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Universitat de Barcelona, Martı́ i Franquès 1, E-08028 Barcelona, Spain
5Institute for Theoretical Physics and Institute for Subatomic Physics,
Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

(Received 26 June 2013; published 29 October 2013)

We numerically simulate planar shock wave collisions in anti–de Sitter space as a model for heavy ion

collisions of large nuclei. We uncover a crossover between two different dynamical regimes as a function

of the collision energy. At low energies the shocks first stop and then explode in a manner approximately

described by hydrodynamics, in close similarity with the Landau model. At high energies the receding

fragments move outwards at the speed of light, with a region of negative energy density and negative

longitudinal pressure trailing behind them. The rapidity distribution of the energy density at late times

around midrapidity is not approximately boost invariant but Gaussian, albeit with a width that increases

with the collision energy.
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Introduction.—Holography has provided successful toy
models for the study of (near) equilibrium properties of the
quark-gluon plasma created in heavy ion collisions (HICs)
at RHIC and LHC (see, e.g., Ref. [1] for reviews).
Applying holography to the far-from-equilibrium early
stage of a HIC is challenging and interesting. The chal-
lenge arises because one must solve Einstein’s equations in
a dynamical setting, which generically must be done nu-
merically [2,3]. The interest lies in that understanding the
strong coupling limit described by holography may help us
bracket the real-world situation.

Here we will follow the approach of Ref. [2], in which a
HIC was toy modeled as a collision of two planar shock
waves of finite thickness in anti—de Sitter space (AdS). In
the dual conformal field theory (CFT) this corresponds to a
collision of two infinite sheets of energy characterized by a

stress tensor whose only nonzero component is T��ðz�Þ ¼
ðN2

c=2�
2Þ�4e�z2�=2w

2
, where z is the ‘‘beam direction,’’

z� ¼ t� z, w is the width of the sheets, and the sign
depends on the direction of motion of the shock. We
choose t ¼ 0 to correspond to the time at which the two
shocks would exactly overlap if there were no interactions.
We will work with energy densities, energy fluxes, and
pressures normalized as ðE;S;P L;P TÞ ¼ ð2�2=N2

c Þ�
ð�Tt

t ; T
z
t ; T

z
z ; T

x?
x? Þ. We will thus refer to �4 as the maxi-

mum energy density of the incoming shocks, which is
related to the energy per unit transverse area � used in

Ref. [2] through �3 ¼ ffiffiffiffiffiffiffi

2�
p

�4w. Scale invariance of the
CFT implies that the physics only depends on the dimen-
sionless product �w. Reference [2] chose �wCY ¼ 0:75,
corresponding to �wCY ’ 0:64. Note that for the incoming
shocks one has E ¼ P L ¼ �S and P T ¼ 0.

Given the simplicity of the model, we will not attempt to
match the values of � and w to a specific HIC. Instead, we

note that, in a real HIC, the product �w decreases as ��1=2

as the total center-of-mass energy of the collision
ffiffiffiffiffiffiffiffi

scoll
p ¼

2�Mion increases. This suggests that HICs at increasingly
higher energies may be modeled by decreasingly smaller
values of �w [4]. Wewill therefore simulate collisions with
several values of �w ranging from 2�wCY to ð1=8Þ�wCY.
We will refer to the former as ‘‘thick shocks’’ and to the
latter as ‘‘thin shocks.’’ We will focus on our physical
results and refer the reader to Ref. [2] for technical details
[6]. We will work with fixed � and vary w, and hence think
of low-energy and high-energy collisions as modeled by
thick and thin shocks, respectively.
We will uncover a crossover between two qualitatively

different dynamical regimes that correspond to a full-
stopping scenario for thick shocks, and to a transparency
scenario for thin ones. Among other things, the two regimes
are distinguished by the applicability of hydrodynamics.
We will say that hydrodynamics is applicable when the
constitutive relations of first-order, viscous hydrodynamics
predict P L in the local rest frame in units of Eloc=3 with a
20% accuracy, i.e., when 3j�P loc

L j=Eloc � 0:2 with �P ¼
P � P hydro. Tracelessness of the stress tensor then implies

that 3j�P loc
T j=Eloc � 0:1. We define the hydrodynamiza-

tion time thyd as the time after which hydrodynamics

becomes applicable at z ¼ 0. Other reasonable definitions
include tmax

hyd ¼ thyd � tmax and t2whyd ¼ thyd þ 2w. The for-

mer measures hydrodynamization from the time when the
energy density achieves its maximum value (see Fig. 1).
The lattermeasures hydrodynamization from the timewhen
the two incoming shocks begin to overlap significantly [2].
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The differences between these definitions are significant
for thick shocks but become small for thin shocks. We will

also consider another hydrodynamization time tPhyd defined

by the criterion j�P loc
L j=P loc

L � 0:2. One advantage

of thyd over tPhyd is that Eloc is always nonzero, whereas

P loc
L may vanish.
A dynamical crossover.—Figure 1 shows the energy

density and the pressures for thick- and thin-shock colli-
sions. In the case of E and P L one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The incoming
shocks are absent in the case of P T , as expected. A
simultaneous rescaling of � and w that keeps �w fixed
would change the overall scales on the axes of these figures
but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario. As

the shocks start to interact the energy density gets com-

pressed and ‘‘piles up,’’ comes to an almost complete stop,

and subsequently explodes hydrodynamically. Indeed, at

the time �tmax ’ 0:58 at which the energy density reaches

its maximum in the top-left plot of Fig. 1, the energy

density profile is very approximately a rescaled version
of one of the incoming Gaussians, with about 3 times its
height (see Table I) and 2=3 its width. At this time, 90%
of the energy is contained in a region of size �z ’ 2:4w
in which the flow velocity is everywhere jvj & 0:1.
Similarly, the energy flux in this region is less than 10%
of the maximum incoming flux, as illustrated by Fig. 2
(left). At late times, the velocity of the receding shocks
can be read off from the same figure as the inverse slope
of the dotted line. This is not constant in time, but at late
times it reaches a maximum of about v ’ 0:88. The
validity of the hydrodynamic description can be seen in
Fig. 3 (left) and Fig. 4 (top row). Hydrodynamics
becomes applicable even earlier than tmax, and the region
where it is applicable extends from z ¼ 0 to the location
of the receding maxima. This is intuitive since gradients
become smaller as w increases. We conclude that the
thick-shock collision results in hydrodynamic expansion
with initial conditions in which all the velocities are close
to zero. This is in close similarity with the Landau model
[7], which seems to reproduce some aspects of RHIC
collisions [8].

FIG. 1 (color online). Energy and pressures for collisions of thick (top row) and thin (bottom row) shocks. The gray planes lie at the
origin of the vertical axes.

TABLE I. Numerical values of several quantities of interest.

�w=

�wCY �w �w �tmax Emax=�
4 Emin=�

4 �thyd �thyd thyd=w �tmax
hyd �t2whyd �tPhyd Thyd=� Thyd=� Thydw thydThyd tPhydThyd

ðP T=

P LÞjthyd
ðP T=

P LÞjtP
hyd

2 1.28 1.89 0.58 2.9 0 �0:053�0:078 �0:041�0:63 2.5 0.34 0.44 0.30 0.56 �0:02 0.15 0.54 0.70

1 0.64 0.75 0.13 2.3 0 1.2 1.5 2.0 1.1 2.5 1.6 0.36 0.31 0.23 0.45 0.58 3.2 3.1

1=2 0.32 0.30 0.03 2.0 0 1.1 1.0 3.4 1.0 1.7 2.1 0.29 0.31 0.093 0.32 0.61 6.2 3.4

1=4 0.16 0.12 0 2.0 0 1.2 0.88 7.5 1.2 1.5 2.2 0.22 0.30 0.035 0.27 0.48 12 4.3

3=16 0.12 0.08 0 2.0 �0:01 1.3 0.88 11. 1.3 1.6 2.4 0.20 0.30 0.024 0.27 0.49 11 4.9

1=8 0.08 0.05 0 2.0 �0:1 1.5 0.87 19. 1.5 1.7 2.4 0.17 0.30 0.014 0.26 0.42 15 4.6
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The thin shocks illustrate the transparency scenario. In
this case the shocks pass through each other and, although
their shape gets altered, they keep moving at v ’ 1, as seen
in Fig. 2 (right). The most dramatic modification in their
shape is a region of negative E and P L that trails right
behind the receding shocks. While the negative E only
develops away from the center of the collision, the negative
P L is already present at z ¼ 0, as shown more clearly in
the bottom-left plot of Fig. 4. These features are compat-
ible with the general principles of quantum field theory [9],
since the ‘‘negative region’’ is far from equilibrium and
highly localized near a bigger region with positive energy
and pressure. In the case of thin shocks, we see from Fig. 3
(right) and Fig. 4 (bottom row) that there is a clear sepa-
ration between nonhydrodynamic receding maxima and a
plasma in between them that is described by hydrodynam-
ics only at sufficiently late times. At sufficiently late times
it is also visible from Fig. 1 that the receding maxima suffer
significant attenuation [10]. We therefore emphasize that
our use of the term ‘‘transparency’’ refers to time scales
longer than thyd but shorter than the attenuation time.

Several quantities of interest are given in Table I. We see
that tmax > 0 for thick shocks, whereas for thin shocks
tmax ’ 0, as it would be in the absence of interactions.
Similarly, the maximum energy density Emax is just the

sum of the incoming energies for thin shocks, indicating
that, unlike for thick shocks, there is no compression or
piling up for thin shocks. The minimum energy density
Emin is negative for sufficiently thin shocks, as expected.
The fact that thyd < 0 is negative for thick shocks simply

means that hydrodynamics becomes applicable even
before the shocks fully overlap. In terms of the criterion
j�P loc

L j=P loc
L � 0:2, hydrodynamics becomes applicable

for thick shocks after this full-overlap time but still before

the complete stop, i.e., 0< tPhyd < tmax. Roughly speaking,

both thyd and t
P
hyd increase in units of�

�1 orw, and decrease

in units of ��1, as the width decreases. The difference
between tmax

hyd and thyd becomes insignificant for thin shocks.

As the width decreases, t2whyd first decreases and then

increases, the reason being that t2whyd is dominated by 2w

(thyd) for thick (thin) shocks. The hydrodynamization tem-

perature Thyd decreases with decreasing width in units of �

orw�1. In contrast, Thyd is almost constant in units of�; we

will come back to this below. As in other models [2,3], the

products thydThyd and tPhydThyd are smaller than unity and

fairly constant, which for typical values ofThyd at RHIC and

LHC leads to hydrodynamization times (significantly)
shorter than 1 fm. The anisotropy P T=P L at these times
increases as thewidth decreases, reaching values as large as
�15. It is remarkable that such strong anisotropies can be
well described by first-order hydrodynamics.
Discussion.—The crossover can be heuristically under-

stood on the gravity side. Since each of the colliding shock
waves is a normalizable solution in the bulk, the metric
near the AdS boundary is a small deviation from AdS.
Consequently, the gravitational evolution is linear near the
boundary for some time tlin. The deviation becomes of
order one at u� ��1, with u the usual Fefferman-
Graham holographic coordinate. At this depth gravity

FIG. 4 (color online). Center and off-center values of E=3�4

(black), P L=�
4 (red), and P T=�

4 (blue) as a function of time for
a collision of thick (top row) and thin (bottom row) shocks. The
dotted curves show the hydrodynamic approximation.

FIG. 2 (color online). Energy flux S=�4 for collisions of thick
(left) and thin (right) shocks. The dotted curves show the
location of the maxima of the flux.

FIG. 3 (color online). 3�P loc
L =Eloc for thick (left) and thin

(right) shocks. The white areas indicate the vacuum regions out-
side the light cone. The gray areas indicate regions where hydro-
dynamics deviates bymore than 100%. The dotted curves indicate
the location of the maxima of the energy flux, as in Fig. 2.
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becomes strong and the evolution is nonlinear. This non-
linearity takes tlin � u� ��1 to propagate to the boundary.
If w � tlin, i.e., if �w � 1, there is a clear separation
between the linear and the nonlinear regimes. For thin
shocks, this is illustrated by, e.g., Fig. 4 (bottom left),
where the energy density exhibits two maxima around
�t� 0 and �t� 1. The former corresponds to the two
shocks passing through each other; the latter corresponds
to the arrival to the boundary of the nonlinear pulse from
the bulk. In this sense the pulse is responsible for the
‘‘creation’’ of the plasma in between the thin receding
shocks. In contrast, for thick shocks �w � 1, meaning
that tlin � w. In this case the pulse reaches the boundary
before the shocks have passed through each other and
essentially all the evolution is nonlinear.

This analysis suggests that we have identified all the
qualitatively different dynamical regimes. Presumably we
have also considered values of �w sufficiently representa-
tive of the asymptotic regimes �w � 1 and �w � 1. For
thick shocks this is suggested by the fact that they comevery
close to a complete stop and subsequently evolve hydro-
dynamically. For thin shocks this is suggested by compari-
son of Fig. 5 (right) with Ref. [11]. This reference studied
the delta-function limit � ! 1, w ! 0 with � fixed and
found that the pressure-energy ratios are P L=E ¼ �3 and
P T=E ¼ 2 at t ! 0þ. Figure 5 (right) shows that these are
also the extremum values attained by our thin shocks.

The scaling Thyd ’ 0:3� shown in Table I is remarkable.

First, it relates Thyd to the same property of the initial state

for collisions that reach hydrodynamization through quali-
tatively different dynamics. Second, it shows that Thyd is

independent of how the initial transverse energy density is
distributed along the longitudinal direction, which is remi-
niscent of the scaling with the number of participants
observed in HICs. In combination with the thydThyd col-

umn, this scaling implies that thydT
3
hyd ��2 � s1=3coll. The

product thydT
3
hyd may be taken as a crude proxy for the

multiplicity per unit rapidity at midrapidity in our model,
since it measures the entropy density per unit rapidity and
per unit transverse area at thyd. The 1=3 exponent in scoll is

a factor of 2 larger than the experimental value [12], which
might be due to the fact that our system is strongly coupled
at all scales.

Our results dispel two possible preconceptions. First,
they show that infinite coupling in the CFT need not lead
to any significant stopping and is compatible with receding
shocks moving at the speed of light. Second, they illustrate
that the latter property does not necessarily lead to boost
invariance at midrapidity. This is clearly seen in Fig. 6,
where we have changed to proper-time and spacetime-
rapidity coordinates. The ‘‘tubes’’ at late times show that
the local energy density at midrapidity is not rapidity
independent but has a Gaussian profile. Yet, it is interesting
that the width of this Gaussian increases as w decreases, in
agreement with general expectations.
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