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Abstract: Markets, in the real world, are not efficient zero-sum games where hypotheses of the CAPM are 
fulfilled. Then, it is easy to conclude the market portfolio is not located on Markowitz’s efficient frontier, and 
passive investments (and indexing) are not optimal but biased. In this paper, we define and analyze biases 
suffered by passive investors: the sample, construction, efficiency and active biases and tracking error are 
presented. We propose Minimum Risk Indices (MRI) as an alternative to deal with to market index biases, and 
to provide investors with portfolios closer to the efficient frontier, that is, more optimal investment possibilities. 
MRI (using a Parametric Value-at-Risk Minimization approach) are calculated for three stock markets 
achieving interesting results. Our indices are less risky and more profitable than current Market Indices in the 
Argentinean and Spanish markets, facing that way the Efficient Market Hypothesis. Two innovations must be 
outlined: an error dimension has been included in the backtesting and the Sharpe’s Ratio has been used to select 
the ‘best’ MRI. 
 
 
Key-Words: Index Biases, Passive Investing, Market Indices, VaR, Portfolio Optimization, Minimum Risk 
Indices. 
 
 

1 Introduction 
 
Finance has grown to include ideas such as the 

market, zero-sum games, efficiency or the CAPM. 
Financial theory, as based on these four pillars, 

concludes that an investor can not consistently beat 
the total market. Active investment in traditional 
finance is useless, thus meaning that a passive 
investment, a buy and hold strategy is the optimal 
strategy to follow if we operate in an efficient zero-
sum game market where CAPM hypotheses are 
fulfilled. To simplify this strategy, to help passive 

investors to hold the market, market indexes were 
created as references for passive investors, as 
proxies of a concrete analytical market. In the 
framework described by traditional finance, total 
market indices are appropriate benchmarks for 
passive investment. In [5] I proposed an extended 
revision of these four fundamental items achieving 
different conclusions that are summarized here:  

 
a) Real markets are not really zero-sum games 

but minus-sum games. What some people lose does 
not go completely to others, because money is 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Jordi Andreu, Salvador Torra

ISSN: 1109-9526 33 Issue 1, Volume 7, January 2010



eliminated from the system through commissions 
and fees from brokers and dealers, advisors’ and 
analysts’ revenues, etc. 

 
b) Markets are marginally efficient. Investors are 

not fully rational. They underprice and overprice 
securities, overreact to good and bad news or even 
to irrelevant information. Individuals systematically 
violate Bayes’ rule and other maxims of probability 
theory in their investment decisions and suffer from 
psychological biases. Moreover, the psychological 
evidence shows irrationality is correlated in price 
bubbles and panic movements. Arbitrage is limited 
in these marginal efficient markets, sometimes 
because there are not perfect substitutes to 
securities, or because there are legal or operational 
limitations. In real markets, arbitrage can not always 
avoid mispricing.   

 
c) The results of the basic CAPM are absolutely 

related to its assumptions, so if some of them are not 
fulfilled the results are in deep trouble. In particular, 
there are transaction costs that make market a 
minus-sum game and limit arbitrage; there are taxes, 
and investors’ decisions include realization of losses 
and deferral of capital gains to avoid them; not all 
investors are well informed, and they do not have 
the same predictions for expected returns, 
volatilities and correlations, etc. When CAPM 
hypotheses are not fulfilled, and we have provided 
some examples that they are not always fulfilled, 
investors hold different portfolios, therefore, the 
market portfolio is not optimal and not located in 
the efficient frontier.  

 
In that revised framework, passive investment 

(and indexing) is not optimal but biased. These 
biases can be seen in Fig. 1, in the traditional 
Markowitz’s mean-variance analysis. In a concrete 
moment of time t , the Market Portfolio return mtR  

is located below the Efficient Point return etR  and 

the Maximum Return available at the market ctR . 

The market Index return btR  (proxy of the Market 

Portfolio), and the Proxy Portfolio return ptR  

(proxy of the index held by passive investors), are 
usually located even below in terms of return and 
probably suffering from more risk.  

 

Paying attention to return1 differences, market 
index biases are defined as follows: i) The sample 
bias (SB) is the difference between btR  and mtR  

due to the stock sample selection that make up an 
index. ii) The construction bias (CB) is the 
difference between btR  and mtR  due to the use of 

different weighting criteria (price, equal, GDP, 
fundamental criterions, etc.) or methodologies 
(Laspeyres, Paasche or Geometric mean among 
others) in the construction of an index. iii) Tracking 
error (TE) is the difference between btR  and ptR  

due to commissions and turnover costs and is the 
only bias that has been studies in the literature. iv) 
Efficiency bias (EB) is the return difference 
between mtR  and etR  and is created by the lack of 

efficiency in the financial system. v) Active bias 
(AB) is defined as the difference between the 
Efficient Point ( etR ) and the best investment 

opportunity ( ctR ), that is, an opportunity cost.  

 
Mathematically, these biases can be calculated 

using expressions in Table 1. In that table, it is 
possible to found biases defined in a moment of 
time ( t ), and also along a time period -Average 
Absolute Bias (AA) and Standard Deviation of a 
Bias (SD)-. 

 
Concerned with this situation, the aim of this 

paper is to propose alternative Market Indices that 
solve, at least in part, some of the detected biases. 
There are three important reasons for creating new 
Market Indices. First, there is a huge interest in 
market risk management after the last bearish 
market context and financial disasters. This is clear 
from the Basel agreements, and from the concern 
regarding financial bankruptcies such as the Long 
Term Capital Management case or the more recent 
Bear Stearns or Lehman Brothers disasters. Because 
of their special characteristics, such interest is 
perhaps greater when we speak about emergent 
markets, where efficiency and development in 
financial markets is lower. Second, because of the 
traditional Fama’s idea of efficient markets and 
models such as CAPM, market yield is still used as 
an essential parameter and trillions of dollars are 
invested by following the market. Third, market 

                                                 
1 Market Index Biases could be defined using 
return, risk, or risk-adjusted returns. I defined them 
using return in [5]. 
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index biases shows us that a capitalization-weighted 
Index (and even the market portfolio itself) is not 
always located in the efficient frontier, therefore, 
there are other portfolios (and also indexes) able to 
beat the market with lower assumed risk, offering 
investors better risk-adjusted investment 
alternatives. 

 
In this paper, we propose a methodological 

approach to deal with this question using a 
parametric Value-at-Risk Minimization to build 
Minimum Risk Indices (MRI), benchmark portfolios 
with better risk-adjusted characteristics than 
nowadays market indices. The authors apply the 
method to the Spanish, Argentinian and American 
stock markets during the 2000-2004 period, 
extending the results of [6]. The first step in the 
calculation process is the estimation of Covariance 
matrices by different methodologies. The second 
step is to optimize VaR to obtain the weights each 
share must have within the index to minimize risk. 
And finally, the best alternative market index is 
selected among all alternatives using traditional 
backtesting and improved backtesting using a 
simple error dimension measure and the Sharpe’s 
Ratio. 

 
Although the estimation methods used here are 

very simple (Moving Averages), results are quite 
interesting. All indices are less risky than the 
Spanish IBEX 35 and the Argentinean Merval 
(current Market Indexes) and, surprisingly, more 
profitable. This does not happen in the American 
market. These results highlight one idea: similar 
investment strategies could beat some markets, thus 
questioning the Efficient Market Hypothesis, and 
reinforcing the market bias analysis. Possible 
applications of Minimum Risk Indices are clear: 
they could reduce the risk assumed by institutional 
and mutual funds that nowadays follow current 
Market Indices. They could also be used as a 
benchmark for risky assets or as a basis for 
developing derivatives. 

 
The structure of the paper is as follows. In 

Section 2 we discuss the theoretical framework of 
Minimum Risk Indices. This analysis is completed 
in Section 3 with an empirical study, where the 
theoretical framework is applied to the Spanish, 
American and Argentinean Stock Markets during 
the 1999–2004 period. Performance and risk of MRI 
are reconstructed and the ‘best index’ is selected 
using traditional backtesting and improved 
backtesting using performance parameters. Section 
4 gives the conclusions, Section 5 establishes future 

lines of research, and Sections 6 and 7 contain the 
appendix and references.  

 
 
2 Minimum Risk Indices (MRI) 
 

Financial risk has historically been analyzed by 
multiple measures [21, 26] and models as 
Markowitz’s or Sharpe’s approaches [17, 25, 23]. 
However, the increasing volatility in financial 
markets, derivatives and technological advances 
force academics to now treat market risk from other 
perspectives and conceptions about performance 
and risk must be modified [7, 11, 18]. One widely 
accepted measure is Value-at-Risk [24] with its 
evolutions [22, 14, 1, 15], a measure of risk that has 
been rapidly and widely accepted since it was 
introduced in 1995. All the VaR-based methods 
have several problems regarding leptokurtosis or 
skewness, so complementary techniques as Stress 
Testing, Conditional VaR or Extreme Value Theory 
with the Expected Shortfall have been analysed [19 
or 20]. VaR has several problems, but if we can 
determine a controlled scenario with some 
interesting conditions, traditional VaR methods are 
reliable enough [12] and easier to calculate than 
Extreme Value methods and more sophisticated 
approaches. 

 
In this paper we pay attention to VaR as a tool 

for market risk management and portfolio 
optimization through the creation of new Market 
Indices by VaR minimization.  If we want to use 
VaR as a risk management tool, we have to find a 
method that institutions and investors find easy to 
follow. These characteristics mean that parametric 
VaR is the most suitable method, however, it is 
necessary to take into account the weaknesses of the 
parametric approach: if returns are not normal, the 
VaR measure will not be coherent [8]. In this study, 
the Central Limit Theorem should make Market 
Index returns similar to a Gaussian distribution if 
the number of shares forming the Index is high 
enough. Indeed, as in the portfolio we do not 
include non-linear positions, and we use weekly 
data at a 5% significance level to calculate the VaR, 
the parametric Gaussian approach is considered 
reasonably good [12].  
 

The problem then is reduced to minimize 
Parametric VaR subject to non-negativity of stock 
weights and non-leveraged possibilities, selecting 
the desired significance level. One of the most 
important steps in this procedure is to estimate 
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return covariance matrix, and this could be done 
using:  

i) The Historical Volatility Method: this 
method has problems with time-varying 
volatility. 

 
ii) The Moving Average Method: this 

method provides better estimations.  
 

iii) The Exponential Weighted Moving 
Average Method: here last observations 
receive higher weight, which solves 
some problems of the Moving Average 
Method. The decay factor election is 
critical.  

 
iv) The GARCH and E-GARCH Methods: it 

is possible to deal with heteroskedastic 
time dependent variance with these 
methodologies. Covariance estimations 
are clearly better than those from simple 
methods, but GARCH and E-GARCH  
are not very used in the professional 
world. 

 
After the Covariance matrix has been estimated 
using one of these methods, the minimization 
process can be applied to obtain the optimal weights 
each share must have within the Index to minimize 
the Index’s market risk. With the historical data 
available, we can reconstruct the performance and 
evolution of Minimum Risk Indices to compare 
returns and risks between Minimum Risk Indices 
and current Market Indices.  

Once the reconstruction of Minimum Risk 
Indices is available for a certain market, the validity 
of each approximation must be checked by a 
backtesting process. This process will establish how 
well the model applied to the data fits the real 
market. Here we can see the importance of selecting 
the ‘best’ Index from all the approximations. In our 
opinion the ‘best’ model should be selected in 
accordance with two key ideas: The model’s 
capacity to be accepted by a periodic backtesting 
process, and the relationship between return and risk 
in each index. 

 

3 Minimum Risk Indices in Real 
Markets 
 

Using the theoretical framework developed in 
part 2, we can generate Minimum Risk Indices for 
each Stock Market we chose. As an example of how 
our methodology reacts to different Market Indices, 

in this section we apply the MRI construction to the 
Spanish Stock Market, to the American Stock 
Market, and to the Argentinean Stock Market. These 
examples have two objectives. First, it is interesting 
to test how Minimum Risk Indices work in Stock 
Markets with different volatility and efficiency. 
Second, each of the Indices represents a different 
way to build a Market Index, and using them in our 
approximation is a first step to determine the 
importance of different sampling strategies, 
weightings and construction rules in the calculation 
of a market index. The sample and construction and 
efficiency bias must be taken into account when 
analyzing the performance of an index. In the 
Argentinean and American markets, the MERVAL 
and the DowJones show important construction and 
sample biases; first because they are weighted using 
negotiation and price, and second because they are 
not calculated using a Laspeyres capitalization 
approach. 

 
The aim is to create Minimum Risk Indices 

based on the historical composition of the 
IBEX35, the Dow Jones Industrial AverageSM and 
the MERVAL for the 2000-2004 period. To put it 
more simply: Minimum Risk Indices would be 
developed by taking into account only the shares 
contained in each Index in each period. In this way 
it is possible to determine whether a different 
weighting in the components of the actual Indices 
using a VaR Minimization criterion can reduce risk 
and to analyze how this affects the profitability of 
Market Indices. We call our Indices IndexVaR35 
(IVaR35) for the Spanish Market, IndexVaR30 
(IVaR30) for the American Market, and 
IndexVaRM (IVaRM) for the Argentinean Market. 
As we have mentioned, there is not just one 
Minimum Risk Index for each market, because with 
each estimation criterion we can create a Minimum 
Risk Index. The Covariance matrix was estimated in 
all the markets by the simplest estimation methods 
(the Historical method and the Moving Average 
Method using lengths from 4 to 100 weeks) in order 
to explain the method’s potential benefits, although 
the authors know these estimates can be improved 
by more complex methods.  In the end we decided 
to present IVaR35, IVaR30 and IVaRM Indices 
calculated only by some of these Moving Averages 
as being representative of the short, medium and 
long terms.  

 
Covariance matrices estimated with a few data 

(4-30 weeks) are problematical because the 
minimization process is difficult or rather unstable 
in some cases. Short-length Moving Averages 
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change quickly in response to financial data but they 
consistently underestimate the VaR value and cause 
problems inside the minimization process because 
the positive and semi-defined Variance-Covariance 
Matrix condition is sometimes not fulfilled. 
Medium-length Moving Averages (30-52 weeks) 
are more stable and VaR measures closer to real 
values.  Finally, long-length Moving Averages (e.g. 
60-100 weeks) are the most stable but are less able 
to adapt to volatile short-term changes. Despite the 
limited prediction capacity of Moving Averages, 
results with these approximations are quite 
interesting.  
 
 
3.1 Volatility Analysis 
 
The basic objective of the study is, by VaR 
minimization, to create Minimum Risk Indices that 
are less risky than current ones. Table 2 shows how 
our Indices are less risky than the current ones. 
From the data, it is easy to see how the reduction in 
volatility is greater in the Spanish Market than in the 
American or Argentinean Markets. It also shows 
that, in general, the longer the moving average, the 
less volatile, which means that risk is reduced. This 
seems not to be true in all the cases with the longest 
moving averages (52 and 78 in the IVaR35, 78-100 
in the IVaR30 and 52-78 in the IVaRM) for which 
volatility is more or less the same or increases 
slightly. As with longer lengths, it is more difficult 
to estimate short changes in volatility, which could 
mean that there is an optimal moving average length 
beyond which it is impossible to reduce risk using 
the moving average method. Improved Moving 
Averages (in the IVaR35 and in IVaRM) are a little 
more risky than those with no improvements. This 
result is rational because, firstly, multiple-step 
estimation is applied to avoid underestimating the 
risk and, secondly, the 0.01% weighting restricts 
one asset so that the portfolio can be less diversified 
and risk rises.  
 
Volatility reduction is clearer in Fig. 2, which shows 
cumulative volatilities. The first picture shows the 
Spanish Market. The first line represents the riskiest 
Index, which in our case is the current Market Index 
(IBEX 35). The second group of lines is made up 
of the MA10, MA10a and MA10b approximations. 
The third group, with half the IBEX 35 risk, is 
made up of the MA25, MA52, MA78 
approximations and all their modifications. The 
most stable approximations are the modifications a, 
especially MA52a, which is less risky than MA25a 
and MA78a. This again indicates the existence of an 

optimal length for moving averages beyond which it 
is impossible to better estimate the covariance 
matrix and reduce risk with moving average 
methods. The second picture shows the American 
Market. The first line again represents the riskiest 
Index, which is now the MA10 approximation due 
to problems with the positive and semi-defined 
covariance matrix condition. Then, and before 
observation 75, the second riskiest Index is the 
current Dow Jones Industrial AverageSM. Below the 
current Market Index, and with less risk, we find all 
the other MA approximations. The least risky 
approximations are MA25 and MA30 and the more 
data is used to build the MA, the riskier the Moving 
Average approximation seems to be, which supports 
the idea of the optimal length for moving averages. 
Finally, the third picture represents the Argentinean 
Market. The first line (the riskiest Index) is again 
the current Market Index (MERVAL). Below we 
can see the MA10a and MA10b as the second group 
of riskiest approximations, and below this group, 
with less risk, the other MAs. Again we can 
establish the idea of optimal length for moving 
averages. 
 
 
3.2 Analysis of extreme losses in VaR 
minimization 
 
[9, 16] show that not allowing agents to assume 
more risk than a certain VaR value or to develop 
VaR minimizations can increase extreme losses, 
especially when return distributions are very 
different from Normal distributions. These results 
appear basically when distributions are heavily 
skewed or have long fat tails. In our case, the 
problems noticed by the above authors are not 
excessively important (see Table 3). For the shortest 
moving average, extreme losses are similar to those 
of IBEX 35 and lower in the American and 
Argentinean market and decrease when we 
increased the moving average length. There is a 
certain moving average length when extreme losses 
start to rise again (MA78 in IVaR35, MA70 in 
IVaR30 and more difficult to define in IVaRM), 
which again supports the existence of an optimal 
length moving average.  
 
3.3 Return Analysis 
 
Fig. 3 shows all the returns of Moving Average 
approximations. In the Spanish market, all our 
Indices have higher returns than the IBEX 35. 
These results are surprising but not unique. Other 
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authors have constructed portfolios able to beat the 
market [e.g. 3, 4, 10]. There are two reasons for 
these data. First, the Spanish Stock Market is 
suffering efficiency bias and Minimum Risk Indices 
are harvesting part of it. Second, the way the 
IBEX35 is constructed generates sample and 
construction bias, even they should be relatively 
small comparing with these biases in other markets. 
In contrast, in the American Stock Market, no 
Minimum Risk Index beats the market, reporting 
more efficiency in this market. In the IVaR30, the 
approximations with the worst returns are MA10. 
The other approximations performed quite well 
during the bearish market, being near the actual 
index or beating it in some periods, but they 
performed worse than the current index during and 
after the Iraq war in the bullish market. In the end, 
the best approximation in terms of profitability is 
the MA60, with a 20% lower return than the Dow 
Jones Industrial AverageSM. The same two reasons 
could be put forward in this case. The efficiency 
bias in the American market is clearly lower than in 
the Argentinean or Spanish case, but the sample and 
construction biases in the Dow Jones are 
theoretically important. How these biases seem to 
compensate among them avoiding the 
outperformance of our indices is an interesting idea 
to be analyzed in the future. Finally, in the 
Argentinean Market, all approximations (except 
78b) are able to beat the market. The same reasons 
put forward for the IBEX 35 are valid here. The 
efficiency biases seem to be especially important 
knowing a little about the Argentinean market. The 
construction and sample biases are very important 
taking into account that the sample in the MERVAL 
index is not totally representative of the market and 
the index is constructed using a negotiation 
weighting.  
 
It is necessary to take into account some 
considerations. Firstly, it is essential to discover 
how efficiency affects these conclusions. This 
would mean calculating efficiency tests for each 
market and comparing results, but we must leave 
this for further research. Secondly, we must deeply 
analyze how other index biases affect risk and 
return. Finally, it is essential to analyze how results 
could be improved using more powerful techniques 
to estimate variance and covariance.  
 
3.4 VaR Analysis 

Each approximation has a different VaR measure 
that evolves over time. Fig.4 shows how great 

changes in volatility that are common in moving 
average approximations are greater in short length 
moving averages than in long length ones. On the 
other hand, as these types of averages do not attach 
different weights to more recent data than to older 
data, moving averages are indicators of ‘past’ 
volatility, regarding inappropriate Covariance 
estimations when price trends change. This problem 
decreases when the lengths are longer. Finally, we 
should point out that short moving averages usually 
underestimate VaR, so the losses beyond the VaR 
will be more frequent in those cases.  

 
3.5 Normality Analysis and Backtesting 
 
Normality analysis of logarithmic returns is not very 
positive, as it can be seen in Tables 4, 5 and 6. In all 
cases, the Normality Hypothesis has been rejected 
except in the case of MERVAL. In the case of 
IVaR35, the distributions have leptokurtosis and are 
slightly negatively skewed. In the case of IVaR30, 
the distributions are more leptokurtical, and 
negative skewness is especially important, affecting, 
as we have said, the profitability results. Finally, in 
the case of IVaRM, distributions are extremely 
leptokutical and skewness is positive because of the 
evolution of MERVAL during the period analyzed. 
If we look at the backtesting results, though real 
errors are more frequent than the 5% significance 
level expected, they are not very large (around 2% 
higher than the VaR value in the IVaR35, 2.80% 
higher in the IVaR30, and 2% higher in the 
IVaRM). Errors are more controlled in terms of 
frequency in the case of IVaR30 than for the 
IVaR35 or IVaRM, but they are less controlled in 
terms of magnitude (the mean error in the American 
and Argentinean cases is higher than in the Spanish 
case). [9] observed that setting VaR limits on 
institutions could lead to higher extreme losses than 
when these limits are not set. We can see from 
results, however, that this theoretical result is not 
clear here.  
 
3.6 Model Selection 
 
We have seen how parametric VaR minimization 
could create Minimum Risk Indices with less risk 
and, in the Spanish and Argentinean case, with 
greater profitability than current market indices. In 
this paper we construct 12 approximations using 
Moving Averages of different lengths for the 
Spanish and Argentinean market and 9 
approximations for the American market. It is 
necessary now to decide which is the ‘best’ 
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approximation to use in each market. In our opinion 
this selection should be done on the basis of two 
ideas:  

 
(1) The model’s capacity to explain reality or, in 
other words, its capacity to be accepted by a regular 
backtesting process. After determining the number 
of returns lower than the VaR value (classic 
backtesting), it is important to also measure the 
error magnitude. This type of backtesting has not 
yet been developed and here we only propose a very 
simple method that deals with error magnitude using 
the Excess Total Loss (ETL) measure, which is 
defined as the total sum of all returns lower than the 
VaR value over the studied period. We will choose 
those approximations with the lowest ETL in order 
to take into account the risk ‘out of the model’. It is 
then necessary to select those approximations with 
less mean VaR or with less risk ‘within the model’. 
As we can see in Table 7, in the Spanish market, 
using ETL the best approximations are MA52a,  
MA52b, MA78a and MA78b. Moreover, studying 
the ‘controlled’ risk within the model, we conclude 
that the MA52a and MA52b approximations are the 
least risky. In the American Market, (see Table 8), 
the best approximations using the ETL are MA60, 
MA70, MA78, MA85 and MA100. Using the 
‘controlled’ risk, we conclude that the best 
approximations are MA60, MA78 and MA85. 
Finally, in the Argentinean market, the best 
approximations by ETL are MA52a, MA52b,  
MA78a and MA78b. After using the ‘controlled 
risk’ measured by the VaR, we can conclude that the 
best approximations among the four proposed are 
MA52a and MA52b. 

 
(2) The relationship between return and risk, since 
[13] criticize not attaching importance to that point 
in VaR calculations. Here the authors use Sharpe’s 
ratio to analyze this relationship and leave Reward-
to-VaR ratio [2] or more complex approaches for 
future research. In the Spanish market, Sharpe’s 
ratio in the MA52b approximation is bigger than in 
the MA52a approximation so we can conclude that 
MA52b is the best approximation with which to 
construct the Spanish Minimum Risk Index. In the 
American market, Sharpe’s ratio in the MA60 
approximation is the lowest of the selected MAs, so 
MA60 is the best approximation with which to 
construct the American Minimum Risk Index. 
Finally, in the Argentinean market, Sharpe’s ratio in 
MA52a is higher than in MA52b, so it is reasonable 
to conclude that MA52a is the best approximation to 
construct the Argentinean Minimum Risk Index. 

 
 

4 Conclusions 
 
In this article we propose using the VaR as an active 
risk measure to construct Minimum Risk Indices to 
solve market index biases. We have used the 
parametric VaR approach to construct a very simple 
minimization problem in which the Covariance 
matrix among asset returns has to be estimated. 
Covariance matrix estimation can be done using 
many methods, and the Moving Average method 
has been chosen in our approaches. Different 
Moving Average lengths have been used in the 
empirical part of our study, building a group of 
alternative Minimum Risk Indices. There are, 
therefore, many ways of constructing a Minimum 
Risk Index—one for each way of estimating the 
Covariance matrix—so a method of selecting the 
best model among MRI is needed. This selection 
method must be based on two key ideas: i) the 
model’s capacity to be accepted by a regular 
backtesting process, taking into account not also the 
error frequency but also the error magnitude (we 
propose the ETL as a error magnitude measure),  
and ii) the return-risk relationship of each Minimum 
Risk Index, analyzed in our empirical part though 
the Sharpe’s ratio. 
 
We apply this method to the Spanish, American and 
Argentinean markets to create different Minimum 
Risk Indices for the 2000-2004 period. Using the 
simplest Covariance matrix estimation methods, we 
achieve interesting results: our indices are less risky 
than the current ones (half the risk in the Spanish 
Market). Also, thanks to their optimal portfolio 
characteristics, the Spanish and Argentinean cases 
achieved bigger returns than those of the current 
market Indices, contrary to what is expected from 
the Efficient Market Hypothesis. These results show 
that both markets suffer from efficiency biases, and 
that Minimum Risk Indices could partially solve 
this. Part of the results, in the Argentinean case, can 
be due to the existence of an important sample and 
construction bias created by how the Argentinean 
index is built. This highlights an interesting 
discussion that needs to be dealt with care in future 
research and which must be based on the following 
ideas: (i) the ability to moving averages to estimate 
future covariance matrices and the possibility of 
obtaining better results with more complex 
estimation methods; (ii) the influence of the 
weighting process and other construction rules on 
market indices (basically, the sample and 
construction bias, that can be found deeply analyzed 
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in [5]; (iii) the influence of market index biases in 
the performance and risk of indexes and how biases 
are additive or can be compensated among them; 
(iv) the Minimum Risk Index approximation in 
order to prove the efficiency of a market and to 
solve the efficiency bias; and (v) whether it is 
possible to obtain better results by not limiting our 
Minimum Risk Index shares to the current Market 
Index components and to the particular and ‘legal’ 
timing of changes in components. 
 
The potential uses of Minimum Risk Indices are 
clear. Firstly, they are less risky and in some cases 
more profitable than current ones, which makes 
them a suitable benchmark of risky assets for mutual 
funds that currently follow market indices or a 
suitable base for derivatives. Secondly, Minimum 
Risk Indices may generate more stable Betas in the 
CAPM model, which is a possibility that must be 
developed in the future. 

 
 

5 Future Lines of Research 
 
The results achieved by very simple methods in the 
examples presented are interesting but it must also 
be said that there is still a lot to do. First it is 
necessary to determine whether better Covariance 
estimations using EWMA or GARCH or HAC 
methods can achieve better results in terms of risk 
and profitability. We also need to determine how the 
sample and construction biases affect efficiency 
tests, market index performance and the possibility 
of beating it. Finally, methods for selecting the 
‘best’ model must be further developed since here 
we have only provided some general guidelines.  

 
We would like to thank Dr. Maxim Borrell, Dr. 
Daniel Liviano and Professor Sebastian Cano for 
their comments/opinions regarding this paper. 
 
6 Appendix 
 
6.1. Minimum VaR Indices 

The problem to solve can be written as follows: 

 
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Where Z  is the Normal distribution value at the 

desired significance level. The x vector contains the 
weights of each share within the alternative Market 
Index we are trying to build, N is the number of 
shares that make up the Index, and   is the 
logarithmic return Covariance matrix assumed to be 
a Multivariate Normal. This problem is easy to 
simplify and solve using Lagrangian optimization in 
which the optimal weights are the objective of our 
study and  is a positive constant: 

)1'1(' xxxMínL     (2) 

As the Covariance matrix is positive and semi-
defined, if the number of observations is bigger than 
the number of assets, first order conditions are 
enough for a minimum2. 
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To solve the solution: 
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The solution gives the optimal weight each share 
must have within the index to minimize market risk.   

                                                 
2 Second-order conditions are also necessary in the 
other case. 
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In the empirical case for the Spanish, American and 
Argentinean Stock Markets, we use an iterative 
algorithm based on Newton’s method to make the 
minimization process and the command of the 
quadratic programming problem in Gauss with 
similar results. 

 

6.2. Market Indices and their Minimum Risk 
Indices 
 
In this section we will briefly explain how the 
Spanish IBEX35, the American Dow Jones 
Industrial AverageSM and the Argentinean 
MERVAL are built. It is also important to explain 
certain characteristics and problems we found and 
solved by creating the Minimum Risk Index for 
each Market.  

 
The Spanish IBEX35: 

 
The IBEX35 is built using the 35 largest 
companies in the Spanish Stock Market in terms of 
market capitalization and liquidity. Every six 
months the components of the Index are checked, 
some shares are included or excluded but the total 
number of assets is maintained. The Index is 
calculated using a market capitalization weighting 
criterion. 

 
The Minimum Risk Indices (MRI) we created for 
this market were named IvaR35, and comprise the 
35 shares of the IBEX 35 at each moment with the 
optimal weight established by the VaR minimization 
process. We must point out one problem with the 
IBEX 35 Spanish Market Index. In the six-month 
revision of the composition of the IBEX 35, it is 
normal to include shares and companies with very 
little history on the Stock Exchange because it is 
relatively easy to be both new and one of the biggest 
35 companies in the Spanish Market. During the 
period of our analysis we sometimes encountered 
this problem—especially in 1999-2000 because of 
the Internet and .com companies that grew quickly 
at that time. This makes it difficult to obtain 
complete data for all the IBEX 35 components in 
some periods and has important consequences in 
Covariance matrix estimation. After April 2000 we 
solved this problem with the following techniques: 

 
 a) Covariance matrix estimation using a multiple-
step method: when we did not have complete data 

on the 35 shares, Covariance matrix estimation was 
done using a multiple-step method, estimating each 
individual value in the covariance matrix with all 
the available data.  
 
b) 0.01% Weighting: the above solution improved 
the results, but shares with short historical data 
tended to underestimate risk and therefore received 
high weights because of their ‘artificial’ low risk. 
With this approximation we forced these shares to 
have the minimum weight accepted for our study.  
 
The approximations we finally developed are shown 
in Table 10. 
 
The American Dow Jones Industrial AverageSM:  

 
The DJIASM is built using the 30 biggest companies 
in the American Stock Market and, for the sake of 
continuity, composition changes are rare. Inclusions 
and exclusions of shares are therefore rare and 
basically related to corporate acquisitions or 
dramatic business events. The Index is calculated 
using a price-weighting criterion. 
 
Using available data for the DJIASM we did not need 
to apply improvements to the Covariance matrix 
estimation. The good quality of these data means 
that we used the methodology with a greater number 
of moving average lengths. Minimum Risk Indexes 
we created to this market were named IVaR30. 
 
The approximations we developed are shown in 
Table 11. 
 
The Argentinean MERVAL: 

 
The MERVAL is built using the most traded 
companies in the Argentinean Stock Market. The 
weights of each share in the index are calculated 
using the number of transactions of these shares in 
the Stock Market and the Volume of these 
transactions, so the Index is calculated using a 
negotiation weighting criterion.  
 
The Minimum Risk Indices we created for this 
market were named IVaRM and comprise the shares 
of the MERVAL at each moment with the optimal 
weight established by the VaR minimization 
process. Every three months, the MERVAL 
composition is changed, and it is possible, as in the 
IBEX 35, to find companies with very little 
historical data. Calculations must then be improved 
using the same techniques as for the IBEX 35. 
Table 12 shows the approximations we used in this 
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paper. It is important to point out that approximation 
b is especially influenced in the MERVAL by the 
fact that there are a lot of stocks with a short or no 
history when they enter the Index, this affects the 
performance and backtesting of the approximation. 

 
6.3. IvaR35, IVaR30 and IVaRM 
Composition. 

Each Minimum Risk Index has a different optimal 
composition. With short-term Moving Averages, the 
optimal composition changes frequently over the 
weeks, whereas it is more stable with long-term 
Moving Averages. This is important if we bear in 
mind that our index approximation needs a weekly 
adjustment, which means higher turnover and 
transaction costs with shorter moving averages. As 
optimal compositions are calculated using a risk 
measure and the Covariance matrix estimation, they 
are not like current compositions of Market Indices.  
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Table 1 
Biases in Passive Investment Strategies 
Bias Measure 
 Definition Average Absolute (AA) Standard Deviation (SD) 
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Nota: (TE)=Tracking Error; (SCB)=Sample and Construction Bias; (EB)= Efficiency Bias; (AB)=Active Bias. 
Source: Author’s own. 
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Table 2 
Market Indices’ Standard Deviation 
Approximation Standard 

Deviation 
 Standard 

Deviation 
 Standard 

Deviation 
Current 
Market 
Index 

IBEX35 
0.02958

DJIASM 0.02610 MERVAL 0.05817 

Minimum 
Risk Index 

IVaR35 IVaR30 IVaRM  

     

MA10 MA10 
0.02387

 0.02727  0.04970 

 MA10a 
0.02397

  0.04989 

 MA10b 
0.02393

  0.04983 

MA25 MA25 
0.01811

 0.02347  0.04655 

 MA25a 
0.01835

  0.04591 

 MA25b 
0.01884

  0.04587 

MA30   0.02354   

MA52 MA52 
0.01736

 0.02415  0.04796 

 MA52a 
0.01760

  0.04855 

 MA52b 
0.01807

  0.04838 

MA60   0.02383   

MA70   0.02452   

MA78 MA78 
0.01742

 0.02433  0.04805 

 MA78a 
0.01835

  0.04822 

 MA78b 
0.01867

  0.04971 

MA85   0.02451   

MA100   0.02533   
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Table 3 
Extreme Losses 
  Highest Extreme Loss (%)  
IBEX35 

11.1 DJIASM 15.4 MERVAL 
15.3 

IVaR35 
 IVaR30  IVaRM 

 

MA10  
11.2 10.8 12.1 

MA10a  
11.2 12.1 

MA10b  
11.2 12.1 

MA25  
6.6 9.2 11.4 

MA25a  
6.6 9.8 

MA25b  
6.6 9.8 

MA30  
 8.4  

MA52  
6.3 10.4 15.3 

MA52a  
6.8 15.3 

MA52b  
6.8 15.3 

MA60  
 9.2  

MA70  
 10.6  

MA78  
6.4 10.5 11.4 

MA78a  
7.6 10.9 

MA78b  
7.6 10.0 

MA85  
 10.7  

MA100  
 10.9  
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Table 4 
Backtesting process in the IVaR35 
 Normality  Backtesting 
 Jarque-

Bera 
Probability  Mean 

VaR(%) 
Errors % Errors Mean 

Error(%) 
IBEX35 

12.22 0.002
     

MA10 
102.4 0.000

 
0.654 75 31 1.95

MA10a 
101.4 0.000

 
0.671 75 31 1.89

MA10b 
103.3 0.000

 
0.665 75 31 1.89

MA25 
32.9 0.000

 
1.446 43 18 1.35

MA25a 
40.86 0.000

 
1.557 37 15 1.35

MA25b 
48.3 0.000

 
1.582 36 15 1.37

MA52 
43.3 0.000

 
1.746 33 13 1.41

MA52a 
65.8 0.000

 
1.943 28 11 1.34

MA52b 
56.9 0.000

 
1.996 24 10 1.52

MA78 
45.6 0.000

 
1.843 33 13 1.41

MA78a 
116.2 0.000

 
2.136 25 10 1.46

MA78b 
124.95 0.000

 
2.192 22 9 1.63

Note:  VaR value calculated at 5% significance level using data available from 242 weeks. 
Errors: losses worse than the VaR value. % Errors: ‘real’ significance level. Mean Error (%) shows 
the mean loss exceeding the VaR value. 
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Table 5 
Backtesting process in the IVaR30 
 Normality  Backtesting 
 Jarque-

Bera 
Probability  Mean 

VaR(%) 
Errors % Errors Mean 

Error(%) 
DJIASM 

271.4 0.000
     

MA10 
85.85 0.000

 
1.208 67 25.5 2.23

MA25 
62.09 0.000

 
2.221 38 14.5 2.03

MA30 
49.04 0.000

 
2.365 33 12.6 2.05

MA52 
124.2 0.000

 
2.825 22 8.3 2.78

MA60 
75.17 0.000

 
2.944 23 8.7 2.39

MA70 
123.32 0.000

 
3.062 20 7.6 2.80

MA78 
117.74 0.000

 
3.141 19 7.2 2.81

MA85 
130.40 0.000

 
3.205 22 8.3 2.41

MA100 
150.14 0.000

 
3.329 24 9.1 2.45

Note:  VaR value calculated at 5% significance level using data available from 262 weeks. 
Errors: losses worse than the VaR value. % Errors: ‘real’ significance level. Mean Error (%) shows 
the mean loss exceeding the VaR value. 
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Table 6 
Backtesting process in the IVaRM 
 Normality  Backtesting 
 Jarque-

Bera 
Probability  Mean 

VaR(%) 
Errors % Errors Mean 

Error(%) 
MERVAL 

4.28 0.111
  

MA10 
664.02 0.000

 
3.08 61 23.4 1.98

MA10a 
648.56 0.000

 
3.10 60 22.9 2.07

MA10b 
652.00 0.000

 
3.12 60 22.9 2.03

MA25 
534.82 0.000

 
4.47 38 14,5 2.02

MA25a 
619.22 0.000

 
4.64 33 12.64 2.04

MA25b 
623.62 0.000

 
4.69 31 11.87 2.02

MA52 
292.01 0.000

 
4.57 39 14.94 1.92

MA52a 
243.82 0.000

 
5.24 29 11.11 1.98

MA52b 
264.28 0.000

 
5.48 26 9.96 1.95

MA78 
276.73 0.000

 
4.38 42 16.09 1.85

MA78a 
207.70 0.000

 
5.59 29 11.11 1.90

MA78b 
177.41 0.000

 
6.15 26 9.96 1.99

Note:  VaR value calculated at 5% significance level using data available from 261 weeks. 
Errors: losses worse than the VaR value. % Errors: ‘real’ significance level. Mean Error (%) shows 
the mean loss exceeding the VaR value. 
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Table 7 
Model Selection in the Spanish Stock Market 
 Backtesting Mean VaR (%) Sharpe’s Ratio 
 Errors Mean Error 

(%) 
ETL in  
2000-2004 

   

MA10 
75 1.95 146.25 0.654  11.71

MA10a 
75 1.89 141.75 0.671  15.83

MA10b 
75 1.89 141.75 0.665  15.69

MA25 
43 1.35 58.05 1.446  4.18

MA25a 
37 1.35 49.95 1.557  7.75

MA25b 
36 1.37 49.32 1.582  10.70

MA52 
33 1.41 46.53 1.746  6.52

MA52a 
28 1.34 37.52 1.943  6.96

MA52b 
24 1.52 36.48 1.996  11.56

MA78 
33 1.41 46.53 1.843  8.03

MA78a 
25 1.46 36.5 2.136  6.25

MA78b 
22 1.63 35.86 2.192  10.54

Note: in Sharpe’s ratio non-risk return has been considered equal to zero.  
 
 
Table 8 
Model Selection in the American Stock Market 
 Backtesting Mean VaR (%) Sharpe’s Ratio 
 Errors Mean 

Error(%) 
ETL in  
2000-2004 

   

MA10 
67 2.23 149.42 1.208  -18.46

MA25 
38 2.03 77.14 2.221  -16.58

MA30 
33 2.05 67.80 2.365  -11.75

MA52 
22 2.78 61.21 2.825  -10.39

MA60 
23 2.39 55.03 2.944  -6.34

MA70 
20 2.80 56.18 3.062  -8.80

MA78 
19 2.81 53.56 3.141  -8.17

MA85 
22 2.41 53.14 3.205  -7.94

MA100 
24 2.45 59.02 3.329  -13.22

Note: in Sharpe’s ratio non-risk return has been considered equal to zero.  
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Table 9 
Model Selection in the Argentinian Stock Market 
 Backtesting Mean VaR (%) Sharpe’s Ratio 
 Errors Mean 

Error(%) 
ETL in  
2000-2004 

   

MA10 
61 1.98 121.1 3.08  27.73

MA10a 
60 2.07 124.2 3.10  26.31

MA10b 
60 2.03 122.2 3.12  26.62

MA25 
38 2.02 77.1 4.47  32.67

MA25a 
33 2.04 67.4 4.64  28.08

MA25b 
31 2.02 62.7 4.69  28.22

MA52 
39 1.92 75.2 4.57  27.03

MA52a 
29 1.98 57.7 5.24  29.69

MA52b 
26 1.95 50.8 5.48  24.78

MA78 
42 1.85 77.8 4.38  27.02

MA78a 
29 1.90 55.2 5.59  27.67

MA78b 
26 1.99 51.7 6.15  17.92

Note: in Sharpe’s ratio non-risk return has been considered equal to zero.  
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Table 10 

Approximations used for Covariance matrix estimation in the IVaR35 

Approximation Method Length Improvements Applied. 

MA10 
Moving Average 

10 weeks None 

MA10a Moving Average 10 weeks Multiple-step Method 

MA10b Moving Average 10 weeks Multiple-step Method and 0.01% Weighting 

MA25 Moving Average 25 weeks None 

MA25a Moving Average 25 weeks Multiple-step Method 

MA25b Moving Average 25 weeks Multiple-step Method and 0.01% Weighting 

MA52 Moving Average 52 weeks None 

MA52a Moving Average 52 weeks Multiple-step Method 

MA52b Moving Average 52 weeks Multiple-step Method and 0.01% Weighting 

MA78 Moving Average 78 weeks None 

MA78a Moving Average 78 weeks Multiple-step Method 

MA78b Moving Average 78 weeks Multiple-step Method and 0.01% Weighting 
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Table 11 

Approximations used for Covariance matrix estimation in the IVaR30 

Approximation Method Length Improvements Applied. 

MA10 
Moving Average 

10 weeks None 

MA25 Moving Average 25 weeks None 

MA30 Moving Average 30 weeks None 

MA52 Moving Average 52 weeks None 

MA60 Moving Average 60 weeks None 

MA70 Moving Average 70 weeks None 

MA78 Moving Average 78 weeks None 

MA85 Moving Average 85 weeks None 

MA100 Moving Average 100 weeks None 
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Table 12 

Approximations used for Covariance matrix estimation in the IVaRM 

Approximation Method Length Improvements Applied. 

MA10 
Moving Average 

10 weeks None 

MA10a Moving Average 10 weeks Multiple-step Method 

MA10b Moving Average 10 weeks Multiple-step Method and 0.01% Weighting 

MA25 Moving Average 25 weeks None 

MA25a Moving Average 25 weeks Multiple-step Method 

MA25b Moving Average 25 weeks Multiple-step Method and 0.01% Weighting 

MA52 Moving Average 52 weeks None 

MA52a Moving Average 52 weeks Multiple-step Method 

MA52b Moving Average 52 weeks Multiple-step Method and 0.01% Weighting 

MA78 Moving Average 78 weeks None 

MA78a Moving Average 78 weeks Multiple-step Method 

MA78b Moving Average 78 weeks Multiple-step Method and 0.01% Weighting 
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Figure 1 
Market Index Biases 

 
Note: Market Portfolio=Total Market; Proxy Portfolio= passive investor’s portfolio used to proxy an 
Index. 
Source: Authors’ own 
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Figure 2   
Market Indices’ cumulative volatility (IVaR35, IVaR30, IVaRM) 
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Note: here, volatility is variance.  In the first, second and third graphs, VIBEX35, VDOW30 and 
VMERVAL are the cumulative volatilities of the IBEX35, the DowJones Industrial 
AverageSM and the MERVAL, respectively, and VMA are the cumulative volatilities of each 
moving average approximation used for each market.  
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Figure 3   
Evolution of the indices (IVaR35, IVaR30, IVaRM) 
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Note: 100 based. In the first, second and third graph RIBEX35, RDOW30 and RMERVAL are the 
evolution of IBEX35, DJIASM and MERVAL, and RMA are the evolutions of each moving 
average approximation in each market.  

 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Jordi Andreu, Salvador Torra

ISSN: 1109-9526 57 Issue 1, Volume 7, January 2010



 
Figure 4 
VAR 
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Note: The figures in IVaR35, IvaR30 and IvaRM, (left to right and top to bottom) are the VaR 
evolution for each approximation in each market. 
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