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enseñado tanto, Fernando, Gonzalo, Alex, Carmen, Yago, Pablo, Dr. Thomp-
son, Lucia y Javier. Muchas gracias por esos buenos momentos de milonga y por
sacarme a bailar cuando aún me pisaba a mi misma, ahora sólo les piso a ustedes.

Unas de las personas que más me han animado con este trabajo es Sebastián.
Sin él, entre otras muchas cosas, no existiŕıa esta maravillosa portada y probable-
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muerzos siempre muy animados como Álvaro, Ricard, Noela, Cristina, Benedetta,
Xavi, Andrea, Pau, Joaquin, Thomas, Paolo, Valentino, Fabio, Carlos, Marco. A
Carlos y los juguitos y en especial a Paquito con el que he pasado tan buenos
momentos de mezcales, pozole y las veces que casi me echan del Shangó, darle las
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Introduction

Viruses have been present in human life since immemorial times and stand out
in the biological context by their efficiency and relative simplicity [1]. They have
a well-defined structure, they can survive to very harsh conditions, and replicate
efficiently in all kinds of hosts.

Until recently, mankind was only aware of the existence of viruses through the
diseases caused by them. The first recorded evidence of a viral disease dates back
to 1800 BC and is an Egyptian stele representing a person with a withered leg
showing the effect of paralytic poliomyelitis. From this initial evidence to nowa-
days there are many examples of the devastating effects caused by viruses such as
smallpox, that was endemic in China by 1000 BC, the influenza of 1918 (Spanish
Flu) which took over 40 millions of lives, or more recent emergent viruses as Ebola
or AIDS [2, 3].

However, although the diseases caused by viruses have been known for more
than 10000 years, the nature of the infectious element (the virus) was unidentified
until nearly a century ago. In fact, the first primitive vaccinations (variolation)
for the smallpox were performed in China and India in the 11th century without
knowing the causative effect. But there was no rationale about infectious ele-
ments, until Robert Koch and Louis Pasteur, who proposed the “germ theory” in
the 1880s [2, 4]. Neverthreless, at that early time they were not able to distinguish
between different infectious agents yet, for example bacteria and viruses.

The modern concept of a virus as a submicroscopic biological entity was born
in 1890s. Dimitrii Ivanovsky was the first to report in 1892 that the causative agent
of tobacco mosaic disease was not detained even after being passed from plant to
plant through filters fine enough to trap the smaller known bacteria [4]. In 1898
Martinus Beijerinck made the same observations independently, and identified the
responsible promoter for the disease as a distinctive agent. These new entities
were called “ultrafilterable viruses” (from the latin word “virus” meaning poison),
and eventually simplified to viruses [2]. However, the idea of human viruses was
not accepted until 1909 by Karl Landsteiner and Erwin Popper, who showed that
poliomyelitis was caused by a virus [5].

The study and information about viruses developed in parallel with the new
technologies. In particular, the introduction of the electron microscope in the 1930s
revolutionized virology, see Fig. 0.1 and 0.2. The first study about the structure
of viruses was made in 1935 by Wendell Stanley, who crystallized tobacco mosaic
virus (TMV) [6], aided by its structural simplicity. The study of the TMV struc-
ture, originated the first viral classification, based on their morphology [7].



(a) (b)

Figure 0.1: Electron microscopy images of two examples of human viruses: (a)
papilloma virus (taken from Ref. [8]) and (b) influenza A (taken from Ref. [9]).

The study of bacteriophages (viruses that infects bacteria), was decisive for
virology and for the development of molecular biology. Studies by Max Delbrück,
showed that phages are stable, and self assembled following common characteris-
tics. Moreover, in 1952 Alfred Hershey and Martha Chase [10] showed that the
two main components of viral particles, proteins and the genetic material, were
used for their molecular replication in the host cell.

Nowadays we know that viruses infect humans, animals, plants, insects, bac-
teria, archea and, interestingly, also other viruses. These viruses which infect other
viruses once these have taken control of the cell are called virophages [13]. Given
the huge variety and nature of hosts, viruses show different characteristics and
have developed diverse replication strategies. However, viruses can be defined in
general as biological entities having the following properties, listed in Ref. [2]:

“* A virus is an infectious, obligate, intracellular parasite.

* The viral genome comprises either DNA or RNA.

* Within an appropriate host cell, the viral genome is replicated and directs
the synthesis, by cellular systems, of other viral components.

* Progeny infectious virus particles, called virions, are formed by de novo as-
sembly from newly synthesized components within the host cell.

* A progeny virion assembled during the infectious cycle is the vehicle for
transmission of the viral genome to the next host cell or organism, where its dis-
assembly leads to the beginning of the next infectious cycle.”

2



(a) (b) (c)

Figure 0.2: Electron microscopy images for three examples of viruses: (a) A plant
virus, TMV [6], and two bacteriophages, (b) Phage Synechococcus-PM2 [11] and
(c) λ [12].

There is a huge variety of viruses whose, life cycle differs depending on the
type of host cell. The most simple virus cycle starts in the extra-cellular phase,
where the virus recognizes the host cell surface. It then penetrates inside the cell
(entirely or some of its components) and travels through the cell. In a second step
the virus disassembles or releases its genetic material at some place of the cell and
the expression and replication of the viral genome takes place. After that, the
protein shell self-assembles (in some cases, by assembling first an empty protein
shell and packing the genome, and in other cases the shell and genome co-assemble
together). In many viruses, the last stage of assembly involves a maturation step
needed for the virus to become infective. An inter-cellular travel and the release in
some virus takes place at different moments of the assembly and maturation steps.
Finally, the released viruses travel in the extra-cellular environment to find a new
host, to start the cycle again. This is a general viral life cycle but it is important
to bear in mind that each virus follows specific steps and strategies [14].

Despite the many different types of viral life cycles, all viruses are made by
at least two essential ingredients: the genetic material and a protein shell (called
capsid). Despite the presence of their own genetic material, viruses need to infect
and use the molecular machinery of host cells to produce new viral particles under
the right cellular conditions, since they cannot do it by themselves [15].

The pathway of replication in the host depends very much on the type of
genome. The virus genome can be encoded in RNA or DNA, which can be double-
stranded (ds) or in other cases, single-stranded (ss) [2]. The first viral classification,
known as classical viral classification, was made in terms of the nature of the ge-
netic material, the symmetry of the capsid and the presence or not of a membrane,
as shown in Figs. 0.3 and 0.4 for plants and vertebrates, respectively [16].

3



Figure 0.3: Families and genera of viruses infecting plants classified in terms of
the type of genetic material (i.e ds and ss DNA and RNA genomes). Figure taken
from Ref. [16].

4



Figure 0.4: Families and genera of viruses infecting vertebrates, classified in terms
of the type of genetic material (i.e ds and ss DNA and RNA genomes). Figure
taken from Ref. [16].

5



Figure 0.5: Baltimore classification of viruses, where the pathway from the viral
genome to mRNA and the nature and polarity of their genome define the viral
class. Figure taken from Ref. [2].

Cells typically express the genetic information using messenger RNAs (mR-
NAs) that are translated in the cytoplasm by associated machinery. Viruses use
mRNA to produce proteins, but depending of the cell machinery of the host the
synthesis steps are different. For example, herpes Virus replicates its genome using
a host polymerase, whereas viruses such as picornavirus, require a viral polymerase
to transcribe first the genome. The viral protein synthesis inspired the Baltimore
classification, where different viral groups are defined depending on their type of
genome and method of replication, see Fig. 0.5. Remarkably, the origin of the
viral genomes types and their methods of replication are still in debate [17–19].

The second main ingredient of viruses is the protein shell or capsid (see Fig.0.6.
Its main role is to protect the genome from environmental conditions and to facil-
itate its safe delivery into a new host. Thus, between the formation of the viral
particle and the infection of a new host, viruses rely on the capsid to protect
their genomes. The viral shells are made of multiple copies of one or a few dif-
ferent proteins that spontaneously self-assemble, without consumption of chemical
energy [2–7, 10–21]. Viruses are built by a set of common architectures for the
capsid, having between a few nanometers to hundreds of nanometers in size. The
shape and symmetry of the capsid is an important element in their classification.

Typically, each native virus self-assembles in vivo into a unique viral capsid
shape. For instance, TMV, the first virus observed using an electron microscope,
has a rod-like structure with coat proteins organized in a helical sheath, opened at
both ends [22], see Fig 0.2(a). The most frequently observed viral capsid shapes are
spherical [23], prolate [24, 25] or conical [26]. Other less abundant viral shapes have

6



(a) (b)

Figure 0.6: 3D Electron Microscopy reconstructiong of bacteriophage φ29: Image
(a) shows the exterior of the capsid with spikes, the connector and the tail. Image
(b) shows a cross-section of the same bacteriophage full of DNA. Figures taken
from Ref. [48].

also been observed, such as the bullet-shaped particles of some animal viruses like
rhabdovirus vesicular stomatitis virus [27] or the amazing variety of morphologies
reported for several virions that infect extremophiles archaea [28]. Nevertheless,
there are many viral structures that have not been totally characterized and studied
yet. Moreover, many viruses can be reconstituted in vitro in different non-native
shapes, by playing with the assembly conditions or with the properties of the cargo.

Some, viruses may have additional components besides the coat proteins and
the genetic material. For example, many bacteriophages have a tail connected to
the capsid that facilitates the attachment and injection of the genetic material
into the host [29]. Other viruses have spikes at specific positions on the capsid,
which are used for recognition and binding to the host cell [30, 31], see Fig. 0.6. A
prevalent element in many animal viruses are lipid membranes that depending on
the specific virus, play an important role in the formation, maturation, entry or
disassembly processes during the viral cycle life. For instances, lipid membranes
help the assembly process in PRD1 virus [32] or is involved in the assembly, mat-
uration, and infectivity of HIV [33].

There is more diversity between viruses than plants, bacteria and animal all
together, which turn the study of viruses into a huge task [4]. An added difficulty
is that viruses are continuously evolving, as exemplified for instance by the case
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(a) (b)

Figure 0.7: Two examples of new viruses. (a) H7N9 avian virus, which killed
hundreds of corral birds last year (figure taken from Ref. [34]). (b) A new coro-
navirus, which infects humans, detected for the first time last year (figure taken
from Ref. [35]).

of avian influenza H7N9, see Fig. 0.7 (a). Moreover, new viruses emerge and orig-
inate, as in the case of the Middle East Respiratory Syndrome coronavirus first
reported on September 2012, see Fig. 0.7 (b).

In the last decades, our understanding of viruses has significantly increased,
but there are many questions whitout answer. As mentioned before, each virus is
a world in its own, and it is full of specific details in its life cycle and infection
processes. However, there are some general features and abilities common to all
viruses. Moreover, viruses lack the sophisticated and active machinery of cells,
and work most of the time using passive and spontaneous processes. That suggest
that, during their natural cycle, they must rely on general physical and chemical
principles to succeed in most of their tasks, and to resist the different possible
extreme physiological conditions of the environment.

The study of the physics involved in the assembly of viral capsids, their stabil-
ity, or their mechanism of infection/replication, is very important in order to un-
derstand the properties of viruses that are common to different species. The many
remarkable properties have stirred the interest in the study of viruses to develop
novel strategies aimed at stopping or minimizing the damage of viral infections, or
to use their remarkable abilities for biotecnological applications. In fact, viruses
have already been used in gene therapy [36], as an alternative to antibiotics [37]
or as insecticides [38]. In nanotechnology viral capsids are envisaged as nanore-
actors [39], as templates for nanowire fabrication [40] or as nanocontainers [41, 42].

A better understanding of the physical mechanisms involved in the viral life-
cycle may also be useful in many biophysical applications and antivirals. Ad-
ditionally, viruses are composed by proteins, phospholipid elements and genetic
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material which are also the essential elements of other biological systems. The
physical principles governing viral capsids might thus be also important for the
understanding of other biological systems with similar shapes or components such
as vesicles [43, 44], vault shells [45] or red bloods cells [46], and could be helpful to
produce artificial structures with similar properties [47]. But still there are many
open questions about, for instance, the kinetics of viral assembly or their mechan-
ical properties, which remain to be solved, and which will be studied in this thesis.

Scope of the thesis

The main goal of this thesis is to study the physical mechanisms implicated
in the self-assembly and mechanical properties of non-enveloped viral capsids us-
ing coarse-grained models. The thesis has been divided into three main blocks
discussing the physical modelling of viruses, the viral self-assembly process, and
the mechanical properties of viral capsids. The thesis combines theoretical anal-
ysis, mostly developed in the first part, with different simulations, developed in
the second and third parts. We have tried to discuss the results in the context
of previous studies, and to compare them with experiments. In particular, the
simulation of the third part on the mechanical properties of different viruses have
been specifically developed to interpret experimental results obtained by atomic
force microscopy (AFM) nanoindentation experiments.

The first part of this thesis (Physical modeling of viruses) focuses on summa-
rizing some common properties of viruses. Using these common properties it is
possible to propose physical theories in order to gain insight into general behavior
of different viral processes such as the viral architecture or self-assembly. We will
review important ideas from previous works and we will introduce a new coarse-
grained model and the main simulation techniques that will be used in the thesis.

In the first chapter (Viral architecture), we will revisit the geometrical prin-
ciples involved in the construction of spherical and prolate viral shells. First, we
will review the Caspar and Klug construction for spherical viral capsids with icosa-
hedral symmetry, which is the basis of their structural classification in terms of
their triangulation number T. We will emphasize the organization of the T-capsids
in terms of classes, which groups shells having similar geometrical characteristics,
and as we will see, also common physical properties. The extension of Caspar and
Klug’s ideas to classify bacilliform viruses will be also described. The chapter will
be ended by discussing the interesting physical origin of the prevalence of icosahe-
dral symmetry in spherical and bacilliform capsids.

Chapter 2 (Theoretical description of viral assembly kinetics) introduces the
general theoretical framework used to characterize the self-assembly of viral cap-
sids. In particular, after reviewing the common features of viral assembly, Classical

9



Nucleation Theory (CNT) will be described as a powerful framework to charac-
terize the kinetics of the viral assembly process. Using this theory it is possible
to explain the universal traits observed experimentally in the assembly of different
viruses such as the steep concentration dependence, the lag time at the first stages
of assembly, and the sigmoidal kinetics of capsid production. We will also use this
theory to analyze and interpret our simulations.

The third chapter (Coarse-grained modeling of capsids) reviews different strate-
gies and models that have been proposed to study viral capsids. In particular, we
will revise previous coarse-grained models that have been used to describe different
aspects of capsid structure and assembly, highlighting their advantages and short-
comings. Building up on previous models, we will then present our coarse-grained
model that will be used in the following chapters to analyze the self-assembly and
mechanical properties of viruses.

Chapter 4 (Elastic modeling of viral capsids) introduces a simple theoretical
model connecting the most relevant elastic properties of viral capsids with the mi-
croscopic interactions between coat units proposed in our model. These ideas will
be used to formulate a simple continuum elastic model in terms of bending and
stretching energies. We will analyze the bending-dominated, and the stretching-
dominated limits, and how these two contributions compite and determine the size
and mechanical properties of viral shells.

The last chapter of this part focus on Simulation Methods. We have imple-
mented diverse simulation techniques for the study of different viral processes.
In this chapter we will describe the three main methods used: Monte Carlo (MC)
simulations, Brownian Dynamics (BD) simulations, and Finite Elements (FE) sim-
ulations. Monte Carlo simulations will be employed to study capsid stability, using
our coarse-grained model. In turn, Brownian Dynamics simulations will be used to
study the dynamics of capsid assembly, and to mimic nanoindentation experiments
in our “Virtual AFM”. Finally, Finite Elements analysis will be introduced as a
tool for the study of some mechanical properties of the capsid in the continuum
limit. These different techniques will be used in parts II and III of this thesis.

The second part of the thesis (Self-assembly of viruses) is dedicated to the
analysis of the viral self-assembly and the physical ingredient that control this
process and the final capsid shape.

In particular, Chapter 6 will focus on the Physical ingredients controlling the
polymorphism and stability of empty viral capsids. Using the model proposed in
Chapter 3, we will implement a MC simulation to study the stability of the small-
est spherical structures and their tolerance to changes in bending stiffness and
spontaneous curvature. In this study we will characterize the regions of stabil-
ity, the competition between different structures, and the morphological changes
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suffered by the different structures. These results are discussed in connection to
their potential biological implications. The aberrant structures that appear when
the capsid loses its integrity will also be examined, as a guidance for assembly
experiments.

The second chapter of Part III (Simulations of the assembly kinetics of empty
viral shells) will present the results of Brownian Dynamics simulations of the as-
sembly of empty capsids using our coarse-grained model. We will see that the
optimal conditions required for assembly are not necessarily the same as the ones
that warrant the stability of the capsid. We will also monitor the kinetics of capsid
formation. The results are interpreted in the context of CNT, obtaining a promis-
ing agreement with the theoretical predictions. Remarkably, this study provides
interesting tools to understand and control the role of different biophysical param-
eters in the self-assembly process.

Part III of this thesis is dedicated to the analysis of the Mechanical proper-
ties of viral capsids. During the virus life cycle, the mechanical properties of its
capsid play an important role in several biological processes. The viral capsid is
indispensable to protect the genetic material against environmental changes and
aggressions. Hence, its mechanical response is crucial not only in the viral life
cycle, but also for different biotecnological applications. In this block, we will
discuss the remarkable mechanical properties of viral capsids combining theory,
simulations, and experiments.

In Chapter 8 we will analize The importance of the structure in the buckling
and maturation of spherical viruses. Using a simple coarse-grained model, we will
compare the energetics of spherical and icosahedral shapes and show that the pre-
ferred shape of a virus is strongly influenced by the icosahedral class of the viral
structure. We will also discuss the connection between this morphological change
and viral maturation, and the potential mechanical and biological advantages of
the resulting capsids.

Chapter 9 (Internal pressure in bacteriophage φ29 ) investigates the mechan-
ical properties of bacteriophage φ29, a prolate virus that packs dsDNA at high
densities. The study was performed in collaboration with the experimental groups
of P. J. de Pablo and J. L. Carrascosa. Their experiments, using atomic force
microscopy, revealed that the presence of dsDNA packaged inside the capsid was
translated in an increase of the effective stiffness of the virus. By using theoreti-
cal models and finite element simulations, we were able to interpret the results of
the AFM experiments in terms of the effective pressure built-up by the confined
dsDNA. We will describe how the combination of experiments and simulations pro-
vides a direct way to determine the genome pressure in bacteriophage φ29. This
pressure is crucial for the infectivity of the virus.
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In Chapter 10 (Virtual Atomic Force Microscopy) we will implement a “virtual
AFM” using our coarse-grained model to mimic typical nanoindentation experi-
ments. Using these simulations, we will be able to explain the anisotropic response
in the different axis of symmetry found for bacteriophage T7 in AFM experiments.
The influence of the different physical parameters on the mechanical response and
the mechanisms of failure under large indentations will also be discussed.

Finally, in the last chapter (Conclusions and Perspectives) we will summarize
the main conclusions of the thesis, emphasizing the biological implications of the
work, and propose new questions and future works.
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Chapter 1. Viral architecture Section 1.1

1.1 Introduction

An amazing feature of viruses is the fact that viruses of many different fam-
ilies, which infect widely different hosts (i.e. animals, plants, bacteria, etc) share
a set of common architectures. Essentially, viruses can be classified in four differ-
ent groups, according to their capsid shape (see Fig. 1.1): rod-like (like Tobacco
Mosaic Virus [1, 2]), conical (e.g. Lentivirus like HIV [3]), bacilliform (e.g. Rice
Tungro virus [4] or bacteriophage φ29 [5]) and quasi-spherical (e.g. Herpes Simplex
Virus [6] or Hepatitis B [7]). There are also a few viruses, most of them having
a membrane envelope, that are pleimorphic and do not have well-defined shapes
(like Halorubrum pleomorphic virus 1 [8] or smallpox [9]).

The simplest shape of these four groups is the rod-like shape. The coat pro-
teins in these capsids are organized in a compact helical structure, with open ends
and a small internal channel occupied by the genome. The length of these viruses
is commonly controlled by the number of base pairs of the genetic material. The
typical example, and the first virus discovered and observed using an electron mi-
croscope (EM) [10], is the Tobacco Mosaic Virus, see Fig. 1.1(a).

The conical shape is less common, but very important because it is the typ-
ically shape of the human immunodeficiency virus (HIV), see Fig. 1.1(b). One
of the characteristics that difficult the study of these as well as of other related
retroviruses is their facility to adopt different conical structures and irregular
shapes [3, 11, 12]. This fact justify why it has not been possible to have a complete
reconstruction of the capsid with atomic resolution yet [13, 14].

The bacilliform, prolate or elongated shells are characterized by a central
cylindrical body closed by hemispherical caps, see Fig. 1.1(c). There are many
viruses of this class showing also a great variety of sizes [15, 16].

The most common viral shape, adopted by more than 50% of all viruses infect-
ing animals, plants, bacteria, and humans, are spherical viruses, see Fig. 1.1(d).
These viruses are characterized by the presence of icosahedral symmetry in the
arrangement of their coat proteins. There is a big variety of these viruses with
sizes in a range between a few tens of nm to 600 nm. These viruses with icosa-
hedral symmetry have been studied since the mid 1950s, when they were first
proposed [17–19], but their origin and biological implications are still a subject of
intense investigations [15, 20, 22–24].

The goal of this chapter is to review the main structural and geometrical prop-
erties of quasi-spherical and bacilliform viruses. These geometrical principles are
the basis of the structural classification of viruses and will be very important for
the remaining chapters. In addition, the well-defined size and shape of viral cap-
sids make them ideal candidates for many promising applications as nanoreactors,
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(a) (b) (c) (d)

Figure 1.1: Electron microscopy images of a representative example of the different
viral capsid shapes (a) rod-like shape: Tobacco Mosaic virus [2], (b) conical: HIV
[3], (c) bacilliform: φ29 [5] and (d) spherical: Herpes Simplex [6].

nanocontainers or templates in areas such as medicine, nanosciences or pharma-
ceutical. Thus the importance of this geometrical description is that it provides
the catalogue and properties of the structures that can be built for each shape in
terms of a discrete number of values of length, radius and number the proteins.
Understanding these selection rules is the first step towards controlling the dimen-
sions and architecture of viral capsids.

This chapter will be distributed as follows. In Section 1.2 we review the Cas-
par and Klug construction for icosahedral viral capsids. Then, in Section 1.3, we
highlight the concept of classes, introduced also by Caspar and Klug, to group
triangulation numbers associated to similar subunits distribution. In Section 1.4
the recent generalization of Caspar and Klug ideas to describe bacilliform viruses
will be described. After that, we will discuss the interesting physical origin of the
prevalence of icosahedral symmetry in the capsid construction. Finally, the last
two sections will be devoted to discuss some interesting exceptions (Section 1.5)
and to summarize (Section 1.6) the main conclusions.

1.2 The Caspar and Klug construction and the T-number

Crick and Watson in 1956 were the first to suggest that small spherical viruses
should adopt a regular capsid made of multiple copies of the same protein for rea-
sons of genetic economy [17]. These identical subunits will tend to be arranged
forming a regular structure, where all of them will have an equivalent environ-
ment. In fact, the two spherical viruses crystallized at that time, bushy stunt
virus (BSV) [25, 26] and turnip yellow mosaic virus (TYMV) [27], had a diffrac-
tion patten characterized by cubic point group symmetry. The structures with this
simmetry are related to the regular polyhedra [18] known as Platonic solids: tetra-
hedron, cube, octahedron, dodecahedron, and icosahedron. Of these, the icosahe-
dron is the one that has an optimal surface/volume relation and can accommodate
the largest number of proteins in equivalent positions, namely 60 proteins.
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(a) (b)

Figure 1.2: Caspar and Klug model to build a spherical structure with icosahedral
symmetry. (a) CK model starts with a hexagonal lattice to get the 20 equilateral
triangles. (b) The vector (h, k) gives the number of steps along the principal
directions on the hexagonal lattice between two adjacent pentamers of the viral
capsid. Image taken from Ref. [28].

Few years later, in 1962, Caspar and Klug proposed a way to construct quasi-
spherical structures with icosahedral symmetry [19]. But there are viruses with
more than 60 proteins and for these larger capsids, the distribution coat proteins
cannot be strictly regular, so it was necessary to introduce quasi-equivalent envi-
ronments.

Our modern understanding of the geometry and the distribution of proteins
in quasi-spherical viral shells is based on the Caspar and Klug (CK) model [19].
This model describes the geometrical rules of construction of a spherical virus with
icosahedral symmetry.

The way to make the different quasi-spherical viral capsids with the Caspar
and Klug model is to use a flat hexagonal lattice of protein subunits as starting
point, see Fig. 1.2(a). To make a closed shell is then necessary to introduce at least
twelve defects in the hexagonal lattice according to Euler’s theorem [29]. In the
CK construction, the twelve defects are regularly spaced at the vertices of the re-
sulting structure which has icosahedral symmetry. In the final structure, there are
two different morphological units or capsomers, called pentamers and hexamers,
corresponding to clusters of five or six proteins, respectively (see Fig.1.3). The dif-
ferent possible structures are characterized by the vector CT = h−→a1 +k−→a2 ≡ (h, k),
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Figure 1.3: Caspar and Klug model to build some examples of quasi-spherical viral
capsids for the smallest T-numbers. The top row shows the geometry of the shell,
the middle row is a detailed structural image of the capsid and the botton row
represents the structure of the coat basic subunits . Figure taken from Ref. [21].

where (h, k) are non-negative integers that give the number of steps to connect
two nearest pentamers along the principal directions −→a1 and −→a2 of the hexagonal
lattice, see Fig. 1.2(b).

The vector
−→
CT defines an equivalent triangle in the hexagonal lattice whose

area is given by the triangulation number that characterizes the different struc-
tures.

T = h2 + hk + k2 (1.1)

Then, the final closed shell is constructed using 20 of these equilateral trian-
gles forming an icosahedron characterized by the presence of twelve pentamers at
its vertices. Since h and k are integer numbers, there is a limited number of ways
to create a closed shell with icosahedral symmetry corresponding to the discrete
sequence of magic numbers T = 1, 4, 7, 9, 12, ..., see Fig. 1.3.

The resulting T-number capsid has invariably 12 pentamers, NH = 10(T − 1)
hexamers, adding up to a total of N = 10T+2 capsomers and Nsub = 60T proteins.
Moreover, the final capsid has 15 2-fold, 10 3-fold and 6 5-fold rotation axes as an
icosahedron, which are the defining traits of icosahedral symmetry.
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(a)

(b)

Figure 1.4: Construction of the equilateral triangle in the laevo direction (red one)
and for the dextro direction (blue triangle), and the resulting laevo and dextro
structures for T = 7 (top row) and T = 13 (bottom row).

The CK construction is the basis to understand and classify the structure of
spherical viruses [22], but in some cases the triangulation number does not describe
univocally the structure of the shell. For instance, (h, k) and (k, h) build equilat-
eral triangles of the same size, but are different vectors where the orientation of the
triangle over the lattice and the distribution of subunits are different. For example
the vectors (h, k) = (3, 1) and (h, k) = (1, 3) correspond to the same T = 13 num-
ber (see Fig. 1.4). When h �= h, it is possible to distinguish between two different
structures having the same T-numbers, called laevo (when h > k) and dextro (when
h < k). In addition, some T-number correspond to more than one structure, such
as T = 49 that can be obtained from (h, k) = (7, 0) and (h, k) = (5, 3), see Fig. 1.5.

1.3 The P-class

In the previous section, we have introduced the CK construction to describe
the geometry of quasi-spherical viral capsids using a T-number or univocally us-
ing (h, k). In this section we will emphasize a reorganization of the T-number in
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(a) (b)

Figure 1.5: (a) Construction of the basic equilateral triangle for T = 49, with
(h, k) = (7, 0) (orange triangle) and (h, k) = (5, 3) (green triangle). (b) Image of
the resulting structures.

classes, also proposed by Caspar and Klug [19]. These classes are described by a
second number, the P-number, that groups structures of the CK model having a
similar arrangement of subunits. The letter P used to label each class has not to
be confused with the pseudotriangulation number used to describe quasi-spherical
capsids whose subunits are chemically different.

The P-class is defined in terms of the T-number (see eq. 1.1) as

T = h2
0f

2 + h0k0f
2 + k2

0f
2 = Pf 2 (1.2)

where P = h2
0 + h0k0 + k2

0 and f is the greatest common divisor of h and k. The
first P-classes, as well as the smallest T-numbers in the class, are listed in Table1.6.
Structures from the class P = 1 correspond to shells with (h0, 0) or (0, k0), and are
characterized by having a straight line of hexamers at the edges of the triangles
connecting two consecutive pentamers, see Fig. 1.7. On the other hand, P = 3
structures have the pentamers connected by a zig-zag line of hexamers (see Fig.
1.7). All classes with P > 3 correspond to skewed structures. The importance
of the reorganization of T-numbers into classes is that structures belonging to the
same class are expected to have similar mechanical and physical properties, given
their common arrangement of capsomers.
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Table 1.1 T-numbers for the first four P classes (rows) classified by the value of f
(columns), see Eq. 1.2, up to Tmax = 117 [32].

Figure 1.7: Smaller T-numbers for the P = 1 and P = 3 classes. Figure taken
from Ref. [30].

This reorganization of the T-number in classes provides useful information
about the geometrical distribution of subunits in the capsid. But as with the T-
number, the classification of viral structures using only the class P is not unique,
since different combinations of h0 and k0 can yield the same value of P , e.g., P = 91
can be obtained by two different pairs of (h0, k0), (6, 5) and (9, 1).

1.4 Generalization of the CK construction to classify prolate viruses

As mentioned at the introduction, there are many viruses with an elongated
closed shell. In this section we will describe the geometrical way to characterize
the elongated structures using an extension of the Caspar and Klug model [30, 31].
These elongated or prolate structures are assumed to have a hexagonally ordered
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cylindrical body closed by two hemispherical caps with icosahedral symmetry.
Hence, they can be considered as the result of elongating a CK spherical cap-
sid along one of its possible axis of symmetry (5-fold, 3-fold or 2-fold). This idea
was first proposed by Moody in the sixties to describe elongated viruses with 5-fold
axial symmetry [33, 34].

Moody’s model for elongated structures with 5-fold axial symmetry is based
on defining two types of triangles (see Fig1.8(a)). There are 5 identical triangular
faces characterized by Tend(h, k) = h2 + hk + k2 = f 2P in each cap, as in the CK
model, plus 10 triangular faces in the cylindrical body, characterized by a second
triangulation number [33]

Tmid = hh′ + hk′ + kk′ = fQ (1.3)

Q = h0h
′ + h0k

′ + k0k
′

This second triangulation number is defined by the integers (h, k) and (h′, k′)
and controls the length of the cylindrical body. The few elongated viruses whose
structures has been reconstructed by cryo-EM so far follow this constructed and
correspond to Tend = 3 and Q = 5 for bacteriophage φ 29 [35] and Tend = 13l and
Q = 20 for T4 [36]. However, there are other prolate viruses such as Alfalfa Mosaic
Virus (3-fold axis) [37–39] or Cocoa Swollen Shoot Virus (2-fold axis) [40], which 5-
fold is not the axial symmetry and Moody’s model cannot apply. For these viruses
it is possible to extend the CK model getting general rules for the construction of
elongated viruses with 2-fold, 3-fold and 5-fold axial symmetries [31, 41].

The case with 3-fold axial symmetry is more complicated than the 5-fold, be-
cause one needs two different middle triangles for the cylindrical body, instead of
just one. Each cap is made by 4 equilateral triangles characterized by (h, k) and
Tend, whereas the body is defined by a second set of integers (h′, k′), (see green and
red triangles in Fig. 1.8(b)).

Similarly, to build the prolate capsid with 2-fold axial symmetry, the caps
are made by two equilateral triangles defined by the vector (h, k). The body is
determined by three non-equivalent triangles defined by (h′, k′) as it is illustrated
in Fig. 1.8(c). The details of the geometrical construction are given in Ref. [30].

But the important result is that in general the number of subunits Nsub, the
number of capsomer N , the radius R, and length L of the prolate structures are
discretized and determined by the icosahedral cap symmetry. The discretization
rule for the minimum length step �Lmin, the minimum step in Q, �Qmin, and the
minimum step in number of capsomers �Nmin, and the possible values of Nsub,
N , and R are summarized below for each symmetry [31, 41]:
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(a) (b) (c)

Figure 1.8: Basic elements required to build a prolate capsid with the three different
axial symmetries for an elongated virus based on a T = 3 with a) 5-fold symmetry,
as φ29, b) 3-fold symmetry, and c) 2-fold axial symmetry. The triangles of the
cap are defined by (h, k) = 1, 1 (brown region), and the triangles for the body by
(h′, k′) = 1, 2 (green region). The top image shows the basic triangles; the middle
image, the complete design and the bottom image, the resulting shell. Images
adapted from Ref. [30].

5− fold

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = 5(Tend + Tmid) + 2
Nsub = 30(Tend + Tmid)
Q = h0(h

′ + k′) + k0k
′

�Nmin = 5f
R/a = 5

2π

√
Tend

�Lmin/a =
√
3

2
√
P

�Qmin = 1

3− fold

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = 4Tend + 3Q+ 2
Nsub = 6(4Tend + 3Q)
Q = h0(2h

′ + k′) + k0(2k
′ + h′)

�Nmin = 3f �Qmin

R/a = 3
2π

√
3Tend

�Lmin/a =

√
�Qmin

2
√
P

�Qmin =

{
3 if |h0 − k0| ∝ 3
1 otherwise
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2− fold

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = 4Tend + 2Q+ 2
Nsub = 12(2Tend +Q)
Q = h0(3h

′ + 2k′) + k0(3k
′ + h′)

�Nmin = 2f �Qmin

R/a = 2
2π

√
7Tend

�Lmin/a =
√
21
14

�Qmin√
P

�Qmin =

{
7 if |h0 − 2k0| ∝ 7
1 otherwise

(1.4)

Interestingly, in all cases the possible values of these viral capsid properties are
determined by the class P = h2

0 + h0k0 + k2
0 through Tend = f 2P or, alternatively,

by (h0, k0).

1.5 The origin of icosahedral symmetry in viral capsids

The ultimate reason for the election and predominance of icosahedral symme-
try in quasi-spherical and bacilliform structures, is due to a combination of genetic,
geometrical, and physical arguments.

Viral genomes are relativity short, with lengths between 2 and 50 kbp confined
at high densities inside the capsids [42]. Given the limited coding space of viral
genome, the best strategy to make the capsid is to use multiple copies of a limited
number of small proteins rather than encoding for a large coat protein. This prin-
ciple of genome economy implies that viral shells have been build only with one or
a few different types of proteins [17]. This identical coat proteins would prefer to
assemble into a structure where all of them see an equivalent environment. The
best way to maximize the packing and the number of contacts using a few number
of different proteins is to organize them into a hexagonal lattice. Using as stating
point this hexagonal lattice, it is then possible to build all different capsids shapes
by simple geometrical transformations.

By Euler’s theorem [29], it is necessary to introduce 12 defects on the original
hexagonal lattice to construct closed shells [29]. In the simplest case of spherical
capsids, the 12 defects are evenly distributed forming a quasi-spherical (or poly-
hedral) shape with icosahedral symmetry. The advantage of this shape is that it
provides the maximum volume to enclose the genome. Another option is wrapping
the lattice into an helical tube with either open ends (like in rod-like viruses) or by
closing each of its ends with a semi-spherical cap, containing six defects, to make
a bacilliform capsid [18, 40]. The conical shape corresponds to the case where the
twelve defects are not located homogeneously in the caps, e.g. four in one cap and
eight in the other [3].

The ultimate reasons for the prevalence of icosahedral symmetry in quasi-
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spherical and bacilliform structures are physical. The beautiful and regular struc-
tures adopted by viral capsids are just a consequence of minimization of the free
energy of the interactions between the different subunits. This has been shown
to be indeed the origin of icosahedral symmetry in spherical [23] and prolate [41]
viruses. But in these previously studies, structures with icosahedral symmetry
where found to be the optimal arrangement of subunits when a template or con-
straint on the shape was imposed.

In this thesis we will go beyond that constrained minimization of the energy,
and we will develop simple coarse-grained models to study the self-assembly pro-
cess. We will try to find what physical ingredients play an important role in the
selection of a particular structure and what are the mechanisms that regulate the
kinetics of the assembly.

1.6 Discussion

In this section we will make some clarifications regarding the structure of
viruses.

Most spherical viruses comply with the CK model, but there are some notable
exceptions [43]. For example, some viruses like polyoma and papilloma viruses self-
assemble. Using exclusively pentamers, rather than pentamers and hexamers, as
in the CK construction. The resulting native structures also have icosahedral sym-
metry and correspond to a T = 7 shell made only by pentamers. Interestingly, this
arrangement has been found to be an energy minimum for model viruses made by
a single type of structural units, and it has been also justified in geometric terms
by using a tiling approach [44, 45, 49]. Remarkably, these viruses can also self-
assemble in vitro into a spherical structure without icosahedral symmetry, known
as snub cube [47, 48].

Another important observation is that, although pentamers and hexamers are
clear morphological structures in the CK model, they are not always the elementary
units of assembly. Some viruses are built from the assembly of individual proteins,
dimers, or trimers. In fact, some dsRNA viruses like the Bluetongue virus (BTV)
core [46] assemble into a shell with 120 proteins (which would correspond to a for-
bidden T = 2 capsid), which is equivalent to a T = 1 shell having dimers instead
of individual proteins. In this context, it is worth emphasizing that the CK model
determines the group of symmetry, not the clustering of the proteins. Thus capsid
built by 20T trimers, 30T dimers, or 60T monomers, or other combinations are
completely valid.

In this thesis, we will focus on the assembly of capsids made by capsomers
(either all-pentamers or by pentamers and hexamers) as assembly units.
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1.7 Conclusions

In this chapter, we have reviewed the geometrical construction and clas-
sification of spherical and elongated viral shells. Using the ideas of CK [19],
Moody [33, 34] or its recent generalization in Ref. [31, 41] it is possible to describe
geometrically quasi-spherical and bacilliform viruses with icosahedral symmetry.
For both shapes, the possible sizes and number of capsomers of the viral shell have
a discrete number of values characterized by the T-number or the P-class. In the
case of the prolate shape, the rules for the possible discrete values of length and
number of subunits are also determined by the axial symmetry and the T-number
of the cap.

Interestingly, a few viruses, like Hepatitis B [7], are polymorphic and are
present in vivo forming two different capsids shapes. Moreover, prolate and spher-
ical viruses can be reconstructed and assembled in vitro into sizes and shapes
different from the native one, as in the cases of Polyoma [47, 48] or CCMV [50].
Accordingly, in principle, it should be possible to control the selection of prolate
and spherical structures by using the proper assembly conditions and concentra-
tions. Hence, a best understanding of the geometrical and physical principles of
the viral capsids could be potentially very helpful to control the outcome of in
vitro experiments for promising applications in nanosciences.

For that reason, in the following chapters we will study the role of different
physical ingredients in the self-assembly of quasi-spherical and elongated capsids,
using a simple model of interaction between capsomers.
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2.1 Introduction

The self-assembly of the capsid is one of the most important steps in the viral
life-cycle. After the entrance of the genetic material into the host cell, the repli-
cation starts and the virus takes advantage of the cell machinery to produce the
required components for a new virus, i.e., coat proteins, genetic material, lipids
and other auxiliary proteins. These components then self-assemble forming a new
viral particle.

Contrarily to the architecture of the final structures, described in the previous
chapter, the microscopic mechanisms and the kinetics of the process leading to the
final capsid are not well known. Understanding better the role of the different
steps during viral assembly is an open question, indispensable for the control of
virus infection [1, 2].

As mentioned in the introduction, viruses infect a huge variety of cells and the
assembly process could be totally different for diverse viruses. In some cases the
capsid is successfully assembled from the coat proteins alone [3–7], in combination
with scaffolding proteins [8, 9], or in combination with the genetic material [10], see
Fig.2.1. The proteins of most single-stranded viruses are expected to co-assemble
in the presence of genetic material (Fig.2.1 (C)), whereas double stranded viruses
typically first assemble an empty capsid that is later on packaged with the genetic
material [11, 12] (Fig.2.1 (A)). In some cases, condensing agents and/or auxiliary
proteins (including scaffolding proteins) are required for a successful assembly in
vivo of an infective virus (Fig.2.1 (B)).

The pathways during the assembly process are also virus specific. For ex-
ample, CCMV uses as building blocks stable dimers present in solution, that are
assumed to form a pentamer of dimers structure as the nucleus for the assem-
bly [34]. HBV uses dimers as building blocks too, but this virus forms a trimer of
dimers as intermediate in the assembly, in most cases, into T = 4 capsids and in
a small number of cases forming smaller T = 3 particles, [28]. Other interesting
cases are Polyomavirus that use exclusively pentamers as assembly units [5].

However, despite the specificity of the assembly of different viruses, there are
some common characteristics which open the door to a theoretical description of
capsid assembly kinetics. The most important one is that the assembly is a spon-
taneous process that does not require the addition of energy (for example from
ATP hydrolysis) [13, 14]. This fact indicates that the assembly of viruses must be
controlled by general and basic physical principles [13–17].

Remarkably, the proteins of many viruses have the capability of assemble
spontaneously in vitro even in the absence of their genetic material, forming empty
capsids whose size and structure can be tuned by the assembly conditions. Thus in
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Figure 2.1: Schemes of three strategies for assembly of viral capsids. (A) Unassisted
self-assembly followed by the packaging of the nucleic acid. (B) Scaffolding protein-
assisted assembly. (C) Viral nucleic acid-assisted assembly. Figure by M.A. Fuertes
taken from Ref. [18].

many cases, by changing the protein concentrations, the pH, or the ionic strength
conditions, the same protein is able to self-assemble into different capsid struc-
tures [3, 5, 19–22]. These experiments show the important role of electrostatics,
kinetics, and thermodynamic in the assembly of viral capsids and open the door
to the control of size and shapes of viral shells for nanosciences [23].

In this chapter we will review the main ideas and theoretical approaches used
to describe the kinetics of viral assembly. These ideas will provide us with a theo-
retical framework to interpret the self-assembly simulations described in Chapter
7. For simplicity, we will focus on the kinetics of assembly of empty capsids made
exclusively by coat proteins (i.e. without genetic material and auxiliary proteins).

In this theoretical description, we will use in general the term subunits, to
refer to the elementary building blocks in the assembly. It is important to note
that the theoretical description and general results are valid for different kinds of
subunits. For instance, the elementary building blocks could be single proteins,
as in the case of penicilium chrysogenum virus (PcV) [24], dimers for CCMV [3],
pentamers in polyomavirus [5] or pentamers and hexamers in solution for bacte-
riophage HK97 [25].
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This chapter is divided as follows. In Section 2.2 we summarize the common
features in the assembly of different viruses that support this theoretical descrip-
tion of the assembly. Then, in section 2.3, a master equation description for the
kinetics of viral assembly will be introduced. An alternative description, based
on classical nucleation theory (CNT), will be presented in Section 2.4. Finally,
Section 2.5 summarizes the most remarkable conclusions.

2.2 Common features of viral assembly

In the past decades, many experiments have shown that fully infective viruses
can be reconstructed in vitro. In recent years, it has also been possible to moni-
tor in in vitro experiments the kinetics of formation of empty capsids using coat
proteins from different viruses like HPV [7, 26, 27], HBV [6, 28], CCMV [3], or
BMV [4, 29, 30].

In these assembly experiments, one typically starts from coat proteins in solu-
tion and use light scattering techniques, turbidity, size-exclusion chromatography
(SEC), transmission electron microscopy (TEM) or even mass spectrometry [31],
to monitor the formation of complete capsids. Typically, the amount of capsids
formed is monitored by the previously mentioned techniques versus the time for
different initial proteins concentrations. For instance, Fig.2.2(a) shows the inten-
sity of the light scattering signal as a function of time for the assembly of HPV
starting at different protein concentrations. From the intensity of the signal it is
possible to evaluate the total number of capsids formed and their rate of formation,
as a function of temperature, pH, salt conditions and initial protein concentration.
As another example, Fig.2.2(b)shows the mass fraction of proteins in capsids as
a function of the initial capsid protein concentration for the in vitro assembly of
HBV.

The results of these experiments show common characteristics in the viral
assembly. In all viral assembly processes there is a strong dependence of capsid
production on protein concentration. In general, if the protein concentration is
too low, the assembly is not possible. Hence, there exists a minimum critical con-
centration required to trigger the assembly. On the other hand, if the protein
concentration becomes too large, many structures are trapped into intermediate
steps and the self-assembly process does not yield complete capsids, but rather
aberrant structures. Another general observation is the poor number of inter-
mediate structures observed in the experiments. There are either free subunits
in solution or fully formed capsids, but not a significant concentration of partial
structures.

Interestingly, from the kinetic point of view, there are also common trends
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(a) (b)

Figure 2.2: Intensity of the light scattering signal of assembly reactions versus time
with various initial protein concentrations for (a) Papillomavirus between 20 and
220 μg/ml [26] and (b) for Hepatitis B from 2.2μM to 25.2μM . Images taken from
Refs. [2] and [26].

in the assembly of different viruses. The assembly dynamics is characterized by a
sigmoidal kinetics and the existence of a lag time before the formation of the first
shells, as shown in Fig.2.2. Both characteristic are typical in nucleation processes.
Furthermore, there is a hysteresis effect between the assembly and the disassembly
processes. This pronounced hysteresis is essential to resist the changes in environ-
mental conditions and to prevent disassembly in the viral journey from host to host.

The steep dependence on concentration, the scarce of intermediates, the sig-
moidal kinetics, the existence of a time lag, and the hysteresis between assembly
and dissassembly are characteristic of a first order phase transition. Accordingly,
different theoretical descriptions have been developed to describe this process. The
main ones will be discussed in the following two sections.

2.3 Master equation approach to viral assembly kinetics

One of the first approaches, and the most widely used, to describe the kinet-
ics of empty capsid formation was presented by Zlotnick and collaborators [32–36].
The basic idea is that the viral assembly can be described by a reaction cascade
model as supported by in vitro experiments on Hepatitis B virus [6, 28] and Pa-
pilloma viruses [7] in combination with their assembly models [15, 32, 33] and
simulations [34, 35].

In their approach, the assembly is conceived as a sort of chemical reaction and
described in terms of the population of clusters of different sizes. The viral self-
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assembly is described as the step-by-step sequential addition of identical individual
subunits to intermediate structures characterized by their number of subunits. In
principle, there is a large number of assembly pathways, coming from different
possible combinations to add a subunit to a partial capsid. The most probable
pathway involves the intermediate steps that have the lowest free energy for one
particular adding subunit [35, 36].

The time-evolution of viral self-assembly can be modeled exactly by a finite
number of states at any given time, where switching between states is treated
probabilistically. Usually, the equations for the system are a set of differential
equations for the variation over time of the probabilities that the system occupies
each different state. In the determination of the assembly kinetics of viral shells,
the intermediate steps of these reactions are very important. In principle, the
viral self-assembly could grow by different mechanisms, adding a single subunit,
multiple independent subunits simultaneously, or even by merging different partial
capsids. However, theoretical models and simulations show that in most of cases
only one subunit is added at a time [37, 38]. With this assumption, the assembly
can be described by a series of unimolecular reactions, involving the attachment
or detachment of only one unit in each time step, namely

cn(t) � cn+1(t) (2.1)

where cn(t) is the concentration of partial capsids made of n subunits at time t.
Considering that βn(t) and αn(t) are the associated binding and unbinding rates,
respectively, the change in time of the population, or concentration, of partial cap-
sids of size n is controlled by the following master equation:

∂cn(t)

∂t
= βn−1(t)cn−1(t)− αn(t)cn(t)− βn(t)cn(t) + αn+1(t)cn+1(t) (2.2)

The combination of intermediates of size n thus increases by partial capsids of
size n− 1, which grow by one subunit (the first term of eq.2.2) and by intermedi-
ates of size n+1, which loss one subunit (the last term of eq.2.2); and decrease by
partial capsids of size n, which loss (the second term of eq.2.2) or gain (the third
term of eq.2.2) one subunit.

The kinetic model by Zlotnick and collaborators describes two step in the
assembly process: a nucleation step, which accounts for the formation of initial
nuclei embryos, and an elongation process, when the nuclei growth by the sequen-
tial addition of subunits. This nucleus is considered as a special intermediate which
cannot disassemble and the time required for its formation is the initial lag time
of viral assembly. The population of intermediates structures are given by a set of
master equations, where the rates of association β and dissociation α of subunits
are calculated using the association constant for a single intersubunit contact and
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statistical factors, which account for the degeneracy of the reactions. This reaction
cascade assembly model has been successfully used to describe the experimental
results for the in vitro assembly of HBV [2, 6, 28] and papilloma [7].

However solving the complete set of the master-equations for all intermedi-
ates in the initial assembly could be a difficult task in some cases, since it involves
many undetermined constants and requires several approximations. Moreover, in
the cases that can be solved, the solution is more descriptive than predictive and
does not provide any clear insight of the influence of the parameters relevant in the
kinetics. To study the kinetics of viral self-assembly it is often more convenient to
use an alternative description as described in the next section.

2.4 Classical Nucleation Theory applied to viral assembly

In recent years, a description of viral assembly kinetics based on Classical Nu-
cleation Theory (CNT) [16, 40] has been developed with the aim of overcoming the
limitations of the master equation approach, trying to provide quantitative predic-
tions which could guide experiments. In this section, we will summarize the main
formalism of CNT that will be later used in Chapter 7 to interpret our simulations.

2.4.1 Viral assembly as a phase transition

The formation of a capsid can be though as a transition between two phases of
the subunits: free in solution and in a fully-formed capsid. When the protein con-
centration is low, the most favorable state for the protein is remaining in solution.
As we increase concentration, the energetic gain of being in a capsid compensates
the entropic penalty of leaving the solution, and the stable state becomes the fully-
formed capsid.

The energetics and the conditions at which each phase becomes stable can be
described in simple thermodynamic terms by the total Gibbs free energy of the
system:

G(N1, N2...Nq, p, T ) =

q∑
n=1

μnNn (2.3)

where n is the number of subunits in a (partial) capsid that also acts as the label

for each species, Nn is the number of aggregates of size n and μn =
(

∂G
∂Nn

)
Nj �=n,pT

is the corresponding chemical potential, which is just the variation of free energy
when a particle of a certain species is added to the system.

The chemical potential for relatively dilute solutions, as it is often the case in
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viral self-assembly experiments, can be written as:

μn = μ0
n + kBT ln(cn/cs) (2.4)

where kB is Boltzmann’s constant, T is the temperature, and cn is the concentra-
tion of the partial structure of size n. It is worth mentioning that the standard
part μ0

n(p, T ) implicitly depends on the reference state given by cs. By minimizing
eq.2.3 it is possible to obtain the equilibrium distribution of aggregates, given by
the familiar condition of equal chemical potentials, i.e: μeq

1 = μeq
n

n
. Using eq.2.4 for

the chemical potential, the result is the law of mass action

ceqn
(ceq1 )n

=
e−ΔW (n)/kBT

(cs)n−1
≡ Keq

n (2.5)

where ceqn and ceq1 are the equilibrium concentration of the partial structure of size
n and the concentration of subunits in solution, respectively, Keq

n is the equilibrium
constant, and ΔW (n) ≡ μ0

n − nμ0
1 is the standard free energy difference required

to form a cluster of n subunits.

The law of mass action can be rewritten as a standard equilibrium Boltz-
mann’s equation as

ceqn = cse
−ΔG(n)/kBT (2.6)

where ΔG(n) = ΔW (n) − nkBT ln(c1/cs) is the full free energy of capsid forma-
tion [40]. For a complete capsid of size q, ΔW (q) = μ0

q − qμ0
1 ≡ qΔg, where Δg

is the effective binding energy per subunit. But there is an energy penalty (an
energy barrier) to overcome, associated to the formation of partial capsids, which
is described in the following section.

2.4.2 Free energy barrier for capsid formation

The assembly of the capsid is driven by the gain in free energy associated to
Δg, the effective binding energy per subunit. But during the process of capsid
formation there is also an energy barrier coming from the fact that the subunits at
the rim of a partial capsid miss some of the contacts present in the final structure,
see Fig. 2.3. In the context of CNT, the simplest way to model this energetic cost
is by introducing a rim energy penalty associated to a line tension λ. Accordingly,
the free energy of formation of a partial capsid containing n subunits can be mod-
eled as:

�G(n) = n� g + λl(n)− nkBT ln(c1/cs) (2.7)
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(a)

(b)

Figure 2.3: Cartoon of capsid assembly, illustrating the different steps in the pro-
cess. The top line shows the assembly starts from free subunits in solution a.
Thermal fluctuations generate a large enough critical cluster b that then grows
forming a partial capsid c that eventually gets completed into a full capsid. The
process is characterized by a free energy of formation schematically despited in the
botton line. Fig. taken from Ref. [16].

The first term represents the contribution from the binding energy �g per
subunit. This binding energy will be taken as constant, even though subunits in
a capsid can occupy different local environments, or be engaged in different inter-
actions. Surprisingly, this crude approximation works nicely [40, 41]. The second
term is the total line energy for a partial capsid, given by the product of the line
tension λ (i.e. the energetic cost per unit length) times l(n), the length of the
rim, that for a spherical capsid can be approximated as l(n) = b

√
n(q − n), where

b = 4πR
q
, see Fig. 2.7. Here q is the total number of subunits in a complete

formed capsid and R is its radius. This line tension term is always positive, has
its maximum when the capsid is half-formed, corresponding to n = q/2, and it is
zero for a complete capsid. The third term is the entropic penalty for removing
the n free subunits from the solution into the partial capsid, which depends on the
concentration of free subunits c1 and the reference state, cs. This free energy can
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be more conveniently rewritten as:

�G(n) = nΔμ+ a
√
n(q − n) (2.8)

where Δμ = −kBT ln(c1/c∗) and a = 4πλR
q
. The term c∗ represents the saturation

concentration at which a subunit will have the the same free energy in a capsid or
free in solution.

Note that the free energy of capsid formation �G(n), eq.2.8, has a term pro-
portional to n, that favors the assembly, and an energetic cost associated to the
line tension proportional to

√
n(q − n). The competition between these contribu-

tions bring about an energy barrier, which is decisive in the kinetic of viral shell
formation.

The height of the barrier (�G∗) and critical size (n∗) corresponding to the
maximum of the barrier, illustrated in Fig.2.3 are calculated from the condition
∂G(n)
∂n

∣∣∣
n∗

= 0, yielding:

�G∗ =
q

2

(√
�μ2 + a2 +�μ

)
(2.9)

n∗ =
q

2

(
1 +

�μ√�μ2 + a2

)

For a hexagonally ordered structure the line tension can be estimated as
λ = |�g|

3
√
3σ0

, as described in Ref. [41], where σ0 is the radius of the subunit. Using

this approximation,

a =
4πR| � g|
3
√
3qσ0

(2.10)

It is important to emphasize that both ΔG∗ and n∗ depend on the concentra-
tion of subunits c1 through Δμ. Fig. 2.5 shows the shape of ΔG(n) for a T = 7
capsid with q = 72 subunits and for different values of Δμ taking Δg = −15kBT .
When Δμ > 0, the formation of a capsid is unfavorable. When Δμ = 0, there is
a significant barrier to overcome for the formation of a capsid. In this particular
case, the critical size becomes n∗ = q/2, corresponding to half a capsid, and the
nucleation barrier would be ΔG∗ = q/2a = 2πRλ. On the other hand, if c1 is large
enough, Δμ < 0 and the formation of a capsid becomes feasible.
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Figure 2.4: Continuum representation of a partial capsid of radius R. The angle
θ characterizes its degree of completion. The circular rim has a length l(n) that
depends on the number of subunits n in the partial shell, and it has an associated
line tension λ. Figure taken from Ref. [16].

Even in this case, if n < n∗ the free energy of formation grows as we add
a subunit, so intermediates of these sizes will tend to disassemble back into free
subunits. And when n > n∗, the capsid reduces their energy upon the addition of
another subunit so it will tend to grow spontaneously until closing the shell.

2.4.3 Kinetics of viral assembly and disassembly

In the context of CNT, the steady state rate of formation of capsids J , which
is the number of capsids formed per unit volume and time, is given by [40]:

J(t) = csβ
∗Ze−ΔG∗/kBT (2.11)

where β∗ is the rate of attachment of subunits to the critical nucleus n∗, and

Z =
√
|�G′′(n∗)|
2πkBT

is the Zeldovich factor, which is the local curvature at the top of

the barrier. The formation of capsids is thus exponentially controlled by �G∗. In
the case where the binding energy is fixed, as occurs in our simulation model, the
main factor to lower the barrier is the increase in protein concentration, see eqs.
2.3 and 2.8. For a fixed subunit concentration, we will use later on this CNT model
to estimate the energies and critical sizes required to form a complete capsid as
well as the rate of its formation.

The thermodynamic and kinetic theory introduced in this section is also able
to account for capsid disassembly, interpreting the dissociation of a shell as the
inverse process of capsid formation. The dissociation of capsids requires to jump
the free energy barrier in the opposite direction of assembly, and the formalism to
describe the disassembly is analogous. For the specific case of �μ = 0, the energy
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Figure 2.5: Free energy of capsid formation �G(n), eq. 2.8, versus the number of
subunits n for different values of �μ. The values of the barrier height (�G∗) and
the critical size n∗ are calculated using eq. 2.10.

barrier is the same for viral assembly and disassembly, but in general, these two
process are different, and occur at different protein concentration, which is the
ultimate reason for the hysteresis found in experiments.

2.4.4 Nucleation theorem and the size of the critical nucleus

In the context of nucleation, there is a very useful relation between the size of
the critical cluster, the nucleation barrier, and the nucleation rate, known as the
“nucleation theorem”. This nucleation theorem was originally proposed in 1962
by Hill in the context of small systems thermodynamics [42, 43], and then applied
to experiments by Kaschiev [44]. The nucleation theorem establishes that:

(
∂ �G∗

∂ � μ

)
T,p

= n∗ (2.12)

In view of eq. 2.12 and eq. 2.11, this theorem can be translated into a more
useful relation

∂ ln J

∂ ln c1
= n∗ + 1, (2.13)

that establishes a direct route to extract the critical size n∗ directly from the exper-
imental measures of the capsid formation rate at different concentrations. Being a
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general thermodynamic result its importance lies on the fact that it establishes a
relation between the nucleation rate and the critial cluster size that is independent
of the specific model.

This relation will be helpful to check kinetic and thermodynamic theories
against simulation and experiments. Also, this could help to understand better
the role of physical and biological parameters in the construction of viral shells.

2.5 Conclusions

In this chapter we have presented the main theoretical descriptions of the
kinetics of viral capsid assembled. The process of formation of a capsid can be
considered as a sort of chemical reaction or phase transition between disassembly
and fully assembled state of subunits, and described accordingly using a set of
master equations or the standard formalism of CNT.

Both theoretical descriptions, which have been illustrated in this chapter, are
connected and related, and constitute a useful framework to interpret and guide
experiments and simulations [45–52]. Experimentally the theory could be helpful
to design experiments at conditions that will ensure the efficient production of
capsids at reasonable time scales. In particular, CNT expressions can also be used
to predict, at least qualitatively, the thermodynamics and kinetics of the assembly
of specific viruses.

Computer simulations constitute a useful alternative to study the general ki-
netics and thermodynamics involved in viral assembly. With simulations it is
possible to study in a simple way the intermediate steps of the process, and they
could provide the required information about the mechanisms of assembly, and the
main characteristics of the critical cluster.

In Chapter 7 we will describe Brownian Dynamics simulations of a simple
coarse-grained model designed to mimic viral self-assembly experiments, starting
from free subunits in solution. In that chapter we will use the predictions of CNT
to study the conditions required to obtain fully-formed capsids of different sizes
and shapes. With the theoretical predictions we can also estimate the nucleation
barrier associated to the formation of a partial shell, and how it depends on the
different physical parameter of the simulation.

By estimating these free energy barriers it is possible to infer the optimal
conditions for assembly for the different T-number empty shells. But it is impor-
tant to emphasize that the theoretical results of CNT, could also be used in other
simulations and experiments and this is one of our future works.
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3.1 Introduction

Viral self-assembly is a complicated and virus-specific process, which however
shows some universal features. The most remarkable one is that, despite the differ-
ences in shape, size, sequence, and conformation of coat proteins among different
viruses, they end up adopting a common set of architectures. That suggest the
existence of common ingredients that underlay the assembly [1] and open the door
to the formation of generic models to describe it.

Modelization of capsid structures and assembly can be done at different res-
olution levels. In principle, one could study the coat proteins of viral shells with
atomic detail, where every atom is explicitly represented at electronic level, and the
Schrödinger equation solved and integrated in time. These atomic level models are
widely used in the description of small molecules, but become inappropriate and
prohibitive for complex system as viruses, where thousands to millions of complex
molecules in an aqueous environment are involved. For such large systems, quan-
tum effects are expected to be not so important, so an alternative will be to use
atomistic models with classical potentials. Although recently it has been possible
to perform the first all-atom simulations of small viruses [2], realistic simulations
of the complete assembly process are still out of reach, since only the smallest
viruses and at very short time scales (on the order of ps to ns) can be studied.
Moreover, atomistic details are often unnecessary to get the relevant mesoscopic
and macroscopic properties for most systems [3].

An alternative to atomistic models are coarse-grained models. The philosophy
of coarse-grained models is to disregard the non-relevant details of the structure
and the interaction by grouping atoms and molecules into new effective structural
units that lack atomistic detail. This approximation describes often very well the
relevant macroscopic behavior of the system under study, using a minimum set
of essential ingredients and degrees of freedom. Thus, these models are simple,
computationally inexpensive and provide invaluable information about the basic
physical mechanisms often inaccessible by other means.

That is the reason why most studies on viral assembly use coarse-grained mod-
els with different levels of resolution that range from a purely geometric descrip-
tion in terms of tiles to a sistematic coarse-graining based on the atomic structures
obtained by X-ray diffraction or cryo-electron microscopy. The lowest-resolution
models typically use capsomers as subunits (see Fig. 3.1) whose interactions are
described by local rules, or simple pair-potentials. More refined models use rigid
assemblies of spheres and point like interactions building effective triangles, trape-
zoidal or truncated piramidal objects, that resemble the proteins and dimers that
are the essential assembly subunits of many capsids.

In most of these models, the interactions have multiple sites whose location,
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Figure 3.1: Schematic cartoon of a coarse-grained approximation for Tobacco
Necrosis Virus. Clusters of 5 (pentamers) or of 6 (hexamers) proteins in the atomic
structure (left) are coarse-grained and replaced by effective spheres (right image).

strenght, and directionality have to be hand-crafted in a delicate way to repro-
duce just one specific target structure. For this reason, it is no clear what are the
essential mechanisms and general ingredients of the interaction which control the
selection of a particular size or structure.

In our work, rather than resorting to complicated or elaborated models, we
have rather opted for a sort of top-down strategy, where the goal is to look for
the essential ingredients and simplest models capable of describing the relevant
mechanisms, and add progressively the details required to achieve a more realistic
description.

As seen in Chapter 2, in many viruses, capsid proteins aggregate in structural
units, called capsomers, which for some viruses are indeed the elementary units
of the assembly. In line with this minimalist spirit, we will focus on self-assembly
models for viruses using capsomers as assembly subunits, whose interactions are
expected to be simpler and more generic than protein-protein interactions.

In this chapter, we will describe the main coarse-grained models used for the
thesis. We will start, in Section 3.2, by briefly summarizing some previous models,
that were successful in describing equilibrium aspects of viral structure, and that
will be the basis of the new model developed in this thesis and described in Section
3.3. Finally, Section 3.4 highlights the most relevant aspects of this new model,
which will be used in the next chapters.

3.2 Previous coarse-grained models

Theoretical and computational models are becoming very helpful for the study
of the pathways and mechanisms of assembly. Many models have been developed
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in recent years to study viral structure and assembly. These models range from
simple continuum models to sophisticated coarse-grained strategies based on the
atomic structures (see Fig. 3.2).

As a first approximation, a viral capsid can be modeled as a homogeneous
spherical shell, and use accordingly continuum elasticity theory [4] to describe the
energy required in its formation, see Fig. 3.2(a). This continuum approximation,
which might seem very crude at first sight, is inded reasonable because viruses are
composed by thousands of atoms. For most viruses, the radius of the shell is much
larger than its thickness. Hence capsids are commonly described using a simplified
limit of the elastic theory known as thin shell theory [5].

As we described in Chapter 1, the role of geometry in viral shell is very impor-
tant. In fact some authors have used these ideas to propose models purely based
on geometry [6, 7, 10–12]. For instance, some models use capsomers as subunits
whose interactions are described by local rules [6]. Alternately, viral capsids can
be described as a spherical or cylindrical surface covered using a regular set of tiles
of different shapes as a generalization of the triangular tiles of the CK model [7]
(see Chapter 1, and Figs. 3.2(b) and (c)).

Adding a bit more details, the next level comprises coarse-grained models.
Coarse-grained models usually represent the capsid using highly simplified struc-
tural units that interact through simple potentials with two major contributions:
an excluded volume term to prevent the overlapping of subunits and some kind
of attraction to drive the assembly. Capsids with the right icosahedral symmetry
are recovered using suitable simulation techniques as the structures that minimize
the free energy. Various coarse-grained models have been proposed in the last
years [1, 8–14]. There are many different strategies to model the basic structural
units of the capsids in coarse-grained models. In the simplest models, the coarse-
grained is performed at the level of capsomers, which are represented as disks [1]
(Fig. 3.2(d)), balls [15] (Fig. 3.2(e)), hexagonal and pentagonal pyramids [16]
(Fig. 3.2(f)), ellipsoidal capsomers [17] (see Fig. 3.2(g)) or patchy particles [14].

Specially inspiring for this thesis has been the patchy particles model of Wilber
et. al [14]. In it, the subunits are modeled as simple spheres with excluded vol-
ume interactions and patches with sort-ranged and directional specific interactions.
This type of patchy particles models get the right lowest energy configuration, cor-
responding to a particular target structure, by properly designing the position of
the patches. In this way it is possible to study the self-assembly of small structures
(T = 1 or T = 3), as a function of subunit concentration, subunit-subunit inter-
action strength, and the orientation specificity of subunit interactions [14]. The
main inconvenient of this type of models is that the interactions are designed to
recover just a particular structure and thus cannot reproduce the possibility of ob-
taining different structures, as often occurs in many in vitro assembly experiments.
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Figure 3.2: Different models of viral capsids. (a) Continuum elastic model of
a spherical capsid. (b) A viral shell as a triangulated network [5]. (c) Tiling
model of polyomavirus using kite and rhombic tiles [7]. (d-g). Coarse-grained
models where capsomers and proteins are represented as (d) disks [1], (e) balls [15]
over the surface of a sphere, (f) hexagonal and pentagonal pyramids [16], and
(g) ellipsoidal capsomers with additional attractive and repulsive sites [17]. (h-j)
Patchy-particles models with proteins described as: (h) multiple bead trapezoidal
objects with many interaction sites [8], (i) truncated pyramids [18], (j) trapezoidal
multi-beads of three different types [9]. (k) Shape based coarse-grained model of
phage ΦX174 [19]. (l) Full atomic model of satellite tobacco mosaic virus, including
water and ions [2]. Figure taken from Ref. [20]

In the next level of refinement, the basic units of the capsid, which can be
proteins, dimers or trimers, are modeled using a collection of multiple beads prop-
erly placed to represent more accurately the shape of the protein. In this context,
capsid proteins have been modeled using trapezoidal objects to represent the beta-
barrel structure of some viral proteins [8, 9, 24] (Fig. 3.2(h) and (j)) or as triangular
subunits which form icosahedral shells [18, 26, 27]. In most of these models, the
interactions have to be arbitrarily tuned in a delicate way to reproduce just one
single particular structure. That is why we opted for a simpler model, based on
the minimal model of Ref. [1], described below.

3.2.1 Minimal model for capsid architecture

The coarse-grained model that will be developed and used in this thesis is par-
tially based on the minimal model introduced by Zandi and co-authors in Ref. [1],
(see Fig. 3.2(d)). In that model, the coarse-grained is performed at the level of
capsomers which were originally modeled as discs of different sizes, representing
pentamers and hexamers, that were forced to reside on the surface of a sphere. The
ratio of sizes of the pentamers and hexamers was taken to be ≈ 0.85 and a Lennard-
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Jones-like interaction with equal strength was assumed between them. Using MC
simulations it was found that the Caspar and Klug structures of quasi-spherical
viruses corresponded to minima of the free energy when 2 different structural units
(i.e. pentamers and hexamers) were considered. The model was also used to study
the minimal energy structures build up by identical capsomers, obtaining also
structures with lower symmetry than icosahedral [37] that have been found for
all-pentamers virus in vitro. Later on, this model was slightly modified replacing
the capsomer discs by spheres [29] and used to find the optimal structures for
elongated viruses [15]. In that study, the spherical template was replaced by a
spherocylindrical surface as a constrained shape characteristic of prolate virus. In
Chapter 8 of this thesis, we will use this model with a spherical and an icosahedral
template to compare the energetics of spherical versus polyhedral capsids and to
analyze the influence of the T-number on the tendency of buckling.

But, although this minimal model has been very insightful and successful to
describe the optimal structures of both spherical and elongated viruses, the con-
straint of having the capsomers on top of a spherical or spherocylindrical template,
makes it unrealistic to study the mechanisms of assembly and its kinetics. Thus, we
wanted to extend this model and we needed to remove the template, the isotropic
nature of the potential, and to incorporate a minimal set of ingredients to facilitate
the assembly of empty shells directly from the solution, without any constraint.
Our new model is described in the next section.

3.3 Model proposed in this thesis

As discussed previously, viruses use different strategies and elementary build-
ing blocks to build the capsid. For many viruses, individual proteins or dimers
are the assembly units. However, there are some viruses such as human papillo-
mavirus [31, 32], geminivirus [33], simian virus 40 [34], HK97 prohead [35] and
bovine enterovirus [36], that form their capsids directly from hexamers and/or
pentamers that have been preassembled in solution. For simplicity, we will focus
on the assembly of viruses having preformed capsomers as assembly units, since
capsomer-capsomer interactions are expected to be simpler and more isotropic than
the complex interactions between individual proteins. In addition, since coarse-
grained models are designed to be as efficient as possible, and the solvent is expen-
sive in computational time, as it represents a substantial fraction of the system, we
will use an implicit solvent model. In this way we eliminate the explicit represen-
tation of the solvent replacing it by effective interactions between the remaining
solute particles.

Three are the minimal essential ingredients of the interactions required for
modeling successfully the assembly. First, a short range repulsion is needed to
mimic steric effects and prevent the overlapping of capsomers. Second, some kind
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of attraction is required to drive the assembly. A simple Lennard-Jones-like po-
tential fullfills these requirements, but an additional ingredient is required to form
shells of a particular size rather than compact clusters. In the model of the previ-
ous section, this ingredient was the fact that capsomers were constrained to lie on
the surface of either a sphere [1, 37], a spherocylinder [15], or an icosahedron [30].
This simple model was enough to justify the origin of icosahedral symmetry in
viruses, but cannot describe realistically the kinetics of the assembly process or
the selection of a particular structure.

In this section we present an extension of that model, including two new
ingredients that make the interaction more realistic and the direct assembly fea-
sible without requiring artificial constraints, templates or local rules. Specifically,
we now incorporate bending and twisting contributions to the capsomer-capsomer
interaction. Thus, this potential is not isotropic but has a strong orientational
dependence. The bending contribution selects a specific curvature ultimately re-
lated to the prefered angle of protein-protein interactions. So it is crucial for size
selection, and facilitates the formation of shell-like structures rather than compact
clusters. In fact, it was the mechanism suggested by CK in their pioneer paper [38]
as the one selecting a specific T-number for a virus. The torsion contribution ac-
counts for the differences between the internal and external surface of the coat
proteins, and penalizes the formation of aberrant structures, making the assembly
of closed shells more efficient. With these two new ingredients, capsomers do not
need an artificial constraint or template and can self-assemble spontaneously, as it
will be shown in Chapter 7.

In our coarse-grained model we will consider in general two types of capsomers:
hexamers and pentamers, that are modeled as spheres of different size. The ratio
between the diameter of the hexamer, σh, and of the pentamer, σp was determined
by inscribing their equatorial circles, respectively, into a pentagon or a hexagon of
the same edge, as depicted in Fig. 3.3. The ratio between hexamer and pentamer
diameters thus

σp

σh

=
tan(π/6)

tan(π/5)
(3.1)

The capsomer-capsomer interaction is modeled by a pair potential that has a
short-range repulsion and an attractive term that drives capsomer aggregation.
The repulsion part is modeled by an isotropic Lennard-Jones potential (VLJ),

and the attraction is modulated by angular bending Vang(r̂ij,
−→
Ω i,

−→
Ω j) and tor-

sion Vtor(
−→
Ω i,

−→
Ω j) terms. Specifically, the potential is given by:
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Figure 3.3: Hexagonal lattice for pentamers and hexamers of different diameters,
σp and σh respectively.

V (rij,
−→
Ω i,

−→
Ω j) =

⎧⎨⎩
VLJ(r) r ≤ 2−1/6σij

VLJ(r)Vang(r̂ij,
−→
Ω i,

−→
Ω j)Vtor(

−→
Ω i,

−→
Ω j) r > 2−1/6σij

(3.2)

The expression for the Lennard-Jones-like part of the potential is:

VLJ(r) = εij

[(σij

r

)12

− 2
(σij

r

)6
]

(3.3)

where εij is the binding energy between capsomers, σij is the equilibrium distance
corresponding to the minimum of the LJ potential, r is the separation between
capsomers centers, and 2−1/6σij is the distance at which the Lennard-Jones con-
tribution vanishes (i.e., VLJ(r = 2−1/6σij) = 0). For simplicity, we will assume
that the strength of the binding interactions between hexamers, pentamers and
between hexamers and pentamers, are all the same, εij = ε0. Following previous
estimates of typical binding energies [1, 39], we take ε0 to be 20kBT , with kB being
the Boltzmann constant and T the absolute temperature. Since we have 2 types
of capsomers, the equilibrium distance σij between them in the Lennard-Jones po-
tential depends on the type of capsomers which are interacting and is given by

σhh = σh ≡ σ

σpp = σp =
tan(π/6)

tan(π/5)
σ ≈ 0.8σ

σph = (σp + σh)/2 ≈ 0.9σ

(3.4)
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For computational efficiency, the Lennard-Jones potential is truncated at 5σ.
The angular dependency of the potential is given by:

Vang(r̂ij,
−→
Ω i,

−→
Ω j) = e

−(θij − ν)2

2α2 e

−(θji − ν)2

2α2 (3.5)

where the vector
−→
Ω i defines the orientation of capsomer i and θij is the angle be-

tween
−→
Ω i and the unit vector r̂ij connecting campsomers i and j (see Fig. 3.4).

The parameter ν is the preferred angle, related to the spontaneous curvature, and
α controls the local bending stiffness. For large values of α, the isotropic Lennard-
Jones potential is recovered, whereas small values of α are indicative of a strong
bending penalty.

The interaction potential also includes a torsion contribution given by:

Vtor(
−→
Ω i,

−→
Ω j) = e

−kt(1− cosξ)

2 (3.6)

where kt is the torsion constant and ξ is the angle between the planes defined by

r̂ij and
−→
Ω i, and by r̂ij and

−→
Ω j (see Fig. 3.4). Specifically, the torsion angle ξ is

given by:

cos(ξ) = (r̂ij ×−→Ω i) � (
−→
Ω j × r̂ji) = cos(θij)cos(θji) +

−→
Ω i
−→
Ω j (3.7)

Without torsion, two capsomers with the correct ν angle but opposite
−→
Ω i ori-

entations would have the same energy than the right configuration. This torsion
contribution penalizes this incorrect behavior, so capsomers form closed shells in
the end, instead of many connected surfaces with different concavity. We have
verified that the value of this torsion constant is not so decisive. Accordingly, in
our simulations, we have fixed the torsion constant at kt = 1.5, a value that war-
ranties the succesful assembly of the smallest T -number structure in our assembly
simulations.

One of the advantages of this simple potential is that, for bound capsomers,
the parameters can be easily identified with simple bending and stretching contri-
butions. Expanding the potential eq. 3.2 around the equilibrium distance σ and
orientation ν, we obtain:

V (rij,
−→
Ω i,

−→
Ω j) ∼ −ε0 + 1

2

72ε0
σ2

(rij − 0.5σ)2 +
1

2

2ε0
α2

(θij − ν)2 (3.8)

where we have assumed that θij = θji and ignored the torsional contribution.
The previous equation clearly shows that, for bound capsomers, ks = 72ε0

σ2 is
the effective spring constant, kb =

ε0
α2 plays the role of the local bending stiffness,

62



Chapter 3. Coarse-grained modeling of capsids Section 3.3

Figure 3.4: Representation of the distance rij (orange), the orientation vectors−→
Ωi (violet) and

−→
Ωj (blue) and the angles used in the interaction potential in this

case for an interacting hexamer (green) and pentamer (red). The white sphere is
overlapped on each capsomer to indicate its orientation.

Structure νhh
opt νhp

opt

T=1 2.124
Snub cube 1.954 1.912

T=3 1.936 1.897
T=4 1.885 1.847
T=7 1.797 1.780

Table 3.1: Optimal values of the preferred angle νopt predicted for the lowest T-
number structures and the snub cube, calculated between two hexamers (or 2
pentamers in the T = 1 case) and between a hexamer and a pentamer.

and ν is the preferred angle of the interaction between capsomers (ultimately con-
nected to the preferred angle of the interaction between coat proteins).

As we will see, ν is the main parameter in the selection of a particular structure
for a viral capsid. In fact, we can estimate the theoretical values of the preferred
angle that will be optimal for each T-number structure, that will be denoted as
νopt. To that end, we have calculated the angle between neighboring capsomers
from the coordinates of the icosahedral spherical code corresponding to the solu-
tion of the maximum volume problem listed in Ref. [40], as described in Appendix
A. The resulting νopt for each T are listed in Table 3.1.

The preferred angle ν is also connected to the preferred radius R and spon-
taneous curvature C = 2

R
of a closed spherical shell, as show in Fig. 3.5, by the

63



Chapter 3. Coarse-grained modeling of capsids Section 3.3

Figure 3.5: Transverse section of T = 3 shell of radius R0 and preferred angle ν0.

relation:

R =
−σ

2cos(ν)
(3.9)

C =
−4cos(ν)

σ
(3.10)

Eq. 3.9 shows that the preferred radius is very sensitive to small changes in
the preferred angle of the interaction ν. It is worth emphasizing that this preferred
radius set by ν may in general be different from the equilibrium (optimal) radius of
a given shells, since this is ultimately dictated by the competition between bending
and stretching energies (as shown in Chapter 4).

Another nice feature of the potential is that, for a closed shell, the model can
be straightforwardly connected to the discretized version of the elastic energy of
a triangulated sphere. From this comparison, we can quantify the effective elastic
properties of a closed shell in the continuum limit. As shown in Appendix B and
in Refs. [5, 41], in the continuum limit the model is equivalent to an elastic sphere
with Young modulus

Y =
2√
3
ks =

144√
3

ε0
σ2

, (3.11)

Poisson’s ration

64



Chapter 3. Coarse-grained modeling of capsids Section 3.4

μ =
1

3
, (3.12)

and bending rigidity

κ =
3
√
3

8

ε0
α2

. (3.13)

This correspondence will be useful to interpreted our simulation results.

The two parameters ν and α are the more relevant parameters, and we will
see that they control the outcome of the self-assembly process (Chapter 6 and 7)
and the mechanical response of the capsid (Chapter 10).

3.4 Conclusions

In this chapter we have seen that there are different ways to model the struc-
ture of viral capsid and to describe capsid assembly. Capsids can be described at
different resolution levels, from a full atomistic description to a continuum level.
All models have their limitations and the selection of a particular one depends on
the kind of insight that we want. Atomistic models are adequate to understand
the finer structural details of a specific virus, but cannot be used to study com-
plex phenomena as viral assembly. On the other hand, coarse-grained models are
specially useful to investigate the general physical mechanisms, but lack realistic
details.

In this chapter, we have presented a coarse-grained, physically inspired, model
that will be used to investigate the physical mechanisms underlying viral self-
assembly. The model was inspired by the ideas of Refs. [1, 14], and incorporates
two new parameters ν and α, which are related directly to spontaneous curvature
and bending stiffness. One of the main advantages of the model is that, contrarily
to previous models, it does not require any constraint, template or local rules for
a successful assembly. In addition the parameters of the interaction are not labo-
riously and arbitrarily tuned, but rather have a clear physical meaning and can be
linked to experimentally measurable biophysical quantities. Thus the predictions
of the model could in principle be connected and useful in real experiments.

We will see that, despite its simplicity, the model can predict many interest-
ing behavior observed in real viruses. With this model we will be able to study
the stability and selection of different shapes of viral capsids, the kinetics of cap-
sid formation, and its mechanical response upon indentation, as described in the
following chapters. This type of studies can be extremely useful in in vitro exper-
iments for nano-technologies and health area applications.
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The approximations involved in the severe coarse-graining of the model imply
a loss of potentially relevant structural details and has of course some limitations.
On one hand, the possible cooperative hydrophobic effects promoted by the sol-
vent during assembly, and the finer structural details of the interactions cannot be
captured. However, more realistic details, like the shape of coat subunits and their
intrinsic anisotropic interactions can be incorporated in the model, but are out of
the scope of this thesis. They will be addressed in future investigations.
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Appendix A

Calculation of the expected value of ν for different structures

We have calculated the theoretical values of the preferred angle that one ex-
pected to be optimal for each T-number structure. These values, denoted as νopt,
are calculated as the angle between neighboring capsomers obtained from the co-
ordinates of the icosahedral spherical code listed in Ref. [40] corresponding to the
solution of the maximum volume problem. For a spherical capsid of radius R cen-
tered at the origin of coordinates, the optimal angle is the angle formed between

the vector
−→
Ω 1 =

1
R
(x1, y1, z1) defining the orientation of a capsomer and the vector

rij =
1
rij
(x2−x1, y2−y1, z2−z1) connecting 2 neighbor capsomers. The coordinates

in Ref. [40] are given for a unit sphere of radius R. As shown in Fig. 3.5, by simple
geometry:

R sin(ν − π/2) =
1

2
rij (3.14)

where rij =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 and 1, and 2 refer to two nearest
neighbors. Accordingly:

νopt =
π

2
+

arccos (rij/R)

2
(3.15)

The value of νopt can be calculated using two adjacent hexamers or a pentamer
and a nearest neighbor hexamer. Table 3.1 shows the theoretical νopt for smaller
T-number structures plus snub cube, calculated by eq. 3.15, in both cases.
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Appendix B

Local and global bending stiffness

Comparing the global bending energy in the continuum limit with that ob-
tained from our model, we can calculate the effective bending stiffness κ in terms
of the local parameters of the interaction potential. For simplicity, we will do it
by calculating the bending energy of a cylinder in our coarse-grained model.

(a) (b)

Figure 3.6: (a) Hexagonal lattice of capsomers placed over a cylinder of radius R
and length L and (b) cross-section of the positions of capsomers 1 and 2 over the
cylinder.

Let us assume a hexagonally-ordered network of our coarse-grained capsomers
on the surface of a cylinder of length L and radius R, see Fig. 3.6 (a). According
to this figure, the positions of capsomer 1 and 2 are given by:

x1 = 0; y1 = R; z1 = 0

x2 = R sin(φ); y2 = R cos(φ); z2 =
σ

2
(3.16)

where the origin of z has been taken at the location of capsomer 1. The distance
between these two capsomers is r212 = R2 sin2(φ)+R2(cos(φ)−1)2+ σ2

4
, that at equi-

librium will coincide with the equilibrium distance σ, thus r212 = σ2. By regrouping
this equation we obtain 2R2(1 − cos(φ)) = 3

4
σ2, that using the approximation for

small angles cos(φ) ≈ 1− φ2

2
, finally yields
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φ =

√
3

2

σ

R
(3.17)

According to eq. 4.3 the bending energy between capsomer 1 and 2 around
the equilibrium distance and orientations is given by

E12
b = 2

ε0
2α2

(θ12 − π

2
)2 (3.18)

where cos θij = r̂ij · −→Ωi. Using the positions of capsomers 1 and 2 from eq. 3.16,
we obtain

cos θ12 =
1

σ
(R sin(φ), R(cos(φ)− 1),

σ

2
) · (0, 1, 0) =

=
R

σ
(cos(φ)− 1) ≈ −Rφ2

2σ
(3.19)

For small angles arccos(x) ≈ π
2
− x and the angle between capsomer 1 and 2

then becomes

θ12 =
π

2
+

Rφ2

2σ
(3.20)

Using eq. 3.19 in eq. 3.18 the total contribution between 1 and 2 then becomes

Eb =
9

64

ε0
α2

σ2

R2
(3.21)

Each capsomer interacts with 4 neighbors. Thus, the bending energy per cap-
somer becomes Ec

b = 4
2
Eb, where we have divided by 2 to avoid double counting.

Now if we multiply it by the total number of capsomers in the cylinder, given
by Nc = 2πRL√

3
2
σ2
, (where AH =

√
3
2
σ2 is the effective area of a capsomer) the total

bending energy is:

Etot
b =

4

2
NcEb =

3
√
3

8
π
ε0
α2

L

R
(3.22)

Comparing eq. 3.22 with the standard expression of the total bending energy
of a cylinder Ecyl = πκL

R
[5], we finally get the effective bending stiffness κ.

κ =
3
√
3

8

ε0
α2

(3.23)
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Chapter 4. Elastic modeling of viral capsids Section 4.1

4.1 Introduction

As mentioned in the previous chapter, one of the simplest way to describe the
shape and size of viral capsids is by using continuum elasticity theory [1–10]. In
this framework, viruses are modeled as nanoscopic thin shells, since in most cases
the thickness of the shell is much smaller than the radius of the capsid. Using
this approximation, the elastic energy of viral shells can be characterized by two
simple contributions: a stretching term describing the energetic cost of modifying
the in-plane area of the capsid

Es =
1

2

∫
dS

(
2μu2

ij + u2
kk

)
(4.1)

and a bending contribution associated to out of plane deformations that change
the local curvature H from the spontaneous or preferred curvature C0

Eb =
1

2

∫
dS

(
κ(H − C0)

2 + 2κGK
)

(4.2)

Thus, in this approximation, the energy of the capsids is characterized by a
few phenomenological constants: μ and λ, the Lamé coefficients which are related
to the 2D Young modulus Y and Poisson ratio μ; the bending stiffness κ, the
Gaussian rigidity κG, and the spontaneous curvature C0 [1–5]. The optimal shape
of the capsid is then obtained by minimizing the total elastic energy of the shell
Eb + Es, a procedure that is commonly done numerically by using the discretized
versions of eqs 4.1 and 4.2 on a triangular lattice [2, 3, 6–8, 10].

The elastic energy of a shell depends ultimately only on a single non-dimensional
parameter, the Foppl-von Karman (FvK) number γ = Y R2

k
, which is the ratio of

the stretching and bending energies [2–4, 7, 8, 10, 11]. Using this strategy, it has
been possible to study the optimal shape (i.e. spherical, elongated, or conical) of
a viral shell as a function of the FvK number and the spontaneous curvature [7]
(see Fig. 4.1), and interesting phenomena like the occurrence of a buckling tran-
sition, explained in more detail in Chapter 8. Thus, despite the crudeness of this
description, that replaces the complex nature of the interaction between proteins
by an effective continuous material, elastic models produce useful information on
the shape and stability of a virus.

In this chapter we will present a simple elastic model obtained as a continuous
approximation to the coarse-grained discrete model of the previous chapter. The
model captures in a simplified way the competition between bending and stretch-
ing energies for a spherical capsid. We will use this simple model to analyze what
is the optimal radius of our model capsids and how it depends on the different
parameters of the model.
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Figure 4.1: Phase diagram of viral shapes as a function of the FvK number γ
and the dimensionless spontaneous curvature α = C0S

1/2, where S is the area
of the shell. The phase diagram shows the buckling transition, which separates
spherical from polyhedral shells, and a first-order transition between spherical and
spherocylindrical shells. Figure taken from Ref. [7].

The chapter is distributed as follows. In Section 4.2 we will present and de-
scribe our simple bending plus stretching model. The results of the model in the
bending-dominated and stretching-dominated limits will be described in subsec-
tions 4.2.1 and 4.2.2. Subsection 4.2.3 will be devoted to analyze the intermediate
region and its implications on the optimal size of the virus. Finally, the main
results and conclusions are summarized in Section 4.3.

4.2 Bending and stretching model

We propose a simple elastic model for the study of the interplay between the
bending and the stretching contributions in determining the optimal radius for a
spherical capsid of radius R. The model is derived from a continuous approxi-
mation of the coarse-grained model introduced in Chapter 3. We will apply the
model to viruses, but this model could also be used for other systems objects as
membranes [13], colloidosomes [14], or even black holes [15].
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In Section 3.3, we showed that in our model the pair potential between two
bounded capsomers around the equilibrium distance and optimal orientation was
given by

V (rij,
−→
Ω i,

−→
Ω j) ∼ −ε0 + 1

2

72ε0
σ2

(r − σ)2 +
1

2

2ε0
α2

(θij − ν)2 (4.3)

where ε0 is the binding energy between capsomers, σ is the equilibrium distance
corresponding to the minimum of the LJ potential, r is the separation between cap-

somer centers, θij is the angle between the orientation of capsomer i,
−→
Ω i, and the

unit vector r̂ij connecting campsomers i and j and the parameter ν is the preferred
angle. Let us now consider that this pair of bound capsomers are part of a complete
spherical capsid of radius R0, where all capsomers are at the equilibrium distance σ
and oriented radially outwards. The value of this radius R0 can be approximately
obtained by a simple full covering model, as described in Appendix A of Chapter 8.

If we now change the radius, and assume a uniform deformation, the local δr
and global δR deformations are related by

δr

σ
=

δR

R0

(4.4)

Accordingly, for a uniform radial deformation, the total energy of the capsid
can be approximated as:

Et =
Nz

2
(−ε0 + 1

2

72ε0
σ2

δr2 +
1

2

2ε0
α2

δν2) (4.5)

where N is the total number of capsomers, z is the average coordination number
(that would be 6 for a hexagonal lattice) and δν = θij − ν. For this closed capsid,
θij = arccos

(−σ
2R

) that can be approximated as:

θij = arccos

(−σ
2R

)
≈ π

2
+

σ

2R
−©(

σ3

R3
) (4.6)

Using eqs. 4.4 and 4.6 in eq. 4.5, the total elastic energy becomes:

Et =
zN

2

(
−ε0 + 1

2

72ε0
R2

0

(R−R0)
2 +

1

2

2ε0
α2

( σ

2R
− (ν − π

2

))2

(4.7)

This expression can be further simplified into:

ΔEt =
1

2
(R−R0)

2 +
b

2

(
1

2R
−
(
ν − π

2

))2

(4.8)
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where ΔEt = Et−E0

18ε0zN
R2

0 is the energy change with respect to the global optimal

energy, E0, b =
R2

0

36α2 , is related to the inverse of the FvK number, and R0 is the
radius that would minimize the stretching energy. From now on, and for the sake
of simplicity all radii will be expressed in units of σ.

The resulting simplified expression for the energy ΔEt depends on the radius
R of the capsid and has two clear contributions. The first term represents the
stretching energy of the capsid, whereas the second term accounts for the bending
cost. The relative importance of these two terms is controlled by the parameter b.
Let’s first discuss the two limiting regimes determined by the value of b.

4.2.1 Stretching-dominated limit

In the case of b � 1, stretching is more important than bending. Thus the
first term of the energy dominates and the second term of the energy can be ne-
glected yielding

ΔEt ≈ 1

2
(R−R0)

2 (4.9)

In this case, the optimal radius is trivially given by:

dΔEt

dR

∣∣∣
R∗

= 0⇒ R∗ = R0 (4.10)

Therefore, for negligible bending, the optimal value of the radius is just R0,
and the energy as a function of the radius has a parabolic behavior around it, as
shown in Fig.4.2. For R < R0 the capsid is compressed, whereas for R > R0 it is
stretched.

4.2.2 Bending-dominated limit

For b >> 1 bending becomes the dominant contribution, and stretching can
be neglected, yielding for the energy

ΔEt ≈ b

2

(
1

2R
− (ν − π

2
)

)2

(4.11)

In this case, the optimal radius R∗ is dictated by the preferred angle ν:

dΔEt

dR

∣∣∣
R∗

= 0⇒ R∗ ≡ 1

2(ν − π/2)
= Rb (4.12)
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Figure 4.2: Energy ΔEt versus the radius R in the stretching-dominated regime
corresponding to b = 0 and for two different values of R0. The energy is parabolic
with a minimum localized at R0.

The energy is not parabolic around Rb, as illustrated in Fig.4.3.

Thus, in general, we have two different preferred radius for the capsid. On
one hand, there is R0, which is fixed by the number of capsomers in the shell, and
it is the preferred radius to minimize the stretching energy. On the other hand,
we have Rb =

1
2(ν−π/2) which is the radius favored by the spontaneous curvature.

Hence, when these two values are different, we have a interesting competence be-
tween bending and stretching, which is explored in the next section.

4.2.3 General case

In the general case, we cannot ignore any of the two components, and the
optimal radius will be given by:

dΔEt

dR

∣∣∣
R∗

= 0

R∗4 −R0R
∗3 +

b

2
(ν − π

2
)R∗ − b

4
= 0

(4.13)

Thus, to obtain the optimal value R∗ one has to solve a quartic equation.
This type of equation can be solved analytically and has in general four different
solutions, whose exact (but cumbersome) expression is listed in Appendix A. The
nature of the solutions is dictated by the discriminant Δ:

79



Chapter 4. Elastic modeling of viral capsids Section 4.2

Figure 4.3: Energy ΔEt versus the radius R in the bending dominated limit for
b = 100 and different values of ν. The minimum value of the energy is localized in
each case at Rb =

1

2((ν0−π
2 ))

.

Δ =
b2

16

{
− 27

(
b2
(
ν − π

2

)
+R4

0

)
+ b

[
− 64 +

+2R0

(
ν − π

2

)(
48 +R0

(
ν − π

2

)(
3 + 4R0

(
ν − π

2

))) ]}
(4.14)

When Δ < 0, the equation has 2 real and 2 complex conjugated roots and
when > 0, the equation has 4 real roots. In our case, only the real and positive
solutions have a physical meaning. It can be shown that when Δ < 0, there is only
one real and positive solution, whereas when Δ > 0, there are 3 positive and real
solutions, whose meaning will be discussed later on.

As an example, Fig.4.4 shows the real and positive solutions of R versus the
preferred angle ν for R0 = 3 and different b values. For b = 1 (see yellow line)
we are in the stretching-dominated limit, and the optimal radius is R∗ ≈ R0, ir-
respective of the value of the spontaneous curvature. In the opposite limit, for
b = 1000 (green line) the optimal radius is very close to that dictated by the
curvature Rb =

1

2(ν−π
2 )
. The solution for b = 100 (blue line) also is close to this

limit, specially at large values of ν. Interestingly, for b = 10 (red line) we have
obtained an intermediate behavior, where for small values of ν corresponds to the
stretching-dominated solution R∗ ≈ R0 (small b), but for large ν tends to bending
radius R∗ ≈ Rb. In between, there is a transition region, where 3 possible solutions
for the radius exist. It is worth to note that for all values of b, the solutions meet
with a common value R∗ ≈ Rb at ν = 1

2R0
+ π

2
= 1.73824, which is the point where
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Figure 4.4: Real and positive solutions of R versus ν for R0 = 3 and different b
values. All solutions meet at ν = 1

2R0
+ π

2
corresponding to the solution where

Rb = R0.

R0 = Rb (hence being R∗ optimal both for stretching and bending).

Fig.4.5 plots the value of R∗ as a function of b, for R0 = 3 and different values
of ν. As expected, for small b (b << 1), R∗ tends to the preferred stretching radius
R0. In the opposite limit of b >> 1, each solution tends to the bending-determined
radius Rb =

1

2(ν−π
2 )
. Remarkably, for values of ν < ν∗ = 1

2R0
+ π

2
, there is only one

solution, whereas 3 solutions coexist for ν > ν∗ and intermediate values of b.

Finally, Fig.4.6 shows how R∗ depends on R0 for an intermediate value of b =
100 and different preferred angles ν. On one hand, for values of ν < ν∗ = 1

2R0
+ π

2
,

there is only one solution (blue line) that approaches the stretching-dominated
limit of R∗ = R0 (yellow line) at large values of R0. On the other hand, for values
of ν > ν∗ = 1

2R0
+ π

2
(green and red lines) there is only one solution corresponding

to R∗ = Rb for small values of R0, and there are three solutions for large values of
R0.

4.2.4 Optimal size and metastable solutions

As mentioned in the previous subsection, the quartic equation for the opti-
mal radius, eq.4.13, admits either only one or three real and positive solutions,
depending on the values of the parameters. In the cases where there is only one
solution, it corresponds to the optimal value of the radius, that tends to be R0 for
b << 1 and Rb for b >> 1. But there are regions of parameters where there are 3

81



Chapter 4. Elastic modeling of viral capsids Section 4.2

Figure 4.5: Real and positive solutions of R versus b for R0 = 3 and different ν
values.

solutions and it is worth to analyze them more carefully.

Fig.4.7 shows the behavior of the energy as function of R for ν = 2.5708 and
different values of R0. By calculating the second derivative, evaluated at each solu-
tion R∗1,2,3,4, it can be seen that the 3 real and positive solutions, correspond to two
minima, separated by a maximum. Thus, out of the 3 solutions, 2 correspond to
local minima of the the free energy that are located close to R0 and Rb. The third
solution corresponds to a critical value of the radius that signals the maximum of
the free energy barrier that has to be overcome to go from one of the minima to
the other.

The energy at the minimum around Rb can be approximated by the stretching
energy E(Rb) ∼ 1

2
(Rb −R0)

2 and the energy of the other minimum is approxi-

mately the bending energy, E(R0) ∼ b
2

(
1

2R0
+ π

2
− ν

)2

. The difference of energy

between the two minima is then

δEmin = E(R0) − E(Rb) ∼ 1
2

(
b
(

1
2R0

+ π
2
− ν

)2

−
(

−1
2cos(ν0)

−R0

)2
)

and deter-

mines which of the 2 solutions is the global minimum. The barrier energy is
Ebarr = E(Rmax) − E(Rmin), where Rmax is the value of the solution correspond-
ing to the maximum and Rmin is one of the two solutions. The barrier of energy
depends strongly on the parameter b, as shown in Fig.4.8.

Mathematically, the transition between having one or three solutions occurs
when the discriminant is equal to zero, i.e. Δ = 0, in eq.4.14. From this condition
we can find the critical values of b, labeled as bc, for which this occurs. Ignoring
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Figure 4.6: Real and positive solutions of R versus R0 for b = 100 and different ν
values.

R0 ν b1c b2c line
3 2.5708 7.50845 10.7878 red
4 2.5708 10.9138 23.4566 yellow

Table 4.1: Critical values of b calculated using eq. 4.15 for R0 = 3 (red line with
squares) and 4 (yellow line) illustrated in Fig. 4.7, by the discontinuous lines,
where three solutions for the radius are possible.

the trivial solution b = 0, the critical values are:

b1,2c =
1

27(ν − π/2)4

{
− 32± 2

√
2√

(R0(ν − π/2)− 2)3 (R0(ν − π/2) + 4)2 (2R0(ν − π/2)− 1)

+R0(ν − π/2) (48 +R0(ν − π/2)(3 + 4R0(ν − π/2))

}
(4.15)

So there will be three solutions for R∗, in the range of b′s defined by b1c < b <
b2c , as shown in Fig. 4.7. The presence of a square root in eq. 4.15 also imposes
a limitation on the value of the other two parameters, ν and R0, to have a real
solution for bc. This limitation is the condition R0 > 4Rb = 2

ν−π/2 . That is the

reason why, in Fig. 4.7, there is only one solution for R0 = 1 and R0 = 2 (blue
and green line, respectively). For R0 = 3 and R0 = 4, there are three solutions.
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Figure 4.7: Real and positive solutions of R∗ versus b for ν = 2.5708 and different
R0 values. The discontinuous lines define the region in values of b where there are
3 different solutions for R0 = 3 (red lines) and R0 = 4 (yellow lines).

Using eq. 4.15 we have calculated the two values b1c and b2c delimiting the region
where three real and positive solutions exists, see Table 4.1.

With these critical points we can identify fully the regions where metastable
solutions are possible in terms of the spontaneous curvature and the number of
capsomers of the viral capsid that ultimately sets the value of R0. This metastable
region is characterized by a strong competition between the bending and stretching
energies, see Fig. 4.8. Then, in these regions we expect possible transitions in size
that would influence other mechanical properties.
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(a)

(b)

Figure 4.8: Energy landscape in the region where there are three solutions of R∗

for (a) b = 20 and R0 = 4 and different values of ν and (b) for ν = 2.7508, R0 = 3
and different values of b.
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4.3 Conclusions

In this chapter, we have presented a very simple elastic model which can be
considered as the continuum limit of the coarse-grained interaction potential of
Chapter 3 for a complete capsid. By minimizing the elastic energy, we have ob-
tained the value of the optimal radius of the capsid. Using this elastic model,
we have obtained and characterized the different regions of physical parameters,
where the bending and stretching contributions dominate. Interestingly, we have
obtained a region of parameters where the two contributions strongly compete. In
this region there are three possible solutions, corresponding to two local minima
of energy separated by one maximum. Thus in this region a transition between
two different locally optimal radii of the capsid is expected.

This elastic model, provides a very useful starting point to explain the com-
petition between bending and stretching effects. However, this simplified model
has some clear limitations. First, the main drawback of this continuum model is
that it lacks structural details. The discrete and anisotropic interactions between
subunits or proteins cannot be easily incorporated in this type of descriptions [16].
This fact difficults the characterization of plastic or breaking behaviors observed
in nanoindentation experiments [17–19].

Another limitation is that we are restricted to uniform radial deformations. So
no change in shape can be described with this model. A final limitation is that we
have not contemplated the real possibility that capsids can only sustain a limited
expansion/contraction. When the expansion exceeds the inflection point of the
intercapsomer potential, capsid will break. Therefore the solution corresponding
to Rb may in some cases be impossible to reach due to the breaking of the capsid.

86



Chapter 4. Elastic modeling of viral capsids Section 4.3

Appendix A

Solution of the quartic equation for the optimal radius

The total energy of a capsid is a combination of a bending contribution and
stretching contribution and in order to minimize the energy we must solve [20]:

dEt

dR

∣∣∣
R=R∗

= 0⇒ R∗ −R0 + b(
π

2
+

1

2R∗
− ν)(

−1
2R∗2

− dν

dR∗
) = 0

R∗4 −R0R
∗3 +

b

2
(ν − π

2
)R∗ − b

4
= 0

(4.16)

The general solution of the quartic equation x4 + a1x
3 + a2x

2 + a3x+ a4 = 0,
is commonly expressed in terms of the four solutions of equation:

z2 +
1

2
(a1 ±

√
a21 − 4a2 + 4y1)z +

1

2
(y1 ∓

√
y21 − 4a4) = 0 (4.17)

where y1 is

y1 = S + T +
1

3
a1 (4.18)

In the previous expression,

S = (R +
√
Q3 +R2)1/3

T = (R−
√

Q3 +R2)1/3 (4.19)

where Q = −4a4
3

(1− a3) and R = 27a4
54

(
a21 − a23

a4

)
.

In our case we can identify

a1 = −R0

a2 = 0

a3 =
b

2
(ν − π

2
)

a4 = − b

4
(4.20)
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Accordingly, Q and R are given by:

Q =
b

3

(
1− bR0

2

(
ν − π

2

))
R =

−27
54

b

4

(
b
(
ν − π

2

)2

+R2
0

)
(4.21)

where Δ = Q3 + R3 is the discriminant. The real solution of y1 then becomes
explicitly:

y1 =

{(−b
8
R2

0 − b
(
ν − π

2

)2
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+

+

√
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} 1
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ν − π
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R2

0 − b
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ν − π

2

)2
)2
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(4.22)

By substituting y1 in eq. 4.17, and solving for z = R∗, we finally obtained the
four solutions of the quartic eq. 4.17. Explicitly:

R∗1,2 =
−1
4

[
−R0 +

√
R2

0 − 4y1

]
±

±1

2

{
1

2

(
R2

0 − 2y1 −R0

√
R2

0 − 4y1

)
− 2

(
y1 −

√
y21 − b

)} 1
2

(4.23)

88



Chapter 4. Elastic modeling of viral capsids Section 4.3

R∗3,4 =
−1
4

[
−R0 −

√
R2

0 − 4y1

]
±

±1

2

{
1

2

(
R2

0 − 2y1 +R0

√
R2

0 − 4y1

)
− 2

(
y1 −

√
y21 − b

)} 1
2

(4.24)

Replaced eq. 4.22 in eq. 4.23 and eq. 4.24 we have obtained the four solution
in function of νo, R0 and b.
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5.1 Introduction

Nowadays, simulations are becoming an essential tool to study and under-
stand better a wide variety of problems in physics, chemistry, biology and complex
systems. With simulations it is possible to mimic real processes and systems us-
ing computer models. That has facilitated the investigation of scientific questions
that would be otherwise expensive or impossible to study in experiments and/or
theory. Another interesting area where simulations are becoming specially helpful
is in the field of biophysics. Important problems such as protein folding [1], the
hydration of proteins and hydrophobic interactions [2, 3] or the elastic properties
of membranes [4] are an intense field of study by simulations.

In this chapter we will explain some technical details about the simulation
methods used in this thesis to investigate the model described in Chapter 3. Es-
sentially, three different simulation techniques have been implemented. Monte
Carlo (MC) simulations have been used for the study of the optimal structures
and stability of viral shells. On the other hand, Brownian Dynamics (BD) sim-
ulations will be used to analyze the dynamical aspects of the assembly and the
mechanical response of viral capsids at the discrete level. To complement this
mechanical description at the continuous level, we have also used Finite Element
(FE) simulations.

The chapter is distributed as follows. In Section 5.2 we will discuss the most
relevant details of the Monte Carlo simulation using the coarse-grained model de-
scribed in Chapter 3. After that, Section 5.3 will be devoted to describe the
Brownian Dynamics method used to study the dynamics of capsid assembly and
for the implementation of our “Virtual AFM” in Chapter 10. Then Finite Ele-
ments analysis will be introduced in section 5.4, as a tool for the study of some
mechanical properties of the capsid, which will be presented in Chapter 9. Finally,
we will discuss the advantages and limitations of all the methods in the study of
the different properties of viruses.

5.2 Monte Carlo simulations

Monte Carlo methods (MC) are a class of computational algorithms that rely
on repeated random sampling to obtain numerical results. This method was in-
troduced by Newmann, Ulam and Metropolis in the forty’s [5], to study neutron
diffusion in fissionable materials.

MC methods are often used in physical and mathematical problems and they
are most suited to be applied when it is impossible to obtain a closed-form expres-
sion or a deterministic algorithm. These methods are mainly used in three types
of problems: numerical integration, optimization, and generation of samples from
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a probability distribution [6].

The MC method is very useful to compute high dimensional and definite inte-
grals. While other algorithms usually evaluate the integral at a regular grid, MC
algorithms randomly choose the points at which the integral is evaluated in a do-
main [7]. This algorithm is common in optimization problems too, where one must
minimize, or maximize, functions of some vector that often has a large number of
dimensions. Many other problems can be phrased in terms of sampling random
points, where the goal is to minimize distances [8].

The third type of problem where MC simulations are used is in statistical
mechanics [6]. The general motivation to use the MC method in statistical me-
chanics is to evaluate a multivariable integral representing the average value of a
given thermodynamic quantity where the Hamiltonian is known. To obtain the
mean value of some macroscopic variable, the idea is to compute, over all the phase
space, the mean value according to the relevant statistical weights (i.e. Boltzmann
statistics) using the MC method to solve the multivariable integral.

The MC method is intimately related with the generation of random numbers,
because this method is based on randoms changes in the system following some
arithmetic or logical operation. As a consequence the method has become progres-
sively more efficient with the improvement in the generation of random numbers.
These methods of simulations are subject to statistical and systematic errors. Sta-
tistical errors control the error bars associated with each measurement. In the
Monte Carlo method, the absolute statistical error, decreases with the number of
steps or evaluations as 1√

N
[6].

In a typical MC simulation, the starting point is an initial configuration of
particles in a system. Then, a random move is proposed that changes the configu-
ration of the particles. This move is accepted or rejected based on an acceptance
criterion that guarantees that configurations are sampled in the simulation with
the correct weight according to a statistical mechanics ensemble distribution [6].
After the acceptance or rejection of a move, one calculates the value of a property
of interest, obtaining an average value of this property after repeating this proce-
dure a large number of times or “steps”.

In our particular case we have implemented a simple Monte Carlo simulation
using the Metropolis algorithm to obtain the equilibrium capsid structures and
study their stability. The equilibrium structures in our model are characterized by
the energy of the system, which will be used in the acceptance criterion. The total
energy in a system containing N model capsomers is given by the expression:
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Et =
N−1∑
i=1

N∑
j>i

V (rij,
−→
Ω i,

−→
Ω j) (5.1)

where V (rij,
−→
Ω i,

−→
Ω j) is the potential between capsomer i and j given by eq. 3.2.

In the potential the interaction is by pairs, and each subunit interacts in principle
with all the rest of capsomers.

There are mainly two different strategies to move the subunits in MC simu-
lations; essentially, the update and trial moves can be done randomly or sequen-
tially [6]. The most common strategy is to randomly select which particle will be
displaced, but in some cases where the interaction between neighbor subunits is
strong, for example in chains, or in atomic model [10] (in order of atom index),
this technique will be more appropriate. In our case, we have chosen a random
selection of subunits to update the configuration.

In our typical MC simulations, we start from an initial configuration cor-
responding to a perfect T-number structure, having an energy E1. Then, one
capsomer is randomly selected to attempt a displacement. In our case, two differ-
ent types of displacement are considered: spatial moves, that attempt to change
the coordinates x, y, z by a small random displacement (2ξ−1)Δrmax, where ξ is a
random number between 0 and 1; and orientational moves, where the orientation
of the capsomer described by the angles θ, φ is altered by an amount (2ξ−1)Δϕmax.

The attempted movement is governed by a transnational and orientational
maximum displacements Δrmax and Δϕmax. If the maximum displacement is too
small, a big number of moves are accepted, but the convergence to the optimal
configuration is very slow and the states are highly correlated. On the other hand,
if the maximum displacement is too large, only a small fraction of moves are ac-
cepted and the state is nearly frozen, close to the initial configuration. To minimize
this problem the value of the maximum displacement is adjusted every 10000 steps
in order to keep the acceptance ratio close to 0.5.

After the random displacement, the new energy of the system, E2, is calcu-
lated. If the new energy (E2) is lower than the old one E1, the movement is always
accepted; and if it is higher, the movement is still accepted with some Boltzmann
probability, see Fig. 5.1, given by.

P0 = e−(E2−E1)/kBT (5.2)

where T is the temperature of the system and kB is Boltzmann’s constant.
Applying this procedure repeatedly ensures the minimization of the energy [6].
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Figure 5.1: Illustration of the acceptance of attempted displacements in a MC
simulation. The energy of the initial configuration is E1, and after a random
displacement of the highlighted capsomer becomes E2. If E2 < E1, the move is
always accepted. If E2 > E1, the movement is accepted with a probability P0.

In all MC simulations we have used periodic boundary conditions to mini-
mized finite size and boundary effects.

The Monte Carlo method is appropriate mainly for the study of equilibrium
properties of viral capsids. In principle, the optimal structure would be the one
that minimizes the free energy. But the free energy of a system is difficult to
evaluate. In the case of viral shells the system is dominated by the strong binding
interaction between subunits. For that reason we have used and reported the av-
erage potential energy of the viral capsid and not strictly the free energy.

It is worth to note that there are other methods which are more efficient to
minimize the energy and to find global optima, in complex systems, such as sim-
ulated annealing, parallel tempering or the mapping of the complete free energy
landscape [12]. However, for systems with a low number of subunits, as the ones
that will be the focus of our work, a simple Metropolis algorithm is a good and
simpler alternative.
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5.3 Brownian Dynamics

One of the goals of this thesis is to characterize the dynamics of viral assembly,
and to that end dynamic simulation techniques are more suited than equilibrium
techniques as MC. Dynamic simulations can keep track of the movement of subunits
as a function of time, which is calculated by solving the corresponding equations
of motion.

There are mainly two different simulations techniques for the study of the
dynamics: Molecular Dynamics (MD) and Brownian Dynamics (BD) [13]. In MD
simulations, given the interaction, Newton’s equations of motion of every particle
in the system are integrated to calculate their trajectories. This method of sim-
ulation is highly realistic because all atoms and molecules, including the solvent,
are simulated [10]. However, for the case of viral assembly the long time scales,
the presence of the solvent and the large amount of atoms involved even in the
smallest viruses, makes this technique computationally inapplicable.

BD simulations can be used as a more efficient alternative to MD to describe
complex systems at larger times scales. In this method, Newton’s equations of the
system are replaced by some simplified version of Langevin dynamics, where the
solvent is replaced by a combination of random forces and frictional terms [13]. In
addition, for nanoscale biological objects such as proteins, inertia and the associ-
ated acceleration term become irrelevant, so the dynamics is overdamped. This
approximation leads to even simpler equations of motion [13].

A very simple algorithm that computes the forces only once per time step and
is capable of integrating overdamped systems is the stochastic Euler algorithm. In
this algorithm, the position of a particle at a time t+ dt is given by

ri(t+ dt) = ri(t) +
Fi(t)dt

η
+
√
2Dtξ (5.3)

where η is the friction coefficient, D is the diffusion coefficient, Fi(t) is the force
on particle i, and ξ is a Gausssian distributed random number with zero mean and
variance 1. Thus, in the stochastic Euler algorithm, the new position of a given
particle depends on the force and a noise term that accounts for random collisions
with the solvent.

It is very often convenient to simplify the simulations using reduced units. In
our case, we will use σ (the diameter of a capsomer, see Chapter 3) as our unit
of length, ε0 as the unit of energy, and t0 = σ2

D
as our time unit. For a typical

capsomer size of about σ = 10nm, and using the Stokes-Einstein [14] equation for
the diffusion coefficient in water D = kBT

η
, we obtain a time unit of t0 = 4.6μs.

Using these reduced units, the stochastic Euler equation can be rewritten as
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Figure 5.2: Schematic representation of the motion of one capsomer in a Brownian
Dynamic simulation. At t = 0, the force exerted by all capsomers on capsomer i
are calculated. The new position at t = dt is calculated from this force using eq.
5.5.

ri(t+ dt) = ri(t) +
Fi(t)dt

T
+
√
2dtξ (5.4)

In a typical BD simulation of assembly, we start by placing N capsomers at
random positions and orientations inside our simulation box. We then calculate

the total force felt by each capsomer
−→
Fi(t). In the next step of simulation corre-

sponding to time t+ dt, the new positions r(t) and angles (θ(t) and φ(t)) for each
capsomer are calculated using the following equations, see Fig. 5.2.

r(t+ dt) = dt
T

−→
Fr(r) +

√
2dt
−→
ξr + r(t)

θ(t+ dt) = dt
2T
Fθ(t) +

√
dtξθ + θ(t)

φ(t+ dt) = dt
2T
Fφ(t) +

√
dtξφ + φ(t)

(5.5)

where dt is the time step
−→
ξr , ξθ, and ξφ are Gaussian distributed random numbers
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with zero mean a variance 1. The time step dt has to be small enough so that a
subunit cannot travel a distance comparable to σ at each time step. In our simu-
lations we have found that a reasonable value is dt = 10−4, in reduced units.

The translational and orientational forces
−→
Fr(t), Fθ(t) and Fφ(t) are calcu-

lated from our model potential between capsomers, Vij(rij,
−→
Ω i,

−→
Ω j) described in

Chapter 3. The explicit expression of the forces and how they were calculated is
explained in Appendix A.

As in our Monte Carlo simulations, we have been implemented periodic bound-
ary conditions to minimize finite size effects and mimic more closely an infinite
system [15]. We have built cubic boxes replicated through the total space. Using
the boundary conditions, the molecules move in the original box, where the peri-
odic images in each of the neighbor boxes moves in the same way. Implementing
boundary condition one capsomer leaving to the central box its image will enter
by the opposite face. This tool reproduce the topology of the system, without the
problem from the surface effects.

BD simulations, as all simulation methods, involves some limitations.The size
of the simulation box, the number of particles, the time-step and total time dura-
tion must be selected property so that the calculation can finish within a reasonable
time period and with reasonable error. Even working with coarse-grained models,
the accessible time scales and system sizes are typically smaller that for a real situ-
ation. For example for a typically simulation run with t0 = 4.6μs, dt = 10−4t0 and
109 steps, one can reach only 0.46s of real time. Thus, the simulations described in
this section can mimic the motion of viral capsids and its subunits, but this method
is limited to relatively fast processes. It is possible study the viral self-assembly at
relatively strong supersaturations, but larger or more efficient simulations would
be needed for other slower viral process. In the specific case of viruses, with our
BD simulations we can study the general dynamics and intermediate steps in self-
assembly viral capsids.

5.4 Finite Element Methods

The Finite Element Method (FEM) is a mathematical method which was born
by the necessity to solve the complex elasticity and structural analysis problems in
civil and aeronautical engineering. The idea, by A. Hrennikoff and R. Courant [16],
was to simplify the study of a continuous domain (described by complex equations)
by a set of discrete sub-domains (with more simple equations), usually called ele-
ments.

The FEM began to be used in the 70’s, when NASA and UC Berkeley spon-
sored the first studies of the implementation of the FEM method using computa-
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(a) (b)

Figure 5.3: Finite element mesh using triangles to study mechanical properties a)
of a thin spherical shell and b) a thin spherocylinder resembling an Atomic Force
Microscopy nanoindentation experiment on φ29 bacteriophage.

tional software. Strang and Fix [17] published a rigorous mathematical basis to the
finite element method. In this way, this method has since then been generalized
for the numerical modeling of physical and engineering systems in disciplines such
as electromagnetism [18], heat transfer [19] mechanics of solids and fluid dynam-
ics [19].

The key idea of FEM is to approximate the partial derivatives by finite differ-
ences. The differential equations of the initial problem are thus simplified into a
set of lineal equations, where the correct result can be obtained for a finite number
of points (nodes) and then interpolated to the rest of the domain. The set of nodes
is obtained by dividing or discretizing the system into various small elements (for
instance triangular areas or tetrahedral volumes).

In general, the determination of the mechanical properties of viral capsids is
a difficult problem to solve because the interactions and the internal structure of
the protein subunits could be extremely complex. However, capsids are made by a
large number of atoms and molecules. Therefore one could expect that, collectively
and as a first approximation the capsid can be treated as a continuum shell.

The mechanical properties of viruses can then be described approximately
by continuum elasticity theory. With this approximation the system is governed
by the Navier equations of elasticity. For arbitrary geometries and deformations,
these equations, even in the thin shell limit, are impossible to solve analytically.
This is the reason why FE methods are commonly used to solve numerically these
equations.
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Continuum elasticity has been used to model mechanical properties of many
viruses [20–23, 25–28]. In our work, we have used FEM to model the mechani-
cal response of viruses, in particular bacteriophage T7 and φ29, to interpret the
nanoindentation experiments carried out by Atomic Force Microscopy. In the
particular case of φ29 bacteriophage, it has a prolate shape with an architecture
Tend = 3 and Q5F = 5 centered on a 5-fold axis [29, 30], see Fig. 5.3(b). The
prolate shape of this virus makes difficult to find an analytic solution of the force
versus indentation curves. Hence, we opted to implemented FEM simulations, as
described in detail in chapter 9.

In the study of the mechanical properties of viral shells we have used the
commercial software COMSOL Multiphysics 4.2a (Comsol, Stockholm, Sweden).
This program provides a powerful interactive environment for modeling and solv-
ing all kinds of scientific problems based on partial differential equations. With
this tool the solution of the elasticity equation is performed by the discretization
of the space and time using different methods based on finite differences or finite
elements. This converts the nonlineal differential equations into a set of discrete
dynamic equations that can be solved by different algorithms that try to minimize
errors and potential instabilites in the solution.

5.5 Conclusions

Computer simulations have become nowadays a powerful tool to solve com-
plicated analytical problems in natural sciences and to mimic experimentally in-
accessible conditions.

The choice of an appropriate simulation method for each problem and area
of study is fundamental. The selection of the most efficient or suitable technique
depends on the nature of the system, the desired level of description and the kind
of information that is sought for.

The implementation of simulations with high level for details is often not nec-
essary for the a study of some general properties of system and it could lead to an
expensive waste in computational resources. It is important to get a compromise
between realism and insight or simplicity. Using coarse-grained model and simple
but efficient simulation methods we can learn many helpful information and get
some general information.

In this thesis, we have implemented three different simulation techniques to
investigate different aspects of viruses. For the study of optimal structures and
stability the most important element is finding the structure of minimal energy
and for this type of studies Monte Carlo simulations are particularly. On the other
hand, this method cannot realistically the kinetics of viral self-assembly. To that
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end, we have rather opted to use Brownian Dynamic simulations. Finally, in the
study of the mechanical deformation of viruses, we have used a mixed approach
that combined BD simulations to analize discrete effects, with FE methods to
study the macroscopic continuum response.

In next chapters we will apply all these different simulation methods to the
study of viruses in the framework of our coarse-grained model. We will see that
these thecniques will provide information on the stability, polymorphism, matu-
ration, self-assembly, AFM experiments, etc, with the hope to get some helpful
information.
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5.6 Appendix A

Expressions for the force used in the BD simulations

In general, the generalized forces are calculated from the gradient of the

potential
−→
F = − � V (rij,

−→
Ω i,

−→
Ω j), where

−→
F = (Fx, Fy, Fz, Fθ, Fφ) and

−→� =
(∂x, ∂y, ∂z, ∂θ, ∂φ). We have calculated the forces which we need for the BD sim-

ulations using the interaction potential V (rij,
−→
Ω i,

−→
Ω j) described in chapter 3. At

distances (r < 2
−1
6 σ), capsomers interact only via the Lennard-Jones potential,

which is repulsive for these distances. In this case (r < 2
−1
6 σ) the force is given by:

Fr = −dVLJ(r)

dr
=
−12ε0

r

[(σ0

r

)12

−
(σ0

r

)6
]

(5.6)

In these conditions the spatial components of the force over capsomer i are−→
F r

ij = Fr

−→r ij

r2
where rij = (xj−xi, yj−yi, zj−zi) and

−→
F r

ij = (Fx, Fy, Fz). Obviously−→
F r

ij = −
−→
F r

ji.

For distance between capsomers in the range [2
−1
6 σ0, 5σ0] the attractive part

of the Lennard-Jones is modulated by an angular contribution that depends on the

orientation
−→
Ω i and

−→
Ω j of the capsomers. In this case, the force has a ratial (as for

r < σLJ distances) plus angular part. We will derive for the capsomer i because
the translational force for capsomer j is F ij(r) = −F ji(r). The translational forces
for capsomer i in the region of distances are:

−→
F r

ij = −∂(VLJ(r)Vang(rij,
−→
Ω i,

−→
Ω j)Vtor(Ωi,Ωj))

∂r
=

= −∂VLJ

∂r
VangVtor

−→r ij

r
−�−→r ij

(Vang)VLJVtor −�−→r ij
(Vtor)VLJVang (5.7)

The first term in the previous equation is just
−→
F r

ij = Fr

−→r ij

r2
. The gradients in

the second and third terms are given by:

∂Vang

∂xi

= −Vang

[
θij − ν

α2 sin(θij)

(
dx cos(θij)

r2
− sin(θi) cos(φi)

r

)
+

+
θji − ν

α2 sin(θji)

(−dx cos(θji)
r2

+
sin(θj) cos(φj)

r

)]
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∂Vang

∂yi
= −Vang

[
θij − ν

α2 sin(θij)

(
dy cos(θij)

r2
− sin(θi) sin(φi)

r

)
+

+
θji − ν

α2 sin(θji)

(−dy cos(θji)
r2

+
sin(θj) sin(φj)

r

)]

∂Vang

∂zi
=

= −Vang

[
θij − ν

α2 sin(θij)

(
dz cos(θij)

r2
− cos(θi)

r

)
+ (5.8)

+
θji − ν

α2 sin(θji)

(−dz cos(θji)
r2

+
cos(θj)

r

)]

∂Vtor

∂xi

= −Vtor
kt
2

[(
dx cos(θij)

r2
− sin(θi) cos(φi)

r

)
cos(θji) +

+ cos(θij)

(−dx cos(θji)
r2

+
sin(θj) cos(φj)

r

)]
∂Vtor

∂yi
= −Vtor

kt
2

[(
dy cos(θij)

r2
− sin(θi) sin(φi)

r

)
cos(θji) +

+ cos(θij)

(−dy cos(θji)
r2

+
sin(θj) sin(φj)

r

)]
∂Vtor

∂zi
= −Vtor

kt
2

[(
dz cos(θij)

r2
− cos(θi)

r

)
cos(θji) +

+ cos(θij)

(−dz cos(θji)
r2

+
cos(θj)

r

)]
(5.9)

where dx = xj − xi, dy = yj − yi and dz = zj − zi.

Now, we will calculate the angular forces for the capsomer i, F θ
i and F φ

i and
for capsomer j, F θ

j and F φ
j . These forces are calculated as minus the partial deriva-

tive of θ and φ as:

F θ
i,j = −VLJ

(
Vtor

∂Vang

∂θi,j
+ Vang

∂Vtor

∂θi,j

)
F φ
i,j = −VLJ

(
Vtor

∂Vang

∂φi,j

+ Vang
∂Vtor

∂φi,j

)
(5.10)

In the case of angular forces we must calculate them for capsomer i and j
separately because Fij(θ) �= Fji(θ) and Fij(φ) �= Fji(φ). The partial derivates of
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angular parts ∂Vang

∂θi
and ∂Vang

∂θj
are given by:

∂Vang

∂θi
= Vang

(
θij − ν

α2 sin(θij)

)
1

r

[
dx cos(θi) cos(φi) + dy cos(θi) sin(φi)− dz sin(θi))

]
∂Vang

∂θj
= Vang

(
θji − ν

α2 sin(θji)

)
1

r

[
− dx cos(θj) cos(φj) + dy cos(θj) sin(φj)− dz sin(θj))

]
(5.11)

The partials of torsion part of the potential with respect to θ are given by:

∂Vtor

∂θi
=

kt
2

[
1

r
(dx cos(θi) cos(φi) + dy cos(θi) sin(φi)− dz sin(θi)) cos(θji) +

+ cos(θi) sin(θj)(cos(φi) cos(φj) + sin(φi) sin(φj))− sin(θi) cos(θj)

]
(5.12)

∂Vtor

∂θj
=

kt
2

[
1

r
(−dx cos(θj) cos(φj) + dy cos(θj) sin(φj)− dz sin(θj)) cos(θij) +

+ sin(θi) sin(θj) cos(φi) cos(φj) + cos(θi) sin(φi) cos(θj) sin(φj)− sin(θj) cos(θi)

]
Similarly, the potential derivates with respect to φi and φj are:

∂Vang

∂φi

= Vang

(
θij − ν

α2 sin(θij)

)
1

r
(−dx sin(θi) sin(φi) + dy sin(θi) cos(φi))

∂Vang

∂φj

= Vang

(
θji − ν

α2 sin(θji)

)
1

r
(dx sin(θj) sin(φj)− dy sin(θj) cos(φj)) (5.13)

and

∂Vtor

∂φi

= Vtor
kt
2r

[
− dx sin(θi) sin(φi) + dy sin(θi) cos(φi)) cos(θji)−

− sin(θi) sin(φj)(sin(φi) cos(φj) + cos(φi) sin(φj))
]

∂Vtor

∂φj

= Vtor
kt
2r

[
dx sin(θj) sin(φj)− dy sin(θj) cos(φj)) cos(θij)−

− sin(θi) sin(φj)(sin(φi) sin(φj) + cos(φi) cos(φj))
]

(5.14)

Replacing the previous expressions into eq. 5.10, we finally get for the angular
forces on capsomer i:
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F θ
i = −VLJVangVtor

(
kt
2
(1− cosφi)[

cos θji
θij − ν

α2
(dx cos θi cosφi + dy cos θi sinφi − dz sin θi) +

(cos θi cosφi sin θj cosφj + cos θi sinφi sin θj sinφj − sin θi cos θj)

]
+

(
θij − ν

sin θijα2
(dx cos θi cosφi + dy cos θi sinφi − dz sin θi)

))

(5.16)

F φ
i = −VLJVangVtor

(
kt
2
(1− cosφi)[

cos θji
θij − ν

α2
(dx sin θi sinφi + dy sin θi cosφi) +

(− sin θi sinφi sin θj cosφj + sin θi cosφi sin θj sinφj)

]
+

(
θij − ν

sin θijα2
(−dx sin θi sinφi + dy sin θi cosφi)

))

(5.18)

And the corresponding forces on capsomer j are:

F θ
j = −VLJVangVtor

(
kt
2
(1− cosφj)[

cos θij
θji − ν

α2
(−dx cos θj cosφj − dy cos θj sinφj + dz sin θj) +

(sin θi cosφi cos θj cosφj + θi sinφi cos θj sinφj − cos θi sin θj)

]
+

(
θji − ν

sin θjiα2
(−dx cos θj cosφj − dy cos θj sinφj + dz sin θj)

))

(5.20)
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F φ
j = −VLJVangVtor

(
kt
2
(1− cosφj)[

cos θij
θji − ν

α2
(−dx sin θj sinφj − dy sin θj cosφj) +

(− sin θi cosφi sin θj sinφj + sin θi sinφi sin θj cosφj)

]
+

(
θji − ν

sin θjiα2
(dx sin θj sinφj + dy sin θj cosφj)

))

(5.22)
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6.1 Introduction

Viruses are generally characterized by the architecture of their capsids. Typi-
cally, each native virus self-assembles into a unique structure, with some exceptions
like Hepatitis B virus [1] which makes T=3 and T=4 capsids. However, the pro-
teins of many viruses have the capability of self-assemble in vitro by changing the
assembly conditions even in the absence of their genetic material, forming hollow
capsids with different T-numbers and tubes [2–5], see Fig. 6.1. They can even
self-assemble and encapsulate other types of (non-genetic) cargoes, thus opening
the door to a wealth of nanotechnological applications of viruses including in vivo
imaging, controlled reactions or drug delivery. A proper understanding and control
of in vitro assembly is essential to get shells with well-defined size and structure,
as required for the different aforementioned applications [6–9].

In recent decades, the self-assembly process of viruses has been investigated
from different viewpoints, including in vitro experiments [2, 2–5, 12–14], theoretical
modeling [15–18] and simulations. As described in Chapter 3 different simulation
techniques and models have been used to study capsid structure and assembly. In
most of these models the interactions have multiple sites whose location, strength,
and directionality have to be tuned in a delicate way to reproduce a specific target
structure. For this reason, it is no clear what are the essential mechanisms and
general ingredients of the interaction which control the selection of a particular
size or structure.

That is precisely the reason why we decided to develop the simplest model
capable of describing the relevant mechanisms involved in viral assembly. In this
spirit, the goal of this chapter is to use the coarse-grained model developed in
Chapter 3 to understand the physical mechanisms controlling viral size and struc-
ture selection. We have analyzed the tolerance of the capsid to changes in the
physical parameters, related to ambient conditions, to characterize viral stability
and possible mechanisms to induce misassembly or failure. We will see that the
effective bending stiffness and spontaneous curvature are the most relevant param-
eters determining the structure and stability of the capids. In addition, elongated,
faceted, and decapsidated structures arise in a natural way with this model which
sheds important light on our understanding of viral assembly and could guide fu-
ture assembly experiments.

The chapter is distributed as follows. In section 6.2 we briefly describe some
details about our coarse-grained model and the simulation. Section 6.3 is devoted
to present the results of stability of T = 1, 3, 4, 7 and snub cube structures made
exclusively by one type of capsomers. We will also describe their tolerance to
changes in bending and spontaneous curvature and the resulting phase diagram
representing the most stable shape and the most common aberrant. We will then
repeat our analysis for viral shells made by two types of capsomers (hexamers and
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(a) (b)

Figure 6.1: Examples of viral polymorphism in vitro. Electron microscopy obser-
vations of (a) Hepatitis B self-assembly into T = 3 and T = 4 structures [10] and
(b) Simian Virus 40 self-assembly into T = 1, snub cubes, T = 7 and tubes of
different sizes. Figures taken from Refs. [10] and [11].

pentamers), discussing the main differences. Finally, in section 6.5, we summarize
the main conclusions and discuss their potential biological interpretation.

6.2 Model and Monte Carlo simulations

The coarse-grained model described in Chapter 3 has been used in the present
chapter to analyze and understand the physical mechanisms dictating the size, the
structure selection, and the stability of viral capsids. Both the models with one
capsomer type (corresponding to all-pentamer viruses), and two types of capsomers
(i.e. hexamers and pentamers) have been used and the corresponding results will
be described in two separate sections. Monte Carlo simulations have been used in
order to study the stability of preformed capsids and the range of parameters that
would in principle guarantee a successful assembly. We have studied the smaller T -
number structures, namely T = 1, 3, 4 and 7, plus the snub cube for all-pentamers
viruses, which is a stable N = 24 structure that appears in in vitro assembly of
polyoma [19] and SV40 virus [11].

Our code is based on a standard Metropolis algorithm described in Chapter
5. The following parameters have been fixed in all simulations (in reduced units):
density ρ = 0.1, temperature T = 0.05, and torsion constant ktor = 1.5. Each sim-
ulation consists of a total of 107 Monte Carlo steps sampled every 105 steps. From
the Monte Carlo simulations we obtained the average energy per capsomer, the po-
sition of every capsomer and the integrity and order of the shell for each structure
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and for each value of α and ν. The integrity of the shell was analyzed automati-
cally by monitoring the size of the shell using the following cluster criteria. Two
capsomers are considered to be part of the same cluster if their distance is smaller
or equal to 1.2 σ, and their relative angles are in the range [ν−45%ν, ν+45%ν]. In
this way, we can check that capsomers are bound and have the proper orientation.
Additionally, we have verified the integrity of the structure analyzing different
snapshots of the simulation.The breaking of the structure can be also detected by
an abrupt change in its energy.

In the case of capsids with one type of capsomer, the starting point of our MC
simulations were the positions and angles of the most stable T-number structure
harvested from the Brownian Dynamic assembly simulations described in Chapter
7. Using these structures with the optimal parameters as initial configuration,
we have repeated the simulations for a set of different values of ν and α until
the structure looses its integrity. We have used a different protocol to get our
initial T = 4 structure, because it is not an optimal structure for one type of
capsomers [21, 22] and was not obtained in our BD self-assembly simulations. In
this case, we have used as initial guess the theoretical T = 4 positions and angles
from the coordinates of the icosahedral spherical code corresponding to the solu-
tion of the maximum volume problem for N = 42 in Ref. [23]. We equilibrated
this initial configuration using a short Monte Carlo simulation using α = 0.1 and
the predicted value νopt = 1.88496 (see Table 3.1, in Chapter 3), and verified that
this configuration was indeed locally stable. From it, we did a sequence of MC
simulations changing ν and α.

The Monte Carlo simulations were used to analyze the energy and order of
structures as a function of the two parameters ν and α. Changes in ν and α are
intended to resemble changes in the environmental conditions (pH or salt concen-
tration). As we will see, ν is the main parameter in the selection of a particular
structure for a viral capsid. In fact, as described in Chapter 3, we can estimate
the theoretical values of the preferred angle that are expected to be optimal for
each T-number structure, that will be denoted as νopt. The resulting νopt for each
T are listed in Table 3.1, and simulations have been made in a range of ν that
encompasses structures from T = 1 to T = 7.

6.3 Stability of all-pentamer viruses

In this section, we will focus on the assembly and stability of viruses formed
exclusively by one type of capsomer such as papillomavirus [24] and polyoma [19].
We will first analyze separately what is the influence of the bending stiffness and
of the preferred angle ν on the energy and integrity of the capsids. We will then
focus on the conditions favoring elogated, faceted or decapsidated shells; and end
up by showing the phase diagram of each structure and the complete stability
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Figure 6.2: Average energy per capsomer for ktor = 1.5, T = 0.05, and α = 0.1, as
a function of the preferred angle ν for the T = 3 structure with N = 32 capsomers.
The inset figures show snapshots of the optimal capsid, an elongated shell, and
the typical aberrant structures obtained when the capsid loses its stability at too
low and too high values of ν. The red line corresponds to a fit: < E > /N =
−2.23 + 1

2
386.8(ν − 1.907)2.

phase diagram in the range of parameters studied.

6.3.1 Stability of different structures

In the following, we summarize the results obtained for the stability of T =
1, 3, 4, 7 and snub cube structures made by one type of capsomers, using Monte
Carlo simulations. We have analyzed the tolerance of each structure to changes in
ν and α and the influence of the parameters in different morphology changes, and
in the appearance of aberrant structures.

Influence of the preferred angle ν

First, we have analyzed the stability of all structures by fixing α = 0.10 and
changing the preferred angle ν, related to the spontaneous curvature, for each
structure. We have chosen α = 0.1, because at this value of α all structures
self-assembled successfully in our BD simulations (see Chapter 7). For all the
structures we have observed the same qualitative behavior upon changing ν, which
is illustrated in Fig. 6.2 for the case of T = 3. The average energy per capsomer
as a function of ν has a clear parabolic behavior for all structures. By fitting the
energy per capsomer to a parabola E

N
= E0

N
+ K

2
(ν− ν0)

2 around the optimal value
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Figure 6.3: Average energy per capsomer for ktor = 1.5, T = 0.05, and α = 0.1, as
a function of the preferred angle ν for all structures.

Structure ν range α range E0/N (ε0) νopt ν0 K
T=1 2.09-2.22 0.03-1.81 -1.91 2.12437 2.125 362
Snub 1.92-2.01 0.04-1.15 -2.13 1.954 1.953 416
T=3 1.88-1.98 0.06-1.40 -2.23 1.93566 1.907 387
T=4 1.84-1.92 0.06-1.25 -2.26 1.88496 1.858 316
T=7 1.77-1.85 0.03-1.75 -2.45 1.79667 1.796 441

Table 6.1: Stability range and parameters for the different structures. The columns
indicate: the range of ν at α = 0.10, and the range of α at ν = νopt, at which
each structure maintains its integrity; the predicted value of the angle νopt for each
structure; the optimal preferred angle ν0, the optimal average energy per capsomer
E0/N , and the effective stiffness K, obtained from the parabolic fit of the energy
per capsomer vs ν for each structure.

of the preferred angle, we have obtained a minimum energy per capsomer E0/N ,
the optimal angle ν0, and the effective stiffness K for every structure. The results
are compiled in Table 6.1. Remarkably, the values of the optimal spontaneous
curvature ν0 obtained from the fit (see Table 6.1) agree, within the error, with
the expected values listed in Table 3.1, except for the T = 3 structure, whose ν0
obtained from the simulations is smaller than the predicted νopt.In addition, the
values of the effective stiffness K are similar to the naive estimate K ≈ zε0

2α2 = 300
for the average bending stiffness per capsomer of a hexagonal network proposed in
the model of Chapter 4.

The parabolic behavior ends abruptly at both extremes, indicating that there
is a finite range of spontaneous curvatures for which each structure keeps stable.
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Outside this range, structures suffer a morphological change or loose their integrity
by different mechanisms. When the preferred angle ν is too small, the bending
contribution forces the structure to be less curved until eventually it opens up (see
Fig. 6.2). In this case, breaking occurs when the energy cost of being an open
structure (associated to the line tension due to the missing interactions at the rim
of the open capsid) is less than the cost of feeling angularly frustrated. On the
other hand, for large spontaneous curvatures, the structures loose their stability
by different mechanisms. In Fig. 6.2 we first see a plateau at big ν in the average
energy per capsomer for the T = 3 structure, corresponding to the appearence of
an elongated structure, as described in more detail below. If we keep increasing
the preferred angle ν, the bending contribution will tend to make the shell smaller
until the energetic cost needed to keep the integrity of the T = 3 structure becomes
too large, and the shell eventually breaks up typically into two smaller incomplete
structures (see Fig. 6.2).

Finally, we have compared the behavior of the energy per capsomer as a func-
tion of the preferred angle ν for a fixed α = 0.10 and for all structures, see Fig.
6.3. All structures have a parabolic behavior of the energy. But as the structure
becomes bigger, its tends to be more stable, i.e. large structures have lower op-
timal average energy per capsomer E0/N . Note that this optimal values of the
energy depend on the chosen value of α. As we will see in the next section, E0/N
gets smaller with α, since the bending penalty becomes smaller, plus the interac-
tion becomes slightly longer ranged. Another important observation is that large
structures, like T = 7, tolerate less changes in ν than small structures, as T = 1
(see Table 6.1). That is because in big structures a small change in ν means a
big change in the radii, as indicated by eq. 3.10. But the most important feature
of Fig. 6.3 is the overlap in the stability range of T = 3, T = 4 and the snub
cube. That is a clear indication that, for intermediate values of the spontaneous
curvature, these three structures compete.

Influence of the bending stiffness parameter α

In this section we have repeated our analysis of the stability of all structures
now by fixing ν to the predicted optimal angle νopt, listed in Table 6.1, and changing
α, in different ranges up to the breaking of the structure, which is detected both
in the cluster statistics as well as by an abrupt change in the average energy
per capsomer (see Fig. 6.4). For all the structures we have observed the same
qualitative behavior upon changing α, which is illustrated in Fig. 6.4 for the case
of T = 3. The energy per capsomer gets monotonically smaller with α, since
the bending penalty becomes smaller, plus the interaction becomes slightly longer
ranged and more isotropic. The main difference between structures is the range of
α in which they are stable, that is listed in Table 6.1. Outside this stability range,
the shell loses its integrity by two different mechanisms. For very small α the
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Figure 6.4: Average energy per capsomer versus α for the T = 3 structure with
ν = 1.93566, N = 32, ktor = 1.5, and T=0.05.

Figure 6.5: Optimal angle, ν0 (blue line), optimal energy per capsomer, E0/N (red
line), optimal radius of the shell R∗ (green line) and its effective stiffness K (orange
line) as a function of α for a T = 3 with ν = νopt.

angular interaction tolerance is very small so that any small misalignment driven
by thermal fluctuations leads to a progressive loss of capsomers. For too large α, the
angular tolerance of the Lennard-Jones potential is large, becoming progressively
more isotropic, and the shell collapses into a compact cluster or concentric layer
structures, as can be seen for the T = 3 example in Fig6.4.

From the stability ranges listed in Table 6.1, it is clear that T = 1 and T = 7
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(a) (b) (c)

Figure 6.6: Snapshots of different elongated structures for α = 0.10, ktor = 1.5
and T=0.05 for (a) T = 1 for ν = 2.2, (b) Snub cube for ν = 2.01 and (c) T = 3
structure for ν = 1.97.

are the structures that have the largest tolerance to changes in α, whereas the snub
cube and T = 4 have the least tolerance to changes in α.

Finally, we have analyzed how the value of α modifies the optimal angle, ν0,
the optimal energy per capsomer, E0/N , the optimal radius of the shell, and its
effective stiffness K. The results for the case of T = 3 obtained in the range
α ∈ [0.05, 1.00] are plotted in Fig. 6.5. In that range of α the optimal angle
ν0, and radius R∗ are practically constant (ν only increases by 0.033 rad and the
radius by 0.1σ), but the optimal energy per capsomer E0/N decreases by 0.39ε0.
The effective stiffness K changes as ∼ 1

α2 , as predicted for the bending rigidity
according to eq. 3.22, obtained in Chapter 4.

6.3.2 Elongated structures

Bacilliform structures are a common shape adopted by some native viruses
and also by some spherical viruses assembled in in vitro experiments. These elon-
gated morphologies have been extensively reported and studied showing a great
variety of sizes. Some examples for all pentamer viruses include SV40, see Fig.
6.1(b), or human papillomavirus, where elongated and spherical shapes coexist in
in vitro experiments.

For all the structures that we studied, we found a small region of parame-
ters where elongated structures emerge as optimal structures. In particular for
T = 1 we saw a morphological change from the T = 1 spherical capsid to an elon-
gated structure (see Fig. 6.6 (b)) in the range α = 0.1 and ν ∈ [2.185, 2.22]. For
the snub cube, we have obtained elongated structures in the range α = 0.1 and
ν ∈ [2.005, 2.010], see Fig. 6.6(b). For α = 0.05 there are elongated structures in
the ranges ν ∈ [1.925, 1.94] and ν ∈ [1.885, 1.890] for T = 3, see Fig. 6.6(c), and
T = 4 structures, respectively. Finally, in the region α = 0.03 and ν ∈ [1.80, 1.81]
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T R (σ) ν CR
1 0.951 2.185 2.19

Snub cube 1.602 2.005 2.43
T=3 1.957 1.925 2.71
T=4 1.99 1.89 2.50
T=7 2.93 1.80 2.66

Table 6.2: Values of the radius R and the preferred angle ν, where the transition to
an elongated structure occurs for the different structures studied. The last column
list the value of CR, that is very close to the prediction CR ≈ 3 of Nguyen and
co-workers [29].

is where T = 7 structure becomes elongated.

In all cases, the appearance of elongated structures occurs at small α and
ν > νopt. Presumably, for ν > νopt the capsid is forced to increase its curvature,
and if the bending penalty is important, as occurs for small α, a compromise solu-
tion is to change the shape into an elongated structure, rather than a compressed
spherical shell.

Nguyen and co-workers [29] estimated using a simple continuum elastic model
that the transition from sphere to spherocylinder takes place, for small FvK num-
bers, when CR � 3. To check that prediction, we have calculated the value of
CR = −4cosν

σ
R for every structure at the value of α and ν at which the transi-

tion to an elongated structure takes place, that can be located by the kink in the
optimal energy versus ν plot (see Fig. 6.2). The results are listed in Table 6.2,
and are very close to the theoretical prediction, deviating slightly more from the
predictions for the cases of T = 4 and the snub-cube.

6.3.3 Buckling

Many spherical viruses, before becoming infective, go through an intermediate
stage of maturation, where they undergo a structural transition that flattens the
faces of their capsids to form an icosahedron. This morphological change is known
as buckling transition and it has been characterized in the framework of continuum
elasticity [29, 30].

In continuum elasticity theory a viral capsid is considered as a thin elastic
shell with two competing energies: The bending energy, which takes into account
the deviations from the spontaneous curvature imposed by the proteins, and the
stretching energy, which involves the in-plane deformations of the network of pro-
teins. The ratio of these contributions defines the Föppl-von Kárman number,
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Figure 6.7: Elastic energy E of an icosahedral shell expressed in units of the
bending constant κ versus Foppl-von Kármán Number. Near a critical value around
4πγ = 3000 (i.e γ ≈ 239) a buckling transition takes place, with the shell shape
transforming from spherical to icosahedral. The dotted line shows the result of a
fit to the theory [29].

(a) (b)

Figure 6.8: Snapshots of different faceted structures obtained in our simulations
corresponding to a (a) T = 4 for ν = 1.875 and α = 1.2 and (b) T = 7 for ν = 1.797
and α = 1.6.

γ = Y R2/κ, a nondimensional parameter that determines the shape of the virus,
where Y is the Young modulus and κ the bending rigidity. For γB ≈ 240 it is pre-
dicted the occurrence of a buckling transition from a spherical shape, at γ < 240
to an increasingly faceted polyhedral capsid for γ > 240, see Fig. 6.7.

One of the features of our coarse-grained model is that it naturally accounts
for this buckling transition. In the context of our model, using the values of Y and
κ derived in Chapter 3, the FvK number γ becomes:
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Figure 6.9: Average energy per capsomer for a T = 7 structure versus α at νopt =
1.79667, ktor = 1.5 and T = 0.05. The red dashed line indicates the transition from
a spherical capsid to a faceted shell, as illustrated by the inset snapshots taken
from the MC simulations.

γ = 128α2

(
R

σ

)2

(6.1)

For a given T-number the radius will be approximately constant, so the oc-
currence of a buckling transition at which we will start noticing the faceting of
our shells will be directly related to the value of α. Since the FvK is proportional
to R2, buckling will be observed more easily for large capsids. Indeed, we have
observed this buckling transition in our largest capsids, i.e. T = 4 and T = 7
having radii R = 1.99σ and R = 2.93σ, respectively, for the corresponding νopt,
see Fig. 6.8.

Fig. 6.9 represents the average energy per capsomer as a function of α for
T = 7 at the optimal spontaneous angle νopt, see Fig. 6.8(b). In this case, there is
a critical α value of around 0.6 (indicated by the red line in Fig. 6.9), where the
equilibrium structure starts to become noticeably and progressively more faceted
upon increasing α. Thus, this value of α = 0.6 characterizes the onset of buck-
ling for νopt, and corresponds to a value of γ ≈ 225, which compares well with
the predicted threshold γB. For T = 4 at νopt, the radius is R(T = 4) = 1.99σ,
and a noticeable buckling is observed also starting at αB = 0.6, corresponding to
γ = 125, see Fig. 6.8(a).

The critical value of α increases slightly with ν, becoming for instance around
α = 0.65 for bigger ν angles. This is due to the fact that larger values of ν slightly
reduce the radius, thus requiring larger α’s to compensate this effect. It is worth
noticing that faceted structures have less energy than the spherical shape.
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(a) (b)

Figure 6.10: Snapshots of decapsidated structures obtained (a) for T = 3 with
ν = 1.95 and α = 0.02. (b) For T = 7 at ν = 1.81 and α = 0.05.

6.3.4 Decapsidation

There a some viruses that in vitro suffer a decapsidation process driven typ-
ically by changes in pH or temperature. Examples of T = 3 viruses that undergo
decapsidation are Turnip Yellow Mosaic Virus (TYMV) [31], Belladonna Mottle
virus (BelMV) [32] and Eggplant Mosaic Virus (EMV) [32]. These viruses loose
their pentamers in vitro when the pH is ≤ 5.0.

We have also seen the decapsidation process in our simulation for T = 3 in a
small region of parameters, corresponding to α = 0.02 and ν ∈ [1.945, 1.950] and
around α = 0.03 and ν = 1.955, see Fig. 6.10(a). There are also all-pentamers
T = 7 viruses as Human Papillomaviruses Type 18 [33, 34] or polyoma virus [35]
that loose their pentons in experiments. That corresponds to the behavior which
we have obtained for our T = 7 structure at ν ∈ [1.79, 1.82] and α ∈ [0.03, 0.05],
see Fig. 6.10(b). Thus decapsidation seems to be observed at very small values
of α, i.e. large bending rigidities, where the small difference in the angle between
pentons and hexons has a large energetic cost, so large that the shell is eventually
more stable without them.
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6.3.5 Stability phase diagram

In the previous section, simulations were performed either at a fixed α or at
a fixed ν. In this section we present the full phase diagram of each structure in
the range of values of α and ν where each of them have been found to be stable.
This phase diagram has been obtained by repeating all the MC simulations of each
structure, at steps of 0.05 in α and 0.01 in ν.

Figs. 6.11 to 6.15 compile the phase diagrams obtained for T = 1, the snub
cube, T = 3, T = 4, and T = 7. We have also included in the diagram the typical
aberrant structures. We can see in all cases 5 different morphologies, illustrated
as an example, for the case of T = 7 Fig. 6.15: 1) the perfect spherical structure
(indicated by the blue region), 2) one (or two) open structures, smaller than the
normal one (the violet region) obtained at small α and large ν, 3) burst structures
(indicated in red in Fig. 6.15) at small α and ν, 4) compact clusters or multi-
layered structures (the orange region in Fig. 6.15) when the bending penalty is
low, and 5) elongated capsids (in the narrow light green area in Fig. 6.15). For
the largest T = 4 and T = 7 structures, there is also a region at α > 0.6 where
the equilibrium structure is a faceted icosahedral capsid (indicated by the green
region. For T = 3 and T = 7 we have seen also a small region where decapsida-
tion of the pentameric capsomers occurs (yellow area in Figs. 6.13 and 6.15, see
previous subsection).
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Figure 6.11: Phase diagram of the different structures obtained from a T = 1 as a
function of α and ν, for N = 12, ktor = 1.5 and T = 0.05.

Figure 6.12: Phase diagram of the different structures obtained from a snub cube
as a function of α and ν, for N = 24, ktor = 1.5 and T = 0.05.
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Figure 6.13: Phase diagram of the different structures obtained from a T = 3 as a
function of α and ν, for N = 32, ktor = 1.5 and T = 0.05.

The case of T = 4 is special. In principle, this structure is not an optimal
configuration for capsids made out of a single type of capsomer [21]. As a conse-
quence, the phase diagram of T = 4 shows another typical morphology. For small
α (i.e. large bending penalty) and ν < νopt (less than optimal curvature), we obtain
as optimal morphology a shell corresponding to the optimal structure of N = 44
but with two missing capsomers, normally one in front of the other. As described
in Chapter 7, all-pentamer T = 4 structures do not self-assemble spontaneously,
due to the strong competence of two structures very close in size and in energy,
corresponding to N = 40 and N = 44, which have cubic simmetry [21]. It seems
that, in this range of ν and α, it is more stable to have a 44 structure with 2
missing capsomers than a T = 4 structure.
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Figure 6.14: Phase diagram of the different structures obtained from a T = 4 as a
function of α and ν, for N = 42, ktor = 1.5 and T=0.05.

Figure 6.15: Phase diagram of the different structures obtained from a T = 7 as a
function of α and ν, for N = 72, ktor = 1.5 and T=0.05.
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Figure 6.16: Complete stability phase diagram of the different structures obtained
as a function of α and ν, for ktor = 1.5 and T=0.05. From small to big ν and
from small to large α: T = 7 ; elongated (yellow), spherical (blue) and icosahedral
(dark yellow); T = 4, elongated (dark blue), spherical (green), and icosahedral
(red); T = 3, elongated (red), and spherical (orange); snub cube, elongated (light
orange) and spherical (blue) and T = 1, elongated (light green) and spherical (dark
blue).

Combining the phase diagrams of each structure, we have compiled the com-
plete stability phase diagram of the dominating structures in the range 0.03 < α <
1.80 and 1.76 < ν < 2.22 (see Fig. 6.16). In the range where different structures
compete, the diagram shows the one with the lowest energy. We can see that the
preferred angle ν is the main parameter selecting a particular structure. In order
from smaller to larger ν, the optimal shells are T = 7, then T = 4 in a very narrow
range, T = 3, the snub cube, and finally T = 1. There is a region of preferred
angles ν where none of these structures is stable (although other local optimal
structures like N = 27 or N = 16 could be stable) (see Fig. 6.16, violet region).
At α ∼ 0.65, T = 7 and T = 4 have a transition between a spherical shell (at small
α) and faceted structures (at large α).

Elongated structures appear at ν > νopt and a narrow range of small α before
the structure breaks. In particular, T = 1 and the snub cube are elongated for
α = 0.1 (Fig. 6.16, orange and light green regions). T = 3 and T = 4 adopt an
elongated morphology for α = 0.05 (Fig. 6.16, red and blue regions). Finally, the
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Figure 6.17: Average energy per capsomer versus ν angle with α = 0.10, ktor =
1.5 and T=0.05 for a T = 3 structure made of two different kinds of subunits
(pentamers in red and hexamers in green).

elongated T = 7 structure is obtained for α = 0.03.

In terms of their tolerance in changes of parameters, Fig. 6.16 shows that
T = 1 and T = 7 are the structures which tolerate largest changes both in α and
ν. T = 3 capsids are also in principle stable in a wide range of angles, but its
stability range is strongly limited by the competence with T = 4 and the snub
cube. That might be one of the reasons why polyoma forms snub cubes instead of
T = 3 in vitro. T = 4 has the smallest stability region in the phase diagram due
to its non-optimal nature.

6.4 Stability of capsids made by two types of capsomers

In this section we discuss the results obtained when two different types of cap-
somers, pentamers and hexamers, are considered. This is a more general scenario
particularly valid for viruses that form from pentamers and hexamers previously
assembled in solution, as it is the case of HK97 [27]. In our model, the only dif-
ference between pentamers and hexamers is that they differ in size (see Fig. 3.3

). The ratio between their effective radii is σp

σh
= tan(π/6)

tan(π/5)
, and was determined by

inscribing their equatorial circles, respectively, into a pentagon or a hexagon of the
same edge, as described in section 3.3.

We have assumed that the strength of the binding interactions between hex-
amers, pentamers, and between hexamers and pentamers, are all the same. We
used the same MC algorithm to analyze the stability of these structures in the
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Figure 6.18: Average energy per capsomer versus ν for α = 0.10, ktor = 1.5 and
T=0.05, for a T = 3 structure with only one (blue circles) o two types of subunits
(red squares).

range of parameters α and ν. In all simulations, the density ρ = 0.1, temperature
T=0.05, torsion constant ktor = 1.5, total number of MC steps 107, and sam-
pling frequency (every 105 steps), were fixed to the same values as in our previous
analysis. In this case, the initial configurations used in our MC simulations were
obtained from the the coordinates of the icosahedral spherical code corresponding
to the solution of the maximum volume problem in Ref. [23]. Using this model, we
repeated the previous stability analysis performed for all-pentamer shells, focusing
on the differences associated to the presence of two different morphological units.

Influence of the preferred angle ν

First, we studied the behavior of the different structures with ν as we did for
the case of one type of morphological subunit. We have obtained the same quali-
tative behavior of the average energy versus ν, and the same kind of aberrant as
for the case of all pentamer viruses. The main differences are that, in general, the
structures with two capsomers types tolerate larger changes in ν and their average
energy per capsomer is always smaller than that for the same structure with all
subunits of the same size. As an example, Figs. 6.17 and 6.18 show the results for
the average energy per capsomer as a function of ν for a T = 3 structure at fixed
α = 0.1. The energy also exhibits a parabolic behavior as a function of ν around
and optimal value ν0. The results of a parabolic fit for each structure at α = 0.1
are compiled in Table 6.3.
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Figure 6.19: Average energy per capsomer versus α for the T = 7 structure with
ν = 1.79667, N = 72, ktor = 1.5 and T=0.05 made by two different subunits
(hexamers in green and pentamers in red ) differing in their size.

Influence of the bending stiffness parameter α

In this case, we have fixed the value of ν in each structure to νopt and we
changed the parameter α, associated to the bending stiffness. One again, com-
paring with the results in the previous section for all pentamer viruses we have
observed the same qualitative behavior of the energy and aberrant structures at
too large α (compact clusters or concentric layers) or too small α (disrupted shells).
There are, however, two noticeable differences. First, the average energy per cap-
somer is smaller for shells made of hexamers and pentamers and the structure
tolerates larger changes in α, specially the bigger structures, as shown in Table 6.3
and in Fig. 6.19 for T = 7. The second important difference is that we did not
observe any faceted structure, in contrast to the buckling obtained for T = 4 and
T = 7 with all subunits of the same size for large values of α. This is most prob-
ably due to the fact that the smaller size of pentamers alleviates the accumulated
stress [37], which is the main driving force for the buckling.

Stability phase diagram

In the previous subsections, simulations were performed either at α or at ν
fixed. Now, we construct the full phase diagram of each structure with two cap-
somers types in the range of values of α and ν where they keep their integrity at
steps of 0.05 in α and 0.01 in ν. Obviously, the phase diagram for T = 1, made
exclusively by pentamers, is the same as the one in the previous section, see Fig.
6.11. In addition, we did not analyze the stability of snub cubes structures because
this structure with two different subunits is not optimal and has not been observed
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Structure ν range α range ν0 νopt E0/N (ε0) K
T=1 2.09-2.22 0.03-1.81 2.125 2.12437 -2.12 362
T=3 1.87-1.99 0.06-1.90 1.91 1.89698 -2.37 419
T=4 1.84-1.92 0.06-2.10 1.86 1.84758 -2.45 426
T=7 1.75-1.87 0.03-2.90 1.79 1.78005 -2.64 485

Table 6.3: Stability range and parameters for the different structures with two
capsomer types. The columns indicate: the range of ν at α = 0.10, and the range
of α at ν = νopt, at which each structure maintains its integrity; the predicted value
of the angle νopt for each structure (see Table 3.1); the optimal preferred angle ν0,
the optimal average energy per capsomer E0/N , and the effective stiffness K,
obtained from the parabolic fit of the energy per capsomer vs ν for each structure
at α = 0.1.

in experiments [21].

Figs. 6.20 to 6.22, show the phase diagrams obtained for T = 3, T = 4 and
T = 7, with two types of capsomers. The figures show the most characteristic
stable morphologies and also the typical aberrant structures. We can see, in all
cases, 5 different morphologies, illustrated as an example, for the case of T = 7
in Fig. 6.22: 1) the perfect spherical structure (indicated by the blue region), 2)
open aberrant structures, smaller than the normal one (indicated by the violet
region) obtained at small α and large ν, 3) burst structures (indicated in red) at
small α and ν , 4) clusters or multi-layered structures (the orange region in Fig.
6.22) when the bending penalty is low, and finally 5) elongated capsids (yellow
regions). Remarkably, unlike the simulations with only one type of capsomers,
here no faceted structures appear in the phase diagram, not even for the largest
T = 4 and T = 7. In this case, the presence of the smaller pentamers prevents the
accumulation of stress that triggers the faceting of the shells.
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Figure 6.20: Phase diagram of the different structures obtained from a T = 3 with
pentamers (in red) and hexamers (in green) as a function of α and ν, for N = 32,
ktor = 1.5 and T=0.05.
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Figure 6.21: Phase diagram of the different structures obtained from a T = 4 with
pentamers (red spheres) and hexamers (green spheres) as a function of α and ν,
for N = 42, ktor = 1.5 and T=0.05.

Figure 6.22: Phase diagram of the different structures obtained from a T = 7 with
pentamers (in red) and hexamers (in green) as a function of α and ν, for N = 72,
ktor = 1.5 and T=0.05.
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Figure 6.23: Complete stability phase diagram of the different structures obtained
as a function of α and ν, for ktor = 1.5 and T=0.05. From small to big ν and
from small to large α: T = 7; elongated (red) and spherical (light orange); T = 4,
elongated (dark blue) and spherical (light green); T = 3, elongated (light blue)
and spherical (orange) and T = 1, elongated (yellow) and spherical (dark blue).

Putting together the phase diagrams of each structure, we have constructed
the complete stability phase diagram of the dominating structures with two cap-
somer types in the range 0.02 < α < 3.0 and 1.75 < ν < 2.22 (see Fig. 6.23).
In the range where different structures compete, the diagram shows the one with
the lowest energy. Again we see that the preferred angle ν is the main parameter
selecting a particular structure. In order from smaller to larger ν, the optimal
shells are T = 7 (light orange), then T = 4 (light green), T = 3 (orange) and
finally T = 1 (dark blue). There is a region of preferred angles ν where none of
these structures is stable (violet).

There is a significant overlap of T = 7 and T = 4 shells for angles in the range
ν ∈ [1.845, 1.86] and of T = 4 and T = 3 capsids in the range ν ∈ [1.87, 1.91].
Elongated structures appear at ν > νopt and relatively small α but strong enough
to prevent their breaking. T = 1 is elongated for α = 0.1 (see Fig. 6.23 yellow
region). T = 3 and T = 4 have elongated morphology for α = 0.05 (see Fig. 6.23
light blue and blue regions). Finally, an elongated version of T = 7 is obtained for
α = 0.03 (in red).
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Figure 6.24: Comparison of the stability phase diagrams of the different structures
obtained as a function of α and ν, for one type and two types of capsomers, and
ktor = 1.5 and T=0.05. The coloured areas indicate the stability of T = 7 (orange
and yellow), T = 4 (dark and light green), T = 3 (orange and red) and T = 1
(blue) with pentamers and hexamers, whereas the boxed areas correspond to the
stability of all-pentamers viruses.

Fig. 6.24 compares the phase diagrams obtained for capsids with one or two
different capsomer types. The most noticeable difference is that for all-pentamers
T = 7 and T = 4 shells we obtained faceted structures at high α, whereas for the
same structures but using two types of subunits there are not faceted structures.
Moreover, all structures with pentamers and hexamers tolerate larger changes in
α and ν keeping its integrity, especially in α. The stability range of T = 7 and
T = 4 structures with hexamers and pentamer overlap, unlike what happened for
the same structures with only one type of subunit, where this overlap did not exist.

6.5 Conclusions

In this chapter we have characterized the phase diagram of stability of vi-
ral shells corresponding to the lowest CK structures plus the snub cube, using
MC simulations. We have verified that our model is able to reproduce the right
structures adopted by viruses as energy minima. In addition, we have found the op-
timal parameters required for stability in each case both for all-pentamers viruses
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as well as for viruses made by two different morphological units (pentamers and
hexamers). We have seen that the parameter α associated to the bending stiff-
ness, and specially the preferred angle ν of capsomer-capsomer interaction are the
main parameters controlling the selection of a specific structure by a virus. These
macroscopic physical parameters are directly linked to the interaction between pro-
teins, that can be in turn modified by changing the assembly conditions. Thus our
model provide useful insight on how the modification of assembly conditions will
determine the fate of the assembly.

In this context, a relevant example is Polyoma, whose capsid is made exclu-
sively by pentamers, that can be assembled in vitro forming T = 1, snub cube and
T = 7 structures [19]. It is remarkable that this virus adopts a snub cube rather
than a T = 3 structure. One possible explanation for this fact could be the overlap
in the phase diagram between the snub cube, T = 3 and T = 4 observed in Fig.
6.16. This diagram shows that for a specific range of values of the preferred angle
between capsomers, a snub cube structure would be preferred over a T = 3, as
occurs in the case of polyomavirus.

We have also seen that the model reproduces not only the optimal spherical
structures of capsids, but also elongated, faceted and decapsidated structures that
are also characteristic of many viruses. There are many studies of polymorphism
in viral capsids, where spherical and elongated shapes appear as a function of en-
vironmental conditions, e.g., salt concentration or pH. Some examples are CCMV,
alphalpha mosaic virus, polyoma or Simian 40 virus. Especially interesting for us
are the polyoma virus and Simian 40 virus because these two virus assemble only
with pentamers. Indeed, we have located small regions in the να phase diagram for
all structures where the preferred structure is elongated. In all cases, this occurs
for small α (or large bending constant kb ) and ν bigger than optimal angle νopt,
in agreement with theoretical predictions.

We have also observed the faceting of T = 4 and T = 7 all-pentamers struc-
tures occurring at a critical value of α that nicely coincides with the prediction
of where the buckling transition occurs. For T = 3 and T = 7 we have also
obtained decapsidation by the loss of pentamers, and not hexamers, because pen-
tamers have only 5 neighbors and they suffer more stress than the hexamer for
these structures [37].

Thus our model could yield very useful insight on the physical mechanisms
regulating viral assembly. Moreover, we have also characterized what happens to
the structures when the parameters are not right, leading to aberrant morpholo-
gies. These aberrant structures, and the physical mechanisms involved in their
formation, could also provide guidance to find the right conditions for the correct
assembly of viruses, or alternatively, the most relevant factors that will lead to
misassembled and inactive virus.
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The results found in this chapter refer to an equilibrium phase diagram of
stability of preformed structures. But viral self-assembly is a truly kinetic non-
equilibrium process. The actual kinetics of assembly and the modifications that it
introduces in the picture are the topic of the next chapter.
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7.1 Introduction

In the previous chapter, we analyzed the range of bending stiffness and pre-
ferred angles for which the different capsids in our coarse-grained model are ex-
pected to be stable. But the stability of a preformed capsid and the conditions
required for its assembly are in general different. The formation of a capsid is in
reality a kinetic process and there is no warranty that conditions at which a capsid
can keep its integrity will be ideal for its formation out of a solution of free subunits.

In this chapter we are going to analyze the kinetics of capsid formation using
BD simulations. The idea is to mimic, using simulations, the standard conditions
and procedure of in vitro assembly experiments of empty capsids. We will thus
start from a solution containing our model capsomers randomly dispersed at a
given concentration and conditions (in terms of T , α and ν) and will monitor the
successful formation of stable structures, corresponding to the ones adopted by
viruses. In particular, we will focus on the assembly of stable structures in the
range of parameters between T = 1 and T = 7. For the sake of simplicity, we
will restrict our simulations to the assembly of empty capsids for which identical
capsomers are the fundamental assembly units. This will be the case, for instance,
of the assembly of papilloma [1, 2] and polyomavirus [3].

After describing some details of the model and simulations in Section 7.2, the
first goal is to confirm that the direct assembly of the different optimal structures
is indeed spontaneously feasible with our coarse-grained model (Section 7.3). We
will then analyze in Section 7.4 the conditions required for assembly and compare
them with those corresponding to the range where preformed capsids are stable.
In Section 7.5 the kinetics of assembly in more detail, focusing on the particular
case of a T = 3 viral shell. We will use simulations to determine the equilibrium
conditions, as well as the critical cluster size, the activation barrier and the nucle-
ation rates, and compare them with the CNT predictions. Finally, we summarize
the main conclusions in Section 7.5.

7.2 Model and Brownian dynamics simulations

The study of the kinetics of capsid assembly will be done using our coarse-
grained model introduced in Chapter 3. In this study, only one type of capsomer
will be considered, corresponding to the standard conditions of in vitro assembly
of viruses such as polyoma, SV40 and papillomavirus [1–5].

Since in this chapter the interest is on the dynamics of the process, BD simu-
lations will be used instead of equilibrium MC simulations. The general philosophy
and details of the simulation are described in Chapter 5. It is important to em-
phasize that typically the self-assembly of a virus takes place at time scales that
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range from seconds to minutes or hours. These timescales are not easy to reach
in simulations, not even for simple coarse-grained models. Therefore, one should
keep in mind that our simulations will be done at much more supersaturated con-
ditions than the typical conditions for assembly in vivo or in vitro. Nevertheless,
the results of the simulations will provide a useful insight on the mechanism and
kinetics of viral assembly. In addition, assembly at those extreme conditions will
constitute a more stringent test of the validity of the theory.

We implemented four different types of BD simulations. First, some prelimi-
nary simulations using a fixed number of capsomers equal to those in the desired
structure, were performed. The second type of simulations were done for N = 100,
and changing the values of the parameters of the potential α and ν to map the
phase diagram of the assembly. The third type of simulations were designed to
find out the conditions corresponding to equilibrium between free capsomers and a
complete T = 3 capsid. For those simulations, we started from a half T = 3 capsid
and monitored whether this structure disassemble or grow for different values of
the density. The last type of simulations were targeted to analyze accurately the
kinetics of assembly of a T = 3 structure. To that end, simulations with N = 100
capsomers at fixed α and ν, corresponding to optimal values for the formation of
T = 3, were repeated with different initial configurations a hundred times. By
monitoring the size of the largest cluster in each case, it is possible to evaluate the
assembly rate, the critical cluster size, and the nucleation barrier. The specific de-
tails of each simulation as well as the results obtained with them will be described
in the corresponding section.

7.3 Preliminary simulations of assembly

We first did some preliminary simulations to verify the feasibility of the as-
sembly and to determine the approximate ranges adequate for the assembly of each
structure. These preliminary simulations were done using a total number of sub-
units equal to that of the desired structure (namely, N = 12 for T = 1, N = 32 for
T = 3, N = 24 for the snub cube, and N = 72 for T = 7). With this strategy, one
limits the competence with other aberrant structures, and also the formation of
more than one partial structures, so the simulations are faster. In this preliminary
simulations, we were able to obtain successful assembly in all cases at α ≈ 0.1
and values of the preferred angle ν close to the expected optimal values νopt listed
in Table 3.1. The density was set in all cases to ρ = 0.1 in reduced units. The
structures resulting from these simulations are plotted in Fig. 7.1.

In those preliminary simulations, we analyzed first the effect of the reduced
temperature (which in our reduced units is analogous to a change in the binding
strength ε0. At very low temperatures, i.e. T=0.05 (corresponding to ε0 = 20kBT ),
the assembly of the structures was not very successful. The system immediately
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(a) (b)

(c) (d)

Figure 7.1: Snapshot of the structures obtained at the end of a BD assembly
simulation for: (a) a T = 1 shell with N = 12, (b) a snub cube with N = 24, (c)
a T = 3 shell with N = 32, and (d) a T = 7 shell with N = 72. In all cases, the
simulations were done at ρ = 0.1, T=0.1, kt = 1.5.

started the formation of multiple partial shells until no more free subunits were
available. Thus at these conditions, and specially for many subunits, aberrant and
open structures get formed, that for very long simulations runs were sometimes
able to merge into the correct structure. This corresponds to very high super-
saturation conditions, where all capsomers would like to stick almost irreversible,
leading to the formation of many nucleation sites that deplete the free subunits
before any of them is able to form a complete capsid. That is why we decided to
increase the reduced temperature, which is equivalent to weakening the binding
interactions. This is in line with previous observations that weak interactions are
enough and more efficient to warrant viral assembly [6]. We were able to get con-
sistently high yields of correctly assembled structures for T≈ 0.1 (see Fig. 7.1).
Accordingly, further analysis of assembly were performed around this temperature.
We also performed simulations at high values of the temperature. In that case, for
T > 0.2 no closed structures were formed in the limited time span of the simula-
tions (typically, 108 steps) and essentially no significant clustering was observed.
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Those temperatures correspond to too weak binding strengths ε0 < 5kBT , that
will require very high subunit concentrations or extremely long times to nucleate
into closed shells.

7.4 Phase diagrams of the assembly of all-pentamer viruses

Once established the appropriate range of temperatures and the feasibility of
the assembly, the interest was to construct a phase diagram of assembly, identify-
ing the regions in terms of the parameters α and ν for which successful assembly
is achieved at given conditions. For those simulations, we used a total of N=100
capsomers that were initially placed at random positions and orientations inside a
cubic box with periodic boundary conditions. The density of capsomers was in all
cases fixed at ρ = 0.1, to enhance and speed up the assembly. Other parameters
that were fixed in the simulations were dt = 10−4 and kt = 1.5. In this case, the
simulations were run for a total of 108 steps. A cluster algorithm was used to
identify the size of the largest cluster in the system, and the final outcome of the
simulation (whether there was assembly or not, and the size of the resulting shells)
was monitored for each value of α and ν. Simulations were repeated for a whole
range of α ∈ [0.09, 0.15] and ν ∈ [1.78, 2.15], sampled at steps of 0.01 in α and
of 0.005 in ν. With that, we constructed the assembly phase diagrams at three
different temperatures. In principle, the assembly is an stochastic process, thus
many repetitions of each simulation at any given conditions will be required to get
significative results. However, in our preliminary studies, and mainly by lack of
time, only one repetition was made for each conditions.

7.4.1 Assembly phase diagram at temperature T= 0.09

First, we analyzed the phase diagram of assembly at relatively high binding
strengths, corresponding to a reduced temperature T=0.09. The explored range
of ν ∈ [1.78, 2.15] encompasses the values of νopt corresponding to structures from
T = 1 to T = 7, so we expect to find these structures in our simulations. In our
preliminary simulations the assembly of every structure happened at α ∼ 0.12, so
in the exploration of the phase diagram the range α ∈ [0.09, 0.15] was choosed as
appropriate.

Fig. 7.2 shows the resulting phase diagram of assembly, where the different
regions corresponding to the successful assembly of the CK plus the snub cube
structures are indicated by different colors. In particular, the assembly of T = 1
was obtained in the range α ∈ [0.11, 0.15] and ν ∈ [2.055, 2.15] (light green region);
snub cubes were found in the region α ∈ [0.09, 0.15] and ν ∈ [1.925, 1.980] (in red);
T = 3 was recovered between α ∈ [0.09, 0.15] and ν ∈ [1.875, 1.935] (violet) and a
T = 7 structure was the result at ν = 1.780 and σ = 0.14 (orange).
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Figure 7.2: Assembly phase diagram of the different structures obtained as function
α and ν at T=0.09. The region of successful assembly of each structure is indicated
by different colors: orange for T = 7, violet for T = 3, red for the snub cube, and
light green for T = 1. The figure also includes a representative snapshot of the
simulation in each case.

An important general observation is that, for every structure, the optimal
assembly conditions at this temperature were found at values of ν smaller than
the expected νopt, listed in Table 3.1. That indicates that a slightly larger radius
of curvature is required for optimal assembly, as suggested by previous studies of
templated and equilibrated assembly [7]. This slightly larger radius of curvature
will facilitate the incorporation of the right number of subunits and prevent the
“closure catastrophe” [7].

A second remark from the simulations is that, for the smallest structures,
multiple mono-disperse structures were obtained at the end of the simulation. For
instance near the optimal conditions for T = 3, up to three T = 3 shells, using
almost all the N = 100 initial capsomers, were found at the end of the simulations.

As discussed in the previous chapter, the preferred angle ν is the main pa-
rameter in the selection of a particular structure. But in contrast to the stability
simulations, the range of values of ν and α where each structure can self-assemble
from solution, is smaller. This is particularly evident for T=7 that appears only
at a very limited range of parameters.
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(a) (b)

Figure 7.3: Snapshot of different layers obtained in our simulations for large values
of α at T=0.09. (a) Hexagonally-ordered bilayer obtained at α = 0.75 and ν =
1.795. (b) Portion of a curved shell obtained at α = 1.0 and ν = 1.92.

We have also explored the outcome of the simulations for values of α outside
the range shown in Fig. 7.2. For very small values of α, the subunits essentially
do not aggregate easily or form small open clusters. A small value of α means a
very large bending penalty and a very restrictive angular conditions for binding
that difficult the formation of large structures. On the other hand, for big values
of α, e.g. α = 0.75, 1.0 or 1.25, the local bending stiffness is very small, and the
potential is more isotropic. As a result, the typical outcome of the simulations
at those conditions are multilayer structures that tend to be hexagonally ordered
specially at small preferred angles ν, as shown in Fig. 7.3(a). For large ν, i.e.
favouring more curvature, curved multishells or compact clusters often form, see
Fig. 7.3(b).

7.4.2 Assembly phase diagram at temperature T= 0.10

Fig. 7.4 shows the assembly phase diagram obtained when our simulations
were repeated at a slightly higher temperature T=0.10. At this temperature, we
have obtained T = 7 shells only at α = 0.14 and ν = 1.800, indicated by the
orange region in Fig. 7.4. T = 3 shells were found at all values of α between
ν ∈ [1.880, 1.915] (violet region) and snub cubes at all α between ν ∈ [1.925, 1.955]
(red region). Remarkably, no T = 1 were formed in the explored range. This can
be understood using the ideas of CNT described in Chapter 2. In particular, it
was shown that the driving force for the assembly is the chemical potential, which
is related to the effective binding energy per capsomer Δg. At higher reduced tem-
peratures, the effective binding energy between capsomers decreases. In addition,
as described in Chapter 6, T = 1 shells are the ones having the highest energy per
capsomer Δg. The combination of these two factors is the underlying reason why
assembly of T = 1 structures at high temperatures and at fixed densities, might
not be favored.
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Figure 7.4: Assembly phase diagram of the different structures obtained as function
α and ν at T=0.10. The region of successful assembly of each structure is indicated
by different colors: orange for T = 7, violet for T = 3, and red for the snub cube.
The figure also includs a representative snapshot of the structures in each case.
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Figure 7.5: Assembly phase diagram of the different structures obtained as function
α and ν at T=0.12. The region of successful assembly of each structure is indicated
by different colors: orange for T = 7, violet for T = 3, and red for the snub cube.
The figure also includ a representative snapshot in each case.
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7.4.3 Assembly phase diagram at temperature T= 0.12

Finally Fig. 7.4 illustrates the assembly phase diagram obtained at a temper-
ature T=0.12. In this case, T = 7 shells have been found at regions corresponding
to α = 0.09 - ν = 1.785, α = 0.12 - ν = 1.780, and α = 0.13 - ν = 1.810, indicated
in orange in Fig. 7.4. To get T = 3 capsids (violet regions in Fig. 7.4) α must
be α ≥ 0.12, since in the range α < 0.12 the structure does not form consistently.
The preferred angle is ν ∈ [1.880, 1.915], in the same range found for lower temper-
atures. In turn, snub cubes appear for α ≥ 0.13 and ν ∈ [1.925, 1.955] (red region
in Fig. 7.5). Once again, T = 1 structures are not present at high temperatures.
In general, it is evident that the range of parameters that guarantee the assembly
of each structure is significantly reduced, since at high temperatures, the weaker
binding energies and the larger thermal fluctuations difficult the clustering process.

7.4.4 Aberrant and non Caspar-Klug structures

At all temperatures, outside the regions where the T = 1, 3, 7 and snub cubes
were formed, some other structures compete and appear consistently in the simu-
lations. Very often, they are aberrant structures similar to the CK ones, but either
disordered or with excess or deficit of capsomers. This is specially the case at
the lower temperature T=0.09, where the strong relative strength of the binding
interactions favors the clustering and formation of closed structures basically at all
values of the spontaneous curvature ν. In many cases the closed structures that
get formed are nicely regular, appear consistently, and they turn out to be locally
optimal arrangements of capsomers in the free energy landscape of one type of cap-
somer [8, 9]. Specifically, closed shells with 20, 27, 38, 44, 48, 54 and 60 subunits
often appear at all simulated temperatures. The size (i.e. number of capsomers) of
these structures is controlled by the value of ν, having more subunits, the smaller
the value of ν. Remarkably, the regular non-CK structures that get formed nicely
coincide with the deepest minima in the free energy landscape of the templated
model in Ref. [9], see Fig. 7.6. At non-optimal conditions, specially in terms of the
preferred curvature ν, these structures can strongly compete with the formation
of T-number structures.

7.4.5 Comparison with the stability phase diagram

In Section 6.3 of the previous chapter, we used Monte Carlo simulations in
order to study the stability and the range of α and ν parameters than keep the
integrity of preformed shells made by one capsomer type. Now, we can compare
this predicted range of stability with the optimal conditions for assembly found in
the BD simulations. Fig. 7.2 compares the full stability diagram obtained in the
MC simulations with the assembly phase diagram at T=0.09. The Monte Carlo
stability phase diagram was made at T=0.05, a temperature much lower that the
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Figure 7.6: Regular non-CK structures obtained in the assembly simulations. The
figure represents the free energy landscape of the optimal energy per capsomer ε
as a function of the total number of capsomers N obtained by MC simulations for
the model of Ref. [9] at T=0.07 using one type of capsomer. The inset figures are
snapshots of our BD assembly simulations showing the correspondence between
the non-CK structures found in the simulations and the deepest minima in the
free energy landscape.

one used for the assembly T ∈ [0.09, 0.12]. We analyzed how temperature modifies
the results of the MC simulations. Essentially, only the tolerance in the parame-
ter α is altered upon altering the temperature. In particular, for a T = 1 shell,
the range of stability is α ∈ [0.05, 1.80] at a temperature T=0.05 and becomes
α ∈ [0.05, 1.15] at a temperature T=0.09. The changes in the stability range in
terms of the preferred angle ν are not significant. Thus, in terms of stability the
main effect of temperature is to reduce the range of values of α, but in a region
that has not been explored in the assembly simulations. Hence, we can still make
a sensible comparison between the stability phase diagram (Fig. 6.16) and assem-
bly phase diagrams (Fig. 7.2, 7.4 and 7.5), in the reduced range of small α explored.

The first noticeable difference between the stability and the assembly dia-
grams is the absence of T = 4 structures. As expected, even though an artificially
preformed T = 4 is locally stable, it is not a structure that can be self-assembled
directly from a solution. A second remarkable difference is that the stability range
of T = 7 is much larger that the optimal conditions for its assembly. In particular
T = 7 structures have a strong competence with structures with similar or larger
number of capsomers, since for them, the energetic gain of incorporating more sub-
units compensates the cost that has to be paid in terms of bending energy. This
finding is also in line with the fact that the optimal energies per capsomer for large
N become quite similar, indicating that a very monodisperse distribution of large
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shells will require the help of other auxiliary mechanisms to discriminate between
structures with similar curvatures. The biological implication of this result is that
large T-number viruses might require additional help, often in the form of scaf-
folding proteins, to select the right size and curvature. That could be the reason
why many T = 7 viruses as P22 [10] use scaffolding proteins in their assembly.

Another important difference is that, in the assembly, we did not obtain elon-
gated structures. That could be due to the fact that they are expect to appear in
a very narrow and restricted set of conditions, that could not be capture in our
coarse sweep of parameters. Another reasonable possibility is that energetically
more optimal spherical structures with a different number of capsomers may be
more favorable than elongated structures, when they have to be assembled from
scratch. That also suggest that some sort of template or additional ingredient (e.g.
the stiffness of the genetic material) may be needed for the formation of elongated
structures.

In terms of stability ranges, it is clear that consistently the structures assemble
more efficiently at values of spontaneous curvature ν smaller than the theoretically
optimal value for the final shell νopt. As mentioned before, this may be a way to
avoid the closure catastrophe described in Ref. [7]. In terms of α, assembly occurs
in a much restricted range of α’s than the conditions required to keep the integrity.

A final difference is that the regions in the assembly phase diagrams are not
as well defined as in the stability diagram. Assembly is a competitive, stochastic
and non-equilibrium phenomena where many things can go wrong preventing a
successful outcome, specially at the strongly supersaturated conditions where our
simulations were done. In addition, many repetitions at a given set of conditions
have to be done to improve the accuracy of the results.

7.5 Kinetics of viral assembly

In this section, we will analyze in more detail the kinetics of viral assembly
using BD simulations. In particular, we will first try to determine the equilibrium
conditions for assembly. Then, we will evaluate the most important quantities in
the assembly, specifically the critical cluster size, the assembly rate, and the height
of the energy barrier towards assembly. All these characteristics depend not only
on the conditions in terms of density, temperature and values of α and ν, but also
on the target structure. For the sake of simplicity and concreteness, we will focus
on the particular case of the kinetics of assembly of a T = 3 shell at the near
optimal values of α = 0.1 and ν = 1.90.

157



Chapter 7. Simulations of the assembly of empty viral shells Section 7.5

Figure 7.7: Snapshot of the initial configuration in the BD simulations to determine
the equilibrium conditions. A half T = 3 shell with 16 capsomers is placed at the
center of the simulation box and surrounded by 100-16 subunits placed at random
positions and orientations.

7.5.1 Equilibrium conditions for the assembly

The density of subunits is a very important factor for the assembly. As de-
scribed in Chapter 2, assembly experiments in vitro are characterized by a steep
dependence on the initial total protein concentration. There is a threshold con-
centration below which no capsids are formed and there is also another special
concentration corresponding to equilibrium conditions, i.e. the situation where a
capsomer in solution has the same chemical potential as being part of a complete
capsid. CNT provides a nice, clear, and simple way to characterize this equilib-
rium in simulations. As shown in Chapter 2, equilibrium conditions correspond to
Δμ = 0. At these conditions, the critical cluster size is half the size of the complete
capsid, i.e. 16 capsomers for a T = 3 shell with N = 32, and being at unstable
equilibrium at the top of the barrier, it has a 50% chance of growing or decaying.

Accordingly, we developed a simulation where initially, half a perfect T = 3
was placed in the simulation box surrounded by 100 − 16 particles placed and
oriented randomly (see Fig. 7.7). These simulations were run at a reduced tem-
perature T=0.1 for 2107 time steps where the size of the cluster was monitored.
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100 different realizations of the simulations were performed at each density and
the final size of the cluster after 2 ∗ 107 times steps was recorded. The goal was to
ascertain whether the half capsid grows or disassembles. As shown in Fig. 7.8(a),
at very low densities, the partial capsid always lost subunits at the end of the
simulation. On the contrary, at high densities (Fig. 7.8(c)) the size of the partial
shell is always larger at the end of the run. The equilibrium density corresponds
to the situation where there is roughly a 50% chance of decaying or growing. This
density was found to be approximately c∗ = 0.0085 ± 0.0002, as shown in Fig.
7.8(c).
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(a)

(b)

(c)

Figure 7.8: Size of the largest cluster in the simulation (initially half a T = 3 shell
with 16 capsomers) as a function of time for (a) ρ = 0.0001 and 10 different repe-
titions, where the size of the cluster always decays (b) ρ = 0.0085, corresponding
to the equilibrium conditions, and (c) at ρ = 0.04, where the shell always grows.
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Figure 7.9: Size of the largest cluster as a function of time in five different realiza-
tions of an assembly simulation at T=0.1, and ρ = 0.0085.

7.5.2 Kinetics of assembly of a T = 3 shell

Once determined the equilibrium conditions, we analyzed the kinetics of cap-
sid formation for different values of the initial density of subunits. All simulations
were performed with N = 100 subunits at a reduced temperature T=0.1. The
simulation starts with all subunits located at random positions and orientations,
and the size of the largest cluster was monitored for the whole duration of the
simulation (typically up to 2 ∗ 109 steps). Fig. 7.9 shows the size of the largest
cluster as a function of time for five different realizations of the simulations at
ρ = 0.04. One can see that the formation of a T = 3 shell, characterized by 32
subunits, occurs at different times due to the stochastic and activated nature of
the process. A noticeable time lag can be appreciated before the formation of the
first shell. In some of the simulations, two T = 3 shells or sometimes three T = 3
shells get formed. Another remarkable observation is the fact that the addition
of the last one or two subunits requires often a significant span of time to get a
complete capsid. This slower kinetics of the addition of the last subunits has been
reported in other simulations [11, 12] and is due to the several attempts required
for a subunit to find the small hole in an almost complete capsids.

Fig. 7.10 shows the size of the largest cluster in the simulation at five different
densities. At high densities, the formation of the shell occurs almost immediately,
whereas at low densities long delays where no large cluster are formed, are observed
before the successful formation of the T = 3 shell.

To get accurate evaluation of the relevant kinetics of assembly, for each system
and set of conditions we performed 100 independent realizations, using different
initial conditions.
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Figure 7.10: Size of the largest cluster as a function of time in an assembly simu-
lation at T=0.1, and different densities: ρ = 0.03 (black line), ρ = 0.04 (red line),
ρ = 0.05 (green line), ρ = 0.06 (blue line), and ρ = 0.08 (yellow line).

We obtained the rate of capsid formation (i.e. the number of capsids formed
per unit volume and unit time) with high accuracy using the method of mean first-
passage times (MFPT) [13]. We first calculate the MFPT τmax(n), defined here as
the average time at which the largest cluster in the simulation reaches or exceeds
the size n for the first time. From it we can immediately infer the values of the
critical cluster size n∗, the Zeldovich factor Z and the nucleation rate J = (τJV )−1,
by fitting the simulation data to the function

τmax(n) =
τJ
2

[
1 + erf

(
Z
√
π (n− n∗)

)]
. (7.1)

In addition we also reconstructed the relevant free energy barrier directly
from the BD simulations using the kinetic reconstruction method that only re-
quires knowledge of the MFPT and the steady-state probability distribution of
clusters in the system, as described in Ref. [14]. The steady-state probability dis-
tribution Pmax

st (n) is obtained easily by sampling the size n of the largest cluster
in the system in every repetition up to the first time that a complete T = 3 shell
is formed, and making a histogram, normalized by the total number of sampled
cluster sizes. Using these two inputs, the free-energy landscape is reconstructed
from the equation

βΔGmax(n) = βΔGmax(n1) + ln

(
B(n)

B(n1)

)
−
∫ nmax

n1

dn′

B(n′)
(7.2)

where β = 1/kBT and
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(a)

(b)

(c)

Figure 7.11: (a) Mean first-passage times τ(n) as a function of the cluster size
for ρ = 0.04. (b) Steady-state probability distribution of the cluster size obtained
for the same conditions from the numerical solutions. (c) Free-energy landscape
reconstructed using eqs. 7.3 and 7.2.
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B(n) = − 1

Pmax
st (n)

[∫ b

nmax

Pmax
st (n′)dn′ − τ(b)− τ(n)

τ(b)

]
, (7.3)

being b = 32 the absorbing boundary size up to which we sample both Pmax
st (n) and

τmax(n). The integrals in Eqs. 7.3 and 7.2 are evaluated by standard discretization
techniques (e.g. Ref. [15]). Figure 7.11 (b) and (c) show the steady-state proba-
bility and the reconstructed free-energy landscape for the same system for which
the MFPT are shown in (a).

The quantity of interest in nucleation theory as well as in the remainder of this
work is not the barrier of the largest cluster, ΔG∗max (n) but rather the one posed
to any individual cluster in the system, ΔG∗. But provided that the barrier for
the largest has not yet vanished, i.e., ΔGmax (n) > 0, both quantities are related
by the simple relation [15]

βΔG∗ = βΔG∗max + lnN. (7.4)

Using these MFPT techniques, we have calculated the rate of capsid assem-
bly, the critical cluster size, and the nucleation barrier in a range of densities
ρ ∈ [0.02, 0.1]. The results are plotted in Fig. 7.12.

We can clearly see that, as the density is reduced, both the size of the critical
cluster and the nucleation barrier increases, leading to an exponential reduction of
the nucleation rate. This is in qualitative agreement with the predictions of CNT
formulated in Chapter 2. A more careful comparison with CNT is performed in
the next subsection.

7.5.3 Comparison with CNT

The results of the previous subsection clearly indicate the nucleation nature
of the self-assembly process. A large enough critical size has to be reached and
an energy barrier has to be overcome to succeed in the formation of a complete
capsid. According to CNT, the height of the nucleation barrier, the size of the
critical cluster and the nucleation rate are given by (see Chapter 2)
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�G∗ =
q

2

(√
�μ2 + a2 +�μ

)
(7.5)

n∗ =
q

2

(
1 +

�μ√�μ2 + a2

)
J(t) = csβ

∗Ze−ΔG∗/kBT

where Δμ = −kBT ln(c1/c∗) and a was related to the line tension for a capsid. As
described in ref. [7], a good approximation for this parameter for a T = 3 shell was

a = 4π
3
√
3

|μe|
q

R
σ0
, where |μe| = 2.23 is the energy per capsomer in a complete capsid,

q = 32 is the number of capsomers in a complete T = 3 shell and R = 2.67σ0

is its radius. Using these approximations yielding a = 0.45, and the value of the
equilibrium density c∗ = 0.0085 obtained from the simulations, we can compare
the predictions of CNT with the results of the kinetic simulations. Fig. 7.12 shows
this comparison for the critical cluster size and the nucleation barrier. The pre-
dictions for the critical cluster size and the nucleation barrier are approximately
n∗ ≈ 10 and ΔG∗ ≈ 7. Both predictions seem to be only roughly qualitatively
accurate. A more careful and accurate comparison, including also the predictions
for the nucleation rate, will be performed in the future.
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(a)

(b)

(c)

Figure 7.12: a) Rate of capsid formation J b) critical size n∗ and c) nucleation
barrier height βΔG∗ as a function of the density of the system, obtained from the
BD simulations.
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7.6 Conclusions

In this chapter we have analyzed the kinetic aspects of the viral self-assembly,
using our coarse grained model and BD simulations. From these simulations, we
have obtained a lot of interesting and useful general information about this impor-
tant process.

In particular, we have verified the importance of the initial density of sub-
units in the assembly and characterized the equilibrium conditions for a T = 3
capsid. We then analyzed how the outcome of viral assembly depends on the rel-
evant parameters of the interaction: the effective binding energy (or, equivalently,
the reduced temperature), the preferred angle ν and the local bending stiffness α.
From extensive simulations, we were able to construct the phase diagram of the
assembly, which turned out to be quite different from the stability phase diagram
discussed in the previous chapter. Specifically, the assembly takes place prefer-
entially at ν < νopt, presumably to avoid the closure catastrophe. The assembly
range is much smaller than the stability range, specially at high temperatures and
for the largest shell T = 7, that seem to require very restricted conditions to as-
semble. In addition, no elongated or T = 4 structures are formed. In contrast,
aberrant and locally optimal non-CK structures are found and strongly compete
in some regions of parameters with the CK structures.

We have also analyzed and characterized accurately the kinetics of assembly
of T = 3 shells. All features of the assembly point out to nucleation as the physi-
cal mechanisms controlling shell formation. Using a powerful technique based on
the concept of MFPT, we have determined the critical cluster sizes, the height of
the nucleation barrier and the rate of capsid formation directly from our assembly
simulations, at different conditions. The results agree at least qualitatively with
the predictions of CNT and open the door to a proper understanding and control
of viral assembly.

The same analysis can be repeated for the different T-number shells, gaining
an important insight on the competitive assembly of different structures. In ad-
dition, the ideas developed in this chapter can be used for the analysis of in vitro
experiments, bringing promise to a more accurate characterization and prediction
of the assembly of real viruses.
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8.1 Introduction

One of the main roles of the viral capsid is to protect the genetic material
against external aggressions and to ensure its safe release at the right location in
the host cell. Thus, the mechanical properties of viral capsids play an important
role in their stability and infective process. In particular, from the production
of a virus to the invasion of a new host, the viral capsid must be stable through
environments with different pH or salt concentrations. In addition, the capsid of
many viruses that penetrate the host membrane through endocytosis is subjected
to a substantial mechanical stress [1]. Moreover, double stranded DNA (dsDNA)
viruses should withstand up to tens of atmospheres arising from the confined ge-
netic material [2, 3]. For all these reasons many viruses in the final stage of as-
sembly undergo a maturation step that properly tunes the properties of the initial
shell, converting an innocuous procapsid into an infectious agent. This maturation
process involves structural changes that often lead to a noticeable change in the
shape of the capsid from an initial spherical capsid with icosahedral symmetry into
a polyhedral shell with flat triangular faces and the shape of an icosahedron. This
transformation from a spherical to a polyhedral shape of the viral capsid is known
as the buckling transition.

The transformation of the capsid taking place during virus maturation is a
complex process that can be associated to different biological pathways, which
may include cleavage, conformational transitions and even covalent bonding of the
capsid proteins. For instance, bacteriophage T7 assembles first a procapsid helped
by scaffolding proteins, and then undergoes an expansion and a buckling transi-
tion during the packaging of the viral dsDNA [4, 5]. Instead, bacteriophage HK97
undergoes a cleavage in the coat protein of the prohead that leads to a buckling
transition that can be triggered in vitro by a change in the pH [6–8]. Once trig-
gered, the buckling transition seems to be related to an energy cascade of steps
that lowers the energy of the capsid [7, 8].

To understand separately the influence of the different ingredients that could
be relevant to and responsible of the buckling transition, we will restrict our anal-
ysis to the simplest case where the transition does not require auxiliary proteins,
cleavage of the coat protein, nor cross-linking between subunits.

The buckling transition originates from the competition between the bending
and the stretching energy, and can be described in physical terms by using con-
tinuum elasticity theory [10–12]. As mentioned in Chapter 4, in this framework,
the viral capsid is considered a thin elastic shell with two competing energies: The
bending energy, which takes into account the deviations from the spontaneous
curvature imposed by the proteins, and the stretching energy, which involves the
in-plane deformations of the network of proteins. The ratio of these contributions
defines the Föppl-von Kárman number, γ = Y R2

0/κb [11, 12], a nondimensional
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Figure 8.1: Buckling transition during maturation of Hong Kong 97. Figure taken
from Ref. [9].

parameter that determines the shape of the virus. Here Y is the 2D Young modu-
lus, κb is the bending rigidity (both intrinsic properties of the shell) and R0 is the
radius of the spherical shell. For small values of γ the spherical shape is energet-
ically favored. But when exceeds a certain threshold, a buckling transition takes
place and the polyhedral shape, with flat faces, becomes more stable because it
reduces the stretching energy. Since γ ≈ R2, big icosahedral capsids are expected
to be polyhedral rather than spherical, which is in agreement with experimental
observations [14]. Nevertheless, the discrete nature and arrangement of capsomers
in the viral shell might have a significant influence in the buckling phenomenon,
specially for small viruses, which cannot be easily described in the framework of
continuum elasticity theory.

In this chapter we will study the influence of the T-number on the capsid
shape, on its tendency to buckle, and on the resulting mechanical properties of the
viral shell. To that end, we will first describe (in sections 8.2 and 8.3) the simple
coarse-grained model and the mechanical characterization used in this analysis.
We will then compare in section 8.4 the energetics and mechanics of spherical and
icosahedral viral capsids for different triangulation numbers T and determine how
sensitive is the buckling transition to the discrete nature and precise arrangement
of protein subunits in the shell. We will also analyze the tendency to buckle in
terms of the distribution of lateral stresses in section 8.5. Section 8.6 we will be
devoted to study the morphological and energetic changes that occurs upon expan-
sion. The mechanical properties of the resulting capsid will be then characterized
in terms of the bulk modulus (section 8.7) and the maximum sustainable pressure
(section 8.8). Finally, we will discuss the potential mechanical and biological ad-
vantages of polyhedral versus spherical capsids and compare our main conclusions
with data from real viruses.

We will focus on the simplest case where the integrity and the strength of the
effective interactions among coat proteins are not changed, since our main goal
is to isolate the pure relevance of their geometric arrangement on the buckling
transition. In addition, we will study this problem by comparing the properties of
the (initial) spherical shape against the (final) icosahedral shape. Our simplified
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model is thus not aimed to study how the real dynamic transition between these
two states takes place. We will see that, despite its simplicity and limitations,
our model is still able to provide useful insight on this very complex problem that
seem to be confirmed in some cases by experimental evidences on real viruses that
comply with the aforementioned restrictions.

8.2 Minimal coarse-grained model of spherical and polyhedral shells

To study the buckling transition and the role of the arrangement of capsomers
on viral maturation, we have used the minimal model for capsid architecture de-
scribed in Section 3.2.1, comparing the energy and mechanical properties of spher-
ical and polyhedral shapes for the lowest T-numbers and P-classes listed in Table
1.6.

In the model, pentamers and hexamers are represented by spheres of different
sizes with isotropic pairwise interactions described by the potential:

VLJ(rij) = ε0

[(
σij

rij

)12

− 2

(
σij

rij

)6
]

(8.1)

where ε0 is the binding energy between capsomers, σij is the equilibrium distance,
and rij is the separation between capsomer i and j. We take ε0 to be 15kBT [15],
with kB being the Boltzmann constant and T the absolute temperature. Hexamers
and pentamers are modeled as spheres with radii σh

0 and σp
0, correspondingly. Their

ratio σh
0/σ

p
0 = tan(π/6)/tan(π/5) � 0.8 is the same as that between the radii of

circles inscribed in a pentagon and a hexagon of the same edge, as follows from the
fact that pentamers and hexamers are made up of the same protein. The equilib-
rium distances for hexamer-hexamer, pentamer-pentamer, and hexamer-pentamer
are σh−h = 2σh

0 , σp−p = 2σp
0 and σp−h = σp

0 + σh
0 , respectively. We have used

the same interaction energy between capsomers. We note that all results in this
chapter are expressed in units of σ0 ≡ σh

0 and ε0. It is important to emphasize that
we will take capsid size and binding energy ε0 as constant and equal for all struc-
tures. Accordingly, buckling induced by alterations in protein size or interactions
(caused, for instance, by cleavage) are beyond the scope of the present model. The
Lennard-Jones-like potential is not truncated and interactions are allowed between
all capsomers. Moreover, capsomer positions are restricted to lie on the surface of
the corresponding sphere or icosahedron. Without this constraint, this type of po-
tential will produce compact clusters rather than shells as optimal configurations.
In addition, we will only compare the (static) properties of purely spherical versus
strictly polyhedral capsids. We will neither analyze a continuum change of shape
between these two states nor the dynamics of this process.

With these approximations the total energy of the shell will be the sum over

175



Chapter 8. Buckling and maturation of spherical viruses Section 8.3

all pairs of capsomers: E =
∑N

i=1

∑
j>i VLJ . We will analyze the problem of buck-

ling by comparing the properties of the (initial) spherical shape against the (final)
polyhedral shape.

To build spherical shells we use as starting point the exact coordinates of the
icosahedral spherical code corresponding to the solution of the maximum volume
problem from [16]. Those sets of coordinates correspond to energy minima of the
Lennard-Jones interaction model described above as it has been shown by Monte
Carlo simulations [17, 18]. We have also verified using a conjugated gradient min-
imization algorithm that these configurations at the optimal radii are indeed in
mechanical equilibrium. Using these fixed angular coordinates, we have explored
the energies and mechanical properties of spherical capsids for different radii R.

To form the polyhedral shells, an icosahedron is reconstructed using the ba-
sic triangles defined by the Caspar and Klug construction [19]. Starting from the
h and k values of a given T-number, we build the associated equilateral triangle
on a hexagonal lattice and keep track of the x, y coordinates of all capsomers,
i.e. nodes of the hexagonal lattice, that lie inside this triangle of edge l =

√
T .

By applying a rotation of arctan( 1√
3
k−h
h+k

) around the z-axis, and a translation of

(l/2, l/(2
√
3), R) we place the center of the equilateral triangle at (0, 0, R), where

R =
√
3

12
(3 +

√
5)l is the distance from the center to each face of an icosahedron of

edge length l. We use then 20 copies of this triangle to reconstruct the icosahedron.
The angular coordinates of the center of those triangles in the final icosahedron
are given by the position of the vertexes of the dodecahedron of unit edge, which is
the dual structure of the icosahedron: (±1,±1,±1), (0,± 1

φ
,±φ), (± 1

φ
,±φ, 0), and

(±φ, 0,± 1
φ
), where φ = (1+

√
5)/2 is the “golden ratio”. After transforming those

points into spherical coordinates (r, θ, φ), the icosahedron is reconstructed from
the basic CK triangle located at (0, 0, R) by applying a custom rotation around
the z-axis, followed by one of an angle θ around the y-axis and one of φ around
the z-axis. This procedure was implemented using Mathematica c©. In this way
we generated the (x, y, z) coordinates of all capsomers on an icosahedron of edge

l =
√
T and radius R = 1

4

√
10 + 2

√
5l, defined as the distance from the center

to any vertex. Finally, the optimal polyhedral shell is obtained by varying the
radius R to minimize the total energy, as shown in Section 8.4. Note that we keep
the same icosahedral shape for all radii, but in each case the distances between
capsomers are uniformly rescaled.

8.3 Mechanical characterization

One of the relevant mechanical properties of the capsid is the distribution of
stresses of the capsomers. To characterize and evaluate the stress distribution we
have used the stress tensor [20]. In particular, the global stress has been measured
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as the average of the viral stress tensor, σαβ, and can be decomposed in the kinetic
and force contributions of each morphological unit i:

Ωdσd
αβ =

∑
i

Ωd
i (σ

d
αβ)i =

∑
i

[∑
j

1

2
miv

α
i v

β
j −

1

2

∑
i �=j

dV (rij)

drij

rαijr
β
ij

rij

]
. (8.2)

Here d is the dimensionality, usually 2D or 3D, and Ωd is the d-volume, i.e.,
the surface in 2D or the volume of the shell in 3D. In the kinetic term (the first
term), mi and vαi are the mass and the α component of the velocity of capsomer i,
respectively. In the force term, rij is the module of the vector that joins particles
i and j, i.e., �rj − �ri, and rαij is the α component of this vector. Finally, Ωd

i corre-
sponds to the d-volume per capsomer, which can be defined in different ways, all
leading to similar qualitative results. Here we use the simplest choice where each
capsomer has the same d-volume Ωd

i = Ωd
Tot/N . Using these definitions, we can

now compute the local, (σd
αβ)i, and global, σd

αβ, mechanical stresses.

Giving the high relative strength of the interactions compared to the thermal
energy, ε0 = 15kBT , we will neglect the kinetic contribution of the stress tensor in
Eq.(8.2). In a first approximation the interactions between capsomers determine
the main properties of the system, whereas thermal fluctuations would be rele-
vant only in more accurate studies, e.g., the role of soft modes in the activation
of buckling [13, 21, 22]. For spherical shells we express the stress tensor, Eq.(8.2),
in spherical coordinates, and due to the symmetry of viral capsids it is worth to
recombine its components in two terms [20]: the lateral stress

(σ2D
T )i = − N

2A

∑
j

dV (rij)/drij
rij

(�rij · êθ)2 + (�rij · êφ)2
2

(8.3)

and the (45o) shear stress

(σ2D
θφ )i = −

N

2A

∑
j

dV (rij)/drij
rij

(�rij · êθ)(�rij · êφ) (8.4)

where A and V are the surface and volume of the shell.

For icosahedral shells the formulas are still valid but it is better to use a dif-
ferent set of basis vectors. In particular, for each face we replace (êθ,êφ) by two
perpendicular vectors that are tangent to the surface of each equilateral triangle,
and êr for a vector perpendicular to the face at all points. For both capsid shapes,
Eq. (8.3) and (8.4) characterize the local stresses, and using them into Eq.(8.2)
we obtain similar expressions for the global mechanics of capsids.

Finally, we will analyze the pressure p and the bulk modulus K = −V ∂p/∂V ,
which measures the compressibility of the capsid. It is useful to rewrite both in
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(a) (b)

Figure 8.2: (a) Optimal structure, corresponding to the minimum energy, obtained
for Rsph

0 , for a spherical T = 13 capsid. (b) Structure corresponding to 1.3Rsph
0 ,

where the energy is significantly larger than the optimal.

terms of energy variations as:

p = −∂E

∂V
= − R

3V

∂E

∂R
(8.5)

and

K = −V
(
∂p

∂V

)
=

R2

9V

(
∂2E

∂R2

)
(8.6)

where we have transformed volume derivatives into radial derivatives, using the
fact that V ∼ R3. For all optimal structures the pressure is zero [20] and their
compressibility will be labeled as K0.

8.4 Energy of spherical versus polyhedral capsids

Given the constraint that the capsomers have to remain on the surface of
a sphere or an icosahedron with perfect icosahedral order, the total energy only
depends on the radius. Thus, the first step was to find the optimal radii, Rsph

0

and Rico
0 , for the spherical and polyhedral capsids with T-numbers listed in Table

1.6. To that end, starting from the exact angular coordinates of the spherical and
icosahedral shells described in section 8.2, we subjected the capsids to a radial
deformation and calculated the associated energy, as shown in figures 8.2 and 8.3
for the T = 13 case.

For each shape and T -number we obtained a nearly parabolic behavior around
the energy minima. Fig. 8.4 plots the optimal radii of the spherical and polyhedral
shells as a function of the T-number. In both cases the radii increase as R0 ≈

√
T ,
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Figure 8.3: Energy per capsomer for the spherical and icosahedral T = 13 shells
under radial deformation. The optimal radii of the sphere, Rsph

0 , the icosahedron,
Rico

0 , and the cut radius where both energies intersect, Rc, are also indicated. The
lines show a parabolic fit E = E0 +

1
2
aE(R−R0)

2 around the respective minima.

Figure 8.4: Spherical and icosahedral optimal radii as a function of the T -number.
The lines are the theoretical predictions of the surface-covering model (see Ap-
pendix A), and the points are obtained by minimizing the energy of the different
structures.

since the T-number is proportional to the shell surface which grows as R2. Com-
paring the optimal radii, we systematically observe that the polyhedral shells are
larger than the spherical capsids typically by ≈ 15%, when both are made out of
capsomers of equal size and strenght of interactions. This is an expected result,
since for a fixed radius a sphere has a bigger surface than an icosahedron, so the
latter requires a larger radius to accommodate the same number of capsomers. It
is remarkable that both optimal radii can be accurately estimated using a sim-
ple surface covering model described in Appendix A. This is a direct consequence
of the prevalence of steric effects between capsomers, so the results obtained for
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the optimal radii are essentially independent of the details of the interaction model.

(a) (b)

Figure 8.5: Optimal energy per capsomer for the spherical (blue circles) and icosa-
hedral (green diamonds) T shells. The T numbers corresponding to the P = 1 and
P = 3 classes are highlighted in red and brown, respectively. Zoom highlighting
the behavior corresponding to the T-numbers missing in the main figure.

Fig. 8.5 plots the energy per capsomer of the optimal spherical and polyhedral
structures as a function of the T-number. This figure shows three different regions.
For small structures corresponding to T ≤ 4, the energy is dominated by the pen-
tamers rather than by the arrangement of the few existing hexamers, leading to a
behavior that deviates from that of the remaining shells of a given class. For those
small capsids, the energy is less for the spherical shape than for the polyhedral
shape (see Fig. 8.5(b)). The second region corresponds to big capsids (T > 28),
where spherical shells have systematically a higher energy than icosahedral ones,
in agreement with the predictions of continuum elasticity theory. The energetic
frustration of the spherical shape comes from the pentameric disclinations that
introduce a stretching energy penalty proportional to R2, which is not present an
the flat faces of in icosahedron.

Between these two limits there is a region where for some T-numbers the
spherical shape has less energy per capsomer than the icosahedral shape, while for
other T-numbers the opposite behavior occurs. This structural dependence of the
optimal energies on the T-numbers is difficult to justify in the framework of con-
tinuum elasticity [12]. In fact, there seems to be a well-defined optimal shape that,
seems to be determined by the P-class rather than being controlled specifically by
the T-number. In particular, T-structures corresponding to the class P = 1 are
local maxima in the energy landscape of spherical shells, but local minimal in the
polyhedral one. This suggests that P = 1 capsids are not particularly satisfied in
the spherical shape and will have a strong tendency to become faceted. On the
other hand, P = 3 capsids show the opposite behavior of P = 1: they are local
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minima in the spherical landscape and local maxima in the faceted one. Struc-
tures from classes P = 7 and P = 13 have an intermediate behavior between that
observed for P = 1 and P = 3 class. The origin of these energy differences comes
from the specific distribution of capsomers for each class P , and becomes more
evident in the analysis of the stress distribution described in the following sections.

8.5 Local distribution of stress

To understand better the relevance of the arrangement of capsomers on the
tendency of different classes to adopt a spherical or faceted shell, we computed
the local distribution of stresses at the level of capsomers for the different T-shells.
Our analysis is based on a previous paper [20], where the mechanical properties of
spherical capsids were studied in detail using a similar model. We will focus on the
distribution of local lateral stresses, using the convention that a positive or nega-
tive stress means that a capsomer is being compressed or stretched, respectively.
The distribution of stresses for the different T-shells can be naturally grouped in
classes that show a similar pattern. To illustrate how the precise arrangement of
capsomers influences the tendency of a capsid to remain spherical or to become
faceted, we have analyzed series of T-numbers corresponding to the first four P-
classes (see Table 1.6).

The simplest case is P = 1, where each pair of neighboring pentamers are
connected by a straight line of hexamers (see Fig. 8.6). This structural feature
clearly dictates the local stress pattern. In the spherical shells, positive stress con-
centrates on the lines connecting pentamers for T > 4, which delimits triangular
areas with stretched hexamers. The absolute values of those stresses get larger
as the the T-number of the shell increases. Compared with the rest of spherical
P-shells (see below), the P = 1 class shows the highest local stretching and com-
pression. This stress frustration, associated to the geometrical configuration of
capsomers in spherical P = 1 capsids, is the underlying reason why they are local
maxima in the optimal energy landscape of Fig. 8.5. Moreover, the stress distri-
bution clearly highlights the energetic advantage of adopting a polyhedral shape,
since the hexamer stretching will be relieved if the triangular regions between pen-
tamers are flattened. In fact, the distribution of stress in the polyhedral P = 1
capsids (second column in Fig. 8.6) shows that the local lateral stresses at the
triangular faces are close to zero and get smaller as the size of the shell increases.
Furthermore, compared to the other classes, icosahedral P = 1 capsids have the
lowest stress frustration, which justifies why they are local minima in the optimal
energy landscape (see Fig. 8.5).
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Figure 8.6: Lateral stress distribution, see Eq. (8.3), for P = 1 spherical and
icosahedral shells. The color bar indicates the values of the local stresses, and it
is rescaled for each structure using the most compressed (positive, red) and most
stretched (negative, blue) capsomers.
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Figure 8.7: Lateral stress distribution for P = 3 spherical and icosahedral shells.
The color code is described in Fig. 8.6.
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The other achiral class, P = 3, is characterized by zig-zag lines of hexamers
connecting pentamers, instead of straight lines (see Fig. 8.7), which leads to an in-
version of the stress behavior. In spherical P = 3 shells, compression concentrates
on the pentamers, whereas the hexamers surrounding them are slightly stretched,
leading to a dodecahedral pattern instead of the icosahedral one observed in P = 1
(see Fig. 8.7). In this case, nothing indicates any particular relief of the stress on
the hexamers upon adopting an icosahedral shape. On the contrary, the stress
pattern suggests that the shell will flatten along the lines connecting second neigh-
bor pentamers, adopting a dodecahedral shape rather than the icosahedral one
observed in P = 1 (see Fig. 8.7). It is worth to mention that such a dodecahedral
faceting seems to be present in the reconstruction images of Chilo iridescent virus
(CIV), a large T = 147 (P = 3, f = 7) virus [23]. In the spherical P = 3 shell,
due to the symmetric capsomer arrangement, the local stress is smoothly shared
among all capsomers and its values are low enough to produce local minima in
the optimal energy landscape of Fig. 8.5. Contrarily, in the polyhedral shape,
the P = 3 class has a higher stress frustration compared to the faceted P = 1,
showing a less uniform pattern, where stress accumulates at the zig-zag lines along
the edges. In fact, the icosahedron P = 3 construction is the most stressed of
all polyhedral classes leading to local maxima in the optimal energy per capsomer
(see Fig. 8.5).

The remaining P classes are chiral, i.e., for each shell we have two specular
structures with different handness. The arrangement of hexamers along the line
connecting neighboring pentamers is now skewed, and the resulting stress patterns
show neither a clear advantage or disadvantage on adopting the shape of an icosa-
hedron (see Fig. 8.8). Accordingly, the values of optimal energies and stresses are
intermediate between those of P = 1 and P = 3. Therefore, classes with h0 ≈ k0
and h0 � k0 will behave similarly to P = 3 and P = 1, respectively.

Finally, a common feature for all spherical classes is that positive stress accu-
mulates on the pentameric disclinations as the shell gets bigger, in agreement with
the predictions of continuum elasticity theory [12]. The accumulation of stress on
the pentamers of big shells will eventually lead to a buckling transition towards a
faceted shape, and provides a mechanical justification of why for all larger capsids
the polyhedral shape seems to be energetically favored.

8.6 Buckling of spherical capsids upon expansion

The energy analysis for the different shapes under radial deformation per-
formed in section 8.4 reveals the interesting tendency of spherical capsids to be-
come icosahedral upon expansion. This is illustrated for instance in Fig. 8.3 for
a T = 13 capsid. Upon expansion, the energy of the spherical shell increases
and eventually crosses the compression branch of the polyhedral structure. This
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(a) (b)

Figure 8.8: Lateral stress distribution for (a) P = 7 and (b) P = 13 spherical and
icosahedral shells. The color code is described in Fig. 8.6.

crossing defines a transition radius Rc beyond which the energy of the expanded
spherical shell is larger than that of the compressed faceted capsid, thus signaling
the energetic onset of buckling for this structure. By comparing the radii Rc with
the optimal radii Rsph

0 for different T-numbers (see Fig. 8.9) we obtain a linear
dependence that suggests that spherical capsids will undergo a buckling transition
when they are subjected to a radial expansion of ≈ 7% if the strength and range
of the interactions is kept constant. This is consistent with the capsid expansions
observed during the maturation process of many viruses, which lead to the faceting
of the initially spherical procapsid [6].

8.7 Bulk modulus

From the exploration of the energy under radial deformation, the bulk mod-
ulus of the optimal structures, K0, can also be extracted. The bulk modulus
quantifies the resistance of a substance in response to a uniform radial deforma-
tion (compression or expansion). This quantity is defined in general as the ratio of
the infinitesimal pressure increase to the resulting relative decrease of the volume
K = −V dP

dV
(see eq. 8.6), where V is the volume and P the pressure.
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Figure 8.9: Spherical optimal radii Rsph
0 as a function of the cut radius Rc. The

line is a linear fit.

To get it, we first fit a parabola E = E0 +
1
2
aE(R − R0)

2 around the energy

minimum (see Fig. 8.3). Then, by substituting aE = (∂
2E

∂R2 )R0 into Eq. 8.6, we
determineK0 for the different shapes and T-numbers (see Fig. 8.10). For both cap-
sids shapes the bulk modulus decays inversely proportional to their corresponding
optimal radii, i.e., K0 ≈ 1/R0, so in general larger capsids will be more compress-
ible. This is a a direct consequence of the geometrical prefactor R2/V ≈ 1/R in
Eq. 8.6 and the fact that the energy is proportional to R2 under radial deforma-
tion. In addition, except for T = 3 and T = 7, the bulk modulus of faceted shells,
K0, is systematically larger than that of the spherical ones, K0, by a factor ranging
from 2−10% for small capsids to almost 20% for bigger ones. Finally, there seems
to be no special structural dependence in the bulk modulus of spherical shells.
Contrarily, polyhedral P = 1 capsids are comparatively stiffer than those of any
other class, see red points in Fig. 8.10.

8.8 Pressure and bursting

An important property of capsids is their tolerance to internal pressure before
bursting [2, 24, 25]. For instance, bacteriophage φ29 can tolerate 30-60 atm [26]
of internal pressure keeping its integrity and many bacteriophage use that internal
pressure to inject the genetic material inside the cell [2, 3].

To compare the resistance of spherical versus polyhedral capsid shapes, we
calculated the maximum pressure that will lead to lateral failure of the shells. For
our simple Lennard-Jones potential, failure will take place when the separation
between capsomers and the maximum force exceeds that at the inflection point,

defined by d2VLJ

dr2ij
= 0. This inflection point is located at rbij =

(
13
7

)1/6
σhh where we
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Figure 8.10: Bulk modulus for the spherical and icosahedral shells at the optimal
radii. The inset shows a zoom in the region 13 < T < 64 to highlight the fact that
polyhedral P = 1 shells (colored in red) seem to be comparatively stiffer.

have used the distance between hexamers, since they tend to be most stretched
subunits. At this inflection point, the Lennard-Jones force between two capsomers
becomes

f b = 12
ε0
σ

(
7

13

)13/6

− 7

13

7/6

≈ −2.69ε0
σ

(8.7)

Assuming now a flat 2D hexagonal lattice of capsomers one can compute the
lateral stress at these condition, using eq. 8.3 yielding σ2D

b � −1.1 ε0
σ2 . Accordingly,

We defined the onset of bursting as the radius where the largest local stretching
stress reaches the value −1.1 ε0

σ2 . This is roughly the limit of resistance of a flat
hexagonal lattice of LJ particles [30], and was also found to be a good approx-
imation for the onset of bursting in the simulations of Ref. [20]. The bursting
radii, Rb, are plotted in Fig. 8.11 and show a linear dependence on the optimal
radii, which correspond to expansions of roughly ≈ 6% and ≈ 9% for spherical
and polyhedral shells, respectively. Hence, polyhedral capsids resist larger relative
expansions than their spherical counterparts. The associated internal pressures at
the onset of bursting are plotted in Fig. 8.12. We observe that, at equal strength
and range of interactions, polyhedral capsids systematically tolerate higher values
of the bursting pressure, pb, than their spherical counterparts, ranging from ≈ 10%
to ≈ 20% more for the smallest T-numbers up to a ≈ 35% for the largest viruses.
This advantage is especially evident for the P = 1 capsids. However, in general
the bursting pressure decays with the shell’s size as pb ≈ 1

Rb
, because V ≈ R3 and

under deformation E ≈ R2 (see eq. 8.5). Finally, it is worth mentioning that the
use of scaled units in our study also makes it possible to compare the resistance of
viruses with different strengths of interaction, by rescaling properly the pressure
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Figure 8.11: Bursting radius as a function of the optimal radii for the spherical
and polyhedral shells. The lines represent linear fits to the data.

Figure 8.12: Bursting pressure as a function of the T -number. Icosahedral P = 1
shells are highlighted in red.

in terms of the corresponding binding energies and capsomer sizes.

8.9 Comparison with data from real viruses

The aim in this section is to contrast some of the predictions of our analysis
with data from real viruses, and to discuss the potential biological implications of
our results. In order to compare these predictions with known structures of viruses,
we have used Chimera [28] to classify the shape and dimensions of all viruses with
T � 4 listed in the Electron Microscopy Data Bank [29]. The procedure to evalu-
ate the shape factor is described in detail in Appendix B.

The results obtained using this protocol are summarized in Table 8.1 and will
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Table 8.1: T -number, radii and sphere factor of T ≥ 4 viruses listed in the Electron
Microscopy Data Bank [29].

Ref Name T number Radius 5f Å Form factor
1525 Thermusphage P23-77 28 380 0.61
1350 SH1 28 392 0.66
1662 Sputnik 27 402 0.08
1392 PhiKZ 27 695 0.01
1011 PRD1 25 345 0.12
1123 Bam35c 25 341 0.06
1490 Adeno 25 482 0.17
1085 PM2 21 304 0.22
5259 Herpes Simplex 16 681 0.08
1445 KSHV 16 625 0.07
1238 IBDV 13 349 0.21
1377 RDV 13 380 0.45
1207 Phi 6 13 265 1.00
5124 Rift Valley 12 498 0.36
1472 N4 9 367 0.12
5237 80alfa procapsid 7 253 0.79
1164 80alfa virion 7 302 0.26
1162 T7 procapsid 7 273 0.76
1164 T7 Virion 7 325 0.0
5187 Simian V. 40 7 212 0.65
1827 P22 procapsid 7 306 0.61
1826 P22 virion 7 343 0.04
5237 Phage Staphyl. aureus proc. 7 252 0.82
5236 Phage Staphyl. aureus virion 7 312 0.09
1691 Gifsy-2 procapsid 7 274 0.66
1694 Gifsy-2 virion 7 345 0.29
1334 K1E, K1-5 7 297 0.32
1339 Syn5 7 338 0.38
1400 Hep B 4 218 0.79
1608 NωV 4 166 0.68
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Figure 8.13: Shape factor as a function of the T -number for the different viruses
listed in Table 8.1. For the cases where both the structures of the procapsid and
the mature capsid are known, they are represented by open circles and triangles,
respectively. The red line at 0.5 separates spherical (sf > 0.5) from icosahedral
(sf < 0.5 blue region) structures.

be now used to discuss some of the predictions of our simple model. Two caution-
ary remarks have to be made regarding this comparison. First, the maturation
process of a virus can be very complex, involving capsid expansion, cleavage of
proteins, and even covalent reinforcement of the shell [6]. The predictions of our
simple model are not expected to be applicable in this complex scenario, but rather
focus on the simplest case of viruses with a maturation pathway that does not re-
quire auxiliary proteins, cleavage of the coat protein, nor cross-linking between
subunits and where the interactions remain the some. Second, the known struc-
tures of large viruses are scarce and very often quite correlated, so the statistics of
this classification may not be representative for all viruses. Nevertheless, overall
the results mostly agree with the general predictions of the model.

In particular, if the strength of interactions and the size of the proteins does
not change during maturation, our model predicts that the polyhedral capsids will
be larger than the spherical proheads by ≈ 15% in radius, and that they become
faceted upon a radial expansion larger than ≈ 7% in radius. Interestingly, for the
few T = 7 viruses for which the structure of the procapsid and mature capsid are
known, the ratio of the mature vs procapsid radii seems to agree with this predic-
tion, although in some of these viruses the conformational changes in the capsid

190



Chapter 8. Buckling and maturation of spherical viruses Section 8.9

proteins that occur during maturation will restrict the applicability of our results.
In all cases the procapsid is initially spherical (with a sphere factor sf > 0.5), and
become faceted (sf < 0.5) after a maturation process that is accompanied by a
significant expansion. Specifically, the ratio of the mature vs procapsid radii of
80alpha, T7, P22, Staphylococcus aureus bacteriophage, and Gifsy-2 viruses are
19%, 19%, 12%, 23% and 26% (see Table 8.1 ), respectively, which roughly coincide
with the expected value of 17% for a T = 7 virus.

We stress that a simple surface-covering model accurately reproduces the radii
obtained in the simulations (see Fig. 8.4), meaning that the result should be ro-
bust to different types of capsomer-capsomer interaction. However, if during virus
maturation the interactions or the effective size of capsomers are strongly altered
by conformational changes or chemical processes, important deviations could be
expected. For instance, Nudaurelia capensis ω virus (NωV) is a T = 4 virus that
during maturation undergoes a cleavage in the coat protein that leads to a final
capsid 15% smaller in radius than the initial procapsid, i.e., the opposite behavior
of the one expected in our study [32]. Another exception is CCMV that expands
by more than 20% keeping its spherical shape by a change of pH and the removal
of Ca2+ ions, which obviously will significantly modify the strength and range of
the interactions. It is important to emphasize that, in some viruses, the matura-
tion and the buckling transition is triggered by changes in the viral proteins and
accordingly in their effective interactions; but this realistic scenario goes beyond
the scope of the present work.

Another interesting consequence of our results is that for T ≤ 28, the class P
clearly dictates the energetic preference in adopting either a spherical or a poly-
hedral capsid. Fig. 8.14 plots the values of the sphere factor as a function of the
T -number for all viruses listed in Table 8.1. Viruses are considered spherical if
sf > 0.5 and icosahedral if sf < 0.5 (blue). We can note how structures from
P = 1 class tend to be more faceted than structures from the P = 3 class that
tend to be more spherical. In fact some large T = 12 dsRNA viruses like Rift
Valley remain spherical even after maturation [35]. On the other hand, in viruses
where the icosahedral shell is the most stable, like for T = 25, the capsid assembly
might produce a polyhedral shell already as a procapsid, as has been observed in
the T = 25 bacteriophage PRD1 [33].

As mentioned before, buckling in T-shells produces icosahedral capsids with
radii ≈ 15% bigger than the spherical ones. However, the volume of the resulting
icosahedron V ico

0 is ≈ 8% smaller than the spherical one V sph
0 (see Appendix A).

This counterintuitive result, that occurs if no change in capsomer-size takes place,
is coherent with the fact that both capsids have the same number of capsomers, i.e.,
the same surface, and the sphere is the shape that maximizes the volume/surface
ratio. In addition, this result brings up an interesting question. Many viruses
that undergo a maturation process with buckling end up storing dsDNA at high
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density [3], so the capsid must sustain an important internal pressure due to the
confinement of this semi-flexible and electrostatically charged polymer. The ds-
DNA density is correlated with the internal pressure [2], which means that the
same amount of genetic material will generate a higher pressure in the icosahedral
shell than in the spherical capsid. This might be a desirable effect in viruses that
take advantage of this internal pressure to initiate the infection [2].

8.10 Conclusions

In this chapter we have analyzed the relevance of the T-number of viruses in
the buckling phenomenon, using a simple physical model that captures the essen-
tial ingredients of capsomer-capsomer interactions and that successfully reproduces
the equilibrium structures of viral capsids [17, 18, 20]. Despite the simplicity of
the model, it is important to point out that the qualitative results obtained do
not depend on the particular choice of the details of the intercapsomer potential,
but are rather dictated purely by the geometrical arrangement of the capsomer in
the T -shells. Obviously, the actual numerical values of properties like the local
stresses, energies, pressures or bursting radius do depend on the details of the
potential; but the trends and general conclusions that we summarize below seem
to be insensitive to them and they are just determined by general physical and
geometrical considerations.

We have found that, for small T-numbers, the tendency to buckle strongly
depends on the class P . In particular, structures from the class P = 1, e.g., T = 9
or 16, are the most favorable to produce icosahedral shells, whereas capsids from
the class P = 3 e.g., T = 3 or 12, are more stable as spheres. The only exception is
T = 4 that, due to its large curvature and the large influence of pentamers, prefers
to remain spherical. For the chiral classes P > 3 we obtain an intermediate be-
havior. Nevertheless, independently on P , for big capsids (T > 28) the icosahedral
shell is always more stable than the spherical shell, in agreement with continuum
elastic theory [12].

Furthermore, the analysis of the local lateral stress distribution unveils the
microscopic explanation of the different tendency to buckle observed in different
classes P. For spherical shells we generally observe highly squeezed pentameric
zones and stretched hexamers, which is in agreement with the theory of discli-
nations in hexagonal lattices [12]. However, the class P dictates the capsomer
arrangement and the resulting pattern of stress, which for spherical shells indicate
the tendency of a structure to produce a polyhedral shell.

Interestingly, even in the cases where the spherical shape is more stable, viruses
tend to undergo a buckling transition and to become polyhedral upon expansion,
as it is often the case during virus maturation. In fact, several T = 7 viruses
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adopt spherical procapsids but end up becoming faceted after undergoing a buck-
ling transition triggered by an expansion during virus maturation [6, 36].

More importantly, the choice of a polyhedral instead of spherical shape seems
to have mechanical advantages that might play an important biological role. Faceted
icosahedral shells have higher bulk moduli and tolerate larger expansions before
bursting. In addition, they are able to withstand internal pressures ≈ 20% higher
than spherical capsids. All these enhanced properties could be advantageous for
viruses that rely on a pressurized capsid to initiate the genetic material ejection [2].
However, since the maximum tolerable pressure is inversely proportional to the ra-
dius of the shell [20], this suggests that viruses could only take advantage of an
internal pressurization mechanism for a specific range of low T’s.

Finally, even though many viruses show a buckling transition during matura-
tion, the pathways and processes involved can be very complex, including auxiliary
proteins, cleavage or cross-linking. Obviously, our simple model cannot describe
these pathways nor capture those complications. But our results could be help-
ful in understanding the biophysical advantages of undergoing a maturation and
buckling process and adopting a faceted shape.
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Appendix A

Surface Covering model

There is a simple way to estimate the optimal radius of a given shell based
on a surface-covering assumption [37]. The idea is to assign an effective area to
each capsomer and then compute the radius of the T -structure whose area can
accommodate all the capsomers, assuming full coverage. In the spherical case an
hexamer is represented by an hexagon of area Sh = 2

√
3σ2

0 that circumscribes
the capsomer of radius σ0, and the pentamer by a pentagon with the same side
as the hexagon, with a surface Sp = 5

3
cotan(π

5
)σ2

0. For a T -shell the number of
hexamers is 10(T − 1) and there are always 12 pentamers. So the total surface
is S = 12Sp + 10(T − 1)Sh. Then, by equating the surface of the spherical shell,
Ssph = 4πR2 to the total area coming from the capsomers, we obtain the radius

Rsph
th =

√
1

4π
[10Sh T − 2(5Sh − 6Sp)] =

√
5
√
3T

π
σ0 (8.8)

For the icosahedral shell we proceed equivalently, but since the pentamers corre-
spond to corners in the polyhedron, we take the effective area introduced in the
CK construction, i.e., Sp = 5

6
Sh, corresponding to the removal of one of the tri-

angles of the lattice. Taking into account that the surface of an icosahedron with
radius R (measured from the center to one vertex) is Sico =

40
√
3

5+
√
5
R2 [38], we obtain:

Rico
th =

√
5 +

√
5

2
T σ0 (8.9)

The volume of the resulting icosahedron is V = 80(3+
√
5)

3

(√
10+2

√
5

)3 (Rico
th )

3, which is ∼ 8%

smaller than that of a spherical capsid having the same surface area.
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Appendix B

Determination of the shape factor of real viruses using Chimera

We have used Chimera [28] to classify the shape of all virus structures with
T � 4 that are listed in the Electron Microscopy Data Bank [29]. For T � 3
the high curvature and the “decoration” of the capsid proteins makes difficult to
characterize the shape. The structures are classified using the “sphere factor”, sf ,
the Chimera term for the radial interpolation factor (0 to 1) between a flat faced
icosahedron (sf = 0) and a sphere (sf = 1). The procedure used to evaluate this
sphere factor for each structure is described below.

(a) (b)

(c)

Figure 8.14: (a) Electronic density map of bacteriphage PRD1 virus from Electron
Microscopy Data Bank (grey). (b) Optimal icosahedral mesh with shape factor
0.1 and radius 381 Å showing a very good fit. (c) Icosahedral mesh with shape
factor 0.8 and radius 353.9 Å(blue) overlapped on the density map, showing that
the fit is not optimal.

We first open the virus electronic density map with Chimera and place it at
the center of the box. We then build an icosahedral surface with the same orien-
tation of the virus, a similar radius and an arbitrary initial sphere factor sf = 0.
We then convert this hypothetical structure into a volume map, try to fit both
structures and measure the correlation of the fit. We then repeat the procedure in
a loop that sweeps over different values of radii and of the sphere factor (between
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0 and 1), and measures the correlation obtained in the fit. The final values of the
radius and of the sphere factor for each structure are selected as the ones maxi-
mizing the correlation between the hypothetical icosahedron and the real virus.
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9.1 Introduction

The mechanisms used by a virus for genome delivery strongly depend on
the kind of host [1]. Eukaryotic viruses, which infect animal and plant cells, are
engulfed by the cell (endocytosis) and usually disassemble inside, releasing the
genome. However bacteria present a complex outer envelope, and their viruses
(bacteriophage) cannot use endocytosis. Instead the viral shell remains outside
the host and the genetic material is translocated through the membrane helped in
some cases by the binding of proteins [2] and/or the activity of polymerases inside
the cytoplasm that pull it inwards [3]. However, experiments and theory [4] sup-
port the hypothesis that in some phages the initial stages of the genome injection
into the host occurs by a spontaneous process triggered by the release of elastic
and electrostatic energy stored by the dsDNA confined inside the capsid. This en-
ergy has been previously built up inside the phage during the DNA packing process.

In general, double-stranded DNA bacteriophages first assemble in an icosahe-
dral prohead, which is later filled with DNA during the maturation process. Given
the stiff and self-repulsive nature of dsDNA, its insertion inside the prohead re-
quires the presence of a packing motor and the consumption of chemical energy in
the form of ATP [5, 6]. At the end of the packing process, double-stranded (ds)
DNA is confined to crystal densities [7], building a pressure within the phage with
mainly a twofold origin. On one hand, dsDNA has to bend to fit inside a cavity
(capsid) having a size similar to the dsDNA persistence length (50 nm). On the
other hand, the spatial confinement reduces the neighbor DNA-DNA distances to
a few Å, and the electrostatic repulsion forces provoked by the DNA phosphates
become crucial [8].

Although there seems to be no doubt that the DNA inside phages is in general
pressurized, its role to help the entrance of DNA remains controversial [9]. There
are several pieces of indirect experimental evidence for the pressurization of DNA
inside phages. In particular, a variety of experiments have shown that by impos-
ing an external osmotic pressure using osmolites, it is possible to counteract this
internal pressure and to control the DNA ejection process in the phages λ [11] and
T5 [12]. Furthermore, both theoretical [13, 14] and experimental [5, 15] results
indicate that the packaging processes of the DNA inside phages requires forces
about 50-100 pN . These forces can be translated into estimates of the pressuriza-
tion of the genome inside the capsid, resulting in 50 to 100 atm. However, these
techniques do not offer a direct measurement of the phage internal pressure.

In this chapter, we will describe a joint experimental and theoretical work
providing a direct evidence and measurement of the internal pressure in a bacterio-
phage. In particular, we were able to determine the pressure inside bacteriophage
φ29, combining AFM nanoindentation experiments on individual viruses with FE
simulations and theoretical modeling. By comparing the effective spring constant
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of DNA full virions and DNA-devoid particles, we have been able to measure the
contribution of the confined DNA to the stiffness of the shell and the subsequent
evaluation of its internal pressure. Moreover, we also show that this pressure can
be reversibly modified by the presence of counterions that reduce the electrostatic
repulsion of the confined DNA.

The chapter is organized as follows. In Section 9.2 we provide the relevant
biological information on the structure and self-assembly of bacteriophage φ29.
Section 9.3 is devoted to describe the AFM experiments that measure the mechan-
ical properties of φ29. Section 9.4 introduces the finite element simulations used
to model the previous AFM experiments and to describe the internal pressure. In
section 9.5, we calculate the predictions for the pressure inside bacteriophage φ29
using the inverse spool model. Finally, in Section 9.6 we compare these predictions
with the experimental results and discuss the biological implications on bacterio-
phage φ29.

9.2 Bacteriophage φ29

In this section we will summarize some relevant features of the viral cycle and
structure of bacteriophage φ29. It is a virus from the family Podoviridae, that
infects Bacillus subtilis and other related Bacillus bacterias.This double-stranded
DNA bacteriophage is a prolate virus whose capsid dimensions are 54×42 nm and
adopts an architecture Tend = 3 and Q5F = 5 centered on a 5-fold axis [18, 19], see
Fig. 9.1.

Bacteriophage φ29 is constructed from 235 gp8 subunits arranged in 11 pen-
tameric plus 20 hexameric units forming icosahedral end caps, and 10 hexameric
units forming the cylindrical equatorial region [20]. In one of the end caps, the
central pentamer is replaced by the connector complex [21], which is a dodecameric
assembly of protein gp10. The prolate icosahedra prohead is assembled by interac-
tion of the connector protein (gp10), the scaffolding protein (gp7) and the major
head protein (gp8). The absence of the connector or the scaffolding proteins (or
mutants of these proteins) yields aberrant structures made of gp8 (open rounded
shells, icosahedral capsids, tubular assemblies) [22] thus indicating that the built-
in information of the major head protein is not sufficient to define the shape and
size of the virus head, but rather it is the interaction of these components what
direct the precise curvature and extension of the contacts to generate the shell
architecture [19, 23]. An additional component of the head are fibers (made of
protein gp8.5), which are dispensable for virus infectivity.

After the formation of the prohead, φ29 packages its 19.3 kbp dsDNA genome
inside the capsid by means of a portal complex attached to the conector that hy-
drolyses ATP [19]. The maturation process starts when the DNA is packaged into
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(a) (b) (c) (d)

Figure 9.1: Cryo Electron Microscopy 3D reconstruction of a φ29 particles. (a)
External surface view of the prohead colored by cylindrical radius. (b) Cut of
the prohead showing the empty interior (c) Mature virion with fibers taken from
Ref. [16]. (d) Reconstruction of the fiberless bacteriophage φ29 mature virion,
taken from Ref. [17].

Figure 9.2: Assembly pathway of bacteriophage φ29 from the prohead to the ma-
ture virion. Taken from Ref. [20].

the prohead and it is accompanied by the release of the scaffolding proteins [24–26].

After the DNA incorporation the connector interacts with other tail compo-
nents (gp11, gp12 and gp9) to secure the DNA (see Fig. 9.2) inside the head
shell resulting in the mature virus. Interestingly, in the maturation process of φ29,
there are no conformational changes in the capsid during DNA packaging. This
bacteriophage, contrarily to other phages, does not show expansion or structural
differences between the prohead and final virion beyond the presence of the tail
and the fibers [24, 26, 27]. This final, mature virus particle is then ready for further
infection cycles by attaching to host cells [26]. After attachment to the host, the
entrance of the genome of phage φ29 apparently shows a two step push-pull mech-
anism [28]. During the first stage of genome injection, the push stage carries about
65% of the DNA through the tail into the host. Afterwards, during the pull stage,
a variety of proteins of the cytoplasm pull the remaining DNA inwards. Since the
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push stage would be triggered by releasing the internal pressure of the phage, it
is essential to determine the pressurization, if any, of the viral particles. This has
been accomplished using Atomic Force Microscope nanoindentation experiments,
as described in the following section.

9.3 AFM experiments

The Atomic Force Microscope (AFM) is a high-resolution microscope that
allows the imaging and characterization of samples with nanoscale resolution. In
recent years, it has been successfully applied to the study of the mechanical prop-
erties of individual viral capsids [10, 29, 30]. The AFM consists of a small tip (
typically of about 15 nm radius) that is ultimately responsible for touching the
sample (i.e, the capsid in our case). This tip is attached to a cantilever that can
exert forces on the viral capsids [31]. The position of the tip is controlled using a
piezoelectric device that can move over the sample in the three spacial directions
by an applied electric voltage [32]. When a capsid is probed by the AFM tip,
the cantilever suffers a deflection that is measured by a laser beam and translated
into force units, see Fig. 9.3 [33]. Then using the AFM is possible to scan the
surface and obtain several structural and mechanical properties of the viral capsids.

Experiments [30, 34] have shown intensively that as long as the viral shell is
not indented beyond its thickness, viral particles deform linearly [29]. Hence, data
from indentation experiments can be used to calculate the value of the effective
spring constant k of the shell along the direction of the applied force, providing a
quantitative description of the mechanical stiffness of the viral particle.

In order to know the role of the dsDNA in the origination of internal pressure
in φ29, nanoindentation experiments were performed by the group of P.J. de Pablo
at the Universidad Autonoma de Madrid on individual proheads, emptied mature
capsids (both shells devoid of DNA) and virions (with DNA inside) in physiological
condition. The samples were prepared as described in Appendix A, and the details
of the AFM experiments are presented in Appendix B.

Fig. 9.4(a) shows single representative force versus indentation curves corre-
sponding the prohead (red), virion (green), emptied virion (blue) and the exper-
imental curve on the substrate (dashed) [33]. The results show a linear behavior
of the force versus indentation, whose slope defines the effective spring constant k.
Each particle is indented a few times in the linear regime, avoiding any damage,
mechanical fatigue, or excessive tilting and the lineal portion of the force versus
indentation curve is fitted to get the spring constant k.

The results corresponding to the slopes of 116 indentations carried out on 14
virions (green), 8 proheads (red), and 3 emptied virions (blue) performed at the
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Figure 9.3: Schematic diagram of an AFM nanoindentation setup. A piezoelectric
device controls the position of a cantilever that is progressively lowered on top of
the sample. The deflection of the cantilever is detected by the reflected laser light
on a photodiode, and it is used to calculate the force exerted on the sample. Image
taken from Ref. [29].

same solution conditions and substrate are plotted as an histogram in Fig. 9.4(b).
Gaussian fitting of the data results in spring constants of 0.23± 0.05, 0.33± 0.05
and 0.23 ± 0.04 N/m for proheads, virions and emptied virions, respectively. φ29
proheads and emptied virions, show a similar k in contrast with Murine leukemia
virus [35] and HIV [36]. Our result can be interpreted in the light of the matu-
ration process: unlike other phages such as T7 [37] or lambda [38], φ29 prohead
does not experience relevant changes in the shell structure [26] that could modify
its mechanical stiffness. Remarkably, φ29 DNA-containing virions exhibit larger
value of k compared to empty virions of about 0.1 N/m that can be attributed to
the presence of DNA inside.

The mechanical reinforcement of the virion associated to the presence of the
genetic material may have two different origins. On one hand, the DNA-capsid
interaction may confer a mechanical stiffening [39], in a similar way that beams
buttresses the structure of a building. This is what happens, for instance, in the
case of the Minute Virus of Mice [39], whose X-ray data [40] reveal strong inter-
action between the DNA and the capsid. However, the EM structure of the φ29
virion [41] does not show shell cavities with DNA, indicating a poor DNA-capsid
interaction.

On the other hand, if the DNA is confined at high densities inside the capsid,
it would generate an outwards force that will stiffen the shell [15]. The strategy
to unravel the mechanical reinforcement mechanism in φ29 thus points at modify-
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(a) (b)

Figure 9.4: Nanoindentation experiments. Indentation curves on samples: hard
substrate (dashed), virion (green), the empty virion (blue), and prohead (red). b)
Histograms of the spring constants.

ing the factors governing the energetics of confined DNA (i.e., DNA bending and
DNA-DNA interactions) [42] to subsequently monitor the variations of the virus
stiffness. We have chosen to focus on the leading energetic contribution governing
DNA confinement, i.e., the DNA-DNA electrostatic repulsion [8].This repulsion
originates from the fact that the negatively charged packaged DNA in phages such
as lambda [38], T7 [43], ε15 [44], T4 [45] or φ29 [41] is usually structured in layers
with interlayer distances ranging from 23 to 29 Å.

A simple way to reduce or eliminate DNA-DNA repulsion is to add small
multivalent counterions that can diffuse through the capsid wall and screen the
electrostatic interactions. In particular, spermidine (SP) is a trivalent polyamine
commonly used to induce DNA condensates in solution [46] and thus we foresee the
modulation of the DNA-DNA electrostatic repulsion in φ29 by adding SP. Thus,
to understand the role of the DNA-DNA interactions in the reinforcement of the
virion the nanoindentation experiments were repeated in the presence of 1mM of
spermidine, as explained in Appendix A.

The Fig. 9.5 shows the results of this experiment obtained by performing 60
indentations on 12 particles. In the presence of 1mM SP the virion spring constant
decreases to 0.23±0.05N/m, which is the same value as that of the emptied virion
and the prohead (Fig. 9.5(b)). Control experiments by adding SP to prohead show
that the shell itself is not affected by counterions (Fig. 9.5(a)), since the spring
constant remains unaltered: 0.23± 0.05N/m. Moreover, it was found that the SP
effect on the virions is reversible. The SP was removed by washing with buffer the
AFM liquid chamber of the same viral particles previously measured in presence of
SP. At the end of the process, it was verified (Fig. 9.4(a)) that the virion recovers
its original value of elasticity: 0.33± 0.05N/m (54 indentations on 8 particles).
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(a) (b)

Figure 9.5: (a) Histograms of the spring constants obtained with and without sper-
midine. (b) Compilation of the the spring constants measured in the experiments:
empty SP = empty particles incubated with spermidine; empty = empty shells;
virion SP = virions incubated with spermidine; virion SP f&b = virions which
have been incubated with spermidine, and later they have been washed out.

To summarize the results of the different experiments, Fig. 9.5(b) shows a
compilation of the data, showing the SP effect on the different viral capsids. We
can infer not only that the contribution of the DNA spring constant is about 0.1
N/m, but also that SP removes the mechanical role of DNA in a reversible manner.

AFM experiments only provide an effective measure of the mechanical stiff-
ness of the capsid in terms of its spring constant. In order to translate the changes
in stiffness measured in the experiments into a value of the pressure, we have per-
formed a continuous elasticity analysis, using FE simulations, as described in the
following section.

9.4 FEM simulations

We have used finite elements simulations method (FEM) [47] to reproduce
the AFM experiment on the bacteriophage φ29 in order to link the changes in
stiffness measured by AFM with the internal pressurization of the capsid. Finite
Elements simulations of the AFM indentation of φ29 were performed using the
program COMSOL Multiphysics 4.2a (Comsol, Stockholm, Sweden) as described
in Chapter 5. In those simulations, the shape of the model was optimized to fit the
geometry of φ29, as shown in Fig. 9.6(a). The capsid of φ29 was modeled as hav-
ing a cylindrical body of length L and external radius Rcyl closed by two spherical
caps of external radius R = 22.5nm. The centers of the spherical caps were placed
9nm apart, so that the total length of the virus is 45 + 9 = 54nm, thus coinciding
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(a) (b)

Figure 9.6: Geometric representation used to generate the FE model optimized
to fit the realistic shape and dimensions of φ29. (a) The caps are made from
two spheres of external radius 22.5nm whose centers are placed 9nm apart. The
cylindrical part has a radius of 21nm, a length 25.3nm, and the thickness of the
wall is h = 1.6nm. (b) FE model used in the simulations. The laid-down virus is
indented by a spherical object on a surface.

with the reported experimental values [20]. The capsid wall consists of a homo-
geneous material with thickness h = 1.6nm, Young modulus E and Poisson ratio
μ = 0.3. This model capsid was placed on a hard flat substrate and indented by a
spherical object with radius Rin. The internal surface of the capsid was subjected
to a pressure p implemented as a boundary load. The contacts between the shell
and the tip and the supporting surface during indentation were implemented with
a contact penalty stiffness method according to the manufacturers manual. The
model was simplified to a quarter by making use of symmetry planes, and meshed
with over 25000 tetrahedral elements (see Fig. 9.6(b)). A parametric, non-linear
solver was used to simulate the stepwise lowering of the tip onto the model. The
spring constant was obtained from a linear fit of the force vs indentation, for small
indentations. The radius of the indenter Rin and the Young’s modulus E were
varied to reproduce the experimental values, and to analyze its influence on the
measured stiffness.

Fig. 9.7 shows the variation of the spring constant with pressure for Rin =
15nm and a value of the Young modulus of E = 2.3Gpa chosen to reproduce
the experimental value of the empty (unpressurized) capsids. The spring constant
reaches a value of 0.33N/m when the internal pressure is approximately 40atm.

The precise value of the spring constant depends on the (unknown) elastic
properties of the shell and, in principle, on the radius of the indenter. In order
to ascertain their influence, we repeated the simulations for different values of the
Young modulus in a reasonable range of E = 1Gpa to E = 10GPa. Obviously,
the values and behavior of the spring constant with pressure were different in each
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(a)

Figure 9.7: Value of the spring constant of the shell k as a function of the internal
pressure p obtained from the FEM simulations with E = 2.3GPa and Rin = 15nm,
chosen to reproduce the unpressurized spring constant k0 measured in the AFM
experiments.

case, as shown in Fig. 9.9. To analyze the influence of the radius of the tip, we
redid the simulations using a smaller tip radius of Rin = 5nm. In addition, to ana-
lyze the validity of the thin shell approximation, commonly used in the literature,
the simulations were repeated using a thin shell model with the same dimensions
optimized to approximately fit to the center of the φ29 capsid wall. The model
was made out of 5000 thin shell elements (so compression in the normal direction
within the shell is ignored, and buckling is not accounted for), and indented in this
case by a point force exerted at the middle of the cylindrical wall. The resulting
indentation was measured as a function of the indentation force for different values
of the internal pressure.

The results of all these different simulations are summarized in Fig. 9.8. The
results for E = 3.1GPa with different radius of the indenter, Rin = 15nm (orange
line) and Rin = 5nm (black line) clearly show that this has a little influence on
the measured spring constant. Moreover, comparing the results for E = 3.1GPa
(orange line) with the results obtained using a thin shell model indented by a
point force (blue line), one can see that both the thin shell and the point force
approximations are actually quite accurate to describe the indentation of a shell
with the dimensions and thickness of φ29. Interestingly, if the spring constant k
is scaled by its unpressurized value k0, and the pressure is normalized as τ = pR

k0
we find that all data from these different simulations collapse into a single curve,
see Fig. 9.9. This scaling is suggested by the interesting results in the thin shell
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Figure 9.8: Value of the spring constant k versus the internal pressure from the
FEM simulations(a) for different values of the Young modulus E and the indenter
radius Rin. The blue line plots the results of a thin shell model with E = 3.1GPa
indented by a point force.

Figure 9.9: Value of the spring constant k versus the internal pressure from the
FEM simulations scaled by the unpressurized value k0, where the blue in circles
are the results of a thin shell model indented by a point force the red line is a
single universal line.

approximation for pressurized spherical and ellipsoidal shells found by Lazarus et.
al [48] and Vella and co-workers [49, 50].

Fig. 9.9 plots the results of the effective spring constant scaled by its value
for the unpressurized shell k0, as a function of the dimensionless pressure τ = pR

k0
,

for different values of the Young modulus and the radius of the indenter. Remark-
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ably, in this scaled form, all results collapse in a single universal curve that can
be used to evaluate the pressure from the experiments, irrespective of the specific
value of the mechanical properties of the capsid and the radius of the tip. From
the experimental values of the spring constant of the virion (k = 0.33± 0.05N/m)
and that of the empty (unpressurized) capsid (k0 = 0.23 ± 0.05N/m), one gets
k/k0 = 1.44± 0.2. That ratio corresponds in the master curve to a dimensionless
pressure of τ = 0.36 ± 0.2, that yields a value of the pressure of 40 ± 20atm. It
is important to emphasize that the value of the pressure obtained from the AFM
experiments and the FEM analysis is independent of the physical mechanism that
is generating this pressure.

9.5 Estimation of the pressure from the inverse spool model

We now compare the obtained value for the pressure of bacteriophage φ29
with the theoretical predictions of the so-called “inverse spool model”.

There have been several models that evaluate the energetics of packed DNA
[14, 51–53]. Here we will use the model introduced by Purohit et al [14] In this
model the total free energy of confined DNA is assumed to consist of two main
contributions: the elastic energy Gbend, due to the fact that DNA inside the capsid
has to be bent at radius smaller than its persistence length (estimated in 50 nm);
plus an interaction energy Gint, accounting mainly for the electrostatic interactions
among neighboring DNA strands. Thus the total energy becomes:

Gtot(L, ds) = Gbend(L) +Gint(L, ds) (9.1)

and depends on both the total length of the genetic material L, as well as on the
separation between strands ds.

The elastic contribution is calculated by assuming that the DNA inside the
capsid is arranged in an inverse spool configuration where the strands are packed
in a hexagonal array with a spacing ds. With these assumptions, the elastic energy
and the total DNA length become:

Gbend(L) =
2πξpkBT√

3ds

∫ Rout

Rin

N(R′)
R′

dR′ (9.2)

L =
4π√
3ds

∫ Rout

Rin

N(R′)R′dR′ (9.3)

where ξp = 50nm is the DNA persistence length, kB is Boltzmann’s constant,
T is the temperature, N(R′) is the number of hoops of radius R′ in the capsid,
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Figure 9.10: Inverse spool model, where z = 9nm, ds is the separation between
strands, Rout = 22.5nm is the radius of the caps and Rin = 19.4nm for the φ29
bacteriophage. Taken from Ref. [14]

and R and Rout are the inner and the outer radius of the inverse spool, the latter
taken as the radius of the inner surface of the capsid (see Fig. 9.10).

An accurate and first principle calculation of the DNA-DNA interactions is
a difficult and unarchived task, so commonly the interaction energy Gint is evalu-
ated from osmotic stress experiments at the proper conditions. These experiments
have shown that the electrostatic interaction between DNA strands has a different
behavior depending on the valence of the added salt. For monovalent and divalent
salts, the contribution is purely repulsive and the dependence of the osmotic pres-
sure Πrep(ds) with respect to the separation between strands ds is given by:

Πrep(ds) = F0e
−ds/c (9.4)

where c and F0 are parameters that characterize the decay length and strength
of interactions, which depend on salt conditions. In the case of trivalent (like sper-
midine) and tetravalent salts the effective electrostatic interaction has an optimal
distance between strands, which at smaller separations leads to a repulsive inter-
action whereas at higher separations can have an attractive regime. A convenient
empirical expression for the osmotic pressure in this situation is

Πattr(ds) = F0(e
−(ds−d0)/c − 1) (9.5)

where d0 is the optimal separation between strands (which for the case of sper-
midine has been measured to be d0 = 2.97nm [54]. From the osmotic pressure, the
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Figure 9.11: The free energy of interaction per basepair (E = Gintl/L, be-
ing l = 0.34nm) as a function of the DNA-DNA separation, ds in TMS buffer
(100mMNaCl + 10mMMgCl2), as obtained from the osmotic stress experiments
of Ref. [56]. The dots represent the experimental data and the line is a fit to eq.
9.7.

interaction energy can be evaluated as

Gint(L, ds) =
√
3L

∫ ds

∞
Π(x)xdx (9.6)

which yields

Grep
int (L, ds) =

√
3F0L(c

2 + cds)e
−ds/c (9.7)

in the purely repulsive regime and

Gattr
int (L, ds) =

√
3F0L

[
(c2 + cds)e

−(ds−d0)/c − (c2 + cd0)− 1

2
(d20 − d2s)

]
(9.8)

In the presence of tri- and tetra-valent counterions. It is important to empha-
size that these interaction free energies Gint obtained from osmotic stress experi-
ments not only account for the electrostatics of the DNA and counterions, but also
for entropic and hydration contributions [55].

The values of the constants c and F0 governing the electrostatic interactions
for the different buffer conditions used in the present experiments have been ob-
tained by fitting eqs. 9.4 and 9.5 to the osmotic stress experiments reported by Rau
et al. for TMS buffer [56] and for a buffer containing spermidine [54], respectively.
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Figure 9.12: Osmotic stress as a function of the ds in the presence of spermidine
(attractive regime), as obtained in the experiments of Todd et al. [54](points). The
line is a fit to eq. 9.5.

For the TMS buffer, the values obtained from the fit are: F0 = (3± 1)104pN/nm2

and c = 0.30 ± 0.01nm. The data as well as the resulting fit are plotted in Fig.
9.11. In the case of the TMS buffer +1mM spermidine, the values obtained from
the fit are (see Fig. 9.12): F0 = 0.93 ± 0.05pN/nm2 and c = 0.210 ± 0.005nm,
using an equilibrium separation of d0 = 2.97nm [54].

Knowing the contributions of the bending and interaction terms, the opti-
mal energy and DNA spacing are then obtained by minimizing the total energy
Gtot(L, ds) with respect to ds for a given total genome length L. The internal
pressure is finally obtained from it by its standard thermodynamic definition as
P = − (

∂Gtot

∂V

)
.

The capsid of φ29 is not spherical but elongated. In order to evaluate the pres-
sure, we have assumed that it is an spherocylinder of internal radiusRout = 19.4nm,
shell thickness h = 1.6nm, and length of the cylindrical body b = 12nm, which
are the dimensions reported by Tao et al [20]. In Purohit et al [55] it was assumed
that in elongated viruses the DNA is bent in an inverse spool configuration coiled
around the cylinder axis. However, it seems more natural and energetically fa-
vorable from the elastic point of view (and it is also partially supported by the
simulations [61]) to assume that it is coiled parallel to the cylinder axis. The ad-
vantage of this configuration is that it saves the bending energy associated to the
unbent DNA in the cylindrical portion of the virus. With this configuration, the
packaged length and the bending energy become
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Table 9.1 Values of the pressure P and the ds obtained from the model in a TMS
and TMS+1mM SP buffer using different values of the inner radius of the capsid
Rout, the length of the cylindrical body b [33] and genome length L = 19.3 kbp.

L =
8π

3
√
3d2s

(R2
out−R2

int)
3/2− 4h√

3d2s

(
Rin

√
R2

out −R2
in +R2

out

(
sinh−1

(
Rin

Rout

)
− π

2

))

Gbend(L) = −4πξpkBT√
3ds

(√
R2

out −R2
in −Routlog

(
Rout +

√
R2

out −R2
in

Rint

))
(9.9)

Using this model, we have estimated the pressures and the optimal separation
between strands at the two different buffer conditions used in the experiments.
It turns out that the results are quite sensitive to the dimensions of the capsid
used, specially to the radius. Table 9.1 and Fig. 9.14 show the values obtained
for the TMS buffer and in the presence of 1mM of spermidine, using the internal
dimensions of the capsid reported by Tao et al, and assuming a variation in them
of ±0.5nm, which is similar to the resolution. For the internal dimensions of the
capsid reported by Tao et al. [20] (i.e., considering φ29 a spherocylindrical shell
of internal radius Rin = 19.4nm, length of the cylindrical body b = 12nm, and
thickness h = 1.6nm), the results yield a pressure of approximately 30±12 atm for
the TMS buffer and 17± 12 atm for 1mm SP. The error bars have been estimated
by considering a reasonable accuracy of the dimensions of the capsid of 0.5nm.
These results are somehow consistent with the pressures measured by AFM.

It is important to note that the results do not differ much from the case
in which the prolate φ29 is modeled as an effective spherical virus of the same
volume as the prolate capsid. Moreover, although the fact that the dsDNA is
compacted in an inverse spool configuration is still controversial [56], the estimates
of the pressures are not very sensitive to the configuration, since they are mostly
controlled by the electrostatic contributions [57] and the packing density of the
DNA. In fact, a simple estimate of the strand separation can be obtained by
equating the total volume available inside the capsid V with that of the hexagonally
closed packed DNA (assuming that it occupies the whole volume), yielding ds =
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Figure 9.14: Different values of the pressure calculated with the Purohit model
as a function of the radius of the cap Rout an its axial length b for TMS buffer
(grey squares) and for TMS+1mM spermidine buffer (green circles). Numbers on
top of the points are the DNA interlayer distance in nanometers (ds). Taken from
Ref. [14].

√
2V√
3

1√
L
. Using this approximated value ds in eqs. 9.4 and 9.5 one gets an accurate

approximation of the capsid pressure due to the confined DNA. This suggests that
the use of the inverse spool model is not critical in this case.

9.6 The pressure of φ29

In this section we are going to compare and discuss the experimentally mea-
sured value against the theoretical predictions.

From the AFM experiments and the FE analysis, we have obtained a value of
the pressure in full φ29 particle of 40± 20 atm. This value is compatible with the
30± 12 atm estimated theoretically from the inverse spool model.

In the presence of spermidine, the packaging model predicts still a slight pres-
surization of 17±12atm, that using the universal curve of Fig. 9.9 will translate in
an expected spring constant of kSP = 0.28± 0.05N/m. This value is also compat-
ible with the experimental results, within the experimental error bars. Therefore,
our indentation experiments evaluate the pressure of the DNA inside the capsid,
thus reflecting the trends established by the predictions of the electrostatic theo-
retical model.

Finally, the value of the pressure measured in the AFM experiments (40 atm)
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is smaller than the estimate of 60 atm based on packaging force measurements
using optical tweezers [5, 51, 55]. We attribute this discrepancy to the buffer used
in those experiments that contained half the concentration of monovalent and di-
valent counterions (5 mmMgCl2 and 50 mmNaCl), leading to larger repulsion
between DNA strands, and accordingly to larger internal pressures.

9.7 Conclusions

In this chapter, we have seen how the combination of experiments and simula-
tions has provided a direct way to determine the genome pressure in bacteriophage
φ29, much in the same way that pressure gauges evaluate the pressure in an in-
flated tire.

From this analysis, we have also obtained many interesting conclusions of bi-
ological relevance. On one hand we have shown that the spring constant of the
emptied φ29 virions and procapsids is the same, revealing a poor mechanical role
of the scaffolding protein, if any. On the other hand, we have also proven that the
presence of confined DNA stiffens the φ29 phage in about 0.1N/m with respect to
the emptied virion or capsid. By using purely mechanical models, we have inferred
from the experiments that an internal pressure of 40± 20atm is required for gen-
erating the observed stiffness variation between capsids and virions, irrespective
to its physical origin. Interestingly, the value of this pressure is similar to that
predicted by the DNA packaging model.

We have also established that the trivalent agent SP is able to eliminate re-
versibly the mechanical stiffening provided by DNA, since it screens the DNA-DNA
repulsion in a reversible way. The results of this work constitute the first direct
evaluation of the pressure built up by the confined DNA in bacteriophage φ29.

The genome in other dsDNA bacteriophage as λ [38, 58, 59], T7 [37, 43],
ε15 [44] or T4 [45] is structured in layers with interlayer distances ranging from
23 to 29 Å, similar to those of bacteriophage φ29 (24 Å). Thus, similar experi-
ments and the same theoretical analysis can be used to determinate the pressure
for other phages and the results will be crucial to understand the controversial role
of pressure in the DNA entrance into the host cells [4].
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Appendix A

Preparation of the φ29 samples.

To produce emptied φ29 particles, virions were incubated in 100mM EDTA
at 65oC during 40 minutes. After dialysis of the sample against TMS to remove
the EDTA, it was further incubated with DNase for 30 min at 37oC to remove
the DNA released from the virions. To evaluate the effect of the trivalent ion
spermidine on the spring constant and DNA-DNA interaction the stock solution
of virion φ29 was diluted 50 times in TMS buffer and then 5 times in TMS buffer
with spermidine to reach 1mM concentration. The drop was left about 30 minutes
on HOPG and rinsed four times with 1mM spermidine in TMS. As an additional
control to test the direct effect of spermidine in the decrease of the interaction
DNA-capsid, the following experiment was performed: the virion was diluted in
TMS+1mM spermidine. A 25 μl aliquot was left on the HOPG surface 30 min-
utes. Then, the sample was rinsed 4 times with TMS-Spermidine buffer to reach
progressively the buffer standard conditions (0.75 mM , 0.5 mM , 0.25 mM and 0
mM spermidine, respectively). Each buffer change was left about 20 minutes to
stabilize.
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Appendix B

AFM experiments on viral particles.

Stocks of φ29 viral particles were stored in TMS buffer (10 mM MgCl2, 50
mM Tris and 100 mM NaCl, pH 7.8). A drop of 20 μl stock solution of viral
particles was incubated on HOPG (ZYA quality NTMDT), for 30 min and washed
with buffer. The tip was prewetted with 20 μl of buffer. The AFM (Nanotec
Electrónica S.L., Madrid, Spain) was operated in jumping mode in liquid [32] us-
ing rectangular cantilevers RC800PSA, and Biolevers (BLRC150VB) (Olympus,
Tokyo, Japan) with nominal spring constants of 0.05 N/m and 0.03 N/m, respec-
tively. Cantilevers spring constants were routinely calibrated by using the Sader’s
method [31].

In the experiments, viral particles were immobilized on a flat surface for their
AFM inspection [60]. Afterwards the adsorption geometry of the φ29 virions, the
emptied virus and the proheads were identified by comparing AFM and geometri-
cally tip dilated [62] electron microscopy (EM) data. The comparison between φ29
proheads and emptied virions does not show further structural differences beyond
the tail and the fibers [26]. The absence of the tail allows proheads to adsorb on
the substrate in twofold geometries: laid down on the side and upright [30, 34].
Fig. 9.15 shows a typical topography AFM micrograph of a laid down prohead
particle which compares fairly well with the tip dilated [62, 63] EM data [17].
However, virions were constrained to attach laid down on the side because of the
tail, resulting in a single and clean adsorption geometry.

Fig. 9.15(b) shows a typical AFM image of a virion with evident features of
the tail and the collar which again matches with the expected tip-dilated model
of the EM data [41]. Furthermore, the measurements indicate that the capsid is
resting parallel to the surface in a geometry that is stable enough for our exper-
iments. Emptied virions particles are similar to the full virion presented in Fig.
9.15 and they did not lose the tail during the process.

In order to perform nanoindentations, single viral particles were deformed by
the tip by carrying out single FZs (force versus z-piezo displacement) experiments
most likely right at the top of the virus: the shell was zoomed in continuously by
reducing the x-y scanning size until the bump of the very top is under the whole
piezo scan. Afterwards the FZ was executed at the top of the particle, proba-
bly with a few nm of uncertainty mainly provoked by the thermal drift, and the
intrinsic nonlinearity and creep of the piezo. Still, this method has been proved
to be robust enough to establish electrical contact with carbon nanotubes which
are even smaller than viral particles. During the first stages of indentation the
viral particles show a linear deformation [64] which provides the spring constant
of the virus kv (if it is considered like a spring in series with the cantilever) as
kv = kc

Sg

Sv−Sg
, where kc is the spring constant of the cantilever, Sg (nm/V ) the
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Figure 9.15: (Top row) AFM images of a φ29 prohead adsorbed on the surface and
the geometrical dilation image of the prohead EM data. (Botton row) AFM images
of a virion or emptied virion, which compares fairly well with the geometrically
dilated EM data taken from Ref. [41].

slope of the cantilever deflection on the glass (here the substrate was considered
as non deformable) and Sv (nm/V ) the slope of the cantilever deflection on the
virus. Hence, the viral particle is indented with a few separate sets of FZs of
about 5 indentations in each one. Following each FZ set, an image of the virus is
taken to confirm its integrity, as well as to know its position in order to correct
for any drift if needed to perform the next FZs set. The maximum force applied
during each FZ never exceeded ≈ 300pN to prevent the damage [65], collapse [64],
buckling [66], or non-linear deformations [67] of the shells. The FZ speed is about
60 nm/s [67]. Even if the shell integrity is maintained, in our experiments only
particles showing stable spring constants along the FZs sets were considered to
avoid particle mobility effects that often occur when the particle is loosely bound
to the surface. Images were processed using the WSxM software.
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10.1 Introduction

As mentioned in previous chapters, the most important role of the viral cap-
sid is to protect the genetic material of the virus. During the extra cellular phase
viruses face large changes in the environmental conditions [1], that could induce
extreme changes in temperature, pH, osmotic shocks related to a sudden change of
salt concentration, or dehydration. In addition, as shown in Chapter 9 the capsid
of many dsDNA viruses has to withstand up to tens of atmospheres of pressure
built up during the packaging of the viral genome at high densities [2–4]. Moreover,
some viruses called extremophiles live in extreme conditions of salinity, radiation
or temperature [5, 6]. Accordingly, it is very important that the capsid keeps its
integrity under environmental changes and survives mechanical stresses in its cycle
life.

As a consequence viruses have developed amazing mechanical properties. No-
table examples are bacteriophage φ29 that, as shown in the previous chapter, is
capable of withstanding about 40 to 60 atms of pressure inside [7]; or Cowpea
Chlorotic Mottle Virus (CCMV) that is able to maintain its shape and structure
in very broad pH ranges and after deformations of more than 30% without break-
ing [8].

In recent years, there has been a lot of interest in characterizing the mechan-
ical properties of viruses. These studies have been possible by the development
and application of different experimental techniques that have been able to extract
precise mechanical properties of individual viruses. In particular optical tweezers
were very important in the measurement of the force associated to the packing the
genome [7]. But, arguably the most important and popular technique has been
the application of atomic force microscope (AFM) to obtain the mechanical resis-
tance and topography of single capsids [9, 10, 12]. Specially, AFM nanoindentation
experiments have determined different mechanical properties such as the effective
Young’s modulus, breaking face, fatigue or even internal pressures [8, 11, 12].

AFM experiments are a very powerful tool to access interesting mechanical
information of viral capsids, but sometimes it is very hard to get a good inter-
pretation of the result and to relate this information to the biological cycle. In
this context, theoretical modeling and simulations are required to interpret and
understand better experimental AFM results [13].

The goal of this chapter is precisely to develop a “virtual AFM”, i.e. a simula-
tion mimicking the standard setup and experimental protocol of AFM nanoinden-
tation experiments. With the combination of experiments and simulation, we are
in a position to get more complete information about the mechanical response of vi-
ral capsid and how it will be influenced by changes in the environmental conditions.
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(a) (b)

Figure 10.1: (a) A typical force versus indentation curve obtained in AFM exper-
iments for T7 proheads in the 3-fold direction. The initial linear response ends
abruptly by a sudden drop in this case associated to the fracture of shell. (b) A
similar curve obtained in our simulations for T = 7 shell.

This chapter is organized as follows. In Section 10.2 we will briefly summarize
the basics of AFM nanoindentation experiments and the main results that have
been obtained in the study of viral capsids. Section 10.3 reviews the essential of
continuum elasticity theory that is customarily used in the interpretation of AFM
experiments. Section 10.4 will be devoted to the description of the “virtual AFM”,
the BD simulations that we have implemented to mimic the experimental set up.
We next will show how the elastic response of the virus changes with the simula-
tions parameters. After that, in Section 10.5, we will focus our simulation in the
study of bacteriophage T7 and the comparison with AFM experiments. Finally,
in Section 10.6 we summarize our findings.

10.2 Atomic Force Microscopy on Virus

The application of AFM has become a revolution in the study of the me-
chanical properties of viruses. The AFM device permits an exquisite control of the
height, position, and force in the study of individual viruses, to acquire nanometric-
resolution images, and also to perform a physical characterization of the rigidity
of the sample.

The AFM is a high-resolution imaging technique that allows to explore single
capsids. The basic set up of an AFM, consist of a flat horizontal surface, that
supports the sample and a small tip at the end of a cantilever, which touches the
sample. The position of the tip is controlled using a piezolectric device that can
move over the sample in the three directions by an applied electric voltage. With
this set-up when the tip touches the sample, the cantilever suffers a deflection that
is measured by a laser and a photodiode. From the deflection of the cantilever,
one can get an accurate topographic image of the sample with nm resolution [14].
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The deflection of the tip can be translated into a force with a resolution of
about 10 pN , using the elastic constant of the cantilever, which can be determined
using, for instance, Sader’s method [15]. AFM can also be used in liquids, thus
facilitating the study of biological samples in their natural environment.

As described in the previous chapter, in a typical nanoindentation experiment,
the sample is immobilized on a flat hard substrate. The cantilever is then lowered
progressively, recording the force and deflection as a function of the vertical posi-
tion of the tip [12].

For viruses it is possible to distinguish two deformation regimes, correspond-
ing to small and big indentations, see Fig.10.1. For small indentations a linear
force-response can be observed that allows to determine the particle’s spring con-
stant. For bigger indentations one can observe mechanical failure of the capsid
often associated to the presence of strong discontinuities that arise in the force-
indentation curve, see Fig.10.1.

AFM nanoindentation experiments of viruses are providing an important set
of data about their mechanical properties. The use of this method on viruses such
as the phages φ29 [16] and λ [17], and Cowpea Chlorotic Mottle Virus (CCMV) [8],
all nonlipid viruses, has revealed that they are mechanically robust structures and
that they have interesting elastic properties. In particular, bacteriophages have
been found to have high effective Young’s modulus, comparable to that of hard
plastics [18].

The AFM is a helpful tool also in order to estimate the internal pressure of
viruses, and the role of the genome in this pressure, as shown in the previous chap-
ter. Nanoindentation experiments comparing empty and full capsids have been
performed on various viruses such as CCMV [8], MVM [18], phage λ [17] and
HSV1 [19, 20]. Results on CCMV, MVM and phage λ reported stiffening and/or
an increase in breaking force of the full capsid compared to an empty capsid. Inter-
estingly, no difference in mechanical properties was observed for empty and DNA
filled nuclear HSV1 capsids. These results triggered questions on how the presence
of the genome modifies the mechanical properties of capsids.

In addition, there are different studies about the changes in the capsid through
the maturation process, where indentation experiments are preformed on cap-
sids before and after this process. Studies for moloney murine leukemia virus
(MLV) [21] and human immunodeficiency virus (HIV) [22] show that their pro-
heads are stiffer than their mature capsidds. AFM experiments for bacteriophage
λ and HK97 show that Young’s modulus and breaking force increase during mat-
uration [23].
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The mechanical information obtained by AFM experiments has traditionally
been interpreted in most cases by continuum elasticity theory, as described in the
following section.

10.3 Elastic theory of indentation experiments

Continuum elasticity theory provides a macroscopic description of viruses. In
the thin shell approximation, viral capsids can be described in terms of stretch-
ing and bending deformations. The elastic response of the capsid in indentation
experiments depends on the competition between these two contributions and on
the strength of the applied force (or depth of the applied indentation). One can
distinguish two deformation regimes, corresponding to small forces of indentation
or for larger forces.

For small deformations the behavior of the force versus indentation is lin-
ear and reversible. In these conditions, the mechanical behavior of the cantilever
can be approximated as an ideal spring whose elasticity is given by Hooke’s law:
F = −kcx, where F is the restoring force, which is equal to the force of tip-sample
interaction, kc is the spring constant of the cantilever, and x is the deflection of the
cantilever. The deformable sample can be considered like a spring in series with
the cantilever. Using this approximation the effective elastic constant of the capsid
is given by kcap = kc

Sg

Sv−Sg
, where Sg (nm/V) is the slope of the cantilever deflection

on the glass (the substrate is considered as non-deformable) and Sv (nm/V) the
slope of the cantilever deflection on the virus. In the small deformations regime,
kcap is calculated from a lineal fit of the force versus the indentation curve. The
kcap is related to the effective 3D Young modulus E as:

kcap =
2√

3(1− μ2)

Eh2

R
(10.1)

where μ is the Poisson ratio, R is the radius of the capsid, and h its thickness.
The previous relation is exact for a thin spherical shell indented by a point force.
For a thick shell, the same formula is used, replacing the prefactor 2√

3(1−μ2)
by an

effective coefficient which is close to 1.

For indentations δ larger than the shell thickness, inverse buckling occurs [24].
In this regime, the force is no longer linear, but rather goes as F ≈ √δ. This in-
verse buckling is expected to happen when δ > h and when the force excceds a
critical value Finv ≈ κ/R. Applying even larger deformations eventually causes
irreversible changes in the shell structure associated to bond ruptures. Rupturing
studies can thus provide helpful information about the molecular interactions be-
tween capsomers.
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Some of the approximations involved in thin shell theory can be removed by
the use of finite elements simulations to solve the complex 3D continuum elasticity
equations. Using FEM, it has been possible to analyze the effect of the thickness
of the capsid, to extract phenomenologically the effective Young’s modulus of the
capsid, and even to account for the effect of inhomogeneities using refined meshes
constructed from the atomic maps of some viruses [25].

This continuum mechanics description of viruses works well as a first approxi-
mation and has provided very useful information of the elastic properties of viruses.
However, a continuum description cannot capture the discrete nature of subunits
forming the capsid, which, as we saw in Chapter 8 and in this chapter, are very
important for viruses. In addition, recent AFM experiments on bacteriophage T7
show an anisotropic stiffness in the mechanical response of T7 capsids [26, 27],
that cannot be described with a continuum theory. Therefore, accounting for the
discrete and inhomogeneous nature of the capsid is crucial to properly understand
its stability and mechanical response. That is the reason why we developed our
“virtual AFM” described in the next section.

10.4 Virtual AFM

As we mentioned earlier, extracting the relevant information from AFM nanoin-
dentation experiments is difficult. Thus, it is often necessary to combine experi-
mental information with simulations in order to interpret correctly results. Differ-
ent kinds of simulations, accounting for the discreteness of the capsid at diverse
resolution levels, have been implemented in the literature [23, 28]. In particular,
coarse-grained models have been implemented, to study the maturation pathway
of viruses of different sizes and structures [29, 30]. Elastic network models have
also been used to study the buckling process of viruses [28].

In this chapter, we have used our coarse-grained model described in Chapter
3, to implement a “virtual AFM”. The main motivation for the implementation
of the “virtual AFM” was to mimic and interpret recent experimental results on
bacteriophage T7. However, the model can be used to study the mechanical prop-
erties of any virus of arbitrary T-number, thus being potentially very useful to get
information on the stability and resistance of viruses.

10.4.1 Simulation set-up

In order to reproduce the nanoindentation experiments, we wanted to imple-
ment a simulation mimicking the typical AFM setup. Since we are interested in
the response of the viral capsid and the dynamics of the capsomers during the
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Figure 10.2: Snapshot of the indentation of a T = 7 coarse-grained shell model
along the 2-fold direction. The blue sphere represents the AFM tip. The viral
capsid is modeled at the level of capsomers, where hexamers and pentamers are
represented by green and red spheres, respectively. The black rectangle illustrates
the hard substrate.

indentation process, we decided to use an algorithm based on Brownian Dynamics
simulations, as described in Chapter 5.

The simulation setup is shown in Fig.10.2. In these simulations we have added
a surface at a position z = 0; a cantilever at the top, modeled as a sphere, which
can only move in the z direction, and a preformed capsid between them to mimic
the experiments. The capsomers, depicted by the red and green spheres in Fig.10.2,
interact by pairs following the coarse-grained model described in Chapter 3. They
also interact with the tip and with the surface. In the initial configuration, the
capsid is placed sligthly above the surface and the position and orientation of all
capsomers correspond to the optimal one for the parameters and T-number used.

The interaction between the capsomers and the sphere of radius dc that rep-
resents the AFM tip ( depicted at Fig.10.2 by a blue sphere in the top) is modeled
by the following purely repulsive harmonic potential:
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Vc =
1

2
krepul (ric − (dc + σ/2))2 if ric < dc + σ/2 (10.2)

where krep is an effective repulsive spring constant, ric the distance between the
center of the cantilever and capsomer i, dc the radius of the cantilever and σ is σp

or σh for pentamer or hexamers, respectively.

To mimic the deflection of the cantilever caused by the interaction with the
capsid, its z position is updated using the following overdamped Euler equation :

zc =
Δt

ηc
(Fc − kc(zc − h)) + ξ

√
2DcΔt (10.3)

where Δt = 10−4 is the time step used in the simulations,
Fc = −∑

i krepul (ric − (dc + σ/2)) is the total force on the cantilever due to the
interaction with all capsomers, kc is the spring constant of the cantilever ηc is the
friction of the cantilever, Dc is its diffusion coefficient, and ξ is a Gaussian noise
with zero mean and variance 1. As in a real AFM, the height of the cantilever is
controlled and fixed to a value h, that is lowered stepwise at intervals of 105 time
steps.

Finally, the substrate is modeled as a rigid surface (Fig.10.2, black surface),
with a purely repulsive harmonic interaction with stiffness ksubs. To account for the
potential effects of adsorption with the substrate, as often occurs in experiments, a
binding energy of adsorption Eads is also considered. This adsorption contribution
is descrited by the interaction potential

Vsub(r) = Eads

[(
σi/2

|z|
)12

− 2

(
σi/2

|z|
)6
]

(10.4)

where σi/2 is the radius of capsomer i (that can be a pentamer (σpp) or an hexamer
(σhh)) and |z| is the distance between capsomer i and the substrate.

In experiments the capsid must be fixed in the correct symmetry on the sur-
face. To prevent the rotation and sliding of the viruses in the simulations, the
position of some capsomers is fixed, depending on the orientation of the virus as
discussed in Appendix A.

In all simulations we have fixed some parameters: the radius of the cantilever
dc = 3σ, the spring constant of the cantilever kc = 40ε0/σ

2, and the strength of
the tip-capsomer repulsion to krep = 80ε0/σ

2 or krep = 160ε0/σ
2 (the behavior for

both values is the same).
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As in experiments, the simulation procedure involves the progressive lowering
of the tip. In our simulations, the z position of the cantilever is given by h and
it is lowered at steps of 0.005σ. We measure the average force on the cantilever
sampled every 100 steps. We lower the tip typically after 106 steps, measuring.
The simulation runs for a total of 3x108 steps corresponding to a total indentation
of 1.5σ. In some simulations, we also have simulated the retraction of the tip, to
check the reversibility, using the same number of steps and increments.

With the “virtual AFM” it is possible the study of different capsid structures.
But we will focus on the T = 7 structure as a particular example in order to
compare the simulation results with AFM nanoindentation experiments of bacte-
riophage T7 which were performed by the group of P.J. de Pablo at the Universidad
Autónoma de Madrid.

As we have mentioned previously, viral capsids might have different mechan-
ical response depending on the absorption geometry, typically corresponding to
indentations along the 5,3,2-fold symmetry axes. In order to study this anisotropy
we have rotated the optimal T = 7 structures in different ways and fixed the po-
sitions of some capsomers, as described in Appendix A.

The CK T = 7 capsid is a chiral structure, that could be built with two differ-
ent chiralities: laevo and dextro, corresponding to (h, k) vector (2, 1) or (1, 2), as
discussed in Chapter 1. Bacteriophage T7 has a T = 7 laevo structure. Thus, we
have used this in our simulations. In any case, we have also performed simulations
for a T = 7 dextro shell, finding no significant difference in the results.

10.4.2 Nanoindentation curves

Fig.10.3 shows three repetitions of a typical nanoindentation curve obtained
for 2-fold oriented T = 7 capsid including also the retraction of the tip. In
Fig.10.3(a) we have plotted the force F versus the z-position of the cantilever.
As in experiments, from the F versus z curves we can calculate the indentation
as δ = z + F/kc, where z is the position of the cantilever.The indentation curves
are also shifted in z in such a way that the tip-sample contact start at δ = 0. The
resulting force versus δ curves are plotted in Fig.10.3(b).

For small indentations, the F vs δ curves show a lineal and reversible behavior
corresponding to elastic response (see black curve in Fig.10.3(b)). At large inden-
tations, see Fig.10.4, the linear regime end up by an abrupt decline of the force,
corresponding in this case to the sinking of the top pentamer, that gets inside the
capsid, leaving a small hole in the position of the lost pentamer. A second abrupt
decline in the force is observed when tip breaks the top part of the capsid gener-
ating a large hole. This cracking of the capsid is not reversible, as shown by the
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(a) (b)

Figure 10.3: Force versus indentation in the 2-fold direction for a T = 7 structure
with all capsomers having the same size size, α = 0.1, kc = 40, krepul = 80 and
T = 0.05.

Figure 10.4: Force versus indentation in the 5-fold for a T = 7 structure with
all capsomers having the same size, α = 0.1, ν = 1.796, kc = 40, ν = 1.796,
krepul = 160 and T = 0.05.

different routes followed by the retraction curves of the tip. The final structure
after retraction sometimes is partially healed as shown in the inset figure of a 71
structure (missing one pentamer) with a small hole and pentamers and hexamers
reorganized.

It is worth emphasizing that the indentation curves obtained using our “vir-
tual AFM” are remarkably and qualitatively nearly identical to the experimental
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Figure 10.5: Force versus indentation in the 3-fold direction for a T = 7 structure
with all capsomers having the same size, α = 0.1, ν = 1.796, kc = 40, krepul = 80,
T = 0.05 and Eads = 0.1.

curves measured with the real AFM, as illustrated in the comparison between the
simulated indentation curves (Fig.10.4 and Fig.10.5) and the experimental ones,
see Fig.10.1.

The indentation curves obtained for a T = 7 capsid along the 3-fold and 2-fold
axis are qualitatively similar to the 5-fold one, see for instance Fig. 10.5 for the
3-fold. The figures show an initial linear regime ending by one or several abrupt
drops in the force that are indicative of the loss of capsomers, the partial buckling,
or the breakage of the capsid, as will be discussed in more detail in section 10.4.3.
Note that the critical force associated to the sudden drop of the indentation curves
changes in different repetitions of the same simulation. This is indicative of the
stochastic, temperature-activated nature of this phenomenon.

We analyzed the influence on the mechanical response of the different parame-
ters of the simulation, such as the bending stiffness, related to the parameter α (see
Chapter 3), the temperature, the angle ν related to the spontaneous curvature, the
size of the pentamer compared to the size of hexamers, the adsorption energy of
the surface Eads, and the relative strength of the binding energy between hexamers
and pentamers. The results are briefly summarized in the following subsections
and in Table 10.2 of Appendix B.
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Figure 10.6: Force versus indentation in the 3-fold and 5-fold orientations for a
T = 7 structure with all capsomers having the same size, ν = 1.796, kc = 40,
krepul = 80, Eads = 0.1 and α = 0.7 for different temperatures.

A. Influence of the temperature T

Fig.10.6 plots the indentation curves for a T = 7 structure indented along the
5-fold and 3-fold axes simulated at different values of the temperature T. The main
influence of T is that, as we increase it, the structure tolerates smaller indentations
and the curve becomes noisier. That is the expected behavior, since increasing the
temperature entrances thermal fluctuations and renders the structure more unsta-
ble. The initial slope of the indentation curves is not significantly changed. The
influence of the temperature is qualitatively similar for all orientations.

B. Influence of the adsorption energy Eads

We have analyzed the influence of adsorption strength on the indentation
curves. Fig.10.7 shows the results for Eads = 0.1, 0.5 and 1.0, that indicate a neg-
ligible influence for small Eads. At intermediate values of Eads, the indentation
of the capsid eventually leads to the flattering of its lower surface that gets ad-
sorbed on the substrate. This is indicated by the plateau in the force in the curve
corresponding to Eads = 0.5 in Fig. 10.7. As Eads becomes bigger, the capsid
gets strongly adsorbed on the substrate right from the start of the simulation, as
indicated by the fact that the initial contact between the tip and the capsid occurs
at lower values of z. At very large Eads, the shell eventually flattns on top of the
substrate. To avoid a strong effect of the substrate on the indentation curves, we
have fixed Eads = 0.1 in all the simulations.
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Figure 10.7: Force versus height of the cantilever in the 5-fold direction for a T = 7
structure using all capsomers of the same size, ν = 1.796, kc = 40, krepul = 80,
T = 0.05, α = 0.7, and different Eads.

C. Influence of ν

Fig.10.8 represents the influence of ν on the indentation curve in the 5-fold
orientation. For the optimal angle νopt, the shells resist larger indentations and
effective spring constant is comparatively small. In all cases where ν is different
from the optimum the structure is either stretched (for ν < ν0) or compressed (for
ν > νopt), specially when all capsomers have the same size. As a consequence,
the effective spring constant is higher and the structure in every direction tolerates
smaller forces and indentations, breaking earlier than structures with the optimum
angle. The general behavior in terms of the preference angle ν is the same for all
orientations.
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Figure 10.8: Force versus indentation in the 5-fold orientation for a T = 7 structure
using with all capsomers having the same size, T = 0.05, kc = 40, krepul = 80,
Eads = 0.1 and α = 0.7 for different ν.

Figure 10.9: Force versus indentation in the 5-fold orientation for a T = 7 structure
using different relative pentamer sizes, kc = 40, krepul = 80, Eads = 0.1, ν = 1.796
and α = 0.7.
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Figure 10.10: Force over the cantilever in the 5-fold direction versus the cantilever
position for a T = 7 structure with all capsomers having the same size using
ν = 1.796, α = 0.7, kc = 40, T = 0.05 and krepul = 80,for different Ehp values.

D. Influence of the relative size of pentamers

We also studied the influence of the relative size of the pentamers, see Fig.
10.9. To that end we implemented simulations with the follows sizes, σpp = 0.8σhh,
σpp = 0.9σhh, σpp = 0.95σhh and σpp = σhh. The case where all subunits have the
same size ( σpp = σhh) is more frustrated than structures with pentamers smaller
than hexamers and accumulates larger stresses. That results in a structure that
is softer in all directions and tolerates smaller forces and indentations, see also
Appendix B.

E. Influence of Ehp

Now we want to study the role of different binding energies between capsomers.
For a T = 7 structure where pentamers are not in direct contact with other pen-
tamers, the relevant parameter to change is the pentamer-hexamer binding energy
(Ehp) compared to the hexamer-hexamer one Ehh = ε0. We have changed Ehp in
the range Ehh = 0.5, 0.7, 1.0, 1.2 and 1.5 in reduced units of ε0. We have imple-
mented simulations for different values of α and size of pentamers for the three
folds. In all the cases we have obtained a similar behavior, which is illustrated in
Fig.10.10 for a 5-fold example. When Ehp > Ehh, the shell deforms linearly and
does not break in the range of indentations explored. The larger the value of Ehp,
the higher is the slope, implying a stiffer structure. As Ehp is reduced below Ehh,
the pentamers are less stable and the shell breaks at smaller indentations the lower
the value of Ehp. In the force curves, see Fig.10.10, the first drop corresponds to
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Figure 10.11: Force versus indentation in the 5-fold orientation for a T = 7 struc-
ture using all capsomer of the same size, ν = 1.796, kc = 40, krepul = 80, T = 0.05
and Eads = 0.1, for different values of α.

the sinking of the bottom pentamer inside the capsid. The second drop marks the
entrance of the top capsomer under the tip inside the capsid. The third decline
in the force is when the capsid cannot resist more indentation and breaks down.
After the breaking and the retraction of the tip the pentamers and hexamers are
reorganized and cluster together, since the stronger interaction between hexamers
favours their clustering.

F. Influence of α

As we saw in Chapter 3 the parameter α is related to the bending stiffness.
Simulations show the following the influence of the parameter α on the indentation
along the 2-fold and 3-fold axis. As α decreases, the structure becomes stiffer and
tolerates larger indentations. However, the 5-fold behavior under changes in the
bending stiffness is different. Fig.10.11 shows the influence of α in the indentation
of a 5-fold T = 7 structure with one type of capsomer. In the regions α ∈ [0.1, 0.5]
and α ∈ [1.0, 1.4] the structure becomes softer when α is increased as happens for
the 2 and 3-fold cases, see red, black and violet lines in Fig.10.11. In the region
α ∈ [0.5, 1.0] the structure surprisingly becomes stiffer when α increases, see blue
and yellow lines in Fig.10.11.

This is related to the occurrence of a buckling transition in the structures as
discussed in Section 6.3.3. The values of the spring constant, maximum forces and
indentations in each case are listed in Appendix B.
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(a) (b) (c)

Figure 10.12: Snapshot corresponding to a drop in force for (a) an example of
breaking for large indentations along the 3-fold direction and two examples of
buckling: (b) in 5-fold direction, due to the entrance of the top pentamer and (c)
in the 3-fold direction, associated to the faceting of the shell.

10.4.3 Buckling and breaking of viral capsid

One of the most representative characteristics of both experimental and sim-
ulated indentation curves are abrupt drops in the force, that occur after the initial
linear regime. These force drops have been traditionally attributed to breaking,
see Fig.10.1(a). However, in the simulations we see that many different physical
phenomena can happen with the same signature corresponding to a drop. The ad-
vantage of the simulations is that we can correlate the observed drops in the force
with snapshots obtained from the simulations. In that way, we have observed that
the sudden drops in the force correspond, very often in an indistinguishable way, to
breaking, buckling, rotation and/or sliding. We have obtained rotation and sliding
in the case when pentamers were not fixed in the simulations. However, in the case
where pentamers are fixed we could see breaking, buckling and the reorganization
of capsomers, see Fig.10.12.

It is important to distinguish between breaking and buckling events. Breaking
is defined as the disruption of the capsid involving rupture of intercapsomer bonds.
This is typically an irreversible phenomenon that is associated to the presence of
a crack or hole in the capsid ( see Fig.10.12(a)), as can be observed also in AFM
experiments. The breaking is important for the life cycle of virus, since it will ex-
pose the genome. In nano applications it is indispensable to prevent the unwanted
breaking of the shell for nanoencapsulation.
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Figure 10.13: Force over the cantilver in the 5-fold direction versus the indentation
for a T = 7 structure using kc = 40, krepul = 80, and Ehp = 0.7, showing different
examples of mechanism, which it corresponds with falls in the force.

In the buckling process there is a collective change in the position of several cap-
somers, leading to a faceting of the structure, without cracks, see Fig.10.12(b),(c).
If the indentation stops just after a buckling event and the tip is retracted we could
observe very often that this buckling is reversible.

The goal of this section is to characterize a bit better these phenomena and
how they depend on different factors, such as bending stiffness, spontaneous cur-
vature or binding interaction. This information is potentially useful to tune the
mechanical resistance of a capsid for different applications or to promote its dis-
ruption.

A good example of different drops in the force under indentation is plotted in
Fig.10.13. This figure show a first a buckling process. The second drop correspond-
ing to the collapse of the bottom pentamer, that moves at the same z-position that
the hexamers around it and the third drop is when the structure actually breaks.

In the experimental force curves the mechanism involved in the drop is in-
distinguishable in most cases. It is usual to interpret always a drop in the force
as a breaking event. But with the help of our simulation we can see that this is
not always correct, and that the mechanism depends of the parameters. When the
spontaneous curvature is not the optimum one or the bending stiffness is small we
have obtained more often breaking. Buckling appears normally for large values of
the bending stiffness.

245



Chapter 10. Virtual Atomic Force Microscopy Section 10.4

In the study of the influence of the mechanical response of the viral capsid
with the different axes of symmetry we have characterized the system in terms of
the maximum indentation, δmax, and the maximum “breaking force” Fmax. The
maximum breaking force is calculated as the average force associated to the first
sudden drop in the indentation curve. The results for the different combination of
parameters are summarized in Table 10.2 of Appendix B.

In general, δmax and Fmax are similar for the 2-fold and 3-fold axis. On the
other hand, in the 5-fold direction, depending on the simulation parameters, the
capsid tolerates a bit more or less indentation.

The δmax and Fmax for different absorption symmetries changes mainly with
α, Ehp, and with the size of pentamers, see Table 10.2. For small values of α,
for example α = 0.1 the maximum indentation for 2-fold and 3-fold are around
the same value with the 5-fold breaking earlier. In the case of large α the be-
havior is different. For example changing from α = 0.1 to α = 1.0 we have
obtained (δmax, Fmax) = (0.6σ, 8ε0/σ) for 2,3-fold while for the 5-fold we obtained
(δmax, Fmax) = (0.7σ, 6ε0σ). So the 5-fold orientation resists larger indentations
but smaller forces.

In terms of the relative size of pentamers when all subunits have nearly the
same size the structure tolerate less indentation because it accumulates more stress,
especially in the 5-fold orientation. δmax and Fmax become progressive smaller as
the size of the pentamers is increased, see Table 10.1, violet row. We have obtained
a similar behavior upon changes in Ehp than in the pentamers size. For large values
of Ehp the structure tolerates more indentation and the maximum force is bigger.
As an example the values of (δmax, Fmax) for Ehp = 1.0 and Ehp = 1.5, for the
2,3,5-fold direction are listed in the orange rows of the Table 10.1.

10.4.4 Polyhedral vs spherical shells

As discussed in Chapter 8, bacteriophage T7 as well as many other viruses,
change their shape from spherical to polyhedral during the maturation of their
capsids [27]. This change in viral shape is present in the maturation of others
viruses such as λ or HK97 [23, 31] and it is indispensable to become infective.

The change in shape might alter the mechanical response of the shell and
could bring some mechanical advantage. Previous works in viruses like λ and
HK97, which suffer a transition between spherical and polyhedral shapes during
their maturation, show mechanical changes. In particular, λ mature virion is more
resistant than its prohead [23, 32] or HK97 virion is stiffer than its prohead, but
the prohead tolerates larger deformations [23].
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Figure 10.14: Indentation curves for a T = 7 structure for kc = 40, krepul = 80
Ehp = 1.4 and σpp = σhh for the different orientations for a spherical capsid with
α = 0.1 (circles) and for a polyhedral shells with α = 1.0 (triangles).

In this section we will compare the mechanical response of our model T = 7
structure in its spherical and polyhedral shapes. Using our model and the “vir-
tual AFM” it is possible to obtain qualitative information about the mechanical
changes upon maturation for T = 7 structures. This information is important
not only for bacteriophage T7, but also for many other T = 7 structures, which
undergo this maturation shape transition during their assembly [23].
In our model, the change in shape is obtained by changing the α parameter re-

lated to the bending stiffness (see Chapter 6). In particular we saw in Chapter
6 that T = 7 structures with one type of subunit exhibit a transition between
the spherical shape and the polyhedral shape at α ≈ 0.6. The structure become
progressively more and more faceted as α is increased. We have chosen the values
of α = 0.1 to represent the spherical prohead and α = 1.0 for the mature capsid
because for this value the structure is noticeable faceted, but stable enough to
sustain AFM indentations.

As an example, we will analyze the case of bacteriophage T7 with one type of
morphological subunit and Ehp = 1.4Ehh. The value Ehp = 1.4Ehh has been chosen
to reproduce the relative strength of the hexamer-hexamer and hexamer-pentamer
interactions reported from the atomic structure in Ref. [26]. In particular, the
hexamer-pentamer relative binding energy is calculated as the ratio between the
binding energy of contact (A-G) plus contact (F-G), see Fig.10.15. The hexamer-
hexamer binding energy is calculated as the average contact energies of the three
hexamers: Ehh = 1

3
(E12 + E13 + E23) = 3.17. Accordingly,

Ehp

Ehh
= 4.60

3.17
= 1.4.
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Fig.10.14 shows the force versus indentation curves obtained for the model
“prohead” (circles) and “mature capsid” (triangles) along the 2-fold, 3-fold and
5-fold symmetry axes. In general the spherical shape, for all folds, is stiffer than
the polyhedral shape.

Interestingly, we have calculated the spring constants for both shapes and
observed a change in their relative ordering. Specifically, we obtained ksp

3 =
55.6, ksp

2 = 48.2, ksp
5 = 34.2 ± 0.5ε0σ

2
0. Thus, the 3-fold is the stiffest and the

5-fold is the softest. In contrast, for the polyhedral shape we obtained kico
2 =

11.6, kico
3 = 9.9, kico

5 = 5.8± 0.5ε0σ
2
0, and thus the softest fold is the 5-fold, and the

stiffer is the 2-fold, yielding an order of constants k2 > k3 > k5.

The spring constants obtained in experiments are similar for the prohead and
virion in all symmetry axes, contrarily to our simulations. This discrepancy is
mainly due to the fact that the increase in α required to obtain the polyhedral
shape also modifies significantly the global stiffness of the shell. Thus, in its present
form, our model cannot capture realistically the complicated changes associated to
viral maturation.However, the order of the spring constant for our polyhedral shell
is the same as that found in nanoindentation experiments for the T7 as described
in the following section.

10.5 Anisotropic elasticity of T7

Recent experiments by the grousp of P.J. de Pablo and J.L. Carrascosa have
analyzed the mechanical properties of bacteriophage T7 using AFM and chemical
stress [33]. Bacteriophage T7 belongs to the Podoviridae bacteriophage family,
characterized by viruses with an icosahedral capsid and a short non-contractile
tail. T7 first assembles into the prohead, which is a shell built by 415 copies
of the structural protein gp10A arranged in a T = 7 icosahedral lattice. The
protein are distributed in clusters of 6 (hexons) and 5 (pentons) proteins. The T7
capsid maturation process involves the packaging of 40 kb of double-stranded (ds)
DNA into the prohead, the release of the scaffold, the expansion of the shell,
and the incorporation of the tail proteins in the vertex of the connector [33].
The maturation process of bacteriophage T7 involves an increase of the diameter
of the particles, from 51nm to 60nm, and a thinning of the shell from 4.1 to
2.3nm without increase the stiffness [33]. These drastic changes are based on
the extensive reorganization of the interactions among the shell protein subunits,
both within the capsomers and between them. This maturation process increases
the structural stability of bacteriophage T7 against chemical treatments. This
increased endurance would provide bacteriophages with the capability of standing
in the hostile conditions during their extracellular cycle, where they have to face
different temperatures, humidity and general environmental hazards.

248



Chapter 10. Virtual Atomic Force Microscopy Section 10.5

Figure 10.15: Pseudo-atomic model of the mature T7 shell protein, where the unit
contains an entire hexamer (subunits A-F) and one pentamer subunit (subunit
G) [26].

The initial mechanical characterization consisted on nanoindentation experi-
ments on both proheads and capsids keeping the maximum force low enough to
avoid nonlinearities and steps. From the linear regime, the effective spring constant
as a function of the different geometrical orientations, including non-specific ori-
entation particles, was extracted, and the results are summarized in Fig.10.16(b).

The spring constants, measured for procapsids were k3p = 0.24±0.04N/m and
k5p = 0.10± 0.02N/m. On the other hand, experiments on empty mature capsids
show capsid spring constants of k2c = 0.40 ± 0.02N/m, k3c = 0.21 ± 0.03N/m
and k5c = 0.11 ± 0.02N/m. These results not only demonstrate an anisotropic
elasticity for both T7 proheads and capsids, but also that the T7 bacteriophage
virus rigidity does not increase upon maturation.

Interestingly, we have found that the anisotropic elasticity obtained from AFM
indentation experiments of T7 viral capsids does not follow the anisotropy ex-
pected from continuum homogenous models [17]. Whereas the experimental re-
sults show the spring constant of T7 capsids for each icosahedral symmetry axis as
k5c < k3c < k2c, FEM simulations of the stiffness performed in thin shell continuum
models establishes k5 < k2 < k3 along with the increased thickness [34]. In addi-
tion, Finite Element simulations of a thin or thick icosahedral shell with the same
dimensions as T7 also predicts an incorrect order of the spring constants. It is
clear that it is necessary to use an inhomogeneous model to characterize correctly
the mechanics of this virus.

To corroborate that discrete effects dominate the mechanical response of the
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(a) (b)

Figure 10.16: (a) Force exerted by the tip as a function of indentation for a T = 7
structure using kc = 40, krepul = 80, α = 0.7, σpp = σhh and Ehp = 1, when the
model capsid is indented along the different orientations: 5-fold (in red), 3-fold
(in green) and 2-fold (in blue). The slope of a linear fit of each curve yields the
values of the effective spring constants indicated in the legend. (b) Experimental
nanoindentation curves performed on procapsids adsorbed on 5-fold (red), 3-fold
(green) and 2-fold (blue) symmetry axes and on the substrate (black).

Table 10.1 Comparison between the spring constants measured for the different
orientations in the AFM experiments for T7 mature virion, and for our simulations
with a T = 7 shell, with kc = 40, krepul = 80, ν = 1.796, α = 0.7 and σpp = σhh.

T7 capsid and based on previous model [35], we have also performed AFM sim-
ulations for our discrete model of the bacteriophage T7 capsid, coarse-grained at
the level of the morphological units. Fig.10.16(a) shows the resulting indentations
curves. The spring constants measured in the simulations were obtained by a lin-
ear fit, and the results are listed in Table 10.1. Remarkably, the results of our
discrete model reproduce the same order of the effective spring constants found
in the experiments (i.e. k5c < k3c < k2c, see Fig.10.16). This suggests that the
distinct stiffnesses for the different orientations found in the T7 capsid are asso-
ciated to the discrete nature of its structural components and to their particular
arrangement in the final structure.
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10.6 Conclusions

In this chapter we have presented the implementation of a “Virtual AFM”,
a BD simulation using our coarse-grained model, designed to mimic the standard
setup of AFM nanoindentation experiments. We have seen that our “Virtual AFM”
is a very useful tool to investigate the mechanical properties of viruses, and how
they change with the relevant physical parameters. With this tool it is also possible
to interpret real experiments too, providing a simple way to account for the influ-
ence of the discrete structure of the capsid, and obtaining very useful information
about the physical ingredients involved in the mechanical response of viral capsids.

We have used our “virtual AFM” to interpret experiments performed on bac-
teriophage T7 by the group of P.J de Pablo. Our simulations, explain the unusual
anisotropic stiffness found in these experiments, and reproduce qualitatively the
experimental results. We have also analyzed how the stiffness depends on differ-
ent physical parameters, and on the shape of the virus. In particular, we have
compared the mechanical response of spherical proheads versus faceted mature
capsids. In this chapter we have focused on the T = 7 structure, but our model
can be useful for many future studies of indentation, buckling and breaking of
different T-number viruses.
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Appendix A

Rotations and translations to put the structure in the different symme-
try axes

In order to perform nanoidentations along 2-fold, 3-fold and 5-fold axes of
symmetry we must rotate and translate the structure to locate it with the proper
orientation between the tip and the sample. As our initial configuration, we have
used the exact coordinates of the icosahedral spherical code for T = 7 levogiro
corresponding to the solution of the maximum volume problem from [36].

In this icosahedral spherical code, the structure has the proper orientation for
a 2-fold. To convert it into a 5-fold, we first do a rotation to put one of the 5-fold
axis coinciding with the z-axis. We then do a rotation around the z-axis to place
one of the other pentamers at y = 0. Analogously, to get a 3-fold oriented shell, we
first do a rotation to place the (1, 1, 1) direction on the z-axis, followed by another
rotation around the z axis to place one of the pentamers at x = 0. In all cases,
the structure is translated along the z-axis so that the bottom capsomer is placed
at a distance σ/2 over the xy-plane representing the substrate.

To avoid rotations or sliding of the structure under indentation, we have fixed
some of the pentamers of the structure. For indentations along the 5-fold sym-
metry we have fixed 4 pentamers: the two pentamers located on the z-axis can
only move in the z direction and the other two pentamers having initially y = 0,
cannot move in the y-direction. For the 3-fold, we have fixed 4 pentamers: two
pentamers have x, y fixed and can only move along z; and another 2 pentamers
are fixed at x = 0. Finally, for the 2-fold direction we have fixed 8 pentamers: 4
of them have their x-coordinate fixed at x = 0; another 3 are fixed at y = 0, and
of the pentamers closest to the bottom is fixed at x = 0 and y = 0. Fixing the
capsomers in this way, the structures cannot rotate or slide, but the structure can
be deformed under the influence of the cantilever.
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Appendix B

Summary of the results for different parameters

We have performed different nanoindentation simulations for all symmetry
axes. In these simulations we have calculated the maximum force and maximum
indentation before the breaking of the structure, on the slope of the initial linear
regime of indentation. The results are compiled in the following table:

Table 10.2 Effective spring constant, maximum force and indentation for the 3
different symmetry axis as a function of different parameters. We have fixed in all
simulations kc = 40, krepul = 80, Eads = 0.1, and T = 0.05. For different values
of α (yellow) we have fixed Ehp = 1.0 and all subunits have the same size. For
different values of Ehp (orange) we have fixed α = 0.7 and all subunits have the
same size. Finally, when we changed the relative pentamer size, we have fixed
Ehp = 1.0 and α = 0.7 (violet).
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Conclusions and Perspectives
In this thesis we have studied the general physical principles that are involved

in several important processes in the life cycle of viruses. In particular, we have
focused on the viral self-assembly process and the mechanical properties of the re-
sulting capsid. We have developed simple, but physically inspired, coarse-grained
models implemented into different simulations techniques, to get some insight into
these phenomena. Now we will present the main conclusions of this thesis and the
most relevant perspectives for future work.

The first part of the thesis was mainly devoted to review important aspects
of the physical modeling of viruses. Specifically, in the first chapter of the thesis,
the geometrical principles involved in the construction of spherical and elongated
virus were revised. The importance of these geometrical ideas is that they set the
basis for the identification and classification of viruses. Moreover, we have seen
that the architecture and symmetry of the capsid plays an important role in the
mechanical properties of the virus.

The second chapter was devoted to outline how classical nucleation theory
(CNT) can be adapted to explain the kinetics of viral capsid assembly. The most
salient features of this theory are the presence of a free energy barrier and the
requirement of a critical size and concentration to trigger the self-assembly of cap-
sids. The theory offers quantitative predictions that facilitate the understanding
of the process and could guide the interpretation of experiments and simulations.

One of the most important results of this thesis is the development of a
physically-inspired coarse grained model based on a simple interaction potential
between the structural units of the capsid. The parameters of this model are
directly related to physically relevant properties that can be measured experimen-
tally, such the preferred angle of interaction between capsid proteins or the bending
stiffness. The advantage of the model with respect to previous models is that it
does not require artificial constraints or a non-trivial tuning of multiple interaction
parameters to get the right structures.

In the continuum limit, the model reproduces the standard elastic response
of a thin shell. Using this analogy we explored the interplay between bending
and stretching interactions in determining the optimal size of a spherical capsid.
We found that in general there are two potentially optimal radius for a spherical
capsid: one that minimizes the stretching and another one that minimizes the
bending. However, in most cases the size of the shell is a compromise solution
between these two limiting values.

With our coarse-grained model, we have studied the stability and selection of
different shapes of viral capsids, the kinetics of capsid formation, and its mechan-
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ical response upon indentation, obtaining general predictions that could be tested
experimentally. In particular, Part II of the thesis was devoted to the study of the
self-assembly of viruses.

In this context, we have found that the preferred angle and the local bending
stiffness are the main physical parameters controlling the stability and selection of
a particular structure by a virus. We have characterized the stability phase dia-
gram of the smallest T-number structures and the snub cube using Monte Carlo
simulations. In addition, we have studied the tolerance of the different shells to
changes in physical parameters related to ambient conditions. We have obtained
not only the optimal spherical structures of capsids, but also elongated, faceted,
and decapsidated structures that are also present for many real viruses. A proper
understanding of the ingredients that control the in vitro assembly of viruses is
essential to get capsids with well-defined size and structure that could be used for
promising applications in medicine or bionanotechnology. Linking the parameters
of the model with the biophysical environmental conditions will open the door to
a better control of the structure of artificial viral shells in vitro.

We then analyzed in Chapter 7 the kinetics of self-assembly and the intermedi-
ate steps in the formation of a viral shell, that are experimentally inaccessible due
to the activated nature of the process. We found that the conditions that ensure
the integrity of a virus are not necessarily the same ones that favour its formation
in vitro from a solution of capsomers. We then constructed an assembly phase
diagram with the outcome of assembly simulations as a function of the relevant
physical parameters. This phase diagram shows the strong competence between
structures that could justify the polymorphism of some viruses reconstituted in
vitro, and the dramatic influence of the strength of interactions and density on
the process. We have also analyzed and characterized accurately the kinetics of
assembly of T = 3 shells. All features of the assembly point out to nucleation as
the physical mechanisms controlling shell formation, and we were able to deter-
mine the critical cluster sizes, the height of the nucleation barrier and the rate of
capsid formation directly from our assembly simulations, at different conditions.
The results agree at least qualitatively with the predictions of CNT and open the
door to a proper understanding and control of viral assembly.

Part III of the thesis focused on different mechanical properties of viruses de-
termined combining theory, simulations with our coarse grained model, and Atomic
Force Microscopy experiments.

In particular, in Chapter 8 we determined how the capsid shape and the buck-
ling transition depend on the triangulation number T and the icosahedral class P
of the virus structure, by using a simplified version of the model constrained on
a spherical or icosahedral template. We found that, for small shells, capsids with
P = 1 are most likely to produce polyhedral shapes that minimize their energy and
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accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big
capsids, all shells are more stable adopting an icosahedral shape, in agreement with
continuum elastic theory. Moreover, spherical viruses tend to become polyhedral
under expansion, in consonance with virus maturation. The resulting icosahedral
shell is mechanically stiffer, tolerates larger expansions and withstands higher in-
ternal pressures before failing. This could explain why some dsDNA viruses, which
rely on the pressurization of their genetic material to facilitate the infection, un-
dergo a buckling transition. The predictions of this simple model agree surprisingly
well with the known structural data of viruses.

In Chapter 9, we show how the combination of theory and nanoindentation
experiments using AFM could be very useful in the study of the mechanical prop-
erties of viruses. In particular, a crude continuum description and Finite element
simulations were used to determine the internal pressure of φ29. The presence of
confined and densely packed double-stranded DNA inside the capsid was found to
alter its elastic response under nanoindentation, increasing the effective spring con-
stant. From this change, it was possible to infer the associated pressure, which was
unequivocally linked to the electrostatic self-repulsion of the confined DNA, and
agrees with a simple theoretical estimate using the so-called inverse spool model.

A significant step forward in the comparison with experiments is the develop-
ment of what we called “Virtual AFM”. This is a BD simulation aimed to mimic
the standard setup and conditions of typical AFM nanoindentation experiments.
With this virtual AFM we analyzed how the mechanical response of a virus depends
on the different relevant parameters such as temperature, the axial symmetry of
the capsid, the spontaneous curvature, the bending stiffness, or the binding energy
and relative size of the capsomers. We also analyzed the different mechanisms of
failure and breaking of viral shells under mechanical stress. Finally, using this
Virtual AFM we were able to interpret and justify the astonishing anisotropic re-
sponse of bacteriophage T7 found experimentally.

In this thesis we have used general theoretical ideas and physical principles
that are present in a huge number of viruses. Accordingly, the conclusions and
results found are not limited to a particular viral example, but rather are expected
to apply to a wide class of viruses. In addition, the main ideas and methodologies
developed in the thesis can be used and extended in many different directions in
the study of viruses.

In particular, one of the focus of the thesis has been the study of the kinetic
mechanisms in the viral self-assembly of all-pentamer viruses. In this context, we
plan to extend our kinetic assembly simulations to other triangulation numbers,
and to particularize them to analyze in vitro experiments of specific viruses such
as polyoma [1], papilloma [2] and SV40 [3]. In a next step, we are currently ex-
tending these studies to the analysis of the assembly of viruses that use pentamers
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and hexamers preformed in solution as basic assembly units. This scenario is more
complex and the kinetics process of assembly probably depends not only on the
temperature, the spontaneous curvature and the bending stiffness but also on the
relative interaction between capsomers, and their relative concentrations in solu-
tion.

Another important aspect of the assembly that we plan to explore is the ad-
ditional factors required to assemble elongated structures efficiently. Although we
have found that these structures are energetically optimal for some range of pa-
rameters, their formation from solution seem to require additional ingredients. In
this context, we will explore the role of the genetic material and the torsion term
on favoring the appearance of these structures.

A priority in our future research is to incorporate the genetic material in our
models and simulations. In fact, we have implemented a preliminary simulation
with a genome chain, where each base-pair is modeled as a bead with proper spring,
electrostatic and bending interactions to model the stiffness and flexibility of DNA
and RNA chains [4, 5]. Using these simulations we plan to study the role of the
genetic material in the co-assembly of different viruses, as well as its influence on
the mechanical response of the virus in our “Virtual AFM”.

We are also interested in analyzing more complex assembly scenarios. One
example is the formation of capsids in the presence of scaffolding proteins. In this
case the new ingredients will be, essentially, the size and interaction between coat
and scaffolding proteins, their stoichiometry in the capsid, and the concentration
of scaffold proteins in solution. This mechanism will be compared with the exper-
imental information on the assembly of viruses like bacteriophage P22 [6].

Another long term aspiration in our future research is to develop progres-
sively more realistic physical models for the subunits that form the capsid and
their intermolecular interactions. There are many examples of viruses that use
dimers, trimers, or even individual proteins as assembly units [7, 8]. We intend to
develop increasingly realistic model units and interactions to describe these situa-
tions, comparing with the available experimental data.

Finally, the development of the “Virtual AFM” is the first step in the char-
acterization of the mechanical properties of different viruses. In this thesis, we
focused on the properties of a T = 7 shell, but a similar analysis can be done for
other T-number shells. In this sense, we plan to perform a more detailed study on
the influence of the T-number, the P-class, and the different relevant parameters
of the interaction in the mechanical response of viruses under nanoindentation. A
more careful analysis of the buckling and breaking of viruses is also planned. We
will also use our virtual AFM to help the interpretation of AFM experiments.
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In summary, despite the many new discoveries in virology during the last
years, and the emerging interest in the interdisciplinary field of physical virology,
there are many open questions about the properties and life-cycle of viruses that
remain to be solved. A better understanding of the physical mechanisms involved
in the life cycle of viruses might help to control their impact in human life, and
also to exploit their amazing properties in pharmaceutical and nanotechnological
applications.
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