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Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited
number of human samples and pathological conditions. Herein, we present a compromise between an extremely com-
prehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We
obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA
methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly
around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints
show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hyper-
methylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which
DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and
autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of prin-
ciple that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are
able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns
identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing
higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation
to tissue identity and its changes in the most prevalent human diseases.

[Supplemental material is available for this article.]

Epigenetics encompasses a large number of mechanisms underly-

ing embryonic development, differentiation, and cell identity, in-

cluding DNA methylation and histone modifications (Bernstein

et al. 2007; Hemberger et al. 2009). The existence of distinct epi-

genomes might explain why the same genotypes generate different

phenotypes, such as those seen in Agouti mice (Michaud et al. 1994),

cloned animals (Humpherys et al. 2001), and monozygotic twins

(Fraga et al. 2005; Kaminsky et al. 2009). Most importantly, epige-

netic alterations are increasingly recognized as being involved in

human diseases (Das et al. 2009), such as cancer (Jones and Baylin

2007; Esteller 2008) and imprinting (Feinberg 2007), neurological

(Urdinguio et al. 2009), cardiovascular (Gluckman et al. 2009), and

autoimmune (Richardson 2007) disorders, among others. For the

first time, it is possible to define whole epigenomes, which represent

all epigenetic marks in a given cell type, thanks to the development

of powerful new genomics technologies (Bernstein et al. 2007;

Esteller 2007; Jones and Baylin 2007; Bonetta 2008; Lister and Ecker

2009). Furthermore, coordinated epigenomic projects are starting to

be launched (Jones et al. 2008; Abbot 2010).

One of the earliest studied epigenetic marks in eukaryotes is

cytosine DNA methylation, which acts as a stably inherited mod-

ification affecting gene activity and cellular biology. Determining

the complete DNA methylome entails describing all the methyl-

ated nucleotides in an organism. The gold standard technique for

analyzing the methylation state of individual cytosines is bisulfite

sequencing in which unmethylated cytosines are converted to

uracils and read as thymines, while methylated cytosines are pro-

tected from conversion. Bisulfite sequencing yields precise nucle-

otide resolution data, but this method has been limited to rela-

tively small genome coverage (Rakyan et al. 2004; Eckhardt et al.

2006; Frigola et al. 2006; Zhang et al. 2009), although it has proved

useful for analyzing viral DNA methylomes (Fernandez et al.
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2009). Alternative approaches involve the isolation of methylated

fractions of the genome by methylation-sensitive restriction

(Lippman et al. 2005; Irizarry et al. 2008), immunoprecipitation

with a methylcytosine (Weber et al. 2005; Keshet et al. 2006; Weber

et al. 2007; Down et al. 2008) or methyl-CpG binding domain an-

tibody (Ballestar et al. 2003; Rauch et al. 2009), combined with hy-

bridization to genomic microarrays or ultrasequencing. This is ex-

emplified by the recent DNA methylation analyses of the Arabidopsis

genome (Zhang et al. 2006; Vaughn et al. 2007; Zilberman et al.

2007), which are further expanded by using sequencing-by-synthesis

(MethylC-Seq) technology (Lister et al. 2008) and shotgun bisulfite

genomic sequencing (Cokus et al. 2008). In representing mouse plu-

ripotent and differentiated cells, bisulfite sequencing has covered

roughly 1 million distinct CpG dinucleotides (4.8% of all CpGs)

(Meissner et al. 2008), and two human cell lines (one each from

embryonic stem cells and fetal fibroblasts) have been analyzed using

MethylC-Seq, including 94% of the cytosines in the genome (Lister

et al. 2009). Using whole-genome bisulfite sequencing, the DNA

methylome analysis of peripheral blood mononuclear cells from

a single case has also been recently reported (Li et al. 2010).

Only a small number of base-resolution DNA methylomes

have been described so far. Nevertheless, even with the enormous

advantages that genetic sequencing has over DNA methylation

characterization with respect to time and technology, very few full

genomes have been reported, either. From the genetic standpoint,

this current shortage of information is being tackled through the

development of efforts such as the 1000 Genomes Project (Kuehn

2008; Siva 2008) or by genome-wide association scan (GWAS)

studies in which an association with a phenotype or a disease can

be established if we limit the number of nucleotides assessed and

thus the extent of coverage of the genome (Cantor et al. 2010;

Ku et al. 2010). We decided to combine these two approaches—

extremely extensive analyses of hundreds of normal and disease-

associated cells and tissues with intermediate coverage of CpG

dinucleotides—to obtain a DNA methylation fingerprint of 1628

human samples corresponding to healthy individuals and in those

affected by the diseases most commonly associated with death in

the Western world, such as cancer, neurological disorders, and

cardiovascular disease.

Results

Description of 1628 samples and analysis of 1505 CpG sites

We first studied the genomic DNA from 1628 human samples

corresponding to 424 normal tissues (180 leukocytes, 97 colon

mucosa, and 227 other normal samples), 1054 tumorigenic sam-

ples (premalignant lesions, primary tumors, and metastases), and

150 non-cancerous disorders, such as brain lesions from Alzheimer’s

disease, dementia with Lewy bodies, aortic atherosclerotic lesions,

myopathies, and autoimmune disorders. Supplemental Table 1

shows the complete list of samples studied. The age of donors

ranged from 6 mo to 102 yr, with an average age of 57 yr. Forty

percent (n = 648) were men, and 38% (n = 623) were women, the

gender of the remaining 22% (n = 357) not being known. Eighty-

seven percent (n = 1421) of the samples were from European vol-

unteers and patients, while 4% (n = 59) and 2% (n = 36) were from

Asian and North American populations, respectively; the origin was

not known for 7% (n = 112) of cases. Finally, 93% (n = 1512) of the

samples were primary tissues obtained at the time of the clinically

indicated procedures, while 7% (n = 116) were obtained from es-

tablished cell lines. Supplemental Figure 1 summarizes the described

sample distribution. For all these samples, we obtained the DNA

methylation fingerprints defined by the status of 1505 CpG sites

located from �1500 bp to +500 bp around the transcription start

sites (Supplemental Fig. 2) of 808 selected genes using the Golden-

Gate DNA methylation BeadArray (Illumina, Inc.) assay (Bibikova

et al. 2006; Byun et al. 2009; Christensen et al. 2009). The panel of

genes includes oncogenes and tumor-suppressor genes, imprinted

genes, genes involved in various signaling pathways, and those

responsible for DNA repair, cell cycle control, metastasis, differ-

entiation, and apoptosis (Bibikova et al. 2006; Byun et al. 2009;

Christensen et al. 2009). Sixty-nine percent (n = 1044) of the 1505

CpG sites studied are located within a canonical CpG island (Takai

and Jones 2002), while 31% (n = 461) are situated outside CpG is-

lands (Supplemental Fig. 2). All human chromosomes, except the Y

chromosome, are represented among the CpG sites analyzed (Sup-

plemental Fig. 2). CpG sites in ‘‘CpG island shores,’’ regions of

comparatively low CpG density within 2 kb of CpG islands, are not

printed in the array used, and their biological relevance has already

been extensively studied (Doi et al. 2009; Irizarry et al. 2009). Briefly,

in our case, four probes were designed for each CpG site: two allele-

specific oligos (ASOs) and two locus-specific oligos (LSOs). Each

ASO–LSO oligo pair corresponded to either the methylated or

unmethylated state of the CpG site. After bisulfite treatment con-

version, the remaining assay steps were identical to those of the

GoldenGate genotyping assay using Illumina-supplied reagents and

conditions, and the arrays were imaged using a BeadArray Reader

(Illumina, Inc.). Each methylation data point was represented by

fluorescent signals from the M (methylated) and U (unmethylated)

alleles. Before analyzing the CpG methylation data, we excluded

possible sources of technical biases that could have influenced the

results. Every beta value in the GoldenGate platform is accompa-

nied by a detection P-value, and we observed that a threshold

P-value above 0.01 indicated unreliable beta values (130 CpGs).

X-chromosome CpG sites with female-specific DNA methylation

(Reik and Lewis 2005) were also excluded (44 CpGs). Finally, nine CpG

sites that were unmethylated in all normal and disease-associated

samples were also excluded. Using these filters, 1322 CpGs proved to

be reliable and were used subsequently in the study. Further tech-

nical information is provided in the Supplemental Methods. The

precise DNA methylation status of every CpG dinucleotide analyzed

in each of the 1628 samples studied is freely available by down-

loading from the NCBI Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo) under accession number GSE28094.

DNA methylation fingerprint of human normal tissues

We analyzed first the DNA methylation fingerprints for 424 hu-

man normal tissues. Of the 424 normal tissues studied, only 1%

(n = 17) of CpGs (corresponding to 14 genes) were methylated in

all the samples studied (Supplemental Table 2). These exclusively

methylated CpG dinucleotides were preferentially located outside

CpG islands (82%; Fisher’s exact test, p = 1.97310�5). Conversely,

37% (n = 488) of the CpGs, corresponding to 359 59 ends of genes,

were exclusively unmethylated in every normal tissue studied

(Supplemental Table 3). These always-unmethylated CpG dinu-

cleotides were almost exclusively located within CpG islands

(98%; Fisher’s exact test, p = 2.20310�85) and were associated with

housekeeping expression genes (Fisher’s exact test, p = 1.13310�4)

(Supplemental Methods). Most importantly, significant differential

DNA methylation (Kruskal-Wallis rank-sum test, p < 2.21310�16)

was encountered between different normal samples of 511

CpG dinucleotides using elastic net classifiers, which enabled their
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distinction on the basis of tissue type using an unsupervised hierar-

chical clustering approach (Fig. 1A). The 511 CpG sites described

correspond to 359 genes and, providing further validation to the

data, 220 genes (61%; 220) and 137 (38%) were previously iden-

tified as genes with tissue-specific DNA methylation using the

same 1505 CpG platform (Byun et al. 2009) or a 27,000-CpG

microarray (Nagae et al. 2011), respectively. Illustrative examples

of genes found in the three sets, and also confirmed by bisulfite

genomic sequencing in another independent study (Eckhardt et al.

2006), include TBX1 (T-box 1), OSM (oncostatin M), and GP1BB

(glycoprotein Ib [platelet] beta polypeptide). Examples of tissue-

specific CpG methylation further validated by pyrosequencing

(‘‘technical replicates’’) are shown in Supplemental Figure 3.

For our 359 genes with tissue-type-specific CpG methylation,

their expression patterns in the 21 normal tissues are known (GEO

Expression Omnibus, GEO; http://www.ncbi.nlm.nih.gov/geo/)

(Supplemental Methods). Unsupervised clustering analysis of the

expression of these 359 genes discriminates each normal tissue

type, as the CpG methylation did, reinforcing the association be-

tween DNA methylation and transcriptional silencing of the neigh-

boring gene for these targets (Supplemental Fig. 3). Strikingly, the

CpG sites for which methylation status was the most valuable for

discriminating between tissue types were those located in non-

CpG-island 59 ends (Fisher’s exact test, p = 5.85310�49). These

data support the long-standing hypothesis that most housekeep-

ing genes contain CpG islands around their transcription start

sites, while half of the tissue-specific genes have a CpG island at

their 59 ends, and the other half are 59-CpG-poor (Illingworth and

Bird 2009). The top-scoring genes with defined organ-specific

DNA methylation are listed in Supplemental Table 4. The tissue-

type-specific DNA methylation patterns, which are in line with

previous observations in humans (Eckhardt et al. 2006; Shen et al.

2007; Byun et al. 2009; Christensen et al. 2009), also match the

developmental layers in which the tissues originated (endoderm,

mesoderm, or ectoderm) (Fig. 1A), implying the existence of germ-

layer-specific DNA methylation (Sakamoto et al. 2007). Interest-

ingly, 49 CpG sites corresponding to 26 imprinted genes were also

included in the assay (Supplemental Fig. 4). We observed that CpG

sites located outside differentially methylated regions (DMRs)

(Dindot et al. 2009; Monk 2010) behaved like the CpGs of non-

imprinted genes in normal tissues: CpGs located within and out-

side CpG islands were unmethylated and methylated, respectively

(Supplemental Fig. 4). However, CpGs within DMRs were 50%

methylated in all normal tissue types studied (Supplemental Fig. 4).

Within the same tissue type, interindividual DNA methyla-

tion differences were minimal. For example, the DNA methylation

Figure 1. DNA methylation fingerprints for human normal tissues. (A) Unsupervised hierarchical clustering and heatmap including CpG dinucleotides
with differential DNA methylation encountered between different normal primary samples. Tissue type and development layers are displayed in the
different colors indicated in the figure legends. Average methylation values are displayed from 0 (green) to 1 (red). (B) Deviation plot for the 1322 CpG
sites studied in leukocyte samples showing that little CpG methylation heterogeneity (yellow area) occurs overall at CpG sites within CpG islands (red lines
in the track below), while more differences in CpG methylation are observed outside CpG islands (blue lines in the track below). (C ) Unsupervised
hierarchical clustering and heatmap including sets of genes with high correlation values between hypomethylation (up) and hypermethylation (down)
with aging. (D) Unsupervised hierarchical clustering and heatmap showing the DNA methylation patterns of embryonic and adult stem cells, comparing
them with corresponding normal and differentiated tissues (muscle, bone, and neuron; and muscle and brain, respectively).
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deviation plot for the 1322 CpG sites studied in leukocyte samples

from 180 healthy donors showed little heterogeneity (Fig. 1B).

However, it is interesting to note that the main DNA methylation

differences between individuals occurred at CpG sites located out-

side CpG islands in comparison to CpG-island-associated CpG di-

nucleotides (Wilcoxon test, p = 3.52310�39) (Fig. 1B). One in-

teresting issue concerned the putative impact of aging on the DNA

methylation patterns of normal tissues in humans (Christensen

et al. 2009; Rakyan et al. 2010; Teschendorff et al. 2010) and mice

(Maegawa et al. 2010). Our analysis of the leukocyte samples from

the 180 healthy donors (Fig. 1B) revealed sets of genes that were

significantly hypermethylated (n = 43) or hypomethylated (n = 25)

during the normal aging process (Fig. 1C; Supplemental Table 5).

Examples of age-specific CpG methylation further validated by

pyrosequencing are shown in Supplemental Figure 4. It is encour-

aging to note that there are genes with age-related methylation

found in our study that were also identified in the mentioned pre-

vious reports using the same 1505 CpG platform (Christensen et al.

2009) or the 27,000 CpG microarray (Rakyan et al. 2010; Teschen-

dorff et al. 2010). Among these, we can underline for the age-

hypermethylated genes MYOD1 (myogenic differentiation 1), and

for the age-hypomethylated genes representative examples include

NOD2 (also known as CARD15, caspase recruitment domain-con-

taining protein 15), ACVR1 (activin A receptor type I), and SOD3

(Superoxide Dismutase 3). Furthermore, we also found that the CpG

hypermethylation events in aging were significantly more likely to

occur in the promoters of those genes with enriched Polycomb

occupancy (Fisher’s exact test, p = 3.83310�8; permutation P-value =

0.0014) and the presence of the bivalent histone domain (3mK4H3

+ 3mK27H3) (Fisher’s exact test, p = 9.03310�4; permutation P-

value = 0.0354) in embryonic stem cells (Supplemental Fig. 4), as

was recently suggested (Rakyan et al. 2010; Teschendorff et al. 2010).

In addition to the tissue-type-specific DNA methylation pat-

terns, one group of normal cells had distinctive DNA methylation

profiles: embryonic and adult stem cells (Fig. 1D). Adult and em-

bryonic stem cells both had DNA methylation fingerprints that did

not resemble any of the differentiated primary normal tissues

studied (Fig. 1D). Furthermore, we confirmed that the previously

studied samples from multipotent adult stem cells (Aranda et al.

2009) had different DNA methylation fingerprints from pluripotent

embryonic stem cells (Fig. 1D). Herein, we went further to show that

induction of differentiation of both types of stem cells through

different lineages produced DNA methylation fingerprints that re-

sembled those present in the corresponding normal differentiated

tissues, such as muscle or neuron (Fig. 1D). Interestingly, in vitro–

differentiated material from adult and embryonic stem cells did not

completely recapitulate the DNA methylation patterns present in

the corresponding primary differentiated tissues, and there were

always deficiently methylated CpG sites. Supplemental Table 6 pro-

vides examples of these in muscle and neuronal tissues. Supple-

mental Figure 5 shows examples of tissue-specific CpG methylation,

unachieved upon in vitro differentiation of stem cells and validated

by pyrosequencing analysis.

DNA methylation fingerprint of human cancer

We next studied the DNA methylation fingerprints for 1054 hu-

man tumorigenesis samples. Genetic and epigenetic alterations

both contribute to cancer initiation and progression (Jones and

Baylin 2007; Esteller 2008). One of the first epigenetic alterations

found in human cancer was the global low level of DNA methyla-

tion in tumors compared with healthy tissue counterparts. Global

DNA hypomethylation is accompanied by hypermethylation of

CpG islands at specific promoter regions. Nowadays, hyper-

methylation of the CpG islands in the promoter regions of tumor-

suppressor genes is also recognized as a major event in the origin of

many cancers (Jones and Baylin 2007; Esteller 2008). Tumor-sup-

pressor genes disrupted by DNA methylation-associated tran-

scriptional silencing in sporadic tumors include the retinoblas-

toma tumor suppressor gene (RB1), VHL (associated with von

Hippel-Lindau disease), the cell cycle inhibitor CDKN2A (also

known as p16INK4a), MLH1 (a homolog of Escherichia coli mutl), and

BRCA1 (breast-cancer susceptibility gene 1) (Jones and Baylin

2007; Esteller 2008). Using candidate gene approaches and early

epigenomics technologies, a CpG-island hypermethylation profile

of human primary tumors emerged that suggested that a defining

DNA hypermethylome could be assigned to each tumor type

(Costello et al. 2000; Esteller et al. 2001; Ballestar and Esteller

2008). Herein, we have analyzed the DNA methylation finger-

prints of 1054 human tumorigenesis samples, including 855

primary malignancies (611 solid tumors from 19 tissue types

and 244 hematological malignancies), 50 metastatic lesions, 25

premalignant lesions, 82 cancer cell lines, and 42 cancers of

unknown primary origin (CUPs) (Supplemental Table 1). The

DNA methylation map that emerges shows a tumor-type-specific

profile characterized by the progressive gain of CpG methylation

within CpG-island-associated promoters and a cumulative loss of

CpG methylation outside CpG islands in the different steps of

tumorigenesis.

First, unsupervised clustering of the DNA methylation pro-

files obtained from the 855 primary tumors demonstrated that

each type of malignancy had its own aberrant DNA methylation

landscape (Fig. 2A). From a quantitative standpoint, 1003 CpG

sites (76% of the 1322 validated CpGs) had significantly different

methylation levels between tumor types (Kruskal-Wallis rank-sum

test, p < 2.2310�16). The distinction of primary tumors by their

tissue of origin was maintained even when we subtracted the tis-

sue-type-specific DNA methylation described above (511 CpG

sites) (Supplemental Table 4) from the analysis of the DNA meth-

ylation profiles for each normal tissue (Fig. 2B). Comparing each

tumor type with its corresponding normal tissue, 729 CpG sites

(55% of the 1322 CpGs) showed differential DNA methylation.

Using these tumor/normal differentially methylated CpG sites,

overall human primary tumors were characterized by increased

levels of CpG dinucleotide methylation: 68% (n = 496) were

hypermethylated and 32% (n = 233) were hypomethylated (t-test,

p = 3.521310�5) (Fig. 2C). Most importantly, the location of these

DNA methylation events differed: CpG dinucleotide hyper-

methylation occurred within CpG islands (78%), while CpG

hypomethylation was present in 59 ends of non-CpG-island genes

(78%; Fisher’s exact test, p = 2.59310�47; permutation P-value <

0.001) (Fig. 2C). A DNA methylation deviation plot for the 1322

CpG sites studied in all normal primary tissues (n = 390) versus all

primary tumors (n = 855) shows the hypermethylated CpG sites

within CpG islands and hypomethylated CpG sites outside CpG

islands observed in the malignancies (Fig. 2C) (Paired Wilcoxon

test, p < 2.2310�16). CpG sites with cancer-specific differential

methylation according to tumor type in comparison with their

corresponding normal tissue are provided in Supplemental Table 7.

Examples of cancer-type-specific CpG methylation further vali-

dated by pyrosequencing are shown in Supplemental Figure 6.

Those CpG sites with highly specific methylation changes occur-

ring only in one tumor type are shown in Supplemental Table 8.

Interestingly, we also confirmed the previous observation (Ohm
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et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007) that

the CpG hypermethylation events in cancer were significantly

more likely to occur in the promoters of those genes with enriched

Polycomb occupancy (Fisher’s exact test, p = 5.03310�6; permu-

tation P-value = 0.0012) and the presence of bivalent histone do-

mains (3mK4H3 + 3mK27H3) (Fisher’s exact test, p = 5.97310�4;

permutation P-value = 0.0278) in embryonic stem cells (Supple-

mental Fig. 6). We also found evidence to reinforce the link be-

tween the 59-end CpG methylation and transcriptional silencing

(Jones and Baylin 2007; Esteller 2008) by developing expression

microarray studies (Supplemental Methods) in the 19 primary

colorectal tumors from which we had obtained the DNA methyl-

ation profiles. We observed that the median expression of all the

CpG hypermethylation-associated genes was significantly lower

than in those CpG hypomethylation-linked genes (Kruskal-Wallis

test, p = 1.56310�8) (Supplemental Fig. 6).

For our largest set of samples with paired normal–tumor tis-

sues from the same patient (41 cases of colorectal cancer), we ob-

served that of the 1322 CpG sites studied, CpG dinucleotides

within CpG-island promoters became significantly more DNA-

methylated in 79% of cases (34 of 43 normal/tumor pairs; Wilcoxon

test, p = 2.47310�7), while CpGs located in non-CpG-island pro-

moters more commonly underwent DNA hypomethylation events,

in 51% of cases (22 of 43 normal/tumor pairs; Wilcoxon test, p =

0.001). If we consider the colorectal tumor population as a whole,

in 68% of cases (28 of 41) the primary malignancy gained CpG

dinucleotide methylation within promoter CpG islands and non-

CpG-island promoters, while in 15% of tumors (six of 41) the gain

of CpG island methylation occurred in a context of loss of pro-

moter non-CpG-island methylation (Fig. 3A). Interestingly, 17% of

cases (seven of 41) featured a loss of methylation in both promoter

CpG islands and non-CpG-island promoters (Fig. 3A). Thus, the

presence of hypermethylation of promoter CpG islands appears

to be a common hallmark of human tumors, but there are subsets

of cancers that present other DNA methylation profiles at pro-

moter CpG sites that suggest additional and complex aberrant

DNA methylation pathways in tumorigenesis. For example, the

possibility that DNA hypomethylation events at CpGs located in

non-CpG-island promoters, typical of genes with restricted tissue-

specific expression (Illingworth and Bird 2009), can cause a loss of

cellular identity in transformed cells is worth further investigation.

As cancer cell lines are a major tool in biomedical research, we

next examined how the DNA methylation profiles of cell lines

differ from those of the primary tumor types. The analyses of the

DNA methylation fingerprints of 82 human cancer cell lines rep-

resenting 14 tumor types (Supplemental Table 1) showed that, over-

all, they preserved their original cancer-type-specific profile and

underwent an increase in the levels of CpG dinucleotide meth-

Figure 2. DNA methylation fingerprint of human cancer. (A) Unsupervised hierarchical clustering and heatmap showing distinction of primary tumor
DNA methylation fingerprints according to the tissue of origin. (B) Unsupervised hierarchical clustering and heatmap of primary tumors excluding CpG
sites with tissue-specific methylation. (C, above) Pie charts displaying the percentage of hypermethylated CpG sites (red) and hypomethylated CpG sites
(green) in human malignancies, and their distribution in CpG islands (CGI in red) and outside CpG islands (non-CGI in blue). (Below) Deviation plot for the
1322 CpG sites showing the great methylation heterogeneity (yellow area) of primary tumors in comparison with normal primary tissues.
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ylation in comparison with the corresponding normal tissues

(Paired Wilcoxon test, p < 2.2310�16) (Supplemental Fig. 7), as

occurs with most primary tumors. Examples of CpG methylation in

cancer cell lines further validated by pyrosequencing are shown in

Supplemental Figure 7. In the same line as primary malignancies,

the hypermethylated CpG sites in cancer cell lines occurred sig-

nificantly more often within CpG islands (Supplemental Fig. 7),

while CpG hypomethylation events mainly happened around

transcription start sites that did not contain a CpG island (Paired

Wilcoxon test, p < 2.2310�16) (Supplemental Fig. 7). However,

there were qualitative and quantitative differences. First, human

cancer cell lines had significantly greater hypermethylation of

promoter CpG islands and non-CpG-island promoters (Paired

Wilcoxon test, p < 2.2310�16) (Supplemental Fig. 7). At this stage,

we cannot distinguish whether these greater changes are associ-

ated with the in vitro growth of these cells over many years, or if

the DNA methylation changes were more detectable because there

was no contaminating normal tissue, as is the case in primary tu-

mors. Second, there are a set of specific CpG sites that only undergo

differential DNA methylation in cancer cell lines (Supplemental

Table 9), which enable them to be classified into a distinct clus-

tering arm in the unsupervised analysis (Fig. 3B). We further tested

the association between hypermethylated CpGs at the 59 ends

and transcriptional silencing of the corresponding gene by treat-

ing five cancer cell lines (SW480, HN-011A, HN-011B, IGR37, and

IGR39) with the DNA demethylating agent 59-aza-29-deoxycytidine,

followed by gene expression microarray analysis (Supplemental

Methods). We observed that while genes with associated hyper-

methylated CpGs had a low median expression compared with

their corresponding normal tissues, upon treatment with the hy-

pomethylating agent, their expressions were restored (Supplemen-

tal Fig. 8).

The comprehensive collection of human tumorigenesis

samples studied here allowed us to address two other interesting

aspects of cancer epigenetics: timing and progression. For genetic

changes, it is well known that there is an accumulation of genetic

events that drive the carcinogenesis process from the healthy tis-

sue to early premalignant lesions and finally to established full-

blown tumors and metastasis, as exemplified by colorectal tumori-

genesis (Fearon and Vogelstein 1990). Candidate gene approaches

Figure 3. Scenarios of DNA methylation changes in human tumorigenesis. (A) Bart plot showing the CpG hypermethylation or hypomethylation
changes observed when comparing paired normal–tumor tissues from the same colorectal cancer patient. They can be distinguished if the methylation
change occurs in CpG island (CGI) or non-CpG island (non-CGI)–associated CpG. (B) Unsupervised hierarchical clustering and heatmap including a set of
specific CpG sites that undergo differential DNA methylation only in cancer cell lines. (C ) Deviation plot for the 1322 CpG sites shows greater CpG
methylation heterogeneity (yellow area) in established tumors (colon, breast, and endometrial cancers) than in their corresponding premalignant lesions.
(D) DNA methylation unsupervised clustering analyses and heatmap of primary tumors, local liver metastases, and distant brain metastases from the same
colorectal cancer patient. A CpG methylation-specific pattern for brain metastases (green lanes) is observed. (E) CpG methylation prediction heatmap
showing the CUP classification to a specific tumor type.
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and limited epigenomics strategies have also indicated that this

could be a pathway leading to aberrant DNA methylation changes

(Fraga et al. 2004). Our analysis of the DNA methylation signatures

in progressive samples of three different tumorigenesis pathways

(colon, breast, and endometrial cancers) demonstrated the in-

creasing degree of CpG dinucleotide methylation within promoter

CpG islands and a loss of CpG methylation outside CpG islands

in consecutive steps (Fig. 3C). The DNA methylation deviation plot

for the 1322 CpG sites in colorectal adenomas versus primary co-

lorectal tumors, breast hyperplasias versus primary breast tumors,

and endometrial hyperplasias versus primary endometrial carcino-

mas demonstrated that the full-blown tumors had significantly

greater hypermethylation of promoter CpG islands in association

with the loss of CpG methylation in non-CpG islands than their

corresponding premalignant lesions (Paired Wilcoxon test, p <

2.2310�16) (Fig. 3C). Most importantly, for colorectal tumors where

we had DNA from brain metastasis available, these distant metas-

tasis lesions achieved higher levels of promoter CpG-island hyper-

methylation and lower levels of non-CpG-island methylation

than the primary colon malignancies (Paired Wilcoxon test, p <

2.2310�16), suggesting that these pathological entities are the final

stages of the disease. In fact, the DNA methylation unsupervised

clustering analyses of primary tumors, local liver metastases, and

distant brain metastases from the same colorectal cancer patient

showed that there were specific hypermethylated CpGs in the brain

metastases (Fig. 3D; Supplemental Table 10). Examples of specific

CpG methylation in the brain metastasis of colorectal tumors vali-

dated by pyrosequencing are shown in Supplemental Figure 8. Ninety

percent of cancer deaths are attributable to the development of me-

tastasis (Mehlen and Puisieux 2006), thus these findings might have

a translational value for the prediction of the metastatic capacity of

a particular tumor, as has recently been shown for hypermethylated

microRNA loci, and it might be a useful molecular marker in the de-

cision process for medical and surgical intervention in the disease.

The DNA methylation fingerprints of human cancer obtained

in our study can also provide additional important molecular di-

agnostic and prognostic biomarkers for the management of neo-

plasias. One example we have assessed is the case of the clinical

entities classified as cancers of unknown primary origin (CUPs).

These are patients who present metastatic diseases for which the

primary site cannot be found despite standard investigation. The

median survival in randomized studies of these patients is ex-

tremely poor (Abbruzzese et al. 1995), but if it were possible to

predict the primary tumor site, the patient could be treated with

a site-specific program, potentially resulting in better survival than

that provided by non-specific treatment, for which the current

median is only 7 mo (Greco and Pavlidis 2009). We have analyzed

the DNA methylation fingerprints of 42 CUPs and compared

the DNA methylation landscapes obtained with those from the

aforementioned human malignancy collection where the original

tissue type was known. We were able to assign a given tumor type

for these CUPs in 69% (29 of 42) of cases using L1-regularized lo-

gistic regression with misclassification (R, version 2.10) to create

a prediction heatmap (Fig. 3E). A proposed foster primary in these

29 cases was also achieved by conventional clustering analysis

(Supplemental Fig. 8). Most importantly, the tumor type predic-

tion of the CUPs based on the DNA methylation analyses was fully

confirmed in 78% of cases (seven of nine) for which detailed

pathological analysis developed at a later stage in a blind fashion

was able to provide a diagnosis. We might also conclude that the

remaining 31% (13 of 42) of the studied CUP cases did not repre-

sent any of the 19 tumor types included in our analysis (Supple-

mental Table 1). The three most common tumor types present in

the DNA methylation-assigned CUPs were colorectal cancer (34%,

10 of 29), non-small-cell lung cancer (17%, five of 29), and breast

tumors (17%, five of 29). These cases are particularly interesting

because the introduction of targeted therapies, such as treatment

with epidermal growth factor receptor (EGFR) antibodies in co-

lorectal cancer, small-molecule inhibitors for EGFR mutations in

lung adenocarcinoma, and more personalized chemotherapy op-

tions for breast cancer as a function of the hormonal and ERBB2

receptor status have improved the outcome of these patients

(Harris and McCormick 2010). Thus, it is tempting to propose that

the prediction of a foster primary site for CUPs based on the DNA

methylation profiles might identify a more specific treatment

regimen for these patients that would improve their quality of life

and survival.

DNA methylation fingerprint of non-cancerous
human diseases

We also analyzed the DNA methylation profiles for 150 non-

cancerous human diseases. Although most of the aberrant DNA

methylation patterns described in human disease have been re-

ported for cancer, there is no reason to believe that disrupted DNA

methylation signatures are not present, and might drive other

common human diseases (Feinberg 2007), such as neurological

(Urdinguio et al. 2009), cardiovascular (Gluckman et al. 2009),

and autoimmune (Richardson 2007) disorders. The data on DNA

methylation changes outside cancer are still scarce, but this could

be more likely because of the small number of studies devoted to

these pathologies than because DNA methylation disruption is

genuinely of little importance in the origin and progression of

these diseases. To address this issue, we analyzed the correspond-

ing target tissues of 150 non-cancerous human diseases, including

cerebral cortex lesions from Alzheimer’s (n = 11) and dementia

with Lewy bodies (n = 13), atherosclerotic lesions from the aorta

(n = 18), skeletal muscle from myopathies (n = 17), leukocytes from

autoimmune disorders (n = 21), and other non-tumoral diseases

and tissues (n = 70) (Supplemental Table 1).

One of the most striking observations was that the described

non-tumoral diseases in an unsupervised clustering had a distinct

DNA methylation pattern, even if the tissue-specific CpG meth-

ylated sites were not included in the analysis (Fig. 4A). In the cases

of dementia with Lewy bodies (Fig. 4B) and systemic lupus erythe-

matosus (Supplemental Fig. 9), the DNA methylation patterns

obtained from the 1322 CpG sites distinguished them from their

corresponding normal tissues. Most importantly, the correspond-

ing distinctions between brain samples of dementia with Lewy

bodies versus normal brain and leukocytes of lupus patients versus

healthy donor samples were exclusively associated with CpG

hypomethylation events in the disease tissue (Supplemental Table

11). Examples of dementia with Lewy bodies–specific CpG hypo-

methylation further validated by pyrosequencing are shown in

Supplemental Figure 9. Interestingly, the sequestration of DNA

methyltransferase 1 (DNMT1) in the cytoplasm of neurons from

patients affected by dementia with Lewy bodies has been recently

described (Desplats et al. 2011), a mechanism that could explain

the hypomethylation events observed in this disease using our

approach. Related to the lupus patients, it is noteworthy to con-

sider that these samples were also previously analyzed using the

same 1505 CpG array to search for DNA methylation differences

between monozygotic twins ( Javierre et al. 2010). Herein, they were

studied in a more stringent manner because they were compared to
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a new large set of normal leukocytes (n = 180) and with a higher

cutoff value for methylation. Among the lupus-common genes

derived from both studies, it is relevant to mention the hypo-

methylation event targeting PI3 (Proteinase Inhibitor 3), a protein

that has been involved in psoriasis with an autoimmune compo-

nent (Tjabringa et al. 2008). With the CpG array used, we were

unable to find any significant difference between brain samples

from Alzheimer’s patients (Fig. 4B), aorta samples from athero-

sclerotic lesions (Supplemental Fig. 9), myopathies (data not

shown), and their respective normal tissues.

The DNA methylation profiles obtained from the aforemen-

tioned non-cancer disorders were distinct from those observed in

tumors originating from the same cell type. Dementia with Lewy

bodies’ patients had CpG-site methylation patterns that distin-

guished them not only from normal brain (Fig. 4B), but also from

neuroectodermal tumors, such as glioma and neuroblastoma

(Fig. 4C). Interestingly, brain samples from dementia with Lewy

bodies’ patients were closer, from a DNA methylation fingerprint

perspective, to neuroblastomas than to gliomas (Fig. 4C), a char-

acteristic that might be associated with the different cell biology of

the disorders. Although in dementia associated with Alzheimer’s

disease there is a high grade of neuronal cell death that causes an

over-representation of glia cells in the studied samples (gliosis)

( Jellinger and Stadelmann 2001; Teaktong et al. 2003), in the de-

mentia with Lewy bodies’ brain there is not such massive neuronal

cell death (Jellinger and Stadelmann 2001; Teaktong et al. 2003),

and the DNA methylation profiles observed resembled those

found in neuron-enriched samples, such as neuroblastomas. In

this regard, the existence of different DNA methylation patterns

among brain regions with different cell composition has also been

suggested (Ladd-Acosta et al. 2007). Distinct DNA methylation

profiles for non-malignant and malignant disorders originating

from the same cell type also occur for leukocytes of lupus patients

displaying DNA methylation profiles that are different from

those present in healthy donors or in leukemias (Supplemental

Fig. 9).

Overall, these findings suggest that few specific DNA meth-

ylation changes in non-cancerous human diseases could be re-

sponsible for the observed phenotypes of these entities; they

nevertheless merit further attention. Most importantly, the spe-

cific DNA methylation changes found in the described disorders

occurred in clear contrast to human cancer, where the DNA meth-

ylation profile undergoes a wide-ranging, global change character-

ized by the gain of promoter CpG-island methylation and loss of

non-CpG-island methylation. These results underlie the multifac-

torial nature of human cancer that involves epigenetic ‘‘hits’’ in

almost all known cellular pathways, exemplified by the aberrant

DNA methylation fingerprints obtained here.

Discussion
Disruption of the DNA methylation patterns is emerging as a

common feature of human disease (Portela and Esteller 2010),

where cancer is the disorder on which most of the studies have

been focused (Jones and Baylin 2007; Esteller 2008). From the

initial studies looking at a single locus, we have now available a

wide range of epigenomics techniques to study multiple CpG sites

in the human genome. In addition to methods that isolate meth-

ylated fractions of the genome by methylation-sensitive restriction

(Lippman et al. 2005; Irizarry et al. 2008), immunoprecipitation

with a methylcytosine (Weber et al. 2005, 2007; Keshet et al. 2006;

Down et al. 2008) or methyl-CpG binding domain antibody

(Ballestar et al. 2003; Rauch et al. 2009) and the genome-wide bi-

sulfite genomic sequencing approaches (Li et al. 2010; Lister et al.

2009), it is worthwhile to highlight DNA methylation bead micro-

arrays (Bibikova et al. 2006). This approach has the advantage that

it can be used in a common standard manner by different labora-

tories around the world with similar bioinformatics packages, and

Figure 4. DNA methylation fingerprint in non-tumoral human diseases. (A) Unsupervised hierarchical clustering and heatmap of several non-tumoral
diseases showing distinct DNA methylation profiles. (B) Unsupervised hierarchical clustering and heatmap showing significant differences between the
DNA methylation patterns of dementia with Lewy bodies and normal controls. The CpG methylation platform used was unable to detect significant
differences in the case of Alzheimer’s versus healthy brain tissues. (C ) Unsupervised hierarchical clustering and heatmap showing differences between
dementia with Lewy bodies and neuroectodermal tumors (glioma and neuroblastoma).
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the raw data can be user-friendly, deposited, and shared. Herein,

using the first version of the DNA methylation bead microarray,

which included 1505 CpG sites corresponding to 808 genes, we

have studied the largest collection of human samples to date, 1628,

that included 424 normal tissues, 1054 tumorigenic samples, and

150 non-cancerous disorders. Our data provide new clues about

the DNA methylation profiles present in normal and disease-

associated tissues and also expand and confirm previous reports in

this area obtained using the same platform (Aranda et al. 2009;

Byun et al. 2009; Christensen et al. 2009; Javierre et al. 2010) or

a second DNA methylation bead microarray that includes 27,000

CpG sites (Rakyan et al. 2010; Teschendorff et al. 2010; Nagae et al.

2011). In normal cells, the derived picture reinforces the role of

methylation in non-CpG-island 59 ends to determine tissue-spe-

cific expression, the shift in the DNA methylation landscape from

pluripotent to differentiated cells, and the existence of a DNA

methylation drift associated with aging. For transformed cells, the

study demonstrates that tumors undergo mostly a progressive

CpG hypermethylation within CpG islands, while CpG hypo-

methylation occurs in 59 ends of non-CpG-island genes. For other

human disorders, such as dementia with Lewy bodies and lupus,

we show that they also possess a particular DNA methylation fin-

gerprinting that is mainly characterized by CpG hypomethylation

events. One extra value of the present study is that it not only

provides new DNA methylation markers for all the described

normal and pathological settings, but it also validates previous

results in aging (Christensen et al. 2009; Rakyan et al. 2010;

Teschendorff et al. 2010), tissue specificity (Eckhardt et al. 2006;

Byun et al. 2009; Christensen et al. 2009), or lupus ( Javierre et al.

2010). Furthermore, the deposited data for the 1628 human

samples (http://www.ncbi.nlm.nih.gov/geo; accession number

GSE28094) can be a value resource for further biocomputational

and meta-analysis studies.

Overall, the goal of the research described here was to ex-

amine human DNA methylation profiles comprehensively from

an extremely extensive range of samples that covers physiological

changes (across different tissue types, sex, age, geography, differ-

entiation vs. stemness, primary vs. cell culture, etc.) and human

diseases (cancer and common non-tumoral diseases, such as neu-

rological, cardiovascular, and autoimmune disorders). The results

obtained indicate that different DNA methylation fingerprints are

observed in most of the described conditions, cancer samples be-

ing the result of the most extreme type of DNA methylation

change observed, in which a profile of an increased degree of CpG

dinucleotide methylation within promoter CpG islands and a loss

of CpG methylation outside CpG islands is a common hallmark, as

described above. A DNA methylation signature that becomes more

distorted as the disease progresses can provide potentially relevant

clues for improving disease management for these patients, such as

we have demonstrated for the CUP cases.

We would like to underscore the relevance of the CUP DNA

methylation fingerprints. Despite the increasing sophistication

in the diagnostic tools for malignancies, deaths due to CUP were

estimated to be 45,230 in 2007 in the United States (American

Cancer Society 2007). CUPs have an incidence of 6% among all

malignancies, and in 25% of cases, the primary site cannot be

identified even upon postmortem examination (American Cancer

Society 2007). The inability to identify the primary site of the

cancer and the impossibility to provide the right treatment has

a large impact on the expected clinical outcome of these patients.

Herein, the acquisition of DNA methylation fingerprints for 1054

tumorigenic samples allowed the classification according to cancer

type of almost 70% of the studied CUPs, a result that can make

a difference in the prognosis of these patients. This is just an ex-

ample of the possible translational use of the DNA methylation

profiles provided. Other uses might follow, and they will require

further development, such as our finding of a distinct DNA meth-

ylation fingerprint between local liver metastases and distant brain

metastases derived from colorectal tumors that might suggest the

use of DNA methylation patterns to predict the metastatic spectrum

of a given cancer. We would also like to highlight another prom-

ising step in the clinical-benefits direction by the recent finding of

27,000 CpG-site DNA methylation profiles in blood that are as-

sociated with bladder cancer risk (Marsit et al. 2011).

One obvious limitation of our approach is the level of reso-

lution, since only 1505 CpG sites were interrogated. The increasing

number of studies developed and under way using the 27,000-

CpG-site platform and the future reports using the new 450K-CpG-

site microarray will be useful to further validate and complement

the DNA methylation profiles obtained. We can only imagine how

the firm, automatic, and affordable establishment of whole-genome

sequencing of complete human DNA methylomes (Lister et al.

2009; Li et al. 2010) will yield further knowledge about the role

of DNA methylation in cellular identity and its loss in disease. Even

so, the 1628 DNA methylation fingerprints described herein, and

displayed by tissue type and disease in Figure 5, are a promising

starting point for understanding the variation of human DNA

methylation over a range of normal and pathological conditions.

Methods

Filtering of probes and samples
Although the GoldenGate Assay by Illumina is an established,
highly reproducible method for DNA methylation detection, there
is currently no standard procedure for post-filtering of probes and
samples commonly used. Before analyzing the methylation data,
we explored several ways of excluding possible sources of bio-
logical and technical biases that could have affected and improved
the accuracy of the results. Every beta value in the GoldenGate
platform is accompanied by a detection P-value. We based the
criteria of filtering on these P-values reported by the assay. We
examined two aspects of filtering out probes and samples based on
the detection P-values, selecting a threshold and a cutoff. Our
analyses indicated that a threshold value of 0.01 allows a clear
distinction to be made between reliable and unreliable beta values.
We selected the cutoff value as 5%. Following this criterion, we first
removed all probes with detection P-values >0.01 in 5% or more
of the samples. As a second step, we removed all samples with
detection P-values >0.01 in 5% or more of their (remaining) probes.
In total, 130 probes and 87 samples were removed. We also
checked for and removed consistently unmethylated and meth-
ylated probes. We ignored all cell line samples and focused on the
remaining 1521 (primary tissue) samples. All probes exhibiting
a degree of methylation <0.25 for all primary tissue samples were
considered to be consistently unmethylated. Similarly, probes with
a degree of methylation >0.75 for all primary tissue samples were
considered to be consistently methylated. We identified nine
consistently unmethylated probes; none of the probes fit our
definition for being consistently methylated. A known biological
factor is that one copy of chromosome X is methylated in women
(Reik and Lewis 2005), and, therefore, we decided to identify and
remove all probes with prominent gender-specific methylation, to
avoid hidden bias in the subsequent analyses. We considered the
set of 1271 samples with gender information; approximately half
of them were female. We defined a probe to be gender-specific if (1)
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the probe showed a significant differential methylation between
the two sample groups, as determined by the Mann-Whitney
U-test with FDR correction; and (2) the mean methylation degrees
of females and males for this probe differed by at least 0.17 (a
limitation of the GoldenGate assay). After excluding 130 probes
that were not of sufficient quality, nine that were consistently
unmethylated and 44 that were gender-specific, 1322 probes were
available for further statistical analyses.

Analysis of differentially methylated probes

The large cohort of heterogeneous methylation profiles allows
us to identify differentially methylated probes under a variety of
scenarios. We analyzed different groups of tissue samples sepa-
rately (normal primary tissues, cancerous and non-cancerous dis-
eases, and cancer cell lines). We performed all statistical analyses
using the R environment for statistical computing (version 2.10;
http://www.R-project.org). Further explanation about detection of
differentially methylated probes and genes in each scenario, sta-
tistical analyses, and graphical representations are provided in the
Supplemental Methods.

Pyrosequencing

Pyrosequencing assays were designed to analyze and validate the
results obtained from the array under different scenarios. Sodium
bisulfite modification of 0.5 mg of genomic DNA isolated from
different tissues was carried out with the EZ DNA Methylation Kit
(Zymo Research Corporation) following the manufacturer’s pro-
tocol. Bisulfite-treated DNA was eluted in 15-mL volumes with 2 mL
used for each PCR. The set of primers for PCR amplification and
sequencing were designed with a specific program (PyroMark assay
design version 2.0.01.15). Primer sequences were designed to hy-
bridize with CpG-free sites to ensure methylation-independent
amplification. PCR was performed with primers biotinylated to
convert the PCR product to single-stranded DNA templates. We
used the Vacuum Prep Tool (Biotage) to prepare single-stranded

PCR products according to the manufacturer’s instructions. Pyro-
sequencing reactions and quantification of methylation were
performed in a PyroMark Q24 System version 2.0.6 (QIAGEN).
Graphs of methylation values show bars identifying CpG sites with
values from 0% (white) to 100% (black).

Classification of CUPs

We used the advanced method L1-regularized logistic regression
with misclassification to classify the 42 CUP samples in our data
set into one of the known cancer types. By classifying a CUP, this
classifier gives probabilities (values between 0 and 1) for every
known cancer type. A CUP prediction heatmap was derived in R
(version 2.1.0) (Fig. 3E). The CUP samples were selected on the
basis of having a >30% probability of being ascribed to a specific
tumor type. The arrangement of the samples in the heatmap was
established by (1) ordering the tumor types by the number of CUPs
ascribed to each one; and (2) within each tumor type, ranking the
CUPs from the highest to lowest probability of ascription.

Expression data analysis

CEL files containing normal tissue gene expression data were
downloaded from the GEO database. Data series, samples, and anal-
ysis procedures are detailed in the Supplemental Methods.

Enrichment of PcG-marks and bivalent domains
in different methylation groups

The presence of PcG-marks and bivalent domains in different
methylation groups was compared using a Fisher’s exact test. In
addition to a Fisher’s exact test, we calculated permutation-based
P-values to account for interdependencies between the methyla-
tion states of different CpGs. Briefly, we performed a Fisher’s exact
test in 104 random reassignments of the studied samples and calcu-
lated the proportion of resulting P-values that is lower than or equal
to the originally obtained one. A genome-wide map of Polycomb

Figure 5. A DNA methylation fingerprint of 1628 human samples. Unsupervised hierarchical clustering and heatmap of all the CpG methylation maps
obtained in the study, by tissue and disease type.
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target genes and 3mK4H3/3mK27H3-enriched genes in ESCs is
available as supplemental material of the articles by Lee et al.
(2006) and Pan et al. (2007), respectively.

Human cancer cell lines and expression upon
5-aza-29-deoxycytidine treatment

Five cancer cell lines—SW480 (colon), HN-011A and HN-011B
(esophagus), and IGR37 and IGR39 (melanoma)—were grown in
DMEM medium supplemented with 4 mM glutamine, 10% FBSm and
100 units/mL penicillin/streptomycin at 37°C/5% CO2. All cell lines
were treated with 1 mM 5-aza-29-deoxycytidine (Sigma) for 72 h. Total
RNA was isolated from all cell lines before and after 5-aza-29-deoxy-
cytidine treatment by TRIzol extraction (Invitrogen), and 5 mg was
hybridized on the Human GeneChip U133 Plus 2.0 expression array
(Affymetrix). Expression data were normalized and analyzed follow-
ing the same procedures described in the Supplemental Methods.

Data access
The microarray data from this study have been submitted to the

NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo) under accession number GSE28094.
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