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OWehave developed numerical simulations of three dimensional suspensions of active particles to characterize

the capabilities of the hydrodynamic stresses induced by active swimmers to promote global order and emer-
gent structures in active suspensions.We have considered squirmer suspensions embedded in a fluidmodeled
under a Lattice Boltzmann scheme. We have found that active stresses play a central role to decorrelate the
collective motion of squirmers and that contractile squirmers develop significant aggregates.
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1. Introduction

Collectivemotion can be observed at a variety of scales, ranging from
herds of large to bacteria colonies or the active motion of organelles in-
side cells. Despite the long standing interest of the wide implications of
collectivemotion in biology, engineering andmedicine (as for example,
the ethological implications of the signals exchanged between moving
animals, the evolutionary benefits of moving in groups for individuals
and for species, the design of robotswhich can accomplish a cooperative
tasks without central control, the understanding of tumor growth or
wound healing to mention a few), only recently there has been a grow-
ing interest in characterizing such global behavior from a statistical
mechanics perspective [1].

Although a variety of ingredients andmechanisms has been reported
to describe the signaling and cooperation among individuals which
move collectively, it is important to understand the underlying, basic
physical principles that can provide simple means of cooperation and
can lead to emerging patterns and structures [2]. We want to analyze
the capabilities of basic physical ingredients to generate emerging struc-
tures in active particleswhich self propel in an embeddingfluidmedium.
These systems constitute an example of active fluids, systems which
generate stresses by the conversion of chemical into mechanical energy.
To this end, we will consider model suspensions of swimming particles
(building on the squirmer model introduced by Lighthill [3]) and will
analyze a hydrodynamically-controlled route to flocking. We will use
a hybrid description of an active suspension, which combines the
individual dynamics of spherical swimmers with a kinetic model for
the solvent. We can identify the emergence of global orientational
order and correlate it with the formation of spontaneous structures
where squirmers aggregate and form flocks of entities that swim along
80
81
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nabarraga, Journal of Molecu
E
Dtogether. This simplified approach allows us to identify the role of

active stresses and self-propulsion to lead both to global orientational
order and aggregate formation. Even if in real systems other factors can
also control the interaction and collective behaviors of active suspen-
sions, the present description shows that hydrodynamics itself is enough
to promote cooperation in these systems which are intrinsically out of
equilibrium.

This work is organized as follows. In Section 2.1 we present the
theoretical frame of the simulation technique that we have applied,
while in Section 2.2 we describe the squirmer model that we have
used and introduce the relevant parameters which characterize its
hydrodynamic behavior and in Section 2.3 we give a detailed expla-
nation of the simulation parameters and the systems we have stud-
ied. Section 3 is devoted to analyze the global polar order parameter
and to study quantitatively the orientation that squirmer suspensions
display. In Section 4 flocking is studied via generalized radial distribu-
tion functions, moreover to characterize the time evolution of the
formedflocks,we calculated the time correlation function of the density
fluctuations, and the results are shown in this section also.We conclude
in Section 5 indicating the main results and their implications.

2. Theoretical model

2.1. Lattice Boltzmann scheme

We consider a model for microswimmer suspensions composed
by spherical particles embedded in a fluid. The fluid is modeled
using a Lattice Boltzmann approach. Accordingly, the solvent is de-

scribed in terms of a distribution function f i r
→
; t

� �
in each node of

the lattice. The distribution function evolves at discrete time steps,
Δt, following the lattice Boltzmann equation (LBE):

f i r
→ þ c

→
iΔt; t þ Δt

� �
¼ f i r

→
; t

� �
þ

Ωij f eqj r
→
; t

� �
− f j r

→
; t

� �� � ð1Þ
lar Liquids (2013), http://dx.doi.org/10.1016/j.molliq.2012.12.009
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that can be regarded as the space and time discretized analog of the
Boltzmann equation. It includes both the streaming to the neighbor-
ing nodes, which corresponds to the advection of the fluid due to its
own velocity, and the relaxation toward a prescribed equilibrium
distribution function fj

eq. This relaxation is determined by the
linear collision operator Ωij [4–6]. It corresponds to linearizing the
collision operator of the Boltzmann equation. If Ωij has one single ei-
genvalue, the method corresponds to the kinetic model introduced by
Bhatnagar–Gross–Crook (BGK) [7]. The LBE satisfies the Navier–
Stokes equations at large scales. In all our simulations we use units
such that the mass of the nodes, the lattice spacing and the time
step Δt are in unity and the viscosity is 1/2, the lattice geometry
that we have used was a cubic lattice with 19 allowed velocities, bet-
ter known as D3Q19 scheme [5].

The linearity and locality of LBE make it a useful method to study
the dynamic of fluids under complex geometries, as is the case when
dealing with particulate suspensions. Using the distribution function
as the central dynamic quantity makes it possible to express the
fluid/solid boundary conditions as local rules. Hence, stick boundary
conditions can be enforced through bounce-back of the distribution,

f i r
→
; t

� �
, on the links joining fluid nodes and lattice nodes inside the

shell which defines the solid particles, also known as boundary links
[8]. A microswimmer is modeled as a spherical shell larger than the
lattice spacing. Following the standard procedure, the microswimmer
is represented by the boundary links which define its surface. Ac-
counting for the cumulative bounce back of all boundary links allows
to extract the net force and torque acting on the suspended particle
[9]. The particle dynamics can then be described individually and
particles do not overlap due to a repulsive, short-range interaction
among them, given by

vss rð Þ ¼ � σ=rð Þν0 ; ð2Þ

where � is the energy scale, and σ the characteristic width. The steep-
ness of the potential is set by the exponent ν0. In all cases we have
used �=1.0, σ=0.5 and ν0=2.0.

2.2. Squirmer model

We follow the model proposed by Lighthill [3], subsequently im-
proved by Blake [10], for ciliated microorganisms. In this approach,
appropriate boundary conditions to the Stokes equation on the sur-
face of the spherical particles (of radius R) are imposed to induce a
slip velocity between the fluid and the particles. This slip velocity
determines how the particle can displace in the embedding solvent
in the absence of a net force or torque. For axisymmetric motion of
a spherical swimmer, the radial, vr and tangential, vθ components of
the slip velocity can be generically expressed as

vr jr1¼R ¼
X∞

n¼0

An tð ÞPn
e1⋅r1
R

� �
;

vθjr1¼R ¼
X∞

n¼0

Bn tð ÞVn
e1⋅r1
R

� �
;

ð3Þ

n-th at the squirmer spherical surface, where Pn stands for the n-th
order Legendre polynomial and Vn is define as

Vn cosθð Þ ¼ 2
n nþ 1ð Þ sinθP

′
n cosθð Þ; ð4Þ

e1 describes the intrinsic director, which moves rigidly with the par-
ticle and determines the direction along which a single squirmer will
Please cite this article as: F. Alarcón, I. Pagonabarraga, Journal of Molecu
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displace, while r1 represents the position vector with respect to the
squirmer's center, which is always pointing the particle surface and
thus |r1|=R. Since the squirmer is moving in an inertialess media,
the velocity u and pressure p of the fluid are given by the Stokes
and continuity equations

∇p ¼ ν∇2u; ∇⋅u ¼ 0: ð5Þ

The velocity field generated by the squirmer is the solution of
this Eq. (5) under the boundary conditions specified by the slip veloc-
ity in the surface of its body, Eq. (3). We will disregard the radial
changes of the squirming motion, and will consider An=0, to focus
on a simple model that captures the relevant hydrodynamic features
associated to squirmer swimming. Accordingly, we will also disregard
the time dependence of the coefficients Bn and will focus on the mean
velocity of a squirmer during a beating period [11]. Hence, from the
solution of Eq. (5) using the slip velocity as a boundary condition
(Eq. (3)), we can write the mean fluid flow induced by a minimal
squirmer as

u1 r1ð Þ ¼ −1
3
R3

r31
B1e1 þ B1

R3

r31
e1⋅ r̂1 r̂1−

R2

r21
B2P2 e1⋅ r̂1

� �
r̂1;

ð6Þ

where we have taken Bn=0, n>2, keeping only the first two terms
in the general expression for the slip velocity, Eq. (3). The two non-
vanishing terms account for the leading dynamic effects associates
to the squirmers. While B1 determines the squirmer velocity, along
e1, and controls its polarity, B2 stands for the apolar stresses that are
generated by the surface waves [12]. The dimensionless parameter
β≡B2/B1 quantifies the relative relevance of apolar stresses against
squirmer polarity. The sign of β (determined by that of B2) classifies
contractile squirmers (or pullers) with β>0 and extensile squirmers
(or pushers) when βb0. The limiting case when B1=0 corresponds
to completely apolar squirmers (or shakers [13]) which induce fluid
motion around them without self-propulsion. The opposite situation,
when B2=0 corresponds to completely polar, self-propelling, squirmers
which do not generate active stresses around them. We will disregard
thermal fluctuations; therefore B1 and B2 are the two parameters which
completely characterize squirmer motion.

2.3. Simulation details

All the results that we will discuss correspond to numerical simu-
lations consisting of N identical spherical particles in a cubic box of
volume L3 with periodic boundary conditions. In all cases we have
considered N=2000, R=2.3 and L=100 (expressed in terms of the
lattice spacing). This corresponds to a volume fraction ϕ=4πNR3/
(3L3)=1/10, with a kinematic viscosity of ν=1/2 (in lattice units)
[14]. As we will analyze subsequently, active stresses play a signifi-
cant role in the structures that squirmers develop when swimming
collectively. In Fig. 1 we compare characteristic configurations of sus-
pensions for completely polar, contractile and extensile squirmers.
Apolar stresses favor fluctuations in the squirmer concentration and
for contractile squirmers there is a clear tendency to form transient,
but marked, aggregates. The figure also shows that one needs to dis-
tinguish between how squirmers align to swim together and how do
they distribute spatially. In the following section we will analyze how
active stresses interact with self-propulsion to affect both aspects of
collective swimming.
lar Liquids (2013), http://dx.doi.org/10.1016/j.molliq.2012.12.009
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Fig. 1. Snapshots of a simulation with β=0 up, β=0.5 middle and β=−0.5 down, at
t/t0=870. The snapshots have been done using the VMD software [16] with the Nor-
mal Mode Wizard (NMWiz) plugin [17].
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Fig. 2. Polar order parameter P(t), for completely polar squirmers (β=0), pullers (β=0.5)
and pushers (β=−0.5) initially aligned P(0)=1 and homogeneously distributed in space.
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3. Polar order parameter

In order to quantify the degree of ordering associated to collective
squirmer motion, we have computed the global polar order parameter
Please cite this article as: F. Alarcón, I. Pagonabarraga, Journal of Molecu
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(Eq. (7)) [15], expressed in terms of the squirmer intrinsic orientation
e, which determines the direction of swimming for isolated squirmers,

P tð Þ ¼
∑N

i ei
���

���
N

: ð7Þ

In Fig. 2 we show the temporal evolution of P(t) as a function of
time for completely polar, contractile and extensile suspensions. The
time is normalized by t0 which is the time that a single squirmer
needs to self-propel a distance of one diameter, t0≡2R /(2/3B1)=
3R /B1. The three suspensions start from a completely aligned initial
configuration where squirmers are homogeneously distributed spa-
tially. This figure shows clearly that squirmers relax from the given
initial configuration to the appropriate steady state and that active
stresses have a profound impact on the ability of squirmers to
swim together. The limiting situation of completely polar swimmers,
β=0, keeps almost perfect ordering. This is because the irrotational
flow generated by the translational velocity of the particles is strong
enough to maintain a symmetrical distortion in the fluid. Hence, a
value of P(t) close to one indicates high polarity. The other two curves,
corresponding to extensile (β=−1/2) and contractile squirmers (β=
1/2), indicate that active stresses generically decorrelate squirmermotion
due to the coupling of the intrinsic direction of squirmer self-propulsion
with the local vorticity field induced by the active stresses generated by
neighboring squirmers. However, we do observe a clear difference be-
cause extensile squirmers have completely lost their common degree of
swimming while contractile ones still conserve a partial degree of global
coherence.

In order to quantify in more detail the role of active stresses in the
global degree of ordering in squirmer suspensions, we have computed
the steady-state value of the polar order parameter, P∞, as a function
of the relative apolar stress strength, β. Fig. 3 displays P∞, computed as
the mean average of P(t) over the time period after the initial decay
from the aligned state [15].

There are two remarkable observations of the results shown in
Fig. 3. First of all, the larger |β| the smaller values of P∞ observed,
which indicate less squirmer coherence due to hydrodynamic interac-
tions controlled by the induced active stresses, or |β|. Secondly, for
a given magnitude of the apolar stress, |β|, pullers are more ordered
than pushers. Hence, there is an asymmetry between pullers and
pushers. This asymmetry can be explained in terms of the differences
lar Liquids (2013), http://dx.doi.org/10.1016/j.molliq.2012.12.009
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Fig. 4. Time-evolution of the polar order parameter, P(t), for squirmer suspensions
at ϕ=1/10 for different initial configurations. a) Initially aligned (top) and isotropic
(bottom) suspensions of puller squirmers (β=1/2). b) Initially isotropic suspensions
for completely polar (β=0), puller (β=1/2) and pusher (β=−1/2) squirmers. (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)
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Fig. 3. Long-time polar order parameter, P∞ for initially aligned suspensions. Results are
shown for simulations performed with different squirmer sizes. The insensitivity of the
global order parameter to the squirmer resolution on the simulation lattice indicates
that the emergent order and structures described are not controlled by the details of
fluid flow close to the particles.
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in the near-field interactions between squirmers [15,18]. Squirmer
self-propulsion favors head-to-tail collisions [19] and generates an in-
ternal structure that competes with the tendency of squirmers to rotate
due to localflows. In fact, head-to-head orientation is stable to rotations
for pusher suspensions (as can be clearly appreciated in the last snap-
shot of Fig. 1, where we can see a lot of pushers interacting head-
to-head). In this case, the active stresses favor head-to-head configura-
tions, which compete with self-propulsion and decorrelate faster the
comoving swimming configurations of squirmers. On the contrary, the
stresslet generated by pullers destabilizes head-to-head configurations
favoring the motion of squirmers along a common director. It is worth
noting that puller suspensions with β>3 will evolve to isotropic con-
figurations, in agreement with the long-time polar order parameter
displayed in Fig. 3.

In order to clarify that global ordering is generic for squirmers
composed of spherical particles, and hence that orientation instabil-
ities do not require non-spherical propelling particles [20], we have
analyzed the collective evolution of squirmer suspensions with initial
isotropic configurations. It is clear in Fig. 4a, that both cases of puller
suspensions either initially aligned or isotropic, have a similar long-
time polar order; hence we can infer that puller suspensions in either
an isotropic or aligned state are unstable and that the steady state is
independent of the symmetry of the initial configurations.

In Fig. 4b one can clearly appreciate that isotropic puller suspen-
sions (red circles) are also unstable, as shown in Fig. 4a. On the con-
trary, isotropic pushers suspensions are stable (black circles) for this
regime of β. Similar to the result for puller suspensions showed in
Fig. 4a, one can appreciate in Fig. 4b that pushers are driven to the
same long-time polar order parameter, and therefore that the final
alignment is independent of the initial configuration.

4. Flocking

Fig. 1 shows that puller suspensions, (β>0), display a cluster of
the size of the box. Due to the absence of attractive forces between
squirmers, these observed clusters are statistically relevant but have
a dynamic character. As a function of time the observed aggregates
evolve and displace; the particles they are form with change. We
need then a statistical approach to analyze the formation of emergent
mesoscale structures and its correlation with orientational ordering.
Please cite this article as: F. Alarcón, I. Pagonabarraga, Journal of Molecu
We have computed the temporal correlation function of the density
fluctuations dividing the simulation box in 1000 sub-boxes of side
box l=L/10 and counted all the particles Ni(t) at each i-th sub-box.
This provides the particle temporal mean number, 〈Ni(t)〉t, from
which we can determine the instantaneous density fluctuations,
δNi(t)=Ni(t)−〈Ni(t)〉t, at each box. The average density fluctuation,
δN(t), can then be derived as the mean of δNi(t) over all the sub-boxes
at time t, and one can use them to study their temporal correlation.
The time correlation of the squirmer density fluctuations, depicted in
Fig. 5, shows that pullers have an oscillatory response, associated to
the displacement of aggregates with a densitymarkedly above average,
while pushers are characterized by a more homogeneous spatial distri-
bution. We can gain more detailed insight into the aggregation and or-
dering of squirmer suspensions by studying the generalized radial
distribution functions [6]

gn rð Þ≡ Pn cosθij
� �D E

; ð8Þ

where θij stands for the relative angle between the direction of motion
of the particles i and j at a distance between r and r+dr and Pn is the
n-th degree Legendre polynomial. For n=0we recover the radial distri-
bution function, g0(r). The average in Eq. (8) is taken over all particle
lar Liquids (2013), http://dx.doi.org/10.1016/j.molliq.2012.12.009
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pairs and over time, once the system has reached its steady state. Fig. 6
displays g0(r) for three kinds of squirmers, β={0, 1/2,−1/2}. For com-
parison,we also show the radial distribution function of a randomly dis-
tributed configuration, which constitutes a good approximation for the
equilibrium radial distribution function for hard spheres at ϕ=1/10.
Fig. 6 displays also g0(r) for β=−1/5. This case corresponds to a pusher
suspensionwith the same polar order value, P∞, than the puller suspen-
sion at β=1/2 and will help to analyze the correlation between global
polar order and the suspension structure.

One can clearly appreciate that activity enhances significantly the
value of the radial distribution at contact, g0(r=2R), compared with
the corresponding value for an equilibrium suspension. This value is
larger for puller suspensions indicating the larger tendency of pullers
to remain closer to each other. The radial distribution function for
pullers develops a marked second maximum at r=4.25R indicating
the development of stronger short range structures for pullers. Nei-
ther pushers nor totally polar squirmers have a visible second maxi-
mum even when we compare puller and pusher suspensions with
equivalent polar order parameter, P∞. The development of the sec-
ondary peak for pullers is consistent with their tendency to form
large aggregates, or flocks, in agreement with the snapshot depicted
in Fig. 1.
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which provides information on the degree of local correlated polar
order around a given squirmer. Initially, all squirmers are parallel,
and hence g1(r, t=0)=1.0 (green diamonds in the Figure). The iso-
tropic initial condition (yellow circles), when g1(r, t=0)=0, is also
shown as a reference. Completely polar squirmer suspensions, β=0,
keep g1(r) very close to 1 (violet triangles) showing that most of
the particles swim along a common direction even if they are far
away from each other; this strong correlation is easily appreciated
in the first snapshot in Fig. 1. We can observe a similar effect for push-
er suspensions at β=−1/5 where we can see how g1(r) relaxes to a
finite plateau for r>3R. However, unlike completely polar squirmers,
now g1(r>3R)∼0.6 (black diamonds) indicating a loss of coherence
in the swimming suspension. The relative alignment for puller sus-
pensions is clearly different, because g1(r) decays asymptotically to
zero (blue squares) for separations analogous to those on which the
radial distribution function decays to one. This indicates that the
structure we have identified through g0(r) in Fig. 6 corresponds to
groups of nearby particles that swim along the same direction. This
behavior is consistent with the middle snapshot in Fig. 1 which
shows a marked flocking formed by a significant number of particles
swimming coherently in the same direction. If the apolar strength
is increased, increasing the magnitude of β, for pusher suspensions,
the partial coherence that we have seen in the case of β=−1/5 van-
ishes. The curve of g1(r) for β=−1/2 (red triangles) does not display
any significant feature, indicating a complete decorrelation in the
direction of swimmers at all length scales. The corresponding config-
uration in Fig. 1 shows clearly the absence of any significant correlat-
ed orientation between squirmers.

5. Conclusions

We have analyzed a model system of swimming spherical particles
to show the capabilities of the hydrodynamic coupling as a route to
pattern formation, polar ordering and flocking in the absence of any
additional interaction among the swimmers (except that swimmers
cannot overlap due to excluded volume). We have shown how a nu-
merical mesoscopicmodel for swimmer suspensions can develop insta-
bilities and long-timepolar order and that active stresses play a relevant
role to promote flocking due to the coupling of the swimming director
with the local fluid vorticity induced by the neighboring squirmers.
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We have identified the sign of such active stress (which distinguishes
pullers from pushers) as the main element which controls squirmer
flocking and swimming coherence.

We have shown that spherical squirmers, starting from aligned or
isotropic state, develop a unique long-time polar order due to hydrody-
namic interactions.We have found that aligned pusher suspensions are
unstable while isotropic suspensions are stable for βb−2/5: isotropic
puller suspensions are also stable for β>3.0.

We have seen that flocking configurations for pullers leads to large
elongated structures, reminiscent of the bands observed in the Vicsek
model [21]. However, in this later case hydrodynamics is absent and
flocking develops at high concentrations, when the aligning interac-
tion is strong enough to overcome decoherence induced by noise. In
the systems we have explored that the coherence is hydrodynamic
and develops at small volume fractions. The observed elongated,
spanning aggregates with internal coherent orientation, in the range
0bβb1, are robust and independent of the initial configuration.
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