has found an explicit non-linear farfdan83] to solve thé equation that
gives bounded boundary values for the solution when theidaaCarleson measure. Seip has
observed (see [Sei04, Chapterl]) that this formula can aptad to get Theorem 2. For the sake
of completeness we present the adapted Jones solution.

Proof. We assume thagt € L'(C*) and vanishes ii€" N {|z|] > R} for a positiveR > 0.
Furthemore we assumg|d A is a Carleson measure @ and thatpSz € L>°(CT). Set

=2 [ Zepfo [ (s o) lw)liAw) (@A)

™ %C>OZ_CZ_C Jw<s¢ £ W ¢

The real number can be chosen freely. Nowy = p. Indeedu is of the form
_ 1 [h(z0)
u(z) = 1 [ Z=Lo0aa(),

whereh is continuous inC* x C*, andh(¢,¢) = 1 in the diagonalf(-, ) is holomorphic for
any¢ € C*. For any test functiow € C°(C*), ¢ € C™ and smalk > 0,

1 h('ZvC)’ o l 2 h<27C> P ) =
™ /c+\3(<,€) z—=C 09(z) dA(z) = m /c+\B(<,s) o ((Z - C)¢( )) ddlz) =
1 h(z, ()

27Ti |z—<\:€ 4 —C

¢(z)dz — —¢(¢)  ase — 0,
the countour integral is taken counterclockwise. Thus

[ udoiae) = [ oo [ 229006 daanc = - [ apda

c+ T Jor (2= () c+
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anddu = p follows. The hard part is to obtain estimates folWe take

2C\
a~! = sup / ‘“C_2|p(w)|dA(w).
I¢>0 JIw<S¢ |7~U - C|

This supremum is finite because we assumeliijdt! is a Carleson measure. We get

u(z)] <
2 a 3¢ —(Sw + Q2) 23¢
= / Ao / R ) I ldA ) Hot Ol
We use the definition of and we get
2e a 3¢ —(S(w) + 3(2))
< [ gl [ T ) dAm) He QA

We then write

u(2)] < I + Iy,

where

_ 2 RS —(S(w) +S(2))
"= se—clzaz 12 = (I ]2 = (] o {aéw@c |z — w|? \p(w)|dA(w)}|p(g)\dA(g)
and

_ 2e a (¢ —(S(w) +3(2))
f:= am /2|Z_C<gz\z—§| |z — (| P {OKZ&K%C |2 — w2 \p(w)|dA(w)}|p(C)\dA(§).
When2|z — ¢| > Sz, then|z — ¢| > |z — (|/5 and thusl; is bounded by a constant times
® i) mee{o ] lewiau foaQ)

If f is any positive function defined an> 0 andR, = f0°° f(t)dt (which may eventually be

00), then
/000 f(r) exp(— /0?“ f(t) dt) dr = /ORO e tdt < 1.

We apply this inequality to the function

1) = | = lote + i) .

and we get that (8) is bounded by'.
On the other hand, is easy to estimate if we drop the exponential term and ustatt¢hat
p(2)] < C/Sz. O
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1.6. An explicit solution of (2) for transversally meeting setsS;, S; ¢ C*. Here we return to
Example 1 of section 1.4 and give another very simple satusidhe problem
(9) Ou=p, p= fox,
wherey (see (7)) corresponds towhich is zero on{—oo, 0] and is linear on0, co): g(&) = k&,
¢ >0, forak > 0. The setsS5y, S, are separated by the sector
A =1{(&n)  kE<n=(1 + p)ke},
1

anddy is supported by a sectdr = A, N {|z| < R}. Putu = C” — a, whereC? = —1p 2
is the standard solution of (9) and

a(¢) = %[w géo(_z)sz(z), CeC.

Note thatp = 0 off 7', and|p(z)| < C/Sz ~ 1/|z| for = € T whencep € L'(C*,dA), and
functionsC”, a make sense.
Clearly,0u = p, sincea is analytic inC*, and we only have to prove thatis bounded irC™.

We have () f(2)dA(2)
_2i¢ Sz0x(2) f(z)dA(z
w0 =3¢ | SR
whence
dA(z) B n

Fix a smallg > 0 (to be specified later). Then

J(C)S/ +/ +/ — T+ IT+1II.
Trfla—Cl<qlcl}  JTO{lz=¢I>alcl, 121>alcl}  JTn{lz—¢I>alc], |2]<qlc]}

Now, |z| ~ Sz for z € T'. Estimating | we may writéz| > || — |z — (| > (1 — q)|(],
12— ¢ 2232 — |z — (| = cfz] — ql¢] = (]
wherec = c¢(k, ) > 0, = ¢(1 — q) — ¢ > 0 if ¢ is small, and
<o dAz) e
IC1 Jio—ei<qrer 1€ =21 [¢]

The Holder inequality (withh = 3, ¢ = 3/2) and|z — (| > |z — (| give
(12)

dA(z) < dA(z))1/3 < dA(z) )2/3 o
1< _aalz) e CON
- /z—<|>q<, 2>l 12l12 = ¢12 T /|z|>q< |2 /z—c|>q< |z —¢[? <]

At last,
(13) 11 g/ dA(z) <L dA(z) _ er
z—¢>qlch 121<dlel 12112 = €12 7 @IC1? Jizj<qqer 121 [q
Combining (10) with (11)—(13) we see thats bounded. O

(11) I
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1.7. Another explicit and bounded solution to equation(2). Here we again exploit the special
form of the right side of (2) (recall that Theorem 2 is aimed@neralright sidesp € L'(C™"),
but we only deal wittp = fOy, wheref € H>(C* \ S) andy is a smooth cutting factor).

This time we consider a function: R — [0, +oc) and assume € C'™*(R), e > 0,9 =0
on (—o0, 0], g(z) > 0 for z > 0 (in Theorem 4y was a Lipschitz function and it could vanish at
some positive points). The functions, xi, x are the same as in Theorem 4. Fix a srhall 0
so thaty; = 1 on the corridor

Gy={§+1in: 0<E<b, g(§) <n<(1+wpg&)},

andyo = x onGy. Fort € [1,1+ p] puty,(§) =& +itg(§), 0 < & <b.
Supposef is as in Theorem 4f(e L>°(C*), f|S =0, f is analyticinC* \ S). Put

L[ f(2)0x(z) po [ f(2)dz
u(¢) = T Jer (—% dA(z)+2m' o (—2
Thenu is bounded irfC* and satisfie$2).

Recall thaty, is the patht — t+ig(t), t € [0, b], so that the path; (i.e. the reflected graph of
g) does not intersed ™, and the contour integral is analytic@i. At the same time the double
integral represents “the standard solution of (2)” (not& thy is summable irG,, see the last
estimate in Section 1.3). Thus ousatisfies (2) ifC*, and the only problem is its boundedness.
The standard solution may blow up at the origin, but its ghowicounterbalanced by the contour
integral. A detailed proof will be given in [HOO6].

Our definition ofu combined with Section 1.1 generatebreear operatorf — (f1, f2) split-
ting f € H*(C* \ S) into the sum of functiong; € H>*(C*\ S;),j =1, 2.

, (eC™.

2. NEGATIVE RESULTS

In this section we describe some pdifs, S,) of subsets of a sectot which arenot bs-pairs
in A (Theorems 5, 6 in section 2.5.3 and 2.6). Combined with thelt® of§1 they give some
necessary and sufficient geometric conditions for two singodphsto form a bs-pair inC™*
(see§3). We start with preliminary technical results on “badlyitgble” pairs of arcsk, K5
in a domainO which means the existence ofc H*(O \ K), K = K; U K, with |¢| < 1in
O\ K and such that a representation= ¢, + ¢, ¢; € H*(O \ K), is only possible with a
very bigsup{|¢1(¢)| : ¢ € O\ K;}. If 51,52 C O contain the element&, K, of arbitrarily
badly splittable pair$&, K) (i.e. S; D Kj, j = 1,2), then(S;, S2) is not a bs-pair irD. These
vague considerations are made precise in sections 2.1la#d4then applied to quite concrete
Theorems 5, 6.

2.1. Cells and their rotundities. A cellis by definition a paifg, A) whereg is a Jordan domain
with a rectifiable boundaryg, and A, “the center” ofg, is a point ing. Sometimes we write
instead of(g, A). Put

2m dist(A, dg)

p(9)(= p((g,4))) 1(dg)
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wherel(dg) denotes the length @fy. Clearly, ,0( ) < 1, a geometrically obvious fact (an instant
proof is given by the formula = (274)~! 99 T A) the equalityp(g) = 1 occurs iffg is a disc

centered atd. We callp(g) the rotundityof the cellg(= (g, A)).

2.2. Functions at a large distance fromH>(g) in a cell g. Let K be a compact subset of
containingA. We assumed to be a boundary point ok (in our applicationgs” will be just a
simple arc)

Lemma 1. Let¢ be a function analytic it© \ K, ¢(co) = 0. Then anyh € H>(g) satisfies
(14) 16— e = 2

where|| - ||z denoteq| - || p-

lim sup |¢],
A

In other words, if¢ is very big neard and(g, A) is sufficiently rotund, theanyh € H>(g)
is far away fromg in H>*(g \ K).

Proof. Any h € H*(g) has the angular boundary valag;) at almost every € dg, and

h(p)zi,fg qu forp e g.

27 Jo, q— P
Moreover,fag % = 0forp € g. Thus putting| - || = || - |;\x, We have
( )< |h( )+ 1l¢ —hll =
Q\f d}+||¢ hll <
m dg
——+ 1)]|p—h| < —]|¢ —
Lettingp — A we get (14). OJ

2.3. Pairs not admitting bounded separation in a domain (an abstact scheme).Lemma 1
suggests a method to construct paiss, S,) which are not bs in a domain.

2.3.1. Supposéi, S, are relatively closed disjoint and nowhere dense parts afraaih O.
Suppose there is a numbérsuch that for any (big)/ > 0 there exists a ceU;(: (9, A)),
g C O, A € Ky, and a paif K, K,) of compact sets such that; C S;, j = 1,2, andK; C g,
p(g) > C~1, and for a pair(¢,, ¢») of functions analytic, respectively, i \ K, j = 1,2, we
have

$1(00) = P2(00) =0, [¢p1 + ¢o| < CINC\ K, K = K, U Ky,
whereas

(15) limsup |¢1| > M.
A

Lemma 2. If S;, S, andO enjoy property 2.3.1, thef6, S;) is not a bs-pair inO.
Note thatp, € H*(C\ K,), j = 1,2, sinceK, K, are disjoint.
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Proof. PutS = S; U S,. If (S1,.5;) were a bs-pair irO, then the operatoffi, fo) — (f1 +
f2)(O\ S) from H>*(O \ S;1) x H*(O \ Ss)) to H>*(O \ S) would be surjective, and, by the
Banach open mapping theorem, we could find a number 0 such that anyf € H>(O \ 5)
would admit a splitting

(16) f=h+f InO\S,

with /5 € H>(O\ S;), [ filloys, < NIl fllovs-

But 2.3.1 forbids the existence of such numberindeed, let; ¢; be asin 2.3.1 where a big
M = M(N) will be specified later. Puf) = ¢,/(O\ K;),j = 1,2,andf = f{ + f{ in O\ K,
K = K; U K,. Then for any representation (16) pfve get

fi=f'—hinO\ S,
fo=fO+RINO\ S,

whereh € H*(0), sincef) — f, and f, — f3 are mutual analytic continuations frof \ S

acrossS, andS;. But f; is in fact defined and analytic not only @n\ S;, butinO \ K3, since
f € H*(O \ K1), h € H*(0O). Moreover,| fillovk, = ||fillo\s,, sinceS; has no interior
points. Now sincér € H*(g) andp(g) > C~!, by Lemma 1 and (15) we have

M
| fillovs, = I fillovk, > 50

For an arbitraryV > 0 take M > 2NC?. We get a contradiction: giveN > 0, no splitting (16)
of f with f; € H=(0\ S,) satisfies| fi[|o\s, < N||f|lo\s (recall that| f[|ovs < C). O

2.3.2. Now we are ready to describe a general scheme of ootieg triples(O, Si, Sz) where
O is adomainS; its relatively closed and disjoint subsets such fl$at .S;) is not a bs-pair irO.
Namely, suppose we have constructed two famili€$).cz, (K3 ).cr Of compact simple arcs
and two families(¢7).cx, (#3).cr Of functions in, respectivelyi/>(C \ K7), j = 1,2, and a
family of points(A®),cx such that

(@ K¥nK§ =0

(b) ¢j(00) =0, j=1,2;

(©) sup,ep (|67 + ¢3llcvks < +o00, K* := Ky U K3;

(d) A* € K{ andsup, . lim sup 4. |¢7] = +o0.
The last element of our construction is a family, A*)..c g of cells such that

(e) K¥ C g%, x € E, andg” are uniformly rotund (i.einf,.c g p(g”) > 0).
Any family of quintuples K7, K3, ¢7, ¢%, g*) enjoying (a)—(e) generates plenty of “bad” triples
(0, 51, 57). Indeed, fomnydomainO containingJ,c g (¢* U K7), any pair(S;, S) of its disjoint
relatively closed and nowhere dense subsets is not a bsvjpairespect ta) provided

Sl > U:EEEKfu 52 > U:EEEK;D'

This is an immediate consequence of Lemma 2.

Sections 2.1-2.3 are an abridged versioffbfn [Hav04]. But the technique of section 2.4
is quite different from [Hav04] and results in removing adoghmic factor from Theorem 4 of
[Hav04]; our Theorem 7 is also based on this improvement.
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Ky

0 r r NS 'xg X )
Ky

FIGURE4. 71—z =X —29=h, X = X(x), 2 — 0

[wp =

s X
FIGURES. 77 —x = X — 29 = h(x)

2.4. A realization of the general scheme: pairs of graphs.In what follows the arcg<¥ will
be pieces of the graphs of real functiafis j = 1, 2 defined on0, b]. We assume

(A7) @ €CTE([0,0]), ;(0) = 5(0) =0, j = 1,2, ¢1(t) < pa(t) fort e (0,0].
It will be also convenient to assume

(18) l@i(t)] < 1/2, t €[0,0]

(this assumption doesn't affect the generality).

2.4.1. We put

(19) K? = {t+ip;(t) 12 <t < X}, z € (0,0]

The choice ofX = X (x) will be specified later.

To define the functiong? (see (c) on page 12) we need a piecewise linear fungtiatefined
onR as shown on Figure 5, so that = 0 onR \ (2, X), f* = 1 on[zy, 23], 7 is linear on
[z, 1], [z2, X]; the positive numbek = h(z) will be chosen later. Now put

fFO=FM®)  (CeO).
Define the functiong; by the formulas
j1 L fi(2)

LI 0 —
2m sz—(Z

L PO i)
=) /x@—ow(mt)—n)

¢5(¢) =(=1)
(20)

dt, (=¢§+ineC\Kj.

271
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The first (contour) integral in (20) is oriented from the le&fthe right.

In fact the integral (20) can be easily evaluated, so #javecome explicit linear combina-
tions of some elementary functions ¢f(compositions of] log ¢ andlog ¢ with some Mobius
functions). But we prefer to keep the integral represeomati ¢7, the estimates of their explicit
versions not being any shorter. Getting rid of integraticakes it possible to apply the scheme
of Section 2.3 to general continug, S, (not just curves), see [Hav04]; but it also makes the
description of bs-pairs ajraphsnot as precise as our Theorem 7.

PutA*(= A) = = + ip:(z). Functionsg? belong toH>(C \ K7) and vanish at infinity;
gbf‘? is continuous at both sides of the ag. In particular,lima, ¢7 exists and coincides with
= fK f; (ZAffz We denote it by, (A).

We are going to show thab, (A)| is blg if h << X — . Indeed,

/ / / 2m (t—x 1;;(1:51(2))) o1 (2)) =1+ 11+ 1I1I,

1 [t — 2 3/2dt
I < 1.
1= o / h t—=x

To estimate Ill note that anye (x,, X) satisfiesX — ¢ < t — x, and
1 [* X —t3/2dt

I < — —_
| |_27T X—h h t—x

< 1.

Now,

dt 4 (1 ‘ |($2 — ) +i(pi(x2) — ¢1(@))]

o (E+ip(t) — Al ol @ — ) il (@) — @)

The numerator of the last fraction is greater than or equaj te =, the denominator is less than
or equal to3/2(x; — z) whence|II| > log 2%, Buth/(zo — x1) = (h/(X — z))(1 —
2h/(X —z))7!, so that

(11| =

o

(21) lim [67(A7)| = +oc if lim Mz)

=0 1 — X (1) =0

2.5. Upper estimates of|¢{ + ¢3|. Put
K* = K{UKS, ¢" = ¢7 + ¢3.

(Sometimes we omit the index. We now have to concentrate on the upper estimate|dh
C \ K (see (c) on page 12). We may apply the elementary maximum lm®gunciple toe,
sinceg is continuous up to the sides of the afcg, K,. Expressing the boundary valuesfobn
K by the Sohotsky-Plemelj formulas and using the estimgtec 1, we reduce our problem to
the upper estimate o (z,)| where

. d
:pv./f(z) c , 2z € K,
K 2%
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K, is oriented from the left to the righi, is oriented in the opposite direction, so that, hopefully,
the contributions of<; and K, will be mutually tempered. Put

Zj(t):t_l_i(pj(t)v te [Ovb]v

and suppose
z0 € Ky, z9 = Zl(to), ty € [O,b]
(the casey € K, is symmetric). We have

ﬂwzpp/fmnmwﬁ,

where

a(t)— 2 z(t) — 2
For a smooth function of a real variable put
Ry (A)(t) = A(t) = Alto) — N (t)(t — to).
PutA = 3 — 1. Using this notation the reader can check the following fitn
(22) KC(t, z0) = Ka(t, 20) + Kalt, 20)

where

K(t, ) = z1(t) %(t)

Ky (1, ) — L)+ AOR) — (O R(ea)
(21(t) — 20)(22(t) — 20)
iA(to)z (1)
(21(t) — 20)(22(t) — 20)
An easy estimate of the kerngl, follows from the inequalities
12(1) — 20l > [t — tol, |R(p;)(8)] < clipy)lt —to]' T, j=1,2,
sinceyp; (andA) are inC'*<; thus, fort, € [0, b],

(23)

Kg(t, ZO) = s R = Rto-

(24) ‘p.v./xX FOKL(E, 20) dt) < c/xX # <

wherec, ¢ depend only orpy, p2 ande (but not onz,) for any f satisfying| f(¢)| < 1 on|0, b].
Turn now to

X
(25) J2 = p.U./ Kg(t, Zo)f(t) dt = / ‘l‘/ = jl +]2
x [z,X]\a a

wherea = [z, X]| N [to — A(to),to + A(to)]. The integralj, is easy (recall thatf| < 1,
|Ph] < 1/2):

(26) il < 2A() /

[t—to|>A(to) (t - t0)2
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But j», unlike preceding estimates, requires some special prepaf f and additional restric-
tions on the proximity ofK; and K, (i.e. smallness restrictions aft). To estimatej, put

F(t) = f)/(2(t) = 20); we get

J2 ZiA(to)p.v./F(t)% —
(27) " 1 0 Z
i) [ EO=EO )+ i oo [ - E i

whereK{ = {t +ipi(t) : t € a}. Now,

@ <o) [ PO 00D i < 2860wl
L B 1+ Ih(t)

29) PO < £ OVal®) - 0] + 1O 20

But

[22(t) = 21(t0)| = lpa(t) — pr(to)| = Alto) — I3 leclt — to| = Alto)/2,
since||¢y|| < 1/2,t € a. From (28), (29) and the estimaté$| . < 1, ||f']l« < 1/h,
la| < 2A(ty) we conclude that

2 8 8A(to)
< <
|| < 2A(t) (hA(to) + A(tO)Z) 2A(tg) = P 32 < 40,
if
(30) A(tg) < h, foranyt, € [z, X],

an important restriction expressing the proximityafandy, (note thath << X — z by (21)).
We are left now with the integral Il (see (27)). Fraii(ty)|A(ty) = f(to) we conclude

dz
v. ,
Ko 2 = 20

a = [ZE’,X] N [t() — A(to),t0+A(t0)], Kil = Kl N {C éRC € a}, t() € [ZE’,X]

2.5.1. We have to consider two cases:
Case 1z <ty — A(ty) <ty + Alty) < X;
Case 2:tg — A(t) <z ortyg + A(ty) > X.
In Case lu = [ty — A(to), to + A(tp)], and

/ dz
p.v.
Ka zZ — ZO

‘ 21t + Alte)) — 2 (fo

|21 to — A(tg)) — z1(to)
_1 ‘log (A(t))? + (@1 (to + Alto)) — ¢a(to))?
2| 7 (A(t0))? + (a1t — Alto)) — ¢1(to))?

(11 <f(to) |p

z1(to + Alto)) — 21(to)
z1(to — Alto)) — 21(to)

1] < <

= ‘log

R

+ 27 < B,
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B being an absolute constant, sifgeg(ty £ A(to)) — ¢1(to)| < A(to)/2 whence the fraction
under the logarithm is ifd/5,5/4).

In Case 2 we suppose, e.g., that- A(ty) < x (the caseX < t, + A(ty) is symmetric).
Then0 < ¢ty — 2 < A(ty) < h by (30), so that, € [z,z,] and f(to) = (t¢ — x)/h. Now
a = [x,ty + A(to)] (note thatty + A(ty) > X is impossible, because this inequality implies
2A(tg) = (to + A(to)) — (to — A(tg) > X — = > 2h, a contradiction with (30)). Thus,

Hl ‘Zl(to +A t() - Zl to “ :|
og

‘Zl( — 21 t(]

to —
1 17| <
@ 11 <

The numerator of the last fraction is betwegfy,) and2A(ty) (since|y)| < 1/2), its denomi-
nator is between, — = and2(t, — =) so that, by (30) and (31),

t() — X A(t ) 1
< 1 1 <
|H|_A(t0) [ogto_ij 0g2+2n| <e " +log2+ 2w
(sincey|logy| < e~ ! fory € (0, 1]).

Summing uppur functionsp?, ¢3 satisfy conditions (a)—(d) of Section 2.3.2(2f1) and (30)
are fulfilled

2.5.2. We now have to specify(z), X (z) to satisfy (21) and (30), and then construct the cells
g* centered atl” = z + ip;(x) and satisfying condition (e) in 2.3.2. These definitiond
given twice, one time for the sectal, = {( =& +in e C: £ >0, |n| < k&}, and the second
for its upper halfA;” = A4, N C™.

For anyR > 0 we may assume the graphsef andy, are in A, replacingb by a smaller
number if needed. Put

€(z) = sup{ 1)l Jtr [pa(t)] 0 <t <2}, X(z)=2x, h(z) =2¢(2)x.

Thenlim,_q X’(‘S)_x = lim,_o2¢(x) = 0 (see (17) in section 2.4), and we get (21).¢ IE
[z, X (2)], thenA(t) = @a(t) — p1(t) < |@a(t)] + [e1(t)] < e(x)t < h(x), so that (30) holds.
Putg® = A, N {¢ € C: R( < 3z}. The inclusionk} C ¢* is obvious ifz > 0 is small (again
by (17) and (19) in section 2.4) as is the uniform rotunditydivith respect to the centet” (at
this pointA,, cannot be replaced by, since the cented” may be too close to the boundary of

A; and the rotundity of* be very small).

2.5.3. We have arrived at the first result of this section.
Let Sy, S; be the graphs af,|(0,b], j = 1,2 whereyp; are as in section 2.4, see (17). Without
loss of generality (see [HNO1] or the Introduction) we masuaseA;, O S = S; U S,. Suppose

S C {|(] < R}(= RD).
Theorem 5. For anyk > 0 and any domair®) O A, N RD, (51, S2) is not abs-pair in O.

The proof follows from Lemma 2, since the familiég?), (K¥), j = 1,2, (¢*) enjoying
properties (a)—(e) have been constructed in sections242.
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2.6. Two graphs in A;". We still assume5y, Sy, ¢1, o are as in section 2.4 (see (17)), but we
also suppose

Takingb < b(k) we may assumé& C A;. This time we have to impose a special proximity
conditions onSy, S, ((17) is not sufficient to apply Lemma 2). Namely, we assume

(33) liminf 28 _ g
2=0 ()

Let £ C (0,b] be a set with a limit point at the origin and such that
im 20

z—0, z€E (01 (J})

We defineh(z), X (z) (and thusk?, j = 1,2) for z € £ only:

X(2) =2+ 51(2), h(z) = 21(x)el)

where
() = 20 LA )] 0 <1< X(@), v e B,
e1(z)
so thatlim, ¢ ep h(2)/(X — ) = lim,_¢.epe(x) = 0, and we get (21). Now, if € [z, X],
then, for ac € [z,t], A(t) = A(z) + A'(c)(t — z) < e(z)pi(z) + €(z)p1(z) = h(x) which is
(30). The cellg” will be defined forz € E as the squarér — ¢ (x), x + p1(z)) x (0,2¢1(x))
with the center: + ipq (). This cell is uniformly rotund. Moreovel{ C ¢“(z € E). Indeed,
fort € [z,z + ¢1(x)] we havep, (t) = ¢1(x) + ¢'(c)(t — z) < 2¢,(z), Since we may assume
|} ()| < 1. Moreover,g® C A; for any small € E, sincelim, ﬁ;fg) =0
As in section 2.5.2 we get the following result.

Theorem 6. If S C A N RD, and ¢4, ¢, satisfy(17) and (33), then, for any domai® >
AF:NRD, (51, S7) is not a bs-pair inO.

3. CONCLUDING REMARKS

3.1. A complete description of some bs-pairs of arcs i©*. Letv; : [0,1] — C, j = 1,2, be
two simpleC!'*#-arcs inC such thaty; (0) = 12(0) = 0, v, (t) # .(t) for t € (0,1]. We also
assumesy;(t) > 0fort € (0, 1], vj(t) # 0 fort € [0, 1].

In this section we defing; as the trajectory of; \ {0}, j = 1,2. Combining Theorem 4 with
Theorems 5 and 6 we obtain a complete and very clear desariptiall bs-pairs of this sort in
Ct.

Denote byr; the unit tangent vector of; at the origin. Note thalr; > 0, sinceS; C C*.

Theorem 7. 1. If 7y # 75, then(Sy, Ss) is a bs-pair inC™.
Il. Suppose; = 7. Then

(@) (S1,52) is not a bs-pair inC™, if I > 0.
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FIGURE 6

(b) If 7 isreal we may assume that= 1, and for a smalb > 0 the arcss*;? = 9,N{R¢ < b}
are graphs (over0, b]) of real functionsp; € C**([0,0]) as in Theorem 5 (s€&7)), and
A(z)

(51, S,) is a bs-pair inC™ if, and only if lim inf, ﬁm >0,A = | — .

Proof. In case | the pieces§?, S} are separated by two rays @ emanating from the origin,
and we may apply Theorem 4 1 (see also the “transversal” example 1 in section 1.4 and the
construction of section 1.6). In case II(&) and S stay in a sector ifC* whose bisector is
parallel tor;, and Theorem 5 applies. In case II(b) if (33) holds, thén S;) is not a bs-pair in

C* by Theorem 6, sincé? U S} is covered by a sectot;’; if (33) does not hold, then, taking

g = (1 + ¢)/2 and a small: > 0 (depending orim sup, A /1), S? and .S} are separated by
the graphs off and(1 + )¢, and Theorem 4 applies; see example 3 in section 1.4. O

3.2. Bounded splittings of functions analytic in the intersecton of Jordan domains. Con-
sider two Jordan domains;, G, as on Figure 6 and their intersectich Suppose the curves
G, 0G, are piecewis€!-smooth and intersettansversallyat S and N (i.e. any pair of arcs
1,2, 3,4 (respectively’, 2, 3’ 4') meet under a positive angle@trespectively atV). It is shown
in[HNO1, Example 4.1, section 4.6] that for afiy= H>°(G) there exist functiong;, € H>(G;),

j = 1,2, such that

(34) f = f1 + f2 inG.

Now we are going to show th#te transversality assumption cannot be dropdest GG+, G, be
the Jordan domains on Figure 7, bounded respectively, biotps AoDEF A, oF DC Bo, SO
thatoG = oD Fo. Supposé > 0 is small, andG N {0 < Sz < b} = oM; U oM, where the
compact arceM;, oM, are as on Figure 7, so thaiM;, oMs) is not a bs-pair with respect to
C* (see Theorem 7). Thehere exists a functioli € H°°(G) which cannot be split as i(84).

Proof. Take an arbitraryf" € H>(C* \ (oM; U oM>)) and putf = F|G. Supposef can be
represented by (34Y( € H>(G,), j = 1,2); then we prove

(35) F=F+F in C+\(OM1UOM2)
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FIGURE 7. 0G1 = AoDFEF A, 0Gy, = oEDC Bo

F ED ¢

FIGURE 8. 0G; = AoDEF A, 0G5, = oEDC Bo

with F; € H>*(C* \ oM;), j = 1,2, a contradiction.

To deduce (35) from (34) putl = G; U G, (so thatoH = AoBCDEF A) and note thatf;
extends analytically fronds; to H \ oM;, j = 1,2. Indeed,f; = f — f, in G whencef — f,
is the analytic continuation of, from G to H \ oM;; the same argument applies fo Extend
fi, foto(HUOH) =C\ (H U0H) putting

AQ) = f:(() =0, e (HUIH),
thus makingf; € H>((0H U oMM;)"), j = 1,2. Applying the preseparation Corollary 3.3 from
[HNO1] we split f1, f> in their domains as follows:
fi=ygi+r, =12
whereyp; € H*([P, Q| UolM;)"), r; € H*((0H \ [P1,Q1])’) (see Figure 7). The identity
(36) F—p1—@o=ri+ry inH\ (oM;UoM,)
(which is (34)) shows that, +r, coincides inH with a functionh € H*>(C"), since the left side

of (36) is analytic at any point & * \ H, andF, ¢y, ¢, are bounded in their domains. Therefore
(35) holds withF; = ¢, Fy = @ + h. O

We could get a similar example for the domaids, G5, G as on Figure 8. The ares\/,,
oM, are the graphs of functions,, v, € C'([0,b]) satisfyingy;(0) = ¢/(0) = 0, j = 1,2,

0 < @i(t) < palt) (t € (0,0)), limtﬁo%&’fm = 0 (see Theorem 7). However this kind
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of tangency (whew;, oM, are tangent t@/H at the origin) is compatible with the splitting

formula (34) forany f € H*(G) if lim, o 228211 > 0. This happens, for example, for

%0,

Gi={0<z<1,0<y<2s’}, Go={0<z<l1,2’°<y<2}.

3.3. bs-pairs of hyperbolically close setsVery satisfactory looking Theorem 7 deals with pairs
of graphsand cannot be applied to disconnected sets. In this sectodescribe examples of
bs-pairs(S,,.S_) with respect to theight half planell with S, and S_ hyperbolically very
close.

Let ¢ be a non-negative function df, b] such thaty(¢) < ¢ (£ € [0,0]) andg(§) > 0 for
¢ € (0,b]. Consider astrictly decreasing sequengg, ), in (0, ] tending to zero and put
(o = &ntig(&,). Forr > 0 denote byB,, (1) thecloseddisc{ | — (.| < r}. Suppose a sequence
(rn)>2, of positive numbers satisfies

o0

D

n=1

Tn

9(&n)

sothaty_ r,/&, < oo as well. We assume, < g(&,) foralln andr,, < 1 min(&, —&,—1, a1 —
&n), So that the disc®,, = B,,(r,,) are disjoint and stay it*. Put

S, =U2,B,, S =U2,B,, S=8,US_.

(37)

< 00,

Theorem 8. (S, S_) is a bs-pair with respect to the right half plaik

Note that the hyperbolic distance betwegrandé,, (andB,, andB,,) in I1 is comparable with
g(&,) /€, and tends to zero, if say.(0) = 0.

Proof. Any f € H*>(II \ S) has angular boundary values a.e.:&wanddS, and can be repre-
sented as follows:

f=h+f=HA+f+ [ inII
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where
(38) fi=—(1+2)CH™ fi=(1+2)Y O, =42 Opt.
n=1 n=1
(C% is the Cauchy type integr% fA 'j(_zgdz ¢ ¢ A). The imaginary axis is oriented “upwards”,

and the circle®$B,,, B, are oriented clockwise. The proof of (38) is standgidy) /(1 +12) €
LY (R, dy), f(2)/(1 +2) = O(1/2), |2|] — o). Now, fy = (1 + z)C*+ wherepu.. arefinite
complex charges 0A., so thatf, is defined and analytic i€ \ (S U {0}) and fo(z) = O(1)
(|z| — o). Clearly f; = f — f2 is analytic inll, andf(z) = O(1) (|z| — o0).

We are going to prove that
(39) fr € H(1)

whencef, € H*(II \ S). At last we provef. are bounded il \ S1 and get the final splitting
of f into the sum of elements @i (I \ S4):

f=+ 1) = f-

(@) f4 is bounded on any sét \ A, k > 2, whereA} = {{+in: € > 0,0 <n < k&}
(according to our assumptioss C A,). Indeed,
(40) (€5, (O < [ floora/ dist(¢, Ba), ¢ ¢ S
If RC <0, thendist((, B,,) > &, — rn > g(&,) — o if SC <0, thendist(¢, B,) > g(&,) — 7n,
andif¢ € IT\ A, 3¢ > 0, then

diSt(C, Bn) > |C - Cn‘ —Tn > |Cn| singp —Tn > g(gn) SiH(p - Tn,
wherey is the sector il with sidesy = 2¢, n = k€. Thus, for ac, > 0,

(41) diSt(Cv Bn) > Ckg(gn)
forall¢ € CT\ A andn = 1,2,.... Combining (40), (41) and (37) we see tlfatis analytic
and bounded it \ 4}, k > 2ihe same proof applies tb, so thatf_ is bounded irC \ A,

k > 2. PuttingA4, = Al U A} U (0,+00) we conclude thaff, is bounded inC \ A, and

fi = f — fois bounded inl \ Ax. But fi1(¢) = O(1) (|[¢| — oo,¢ € II), and we may fix a
large R > 0 making f; bounded inll \ s wheres = A, N {|¢| < R} (we fix ak > 2, say

k = 3). It remains to estimaté; in s. Being analytic ins, f; is bounded on its sides and the arc
A N{|C] = R} whereas

(42) [/1(Q)] = OQog¢]), €] = 0,¢ € s

and (a very weak form of) Phragmen-Lindelof applies whefide bounded irs, and (39) holds.
(To get (42) write (usingn| < k&)

+oo dy

|f1(€)| 5/—00 (1 + |y|>(§+ |7] — y‘) 5 /|:U<2k§+/;;|>2k§ N

_ T _dy ) _ _
—ow+o( [ ")~ olose) = Ofl o)
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since|(| =~ & for ¢ € s).

(b) From (a) we see that = f. + f_ isbounded idl\ S (and, in fact, inC\ (SU{0})). We
already knowf is bounded irC\ (A U{0}). We only have to shovy, is bounded im4; \ 5.
Butin A\ S,

fe=F—hH— T
fis bounded il \ S, f; is bounded i1 (see (39)) and we have provéd is bounded irC+.

Thusf, € H®(A\ S,), f+ € H®(C\ (STu{0})). The boundedness ¢f in IT\ S_ follows
now fromf_ = fy — f,. O
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