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1 Introduction

Wilson loops are among the most interesting operators in any gauge theory. Their expecta-

tion values can serve as order parameters for the different phases of gauge theory. However,

for generic four-dimensional gauge theories, the analytic evaluation of these expectation

values for generic contours is currently out of reach. The situation improves for gauge

theories with additional symmetries and Wilson loops with suitably chosen contours: for

conformal theories with an AdS dual, it is possible to evaluate the vev of Wilson loops [1, 2]

with a variety of contours [3, 4], and in a variety of representations [5–7]. A second tool

to compute vevs of Wilson loops is integrability, either of the dual string world-sheet [8],

or of the planar limit of N = 4 SYM [9, 10]. There have been also applications of the

relations among certain 4d susy gauge theories and 2d CFTs [11] to the evaluation of Wil-

son loops [12–14]. Last but not least, it is also possible to use localization techniques to

evaluate vevs of Wilson loops. In this regard one of the most remarkable results is due to

Pestun [15], who showed that for N = 2 super Yang-Mills theories, localization arguments

reduce the evaluation of the expectation value of Euclidean half-BPS circular Wilson loops

to a matrix model computation. For the particular case of N = 4 SYM, this had been an-

ticipated in [16, 17]. Localization techniques have also been applied to the evaluation of the
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vacuum expectation value of ’t Hooft loops [18], loops preserving less supersymmetry [19]

and 2-point functions of Wilson loops and local operators [20].

The arguments in [15] that reduce the evaluation of the vev of the Wilson loop to

a matrix model computation are independent of the representation of the gauge group

entering the definition of the Wilson loop. However, so far, the evaluation of the resulting

matrix model integral has been carried out exactly only for a Wilson loop of N = 4 SYM

in the fundamental representation [17], yielding a strikingly simple result in terms of a

generalized Laguerre polynomial,

〈W�(g)〉 =
1

N
L1
N−1 (−g) e

g
2 (1.1)

where we have defined g = λ/4N . The main goal of this work is to evaluate the relevant

matrix model integrals to obtain the vev of half-BPS circular Wilson loops of N = 4

U(N) SYM in arbitrary irreducible representations. Half-BPS Wilson loops in higher rank

representations have already been studied using holography by means of D-branes [5–7].

They have also been studied by solving the matrix model integrals in the large N limit for

various representations [6, 21, 22] and also at strong coupling for arbitrary representations

and gauge groups [23]. Quite interestingly, this last reference managed to turn those results

into non-trivial explicit checks of S-duality for N = 4 SYM.

Let us now explain what we have accomplished in the present work. The evaluation of

the vev of the Wilson loop in the representation R of U(N) amounts to compute the vev

of the insertion of trRe
X into the Gaussian Hermitian matrix model (X is the Hermitian

matrix being integrated over); after diagonalization in the matrix model, this insertion

boils down to the Schur polynomial associated to the representation R,1 as a function of

the exponentials of the eigenvalues xi,

〈WR(g)〉 =
1

dimR
〈SR(ex1 , . . . , exN )〉m.m.

Schur polynomials form a basis of the space of symmetric polynomials of N variables, but

as it turns out, they seem not to be the most convenient basis to carry out the integrals.

Something similar was already encountered in the computation of the vev of Wilson loops

in two-dimensional QCD [24], where it was proposed to carry out the computations in the

basis of multiply wound Wilson loops (which corresponds to the power sum symmetric

functions, see appendix B), related to the Schur basis by Frobenius formula.2 Similarly,

in this work, we manage to compute the exact vevs of insertions in the basis of monomial

symmetric functions, from which one can recover the vevs in the Schur basis by a linear

transformation. A couple of basics points of this linear transformation will help us to

understand the structure of the answer we get for the vevs of Wilson loops. First, the Schur

polynomial sR can be written in terms of monomial polynomials mτ with the same weight

as R (i.e. the number of boxes of the associated Young diagrams is the same) and second,

after imposing certain ordering among the partitions of n (see appendix B), the matrix for

1In appendix B we have collected the definitions and some basic facts of the different basis of symmetric

functions that appear in this work.
2See [25] for a similar discussion in the context of N = 4 SYM.
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this linear transformation is upper triangular when written using the ordering mentioned

above, so only τ ≤ R representations have a non-zero contribution. The structure of the

answer we get is then

〈WR(g)〉 =
1

dimR
∑
τ≤R

KRτPτ (g)e
∑
i τ

2
i
g
2 (1.2)

where KRτ are positive integers (the Kostka numbers) that realize the linear transforma-

tion, and Pτ (g) are polynomials that we compute explicitly. Each polynomial multiplies an

exponential, with exponent given by the sum of the squares of the elements of the partition

τ ,
∑

i τ
2
i (these exponentials were found already in [23]).

The discussion above describes the generic case, but this general picture simplifies

drastically for the particular case of Wilson loops in the antisymmetric representation of

U(N). The reason is that Schur functions for the antisymmetric representation are already

monomial symmetric functions, so in this case no change of basis is needed, and the fi-

nal answer is given by a polynomial times an exponential, similar to the result found for

the fundamental representation, eq. (1.1). We can write the resulting polynomial in a

couple of ways: the matrix integral spits it out as a sum of products of generalized La-

guerre polynomials, which is a straightforward but not terribly illuminating expression.

We have managed to rewrite it as a single polynomial in g, and for the k-th antisymmetric

representation we obtain a result of the form

〈WAk(g)〉 = e
gk
2

k(N−k)∑
j=0

dj(k,N)
gj

j!
dj(k,N) ∈ N (1.3)

where dj(k,N) are positive integers for which we derive a precise combinatorial formula,

that we evaluate for specific values of j. An alternative and very succinct presentation of

these results can be given in terms of the generating function of the vevs of these Wilson

loops,

〈FA(t)〉 =
N∑
k=0

tN−k
(
N

k

)
〈WAk〉

for which we obtain

〈FA(t)〉 = |t+A(g)e
g
2 |

where A(g) is an N × N matrix with generalized Laguerre polynomials as entries, Aij =

Lj−ii−1(−g). The result for the fundamental representation, eq. (1.1), follows by taking the

trace of this matrix.

Besides its intrinsic interest, having explicit exact results for these Wilson loops can

have a number of applications that we will discuss in the last section of the paper. In the

present note, we will use these results to discuss the exact Bremsstrahlung functions for the

corresponding heavy probes. For any heavy probe coupled to an arbitrary four-dimensional

conformal field theory, the Bremsstrahlung function determines many relevant properties,

like the total radiated power [26, 27] and the momentum diffusion coefficient [28] of an

accelerated probe. For the specific case of 1/2 BPS heavy probes of N = 4 SYM it was
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shown in [26] that the Bremsstrahlung function can be derived from the vev of the 1/2

BPS circular Wilson loop,

B(λ,N)R =
1

2π2
λ∂λ log〈WR〉 (1.4)

so once we have these vevs in a given representation, it is straightforward to obtain the

Bremsstrahlung function. It was observed in [27, 28] that the Bremsstrahlung function

for a heavy probe in the fundamental representation is, for fixed N, a rational function of

the ’t Hooft coupling, and it becomes linear both at weak and a strong coupling. In the

light of the general structure presented in (1.2) for generic representations and in (1.3) for

the antisymmetric representation, it follows from (1.4) that while the linearity in the ’t

Hooft coupling at weak and strong coupling (for fixed N) is common to all Bremsstrahlung

functions, exact Bremsstrahlung functions are rational functions of the coupling only when

there is a single exponential in the vev of the Wilson loop, i.e., for antisymmetric repre-

sentations.

The outline of the paper is as follows. In section 2 we start by considering the vevs

of Wilson loops in antisymmetric representations. We solve the matrix integral explicitly

and discuss some properties of the generating function for these vevs. We point out that

the resulting vevs admit a certain expansion with positive integer coefficients. The com-

binatorial formulas for these coefficients involve a number of ingredients suggestive of an

interpretation in terms of fermions on a lattice, but we have not managed to come up

with a satisfactory physical realization of these integers. In section 3 we turn to arbi-

trary representations; we first consider a perturbative expansion in g for the matrix model

integral, at finite N. We point out that this expansion involves evaluating shifted Schur

functions,okounkov ; we manage to compute at every order in g the part of the coefficient

that is of highest degree in the Casimir invariants of R, and obtain a quite simple result

involving the second Casimir of R,

〈WR(g)〉 =

∞∑
n=0

[(
c2(R)

2

)n
+ . . .

]
gn

n!

We then turn to computing the exact expectation value for a basis of symmetric functions,

the monomial symmetric functions. In section 4 we discuss the Bremsstrahlung function

for the corresponding heavy probes, using the results obtained in the previous sections. We

conclude in the last section by briefly mentioning possible directions for future research.

We have included three appendices: two with brief summaries on skew Young tableaux

and on symmetric functions, and a third one with an alternative proof of one of the results

in the main text.

2 Wilson loop in antisymmetric representation

In this work we are concerned with some specific non-local operators in N = 4 SYM. As

argued in the seminal works [1, 2], in N = 4 SYM it is natural to generalize the usual
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Wilson loop to include scalar fields. Locally BPS Wilson loops are then determined by a

representation R and a contour C

WR[C] =
1

dim R
TrRPexp

(
i

∫
C
(Aµẋ

µ + |ẋ|Φiθ
i)ds

)
(2.1)

We have fixed the overall normalization of the Wilson loop by the requirement that at

weak coupling, 〈WR〉 = 1 + O(g). We will restrict ourselves to half BPS Wilson loops.

The simplest case is an infinite straight line, with an arbitrary representation. For any

representation, this Wilson loop has a trivial vev, 〈WR〉 = 1, due to the large amount of

supersymmetry. By a special conformal transformation, this Wilson loop can be mapped

to a circular Wilson loop in Euclidean signature (or in Lorentzian signature, to a loop with

hyperbolic contour [30, 31]). This conformal mapping does not, however preserve the value

of the vev. It was argued in [16, 17] and later proven in [15] that the vev of 1/2 BPS

circular Wilson loops of N = 4 SYM can be computed exactly by means of a Gaussian

Hermitian matrix model. After diagonalization, the partition function of this matrix model

is given by

Z =

∫ N∏
i=1

dxi
2π

∏
i<j

|xi − xj |2e−
1
2g

∑N
k=1 x

2
k (2.2)

The vev of the 1/2 BPS Wilson loop in an arbitrary representation R is given by the

expected value of the Schur polynomial of R

〈WR(g)〉 =
1

dim R
1

Z

∫ N∏
i=1

dxi
2π

∏
i<j

|xi − xj |2SR (ex1 , . . . , exN ) e
− 1

2g

∑N
k=1 x

2
k (2.3)

In the next section we will discuss this integral for arbitrary irreducible representations R.

It turns out that the case of antisymmetric representations is particularly simple and the

results are most explicit, so we will start with it. For the k-antisymmetric representation,

the Schur polynomial is given by the k-th elementary symmetric function ek,
3 so

〈WAk(g)〉 =
1

Z

∫ N∏
i=1

dxi
2π

∏
i<j

|xi − xj |2ex1+···+xke−
1
2g

∑N
k=1 x

2
k (2.4)

From this integral, eq. (2.4), it is straightforward to relate the vevs of the Wilson loops for

the k-th and the (N-k)-th antisymmetric representations. To do so, complete the squares

for the x1, . . . , xk eigenvalues in (2.4), and then change variables x̃i = xi − g. Except for

the xi-independent exponents generated by completing squares, the resulting integral is the

one that yields the vev of the Wilson loop in the (N − k)-th representation, so we arrive

at the relation

〈WAk(g)〉e−
kg
2 =

〈
WAN−k(g)

〉
e−

(N−k)g
2 (2.5)

3This can be seen for instance from the dual Jacobi-Trudi identity, see appendix B.

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
0
2
0

For future reference, we define the following generating function for the elementary sym-

metric functions ek,
4

FA(t) =

N∑
k=0

ekt
N−k =

N∏
i=1

(t+ exi)

so its expectation value serves as the generating function for the expectation values of

Wilson loops in antisymmetric representations,

〈FA(t)〉 =

N∑
k=0

tN−k
(
N

k

)
〈WAk(g)〉 (2.6)

To compute the integral (2.4) we will apply the method of orthogonal polynomials (see

e.g. [32] for a recent introduction), following and generalizing the approach in [17]. In

a nutshell, we introduce a family of polynomials pn(x) orthogonal with respect to the

measure dx e
−x

2

2g . In the case at hand these polynomials are closely related to the Hermite

polynomials

pn(x) ≡
(g

2

)n
2
Hn

(
x√
2g

)
since ∫

dx

2π
pm(x)pn(x) e

−x
2

2g = n!gn
√

g

2π
δmn ≡ hnδmn (2.7)

It is straightforward to prove that the partition function (2.2) admits a very simple expres-

sion

Z = N !

N−1∏
k=0

hk (2.8)

The relevance of these orthogonal polynomials for the computation at hand becomes ap-

parent when we realize that we can substitute the Vandermonde determinant in (2.4) by a

determinant of orthogonal polynomials,

〈WAk(g)〉 =
1

Z

∫ N∏
i=1

dxi
2π
|pi−1(xj)|2ex1+···+xke−

1
2g

∑N
k=1 x

2
k

We now expand the determinants of orthogonal polynomials in terms of permutations of

its matrix elements

|pi−1(xj)|2 =
∑
σ1∈SN

(−1)ε(σ1)
N∏

k1=1

pσ1(k1)−1(xk1)
∑
σ2∈SN

(−1)ε(σ2)
N∏

k2=1

pσ2(k2)−1(xk2)

The crucial point in the argument is that for the eigenvalues xk+1, . . . , xN the integrals

in (2.4) are not modified by the insertion of the Wilson loop operator, so due to the

orthogonality of the polynomials, for a given σ1 ∈ SN , the only σ2s that survive integration

are those for which σ2(m) = σ1(m) for m > k. This means that in order to contribute to the

4This generating function is closely related to the usual one (see appendix B), E(t) =
∑N
k=0 ek(y)tk =∏N

i=1(1 + yit). Indeed, FA(t) = tNE(1/t).
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full matrix model integral, {σ2(1), . . . , σ2(k)} must be a permutation of {σ1(1), . . . , σ1(k)}.
Let’s call this permutation µ. The integral is now

〈WAk(g)〉 =
1

N !

∑
σ∈SN

∑
µ∈Sk

(−1)ε(µ)
∫ k∏

i=1

dxi
2π

pσ(i)−1(xi)pµ(σ(i))−1(xi)

hσ(i)−1
e
−x

2
i

2g
+xi

where we already performed the integrals over the xk+1, . . . , xN eigenvalues using (2.7),

and substituted the partition function Z using (2.8). The remaining integral can carried

out explicitly [33] and it is given in term of generalized Laguerre polynomials,

Lαn(−g) =
n∑
j=0

(
n+ α

n− j

)
gj

j!
(2.9)

so we arrive at

〈WAk(g)〉 =
e
kg
2

N !

∑
σ∈SN

∑
µ∈Sk

(−1)ε(µ)
k∏

m=1

L
µ(σ(m))−σ(m)
σ(m)−1 (−g) (2.10)

As a check, if we set k = 1, µ is the identity, and out of the N ! permutations in SN , (N−1)!

have the same σ(1) so

〈WA1(g)〉 =
e
g
2

N !
(N − 1)!

N−1∑
n=0

L0
n(−g) =

1

N
L1
N−1(−g)e

g
2

recovering the result (1.1) of [17].

Before we proceed, it is important to notice that the result (2.10) can be very succinctly

stated in terms of the generating function for the antisymmetric representation. Define the

N ×N matrix

A(g)ij = Lj−ii−1(−g)

where i, j = 1, . . . , N . The expression (2.10) is then equivalent to

〈FA(t)〉 =
N∑
k=0

tN−k
(
N

k

)
〈WAk(g)〉 =

∣∣∣t+A(g)e
g
2

∣∣∣ (2.11)

For notation purposes, it is very convenient to define the polynomial factor of 〈WAk(g)〉
in (2.10) as

〈WAk(g)〉 =
1(
N
k

)Pk(g)ek
g
2 (2.12)

The polynomials Pk(g) have as generating function,

N∑
k=0

Pk(g)tN−k = |t+A(g)|

The contribution of the exponential factor in (2.11) is easy to keep track of, and in what

follows we will mostly discuss properties of |t + A(g)| rather than |t + A(g)e
g
2 |. A first

– 7 –
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property of |t + A(g)| that is not manifest from the definition of A, is that it is a palin-

dromic polynomial in t, that is, Pk(g) = P(N−k)(g). This follows by construction from the

relation (2.5), and can also be proven from the definition of the matrix A (see appendix

C). A second property of |t+A(g)| is that Pk(g) can be written as a linear combination of

the monomials gi/i! with positive integer coefficients. That is, we have

Pk(g) =

k(N−k)∑
j=0

dj(k,N)
gj

j!
dj(k,N) ∈ N (2.13)

It is easy to argue that the coefficients dj(k,N) are integers: the definition of the gener-

alized Laguerre polynomials (2.9) implies that each entry in the matrix Aij(g) is a linear

combination of terms gj/j! with integer coefficients, and in computing the determinant

|t+A|, products, sums and subtractions of integers give integers; furthermore

gi

i!

gj

j!
=

(
i+ j

i

)
gi+j

(i+ j)!

so we can conclude that the coefficients of |t+A(g)| are linear combinations of the mono-

mials gi/i! with integer coefficients. The proof that these coefficients are all positive will

take a little more effort, and we postpone it for a moment.

Although we won’t dwell in this direction, it is possible to promote t and g to complex

variables and consider |t + A(g)| as a spectral curve [21]. The fact that |t + A(g)| is a

palindromic polynomial in t implies that roots come in pairs ti, 1/ti (except ti = −1, that

appears unpaired for N odd).5 For g real, if ti is a root, so is t∗i . From the fact that all

coefficients in Pk(g) are real and positive, we learn that for g > 0, the roots of |t+ Aeg/2|
can’t be positive real numbers. Numerical experimentation suggests the following picture:

for g > 0 all roots are real and negative; at g = 0 all eigenvalues are equal to -1, and as

g → +∞, half of them tend to −∞ as powers of g, while the other half are their pairs

1/ti and tend to zero. This is consistent with the observation of [21] that at large N, the

discrete zeros coalesce on a branch cut along the negative real axis.

It is easy to compute |t + A(g)| at linear order in g. For g = 0, the matrix A is

upper triangular, so the g-independent term in the determinant is immediately computed

to be (1 + t)N . At linear order in g, the matrix is no longer upper triangular, there are

non-zero matrix elements immediately below the diagonal, Ai,i+1 = g. It is nevertheless

still straightforward to compute the determinant to this order by evaluating minors, and

the final result is

|t+A(g)| = (1 + t)N +

(
N

2

)
t(t+ 1)N−2g +O(g2)

From this we deduce the first terms in the polynomial entering the vevs of the Wilson

loops, and expanding the exponential, find the coefficient at order g,

〈Wk,N 〉 =
1(
N
k

) ((N
k

)
+

(
N

2

)(
N − 2

k − 1

)
g + . . .

)
e
gk
2 =

(
1 +

c2(Ak)
2

g + . . .

)
(2.14)

5If, in analogy with the analysis of the spectral curve of classical strings in AdS5 × S5 (see [34] for a

review), we define quasimomenta pj by tj = eipj , this Z2 involution translates into the quasi-momenta

coming in pairs (pj ,−pj).
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In the next section we will prove that for an arbitrary representation R, the term linear in

g has coefficient c2(R)/2.

We have derived a formula that gives the vevs of the Wilson loops in terms of a matrix

that has generalized Laguerre polynomials as entries, eq. (2.10). We are now going to

derive a formula for the individual coefficients. In particular, we will recover the results

in (2.14) and prove that the coefficients dj(k,N) in (2.13) are positive. Starting with

equation (2.10), the first observation is that for any given σ ∈ SN , there are (N − k)!

permutations σ̃ ∈ SN such that σ̃(1) = σ(1), . . . , σ̃(k) = σ(k), and they all contribute the

same to the sum in (2.10). In fact, the same is true if {σ̃(1), . . . , σ̃(k)} is a permutation of

{σ(1), . . . , σ(k)} so

Pk(g) =
∑

0≤σk<···<σ1≤N−1

∑
µ∈Sk

(−1)ε(µ)
k∏

m=1

L
µ(σ(m))−σ(m)
σ(m) (−g)

=
∑

0≤σk<···<σ1≤N−1

∑
µ∈Sk

(−1)ε(µ)
k∏

m=1

σm∑
nm=0

(
σµ(m)

σm − nm

)
gm

nm!

To proceed, it is convenient to define τm = σm − nm. With the understanding that 1
a! = 0

for −a ∈ N we can extend the range of τm to N − 1

Pk(g) =
∑

0≤σk<···<σ1≤N−1

N−1∑
τ1,...,τk=0

(
k∏

n=1

gσn−τn

(σn − τn)!

) ∑
µ∈Sk

(−1)ε(µ)
k∏

m=1

(
σµ(m)

τm

)

In the expression above, the last sum is antisymmetric in τm, so we can restrict the sum

over τm to k-tuples of different τi. We write it as a sum over ordered k-tuples and its

permutations,

Pk(g) =
∑

0≤σk<···<σ1≤N−1
0≤τk<···<τ1≤N−1

g
∑
m σm−τm

∑
ν∈Sk

k∏
m=1

1

(σm − τνm)!

∑
µ∈Sk

(−1)ε(µ)
k∏

n=1

(
σµn
τνn

)

=
∑

0≤σk<···<σ1≤N−1
0≤τk<···<τ1≤N−1

g
∑
m σm−τm

∑
ν∈Sk

k∏
m=1

1

(σm − τνm)!
εν1...νk

∑
µ∈Sk

(−1)ε(µ)
k∏

n=1

(
σµn
τn

)

=
∑

0≤σk<···<σ1≤N−1
0≤τk<···<τ1≤N−1

g
∑
m σm−τm

k∏
m=1

τm!

σm!

∣∣∣∣(σiτj
)∣∣∣∣2

where in the second line we used the properties of reordering the rows of a determinant.

Collecting all the terms with gn, we arrive then at a formula for the coefficients dn(k,N)

in (2.13) that makes manifest that they are positive,

dn(k,N) = n!
∑

0≤σk<...σ1≤N−1
0≤τk<...τ1≤N−1

k∏
m=1

τm!

σm!

∣∣∣∣(σiτj
)∣∣∣∣2 δ∑(σm−τm),n (2.15)
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As a check, if we set k = 1 we arrive at

dn(1, N) =
N−1∑
σ=n

(
σ

σ − n

)
=

(
N

n+ 1

)

reproducing the expansion of P1(g) = L1
N−1(−g).

2.1 Relation with skew Young tableaux and free fermions

We have just derived an expression, eq. (2.15), for the coefficients dn(k,N) of the poly-

nomial Pk(g) in (2.13). We would like to recast it in terms of a sum over skew Young

diagrams (see appendix A for a brief introduction). By pulling common factors out of the

binomial determinants, we can write these coefficients in various ways,

dn(k,N) = n!
∑

0≤σk<···<σ1≤N−1
0≤τk<···<τ1≤N−1

(
k∏

m=1

τm!

σm!

)∣∣∣∣(σiτj
)∣∣∣∣2 δ∑k

m=1(σm−τm),n

= n!
∑

0≤σk<···<σ1≤N−1
0≤τk<···<τ1≤N−1

(
k∏

m=1

σm!

τm!

)∣∣∣∣ 1

(σi − τj)!

∣∣∣∣2 δ∑k
m=1(σm−τm),n

= n!
∑

0≤σk<···<σ1≤N−1
0≤τk<···<τ1≤N−1

∣∣∣∣(σiτj
)∣∣∣∣ ∣∣∣∣ 1

(σi − τj)!

∣∣∣∣ δ∑k
m=1(σm−τm),n (2.16)

An important observation is that the sum above can be restricted to pairs of k-tuples such

that σi ≥ τi for i = 1, . . . , k. The reason is that if for some j it happens that σj < τj ,

the matrix with binomial coefficients in (2.15) has a zero block in the upper right corner.

The full determinant is then the product of determinants of the diagonal blocks, but the

determinant of the lower diagonal block is zero, since it has a zero row. In what follows, it

is understood that the sum in (2.16) is restricted to σi ≥ τi.
Now, for every pair of k-tuples {σ}, {τ}, we define

λi = σi − k + i µi = τi − k + i i = 1, . . . , k

It is easy to see that λi ≥ λi+1 and µi ≥ µi+1, so {λ} and {µ} are partitions. It also follows

that λi ≤ N − k and µi ≤ N − k so the corresponding Young diagrams can be both fitted

in a rectangle with (N − k) × k boxes. If we denote by L(m,n) be the set of all Young

diagrams that fit into a board of m rows and n columns [35], we have just argued that the

partitions λ and µ have Young diagrams in L(k,N − k).

Finally, it is also easy to prove that λ and µ are partitions satisfying λi ≥ µi, so the

Young diagram of µ fits inside the Young diagram of λ, and it makes sense to consider its

complement, the skew Young diagram λ/µ, see table 2 in appendix A. The Kronecker delta

in (2.16) suggests that the coefficients dn(k,N) can be rewritten in terms of skew Young

diagrams with n boxes. An important step in this direction is to recognize the determinant

in the second line of (2.16) as the one that appears in the formula (A.2) giving the number
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fλ/µ of standard Young tableaux for the skew diagram λ/µ,

dn(k,N) =
1

n!

∑
µ⊆λ∈L(k,N−k),
|λ|−|µ|=n

k∏
m=1

(λm + k −m)!

(µm + k −m)!
f2λ/µ (2.17)

The various expressions we have derived for the coefficients dn(k,N), either the original

formulas (2.16) or the one just derived, eq. (2.17), involve ingredients that have a number

of combinatorial interpretations, and in particular can be interpreted as counting paths

of fermions in different lattices. The binomial determinant appearing in the first line

of (2.17) was given a beautiful interpretation as counting the number of k non-intersecting

(i.e. fermionic) paths in a 2d-lattice, with the k-tuples {σ} and {τ} giving respectively

the initial and final conditions for the k paths [36]. However, if we try to pursue this

interpretation, we don’t know what meaning we should assign to the prefactor in the first

line of (2.17).

A second possibility is to try to interpret these coefficients in terms of time-dependent

processes for fermions on a 1d lattice. The first step in this direction is to map each

Young diagram to a configuration of fermions (see e.g. [37]). A standard Young tableau of

skew shape λ/µ is then interpreted as a time-dependent process, with µ being the initial

configuration, λ being the final configuration, and the labeling of the boxes indicating the

order in which they appear [35, 37]. fλ/µ counts the number of ways to evolve from µ to λ,

but again we don’t know of a clear combinatorial interpretation for the prefactor in (2.17).

Perhaps the best way of summarizing our lack of a simple combinatorial interpretation

for these coefficients is the third line in (2.17); there the two determinants with interpre-

tations outlined above appear, but as we have seen each one hints at a different physical

realization.

2.2 Evaluating the coefficients

We have derived a formula for the coefficients dj(k,N), eq. (2.15). The index j runs from

0 to k(N − k), and for arbitrary values of it, it seems doubtful that the sum can carried

out explicitly. We will now evaluate these coefficients for a few values of j, close to the

endpoints of its range. As a consistency check, all the explicit results we obtain satisfy

dn(k,N) = dn(N−k,N). An important ingredient in the evaluation is that as argued in the

previous subsection, we can restrict to pairs of k-tuples such that σi ≥ τi for i = 1, . . . , k.

For n = 0, both k-tuples have to be identical to contribute: σi = τi. In this case the

matrix with entries
(
σi
τj

)
is lower triangular, the determinant in (2.15) is 1, as well as the

prefactor, so d0 is given by the number of k-tuples,

d0 =

(
N

k

)
Alternatively, in the language of skew Young diagrams, n = 0 corresponds to the case of

λ = µ and d0 is just counting the number of Young diagrams that fit into a rectangle with

(N − k)× k boxes, which is precisely
(
N
k

)
(proposition 6.3 in [35]).
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For n = 1, given a k-tuple τi, the only k-tuples σi that contribute are those where all

the σi = τi, except for precisely one element σj = τj +1. For each of those cases the matrix

with entries
(
σi
τj

)
is lower triangular, the determinant is σj and the contribution in each

case is σj . It remains to count how many such pairs of k-tuples there are, which is easily

seen to be
(
N−2
k−1
)
. Adding all contributions we obtain

d1 =

(
N

2

)(
N − 2

k − 1

)
These two computations reproduce the result obtained for the Wilson loop by expanding

|t+A(g)| to linear order in g, eq. (2.14).

For n = 2, there are two types of contributions. There are contributions from pairs of

k-tuples when all σi = τi except for a single σj = τj + 2. There are also contributions from

pairs of k-tuples when σm = τm except for two σs, σi = τi + 1 and σj = τj + 1, with i < j.

It is convenient to treat separately the cases where τj = σi (in which case the matrix fails

to be lower triangular) and the case τj > σi. By arguments very similar to the ones in the

previous cases we arrive at

d2 =
N !

12(k − 1)!(N − k − 1)!
(3k(N − k)−N − 1)

This coefficient allows us to write the perturbative expansion of the antisymmetric Wilson

loop to order g2,

〈WAk〉 = 1 +
c2(Ak)

2
g +

(
1

4
c2(Ak)2 −

N + 1

12
(c2(Ak)− c1(Ak))

)
g2

2!
+ . . . (2.18)

Having computed the first three coefficients dj(k,N), we turn to the other end of the range,

when j is close to k(N − k). For n = k(N − k), there is only one term that contributes:

σi = N − k − 1 + i, τj = j − 1. The determinant is 1, as can be proven by induction on k,

for N fixed. Therefore

dk(N−k)(k,N) = (k(N − k))!
0!1! . . . (k − 1)!

(N − 1)!(N − 2)! . . . (N − k)!

For n = k(N − k) − 1, there are two terms that contribute. The first one has σi =

N − k − 1 + i, τj = 0, 1, . . . , k − 2, k; the corresponding determinant is N − k. The second

term has σi = N−k−1, N−k+1, . . . , N−1 and τj = j−1; the corresponding determinant

is k. Adding these two terms one obtains

dk(N−k)−1(k,N) = (k(N − k))!
0!1! . . . (k − 1)!

(N − 1)!(N − 2)! . . . (N − k)!
N

3 Arbitrary representations

In this section we will perform two different types of computations, both regarding Wilson

loops in arbitrary representationsR of the group U(N). First we will consider a perturbative

expansion in g for the vev of Wilson loops for arbitrary representation and at finite N.
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We will show that the Schur function evaluated on exponentials of eigenvalues admits an

expansion in terms of Schur functions evaluated on eigenvalues, whose vevs are known

exactly for the Gaussian Hermitian matrix model. The coefficients of this expansion turn

out to be essentially shifted Schur functions [29], evaluated on the components of the

highest weight λ of the representation R. In order to bring the resulting expressions closer

to familiar quantities, we would have to write these shifted Schur polynomials in terms of

the Casimir invariants of the representation, cp(R). This is quite easy at order g, as we

show, but it already becomes quite cumbersome at higher orders. Nevertheless, if we settle

for finding the highest degree Casimir combination appearing at each order gn, this turns

out to be a solvable problem with an extremely simple answer.

We then switch gears and compute the exact expectation value of a complete basis of

the space of symmetric polynomials. The most convenient one turns out to be the basis of

monomial symmetric functions; from these one can then recover the vevs of Wilson loops

by a linear transformation.

3.1 Perturbative computation

For a generic representation R, the vev of the Wilson loop is given by the following integral,

〈WR(g)〉 =
1

dimR
1

Z

∫ N∏
i=1

dxi
2π

∏
i<j

|xi − xj |2SR (ex1 , . . . , exN ) e
− 1

2g

∑N
k=1 x

2
k (3.1)

We want to address the evaluation of this integral for arbitrary representation R, for finite

N and perturbatively in g. By a rescaling of the eigenvalues xi →
√
gxi we learn that an

expansion in g amounts to expanding the exponentials of eigenvalues in the Schur function

SR (ex1 , . . . , exN ): to compute the term at order gn we need to expand the exponentials up

to terms x2ni . The key ingredient to expand Schur functions around unity is the following

formula (see section I.3, example 10 in [38]),

sλ(1 + y1, . . . , 1 + yN ) =
∑
µ

bλµsµ(y1, . . . , yN )

where bλµ is given by a determinant of binomial coefficients,

bλµ =

∣∣∣∣(λi +N − i
µj +N − j

)∣∣∣∣
Let’s start by considering the computation to one-loop, i.e. to order g. At this stage, we

prefer not to resort to some of the heavier machinery that we will introduce for higher loops,

and keep the computation intuitive. We need to expand the Schur function SR(ex1 , . . . , exN )

to order x2i , and the answer is

SR(ex1 , . . . , exN ) = bR∅ + bR (x1 + · · ·+ xN ) +

(
1

2
bR + bR

)(
x21 + · · ·+ x2N

)
+

+

(
bR + bR

)∑
i<j

xixj + . . . (3.2)
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The next step is to evaluate the binomial determinants bRµ that appear in (3.2). We will

express the results in terms of the Casimir invariants of the representation R, written as

polynomials of the components of its highest weight λ. The generating function of the

Casimirs of R can be written in terms of σi = λi +N − i as [39]

G(z) =
∑

cp(σ)zp =
1

z

[
1−

N∏
i=1

(
1− z

1− σiz

)]
(3.3)

To this order only the first two Casimirs can appear,

c1(R) = |λ| =
∑
i

λi

c2(R) =
∑
i

λi(λi +N + 1− 2i)

We obtain

bR∅ = dim R, bR =
dim R

2n(n+ 1)

(
c2(R) + c1(R)2 − (n+ 1)c1(R)

)
bR = dim Rc1(R)

N
bR =

dim R
2n(n− 1)

(
−c2(R) + c1(R)2 + (n− 1)c1(R)

)
(3.4)

The last ingredient we need are the vevs 〈x1 + · · ·+ xN 〉,
〈
x21 + · · ·+ x2N

〉
and

〈∑
i<j xixj

〉
.

These vevs can be easily computed with the method of orthogonal polynomials, making

repeated use of the recurrence relations among the orthogonal polynomials [32], but an

ever easier way to compute them is to write them as linear combinations of the known

n-point functions
〈
trX2

〉
and 〈trXtrX〉. Either way, we obtain,

〈x1 + · · ·+ xN 〉 = 0,
〈
x21 + · · ·+ x2N

〉
= gN2,

〈∑
i<j

xixj

〉
= −

(
N

2

)
g (3.5)

Plugging the results for the coefficients (3.4) and the vevs (3.5) back in the expansion (3.2),

we finally obtain,

〈WR(g)〉 = 1 +
c2(R)

2
g +O(g2) (3.6)

In principle the method presented above can be used at higher loops. To compute efficiently

the coefficients bRµ it is very useful to realize that they are essentially given by shifted Schur

functions, s∗µ(R) [29]

bRµ = dimR
N∏
i=1

(N − i)!
(µi +N − i)!

s∗µ(R) (3.7)

The reason this connection is useful is that shifted Schur functions have many properties

that generalize the properties of ordinary Schur functions; in particular, they admit a

combinatorial definition in terms of reverse Young tableaux [29] which we have found quite

efficient when it comes to actually computing them. We have carried out the computation

of all necessary shifted Schur functions needed at order g2 (i.e. corresponding to Young
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diagrams with up to 4 boxes). Unfortunately, the expressions obtained are long and far

from illuminating, and we haven’t found an efficient way to rewrite the coefficients bRµ in

terms of the Casimir invariants that can appear: c1(R), . . . , c4(R).

In this work we will settle for a more modest problem, which is the following: assign

a degree p to the Casimir invariant cp(R), corresponding to the highest power of λi that

appears in cp(R), see (3.3). It follows that a product of Casimirs cp1cp2 has degree p1 + p2,

and it is easy to see that at order gn the highest degree that can appear is 2n. For

instance, at order g2, the expansion of the Schur function SR(ex1 , . . . , exN ) will involve

c4(R), c3(R)c1(R), c2(R)2, c2(R)c1(R)2 and c1(R)4, plus terms of lower degree (e.g. c3(R)

or c1(R)2). Our aim in what follows it to compute the term with highest degree possible

(i.e. degree 2n) in the coefficient of gn, at every order n in the g expansion.

The first observation is that the only coefficients bRµ that contribute to the term with

degree 2n are those with µ being a partition of 2n: µ with a smaller number of boxes can

only contribute to lower degree terms. By (3.7), this amounts to considering shifted Schur

functions s∗µ(R), with µ being a partition of 2n. Furthermore, each s∗µ(R) can be written

as a sum of the ordinary Schur function sµ(R) plus lower degree polynomials [29] that

don’t contribute to the term we are considering. To recapitulate, we have argued that the

degree 2n term at order gn is given by

dimR
∑
|µ|=2n

N∏
i=1

(N − i)!
(µi +N − i)!

sµ(R)〈sµ(x)〉 (3.8)

In order to proceed, we will now make use that 〈sµ(x)〉 is known exactly for the Gaussian

Hermitian matrix model [40]. The result of [40] can be written as

〈sµ(x)〉 =
1

2n!
#[2n]χµ[2n]

N∏
i=1

(µi +N − i)!
(N − i)!

(3.9)

where [2n] is the conjugacy class in S2n with n disjoint 2-cycles, and #[2n] gives the number

of elements in this conjugacy class, see eq. (B.1). When we plug (3.9) into (3.8) the fractions

of products cancel out. We can now write sµ(R) in terms of power sum polynomials, see

eq. (B.2),

sµ(R) =
1

2n!

∑
ν

#[ν]χµ[ν]pν(R)

and make use of the orthogonality of the characters to simplify the coefficient (3.8) as

dim (R)
#[2n]

(2n)!
p[2n](R)

Now, p[2n](R) differs from c2(R) only in lower degree terms, so for the purpose of computing

the highest degree term, we can replace p[2n](R)→ c2(R). Plugging the value for #[2n] =

(2n!)/(n!2n) - see eq. (B.1) - we arrive at the main result of this section,

〈WR〉 =
∞∑
n=0

[(
c2(R)

2

)n
+ . . .

]
gn

n!
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To reiterate, the dots stand for terms that we are missing at every order in gn, that

are of degree in Casimirs lower than 2n, see (2.18) for their explicit expression in the

antisymmetric representation. These terms that we haven’t computed come from different

sources: first there are the contributions from shifted Schur functions with |µ| < n; for

instance, at order g we see in (3.2) that bR also contributes, and in fact will contribute

to every order. Second, when considering the shifted Schur functions with |µ| = n, we

replaced them by ordinary Schur functions, since they differ by lower degree polynomials.

3.2 Exact results in the monomial basis

The Schur polynomials are the characters of irreducible representations of U(N), and they

form a basis of the space of symmetric functions of N variables, but it turns out that they

don’t form the most convenient basis to perform the integrals above. This is similar to

what was encountered in the study of two-dimensional QCD [24]. The route taken there is

to use Frobenius formula to relate the Schur polynomial to products of tr Uk (i.e. multiply

wound Wilson loops). In mathematical language this corresponds to changing basis from

the Schur one to the power sum symmetric functions, pλ. In the case at hand 〈pk〉 is

immediate to compute by a simple rescaling of the integral considered in [17],

〈pk(g)〉 =
1

N
L1
N−1(−k2g)ek

2 g
2

However, to evaluate the integral in a full basis of the ring of symmetric polynomials, we

would have to compute 〈pλ〉 for arbitrary partitions λ, and when facing this problem, we

end up having to compute 〈mλ〉. For this reason, we consider the integrals above in the

basis of monomial symmetric polynomials mλ. These results can then be used to write

down the vevs of Schur polynomials, since they are related by a linear transformation

sλ =
∑

τ Kλτmτ , where the coefficients Kλτ are positive integers, the so-called Kostka

numbers (see appendix B).

The vev of monomial symmetric functions is

〈mτ 〉 =
1

Z

∫ N∏
i=1

dxi
2π

∏
i<j

|xi − xj |2mτ (ex1 , . . . , exN ) e
− 1

2g

∑N
k=1 x

2
k (3.10)

since mτ is a symmetric polynomial, and the rest of the integral is also symmetric, each

monomial in mτ gives the same contribution to the integral, so we can restrict to just one

of them. Denote by `(τ) the number of non-zero entries of τ , and by αi(τ) the number

of times the number i appears in the partition τ = (τ1, τ2, . . . ). Then the number of

monomials in mτ is (
N

`(τ)

)(
`(τ)

α1(τ), α2(τ), . . .

)
so

〈mτ 〉 =

(
N

`(τ)

)(
`(τ)

α1(τ), α2(τ), . . .

)
1

Z

∫ N∏
i=1

dxi
2π

∏
i<j

|xi − xj |2eτ1x1+···+τ`(τ)x`(τ)e−
1
2g

∑N
k=1 x

2
k
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Now the argument proceeds along the same lines as in the previous section, for the an-

tisymmetric representation. After substituting the Vandermonde determinant for a de-

terminant of orthogonal polynomials, we expand these determinants. For the eigenvalues

x`(τ)+1, . . . , xN the insertion of the operator does not suppose any change, and we can

carry out the integrals as always. The new integral that appears can again be computed

explicitly [33] ∫
dx

2π
pi(x)pj(x)eτxe

− 1
2g
x2

=

√
g

2π
gji!τ j−iLj−ii (−τ2g)e

g
2
τ2

so we arrive at

〈mτ 〉 =
1

N !

(
N

`(τ)

)(
`(τ)

α1(τ), α2(τ), . . .

) ∑
σ∈SN

∑
µ∈S`(τ)

(−1)ε(µ)
`(τ)∏
m=1

L
µ(σ(m))−σ(m)
σ(m)−1 (−τ2mg)eτ

2
m
g
2

(3.11)

We can also introduce a generating functional for these vevs. It contains the antisymmetric

representation as a particular case, but is more complicated. Define an infinite family of

N ×N matrices, labelled by n ∈ N

A
(n)
ij (g) = nj−iLj−ii (−n2g)

The vevs (3.11) have then the following generating function

〈
N∏
i=1

t+

∞∑
j=1

yje
jxi

〉 =

∣∣∣∣∣∣t+

∞∑
j=1

yjA
(j)(g)ej

2 g
2

∣∣∣∣∣∣
Finally, as in the antisymmetric case, an explicit formula for the 〈mτ 〉 can be found in

terms of determinants of binomial coefficients:

〈mτ (g)〉 =
e
g
2

∑
i τ

2
i∏

i αi!

∑
c∈S`(τ)

∑
µ⊆λ∈L(`,N−`)

∏̀
m=1

(λm + `−m)!

(µm + `−m)!

∣∣∣∣∣ τ
λi−µj+j−i
ci

(λi − µj + j − i)!

∣∣∣∣∣
2

g
∑
λm−µm

(3.12)

We have then managed to evaluate exactly the vevs of these symmetric functions in the

Gaussian Hermitian matrix model. The vevs of the Schur polynomials are then linear com-

binations of these, with the transformation matrix given by Kostka numbers, see appendix

B. The general form of the vevs of Wilson loops is then

〈WR(g)〉 =
1

dimR
∑
τ≤R

KRτPτ (g)e
∑
i τ

2
i
g
2 (3.13)

The polynomials in (3.13) can be read from either (3.11) or (3.12). A relevant question,

already answered in [23], is what is the largest exponent in (3.13), and it is immediate to

see that it corresponds to
∑

i τ
2
i where τ is the highest weight of the representation R.
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4 Bremsstrahlung functions

Having devoted the previous sections to the computation of the exact vevs of half-BPS cir-

cular Wilson loops of N = 4 SYM, we would like to use the results obtained to discuss some

properties of the associated heavy probes. We will do that by considering the correspond-

ing Bremsstrahlung functions. The Bremsstrahlung function can be defined as the small

angle limit of the cusp anomalous dimension, and for any heavy probe coupled to any four

dimensional conformal field theory, it determines a number of interesting properties, like

the two-point function of displacement operators [26], or the total radiated power [26, 27]

and the momentum diffusion coefficient [28] of an accelerated probe. Therefore computing

the Bremsstrahlung function for probes of different conformal field theories is an interesting

but in general difficult question. For 1/2 BPS probes in N = 4 SYM, the situation is more

favorable, since it was argued in [26] that for these probes the Bremsstrahlung function

can be derived from the vev of the corresponding circular Wilson loop

BR(λ,N) =
1

2π2
λ∂λ log〈WR〉 (4.1)

The argument leading to this relation is independent of the representation, so we can put

to use our results for 〈WR〉. Since our results are most explicit for the antisymmetric

representation, let’s start with this case. For the antisymmetric representations, the vev of

the Wilson loop is a polynomial in g times an exponential, see eqs. (2.10) or (2.12). From

this simple fact, it follows that when taking the logarithmic derivative in (4.1) the final

answer is a rational function in the coupling,

B
U(N)
Ak =

λ

16π2N

∑k(N−k)
j=0

2dj+1+kdj
j!

(
λ
4N

)j∑k(N−k)
j=0

dj
j!

(
λ
4N

)j
with the understanding that dk(N−k)+1 = 0. For fixed N , both at weak and at strong ’t

Hooft coupling, the Bremsstrahlung function is linear in the ’t Hooft coupling

B
U(N)
Ak =

c2(Ak)
16π2N

λ λ� 1

B
U(N)
Ak =

k

16π2N
λ λ� 1

Let’s now briefly discuss the case of general representations. Now 〈WR〉 is given by a

linear combination of 〈mτ 〉, so it is a sum of polynomials times exponentials, eq. (3.13).

Since in general the exponents in these exponentials are different, it follows from (4.1) that

the corresponding Bremsstrahlung functions are no longer rational in the coupling. On

the other hand, it also follows from (4.1) that it is still true that for fixed N , both at

weak and at strong ’t Hooft coupling, the Bremsstrahlung function is linear in the ’t Hooft

coupling. The weak coupling result can be read off from (3.6). In the large coupling limit,

the coefficient of λ is given by the largest exponent in the exponentials which as pointed

out after (3.13) (see also ([23]) for a representation R with partition τ this exponent is

(
∑

i τ
2
i )g/2, so

B
U(N)
R =

c2(R)

16π2N
λ λ� 1

B
U(N)
R =

∑
i τ

2
i

16π2N
λ λ� 1
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5 Outlook

In closing, we would like to point out future directions and potential applications of the

results obtained here.

A possible direction for further research is the use of our results as a concrete example

of emergent spacetime out of a matrix model. Half-BPS Wilson loops have associated

certain ten-dimensional solutions of IIB supergravity, that are given by a fibration over a

Riemann surface [43]. The relation between the classical geometry and the large N limit of

the matrix model has been elucidated in [44, 45]. It will be interesting to explore if having

exact results for the vevs of these Wilson loops for any N and λ can lead to a deeper

understanding of the emergence of these spacetimes.

Finally, in recent years there has been a fruitful interplay between matrix models

and topological strings. For the model at hand, it was conjectured in [46] that antisym-

metric Wilson loops of N = 4 are dual to amplitudes of the open topological string of

Berkovits-Vafa [47]. It would be interesting to derive the results presented here by a direct

computation of the relevant topological string amplitudes, and also to give an interpre-

tation of positive integer coefficients dj in terms of enumerative geometry of the string

background.
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A Skew Young tableaux

In this appendix we recall a handful of definitions and formulas related to partitions and

Young tableaux. The reader interested in more details is urged to consult any of the

excellent books on this topic [38, 41, 42].

A partition is a sequence of non-negative integers in weakly decreasing order,

λ1 ≥ λ2 ≥ λ3 ≥ . . .

The weight of the partition is |λ| =
∑

i λi. The Young diagram associated to a partition λ

is a collection of boxes arranged in left-justified rows of λi boxes each. Given a partition λ,

its conjugate partition λ′ is obtained by reflecting the Young diagram of λ along its main

diagonal, see table 1.

A standard Young tableau is a filling of a Young diagram of |λ| = n boxes with the

numbers 1, . . . , n, such that the entries in each row and column are increasing. Given a

partition {λ} = λ1 ≥ · · · ≥ λk, and its associated Young diagram, the number of standard
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−→

Table 1. The conjugate partition λ′ is obtained by transposing the diagram of λ. In this example,

λ = (4, 2, 2) and λ′ = (3, 3, 1, 1).

=

Table 2. The skew diagram λ/µ is the complement of µ in λ. In this example, λ = (4, 2, 2) and

µ = (2, 1).

Young tableaux with shape λ can be written in various ways

fλ =
|λ|!∏
x h(x)

= |λ|! ∆(a)∏k
m=1 am!

= |λ|!
∣∣∣∣ 1

(λi + j − i)!

∣∣∣∣ (A.1)

where ai = λi + k − i. The first formula is the famous hook length formula. The second

one is proven in [38]. The third one is easy to prove starting from the second one.

Consider two partitions λ, µ such that µi ≤ λi. The skew Young diagram λ/µ is the

complement of the diagram of µ inside the diagram of λ (see table 2). The number of

standard Young tableaux for a given skew shape λ/µ is given by the following formula,

(corollary 7.16.3 in [41]) that generalizes the third one in (A.1),

fλ/µ = (|λ| − |µ|)!
∣∣∣∣ 1

(λi − µj + j − i)!

∣∣∣∣ (A.2)

B Symmetric functions

In this appendix we collect the definitions of the most common basis of symmetric poly-

nomials in N variables; they all happen to play a role in the main body of the paper. We

also mention the change of basis relating Schur functions to the rest. These functions are

labelled by partitions (see appendix A) that we denote by Greek letters, λ, µ, . . . . Some

excellent references on this topic are [38, 41, 42].

Monomial symmetric functions. Given any partition λ with at most N non-zero

elements, define the polynomials,

mλ(x1, . . . , xN ) =
∑
α

xα

where the sum is over distinct permutations α of (λ1, ..).
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Elementary symmetric functions. For any integer n ≥ 0 define

en ≡ m1n

and then for any partition λ define

eλ = eλ1eλ2 . . .

The generating function for the polynomials en(xi) is

E(t) =

N∑
k=0

ekt
k =

N∏
i=1

(1 + xit).

Complete symmetric functions. For any integer n ≥ 0 define

hn =
∑
|λ|=n

mλ

and then for any partition λ define

hλ = hλ1hλ2 . . .

The generating function for the polynomials hn(x) is

H(t) =

N∑
k=0

hkt
k =

N∏
i=1

1

(1− xit)
=

1

E(−t)

Power sum symmetric functions. For any integer n ≥ 0 define

pn ≡ mn

and then for any partition λ define

pλ = pλ1pλ2 . . .

The generating function for the polynomials pn(x) is

P (t) =
∑
k≥1

pkt
k−1 =

∑
i≥i

xi
1− xit

=
H ′(t)

H(t)

Schur polynomials. For any partition λ, one possible way to define the Schur polyno-

mials is as the quotient of two determinants,

sλ(x1, . . . xN ) =
|xλj+N−ji |
|xN−ji |

There are linear relations that allow us to change basis among the five sets of polynomials

just introduced. We will mention only the ones that relate Schur functions to the other
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ones. Schur polynomials can be written as determinants of matrices with either symmetric

or elementary symmetric functions as entries,

sλ = |hλi−i+j | = |eλ′i−i+j |

These first equality is the Jacobi-Trudi identity, and the second one the dual Jacobi-Trudi

identity (λ′ stands for the partition conjugate to λ, see appendix A). From the first one it

follows that for the k-symmetric representation s(k,0,...,0) = hk, while from the second one

it follows that for the k-antisymmetric representation, s(1,...1,0,...,0) = ek.

Schur functions can be written in terms of monomial symmetric functions.

sλ =
∑
τ

Kλτmτ

The coefficients Kλτ are called Kostka numbers. They are positive integers, and they have

a combinatorial meaning, they count the number of tableaux of shape λ and weight τ .

Furthermore, let’s introduce the reverse lexicographic order among all partitions of a given

n: given two partitions of n, define this ordering as µ ≤ λ if either µ = λ or the first

non-zero λi − µi > 0. With this ordering, the Kostka matrix above is upper triangular,

Kλτ = 0 for λ < τ .

Schur functions can also be written as linear combinations of power sum symmetric

functions. The relation involves some basics concepts of the representation theory of the

symmetric group Sn: the number of partitions of n gives both the number of irreducible

representations of Sn and the number of conjugacy classes, so each of these sets can be

labelled by these partitions. Any conjugacy class is characterized by the number of disjoint

cycles of different length: the conjugacy class of Sn, labelled by µ, with permutations that

are the product of m1 cycles of length 1, m2 of length 2 and so on, has a total number of

elements given by

#(µ) =
n!

1m1m1!2m2m2! . . .
(B.1)

Finally, let’s denote by χλ the character of the irreducible representation labelled by λ. In

terms of these ingredients, the relation between Schur and power sum polynomials is

sλ =
1

n!

∑
µ

#(µ)χλ(µ)pµ (B.2)

C |t + A(g)| is a palindromic polynomial

In this appendix we will present an alternative proof of |t + A(g)| being a palindromic

polynomial, i.e. the fact that the coefficients dn(k,N) satisfy dn(k,N) = dn(N − k,N).

The idea of the proof is the following: the coefficient dn(k,N) is given by a sum of an

expression evaluated over all skew Young diagrams λ/µ in L(k,N − k) with n boxes,

dn(k,N) =
1

n!

∑
µ⊆λ∈L(k,N−k),
|λ|−|µ|=n

k∏
m=1

(λm + k −m)!

(µm + k −m)!
f2λ/µ (C.1)
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⇒ ⇒

Table 3. Starting with a partition λ in the set L(m,n), we define the partition λ̂ by considering

the complement of λ in L(m,n) and the rotating 180◦. We then take the transpose to obtain λ̂′.

In the example displayed λ = (4, 2, 2) and L(m,n) = L(3, 5). Then λ̂ = (3, 3, 1) and λ̂′ = (3, 2, 2).

For every skew Young diagram λ/µ we will first define partitions µ̂′ and λ̂′ in L(N −
k, k) such that µ̂′/λ̂′ has also n boxes, so there is a one-to-one correspondence among the

diagrams contributing to dn(k,N) and those that contribute to dn(N − k,N). Finally we

will show that both diagrams contribute the same to their respective coefficients, proving

the equality.

Given a partition λ = (λ1, . . . , λk) ∈ L(k,N − k), define the complementary partition

in L(k,N − k) by

λ̂i = N − k − λk+1−i

λ̂ is also a partition in L(k,N − k). Graphically, it corresponds to taking the complement

of the Young diagram of λ in L(k,N − k) and rotating it by 180◦ so it becomes an allowed

Young diagram, see table 3. Now consider λ̂‘, the partition conjugate to λ̂. Graphically it

corresponds to the transpose Young diagram. λ̂‘ is a partition in L(N − k, k), see table 3.

Now for every skew Young diagram λ/µ contributing to dn(k,N) consider the skew Young

diagram µ̂′/λ̂′. This is a diagram in L(N − k, k) with n boxes, so it contributes to dn(N −
k,N). We have established a one-to-one correspondence among the terms contributing to

both coefficients. It remains to prove that these diagrams contribute the same.

An important ingredient is the following result (see eq. (1.7) in section I.1 of [38]).

Consider a partition λ ∈ L(k,N−k) and its transpose λ′. Define the numbers ai = λ+k−1,

i = 1, . . . , k and cj = k − 1 + j − λ′, j = 1, . . . , N − k. The numbers ai, cj constitute a

permutation of (0, . . . , N − 1). For the partition λ̂′ we have

â′j = N − j − λ′N−k+1−j = cN−k+1−j

and therefore by the previous result ai, â
′
j constitute a partition of (0, . . . , N − 1). The

same is true for bi, b̂
′
j and from this it follows that

k∏
i=1

ai!

bi!
=

N−k∏
j=1

b̂′j !

â′j !

This shows that these factors in (C.1) are the same for λ/µ and µ̂′/λ̂′. This together with

fλ/µ = fµ̂′/λ̂′ concludes the proof.
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