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Abstract 

Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been 

reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. 

Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and 

physical endurance and reduces fat accumulation in mice. In addition, resveratrol may 

be a powerful agent to prevent age-associated neurodegeneration and to improve 

cognitive deficits in Alzheimer’s disease (AD). Moreover, different findings support the 

view that longevity in mice could be promoted by CR. 

In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of 

age-related AD. We found that resveratrol supplements increased mean life 

expectancy and maximal life span in SAMP8 and in their control, the related strain 

SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on 

several specific hallmarks of AD. We found that long-term diet resveratrol activates 

AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces 

cognitive impairment and has a neuroprotective role, decreasing the amyloid burden 

and reducing tau hyperphosphorylation. 
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Abstract 

Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been 

reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. 

Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and 

physical endurance and reduces fat accumulation in mice. In addition, resveratrol may 

be a powerful agent to prevent age-associated neurodegeneration and to improve 

cognitive deficits in Alzheimer’s disease (AD). Moreover, different findings support the 

view that longevity in mice could be promoted by CR. 

In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of 

age-related AD. We found that resveratrol supplements increased mean life 

expectancy and maximal life span in SAMP8 and in their control, the related strain 

SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on 

several specific hallmarks of AD. We found that long-term dietary resveratrol activates 

AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces 

cognitive impairment and has a neuroprotective role, decreasing the amyloid burden 

and reducing tau hyperphosphorylation. 
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1. Introduction 

Resveratrol (trans-3,4',5-trihydroxystilbene), a naturally occurring polyphenol mainly 

found in grapes and red wine, has been reported as a caloric restriction (CR) mimetic 

with potential anti-aging and anti-diabetogenic properties. Resveratrol increases 

metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance and 

reduces fat accumulation in mice (Lagouge et al., 2006; Baur et al., 2006). The most 

widely accepted mechanistic hypothesis is that resveratrol’s effects, in the same way 

as CR, are driven through Sirtuin 1 (SIRT1) regulation (Chung et al., 2010). Although 

there has been major controversy about whether resveratrol can be an activator of 

SIRT1, as its ability to interact directly with SIRT1 has been questioned (Beher et al., 

2009; Pacholec et al., 2010), it now seems clear that resveratrol activates SIRT1 

indirectly (Villalba et al., 2012). It is widely accepted that resveratrol benefits are 

mediated through AMPK activation (Zang et al., 2006; Baur et al., 2006; Price et al., 

2012). Thus, resveratrol leads to increases in the NAD-to-NADH cell ratio, which 

results in activation of AMPK in vivo, initiating a signaling process that regulates insulin 

sensitivity and recruits mediators of oxidative metabolism and mitochondrial 

biogenesis, including PGC1α, PPARδ and others (Um et al., 2010; Ruderman et al., 

2010). 

 

Several findings support the view that longevity can be promoted by CR in mice 

(Weindruch et al., 1988; Selman et al., 2008), along with CR’s broad anti-aging activity 

(Park et al., 2009). In recent years, interesting studies in non-human primates have 

reported that CR also extended their lifespan (Colman et al., 2009), but in a very 

recently published study of the same species CR was not able to do so (Mattison et al., 

2012). Though unlikely, the possibility that CR may extend maximum lifespan has still 

not been ruled out. Similarly, resveratrol treatment has a range of beneficial effects in 
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mice, but up to now has failed to increase the longevity of ad libitum-fed animals when 

started midlife (Baur and Sinclair, 2006), although in combination with other anti-aging 

strategies such as CR, it increased mean and maximal lifespan compared to control 

animals (Pearson et al., 2008). In addition, dietary resveratrol mimics the effects of CR 

in insulin-mediated glucose uptake in muscle in aged animals; and gene expression 

profiling suggests that both CR and resveratrol may retard some aspects of aging 

through alterations in chromatin structure and transcription (Halagappa et al., 2007; 

Barger et al., 2008).  

 

Several in vitro and in vivo studies also support the hypothesis that resveratrol may be 

a powerful agent in preventing age-associated neurodegeneration (Vingtdeux et al., 

2008). In in vitro models, resveratrol markedly lowers the levels of secreted and 

intracellular amyloid-beta (Aβ) peptides (Marambaud et al., 2005). Similarly, with a 

grape seed polyphenolic extract administered orally to Tg2576 mice, a murine model of 

AD (Hsiao et al., 1996) improves cognitive deficits. These effects correlate with 

reductions in the amounts of high molecular weight Aβ assemblies in the brain (Wang 

et al., 2008). Similar findings have been observed in animals after moderate 

consumption of red wines (Wang et al., 2006; Ho et al., 2008). Recently it was shown 

that resveratrol selectively remodels soluble oligomers, fibrillar intermediates and 

amyloid fibrils into alternative aggregated species that are non-toxic (Ladiwala et al., 

2010). These studies and others support the theory that resveratrol or polyphenol 

derivatives could be useful therapeutic agents for AD (Ono et al., 2008, JBC). 

Nevertheless, it is unknown whether resveratrol has similar effects in age-related 

models of AD. 

 

To this end, we used the age-accelerated mouse (SAMP8). This strain is characterized 

by deficits in learning and memory (Miyamoto et al., 1986; Takeda, 2009), emotional 
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disorders such as reduced anxiety-like behavior (Miyamoto et al., 1992; Markowska et 

al., 1998), impaired immune response, etc. (Yagi, 1988; Flood et al., 1998). More 

importantly, this strain is increasingly being recognized as a model of age-related AD 

(Pallàs et al., 2008; Morley et al., 2012) as, in addition to age-related learning and 

memory impairments, the mice show with aging an AD-related pathology such as 

increases in Aβ (del Valle et al., 2010) and other protein aggregates (Manich et al., 

2011), alterations in APP processing by secretases (Morley et al., 2000 and 2002), 

cerebral amyloid angiopathy (del Valle et al., 2011) and increases in tau 

hyperphosphorylation (Canudas et al., 2005). 

 

Therefore, in this study we sought to clarify the role of dietary resveratrol in the SAMP8 

mouse. Previous results in SAMP8 demonstrated that low doses and short-term 

administration of pterostilbene (polyphenolic derivative of resveratrol) show positive 

effects on behavior, reductions in tau phosphorylation (Chang et al., 2011) and 

regulation of cascades associated with PPAR alpha. Based on these encouraging 

findings, we determined the effects of long-term administration of resveratrol on 

longevity and signaling cellular processes activated by this polyphenol, namely the 

SIRT1 pathway and AMPK system. We also extended these studies by examining the 

resveratrol-mediated neuroprotective mechanism in several specifically AD hallmarks 

present in SAMP8, such as Aβ accumulation and tau phosphorylation. 
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2. Methods 

2.1. Animals and resveratrol diet 

A total of 216 male SAMP8 and SAMR1 animals were used for the survival study. The 

animals received a standard diet (2018 Teklad Global 18% Protein Rodent 

Maintenance Diet, Harlan) or the same diet supplemented with trans-resveratrol 

(1g/Kg, Mega Resveratrol, Candlewood Stars, Inc. CT, USA), starting at two months of 

age and divided into four groups of 50 to 60 individuals: SAMR1 control (n=54), 

SAMR1 resveratrol (n=52), SAMP8 control (n=50) and SAMP8 resveratrol (n=60). For 

the neurodegeneration studies, two groups of 10-12 SAMP8 mice were fed with the 

standard diet or the resveratrol diet, starting the supplements at two months and killing 

the animals to obtain tissue samples at 9 months of age. All the animals had food and 

water ad libitum and were kept in standard conditions of temperature (22 ± 2°C) and 

12:12-h light-dark cycles (300 lux/0 lux). Studies were performed in accordance with 

the institutional guidelines for the care and use of laboratory animals established by the 

Ethical Committee for Animal Experimentation at the University of Barcelona. 

2.2. Object Recognition Test (ORT) 

9-month SAMP8 control (P8ctl) and SAMP8 resveratrol (P8rsv) animals were placed in 

a 90º two-arm, 25 cm-long 20 cm-high 5 cm-wide, black maze. The 20 cm-high walls 

could be lifted off for easy cleaning. The light intensity in the middle of the field was 30 

lux. The objects to be discriminated were made of plastic (5.25 cm high, object A and 

4.75 cm high, object B). For the first three days, mice were individually habituated to 

the apparatus for 10 min. On the 4th day, the animals were submitted to a 10 min 

acquisition trial (first trial) during which they were placed in the maze in the presence of 

two identical novel objects (A+A or B+B) placed at the end of each arm. A 10 min 

retention trial (second trial) occurred 2 h later. During this second trial, objects A and B 

were placed in the maze and the time that the animal explored the new object (tn) and 
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the old object (to) were recorded. A discrimination index (DI) was defined as (tn-

to)/(tn+to). In order to avoid object preference biases, objects A and B were 

counterbalanced so that half of the animals in each experimental group were first 

exposed to object A and then to object B, whereas the other half saw first object B and 

then object A. The maze and the objects were cleaned with 96º ethanol between 

different animals, so as to eliminate olfactory cues. 

2.3. Brain processing 

One day after the object recognition test, 9-month animals were intracardially perfused 

after being anesthetized with 80 mg/Kg of sodium pentobarbital. Afterwards, brains 

were dissected and separated sagitally in two hemispheres, one for 

immunohistochemistry and the other for protein extraction. Immunohistochemistry 

brains were frozen by immersion in isopentane, chilled in dry ice and stored at -80ºC 

until sectioning. Thereafter, frozen brains were embedded in OCT cryostat-embedding 

compound (Tissue-Tek, Torrance, CA), cut into 20 μm-thick sections on a cryostat 

(Leyca Microsystems, Germany) at -18ºC and placed on slides. Slides containing brain 

sections were fixed with acetone for 10 min at 4ºC, allowed to dry at room temperature 

and then frozen at -20ºC until further staining. The cortex and hippocampus of the 

other hemisphere were dissected and stored at -80ºC until protein extraction (see 

below). 

2.4. Immunohistochemistry 

Slides were allowed to defreeze at room temperature and then rehydrated with PBS for 

5 min. Then, brain sections were blocked and permeabilized with PBS containing 1% 

bovine serum albumin (BSA, Sigma–Aldrich) and 0.1% Triton-X-100 (Sigma–Aldrich) 

for 20 min. After two 5-min washes in PBS, slides were incubated with the primary 

antibody for Aβ40, Aβ42, (see list of antibodies and dilutions below) overnight at 4ºC. 

They were then washed again and incubated for 1 h at room temperature in the dark 
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with AlexaFluor secondary antibody (see below). After washing again, nuclear staining 

was performed by incubating slides in Hoechst (H-33258, Fluka, Madrid, Spain) at 2 

μg/ml in PBS for 10 min at room temperature in the dark. Finally, slides were washed, 

mounted using Prolong Gold (Invitrogen) anti-fade medium, allowed to dry overnight at 

room temperature and stored at 4ºC. Image acquisition was performed with a 

fluorescence laser microscope (BX41, Olympus, Germany). 

2.5. Protein extraction  

Cortex and hippocampus were micronized through freezing with liquid nitrogen and 

grinding with a mortar. For total protein extraction, lysis buffer (50mM Tris HCl, 150mM 

NaCl, 5mM EDTA, 1% Triton X-100, pH 7.4) containing complete, Mini, EDTA-free 

Protease Inhibitor Cocktail (Roche, Mannheim, Germany) and Phosphatase Inhibitor 

Cocktail 1 (Sigma-Aldrich, St. Louis, MO, USA) were added to micronized tissue and 

left on ice for 30 min. Then, samples were centrifuged at 10,000 g for 10 min and 

supernatant with total protein content was collected. All the protein extraction steps 

were carried out at 4ºC. Protein concentration was determined by the Bradford protein 

assay. 

2.6. Western Blot 

For Western Blot analysis, 20 ug of protein were denatured at 95ºC for 5 min in sample 

buffer (0.5 M Tris-HCl, pH 6.8, 10% glycerol, 2% sodium dodecyl sulfate (SDS), 5% β-

mercaptoethanol, 0.05% bromophenol blue), separated by SDS-PAGE on 10% 

polyacrylamide gels and transferred to Immobilon polyvinylidene difluoride membranes 

(Millipore, Billerica, MA, USA). The membranes were incubated overnight at 4°C with 

the primary antibodies (see Table 1) diluted with Tris-buffered saline containing 0.1% 

Tween 20 (TBS-T) and 5% bovine serum albumin (BSA). Membranes were then 

washed and incubated with secondary antibodies (see Table 1) with TBS-T for 1 hour 
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at room temperature. Protein bands were visualized using a chemiluminescence 

detection kit (Amersham Biosciences). Band intensities were quantified by 

densitometric analysis and values were normalized to β-actin. 

2.7. List of antibodies  

See Table 1 

2.8. Statistical analysis  

Results were analyzed statistically by GraphPad Prism software. Kaplan-Meier survival 

curve comparison was performed with the Log-Rank (Mantel-Cox) test. The other data 

are presented as mean ± SEM and means were compared with two-tailed, unpaired 

Student’s t-test or ANOVA following Tukey's Multiple Comparison Test when 

necessary. In the ORT a one-sample t test was used to examine whether single 

columns were different from zero ones. Statistical significance was attained when P 

values were <0.05. 
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3. Results 

3.1 Increase in life expectancy due to resveratrol. 

The survival curves were plotted using the Kaplan-Meier estimator. A shift to the right 

for the resveratrol groups revealed an increased expectancy of life for animals that had 

been eating the resveratrol diet. The comparison of the groups using the Mantel-Cox 

log rank test indicated that there was a significant difference between the survival 

curves of the control group vs. the resveratrol group, not only in SAMP8 mice (Fig. 1A, 

P<0.0001 among groups, Mantel-Cox log-rank test), but also in SAMR1 animals (Fig. 

1B, P<0.01 among groups, Mantel-Cox log-rank test). In addition, the median life 

expectancy of our control mice was 10.4 months for SAMP8 mice, significantly lower 

than the 17.8 months of SAMR1 mice (Fig. 1C) in previous studies (Takeda, 2009). 

However, the SAMP8 resveratrol group showed a life expectancy of approximately 14 

months, with an increased life expectancy of more than 33% over the SAMP8 control 

mice (Fig. 1C). Furthermore, SAMR1 mice fed with resveratrol also showed a median 

lifespan of 21.8 months, 22% more than SAMR1 control mice (Fig. 1C). In addition, 

maximum lifespan is the mean of the final 20% of mice surviving in each group, as 

determined by Kaplan-Meier Analysis. In comparison with control groups, both SAMP8 

and SAMR1 animals fed with resveratrol significantly increased their maximum lifespan 

(Fig. 1D). 

 

3.2 Resveratrol decreases cognitive impairment in SAMP8. 

We investigated the effects of a 7-month resveratrol food supplement on 9-month-old 

SAMP8 mice. This is an age when several alterations such as amyloid deposition or 

cognitive impairment have been reported (Pallàs et al., 2008). We found that, in the 

ORT, control mice had an impaired memory, as their DI was close to or not different 

from zero (Fig. 2, P=0.4665, one-sample t-test), revealing that there was no preference 

for the novel object. On the other hand, resveratrol mice had a positive DI different from 
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zero (Fig. 2, P<0.05, one-sample t-test), revealing that their memory was not impaired 

as they showed greater preference for the novel object than the one already presented. 

Furthermore, comparison of the two groups revealed a more protective effect of 

resveratrol on their memory than in age-matched SAMP8 mice (Fig. 2). 

 

3.3 Resveratrol increases both SIRT1 and AMPK levels, while it decreases P53 

acetylation. 

Western blot analysis of cortex and hippocampus of the two groups revealed higher 

levels of SIRT1 (Fig. 3A, B) in the animals that had been eating a diet supplemented 

with resveratrol than in animals eating standard food (control group). In accordance 

with this observation, the substrate of SIRT1, p53, shows a decrease in its acetylation 

in these brain areas (Fig. 3C, D). In addition, higher levels of phosphorylated AMPK (p-

AMPK) were found in the cortex of the resveratrol group (Fig. 3E), while no 

modifications were seen in the AMPK levels (Fig. 3G). However, while no increment of 

p-AMPK levels was found in the hippocampus of the resveratrol mice (Fig. 3F), there 

were higher AMPK basal levels in these animals than in SAMP8 control mice (Fig. 3H).  

 

3.4 Resveratrol reduces amyloid deposition and favors the non-amyloidogenic 

pathway in the hippocampus of SAMP8 mice. 

Immunohistochemistry was performed on brain sections with specific antibodies 

directed against the Aβ42 and Aβ40 to assess whether there were differences between 

the two groups. Visual analysis revealed amyloid clusters limited only to the 

hippocampal area, as described before (del Valle et al., 2010). Figure 4 shows that 

almost no Aβ granules were present in the resveratrol group, while several clusters of 

Aβ42 and Aβ40 granules appeared in the control group (Fig. 4A). Furthermore, we 

quantified the amount of amyloid clusters that were present in the hippocampus of the 

two groups. We found that resveratrol decreased the amount of both Aβ42 and Aβ40 
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accumulations in SAMP8 animals in comparison with SAMP8 control mice (Fig. 4B, C). 

In addition, Western blot analysis quantified the levels of two enzymes responsible for 

the amyloidogenic/non-amyloidogenic processing of APP, the α- (ADAM10) and β- 

(BACE) secretases. We found that, while no alterations were seen in the pro-

amyloidogenic BACE enzyme (Fig. 5 A-B), an increase in the non-amyloidogenic 

ADAM-10 enzyme was found in both the cortex (Fig. 5C) and the hippocampus (Fig. 

5D) of the resveratrol group.  

 

3.5 Resveratrol lowers Tau hyperphosphorylation at serine 396 and has a 

differential effect on Kinases of the cortex and the hippocampus. 

The levels of phosphorylated tau (pTau) at Ser396 have been described as a reliable 

marker of the severity of AD (Hu et al., 2002). Thus, we evaluated the effect of 

resveratrol on Tau phosphorylation levels in cortex and hippocampus extracts by 

Western blot, using a tau antibody that detects only the pTau at Ser396. As can be seen 

in Figure 6, not only the cortex but also the hippocampus of animals fed with 

resveratrol showed lower levels of pTau (Fig. 6 A-B). In addition, we investigated the 

levels of CDK5 and the ratio of its activator p25 to the precursor p35, as well as the 

phosphorylated levels of GSK3β, CDC2 and JNK. A drop in CDK5 protein levels (Fig. 

6C), together with a decrease in the p25/p35 ratio (Fig. 6E), revealed inactivation of 

this kinase in the cortex of resveratrol animals. In addition, an increase in the levels of 

phosphorylated GSK3β at Ser9 can be seen (Fig. 7A), which also correlates with the 

reduced pTau levels, as this enzyme is deactivated when phosphorylated at this 

residue. However, no modifications were detected in the levels of phosphorylated 

CDC2 (Fig. 7C) or in the levels of phosphorylated JNK (Fig. 7E). Conversely, there 

were no changes between resveratrol-treated SAMP8 hippocampus and age-matched 

SAMP8 control mice in the kinases studied (Figs. 6 D, F and 7 B, D, F). 
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4. Discussion 

The results reported here confirm the positive effect of resveratrol on extending mean 

and maximum lifespan, memory and neurodegenerative markers in the SAMP8 mice.  

It has been reported that SIRT1 activation by resveratrol increases the lifespan of S. 

cerevisiae (Howitz et al., 2003), C. elegans (Viswanathan et al., 2005), D. 

melanogaster (Wood et al., 2004) and the short-lived seasonal fish Nothobranchius 

furzeri (Valenzano et al., 2006). However, discrepancies between labs remain 

unexplained. The influence of factors such as interspecies differences in metabolism, 

genetic variation, diet, physical activity, disease and mental health should not be 

underestimated when extrapolating from rodent models (for a review, see Agarwal et 

al., 2011). Then, further experimental evidence is needed to clarify the importance of 

SIRT1 and other mechanisms in the effects of resveratrol. 

 

Here we demonstrate that resveratrol can extend lifespan in mice. Resveratrol 

supplement in the diet resulted in a significant increase in mean life expectancy and in 

maximum life span, in both SAMP8 and SAMR1. At present, resveratrol was reported 

to prevent early mortality in mice fed with a high-fat diet (Baur et al., 2006), but failed to 

affect survival significantly in old mice (Miller et al., 2011). A growth hormone releasing 

hormone antagonist has been shown to extend SAMP8 mice’s median lifespan (Banks 

2010), which was associated with decreased brain oxidative stress. Melatonin has also 

been reported to increase life span and longevity in SAMR1 and SAMP8 mice 

(Rodriguez et al., 2008). These authors conclude that the underlying effects of this 

indoleamine rely on mitochondrial physiology improvement, involving a decrease in 

reactive oxygen species generation. As old rodents produce more reactive oxygen 

species than young ones and the rate of mitochondrial reactive oxygen species 

production is inversely proportional to species’ maximum life span, it would be 
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reasonable to expect that an agent that lowered reactive oxygen species might extend 

lifespan (Sohal et al., 1989).  

Sirtuins are deacetylases that show anti-aging properties in several animal models and 

can protect from stress (Donmez et al., 2010). SIRT1 plays a role in regulating different 

cell processes through deacetylation of important substrates such as p53, FOXO 

transcription factors, PGC-1α, NFκB and others, which are closely linked to some age-

related diseases (Saunders et al., 2010). SIRT1 activation may play an important role 

in the life-extending effects of CR (Cohen et al., 2004) and it has been postulated that 

resveratrol mimics the effect of CR. In this study we demonstrated an increase in 

SIRT1 levels in SAMP8 treated with resveratrol in the two brain areas studied, which 

correlated with a diminution in acetylated forms of p53, one of the main substrates of 

deacetylase. In addition, SIRT1 pathways are closely related to AMPK signaling as a 

sensor of energy availability. AMPK is activated by phosphorylation of Thr-172 by LKB1 

complex in response to an increase in the AMP/ATP ratio and by calmodulin-

dependent protein kinase kinase-beta (CamKKβ) in response to high Ca2+ levels, which 

contributes to regulating Aβ generation. It has been reported that activation of 

deacetylase and AMPK are linked through LKB and, when SIRT1 is activated, AMPK is 

phosphorylated and also activated. Moreover, it has been recently demonstrated that 

resveratrol’s effects on SIRT1 activation are mediated via the CamKKβ-AMPK pathway 

by inhibition of cAMP-specific phosphodiesterases (PDE) (Park et al., 2012). Our 

results showed that resveratrol activation of SIRT1 in SAMP8 mice correlated with 

changes in the levels or in the phosphorylation of AMPK, demonstrating again that 

resveratrol modifies the SIRT1 pathway. 

Furthermore, a link between SIRT1 activation, AMPK and AD is increasingly evident 

(Gan, 2007). Tau phosphorylation and β-amyloid production are sensitive to AMPK 

inhibition (Greco et al., 2011; Park et al., 2012). SIRT1 activation prevents several 
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signs of neurodegeneration (Bayod et al., 2011), protects against axonal degeneration 

(Araki et al., 2004), reduces poly-glutamine toxicity (Parker et al., 2005) and diminishes 

microglia-mediated Aβ toxicity (Chen et al., 2005). AD and Aβ accumulation are 

inextricably linked with oxidative damage (Smith et al., 1998). Diet supplements with 

mulberry (a resveratrol-rich fruit) improved not only memory impairment and decreased 

Aβ accumulation in SAMP8, but also increased antioxidant capacity via the antioxidant 

response element (ARE)-Nrf2 pathway in liver and brain (Shih et al., 2010). 

Furthermore, resveratrol has been reported to improve memory alterations as it 

preserved cognitive function in aging mice (Oomen et al., 2009) and in transgenic AD 

mice (Kim et al., 2007). However, although some conflicting results have been obtained 

on SAMP8 memory alterations (Spangler et al., 2002), we found memory-related 

deficits at 9 months of age and that resveratrol was able to revert the memory 

impairment detected.   

Part of the beneficial effects described for SIRT1 on Aβ accumulation is the modulation 

of α-secretases. Transcription of ADAM10 is positively controlled by retinoic acid 

receptors (RAR), which are activated by their ligand retinoic acid or through 

deacetylation by SIRT1. Using SIRT1-transgenic and SIRT1-deficient mice, this protein 

was found to activate the RARb transcription factor, which in turn increased ADAM10 

expression (Lichtenthaler, 2011). In addition, SIRT1 activation reduced amyloid 

pathology in a mouse model of AD; and crossing SIRT1 knockout mice with these mice 

dramatically increased the Aβ burden (Donmez et al., 2010). Moreover, decreased 

SIRT1 expression has been found in patients with AD and this decrease correlates with 

tau and Aβ levels (Julien et al., 2009). Modulation of ADAM10 expression by SIRT1 

has also been demonstrated (Gutiérrez-Cuesta et al., 2008; Donmez et al., 2010). In 

our experimental paradigm, we found that resveratrol reduces the Aβ burden in treated 

SAMP8 brain concomitantly with increases in ADAM10 expression. This effect can be 

considered specific because no changes were observed in the expression of other 
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secretases, such as BACE (Donmez et al., 2010). Thus, resveratrol, through SIRT1 

activation, specifically induced the non-amyloidogenic processing of non-mutated APP, 

reducing the presence of previously described amyloid deposits (del Valle et al., 2010). 

Furthermore, tau hyperphosphorylation, another hallmark of AD, is mediated by several 

kinases in brain. We and others have demonstrated the aberrant phosphorylation of tau 

in brain of SAMP8 that is accomplished by activation of several tau kinases such as 

CDK5, GSK3β or JNK (Canudas, 2005; Chang et al., 2011). Our data show that in 

cortex of SAMP8 mice a diminution in CDK5 and GSK3β activity, both main tau kinases 

in AD, is induced by resveratrol treatment; and the inhibition of these tau kinases 

prevented tau phosphorylation in Ser396.  

On the other hand, no clear changes in JNK were found. Conversely, with low doses 

and only 2 months of treatment with pterostilbene, a resveratrol derivative, JNK 

inhibition was observed in SAMP8, but no changes in tau hyperphosphorylation 

(measured through PHF antibody) were observed in cortex (Chang et al., 2011). All 

these discrepancies are probably due to the different resveratrol doses and also to the 

long-term treatment by resveratrol that we applied in the present study.  

 

With regard to the hippocampus, although resveratrol was able to prevent tau 

phosphorylation, we were unable to find changes in the kinases studied. It is plausible 

to hypothesize that, although long-term treatment by resveratrol prevents tau 

hyperphosphorylation, detectable by specific phospho-antibodies, the inhibition of 

intermediate signals under these conditions is lost because of the chronicity of the 

treatment. On the other hand, oxidative stress is a well-established pathogenic factor in 

AD (Smith et al., 1995; Markesbery, 1997; Perry et al., 1998) and the association of 

oxidative stress with tau abnormalities is well known. As such, the resveratrol-driven 

reductions on tau phosphorylation in hippocampus could be mediated by the well-
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known antioxidant effects of this polyphenol rather than through its inhibitory effect on 

tau kinases. Therefore, our results allow us to conclude that resveratrol inhibits tau 

phosphorylation in both cortex and hippocampus. 

Finally, we cannot discard the possibly beneficial antioxidant effect of resveratrol in the 

parameters studied here. More studies should be conducted in different AD models in 

order to clarify the role of resveratrol in SIRT1 and AMPK pro-survival pathways and 

other oxidative stress routes such as ARE-Nrf2. However, taking everything into 

account, in this study we demonstrate that resveratrol alone not only increases mean 

and maximum lifespan, and favors AMPK pathways and pro-survival routes such as 

SIRT1 activation, but also has a neuroprotective role, reducing cognitive impairment in 

AD and other neurodegenerative parameters such as the amyloid burden and Tau 

hyperphosphorylation. 
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FIGURE LEGENDS 

 

Figure 1: Kaplan-Meier plot with data expressed as % of individuals alive (A, B) and 

median lifespan of the four groups studied (C). Mantel-Cox log rank test analysis 

reveals a shift to the right for the resveratrol group in SAMP8 (A, P<0.0001) and 

SAMR1 (B, P=0.0051). In the median life-span comparison (C) and maximum lifespan 

comparison considered as the mean of the final 20% of mice surviving in each group 

(D), results are expressed as mean ± SEM; ***P<0.001 vs. SAMP8, ##P<0.01 vs. 

SAMR1, ###P<0.001 vs. SAMR1.  

 

Figure 2: Discrimination index (DI) of both groups of SAMP8 animals. Only Rsv group 

values are positive and different from zero (* P<0.05). There is a higher DI of Rsv 

animals than of SAMP8 control mice (# P<0.05 vs. SAMP8 mice). Bars represent mean 

± SEM. 

 

Figure 3: Levels of Sirtuin (A, B), its acetylated substrate p53 (C, D), p-AMPK (E, F) 

and AMPK (G, H). Bars represent mean ± SEM and values are adjusted to 100% for 

levels of SAMP8 control mice. Student’s paired t-test; *p<0.05; **p<0.01 vs. SAMP8. 

Cx: Cortex, Hp: Hippocampus. 

 

Figure 4: Representative hippocampal images of SAMP8 and SAMP8 Rsv animals 

(A), arrows (Aβ42) and arrowheads (Aβ40) indicate some clusters of amyloid granules in 

both groups. Quantification of the amount of Aβ42 (B) and Aβ40 (C) clusters in the 

hippocampus of the two groups. Bars represent mean ± SEM; values in D-G are 

adjusted to 100% for levels of SAMP8 control mice. Student’s paired t-test; *p<0.05; vs. 

SAMP8. Cx: Cortex, Hp: Hippocampus. 
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Figure 5: Cortex and hippocampal levels of BACE (A, B) and ADAM-10 (C, D) of 

SAMP8 and SAMP8 Rsv animals. Bars represent mean ± SEM; values in A-D are 

adjusted to 100% for levels of SAMP8 control mice. Student’s paired t-test; *p<0.05; 

**p<0.01 vs. SAMP8. Cx: Cortex, Hp: Hippocampus. 

 

Figure 6: Levels of phosphorylated tau (pTau) at Ser396 in cortex (A) and hippocampus 

(B) of SAMP8 and SAMP8 Rsv groups. Cortex and hippocampal levels of CDK5 (C, D), 

P25/P35 ratio (E, F). Bars represent mean ± SEM and values are adjusted to 100% for 

levels of SAMP8 control mice. Student’s paired t-test; *p<0.05; **p<0.01 vs. SAMP8. 

Cx: Cortex, Hp: Hippocampus. 

 

Figure 7: Cortex and hippocampal levels of p-GSK3ß (phosphorylated in Ser9) (A, B). 

p-cdc2 (phosphorylated in Tyr15) (C, D) and JNK (phosphorylated in Thr183/Tyr185) (E, 

F). Bars represent mean ± SEM and values are adjusted to 100% for levels of SAMP8 

control mice. Student’s paired t-test: *p<0.05 vs. SAMP8. Cx: Cortex, Hp: 

Hippocampus. 
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Table 1 

 

Antibody (Clone) Catalog reference Dilution (1:) Provider 

Acetyl-P53 (acetyl-K382) ab37318 500 Abcam, Cambridge, UK 

ADAM-10  ab39177 1000 Abcam, Cambridge, UK 

Beclin-1  ab16998 1000 Abcam, Cambridge, UK 

Cdc2 p34 (17) sc-54 1000 Santa Cruz, Santa Cruz, CA, USA 

Cdk5 (C-8) sc-173 1000 Santa Cruz, Santa Cruz, CA, USA 

GSK-3β (27C10) #9315 1000 Cell Signaling, Danvers, MA, USA 

LC3B  #2775 1000 Cell Signaling, Danvers, MA, USA 

p35/p25 (C64B10) #2680 1000 Cell Signaling, Danvers, MA, USA 

p53 (1C12) #2524 1000 Cell Signaling, Danvers, MA, USA 

Phospho-cdc2 (Tyr15) #9111 1000 Cell Signaling, Danvers, MA, USA 

Phospho-GSK-3β (Ser9) #9336 1000 Cell Signaling, Danvers, MA, USA 

Phospho-SAPK/JNK (Thr183/Tyr185) #9251 1000 Cell Signaling, Danvers, MA, USA 

Phospho-Tau (pS396)  44752G 1000 Invitrogen, Carlsbad, CA, USA 

SAPK/JNK  #9252 1000 Cell Signaling, Danvers, MA, USA 

SIRT1 (SIR11) ab50517 1000 Abcam, Cambridge, UK 

Tau (Tau-5) AHB0042 1000 Biosource, Camarillo, CA, USA 

β-Actin (AC-15) A5441 20000 Sigma-Aldrich, St. Louis, MO, USA 

Aβ40  ab10147 50 Abcam, Cambridge, UK 

Aβ42  (12F4) SIG-39142 100 Covance, CA, USA 

 

Alexa Fluor 488 donkey anti-mouse 

IgG  

A-11001 250 Invitrogen, Carlsbad, CA, USA 

Alexa Fluor 546 donkey anti-rabbit 

IgG  

A-11035 250 Invitrogen, Carlsbad, CA, USA 

Donkey ECL anti-Rabbit IgG, HRP 

linked 

NA934V 1000 GE Healthcare, UK 

Goat Anti-Mouse HRP Conjugate  #170-5047 1000 Biorad, Hercules, CA, USA 

    

    

table
Click here to download table: Table 1.doc 
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