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Part I. Abstract

The objective of this undergraduate thesis is to understand and review the fundamental aspects

of the standard Expected Utility Theory. The expected utility theory is a model of the behaviour

of the economic agent when choosing among uncertain or risky decisions. The roots of this

theory can be found in Daniel Bernoulli’s famous paper Exposition of a New Theory on the

measurement of Risk. Inspired by The St. Petersburg Paradox, Bernoulli switched from the

belief in an objective value of the money to the more subjective utility, which allowed to account

personal differences in tastes, wealth and risk aversion in Economics, Finance and Actuarial

Sciences.

The theory is built over a set of axioms that define what is a preference relation in a set. In

the first chapter, we expose those axioms and discuss under which circumstances there exists a

numerical representation of the preference relation.

In the second part, we define a special kind of numerical representations that are better suited

to work with, specially when adopting the monetary point of view. That is, when we restrict

the set of choices to lotteries with a monetary outcome. Those representations are called von

Neumann-Morgenstern representations and require further axioms to guarantee its existence.

We end this part studying the continuous case and its relationship with the weak topology.

The third part of the work defines the key concept of risk aversion and studies its relationship

with concave functions. Also, we present the Arrow-Pratt Coeficient of Absolute Risk Aversion

and use it to rank lotteries and obtain widely used utility functions.

The fourth part is devoted to see how the expected utility theory modifies the portfolio opti-

mization problem. We construct the martingale and the dynamic programming methods and

use them to compute the optimal terminal wealth of binomial markets. In particular, we use

the binomial approximation to the Black-Scholes model to obtain the Merton’s solution to the

problem of maximizing the terminal utility of a portfolio.

Then we devote a whole part to study modern application of the expected utility theory. In

particular,

• We analyse the mean-variance analysis under the prism of the expected utility theory.
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The main result of the section is an implicit definition of certainty equivalent level curves

that modify the Feasible Area and the Optimal Frontier.

• We introduce the Indifference Price Method of valuing derivatives and see that it is an

extension of the risk neutral pricing in the sense that coincide with it in complete markets

and allows us to set a range of buyer-seller prices in the incomplete ones.

• We end the part showing that, under the expected utility theory, the path dependent

derivatives are suboptimal to risk averse agent with a fixed investment horizon.

The sixth part studies the main drawbacks of the expected utility theory and, when possible,

tries to solve them refining the model. The guide of the exposition are the experimental Allais

and Ellberg paradoxes, as well as the Markowitz hypothesis, and the proposed solutions are the

Savage’s Theory of Subjective Probabilites and the Machina’s theorems on Fréchet differentiable

numerical representations.

The last part of the text recovers the historical motivation of the expected utility theory, The

St. Petersburg Paradox, and applies the expected utility theory to solve it, as Daniel Bernoulli

did. Also, we show the insufficiency of the historical solution, via the construction of a Menger’s

Super-Petersburg Paradox, when not using bounded utility functions. We end discussing the

implications of the boundedness hypothesis and how we obtain new paradoxes. In particular,

we study signs of boundedness, without an explicit determination of the utility function, like

Rabin’s Calibration Theorem.

Methodologically, the sources of this work are both primary and secondary. The secondary

sources are the main contributors to the exposition of the fundamentals of the theory while

the primary are intensively used in the application and drawbacks of the model. Most of the

results came directly from the bibliographic sources and were adapted to a common notation

to keep the inner coherence of the text. The original results are limited to small propositions,

expansions of known proofs, footnotes and the most part of the remarks. As a final note on

the methodology, it is worth to note that the results of this work use the techniques of a rich

variety of mathematical fields like Topology, Real Analysis and Measure Theory, Set Theory,

Functional Analysis, Financial Engineering and Probability Theory. Hence, the understanding
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of the whole thesis requires some mathematical baggage.

Part II. Preference relations and expected utility

In this part, we aim to give a model that allows us to predict how an economic agent will

act when facing uncertain scenarios in the future. The main idea of the model is to treat the

possible scenarios as a set of random variables with different outcomes. This is a pretty general

framework for work with it, as it applies to many of our day to day decisions. For example:

• It is Sunday evening and we have no food in the freezer. Should we go, for the first time,

to the fancy new restaurant in the mall or should we buy pizza in the convenience shop?

• I am young and healthy. Is it good for me to contract a life insurance 1 ?

• I only have 24 EUR. What will make me happier, buy a new computer game or go to the

cinema?

We do not know what will exactly happen if we choose to go to the cinema instead of buying

the game, but even in the uncertainty, we have preferences and we are able to choose. And the

reason is that we have expectations about the results of our actions.

To simplify the situation we will adopt the monetary point of view. That is, to identify the set

of possible choices with a set of lotteries. The lotteries are random variables that reward or

cost some money, the outcomes are real numbers, depending on the future states of nature. In

the monetary point of view, the actors of the choices are economic agents that act according

to a preference order defined in the set of lotteries.

This is a fruitful point of view as it helps us to attack the question about the choices and, at the

same time, it gives us a strategy to solve related and important questions like how to price a

product with random outcomes in incomplete markets. However, as we will see, it is not a path

1 The problem of pricing an insurance is an historical motivator of this theory. In 1738, Daniel Bernoulli
gave the first version of this model an wrote the following problem: Suppose Caius, a Petersburg merchant, has
purchased commodities in Amsterdam which he could sell for then thousand rubles if he had them in Petersburg.
He therefore orders them to be shipped there by sea, but in doubt whether or not insure them. The problem can
be found in [3, p. 29] and it solved as a corollary of Proposition 5.1.
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absent of difficulty; there are serious philosophical, empirical and mathematical drawbacks in

the simplest form of the model.

To give an example of the kind of problems that we will face in this undergraduate thesis, lets

consider a natural way to price the lotteries: the mathematical expectation 2. Remember that,

by the Law of large numbers, the mean of the outcomes of a lottery converges to its expectation.

Then, it is reasonable, to consider the expectation as a fair price:

• The seller will not price the lottery far below its expectation because, otherwise, he will

lose money in the long run,

• and the buyer will not accept a price far above its expectation for analogous reasons.

Unfortunately, this approach is flawed: does not reflect the reality as it does not account the

diversity of behaviours we see every day. We do not need complex constructs to show this

empirical failure. A simple example is the following one: lets flip a coin and consider a set Ω

of two possible states of the nature:

Ω = {ω1 : the coin flips tails, ω2 : the coin flips heads}.

Under the uncertainty of the future, we offer two possible lotteries:

(a) Do nothing, a 0 sure rewarding lottery, or

(b) Win 1 EUR if the coin flips tail and lose 1 otherwise.

The expectation of both lotteries is the same: 0 EUR. However, many will choose to play and

many will not. This shows that we need to refine the process of pricing and that the expectation

alone is not enough to achieve good approximations to reality; not everybody gives the same

value.

Also, we have a related problem: the famous paradox of Saint Petersburg. In 1738 Daniel

Bernoulli presented before the Imperial Academy of Sciences in Saint Petersburg a paper in

2 The point of this introduction is to give a small insight of the contents of this work. For that reason, we
will give only a näıve approach to illustrate the problems and we will ignore other considerations like differences
of wealth between sellers and buyers, etc., that have a direct impact in the valuation of a game.
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which he denies the common idea of a universal valuation of games or lotteries given by the

expected value. He developed a groundbreaking theory in which the measure of money is

exchanged with the measure of its utility. At the end of the paper, Bernoulli explains that the

the motivation was a problem proposed by Nicholas Bernoulli:

”This is further confirmed by the following example which inspired these thoughts, and whose

history is as follows: My most honorable cousin the celebrated Nicolas Bernoulli, Professor

utrisque iusirs at the University of Basle, once submitted five problems to the highly distinguished

mathematician Montmort. These problems are reproduced in the work L’analyse sur les jeux

de hazard de M. de Montmort, p.402. The last of these problems runs as follows: Peter tosses

a coin and continues to do so until it should lands ’heads’ when it comes to the ground. He

agrees to give Paul one ducat if he gets ’heads’ on the very first throw, two ducats if he gets it

on the second, four if on the third, eight if on the fourth, and so on, so that with each additional

thrown the number of ducats he must pay is doubled. Suppose we seek to determine the value

of Paul’s expectation.”

In the language of lotteries, the previous translates as follows. Let X be the lottery given by:

• Flip a fair coin until a head appears.

• If the head appears in the k-th flip, the lottery rewards 2k−1 EUR.

Lets compute the expected payoff of this lottery:

• We model the flip of a fair coin with a Bernoulli random variable with parameter 1
2
.

• Each flip is independent. Therefore, the chance of getting k− 1 tails in a row and then a

head is

1

2k
.

• As a result, the expectation, and the fair price, is infinite:

E[X] =
∞∑
k=1

2k−1P [Get k − 1 tails in a row and a head in the k tail] =
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=
∞∑
k=1

2k−1 1

2k
=
∞∑
k=1

1

2
=∞.

The paradox, is that such a bad game has an infinite fair price when, at the same time, people

will hardly pay more than 3 EUR.

The good news are that both problems have a common possible solution: the utility functions

. Grosso modo, utility functions are functions that modify the expected value of a lottery to

reflect important factors, like the differences in the initial wealth of an economic agent or his

aversion to the risk, that have a direct impact in how much an agent is willing to pay for a

lottery.

The next chapters will be devoted to present the set of axioms and to discuss the intuition

behind them. Also, we will study under what circumstances a preference between random

variables is enough well behaved to have an associated utility functions and what are the main

drawbacks of the utility function paradigm.

1 Preference relations, an axiomatic approach.

As stated before, we will give a set of axioms3 that define what is a preference relation. The

mere axioms does not lead us to the probability theory and lotteries. They refer only to a logical

structure on sets and define a very general framework. The economic and stochastic point of

view will be added later to refine our model to solve related problems like pricing portfolios in

incomplete markets, answer some paradoxes, etc.

Let X be non-empty set. The elements of X are the possible choices of an economic agent.

When facing two possible choices, the agent will choose one according to his preferences:

Definition 1.1. A preference order on X is a binary relation � with the following properties:

• Asymmetry : If x � y, then y 6� x.

• Negative transitivity : If x � y and z ∈ X , then either x � z or z � y or both must hold.

3 We owe these axioms to von Neumann and Morgenstern.
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The first axiom is what defines an order. The second one, also known as linearity, states that if

we have a preference between two choices and a third is added, then one of the former choices

is still the most preferable (x if x � z) or the least preferable (y if z � y).

After setting a preference order, we automatically get a weak preference 4 and an indifference

relation:

Definition 1.2. A preference order � on X induces a weak preference order � defined by

x � y ⇐⇒ y 6� x,

and an indifference relation ∼ given by

x ∼ y ⇐⇒ x � y and y � x.

The properties of � are equivalent to the following properties of �:

• Completeness : For all x, y ∈ X , either x � y or y � x.

• Transitivity : If x � y and y � z, then either x � z.

Remark 1.3. The induced � is not a total order on the set X . Recall that a total order R is

binary relation with the following properties:

(a) Completeness.

(b) Transitivity.

(c) Antisymmetry. I.e., if

xRy and yRx,

then

x = y.

4 Both the � and � can be taken as the primitive relation from which the other can be derived. For example
follmer chooses � and chi-fu chooses �.
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The existence of the induced ∼ relation is what impedes � to be a total order, because

x � y ⇔ y 6� x, y � x⇔ x 6� y,

implies, by definition of ∼,

x ∼ y,

and (c) fails to be satisfied.

1.1 Existence of numerical representations

Many practical and theoretical questions not only require a preference order in a set. They also

require a numerical representation of the order.

Definition 1.4. A numerical representation of a preference order � is a function

U : X → R

such that

x � y ⇐⇒ U(x) > U(y) or equivalently x � y ⇐⇒ U(x) ≥ U(y).

Remark 1.5. As any strictly increasing function keeps inequalities, we cannot have uniqueness

when dealing with numerical representations. For example, if f is a strictly increasing real

function and U is a numerical representation of a preference order �,

Ũ(x) := f(U(x)),

is an equivalent numerical representation of �. It can be shown that � is a weak order if, and

only if, � has multiple numerical representations. That is, there exists a set U with more than

one element such that

x � y ⇔ U(x) > U(y) for all U ∈ U .
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In one of the following chapters, and given the scope of this work, we will see that taking the

representations modulo positive affine transformation solves the uniqueness problem.

We now study a natural question: the existence problem. It is clear that the axioms of the

previous section define a fairly general object. But, as usual, the generality comes with a price;

we cannot guarantee, in general, the existence of a numerical representation.

The existence theorems require additional hypothesis. The hypothesis can be relative to

• the set of choices X , like being finite or countable,

• or to the set of the outcomes of the lotteries involved, like being bounded.

Before giving a sufficient and necessary condition for the existence of a numerical representation,

first note that the converse problem, when a real valued function on X represents a preference

order, has an affirmative answer:

Proposition 1.6. For any set X and any real valued function

U : X → R,

the binary relation �U defined as

x �U y ⇔ U(x) > U(y)

defines a preference order on X .

Proof.

• Asymmetry. If x �U y, then U(x) > U(y), which implies that U(y) > U(x) does not hold

and y 6�u x.

• Negative transitivity. By contradiction. Let x � y and let z ∈ X . If negative transitivity

does not hold, then both

x 6�U z ⇒ ¬(U(x) > U(z))⇒ U(z) ≥ U(x)),
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and

z 6�U y ⇒ ¬(U(z) > U(y))⇒ U(y) ≥ U(z)).

Therefore,

U(y) ≥ U(x),

which contradicts x �U y.

The next theorem settles the question about the existence of a numerical representation of

preference order on set X .

Definition 1.7. Let X be an ordered set and let Z ⊂ X . We say that Z is an order dense

subset of X if for all x, y ∈ X \ Z such that

x � y,

there exists a z ∈ Z such that

x � z � y.

Theorem 1.8. For the existence of a numerical representation of a preference relation � it is

necessary and sufficient that X contains a countable order dense subset Z. In particular, any

preference order admits a numerical representation if X is finite or countable.

Proof. Suppose first that we are given a countable order dense subset Z of X . For x ∈ X , let

Z(x) := {z ∈ Z | z � x} and Z(x) := {z ∈ Z | x � z}.

The relation x � y implies that

Z(x) ⊇ Z(y), and Z(y) ⊇ Z(x).

If the strict relation x � y holds, then at least one of these inclusions is also strict. To see this,
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pick z ∈ Z with x � z � y, so that either either x � z � y or x � x � y. In the first case,

z ∈ Z(x) \ Z(y)

while in the second

z ∈ Z(y) \ Z(x).

Now, take any strictly positive probability distribution µ on Z and let

U(x) :=
∑
z∈Z(x)

µ(z)−
∑
z∈Z(x)

µ(z).

By the statement about the strict inclusions given x � y,

U(x) > U(y)⇔ x � y,

so that U is the desired numerical representation.

For the proof of the converse, take a numerical representation U and let J denote the countable

set

J := {[a, b] | a, b ∈ Q, a < b, U−1([a, b]) 6= ∅}.

For every interval I ∈ J we can choose some zI ∈ X with U(zI) ∈ I and thus define the

countable set

A := {zI | I ∈ J }.

At first glance it may seem that A is a good candidate for an order dense set. However, it

may happen that there are x, y ∈ X such that U(x) < U(y) and for which there is no z ∈ X

with U(x) < U(z) < U(y). In this case, an order dense set must contain al least one z with

U(z) = U(x) or U(z) = U(y), a condition which cannot be guaranteed by A.

Let us define the set C of all pairs (x, y) which do not admit any z ∈ A with y � z � x:

C := {(x, y) | x, y ∈ X \ A, y � x and 6 ∃z ∈ A with y � z � x}.
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Then (x, y) ∈ C implies the apparently stronger fact that we cannot find any z ∈ X such that

y � z � x: Otherwise we could find a, b ∈ Q such that

U(x) < a < U(z) < b < U(y),

so I := [a, b] would belong to J and the corresponding zI would be an element of A with y �

zI � x, contradicting the assumption that (x, y) ∈ C. It follows that all intervals (U(x), U(y))

with (x, y) ∈ C are disjoint and non-empty. Hence, there can be only countably many of them.

For each such interval J we pick now exactly one pair (xJ , yJ) ∈ C such that U(xJ) and U(yJ)

are the endpoints of J and we denote by B the countable set containing all xJ and yJ .

Finally we claim that Z := A ∪B is an order dense subset of X . Indeed, if x, y ∈ X \ Z, then

either there is some z ∈ A such that y � z � x, or (x, y) ∈ C. In the latter case, there will be

some z ∈ B with U(y) = U(z) > U(x) and, consequently, y � z � x.

The previous solved the existence problem but has little or none application in the effective

determination of either the numerical representation or the order-dense subset:

(a) Given a denumerable set, it is hard to compute the values of a numerical representation

constructed as done in the previous theorem. For example, consider the standard order on

the rational numbers:

x � y ⇔ x > y, ∀x, y ∈ Q.

It is clear that we can construct a numerical representation with any summable series as

follows. First, as Q is countable, index the elements

Q = {x1, x2, . . . , xn, xn+1, . . .}. (1)

Now, set the positive distribution

µ(xi) :=
1

2i
, i given by the indexing (1)
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and define

U(x) :=
∑

xi∈Z(x))

1

2i
−

∑
xj∈Z(x))

1

2j
.

This is a numerical representation of the standard order but it is not feasible, nor practical,

compute U(x) for a given x ∈ Q.

(b) On the other side, it is not always possible to determinate the order-dense subset of a given

preference order. Recall that in the proof of Theorem 1.8, we define the countable collection

of intervals

J := {[a, b] | a, b ∈ Q, a < b, U−1([a, b]) 6= ∅},

and, for every interval I ∈ J we choose some zI ∈ X with U(zI) ∈ I to define a countable

set A. In most cases, it is not easy, or even possible, to define the functional

ψ : I ⊂ J → J

I 7→ zI .

Therefore, we have to rely in some kind of Axiom of Choice, like the Axiom of denumerable

choice 5 , to guarantee the existence of the dense order subset.

Anyway, it is still a capital result. It uses to be easier to prove theorems when dealing with

countable sets and extend, via density, the result to more general sets. Hence, in most cases we

will define a real functional on X according to empirical results, toy examples, and similar ones,

consider the induced preference order of Theorem 1.6 and, by the previous Theorem, apply all

the properties that derive from having an order-dense subset.

Remark 1.9. We dont need Theorem 1.8 to prove that if � is a preference order in a finite or

countable set X , then exists a numerical representation U of �. Under the finite or countable

hypothesis, we can directly construct U by the following recurrence:

5 The Axiom of denumerable or countable choice, noted as ACω is a weaker version of the Axiom of choice.
One formulation of ACω is what follows: Given a countable collection {An}n∈ω, there is a function ψ with
domain ω and ψ(n) ∈ An for each n ∈ ω. This equivalent to state that there is some infinite subset I ⊂ ω and
ψ : I → ∪n∈IAn with ψ(n) ∈ An for every n ∈ I, which was how we chose the zIs. See Herrlich, Horst, Axiom
of Choice, Springer-Verlag. 2006., chapter 2.1 and 2.2.
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1. Pick one element x1 ∈ X and a real number b. Define

U(x1) = b.

2. Now suppose that we have assigned the value of U for a set of I := {x1, . . . , xn} elements.

For xn+1 proceed until one of the following cases happens:

(a) If exists xk ∈ I such that xn+1 ∼ xk,

U(xn+1) = U(xk).

(b) If xn+1 � xk, for all k = 1, 2, . . . , n,

U(xn+1) = sup
xi∈I

U(xi) + 1.

(c) If xk � xn+1, for all k = 1, 2, . . . , n,

U(xn+1) = inf
xi∈I

U(xi)− 1.

(d) If there are xk, xj such that xk � xn+1 � xj,

U(xn+1) =
infxk�xn+1 U(xk) + supxn+1�xj U(xj)

2
.

It is clear that the function U defined above represents the preference relation �.

The only restriction we have considered in the existence theorem is on the set X . In the next

chapter we will see a well behaved kind of representations that require additional restrictions,

this time in the set of outcomes.
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2 Von Neumann-Morgenstern representations

In this section we exploit the idea of treating the set of choices as lotteries. The only lotteries

that we consider are the ones that can be identified with simple probability distributions. The

simple lotteries are enough to illustrate the key aspects of the theory. Those lotteries can be

written as

µ =
∑

αiδxi , xi ∈ R,
∑

αi = 1,

where αi is the probability of getting an xi outcome. For example,

δ1000

represents a lottery that always awards 1000 EUR. In this context, the set X of lotteries is a

convex set of Borel probability measures defined in an interval S ⊂ R that contains all point

masses δxi . We will note the expected payoff, or fair price, of µ as

m(µ) =

∫
S

zdµ(z).

When dealing with lotteries, we will use a special class of numerical representations: Von

Neumann-Morgenstern representations.

Definition 2.1 (von Neumann-Morgenstern representation). A numerical representation of

preference order � is a von Neumann-Morgenstern representation if it can be written as:

U(µ) =

∫
Ω

u(z)dµ(z), for all µ ∈ X (2)

where u is a real valued function on Ω.

In probability language, a von Neumann-Morgenstern representation U is equivalent to

U(µ) = Eµ[u(z)],

and for that reason, they lead to the expected utility representation when paired with a
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utility function u. Before starting with the definition and the properties of a utility function,

we need to ensure that � admits a von Neumann-Morgenstern representation.

2.1 Existence and uniqueness theorem for von Neumann-Morgenstern

representations

In what follows, we suppose that X is convex. A key property of the von Neumann-Morgenstern

representations is that they are affine in X :

Definition 2.2. A numerical representation U is affine in X if

U(αµ+ (1− α)ν) = αU(µ) + (1− α)U(ν), ∀µ, ν ∈ X , ∀α ∈ [0, 1].

The main point of restricting the model to simple distributions is that we have the following

equivalences:

• There exists an affine representation of �.

• There exists a von Neumann-Morgenstern representation of �.

• � satisfies the Archimedean and the Independence Axiom.

To prove the equivalences, first we need to understand the statements. That is, to define the

Archimedean and the Independence Axioms:

Definition 2.3. A preference relation � on X satisfies the independence or substitution 6

axiom if for all µ, ν ∈ X , µ � ν implies

αµ+ (1− α)τ � αν + (1− α)τ,

for all τ ∈ X and all α ∈ (0, 1].

6 This axioms fails to be satisfied in many empirical tests. As it is a must for having an expected utility
representation, that failure is a major drawback. That topic is treated in Section 12
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To understand the intuition behind the independence axiom, let us think in terms of lotteries.

Suppose that µ, ν, τ are three lotteries with µ � ν and αµ + (1− α)τ is a compound lottery.

Now we sample µ lottery with probability α and τ with probability 1 − α. This is equivalent

to playing directly the compound lottery. With probability 1− α, the distribution τ is drawn

and there are no differences between αµ + (1 − α)τ and αν + (1 − α)τ . Otherwise, the µ is

drawn and, from µ � ν, it seems reasonable to prefer the compound lottery with µ instead of

the ν one. That shows that the satisfaction of the result of a choice in a given event does not

depend on what the result would be if another event had happened: it is independent of the

random value α.

The second axiom is Archimedean axiom.

Definition 2.4. A preference relation � on X satisfies the Archimedean axiom if for any triple

µ � ν � τ , there are α, β ∈ (0, 1) such that

αµ+ (1− α)τ � ν � βµ+ (1− β)τ.

This axiom, that derives its name from the Archimedean principle of the Real Analysis, is also

called the continuity axiom as it acts as a substitute of the continuity of � in a suitable topology

on X . To be precise, if the topology 7 in X makes the convex combinations continuous, in other

words, if

αµ+ (1− α)τ

converges to τ as α decreases to zero and to µ if α increases to 1, then the continuity implies

the Archimedean axiom.

As it is clear that affine representations always satisfies the independence and the Archimedean

axioms, we just need to prove the converse to have the equivalences that we announced at the

beginning of the chapter:

Theorem 2.5. Suppose that � is a preference relation in X satisfying both the Archimedean

and the independence axiom. Then there exists an affine numerical representation U of �.

7 The exact topology is the weak topology. See the subsection 2.2 for a brief summary.
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Moreover, U is unique up to positive affine transformations 8.

To prove this theorem we need a technical lemma:

Lemma 2.6. Under the assumptions of Theorem 2.5, the following assertions are true:

(a) If µ � ν and 0 ≤ α < β ≤ 1, then

βµ+ (1− β)ν � αµ+ (1− α)ν.

(b) If µ � ν and µ � τ � ν, then there exists a unique α ∈ [0, 1] with

τ ∼ αµ+ (1− α)ν.

(c) If µ ∼ ν, then

αµ+ (1− α)τ ∼ αν + (1− α)τ

for all α ∈ [0, 1] and all τ ∈ X .

Proof.

(a) Let λ := βµ+ (1− β)ν. The independence axiom implies that

λ � βν + (1− β)ν = ν.

Hence, for γ := α
β
,

βµ+ (1− β) = (1− γ)λ+ γλ � (1− γ)ν + γλ = αµ+ (1− α)ν.

(b) By (a), if α exists then it is unique. To show existence, we need only to consider the case

µ � λ � ν, for otherwise we can take either α = 0 or α = 1. The candidate is

α := sup{γ ∈ [0, 1] | λ � γµ+ (1− γ)ν}.
8 An affine transformation is a map of the form f(U) = AU + b, with A > 0.
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If λ ∼ αµ+ (1− α)ν is not true, the on of the following two possibilities must occur:

λ � αµ+ (1− α)ν, αµ+ (1− α)ν � λ.

In the first case, by the Archimedean axiom, we obtain β ∈ (0, 1) such that

λ � β[αµ+ (1− α)ν] + (1− β)µ = γµ+ (1− γ)ν (3)

for

γ = 1− β(1− α).

Since γ > α, it follows from the definition of α that

γµ+ (1− γ)ν � λ,

which contradicts (3). In the second case, the Archimedean axioms yields some β ∈ (0, 1)

such that

β(αµ+ (1− α)ν) + (1− β)ν = βαµ+ (1− βα)ν � λ. (4)

As β < 1, βα < α and the definition of α yields some γ ∈ (βα, α] with λ � γµ+ (1− γ)ν.

Part (a) and the fact that βα < γ imply that

λ � γµ+ (1− γ)ν � βαµ+ (1− βα)ν,

which contradicts (4).

(c) We must exclude both of the following two possiblities

αµ+ (1− α)λ � αν + (1− α)λ (5)

and

αν + (1− α)λ � αµ+ (1− α)λ. (6)
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To this end, we may assume that there exists some ρ ∈ X with

ρ 6∼ µ ≡ ν;

otherwise the result is trivial. Let us assume that ρ � µ ∼ ν; the case in which µ ∼ ν � ρ

is similar. Suppose that (5) would occur. The independence axiom yields

βρ+ (1− β)ν � βν + (1− β)ν = ν ∼ µ,

for all β ∈ (0, 1). Therefore,

α[βρ+ (1− β)ν] + (1− α)λ � αµ+ (1− α)λ, ∀ β ∈ (0, 1). (7)

Using the assumption of (5), we obtain from part (b) a unique γ ∈ (0, 1) such that, for any

fixed β,

αµ+ (1− α)λ ∼ γ(α[βρ+ (1− β)ν] + (1− α)λ) + (1− γ)[αν + (1− α)λ] =

α[βγρ+ (1− βγ)ν] + (1− α)λ � αµ+ (1− α)λ,

where we have used (7) for β replaced by βγ in the last step. This is a contradiction. The

possibility (6) is excluded by analogous argument.

Now we can proof the theorem 2.5:

Proof. We give a constructive proof. Fix two lotteries λ and ρ with λ � ρ and define

X (λ, ρ) := {µ ∈ X | λ � µ � ρ}.

The assertion is trivial if no such pair λ � ρ exists- just take a constant U . Otherwise, if
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µ ∈ X (λ, ρ), part (b) of Lemma 2.6 yields a unique α ∈ [0, 1] such that

µ ∼ αλ+ (1− α)ρ.

Then we set U(µ) := α. To prove that U is a numerical representation of � on X (λ, ρ), we

must show that for ν, µ ∈ X (λ, ρ), we have

U(µ) > U(ν)⇐⇒ µ � ν.

To prove the sufficiency, we apply part (a) of Lemma 2.6 to conclude that

µ ∼ U(µ)λ+ (1− U(µ))ρ � U(ν)λ+ (1− U(ν))ρ ∼ ν.

Hence µ � ν.

Conversely, if µ � ν the the preceding arguments already imply that we cannot have U(ν) >

U(µ). Thus, it suffices to rule out the case U(µ) = U(ν). But if U(µ) = U(ν), then by the

definition of U , we have µ ∼ ν, which contradicts µ � ν. We have proved that U is a numerical

representation of � restricted to X (λ, ρ).

Let us show now that X (λ, ρ) is a convex set. Take µ, ν ∈ X (λ, ρ) and α ∈ [0, 1]. Then

λ � αλ+ (1− α)ν � αµ+ (1− α)ν,

using the independence axiom to handle the cases λ � ν and λ � µ, and part (c) of Lemma

2.6 for λ � ν and for λ � µ.By the same argument it follows that αµ + (1 − α)ν � ρ, which

implies the convexity of the set X (λ, ρ). Therefore, U(αµ+ (1− α)ν) is well defined.

Now we have to show that U is affine. i.e.

U(αµ+ (1− α)ν) = αU(µ) + (1− α)U(ν).
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To this end, we apply part (c) of Lemma 2.6 twice:

αµ+ (1− α)ν ∼ α(U(µ)λ+ (1− U(µ))ρ) + (1− α)(U(ν)λ+ (1− U(ν))ρ) =

= [αU(µ) + (1− α)U(ν)]λ+ [1− αU(µ)− (1− α)U(ν)]ρ.

The definition of U and the uniqueness in part (b) of Lemma 2.6 imply that

U(αµ+ (1− α)ν) = αU(µ) + (1− α)U(ν),

and U is an affine numerical representation of � on X (λ, ρ).

Now we prove the uniqueness up to positive affine transformations of U on X (λ, ρ). Let Ũ be

another affine numerical representation of � on X (λ, ρ), and define

Û :=
Ũ(µ)− Ũ(ρ)

Ũ(λ)− Ũ(ρ)
, µ ∈ X (λ, ρ).

Then Û is a positive affine transformation of Ũ , and Û(ρ) = 0 = U(ρ) as well as Ũ(λ) = 1 =

U(λ). Hence, affinity of Û and the definition of U imply

Û(µ) = Û(U(µ)λ+ (1− U(µ))ρ) = U(µ)Û(λ) + (1− U(λ))Û(ρ) = U(µ)

for all µ ∈ X (λ, ρ). Thus Û = U .

Finally we extend U to the full space X . To this end, we first take λ̃, ρ̃ ∈ X such that

X (λ̃, ρ̃) ⊃ X (λ, ρ). By the arguments in the first part of this proof, there exists an affine

numerical representation Ũ of � on X (λ̃, ρ̃), and we may assume that Ũ(λ) = 1 and Ũ(µ) = 0;

otherwise we apply a positive affine transformation to Ũ . By the previous step of the proof,

Ũ coincides with U on X (λ, ρ), and so Ũ is the unique consistent extension of U . Since each

lottery belongs to some set X (λ̃, ρ̃), the affine numerical representation U can be uniquely

extended to all of X .
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As announced, we have solved the existence, and uniqueness up to positive affine transforma-

tions, of the von Neumann-Morgenstern representations when the lotteries of the set X are

simple probability distributions:

Corollary 2.7. Suppose that X is the set of all simple probability distributions on S and that

� is a preference order on X that satisfies both the Archimedean and the independence axiom.

Then there exists a von Neumann-Morgenstern representation U . Moreover, both U and u are

unique up to positive affine transformations.

Proof. Let U be an affine numerical representation of �. That representation exists and is

unique by theorem 2.5. We define

u(x) = U(δx).

If µ is simple, X is of the form

µ =
N∑
i=1

αiδxi , xi ∈ S,
N∑
i=1

αi = 1.

Then, the affine character of U implies

U(µ) = U(
N∑
i=1

αiδxi) =
N∑
i=1

αiU(δxi) =

∫
S

u(z)dµ(z).

Corollary 2.8. Suppose that X is the set of all probability distributions on a finite set S and

that � is a preference order in X that satisfies both the Archimedean and the independence

axiom. Then there exists a von Neumann-Morgenstern representation U . Moreover, both U an

u are unique up to positive affine transformations.

Proof. On finite sets, the probability distributions are simple.

In the Theorem 1.8 we have shown that having a numerical representation of a � is equivalent

to the existence of an order-dense subset. Then, a natural question is if the order-dense subset

of the simple lotteries is independent of the preference order �. The answer is negative as

shown by the following example.
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Example 2.9. Let X be the set of simple lotteries with outcomes in the closed interval S =

[0, 1]. Consider the following two numerical representations:

U(µ) =

∫
S

x1R\Q(x)dµ(x), V (µ) =

∫
S

xdµ(x).

Those representation induce, respectively, the preference orders � and �̃ in X that satisfies

both the independence and Archimedean axiom, they have von Neumann-Morgenstern rep-

resentations, but the order-dense subsets are not the same: it is clear that the degenerated

lotteries

δxi , xi ∈ Q,

are dense in �̃, but they cannot be dense in � as all are equivalent to δ0 with respect to �.

We have set heavy restrictions on X and S in order to have von Neumann-Morgenstern rep-

resentations of �. The following examples show what kind of problems we can face in more

general scenarios:

Example 2.10. Let X be the set on probability measures on S := N for which

U(µ) := lim
k↑∞

kµ(K)

exists and is finite. U is affine and induces a preference order on X which satisfies both

the Archimedean and the independe axiom. However, U does not admit a von Neumann-

Morgenstern representation.

Example 2.11. Let X be the set of all Borel probability measures on S = [0, 1], and denote

by λ the Lebesgue measure on S. According to Lebesgue decomposition theorem, for every

µ ∈ X , µ can be decomposed as

µ = µs + µa,

where µs is singular with respect to λ and µa is absolutely continuous. We define

U(µ) :=

∫
S

xdµa(x).
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U is affine on X and induces a preference order � on X which satisfies both the Archimedean

and independence axioms. But � cannot have a von Neumann-Morgenster representation.

Recall that λ is singular with respect to all the δxi , xi ∈ [0, 1]. That implies that U(δxi) = 0

and u must be equal to zero. Then, the preference relation is the trivial in the sense

λ ≡ µ, ∀µ ∈ X ,

but that contradicts, for example,

U(λ) =
1

2
, U(δ 1

2
) = 0.

2.2 A brief comment about the continuity of the preference orders

In the previous section we have proved that all affine representations of simple lotteries are

von Neumann-Morgenstern representations too. But also we saw, with two examples, that we

cannot expect to have, in general, von Neumann-Morgenstern representations without imposing

additional conditions. One way to obtain representations is asking for continuity. As continuity

is a topological property, we need to endow our set X with a good enough topology. As we will

see, the weak topology is one possible choice. First let us define what is a continuous preference

order.

Definition 2.12. Let X be a topological space. A preference relation � is called continuous

if for all x ∈ X

B(x) := {y ∈ X | y � x} and B(x) := {y ∈ X | x � y}. (8)

are open subset of X .

If we recall the proof of the Theorem 1.8, we used similar pair of set to construct a numerical

representation with a summable series or a positive distribution. We can use the same proof

to construct a numerical representation if we suppose X connected.

Theorem 2.13. Let X be a connected topological space with a continuous preference order �.



2 Von Neumann-Morgenstern representations 28

Then every dense subset Z of X is also order dense in X . In particular there exists a numerical

representation of � if X is separable.

Proof. Take x, y ∈ X with y � x, and consider the sets

B(x) := {u ∈ X | u � x}, B(y) := {v ∈ X | v � y},

given by the definition of continuous order. Since y ∈ B(x) and x ∈ B(y), neither are empty

sets. Moreover, negative transitivity implies that

X = B(x) ∪ x ∈ B(y).

Hence, the open sets B(x) and B(y) cannot be disjoint as X is connected. Thus, the open set

B(x)∩x ∈ B(y) must contain some element z of the dense set Z, which then satisfies y � z � x.

Therefore Z is an order dense subset of X . If X is separable, then there exists a countable

dense subset Z of X , which is also order dense. Hence, we conclude from Theorem 1.8 that

there exists a numerical representation of �.

With additional assumptions, we can also guarantee that the representation is also continuous:

Theorem 2.14. Let X be a topological space which satisfies at least one of the following two

properties:

• X has a countable base of open sets (Second countable space).

• X is separable and connected.

Then every continuos preference order on X admits a continuous numerical representation.

Proof. A proof can be found on Debreu, G., Continuity properties of paretian utility. Interna-

tional Econ. Rev. 5 (1964), 285-293.

This continuous representation can be a von Neumann-Morgenstern representation if we choose

the right topology: the weak topology. The weak topology is a kind of initial topology with
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respect to its dual topological space. That is, with respect to the set of continuous linear forms.

The exact definition is what follows:

Definition 2.15. The weak topology on the setM(S) of non-negative finite measures defined

in a metric space S is the coarsest topology for which all mappings

µ 7→
∫
S

f dµ, µ ∈M(S), f bounded and continuous on S.

are continuous.

The weak convergence is equivalent to other kind of convergence familiar to anybody that has

taken a course in probabilities: the convergence in law or in distribution. Recall that the

convergence in law is defined as follows:

Definition 2.16. Let be (Xn)n a sequence of random variables and let be (Fn)n the corre-

sponding sequence of distribution functions. We say that Xn converges to X in law if

lim
n
Fn(x) = F (x)

in every point x ∈ R at which F is continuous.

The exact relation between the convergence in law, the definition 2.15 and other characteriza-

tions is given by this capital theorem:

Theorem 2.17 (Portmanteau Lemma). Let S be a metric space with its Borel σ-algebra Σ.

We say that a sequence of probability measures µn on (S,Σ) converges weakly to the probability

measure µ if any of the following equivalent conditions is true:

(a) Eµn [f ]→ Eµ[f ] for all bounded continuous functions f .

(b) Eµn [f ]→ Eµ[f ] for all bounded and Lipschitz functions f .

(c) lim supEµn [f ] ≤ Eµ[f ] for every upper semi-continuous function f bounded from above.

(d) lim inf Eµn [f ] ≥ Eµ[f ] for every upper semi-continuous function f bounded from below.
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(e) lim supµn(C) ≤ µ(C) for all closed sets C of the space S.

(f) lim inf µn(U) ≤ µ(U) for all open sets U of the space S.

(g) limµn(A) = µ(A) for all continuity sets A of the measure µ.

Hence, when S = R with the usual topology, the convergence in law and the weak convergence

are the same.

In our framework, the weak topology has all the hypothesis of the previous theorems:

Theorem 2.18. The space M(S) is separable and metrizable for the weak topology. If S is

complete, then so is M(S). Moreover, if S0 is a dense subset of S, then the set

{
n∑
i=1

αiδxi | αi ∈ Q+, xi ∈ S0, n ∈ N

}

of simple measures on S0 with rational weights is dense in M(S) for the weak topology.

And that allows us to announce the following theorem:

Theorem 2.19. Let M :=M1(S) be the space of all probability measures on S endowed with

the weak topology, and let � be a continuous preference order onM satisfying the independence

axiom. Then there exists a von Neumann-Morgenstern representation

U(µ) =

∫
u(x)dµ(x)

for which the function u : S → R is bounded and continuous. Moreover, U and u are unique

up to positive affine transformations.

This theorem involve only bounded functions u and assumptions about the continuity of �.

But, nevertheless, it is general enough to construct, as a corollary, the following result:

Corollary 2.20. Let � be a preference order on the space Mb(S) of boundedly supported

measures

Mb(S) := ∪r>0M1(B(x0, r)) = {µ ∈M1(S) | µ(B(x0, r)) = 1 for some r ≥ 0, x0 ∈ S}
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whose restriction to each M1(B(x0, r)) is continuous with respect to the weak topology. If �

satisfies the independence axiom, then there exists a von Neumann-Morgenstern representation

U(µ) =

∫
S

u(x)dµ(x)

with a continuous function u : S → R. Moreover, U and u are unique up to positive affine

transformations.

As a final word about the continuous case, we can try an axiomatic approach instead of a

topological one. With a third axiom, in addition to the independence and Archimedean axioms,

we can construct von Neumann-Morgenstern representations 9 : the sure thing principle.

Definition 2.21. For any µ, ν ∈M and any measurable set A such that µ(A) = 1, we have

• If δx � ν for all x ∈ A, then µ � ν.

• If ν � δx for all x ∈ A, then ν � µ.

Note that the sure-thing principle is violaten in both Examples 2.10 and 2.11.

Part III. Risk Aversion

3 Introduction and definitions

In this section we will introduce the key concepts of expected utility and risk aversion. To

give an insight of the behaviours that we want to model with those concepts, let us consider

an example. Like we did in the introduction, consider an economic agent with two possible

choices:

(a) A sure 4 EUR lottery,

µ = δ4,

9 See Fishburn, Peter P., Utility theory for decision making. Pub. Operations Res. 18, Johm Wiley, New
York 1970.
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(b) and a lottery tied to the result of flipping a coin:

ν =
1

2
δ0 +

1

2
δ10.

The expected payoff of the lotteries is

m(µ) = 4, m(ν) =
0 + 10

2
= 5.

The second lottery has a higher expected payoff, but nevertheless, a large amount of agents

will choose the first one.

When we observe this behaviour, we say that the agent shows risk aversion and it is equivalent

to say that he will not accept to pay the fair price of a lottery. The risk aversion has direct

consequences in many financial problems, for example:

• Given a risk aversion agent, how big has to be the expected return of a risky asset over

the return of the riskless asset to buy it?

• How can we measure the risk aversion? Does it affect the form of von Neumann-

Morgenstern representation?

• Is correct to optimize portfolios under the Mean Variance paradigm?

• ...

Our model can give an answer those questions. Recall that, under some assumptions, the

preference order of an agent has a von Neumann-Morgenstern representation:

U(µ) =

∫
u(z)dµ(z), ∀µ ∈ X , u real valued.

Because u is the only factor that varies across the possible preference orders of a given set X ,

it is clear that the risk aversion has to be equivalent to some properties of the function u. In

fact, it is equivalent to concavity.
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Before proving that statement, we will define a property that, as we will see later, we expect

to be true in most preference orders:

Definition 3.1. A preference relation � on X is called monotone if

x > y implies δx � δy.

The preference relation is called (strictly) risk averse if ∀µ ∈ X ,

δm(µ) � µ unless µ = δm(µ).

Now we can prove the following equivalences:

Theorem 3.2. Suppose that a preference relation � has a von Neumann-Morgenstern repre-

sentation

U(µ) =

∫
S

udµ.

Then:

(a) � is monotone if and only if u is strictly increasing.

(b) � is risk averse if and only if u is strictly concave.

Proof.

(a) Monotonicity means

u(x) = U(δx) > U(δy) = u(y) for x > y.

(b) If � is risk averse,

δαx+(1−α)y) � αδx + (1− α)δy

holds for all distinct x, y ∈ S and α ∈ (0, 1). Therefore,

u(αx+ (1− α)y) > αu(x) + (1− α)u(y),
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and u is strictly concave. Conversely, if u is strictly concave, Jensen’s inequality implies

risk aversion:

U(δm(X)) = u

(∫
S

zdµ(z)

)
≥
∫
S

u(z)dµ(z) = U(X),

with equality if and only if µ = δm(µ).

Monotone and concave functions play an important role in finance and, for that reason, they

have their own name:

Definition 3.3. A function u : S → R is called a utility function if it is strictly concave,

strictly increasing and continuous on S.

An expected utility representation is a von Neumann-Morgenstern representation

U(µ) =

∫
S

u(z)dµ(z)

where u is a utility function.

Remark 3.4. The utility functions are also called Bernoulli utility functions because Daniel

Bernoulli, and independently Gabriel Cramer, introduced them to answer the St. Petersburg

Paradox. We will review their proposed solutions in Section 15.

4 Measuring and understanding the Risk Aversion

By the definition of risk aversion, a risk averse agent prefers the fair price of a lottery, its

expected payoff, over the lottery. But, due to the concavity of the utility function, he may still

prefer an even lower sure amount. The amount of money that he is willing to sacrifice for a

sure reward is called the risk premium:

Definition 4.1. Let u be a utility function and µ a lottery. The certainty equivalent c(µ, u)

of µ relative to u is the real number that satisfies the following equality

u(c(µ, u)) =

∫
S

u(z)µ(dz).
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The risk premium of X is the number

ρ(µ, u) = m(µ)− c(µ, u).

Remark 4.2. From the definition 4.1, we get

µ ∼ c(µ, u).

The next figure illustrates relates the concepts of certainty equivalent, utility and expected

value:

Fig. 1: Certainty equivalent of a Bernoulli lottery.

Observe that the gap between the certainty equivalent and the expected value corresponds to

the risk premium of the lottery and that the expected utility is in the middle of the utility of

the degenerated lotteries.

4.1 The Arrow-Pratt Measures

From the definition of the certainty equivalent, the risk premium can be viewed as the amount

that an agent would pay to replace a lottery by its expected or fair value. Then, it is reasonable

to expect that the risk premium can be used to compare the risk aversion between economic
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agents. To formalize this idea, lets consider the Taylor expansion of a sufficiently smooth utility

function u(x) around the fair price m of a lottery µ with finite variance,

u(x) = u(m) + u′(m)(x−m) + . . . .

Now evaluate at the certainty equivalent c(µ, u) and truncate the Taylor expansion to obtain

u(c(µ, u)) ≈ u(m) + u′(m)(c(µ, u)−m) = u(m)− u′(m)ρ(µ, u).

From the definition of the certainty equivalent and the Taylor expansion of u, we also get the

following expression,

u(c(µ, u))

∫
u(x)dµ(x) =

∫ [
u(m) + u′(m)(x−m) +

1

2
u′′(m)(x−m)2 + r(x)

]
,

where r(x) is the remainder of the Taylor expansion of u. If we truncate again and evaluate

the integral, we obtain

u(c(µ, u)) ≈ u(m) +
1

2
u′′(m) var(µ).

Joining the two previous approximations, results

ρ(µ, u) ∼ −1

2

u′′(m)

u′(m)
var(µ) =

1

2
α(m) var(µ). (9)

In many contexts, like the mean-variance paradigm, the risk of a random return is identified

with its variance. Therefore, from (9), we see that α is the factor by which an economic agent

weights the associated risk of a lottery and its premium risk.

Definition 4.3. Let u be a twice continuous differentiable utility function defined on S. Then,

α(x) := −u
′′(x)

u′(x)

is called the Arrow-Pratt coefficient of absolute risk aversion of u at level x.

Remark 4.4. Given a twice differentiable function, the quotient of its second and first deriva-
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tives cancels any product by strictly positive scalars. That shows that the Arrow-Pratt coef-

ficient of absolute risk aversion is invariant to strictly positive affine transformations and that

the second derivative is not enough to characterize the risk aversion.

The Arrow-Pratt coefficient of absolute risk aversion is good tool to compare the risk aversion

of two individuals:

Proposition 4.5. Suppose that u and ũ are two utility functions on S, which are twice contin-

uous differentiable, and that α and α̃ are the corresponding Arrow-Pratt coefficients of absolute

risk aversion. Then the following conditions are equivalent

(a) α(x) ≥ α̃(x), for all x ∈ S.

(b) u = F ◦ ũ for a strictly increasing concave function F .

(c) The respective risk premiums satify

ρ(µ, u) ≥ ρ(µ, ũ)

for all µ ∈ X .

Proof.

• (a) ⇒ (b): Since ũ is strictly increasing, it is a utility function, we may define its inverse

function w. Then

F (t) := u(w(t))

is clearly increasing, twice differentiable, and satisfies

u = F ◦ ũ.

Now we have to check that F is concave and strictly increasing. The first two derivatives

of w are

w′ =
1

ũ′(w)
, w′′ = α̃(w)

1

ũ′(w)2
.
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Therefore, the two first derivatives of F are, by the chain rule,

F ′ = u′(w) · w′ = u′(w)

ũ′(w)
> 0,

F ′′ =
ũ′(w)u′′(w)− u′(w)ũ′′(w)

ũ′(w)3
=

u′(w)

ũ′(w)2
[α̃− α] .

By hypothesis, α(x) ≥ α̃(x), for all x ∈ S and u′ is non negative and it follows

F ′′ ≤ 0.

This proves that F is concave and strictly increasing.

• (b) ⇒ (c): By the Jensen’s inequality,

u(c(µ, u)) =

∫
udµ =

∫
F ◦ ũdµ ≤ F

(∫
ũdµ

)
= F (ũ(c(µ, ũ)) = u(c(µ, ũ). (10)

Hence,

ρ(µ, u) = m(µ)− c(µ, u) ≥ m(µ)− c(µ, ũ) = ρ(µ, ũ).

• (c)⇒ (a): Proceed by contradiction. If condition (a) is false, there exists an open interval

O ⊂ S such that

α̃(x) > αx, for all x ∈ O.

Let

Õ := ũ(O),

and denote again by w the inverse of ũ. Then the function

F (t) = u(w(t))

will be strictly convex in the open interval Õ, as seen in the first part of the proof. Thus,

if µ is a measure with support in O, the inequality (10) is reversed and is even strict-
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unless µ is concentrated in a single point. It follows that

ρ(µ, u) < ρ(µ, ũ),

which contradict the hypothesis (c).

4.2 Study of common families utility functions

The Arrow-Pratt coefficient of absolute risk aversion, α, is not only a way to compare utility

functions. It also allows us to construct them. Instead of computing α from u, we can give a

function

α(x)

defined on the usual interval S and solve the differential equation

α(x) = −u
′′(x)

u′(x)

to obtain the utility function u. The following are two standard examples of utility functions

constructed this way:

Example 4.6 (Constant absolute risk aversion (CARA)). If we set a constant α(x) > 0 for all

x ∈ S, we obtain

α = −u
′′(x)

u′(x)
= − log(u′)′(x).

The functions

u(x) = a− be−αx,

solve the ODE. If we apply an affine transformation, we can obtain

u(x) = −e−αx.

This is the negative exponential utility function and it is bounded from above.
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Remark 4.7. The negative exponential utility function induces a preference on the lotteries

that does not depend on the initial wealth w. We can interpret the initial wealth as translation

factor in the outcomes of set of lotteries. Then, for all µ ∈ X ,

∫
u(x+ w)dµ(x) =

∫
−e−α(x+w)dµ(x) = −e−αw

∫
−e−αxdµ(x),

and, ∫
u(x+ w)dµ(x) >

∫
u(x+ w)dν(x)⇔

∫
−e−αxdµ(x) <

∫
−e−αxdν(x).

which means that w does not impact at all in the preference order.

Example 4.8 (Hyperbolic absolute risk aversion(HARA)). Set

α(x) =
1− γ
x

on S = (0,∞) for some γ ∈ [0, 1). Then, up to affine transformations, we have

u(x) = log x for γ = 0, u(x) =
1

γ
xγ for γ ∈ (0, 1).

Also, as

d

dx
α(x) = −1− γ

x2
< 0,

the agent shows a decreasing risk aversion.

A third widely used function is the quadratic utility function:

u(x) = x− b

2
x2, b > 0.

This function is not strictly increasing, as we setted in definition 3.3, but many authors do not

impose that restriction on utility functions. In order to have non-negative utility, x must be

less than 1
b
. If we study its α, we obtain

α(x) =
b

1− bz
,

d

dx
α(x) =

b2

(1− bx)2
> 0,
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which means that the risk aversion is strictly increasing and random outcomes are very penalized

with respect to sure or riskless lotteries.

Observe that the three previous examples show three different behaviours with respect the

variation of x: increasing, decreasing and constant. This leads to a classification of the utility

functions that is important in the two assets problem. That is, how to optimize a portfolio

in a market were only two assets exists: a risky asset and a free risk asset. We will treat this

problem in Section 5.

Definition 4.9. Let u(x) be a utility function and α(x) its Arrow-Pratt coefficient of absolute

risk aversion. Then u is

(a) A decreasing absolute risk aversion (DARA) function if

d

dx
α(x) < 0, ∀x ∈ S.

(b) A constant absolute risk aversion, (CARA) function if

d

dx
α(x) = 0, ∀x ∈ S.

(c) An increasing absolute risk aversion (IARA) function if

d

dx
α(x) > 0, ∀x ∈ S.

Part IV. Portfolio optimization

A common problem in financial engineering is how to optimize a portfolio. By optimization, we

use to understand how to construct a portfolio that maximizes the terminal wealth, the value

of the portfolio at a final trading period T , given an initial wealth.

The expected utility theory adds a new point of view to the portfolio optimization problem. In

some sense, a portfolio can be interpreted as a compound lottery. This interpretation considers
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that each asset in the market is a lottery

X1, X2, . . . , Xn,

that pays the value of the asset at time T . Hence, every possible portfolio is compound lottery

∑
λiXi,

that can be ranked attending to the utility function of the agent. That is, to the terminal

expected utility of the portfolio.

This part of the work analyses the simplest problem, the two asset-one period market, fixes

the notation for the general case and explains strategies to optimize portfolio in more complex

markets.

Remark 4.10. In all the the examples and techniques of this part, we assume that the utility

function of the agent does not change with the oscillation of wealth that occur during the

intermediate trading periods. Actually, this is in general an assumption that does not hold.

The hypothesis that utility functions vary attending to changes in wealth is known as the

Markowitz hypothesis. We analyse this hypothesis in Section 13.2.

5 The one period, two assets market

The simplest example in when we have a market with two assets: money in the bank that

becomes a sure amount at he end of one period and a risky stock that pays a random outcome.

We want to know when an agent will invest in the risky asset and we formalize this as follows.

Consider a non-degenerated bounded from below lottery 10 X defined on some probability space

(Ω,F , P ) and be c a certain amount. We define the compound lottery

Xλ = (1− λ)X + λc, λ ∈ [0, 1].

10 Sometimes, we will use term lottery to refer either a random variable of its corresponding law.
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and set µλ as the distribution function of Xλ. Clearly, λ represent the percentage of wealth

invested in the risk-less asset.

Now we ask which is the λ that maximizes the expected utility? Or, equivalently, which is the

maximum of the function

f(λ) := U(µλ) =

∫
udµλ

defined on [0, 1] with u strictly concave? f is strictly concave and attains its maximum in a

unique point λ∗ ∈ [0, 1]. The answer, in the next proposition:

Proposition 5.1.

(a) We have λ∗ = 1 if E[X] ≤ c and λ∗ > 0 if c ≥ c(u,X).

(b) If u ∈ C1(R), then

λ∗ = 1⇐⇒ E[X] ≤ c

and

λ∗ = 0⇐⇒ c ≤ E[Xu′(X)]

E[u′(X)]
.

Proof.

(a) By the Jensen’s inequality and the linearity of the expectation,

f(λ) ≤ u(E[Xλ]) = u((1− λ)E[X] + λc),

with equality if and only if λ = 1. It follows that λ∗ = 1 if the right-hand side is increasing

in λ, i.e., if E[X] ≤ c.

Strict concavity of u implies

f(λ) ≥ E[(1− λ)u(X) + λu(c)] = (1− λ)u(c(µ, u)) + λu(c),

with equality if and only if λ ∈ {0, 1}. The right-hand side is increasing in λ if c ≥ c(µ, u),

and this implies λ∗ > 0.
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(b) Clearly, as u is concave, we have λ∗ = 0 if and only if the right-hand derivative f ′+ of f

satisfies f ′+(0) ≤ 0. Denote by u′± the left and right-hand derivatives of u. I.e.,

u′−(x)− = lim
y↑x

f(x)− f(y)

x− y
, u′+(x)− = lim

z↓x

f(z)− f(x)

z − x
.

First note that the difference quotients

u(Xλ)− u(λ)

λ
=
u(Xλ)− u(X)

Xλ −X
(c−X),

converge to

u′+(X)(c−X)+ − u′−(X)(c−X)−.

To check this convergence, recall that

(c−X) = (c−X)+ − (c−X)− (c−X)± ≥ 0.

Then, from the definition of Xλ and the triangle inequality,

lim
λ↓0

∣∣∣∣u(Xλ)− u(X)

Xλ −X
(c−X)− (u′+(X)(c−X)+ − u′−(X)(c−X)−)

∣∣∣∣ ≤
≤ lim

λ↓0
(c−X)+

∣∣∣∣u(X + λ(c−X)))− u(X)

X + λ(c−X)−X
− u′+(X)

∣∣∣∣+
+ lim

λ↓0
(c−X)−

∣∣∣∣u(X + λ(c−X))− u(X)

X + λ(c−X)−X
− u′−(X)

∣∣∣∣
Now, if (c−X)+ ≥ 0, we have

c−X ≥ 0⇒ λ(c−X) ≥ 0,

and

X + λ(c−X) ↓ X as λ ↓ 0,
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which implies that for any ε > 0, there exists δ1 such that for all λ ∈ (0, δ1),

(c−X)+

∣∣∣∣u(X + λ(c−X)))− u(X)

X + λ(c−X)−X
− u′+(X)

∣∣∣∣ ≤ (c−X)+ε.

Analogously, as (c−X)− ≥ 0 implies that λ(c−X) ≤ 0, we have

X + λ(c−X) ↑ X as λ ↓ 0,

and again for any given ε > 0, there exists δ2 such that for all λ ∈ (0, δ2),

(c−X)−
∣∣∣∣u(X + λ(c−X))− u(X)

X + λ(c−X)−X
− u′−(X)

∣∣∣∣ ≤ (c−X)−ε.

Therefore, taking δ = min(δ1, δ2), we have

(c−X)+

∣∣∣∣u(X + λ(c−X)))− u(X)

X + λ(c−X)−X
− u′+(X)

∣∣∣∣+
+(c−X)−

∣∣∣∣u(X + λ(c−X))− u(X)

X + λ(c−X)−X
− u′−(X)

∣∣∣∣ ≤ 2|c−X|ε.

which proves the convergence. Also we have that the quotients are P -a.s. bounded by

u′+(a)|c−X| ∈ L1(P ) if a ≤ c ∧X.

To see this, just apply the mean value theorem to the quotient

u(Xλ)− u(X)

Xλ −X

and use the concavity of u to bound the derivative with its value at a ≤ c ∧X.

Therefore, by Lebesgue’s dominated convergence theorem, this implies

f ′+(0) = lim
λ→0

f(λ)− f(0)

λ
= lim

λ→0

∫
u(Xλ)− u(X)

Xλ −X
(c−X)dµ =
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=

∫
lim
λ→0

u(Xλ)− u(X)

Xλ −X
(c−X)dP = E[u′+(X)(c−X)+]− E[u′−(X)(c−X)−].

If u ∈ C1(R), or if the countable set {x | u′+(x) 6= u′−(x)} has µ-measure 0, then we can

conclude

f ′+(0) = E[u′(X)(c−X)],

that is, f ′(0)+ ≤ 0 if and only if

c ≤ E[Xu′(X)]

E[u′(X)]
.

In the same way, we obtain

f ′−(1) = u′(c)E[(X − c)−]− u′+(c)E[(X − c)+].

If u is differentiable at c, then

f ′−(1) = u′(c)(c− E[X]).

This implies f ′−(1) < 0, and hence λ∗ < 1, as soon as E[X] > 0.

Remark 5.2. Now we can answer an historical problem, analysed on the Bernouilli’s paper,

of under what circumstances an agent with utility function u ∈ C would buy an insurance to

cover a possible loss Y of his initial wealth w.

Suppose that 0 ≤ Y ≤ w and P [Y 6= E[Y ]] > 0. If insurance of λY is available at the insurance

premium λπ, the final payoff is given by

Xλ := w − Y + λ(Y − π) = (1− λ)(w − Y ) + λ(w − π).

Full insurance is, by Proposition 5.1, optimal if and only if π ≤ E[Y ]. In the market, the

insurance premium π will exceed the fair premium E[Y ]. In this case, it will be optimal to
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insure only a fraction λ∗Y of the loss with λ∗ ∈ (0, 1). λ∗ will be strictly positive as long as

π <
E[Y u′(w − Y )]

E[u′(w − Y )]
.

It is interesting to note that risk aversion can create demand for insurance even if the insurance

premium π lies above the fair price E[Y ].

6 Setting the framework

The previous proposition dealt with the simplest example and allowed us to fix the upper and

lower bounds where there are diversified portfolios. Now we want to treat more general examples

and explicitly found, when possible, the exact maximal expected utility. To achieve that, first

we need to set the notation and the main concepts. The framework is a finite probability space

(Ω,F , P ). We consider only ω ∈ Ω with strict positive probability:

Ω = {ω1, ω2, . . . , ωN}, P ({ωi}) > 0 for all ωi ∈ Ω.

The σ-field F is given by the parts of Ω:

F = P(Ω).

We consider N trading periods and associate the filtration,

F0 = {Ω, ∅} ⊂ F1 ⊂ . . . ⊂ FN−1 ⊂ FN = F .

In the financial context, the filtration represents that the economic agent knows at any trading

period what happened in the past. The market consists on (d + 1) assets whose price at time

n is given by the non-negative random variables

S0
n, S

1
n, . . . , S

d
n
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measurable with respect to Fn. The zero super-index asset, S0
i , corresponds to a riskless asset,

a bank account, that pays ri interest for sure at the end of the trading period i.

The next key concept is the strategy of investment.

Definition 6.1. Let be (Ω,F , P ) a probability space and let be {Fn} a filtration. A stochastic

process X = (X0, . . . , XN) is predictable if

 X0 is F0 −measurable,

Xn is Fn−1 −measurable for all 1 ≤ n ≤ N.

Definition 6.2. A strategy of investment is a predictable stochastic process

φ = ((φ0
n, φ

1
n, . . . , φ

d
n))0≤n≤N ∈ Rd+1,

where φin indicates the number of stocks, or units of money if i = 0, in the asset i at the instant

n.

The predictability of the strategy means that the position in the portfolio at n is decided at

n− 1. The value of the portfolio at time n is given by the scalar product

Vn(φ) = φn · Sn =
d∑
i=0

φinS
i
n.

We denote Ṽn(φ) its discounted value. If r is fix in all the trade periods, this is equivalent to

Ṽn(φ) =
Vn(φ)

(1 + r)n
.

Analogously, S̃n denotes the vector of discounted stock prices.

We also ask for a self-financing condition in the conditioning of the problem. That is, that

reinvestments at each period does not alter the value of the portfolio:

Definition 6.3. An investment strategy is said to be self-financing if

φn · Sn = φn+1 · Sn, 0 ≤ n ≤ N − 1.
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With the new notation and concepts, we can announce the portfolio optimization problem as

follows:

Given a utility function u, what is the self-financing strategy that optimizes the terminal utility.

That is, find

max
φ∈A
{E(u(VN(φ)) | V0(φ) = x} ,

with x being the initial wealth of the agent and A the set of self-financing portfolios.

Remark 6.4. In classical portfolio optimization problems, it is usual to take the convention

S0
0 = 1 to normalize the computations. However, this is not correct when optimizing the

terminal expected utility because risk aversion may vary with the initial wealth and, therefore,

we can expect different maximal strategies given different values of S0
0 .

7 The martingale method

7.1 Arbitrage and martingales

When we try to formulate a mathematical model of the reality, we often start with some axioms

or principles derived from our intuition, laws of the nature, simplifications,... In Financial

Engineering, or Quantitative Finance, the main principle from which we obtain the formulas

in our models is the principle of no-arbitrage.

Definition 7.1. A strategy φ is admissible if it is self-financing and Vn(φ) ≥ 0 for all 0 ≤ n ≤ N .

Definition 7.2. An arbitrage (opportunity) is an admissible strategy φ with zero initial value

and with final value different from zero. That is,

1. V0(φ) = 0,

2. Vn(φ) ≥ 0, for all 1 ≤ n ≤ N ,

3. P (VN(φ) > 0) > 0.

A market is said viable if it is free of arbitrage opportunities.
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The no-arbitrage principle is a strong assumption that uniquely determines many, either stochas-

tic or deterministic, financial models and formulas. What we will show now is that no-arbitrage

in the stock market is equivalent to the existence of a probability such that the evolution of

discounted stock prices are martingales 11 with respect to it.

Definition 7.3. A sequence of random variables X = (Xn)0≤n≤N is adapted to a filtration

{Fn}0≤n≤N if Xn is Fn-measurable, 0 ≤ n ≤ N .

Definition 7.4. An adapted stochastic process (Mn)0≤n≤N in a probability space (Ω,F , P ) is

a martingale if

EP [|Mn|] <∞, 0 ≤ n ≤ N,

and

EP [Mn+1 | Fn] = Mn.

The martingale property is equivalent to have zero conditional expected variation. That is,

E[Mn+1 −Mn | Fn] = 0,

Also, it is easy to see that martingales are closed by linearity and that

E[Mn+j | F ] = Mn, ∀j ≥ 0.

The next two theorems show why martingales play a capital role in Financial Engineering.

Definition 7.5. Let be P and P ∗ probability measures on a measurable space (Ω,F). P and

P ∗ are equivalent if

P � P ∗ and P ∗ � P.

That is, the null sets with respect to P and P ∗ coincide.

Definition 7.6. A market is complete if any derivative, a random payoff h tied to the evolution

of the stocks, is replicable. That is, if there exists an admissible strategy φ such that replicates

11 The martingales get its name from a family of betting strategies that were popular in the 18th century
France. The simplest one, consisted in doubling the bet in each flip of a coin.



7 The martingale method 51

h:

VN(φ) = h.

Theorem 7.7. A financial market is viable, free of arbitrage, if and only if there exists P ∗

equivalent to P such that discounted prices of the stocks (S̃jn), j = 1, . . . , d are P ∗-martingales.

P ∗ is named the risk neutral probability.

Theorem 7.8. A viable market is complete if and only if there is a unique probability P ∗

equivalent to P under which the discounted prices are martingales.

The theorems also allows us to equal the price of a derivatives to its expected discounted prices

with respect to the risk neutral probability:

EP ∗ [X̃ | Fn] = Cn.

7.2 Derivation of the martingale method

The martingale method of portfolio optimization requires that the market is complete. By

Theorems 7.7 and 7.8, the completeness of the market is equivalent to:

(a) The uniqueness of the risk neutral probability P ∗ equivalent to P ,

(b) The replicability of random payoffs.

Both facts allows us to define a maximization strategy. Let be Vx the set of random variables

that can be replied with initial wealth x. We proceed in two steps:

1 Find the maximal terminal utility Ŷ defined as

E[u(Ŷ )] = max
Y ∈Vx

E[u(Y )].

2 Compute the self-financing portfolio that replies Ŷ .

By Theorem 7.8, the completeness of the market is equivalent to

EP ∗

[
Y

(1 + r)N

]
= x, P ∗risk neutral probability, Y ∈ Vx.
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Hence, we have can transform the portfolio optimization problem in the equivalent constrained

optimization problem

maximise E[u(Y )],

subject to

EP ∗

[
Y

(1 + r)N

]
= x.

A standard way to solve the problem, assuming that u is enough differentiable, is to set the

Lagrangian

L(Y, λ) := E[u(Y )]− λ
(
EP ∗

[
Y

(1 + r)N

]
− x
)
.

This is equivalent, by the Radon-Nikodym Theorem 12 , to

L(Y, λ) := E

[
u(Y )]− λL Y

(1 + r)N
− x
]
,

where L = dP ∗

dP
is the Radon-Nikodym derivative of P ∗ with respect to P . Now we maximize

L(Y, λ) and get the extremal conditions

u′(Y ) =
λL

(1 + r)N
, (11)

x = E

[
Y

(1 + r)N
L

]
. (12)

If we denote I := (u′)−1(s), the equations turn

Y = I

(
λL

(1 + r)N

)
, (13)

12 The Randon-Nikodym Theorem states that two σ-finite measures satisfy µ � ν if and only if there exists
a measurable function in f ∈ L1(ν) such that

µ(A) =

∫
A

fdν.

We say that f is the Radon-Nikodym derivative of µ with respect to ν and note f = dµ
dν .
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and

x = E

I
(

λL
(1+r)N

)
(1 + r)N

L

 . (14)

From (14), we can isolate λ and replace it in (13) to find Y . The Y found is the possible

maximum and now, we construct the strategy that replies it, which exists by the completeness

of the market.

Remark 7.9. It is not always easy to calculate the Radon-Nikodym derivative of two arbitrary

measures. Fortunately, this is not our case. If we have two equivalent finite and discrete

probability measures µ and ν, we can compute directly dµ
dν

. Let be h = dµ
dν

. It satisfies

µ(ω) = h(ω)ν(ω), ∀ω ∈ Ω.

Hence,

h(ω) =
µ(ω)

ν(ω)
,

and we just need to make the quotient of the probabilities to obtain dµ
dν

.

7.3 Examples

Now we calculate the optimal wealth with respect to the three basic examples of utility func-

tions.

Example 7.10 (Exponential utility). Consider u(x) = −e−ax. Then,

u′(x) = ae−ax, I(y) =
1

a
log

(
1

y

)
.

The maximal terminal utility is

Y =
1

a
log

(
(1 + r)N

λL

)
.

To find λ, we have

x = E

[
L

a(1 + r)N
log

(
(1 + r)N

λL

)]
.
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Hence,

ax(1 + r)N = log

(
(1 + r)N

λ

)
E [L]− E[L logL],

and

log

(
(1 + r)N

λ

)
=
ax(1 + r)N + E[L logL]

E[L]
= ax(1 + r)N + E[L logL].13

Replacing in the first equation gives us

Y = x(1 + r)N +
E[L logL]− logL

a
.

Example 7.11 (Quadratic utility). Given u(x) = x− b
2
x2, we have

u′(x) = 1− bx, I(y) =
1− y
b

.

The maximal utility is

Y =
1

b
− λL

b(1 + r)N
.

We calculate λ,

x(1 + r)N = E

[
L

b
− λL2

b(1 + r)N

]
,

λ =
1

E[L2]

(
(1 + r)N − xb(1 + r)2N

)
.

Hence,

Y =
1

b
− L

E[L2]

(
b− x(1 + r)N

)
.

We break the hyperbolic utility in two cases.

13 The expected value of a Randon-Nikodym derivative L of a probability measure with respect to the domi-
nating measure is always 1. Just recall that if ν � µ,

ν(A) =

∫
A

Ldµ.

Therefore,

Eµ[L] =

∫
Ω

Ldµ = ν(Ω) = 1.
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Example 7.12 (Logarithmic utility). We have u(x) = log x,

u′(x) =
1

x
, I(y) =

1

y
.

Then,

x = E

[
(1 + r)N

λL

1

(1 + r)N
L

]
=

1

λ
,

and

Y =
x(1 + r)N

L
.

Example 7.13 (Monomial utility). Let be u(x) = xγ

γ
,

u′(x) = xγ−1, I(y) = y
1

γ−1 .

Then,

Y =

(
λ

(1 + r)N
L

) 1
γ−1

.

We find λ,

x = E


(

λ
(1+r)N

L
) 1
γ−1

(1 + r)N
L

 ,
that is

λ
1

γ−1 = x(E[(L(1 + r)−N ]
γ
γ−1 ))−1,

and

Y =
x(L(1 + r)−N)

1
γ−1

E[(L(1 + r)−N ]
γ
γ−1

.

8 The Cox-Ross-Rubinstein Binomial Model

The binomial model is a simple, yet powerful, tool to work with discrete time stochastic pro-

cesses. It is used to:

• Price derivatives on stocks, securities and commodities, like swaptions and options.
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• Discretize and stress the hedging of continuous time models like the Black-Scholes model

14.

• Via the option theory, evaluate non-financial investment and decision problems like pricing

a lease on a gold mine 15 stressing risk factors or toll a power plant.

To summarize the binomial model, let be

X = (Xt)0≤t≤N

a real valued discrete time stochastic process. At each time t, we have two possible future

states:

• A up state with probability p.

• A down state with probability 1− p.

This schema generates a binomial lattice

Fig. 2: A Binomial Lattice of 3 periods.

14 The Black Scholes model has big problems. One of them is that continuous-time trade is not a realistic
assumption and we need to discretize the trade periods. This impedes perfectly hedge the option and, depending
on the realized path of the discretized process, we can incur in big loses or wins.

15 To see an example of option theory applied to decision problems, check the popular example Simplico gold
mine case in Luenberger, Investment Science, OUP 1998.



8 The Cox-Ross-Rubinstein Binomial Model 57

with

1 + 2 + . . .+N + (N + 1) =
(N + 1)(N + 2)

2

nodes. To further simplify the model, we will suppose that:

(a) The probability q do not depend on the time t.

(b) Given a present state Xt = x, we obtain the next up state multiplying by a factor u and

the down state multiplying by d. In most cases, d will equal 1
u
.

To summarize, the marginal law of Xt can be written as follows:

Xt =

 uXt−1 with probability p,

dXt−1 with probability 1− p.

To simplify, we will assume that u and d probabilities do not depend on the time t, nor p does.

In our context, we will suppose that the binomial lattice shows the evolution of the price of a

risky asset, like an stock. Furthermore, we will also suppose that there exists a risk-less asset,

a bank account, that pays an interest r at the end of each trading period.

Now, we check if a market modelled this way, is complete. This is equivalent, by Theorem 7.8

to the existence of a unique risk neutral probability. And, by the assumptions of having p, u

and u independent of time, is enough to solve the problem for this 1 period market:

Fig. 3: Single period market with risk neutral probability.
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That is, to find p∗ such that

E∗P [X1] = p∗
u

1 + r
+ (1− p∗) d

1 + r
= 1 = X0.

This has the unique solution

p∗ =
(1 + r)− d
u− d

, 1 + r ∈ (u, d).

Now that we have found the risk neutral probability and ensured that the market is complete,

the martingale method gives us the maximal terminal utility.

Example 8.1. Let us take logarithmic utility function. Checking the last column of the

binomial lattice, or by direct computation, it is clear that each path ω is completely determined

by the number UN of ups that occurred until time N and, therefore, the respective probabilities

can be computed with the joint distribution of N Bernoulli random variables with parameter

p:

P{number of ups = UN} =

(
N

UN

)
pUN · (1− p)N−UN .

The same argument applies when the binomial lattice follows the risk neutral probability, from

which follows that the Radon-Nikodym derivative L, the quotient of the laws, is

L =

(
p∗

p

)UN
·
(

1− p∗

1− p

)N−UN
.

By Example 7.12, the maximal terminal utility Y is

Y =
x(1 + r)N

L
= x(1 + r)N

(
p

p∗

)UN
·
(

1− p
1− p∗

)N−UN
.

Because the market is complete, we can find a self-financing portfolio that replicates the terminal

utility Y . As usual, the wealth invested in the risky asset is

φ1
N =

V u
N − V d

N

SN−1(u− d)
.
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Then

φ1
NSN−1 =

V u
N − V d

N

(u− d)
=
x(1 + r)N

(u− d)

(
p

p∗

)UN−1

·
(

1− p
1− p∗

)(N−1)−UN−1
(

p− p∗

p∗(1− p∗)

)
.

The value of the portfolio that replies the payoff Y in N − 1 is given by the risk neutral

probability:

VN−1 = EP ∗

[
Y

1 + r

∣∣∣∣FN−1

]
=

=
x(1 + r)N

(u− d)

(
p

p∗

)UN−1

·
(

1− p
1− p∗

)(N−1)−UN−1
(
p

p∗
p∗ +

1− p
1− p∗

(1− p∗)
)

=

=
x(1 + r)N

(u− d)

(
p

p∗

)UN−1

·
(

1− p
1− p∗

)(N−1)−UN−1

.

Putting all together,

φ1
NSN−1

VN−1

=
(1 + r)(p− p∗)
p∗(1− p∗)(b− a)

.

Observe that this quantity does not depend on time N , from where we obtain that the ratio of

investment in the risky asset is constant:

φ1
NSN−1

VN−1

=
φ1
N−1SN−2

VN−2

= . . . =
φ1

1S0

x
.

.

8.1 The Binomial Model and Dynamic Programming

In this section we prepare the tools to derive the well known Merton’s solution to the problem

of maximizing the terminal utility of a portfolio. Merton’s original problem is set in continuous

time, but we will be able to reach the same result in discrete time applying methods of dynamic

programming to the binomial model.

We refer as dynamic programming a set of techniques extensively used in Mathematics and

Applied Sciences. The idea that bonds all those techniques is to break the problem in simpler

sub-problems. For example, the Dijkstra algorithm switch the problem
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• Find the shortest path from vertex a0 to vertex an in a connected graph.

with this set of simpler problems

• Set S = {a0}. Now find the nearest vertex ak to the set S, record its shortest path and

add the vertex to the set S. Continue until an has been added to the set.

Consider now a market with N trading periods, d risky assets and 1 risk-less asset. The

Dynamic Programming strategy that we apply to the portfolio optimization problem is to

break the original problem in tail optimization sub-problems. That is, define

Un(y) = max{E[u(VN(φ))|Fn], φ ∈ Ayn},

where n = 0, 1, . . . , N − 1 is the trading period and Ayn is the set of self-financing portfolios

made from period n with value y at time n. Due to the fact that the value of every self-financing

portfolio depends on its initial value and the predictable sequence,

(φ1
n, φ

2
n, . . . , φ

d
n)0≤n≤N ,

we have

VN(φ) = (1 + r)N

(
y

(1 + r)n
+

N∑
j=n+1

φj ·∆S̃j

)
.

Therefore,

Un(y) = max{E[u(VN(φ))|Fn], (φ1
j , φ

2
j , . . . , φ

d
j )n+1≤j≤N predictable, Vn = y}.

From this expression we can deduce the functional equation of the problem and define a well-

posed the optimization method:

Proposition 8.2.

Un(y) = max
φFn−measurable

{E[Un+1(Vn+1(φ) | Fn], Vn = y} =
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= max
φFn−measurable

{
E

[
Un+1((1 + r)N

(
y

(1 + r)n
+

N∑
j=n+1

φj ·∆S̃j

)
| Fn

]}
.

Proof. By definition, UN(y) = u(y), then

UN−1 = max
{
E [u(VN(φ)) | FN−1] , (φ1

j , φ
2
j , . . . , φ

d
j )j=N predictable, VN−1 = y

}
=

= max
{
E [UN(VN(φ)) | FN−1] , (φ1

j , φ
2
j , . . . , φ

d
j )j=N predictable, VN−1 = y

}
.

Also,

Un(y) = max
φ Fn−measurable
(ϕj)−measurable

E

[
u

(
(1 + r)N

(
y

(1 + r)n
+ φ ·∆S̃n+1 +

N∑
j=n+2

ϕj ·∆S̃j

))∣∣∣∣∣Fn
]

=

= max
φFn−measurable

{
max

(ϕj)−measurable
E

[
u

(
(1 + r)N

(
y

(1 + r)n
+ φ ·∆S̃n+1+

+
N∑

j=n+2

ϕj ·∆S̃j

))∣∣∣∣∣Fn
]}

=

= max
φ Fn−measurable

{
max

(ϕj)−measurable
E

[
E

[
u

(
(1 + r)N

(
y

(1 + r)n
+ φ ·∆S̃n+1+

+
N∑

j=n+2

ϕj ·∆S̃j

))∣∣∣∣∣Fn+1

]∣∣∣∣∣Fn
]}

=

= max
φ Fn−measurable

{
E

[
max

(ϕj)−measurable
E

[
u

(
(1 + r)N

(
y

(1 + r)n
+ φ ·∆S̃n+1+

+
N∑

j=n+2

ϕj ·∆S̃j

))∣∣∣∣∣Fn+1

]∣∣∣∣∣Fn
]}

=

= max
φ Fn−measurable

E

[
Un+1

(
(1 + r)n+1

(
y

(1 + r)n
+ φ ·∆S̃n+1

))∣∣∣∣Fn] .
In the last equality we used the fact that, if Z is a random variable which depends on (φj),

max
(ϕj) previsible

E[Z((ϕj))|Fn] = E

[
max

(ϕj) previsible
Z((ϕj))|Fn

]
.
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To prove this statement, for all (ϕJ) predictable, its is clear that

E

[
max

(ϕj) previsible
Z((ϕj))|Fn

]
≥ E [Z((ϕj))|Fn]

and

E

[
max

(ϕj) previsible
Z((ϕj))|Fn

]
≥ max

(ϕj) previsible
E[Z((ϕj))|Fn].

For the converse inequality, let be (ψj) predictable that satisfies

E

[
max

(ϕj) previsible
Z((ϕj))|Fn

]
= E [Z((ψj))|Fn] .

Obviously,

E

[
max

(ϕj) previsible
Z((ϕj))|Fn

]
= E [Z((ψj))|Fn] ≤ max

(ϕj) previsible
E [Z((ϕj))|Fn] .

As we have announced, by the previous proposition, solve the original problem is equivalent to

solve the sequence of tail sub-problems. That is, we only just need to compute the backward

recurrence

UN−1 ⇒ UN−2 ⇒ . . .⇒ U0,

to solve the whole problem.

In the general framework of Dynamic Programming, this property is named The Principle

of Optimality and states that the optimal policy of the tail subproblem coincides with the

corresponding portion of the solution of the original problem. The intuition behind this principle

is simple: if a new policy could outperform the original policy on the tail sub-problem, the

original problem could be improved by replacing the corresponding portion with the new policy.

Remark 8.3. Observe that, under the assumption we have made at beginning of this section,

the stochastic processes modelled by the Binomial Lattice are Markov Processes. That is,

P [Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . . , X1 = x1] = P [Xt = xt | Xt−1 = xt−1].
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This property allows us to guarantee that the dynamical programming strategy is well posed

and that backward recurrence can solve the optimization problem.

Example 8.4. We recover the Example 8.1 to check that the martingale and the dynamic

programming methods coincide. We have

Un(y) = max {E [log(VN(φ)) | Fn] , φ ∈ Ayn} .

Then,

UN−1(VN−1) = max
φ1N

E
[
log
(

(1 + r)N(ṼN−1 + φ1
N∆S̃1

N

)
|FN−1

]
=

= max
φ1N

(
log[(1 + r)VN−1 + φ1

N(d− 1− r)S1
N−1)p] + log[(1 + r)VN−1 + φ1

N(u− 1− r)S1
N−1](1− p)

)
.

If we calculate the first order conditions,

p(u− 1− r)S1
N−1

(1 + r)VN−1 + φ1
N(u− 1− r)S1

N−1

+
(1− p)(d− 1− r)SN−1

(1 + r)VN−1 + φ1
N(d− 1− r)S1

N−1

= 0.

We obtain from the last equality

φ1
NSN−1

VN−1

= (1 + r)

(
p

1 + r − d
− 1− p
u− 1− r

)
,

and substituting φ1
N ,

UN−1(VN−1) = p log

(
VN−1(1 + r)p(u− d)

(1 + r − d)

)
+ (1− p)

(
VN−1(1 + r)(1− p)(u− d)

u− 1− r

)
=

= log(VN−1) + C, C constant.

Applying an induction argument,

φ1
NS

1
N−1

VN−1

=
φ1
N−1S

1
N−2

VN−2

= . . . =
φ1

1S
1
0

x
,

which is the same formula that we have derived from the martingale method.
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8.2 The binomial approximation to the Black-Scholes model

The Black-Scholes equations are a well known, and used despite its limitations, model for

pricing derivatives. Applies to a two assets market:

(1) A risk-less asset, like a bank account, that pays a fixed interest r,

(2) A risky asset, like a stock, which its price is a random variable.

Also, it assumes:

(a) The evolution of the risky asset follows a Geometric Brownian Motion with constant drift

and volatility.

(b) There are no trade fees and the stock can be traded in continuous time.

(c) The stock does not pay dividends 16.

In our language, the risk-less asset evolves as

S0
t = ert,

and the risky asset as

S1
t = S1

0 exp (µ+ σBt) , t ≥ 0,

where Bt is a Brownian Motion.

Definition 8.5. A Brownian Motion is a stochastic process on some probability space with

these properties:

(a) The process starts at 0: P [B0 = 0] = 1.

(b) The increments are independent. If

t0 ≤ t1 ≤ . . . ≤ tk,

16 The original Black-Scholes model did not include dividends, but it can be modified to include them. The
inclusion of dividends has a big impact in the valuation of derivatives like American options, but we do not
need to consider that case in this work.
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then

P [Bti −Bti−1
∈ Hi, i ≤ k] =

∏
i≤k

P [Bti −Bti−1
∈ Hi].

(c) For 0 ≤ s < t the increment Bt − Bs is normally distributed with mean 0 and variance

t− s:

P [Bt −Bs ∈ H] =
1√

2π(t− s)

∫
H

e
−x2

2(t−s)dx.

Definition 8.6. A Geometric Brownian Motion (GBM) with drift µ is a stochastic process

Y = S0e
X(t)

with S0 > 0, X(t) = µt+Bt and Bt being a Brownian Motion.

Hence, we want to set a binomial lattice that approximates the paths of a Geometric Brownian

Motion to apply the previous optimization results.

A binomial lattice, with the restrictions set on Section 8, is completely determined by the

parameters u, d and p. Our duty is now calculate them to approximate the GBM S on a time

interval [0, T ]. Take an arbitrary n ∈ N and break the time interval (0, T ] into n equal ∆T

sized intervals (
0,
T

n

]
,

(
T

n
,
2T

n

]
, . . . ,

(
(n− 1)

n
T, T

]
.

It is clear that the risk-less asset increases by a factor of exp(r∆T ) at the end of each subinterval.

To simplify the notation, we set ti := nT
n

. We have

Li :=
Sti
Sti−1

=
exp (µti + σBt)

exp (µti−1 + σBt−1)
= exp

(
µ∆t+ σ(Bti −Bti−1

)
)

Taking logarithms and applying property (b) of Definition 8.5,

log(Li) = µ∆t+ σ(Bti −Bti−1
) = µ∆t+N (0, σ2∆T ) =

= N
(
µ∆t, σ2∆T

)
.
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This means that Li is a Lo}N (µ∆T, σ2∆T ) and, due to the equality

S1
t = S0L1L2 · Lt,

we deduce that the Geometric Brownian motion can be discretized as a product of i.i.d. lognor-

mal random distributions. Now recall that a lognormal distribution, like the normal distribution

from where it derives, is completely determined by its mean and variance or, equivalently, by

setting its first and second order moment. With some calculations, for example using moment-

generating functions, we can obtain those both values

E[L] = exp
(
µ∆T +

σ

2
∆T
)
, E[L2] = exp (2µ∆T + 2σ∆T ) .

We choose now the parameters u, d and p that match those moments at each Bernoulli node

of the Binomial tree solving the system of equations

pu+ (1− p)d = exp
(
µ∆T +

σ

2
∆T
)
, pu2 + (1− p)d2 = exp (2µ∆T + 2σ∆T ) .

In general, this system has infinite solutions as we have two equations and three variables. But

in our case, we assumed that the binomial models we use satisfy

u =
1

d
.

With this additional condition, the system has the unique solution for p

p =
exp

((
µ− σ2

2

)
∆T
)
− d

u− d
.

Plugging this on the equations yields,

u =
1

2

(
exp

(
−
(
µ− σ2

2

)
∆T

))
+ exp

((
µ+

σ2

2

)
∆T

)
+
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+
1

2

√(
exp

(
−
(
µ− σ2

2

)
∆T

))
+ exp

((
µ+

σ2

2

)
∆T

)2

− 4.

This value of u, and hence d, can be approximated, for enough small ∆T , by

u = eσ
√

∆T , d = e−σ
√

∆T .

Remark 8.7. Those values converge to the paths of GBM with volatility σ and drift µ. We

will not prove this result and limit us to give a small outline of the prove. When n is large

enough, by the Central Limit Theorem,

log(B1B2 · · ·Bn) = n log(B1) ≈ N(µT, σ2T ).

Taking exponentials on both sides,

S1
n = S1

0

n∏
i=1

Bi ≈ eX(T ).

Now, it can be shown that

S1
n

n↑∞−→ S1
T in distribution,

using again the Central Limit Theorem and the fact that

E

[
log

(
n∏
i=1

Bi

)]
= nE[log(B1)]

n↑∞−→ µT and Var

[
log

(
n∏
i=1

Bi

)]
.

Example 8.4 tells us what is the optimal investment in a risky asset following a GBM under a

logarithmic utility function. We have proved that the optimal fraction of the initial wealth x

invested in the risky asset is

φ1
1S

1
0

x
= (1 + r)

(
p

1 + r − d
− 1− p
u− 1− r

)
.
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Using the parameters that converge to the binomial model, the formula becomes,

φ1
1S

1
0

x
= er∆T

(
p

er∆T − e−σ
√

∆T
− 1− p
eσ
√

∆T − er∆T

)
.

with

p =
exp

((
µ− σ2

2

)
∆T
)
− e−σ

√
∆T

eσ
√

∆T − e−σ
√

∆T
.

If we take the limit ∆T → 0, the optimal wealth converges to

µ− r
σ2

(15)

The same Dynamic Programming procedure results, when paired with a Constant Relative

Risk Aversion (CARRA) 17 utility function,

u(x) =
1

1− γ
x1−γ,

in the following optimal portfolio investment

φ1
1S

1
0

x
=
µ− r
γσ2

.

This is the famous Merton’s solution to the optimization problem that he found in a continuous

time setting and that we were able to derive from the discretization of the GBM. Observe that

(15) is a particular case that can be obtained as a limit case γ → 1.

17 The Arrow-Pratt Coefficient of Relative Risk Aversion is a measure of risk aversion related that is obtained
multiplying the Arrow-Pratt Coefficient of Absolute Risk Aversion by the current wealth of the agent. Hence,
a CARRA utility function is a solution of the ODE

−xu
′′(x)

u′(x)
= α.
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Part V. Other applications of the theory

9 Indifference price

One common problem in Financial Engineering is how to price derivatives or contingent claims.

Derivatives are a kind of lotteries bonded to the evolution of a, real or not, underlying assets.

For example, the European Put Option allows to exercise the right to sell an asset with price

St in a future time T at a fixed price, called the strike price, K. In our language, is a lottery

that pays

X = max(K − ST , 0).

Derivatives are very important in modern days and offer undoubted advantages. At the same

time, they can be pretty complex and hard to manage: non-linear payoffs, multiple exercise

times, synthetic underlying assets, reliance on complex numerical methods and so on. The

market models that we have seen in this work, like the Binomial Lattice or the Black-Scholes, are

complete 18 and exists a unique arbitrage free price. Then, under the completeness hypothesis,

the expected utility theory does not add anything worth to note on the pricing problem. I am

not saying that the expected utility theory is irrelevant in complete markets; the theory still

ranks the derivatives and can give birth to impressive results that discard whole families of

derivatives. But the price is unique and independent of the utilities functions of the agents.

The incomplete market are a complete different story. In the incomplete markets we cannot

replicate all the derivatives and, in consequence, some financial products have a range of ar-

bitrage free prices. Within this range, the supply and the demand fix the final price of the

derivatives and the mathematical models are more complex and pricing require more assump-

tions than the mere absence of arbitrage.

If we assume that agents are maximizers of utility functions, then the expected utility theory

gives a new way to fix the feasible range of prices of derivative: the utility indifference price.

Given a contingent claim, CT , the utility indifference buy price is the price at which the agent

is indifferent (in the sense that his expected utility) between paying nothing and not buying

18 See Subsection 7.1 for the main definitions and results.
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the claim CT and paying pb now to buy the claim CT at time T . Analogously, the utility

indifference sell price is price at with the agent is indifferent between receiving nothing and not

selling the claim CT and receive ps now to sell the claim CT at time T .

Definition 9.1. Let k > 0 be the units of the claim CT and let x be the initial wealth of an

economic agent with utility function u. Define

V (x, k) = sup
XT∈A(x)

E[u(XT + kCT )],

where A(x) are the self-financing portfolios at time T with initial value x.

The utility indifference buy price pb(k) is the solution of

V (x− pb(k), k) = V (x, 0). (16)

The utility indifference sell price ps(k) is the solution of

V (x+ ps(k),−k) = V (x, 0). (17)

Observe that, by definition, pb(k) = −ps(−k).

Example 9.2. Consider an agent with exponential utility function u = − exp(−x) and initial

wealth w. Suppose that we have a two assets- on period market: one risk-less asset with r = 0

and a risky asset St such that

S0 = 100, S1 =

 90, with probability 1
2
,

110, with probability 1
2

.

We want to compute the utility indifference buy price of a single call option CT with strike

price K = 105. Then

V (w, 0) = max
α+βS0=w

E[− exp(−α− βS1)] =

= max
β

α=w−100β

[
− exp(100β − w − 110β)

1

2
− exp(100β − w − 90β)

1

2

]
=
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= max
β

α=w−100β

−exp(−w)

2
[exp(−10β) + exp(10β)] .

− exp(−w) is a non positive number. Then, the maximum is attained in the minimum of[
exp(−10β)1

2
+ exp(10β)1

2

]
, that is, clearly, β = 0:

V (w, 0) = − exp(−w).

Now the second part,

V (w − pb(1), 1) = max
α+βS0=w−pb(1)

E[− exp(−α− βS1 − CT )] =

= max
β

α=w−100β−pb(1)

[
− exp(−w − 10β + pb(1)− 5)

1

2
− exp(−w + 10β + pb(1))

1

2

]
=

= max
β

α=w−100β−pb(1)

−exp(−w) exp(pb(1))

2
[exp(−10β − 5) + exp(10β)].

Again, the maximum is attained at the minimum of the inner part with β = −1
4
:

V (w − pb(1), 1) = − exp(−w) exp(pb(1)) exp(−5

2
).

Equating both sides we get pb(1) = 5
2
.

Observe that this price coincides with the risk neutral price. This is a property of the utility

indifference price: when the market is complete, the seller and buyer prices match the martingale

pricing. Therefore, the utility indifference price is an extension of the standard theory.

The utility indifference price is an active research topic. We now summarize its main properties:

(a) Non-linear pricing. The indifference price is not linear on k due to the concavity of the

utility function. That is, the buyer will not pay the twice to double his position on the

derivative and the seller requires more than twice to double his exposition to the derivative.

This is an expected behaviour of risk averse agents that other models for pricing contingent

claims in incomplete markets do not account for.
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(b) Recovery of the complete market price. As in the example, when the market is complete

or the claim is replicable, the indifference and the complete market price coincide. Let RT

denote the value at time T of one unit of currency invested at time 0. If XT ∈ A(w), we

can write XT = xRT + X̃T for some X̃T ∈ A(0) is the set of claim which can be replicated

with zero initial wealth. Since CT is replicable,

CT = pRT + X̃C
T ,

with p being the complete market price and X̃C
T ∈ A(0). Then,

XT + kCT = (w + kp)RT + X̃T + kX̃C
T = (x+ kp)RT + X̃ ′T ,

where X̃ ′T ∈ A(0). Then XT + kCT ∈ A(x+ kp) and

V (w, k) = sup
XT∈A(w)

E[u(XT + kCT )] = sup
XT∈A(w+kp)

E[u(XT )] = V (w + kp, 0).

Hence, p(k) = kp.

(c) Monotonicity. If C1
T ≤ C2

T , then pb1(k) ≤ pb2(k).

(d) Concavity. If pbλ(k) is the price for the claim λC1
T + (1− λ)CT where λ ∈ [0, 1], then

pbλ(k) ≤ λpb1(k) + (1− λ)pb2(k).

This is a consequence of the continuity of u and the Jensen’s inequality. If we consider

seller prices, then we have convexity.

To further explore the concept of utility indifference price, we need market models more complex

than The Cox-Ross-Rubinstein Binomial Model. Those models are out of the scope of this work

and we refer the reader to [8] and its extensive bibliography.
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10 Comparison with the mean-variance paradigm

The mean-variance paradigm, or modern portfolio theory, is an investment strategy that use

pack of analytical and statistical tools to rank the possible portfolios under the motto of making

the trade-off between risk and return as favourable as possible to the investor.

To summarize the theory, assume that we have a market with n risky assets, S1, . . . , Sn and 1

monetary asset S0 that pays an interest rate µ0. Let be µ the vector of mean returns,

µ := (µ0, E[S1], E[S2], . . . , E[Sn]) = (µ0, µ1, µ2, . . . , µn)

and let be V the matrix of variances and covariances,

V =



var(S1) covar(S1, S2) . . . covar(S1, Sn)

covar(S2, S1) var(S1) . . . covar(S2, Sn)

...
...

. . .
...

covar(Sn, S1) covar(S2, Sn) . . . var(Sn)


To simply the notation, we will denote the components of V as

V =



σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn


A portfolio in this model equals to a vector φ

φ = (φ0, φ1, φ2, . . . , φn)

such that
∑

i φi = 1. We identify the return µφ of the portfolio with its the expected return
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and the risk with its variance σφ:

µφ = µ · φ =
n∑
i=0

µiφi, σ2
φ = φ · V φ =

n∑
i=1

n∑
j=1

σijφiφj.

With this setting, the problem of investment can be stated as any of the following optimization

problems:

(a) Minimize risk ensuring a target return r:

min
φ
σ2
φ = min

φ
φ · V φ = min

φ

n∑
i=1

n∑
j=1

σijφiφj.

subject to

µφ = µ · φ =
n∑
i=0

µiφi and
n∑
i=0

φi = 1.

(b) Maximize return ensuring a bound to the risk σ̃2:

max
φ

µx = µ · φ =
n∑
i=0

µiφi

subject to

σ2
φ = φ · V φ =

n∑
i=1

n∑
j=1

σijφiφj ≤ σ̃2 and
n∑
i=0

φi = 1.

(c) Maximize a risk-aversion adjusted return τ

max
φ
{µφ − τσ2

φ} = max
φ

n∑
i=0

−τ

(
n∑
i=1

n∑
j=1

σijφiφj

)

subject to
n∑
i=0

φi = 0.

All those problems can be easily solved with Lagrangian multipliers. In particular, solve prob-

lem (a) with Lagrangians equals to solve a linear system of n+ 2 equations.

We do not enter in details, but if we graph the return of the portfolio as a function of the

variance,
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Fig. 4: Return of a portfolio as a function of its variance.

we can observe:

1. There is a feasible area. That is, the only constructable portfolio are those which lay

inside the filled area.

2. The frontier of the feasible can be divided in two pieces: the Efficient Frontier, which

contains the performance of the feasible portfolios that solve the optimization problem,

and the Inneficient frontier, which contains the worst feasible portfolios.

Despite some calibration statistic problems, the optimizations methods multiply the estima-

tion errors and can result in very bad estimated efficient frontiers, the mean-variance is quite

approximate to the reality when the stocks follow an elliptical distribution 19 , in particular,

when the n assets are distributed as a normal multivariate random variable. In this case, the

relationship between the expected utility and the mean-variance analysis becomes clear. The

certainty equivalent of a portfolio φ is defined by the equality

u(c(φ, u)) = Eφ[u(x)].

19 An elliptical distribution is a distribution with ellipsoid level curves.
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When µ is a normal distribution, we can write

Eφ[u(x)] = E[u(µφ) + σφZ)],

where Z is a standard normal distribution. This allows us to parametrize the expected utility

through the expected return and the standard deviation. If we differentiate the parametrization

to study the behaviour with respect µφ and σφ, results

∂

∂µφ
Eφ[u(x)] = E[u′(φ)] ≥ 0,

∂

∂σφ
Eφ[u(x)] = E[u′(φ)Z] ≤ 0.

In the first equality we used the monotonicity of u and in the second the monotonicity and the

concavity u and the symmetry of Z. This is the exact behaviour that we should expect when

we used Taylor series to find a second order approximation to the certainty equivalent:

u(c(φ, u)) ≈ u(m) +
1

2
u′′(m) var(φ).

Under the normality assumption, and the related parametrization, the slope of the certainty

equivalent curves, curves of portfolios with the same certainty equivalent, can be computed

from

E[u′(φ)]dµφ + E[u′(φ)Z]dσφ = 0.

This results in

d

dσ
µφ = −Eu

′(φ)Z
E[u′(φ)]

> 0,

from where we deduce this interesting property: the certainty equivalent curves are ordered in

an increasing sense, have a positive slope and are convex. Again, this is what we expect from

the utility theory.

The certainty equivalent curves, also known as indifference curves, impact directly in the feasible

area when we consider the interest rate of the risk-free asset. It is clear that any portfolio with

minor expected return than the interest rate is unacceptable. This means, that the indifference

curve of the interest rate is a lower bound and only portfolios who are over indifference curves
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of greater level, but still in the feasible area, are admissible. In particular, if the interest rate

indifference curve and the efficient frontier intersect in a single point, then there exists a unique

optimal portfolio.

Remark 10.1. The previous analysis also yields in a more general case: when the portfolio

distributions belong to the same family of the asset distributions. This is the case of normal

variables, which are closed for linearity.

11 Suboptimality of path-dependent pay-offs

The financial industry is an innovative economic sector that generates new and complex deriva-

tives. Despite some of the products have a legitimate demand and a financial justification,

others are just a big messy nearer to casino games than to helpful products. In some cases,

the complexity of the new derivatives is so high that only track the evolution of the product

requires thousands of lines of source code 20 . Not to mention that we do not have good models

to price them known to the general public and, as a consequence, they put in danger systemic

banking and investment companies.

In this section, we aim to analyse a whole family of derivatives and discard them as suboptimal

with respect to the expected utility theory. In particular, we will see that under some market

hypothesis, utility maximizers will always choose derivatives whose pay-offs depends on the

state of the stock at the investment horizon over path dependent derivatives 21.

11.1 The framework of the problem: Lévy Processes

Let (Ω,F , P ) be a probability space and consider a market with a single risky asset and a risk

free interest r ≥ 0. Suppose that there are no transactions costs, dividends and restrictions to

short sales and borrowing. As usual, the random price of the risky asset at time t is defined as

St = S0e
X(t),

20 Examples of such products are Squared Collateralized Debt Obligation- CDO2- and CDOn.
21 One well known example of this kind of products are the Contingent Convertible bonds, also known as

CoCos.



11 Suboptimality of path-dependent pay-offs 78

where X(t) is a Lévy process. A Lévy process is a class of stochastic process that includes the

Brownian Motion:

Definition 11.1. A Lévy process X(t) is a stochastic process on some probability space with

these properties:

(a) The process starts at 0: P [X(0) = 0] = 1.

(b) The increments are independent. If

t0 ≤ t1 ≤ . . . ≤ tk,

then

P [X(ti)−X(ti−1) ∈ Hi, i ≤ k] =
∏
i≤k

P [X(ti)−X(ti−1) ∈ Hi].

(c) For 0 ≤ s < t the increment X(t)−X(s) is stationary:

X(t)−X(s) = X(t− s),

11.2 Statement of the problem

In this market, consider an agent which is a maximizer of a utility function u. The agent has a

fixed investment horizon T and faces the decision at time t = 0 of investing in a path dependent

pay-off Pg defined as

Zg = g(Sti | 0 ≤ ti ≤ T, i = 1, 2, . . . , n),

for some function g. We claim that the agent will always prefer the alternative pay-off

Ep[Zg | ST ],

which depends only on the price of the asset S at the final time T . To see this, we prove that

both derivatives have the same risk neutral price. Then, by the properties of the conditional
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expectation and Jensen’s Inequality, results

EP [u(PZ)] = EP [EP [u(Zg) | ST ]] ≤ EP [u(EP [Zg | ST ])], (18)

for all concave increasing function u. Therefore, at equal price, the agent will choose E[Zg | ST ]

over Zg and the claim follows.

We now prove for the continuous and the discrete time settings that the price of both derivatives

is the same. To simplify the notation, for any vector of times t = (t1, t2, . . . , tn), and for any

vector of values x = (x1, x2, . . . , xn) we define its distribution function as

Ft(x) = P [X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn].

When (X(t1), X(t2), . . . , X(tn)) is a continuous random vector, we define ft(x) as its density.

If the vector is discrete, we define ft(x) as

ft(x) = P [X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn].

We suppose that all needed density and moment generators functions exists.

The Esscher transform will play a fundamental role on the proof:

Definition 11.2. Let (Ω,F , (Ft), P ) be a filtered probability space. The Esscher transform Q

of P is a probability measure that satisfies

dQ

dP

∣∣∣∣
Ft

=
ehX(t)

EP [ehX(t)]
=
ehX(t)

eψ(h)t
.

The Esscher transform is well defined for Lévy processes due to the independent increments

property.

We now use the Esscher transform to construct a risk neutral probability as follows. First we

claim that the Radon-Nikodym process, i.e. the sequence of Radon-Nikodym derivatives with
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respect to the filtration, is a P -martingale. Let

Yn =

(
dQ

dP

)
|Fn

,

be the sequence of Radon-Nikodym derivatives. We have

Q(A) =

∫
Ω

Yn1AdP =

∫
Ω

Yn−11AdP, ∀A ∈ Fn−1 ⊂ Fn

Then, if Z = EP [∆Yn | Fn−1], by definition of conditional expectation

EP [Z1A] = EP [∆Yn1A] =

∫
Ω

∆Yn1AdP =

∫
A

(Yn − Yn−1)dP = 0, ∀A ∈ Fn−1

and the claim follows. Apply the previous result to obtain

dQ

dP

∣∣∣∣
Ft

= EP

[
dQ

dP

∣∣∣∣Ft] .
Then, because X(t) is a Lévy process,

EP [ehX(T ) | FT ]

EP [ehX(T )]
=
EP [eh(X(T )−X(t))]ehX(t)

EP [ehX(T )]
=

ehX(t)

EP (ehX(t))
.

We want Q to be risk neutral probability. i.e.,

EQ[e−rTST | Ft] = e−rtSt.

By definition of the process (St),

EQ[e−rT+X(T )S0 | Ft] = e−rt+X(t)S0.

We have, by the Bayes rule, that

EQ[X | Ft] =
EP [ZtX | Ft]

ZT
, Zt :=

dQ

dP

∣∣∣∣
Ft
.



11 Suboptimality of path-dependent pay-offs 81

Then,

EP [e−rT+X(T )ehX(T ) | Ft]
eψ(h)T

eψ(h)t

ehX(t)
= e−rt+X(t).

Hence,

eψ(h)(t−T )e−rTEP [e(1+h)X(T ) | Ft] = e−rt+(1+h)X(t),

eψ(h)(t−T )EP [e(1+h)(X(T )−X(t))]e(1+h)X(t) = e−r(t−T )+(1+h)X(t),

eψ(h)(t−T )+ψ(1+h)(T−t) = e−r(t−T ).

Taking logarithms at both sides of the equality, we can always find a h for Lévy Processes that

solves the problem

ψ(1 + h)− ψ(h) = r.

We denote h∗ the solution of this equation and P ∗ the related risk neutral probability.

Remark 11.3. When the density of X(t) exist, the density of the Esscher transform equals to

f
(h)
t (x) :=

ehxft(x)

mt(h)
(19)

where

mt(h) := mXt(h) =

∫
Ω

ehxft(x)dx,

is the moment generator function of X(t). The multidimensional density is equal setting the

variable x = xt.

With the help of the Esscher transform, we prove now the main theorem of this section:

Theorem 11.4. Let C(·) denote the risk neutral price of a derivative. Then,

C(EP [Zg | ST ]) = C(Zg).

Proof. Is sufficient to prove EP [Zg | ST ] ≡ EP ∗ [Zg | ST ] and apply the equalities

EP ∗ [Zg] = EP ∗ [EP ∗ [Zg | ST ]] = EP ∗ [EP [Zg | ST ]].
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Consider a Esscher transform f
(h∗)
t of parameter h∗ of X(t) such that the evolution of the

discounted stock prices are martingales. To prove the equality, we will check that for all

x = (x1, . . . , xn) and t = (t1, . . . , tn), with 0 < t1 < . . . < tn < T , and y ∈ R we have

ft(x | XT = y) = f
(h∗)
t (x | XT = y).

Setting the convention t0 = 0 and x0 = 0, and using the properties of Lévy processes,

f
(h∗)
t (x | XT = y) =

1

f
(h∗)
T (y)

(
n∏
i=1

f
(h∗)
ti−ti−1

(xi − xi−1)× f (h∗)
T−tn(y − xn)

)
=

=
n∏
i=1

fti−ti−1
(xi − xi−1)eh

∗(xi−xi−1)

mti−ti−1
(h∗)

× fT−tn(y − xn)eh
∗(y−xn)

mT−tn(h∗)
× mT (h∗)

fT (y)eh∗y
=

=
1

fT (y)

(
n∏
i=1

fti−ti−1
(xi − xi−1)× fT−tn(y − xn)

)
= ft(x | XT = y).

Corollary 11.5. Under the hypothesis of this section, risk averse agent who prefer more to

less will always choose path independent pay-offs over the related path dependent ones.

Remark 11.6. We can give a direct proof of the result if the Lévy process is a binomial lattice

without relying in auxiliary techniques like the Esscher transform or the content of the next

subsection. If X(S0, . . . , Sn) is a random payoff, then

EP [X(S1, . . . , Sn) | Sn = sn] =
∑

X(S1, . . . , Sn)P (S1 = s1, . . . , Sn = sn | Sn = sn) =

=
1

P (Sn = sn)

∑
X(S1, . . . , Sn)P (S1 = s1, . . . , Sn = sn),

and

EP ∗ [X(S1, . . . , Sn) | Sn = sn] = . . . =
1

P ∗(Sn = sn)

∑
X(S1, . . . , Sn)P ∗(S1 = s1, . . . , Sn = sn).
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Hence, it is sufficient to check that the equality holds term by term. i.e.

P (S1 = s1, . . . , Sn = sn | Sn = sn)

P ∗(S1 = s1, . . . , Sn = sn | Sn = sn)
=

P (Sn = sn)

P ∗(Sn = sn)
.

to have equal risk neutral prices. To see this, recall to facts about the binomial trees: the phase

space of the last period is fully determined by the number of ups in the trajectory and Ω is in

a bijection with the sets of vectors {0, 1}n = (i1, i2, . . . , in). If we rewrite the equality in terms

of zeros and ones,

P (i1, i2, . . . , in)

P ∗(i1, i2, . . . , in)
=

pi1(1− p)1−ii · · · pin(1− p)1−in

p∗i1(1− p∗)1−ii · · · p∗in(1− p∗)1−in
=

=

(
N

i1+...+in

)
pi1+...+in(1− p)N−(i1+...+in)(

N
i1+...+in

)
p∗i1+...+in(1− p∗)N−(i1+...+in)

=
P (Sn = i1 + . . .+ in)

P ∗(Sn = i1 + . . .+ in)
.

11.3 A direct result on processes without density

A main drawback of the previous theorem is that we have made assumption about the existence

of the all the densities and moments that we needed in the construction of the Esscher transform

and the proof. Another strategy, which is hidden is to check a condition on the Radon-Nikodym

derivative.

Proposition 11.7. Let X ≥ 0 be a payoff. Consider a model where the risk neutral probability

Q satisfies

dQ

dP
∈ σ(ST ),

then

EQ(X|ST ) = EP (X|ST ).

Proof. First

Z = EQ(X|ST )⇐⇒ EQ(Y Z) = EQ(Y X) for all Y ≥ 0, Y ∈ σ(ST ),
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then

EQ(Y Z) =

∫
Ω

Y ZdQ =

∫
Ω

Y
dQ

dP
ZdP =

∫
Ω

Ȳ ZdP =

∫
Ω

Ȳ XdP,

with Ȳ ≥ 0 and Ȳ ∈ σ(ST ) arbitrary, so Z = EP (X|ST ).

Corollary 11.8. If the risk neutral probability satisfies dQ
dP
∈ σ(ST ), path-dependent payoffs

are dominated, in the sense that is there is another payoff with the same initial price and more

terminal utility.

Proof. Given a payoff X we can take X̄ := EQ(X|ST ). Then, the price is the same, assuming

r = 0,

EQ(XT ) = EQ(EQ(X|ST )).

Now, by the previous proposition

X̄ = EQ(X|ST ) = EP (X|ST ),

and given a utility function u

EP (u(X̄)) = EP (u(EP (X|ST ))) ≥ EP (EP (u (X) |ST )) = EP (u (X)),

where the inequality follows from the Jensen inequality since u is concave.

Part VI. Drawbacks of the expected utility theory

12 Empirical drawbacks of expected utility: The Allais and the Ellsberg

Paradoxes.

The first set of drawbacks of the model are the Allais and the Ellsberg Paradoxes. We call them

paradoxes because they do not attack the mathematical foundations of the model. Instead, they

present a series of experiments that show that our model fails to model how economic agents

act when facing the risk or the uncertainty.
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In the original papers of Allais and Ellberg, the theory of the utility functions discussed is a

refinement made by Savage and Friedman. Nevertheless, the paradoxes still apply to the model

we saw in this text and, simple as they are, suppose a big problem.

12.1 The Allais Paradox

The Allais paradox was set by Maurice Allais in 1953 and challenges the assumption that

rational economic agents follows the independence axiom. Remember that we have shown that

a preference order has a von Neumann-Morgenstern representation if and only if it satisfies both

the Archimedean and independence axioms. Hence, the whole integral representation must be

discarded, or modified, if independence axiom does not hold. Lets us examine the paradox.

Example 12.1 (The Allais Paradox). The Allais Paradox is an experiment in which the inter-

viewers offered a set of lotteries and accounted the preferences. First, if we offer the following

two lotteries 22:

ν1 := 0.33δ2500 + 0.66δ2400 + 0.01δ0, µ1 := δ2400,

most people prefer µ1 over ν1 even if the expected payoff favours ν1. At the same time, if the

same people now has to choose between the following 2 lotteries,

µ2 := 0.34δ2400 + 0.66δ0, ν2 := 0.33δ2500 + 0.67δ0,

they tend to prefer ν2 over µ2, choosing more expectation over risk. In particular, 65% of the

people stated 23 both

µ1 � ν1 and ν2 � µ2.

This observed behaviour contradicts the model:

Proposition 12.2. The Allais paradox is an experimental violation of the axiom of indepen-

dence.

22 We use the rescaled example of [7, p.59]. Allais used other values in the original paper.
23 The numbers are due to Allais and independently confirmed by D. Kahnemann and A. Tversky.



12 Empirical drawbacks of expected utility: The Allais and the Ellsberg Paradoxes. 86

Proof. If the axiom of independence holds, then necessarily

αµ1 + (1− α)ν2 � αν1 + (1− α)ν2 � αν1 + (1− α)µ2

for all α ∈ (0, 1). By taking α = 1
2
, we get

1

2
(µ1 + ν2) � 1

2
(ν1 + µ2)

which is a contradiction to the fact that

1

2
(µ1 + ν2) =

1

2
(ν1 + µ2).

12.2 The Savage refinement: preferences on asset profiles

This paradox introduces a new ingredient in the model that we did not take in account. So far,

when we have wrote about lotteries, we always considered the case that either the probability

distribution, or the random variable if we fixed a probability space, was absolutely known by

the economic agent; the agent only faced a risk that he was able to calibrate. To explain the

Allais Paradox, we can add uncertainty in the sense that the agent does not know exactly the

underlying probability distributions.

L.J. Savage introduced a refinement of the theory that we review in what follows. Instead of

taking a set of probability distributions as X , we now fix a measurable space (Ω,F) and denote

X as a set of bounded measurable functions X. The Xs are what we call assets: measurable

functions which associate real valued payoffs to possible scenarios.

As usual, we assume a preference relation on X which we assume monotone in the following

sense:

Y � X if Y (ω) ≥ X(ω) for all ω ∈ Ω.

Without entering in all the details, if we assume some axioms and continuity conditions, we
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can guarantee a numerical representation of the following kind:

Definition 12.3. Let be (Ω,F) be a measurable space and let be X a set of bounded measurable

functions defined on (Ω,F). We say that a preference order � has a Savage representation

U if it can be written as

U(X) = EQ[u(X)] =

∫
u(X(ω))Q(dω), ∀X ∈ X ,

where Q is a probability measure on (Ω,F) and u a real valued function.

The probability Q must be thought as the subjective view of the probabilities of the events and

allows us to interpret the Allais Paradox as follows. Assume that the agent accepts the view

that the scenarios ω ∈ Ω are generated in accordance to an objective probability P . In this

case, P is the Lebesgue measure on Ω = [0, 1] and X is the space of bounded right continuous

increasing function on [0, 1]. Let µP,X denote the distribution of X under P . Consider the next

Lemma:

Lemma 12.4. Suppose X is a real valued random variable on a probability space (Ω,F , P )

with distribution function

FX(x) = P [X ≤ x],

and let qX denote the right-continuous inverse of FX

qX(s) := inf{x ∈ R | FX(x) > s}.

Let U be a random variable on a probability space (Ω̃, F̃ , P̃ ) with a uniform distribution on

(0, 1). Then

X̃(ω̃) := qX(U(ω̃)

has the same distribution as X.

Proof. See section 2.4 of [7].
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By this lema, every probability measure on R with bounded support is of the form µP,X for

some X ∈ X :

Mb(R) = {µP,X | X ∈ X}.

If we pair X ∈ X with the lottery µP,X , the preference relation on X induces a preference

relation on Mb(R) with numerical representation

U∗(µP,X) := U(X).

To explain the paradox, assume now that the agent distort P with a pessimistic bias. This

is a legitimate assumption because many people think that they are deceived when facing

experiments like the paradox one. We formalize this bias replacing P with the subjective

measure

Q := αδ0 + (1− α)P

for some α ∈ (0, 1). The corresponding Save representation is

U∗(µP,X) = EQ[u(X)] =

∫
udµQ,X = αu(X(0)) + (1− α)

∫
udµP,X .

Note that X(0) = `(µP,X) with

`(µ) := inf(suppµ) = sup{a ∈ R | µ((−∞, a)) = 0}.

Therefore, replacing P by Q, we obtain the non-linear distortion that maps the lottery µP,X to

the lottery µ∗ = µQ,X given by

µ∗ = αδ`(µ) + (1− α)µ.

The preference relation has the numerical representation

U∗(µ) =

∫
u(x)µ∗(dx), µ ∈Mb(R).
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Under this new apparatus, recall the lotteries of the Allais Paradox

ν1 := 0.33δ2500 + 0.66δ2400 + 0.01δ0, µ1 := δ2400,

µ2 := 0.34δ2400 + 0.66δ0, ν2 := 0.33δ2500 + 0.67δ0.

and distort them as follows:

µ∗1 = µ1, ν∗1 = αδ0 + (1− α)ν1,

µ∗2 = αδ0 + (1− α)ν1, ν∗2 = αδ0 + (1− α)ν2.

If we set u(x) = x, we have

U∗(ν2) > U∗(µ2)

and for α > 9
2409
≈ 0.0037 we obtain

U∗(µ1) > U∗(ν1)

as in the Allais Paradox.

12.3 The Ellberg Paradox

The Ellberg Paradox is, as the Allais Paradox, the result of an experiment.

Example 12.5 (The Ellberg Paradox). Suppose we have an urn containing 30 red balls and 60

other balls that are either black or yellow. The number of black and yellow balls is unknown.

All 90 balls have the same chance to be drawn. Now we offer two lotteries:

• µ1: Win 100 EUR if a red ball is drawn.

• ν1: Win 100 EUR if a black ball is drawn

Later, we offer two more lotteries:

• µ2: Win 100 EUR if a red or yellow ball is drawn.
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• ν2: Win 100 EUR if a black or yellow ball is drawn.

The paradox is what follows: when surveyed, most people strictly prefer µ1 over ν1 and ν2 over

µ2.

Proposition 12.6. The Ellberg paradox violates the paradigm of the expected utility. That is,

economic agents act as maximizers of a utility function.

Proof. Suppose that an economic agent is a maximizer of a utility function u, that is, a strictly

increasing continuous concave function. Let B,R, Y be the probabilities of drawing, respec-

tively, a black, a red or a yellow ball from the urn. If the economic agents shows the behaviour

of the paradox, we have

µ1 � ν1 ⇔ Ru(100) + (1−R)u(0) > Bu(100) + (1−B)u(0).

Because u is strictly increasing, we obtain

R(u(100)− u(0)) > B(u(100)− u(0))

and

R > B.

At the same time, as the agent prefers ν2 to µ2,

ν2 � µ2 ⇔ Bu(100) + Y u(100) +Ru(0) > Ru(100) + Y u(100) +Bu(0).

Which again simplifies to

B(u(100)− u(0)) > R(u(100)− u(0)).

That impliesR < B, which is a contradiction and the economic agent cannot follow the expected

utility paradigm if the Ellberg paradox holds.
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As in the Allais Paradox, if the economic agent does not know all the probabilities for sure,

then our model cannot apply and we need to consider how the beliefs in probabilities, like being

the experiment a trick or have a lucky day, impact the theory. But, the possible solution of

Savage is not enough to solve this paradox; the Ellberg paradox is much more stronger than

the Allais one, as it does not depend on any utility function of u of the agent, nor on the risk

aversion.

One possible solution is to go further than the Savage representation and adopt worst case ap-

proach when evaluating expected utilities. The worst case approach requires a set of subjective

probabilities M on (Ω,F) and set

U(x) := inf
Q∈M

EQ[u(X)].

We are not going to see the details in this work, but with an intelligent, and reasonable, choice

of M it is possible to give an answer to the Ellsberg paradox24.

13 Other violations of the Independece Axiom and a proposed solution

We saw in the previous section two systematic violations of the Independence Axiom: the

Allais and the Ellberg Paradoxes. However, those are not the only violations and we devote

this section to review the most popular: those that can be found on the article [11] of Mark

Machina.

13.1 Oversensitivity to changes in small probabilities

The Allais and Ellberg Paradoxes are, in words of Machina, examples of oversensitivity to

changes to the probabilities of low-probability events.

The so-called subjective expected utility models are a second source of systematic violations.

Like in the Savage refinement, such models assume that the agents transform the set of objective

probabilities into subjective probabilities. The key aspect with respect to the study of the

24 The details can be found in Section 2.5 of [7].
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Independence axioms is that the axiom requires the transformations of objective to subjective

probabilities to be linear. Hence, any observed non linear transform is against the model. And

the non linearity is what empirical tests show: agents overemphasize small probabilities and

underemphasize the large ones.

Some authors argued that this is compatible with standard expected utility theory if those

agents maximize convex functions, but experiments designed to explicitly distinguish between

behaviour due to curvature or to overemphasizing small probabilities resulted in more evidence

against the curvature hypothesis25.

Once the transform of subjective probabilites are allowed to be nonlinear to fit the experiments,

the whole frameworks is damaged as it also loses the monotonicity property in the sense of

stochastic dominance. That is, that a lottery µ dominates a lottery ν if its is preferred with

respect to all utility functions.

13.2 The role of the past and the Markowitz hypothesis

The axioms of the expected utility theory implies that the ordering in lotteries correspond to

the expectation of a fixed utility function defined over the terminal levels of wealth. Friedman

and Savage observed that people of all income levels buy insurances and lotteries and defined

a von Neumann-Morgenstern representation which explained that behaviour:

Fig. 5: Observed behaviour. Source: [11, p. 283.]

The function u associated with this von Neumann-Morgenstern representation is not, strictly

speaking, a utility function; its is locally concave, linear or convex attending to the initial wealth

25 We direct the reader to [11, p. 291] for a deeper explanation of this phenomenon and extensive bibliography.
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levels of the agent. Still, Markowitz observed that the assumption that this utility function is

defined over ultimate wealth levels is not consistent with the fact that individuals of all wealth

levels purchase lottery tickets and buy insurance.

Agents with wealth levels less than c, poor agents, or greater that d, rich agents, would never

accept fair bets. Agents with wealth just d would be willing to take insurances. Insurances

involve an expected loss to cover against big losses. Also, agents with wealth near c+d
2

would

prefer all fair bets up to at least d−c
2

, which contradicts the fact that most people do not accept

fair bets.

Markowitz noted that individuals of all wealth levels behaved as if their initial wealth was near

the inflection point e and hypothesized that changes in wealth caused the utility function to shift

horizontally to keep the inflection point near the current wealth level. Further experimental

evidence suggest that individual gambling behaviour at different initial wealth levels is more

indicative of a shifting utility function than of movements along a fixed utility function26. This

implies that changes in initial wealth cause the agent to change his preference order on the set

of probability measures.

14 Smooth preferences

In the last chapter, we saw that one of the key ingredients of the theory, the Independence axiom,

is also its experimental Achilles’ Ell. However, we can recover some fundamental results, like

the Arrow-Pratt Coefficient of Risk Aversion without relying in the axiom. In order to achieve

it, we need to impose additional smooth conditions on the numerical representations and move

away from the von Neumann-Morgenstern representation paradigm.

We set now X as the set of all probability distribution functions F (·) over the bounded interval

[0,M ]. We assume that we have a preference order on X representable by a real functional

V (·) on D[0,M ]. We set on D[0,M ] the topology of weak convergence 27 , i.e.,

(Fn(·))n → F ()̇ weakly ⇔ Fn(·)→ F (·) point-wise on continuity points of F (·).
26 [11, p. 285]
27 Check the Portmanteu Lemma, Theorem 2.17, for equivalences.
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The condition of differentiability on the numerical representation V (·) also requires the existence

of a norm in the space

∆D[0,M ] = {λ(F ∗ − F ) | F, F ∗ ∈ D[0,M ], λ ∈ R}.

With additional Functional Analysis, we can prove that both this norm, and the weak conver-

gence, is induced by the L1 metric

d(F, F ∗) =

∫
|F (x)− F (x)|dx,

and has the form

||λ(F ∗ − F )|| = |λ|d(F, F ∗).

We have now all the elements to define the smooth condition: be Fréchet differentiable on the

space D[0,M ].

Definition 14.1. The functional V (·) is said to be Fréchet differentiable on the space D[0,M ]

if there exists a functional ψ(·;F ) defined on ∆[0,M ] such that

lim
||F ∗−F ||→0

|V (F ∗)− V (F )− ψ(F ∗ − F ;F )|
||F ∗ − F ||

= 0 (20)

The Fréchet derivative is the natural extension of the Rn-differentiation to Banach Spaces,

because it just adapts the standard definition to the correspondent norms. From its mere

definition, we can recover a local version of the idea of agents as maximizers of utility functions.

We can rewrite (20) as

V (F ∗)− V (F ) = ψ(F ∗ − F ;F ) + o(||F ∗ − F ||) (21)

∆[0,M ] is a linear subspace of L1[0,M ]. Thus, by the Riesz representation theorem on L1[0,M ],
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we have that for any F ∗ ∈ D[0,M ],

ψ(F ∗ − F ;F ) =

∫
(F ∗(x)− F (x))h(x;F )dx, h(x;F ) ∈ L∞[0,M ] (22)

which is equivalent, by the Radon-Nikodym theorem, to

ψ(F ∗ − F ;F ) = −
∫

(F ∗(x)− F (x))dU(x;F ). (23)

We have

U(x, F ) := −
∫ x

0

h(s;F )ds (24)

from which it follows that U(·;F ) is absolutely continuous and differentiable almost everywhere

on [0,M ]. Substituting (22) into (21) and integrating by parts, we get

V (F ∗)− V (F ) =

∫
U(x;F )(dF ∗(x)− dF (x)) + o(||F ∗ − F ||). (25)

The last equality shows that the differential change from the distribution F (·) to a distribution

F ∗(·) changes the value of the numerical representation by

∫
U(x;F )(dF ∗(x)− dF (x)).

That is, by the difference in the expected value of U(x;F ) with respect to the distribution

F ∗(·) and F (·). Or equivalently, the agent ranks near distributions as would an expected utility

maximizer with local utility function U(x;F ). This is not a surprise because the differential of

a functional is its best local linear approximation. Therefore, by the arguments of the section

13.2, linearity is equivalent to expected utility maximization.

One price that we have paid after shifting to this new theory is that the utility function U(·, F )

is only local. To derive global consequences from local properties, we can act as in standard

Differential Analysis. For example, we can prove that a function is monotone increasing in

an interval if its derivative is positive in each point, even when the derivative is everywhere

different.
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The general method in our case is to use path integrals in the space D[0,M ]. If the path

{F (·;α) | α ∈ [0, 1]}

is smooth enough so the term ||F (·;α)−F (·;α∗)|| is differentiable in α at α = α∗, we get from

(25)

d

dα
(V (F (·;α)))

∣∣∣∣
α∗

=
d

dα

(∫
U(x;F (·; a∗)dF (x;α)

)∣∣∣∣
α∗

+ (o(||F (·;α− F (·;α∗)||))|α∗ =

=
d

dα

(∫
U(x;F (·; a∗)dF (x;α)

)∣∣∣∣
α∗
.

Applying the Fundamental Theorem of Calculus,

v(F (·; 1))− V (F (·; 0)) =

∫ 1

0

[ (U(x;F (·;α∗))dF (x;α))|α∗ ] dα∗,

which illustrates how the agent’s reaction to the sfhift from F (·; 1) to F (·; 0) depends on the

properties of the local utility function at each point along the path {F (·;α) | α ∈ [0, 1]}.

With this approach, we can prove and recover the two main properties of utility functions:

monotony and risk aversion:

Theorem 14.2 (Monotonicity). Let V (·) be a Fréchet differentiable preference function on

D[0,M ]. Then V (F ∗) ≥ V (F ) whenever F ∗(·) stochastically dominates F (·) if and only if

U(x;F ) is nondecreasing in x for all F (·) ∈ D[0,M ].

Proof. See [11, Appendix].

Theorem 14.3 (Risk Aversion). Let V (·) be a Fréchet differentiable preference function on

D[0,M ]. Then V (F ∗) ≥ V (F ) whenever F ∗(·) differs from F (·) by a mean preserving increase

in risk if and only if U(x;F ) is a concave function of x for all F (·) ∈ D[0,M ].

Proof. See [11, Appendix].

To keep this work in a reasonable size, we end this section with an theorem that states under

what circumstances the Arrow-Pratt Theorem, Proposition 4.5, holds:
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Definition 14.4. If F (·) and F ∗(·) are two cumulative distribution functions over a wealth

interval [0,M ], then F ∗ is said to differ from F by a simple compensated spread if the

individual is indifferent between F and F ∗ and if [0,M ] may be partitioned into disjoint intervals

IL and IR (with IL to the lefy of IR) such that F ∗(x) ≥ F (x) for all x ∈ IL and F ∗(x) ≤ F (x)

for all x ∈ IR.

Theorem 14.5. The following conditions on a pair of Fréchet differentiable preference func-

tionals V (·) and V ∗(·) on D[0,M ] with respective local utility functions U(x;F ) and U∗(x;F )

are equivalent:

(a) For arbitrary distributions F (·), F ∗∗(·) ∈ D[0,M ] and positive probability p, if c and c∗

solve

V ((1−p)F ∗∗+pF ) = V ((1−p)F ∗∗+p1x≥c and V ∗((1−p)F ∗∗+pF ) = V ∗((1−p)F ∗∗+p1x≥c,

then c ≤ c∗ (the conditional certainty equivalents for V (·) are never greater than the corre-

sponding ones for V ∗(·)).

(b) For all F (·) ∈ D[0,M ], U(x;F ) is at least as concave a function of x as U∗(x;F ). That

is, for all F , U(x;F ) is a concave transform of U∗(x;F ) so that if these functions are

twice differentiable in x, then the analogous to the Arrow-Pratt Coefficient of Risk Aversion

satisfy

−
∂2

∂x2
U(x;F )

∂
∂x
U(x;F )

≥ −
∂2

∂x2
U∗(x;F )

∂
∂x
U∗(x;F )

(c) If the distribution F ∗(·) differs from F (·) by a simple compensated spread from the point of

view of V ∗(·) so that V ∗(F ∗) = V ∗(F ), then V (F ∗) ≤ V (F ).
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Part VII. The Saint Petersburg Paradox and the

Expected Utility Theory

As we saw in the introduction, Daniel Bernoulli presented in 1738 before the Imperial Academy

of Sciences in Saint Petersburg a paper inspired in the St. Petersburg Paradox. The St.

Petersburg Paradox was proposed by Nicholas Bernoulli and is one of the most fruitful problems

in Mathematics and Economics. Recall the original problem: Peter tosses a coin and continues

to do so until it should lands ”heads” when it comes to the ground. He agrees to give Paul one

ducat if he gets ”heads”’ on the very first throw, two ducats if he gets it on the second, four if

on the third, eight if on the fourth, and so on, so that with each additional thrown the number

of ducats he must pay is doubled. Suppose we seek to determine the value of Paul’s expectation.

And remember that we have shown that it has infinite expectation:

E[X] =
∞∑
k=1

2k−1P [Get k − 1 tails in a row and a head in the k tail] =

=
∞∑
k=1

2k−1 1

2k
=
∞∑
k=1

1

2
=∞.

In this part of the work, we list some proposed solutions and discuss, when possible, their

correctness.

15 Expected Utility

The whole Daniel Bernoulli’s paper is devoted to develop the first version of the expected utility

theory. He reasons that the wealth has not to be considered in its absolute value. Instead, has

to be accounted in the utility it has for Paul. In words of Gabriel Cramer, who independently

answered the paradox,

”the mathematicians estimate money in proportion to its quantity, and men of good sense in

proportion to the usage that they may make of it.”
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In the paper, Bernoulli considered two possible utility functions. The square root utility

u(x) =
√
x,

and the logarithmic utility

u(x) = log x.

If Paul has no wealth before playing the lottery, for example if he has only the right to play, or

sell, the lottery, the expected utility becomes, under the square root utility,

E[
√
X] =

∞∑
k=1

2
k−1
2

1

2k
=
∞∑
k=1

2
−k−1

2 =
∞∑
k=1

(
1√
2

)k+1

.

This is a summable series:

E[
√
x] =

1√
2

∞∑
k=1

(
1√
2

)k
=

1√
2

(
1

1− 1
2

− 1

)
=

1

2−
√

2
.

Bernoulli goes one step further and introduces the concept of certainty equivalent:

However this magnitude is not the equivalent we seek, for this equivalent need not be equal to

my moral expectation but should rather be of such a magnitude that the pain caused by its loss

is equal to the moral expectation of the pleasure I hope to derive from my gain. Therefore, the

equivalent must on our hypothesis, amount to

(
1

2−
√

2

)2

≈ 2.9.

With the same initial wealth hypothesis, the certainty equivalent of the lottery under the

logarithmic utility equals to 2.
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16 The necessity of bounded utility functions

The expected utility solution to the St. Petersburg Paradox did not satisfy Nicholas Bernoulli,

but, nevertheless, is considered the historical solution and is cited in most of the books of

expected utility theory.

However, this solution is not satisfactory at all. It supposes that economic agents has bounded

utility functions. If the utility function u is not bounded, we can always offer a new St.

Petersburg lottery with infinite expected utility. Just consider the lottery

µu =
∞∑
k=1

u−1(δ2k)
1

2k+1
.

Then, the expected utility is

U [µu] =
∞∑
k=1

u(u−1(2k))
1

2k+1
=
∞∑
k=1

2k−1 1

2k
=
∞∑
k=1

1

2
=∞,

and the St. Peterburg Paradox reappears rescaled. This kind of lottery is also known as

Menger’s Super-Petersburg Paradox.

Of course, we can impose the boundedness to the set of utility functions for the sake of removing

Super-Petersburg Paradoxes from our model. However this can lead to unwanted side effects.

To have unbounded utility functions is helpful in some statistical choice model. Also, imposing

additional conditions on what a rational behaviour is, restricting further the idea that to behave

rationally equals to maximize a utility function, can model away from reality and worsen the

predictions.

Some authors, instead of imposing boundedness, assume that there exists some favourable bet,

in the sense of having strictly positive fair price, that is declined at every level of wealth. This

hypothesis is interesting because:

(a) It implies that the utility function is bounded from above.

(b) We can easily test if it holds, due to a Theorem proved by M. Rabin, with a simple tail or

heads lottery.
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(c) As a consequence, the model predicts the following behaviour: at high levels of wealth, the

agent would reject a bet with huge potential gain even though the potential loss is a tiny

part of his wealth. This, which can be proved only imposing that u is bounded from above,

contradicts the fact that very rich people buy insurances, travel to Las Vegas or invest in

the stock exchange.

First we prove (a) and (b) in the following theorem:

Theorem 16.1. If a favorable bet µ bounded from below is rejected at any level of wealth, then

the utility function u is bounded from above, and there exists A > 0 such that the bet

v :=
1

2
(δ−A + δ∞)

is rejected at any level of wealth.

Proof. As µ is bounded from below, it mass is concentrated on [a,∞) for som a < 0, where a

is in the interior of an unbounded from above interval S. Moreover, we can choose b > 0 such

that

µ̃(B) := µ(B ∩ [a, b]) + δb(B) · µ((b,∞))

is still favourable. Since u is increasing, we have

∫
u(w + x)µ̃(dx) ≤

∫
u(w + x)µ(dx) < u(w),

where w ≥ 0 is the initial wealth. That is, µ̃ is still rejected at any level of wealth. It follows

that ∫
[0,b]

[u(w + x)− u(w)]µ̃(dx) ≤
∫

[a,0]

[u(w)− u(w + x)]µ̃(dx).

Let us assume for simplicity that u is differentiable, the general case requires minor modifica-

tions. Then, by the previous inequality,

u′(w + b)m+(µ̃) < u′(w + a)m−(µ̃),
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where

m+(µ̃) :=

∫
[0,b]

xµ̃(dx) >

∫
[a,0]

(−x)(µ̃) =: m−(µ̃),

due to the fact that µ̃ is favourable. Thus,

u′(w + b)

u′(w − |a|)
<
m−(µ̃)

m+(µ̃)
=: γ < 1,

for any w, hence

u′(x+ n(|a|+ b)) < γnu′(x)

for any x in the interior of S. This exponential decay of the derivative implies

u(∞) := lim
x↑∞

u(x) <∞.

More precisely, if

A := n(|a|+ b)

for some n, then

u(∞)− u(x) =
∞∑
k=0

∫ x+(k+1)A

x+kA

u′(y)dy =
∞∑
k=0

∫ x

x−A
u′(z + (k + 1)A)dz <

<
∞∑
k=0

γ(k+1)n

∫ x

x−A
u′(z)dz =

γn

1− γn
(u(x)− u(x− A)).

Take n such that γn ≤ 1
2
. Then we obtain

u(∞)− u(x) < u(x)− u(x− a),

therefore

1

2
(u(∞) + u(x− A)) < u(x)

for all x such that x− A ∈ S.
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For an exponential utility u(x) = 1− e−αx, the vet

v :=
1

2
(δ−A + δ∞)

is rejected at any wealth level as soon as

A >
1

α
log 2.

This theorem shows that trying to solve a paradox can produce, as a side effect, more para-

doxes and put in serious troubles the descriptive aspects of the expected utility theory. In the

next section, we revisit the relation between rejection of favourable lotteries and boundedness

from more general point of view. To be precise, we prove that we can check if there exists

Super-Petersburg paradoxes without knowing the exact utility function and relying only in the

rejection of a set of test lotteries.

17 A calibration Theorem

In the previous section, we have announced that simple tail or head lottery is enough to check

if the agent displays a bounded utility function. To give an example, if at any given wealth an

agent refuses to play the following lottery,

µ :=
1

2
(δ−100 + δ110),

then he will refuse any lottery of the form

ν :=
1

2
(δ−1000 + δ∞).

The big point of this result is that we do not need to know the utility function at all; the

concavity, the risk aversion, is enough to prove the result. Also, it is worth to note that this is

a big drawback of the model because it shows that the expected utility theory is over sensitive
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to small stakes. The difference between accepting or rejecting a small bet is that massive, that

can be reasonable to do not apply the theory at all.

Now we announce and prove the theorem.

Theorem 17.1. Suppose that for all w, U(w) is strictly increasing and weakly concave. Suppose

that there exist w > w, g > l > 0, such that for all w ∈ [w,w],

1

2
(U(w − l) + U(w + g)) < U(w).

Then for all w ∈ [w,w], for all x > 0,

(i) if g ≤ 2l, then

U(w)− U(w − x) ≥ 2

k∗(x)∑
i=1

(g
l

)i−1

r(w),

if w − w + 2l ≥ x ≥ 2l, and

U(w)− U(w − x) ≥ 2

k∗(w−w+2l)∑
i=1

(g
l

)i−1

r(w)

+ [x− (w − w + l)]
(g
l

)k∗(w−w+2l

r(w)

if x ≥ w − w + 2l.

(ii) Otherwise,

U(w)− U(w − x) ≤
k∗∗(x)∑
i=1

(
l

g

)i
r(w),

if x ≤ w − w, and

U(w)− U(w − x) ≤
k∗∗(w)∑
i=1

(
l

g

)i
r(w) + [x− w]

(
l

g

)k∗∗(w)

r(w),

if x ≥ w − w.

where int(y) denote the smallest integer less than or equal to y, k∗(x) := int
(
x
2l

)
, k∗∗ :=

int
(
x
g

+ 1
)

, and r(w) := U(w)− U(w − l).

Proof.
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(i) For notational ease and without loss of generality, let r(w) = U(w)−U(w− l) ≡ 1. Then

clearly U(w − l)− U(w − 2l) ≥ 1 by the concavity of U . Also, since 2l > g > l, we know

that w − 2l ∈ (w − l, sw), and by the concavity of U ,

U(w − 2l + g)− U(w − l) ≥ g − l
l

=
g

l
− 1.

Hence,

U(w − 2l + g)− U(w − 2l) ≥ g

l
− 1 + 1 =

g

l
.

Therefore, if w − 2l ≥ w, we know that

U(w − 2l)− U(w − 3l) ≥ g

l

since by assumption,

U(w − 2l − l) + U(w − 2l + g) ≤ 2u(w − 2l).

By concavity, we also know that

U(w − 3l)− U(w − 4l) ≥ g

l
.

More generally, if w − 2kl ≥ w, then

U(w − (2k − 1)l)− U(w − 2kl) ≥ U(w − 2(k − 1)l)− U(w − (2k − 1)l)⇒

⇒ U(w − 2kl + g)− U(w − 2kl) ≥ g

l
[U(w − 2(k − 1)l)− U(w − (2k − 1)l)]⇒

U(w − 2kl)− U(w − (2k + 1)l) ≥ g

l
[U(w − 2(k − 1)l)− U(w − (2k − 1)l)] .

These lower bounds on margin utilities yield the lower bound on total utilities U(w) −

U(w − x) in part (i) of the Theorem.
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(ii) Again let r(w) = U(w)− U(w − l) ≡ 1. Then

U(w + g)− U(w) ≤ 1.

By the concavity of U ,

U(w + g)− U(w + g − l) ≤ l

g
.

But if w + g ≤ w, this implies by assumption that

U(w + 2g)− U(w + g) ≤ l

g
,

since

U(w + g − l) + U(w + 2g) ≤ 2U(w + g).

More generally, we know that if w +mg ≤ w, then

U(w +mg + g)− U(w +mg) ≤ l

g
[U(w +mg)− U(w +mg − g)].

These upper bounds on marginal utilities yield upper bounds on utilities U(w+x)−U(w)

in part (ii) of the Theorem.

Corollary 17.2. Suppose that for all w, U(w) is strictly increasing and weakly concave. Sup-

pose there exists g > l > 0 such that for all w,

1

2
(U(w − l) + U(w + g)) < U(w).

Then for all positive integers k, for all m < m(k),

1

2
(U(w − 2kl) + U(w +mg)) < U(w),
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where

m(k) :=


log

[
1−(1− l

g )2
∑k
i=1(

g
l )
i
]

log l
g

− 1 if 1−
(

1− l
g

)
2
∑k

i=1

(
g
l

)i
> 0

∞ if 1−
(

1− l
g

)
2
∑k

i=1

(
g
l

)i ≤ 0.

Proof. From the proof of Theorem 17.1, we know

U(w)− U(w − 2kl) ≥ 2
k∑
i=1

(g
l

)i−1

r(w)

and

U(w +mg)− U(w) ≤
m+1∑

i = 0

(
l

g

)i
r(w).

Therefore, if U(w)− U(w − 2kl) < U(w +mg)− U(w), then

2
k∑
i=1

(g
l

)i−1

≤
m+1∑

i = 0

(
l

g

)i
.

Solving for m yields the formula. Note that if g > 2l, we only need

U(w)− U(w − 2kl) ≥ 2k(U(w)− U(w − 1))

to get the result.

Theorem 17.1, and its corollary, gives upper and lower bounds on the utility of increases of

wealth. The source paper [13] comes with tables that help us to understand the exact meaning

of the results and how it poses in trouble the descriptive aspect of the theory when dealing

with small and big bets at the same time.

Table 1: If averse to 50-50 lose 100/Gain G bets for all wealth levels,

will turn down 50-50 lose L/gain G bets; G’s entered in table
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L/G 101 105 110 125

400 400 420 550 1250

600 600 730 990 ∞
800 800 1050 2090 ∞
1000 1010 1570 ∞ ∞
2000 2320 ∞ ∞ ∞
4000 5750 ∞ ∞ ∞
6000 11810 ∞ ∞ ∞
8000 34940 ∞ ∞ ∞
10000 ∞ ∞ ∞ ∞
20000 ∞ ∞ ∞ ∞

Part VIII. Final words

In this work we saw the mainstream expected utility theory and discussed what, probably, are

the major applications and drawbacks of the theory. One notable aspect of the theory is that

it originated as a side product of other problems, like solving the St. Petersburg Paradox, on

Bernoulli and Cramer’s works, or defining the fundamentals of the Theory of Games on John

von Neumann and Oskar Morgenstern Theory of Games and Economic Behavior.

Being a side product, it is surprising to see how the theory uses a wide set of mathematical

fields and its big impact in social sciences. But even more surprising is that, being a reasonable

and normative appealing idea, when applied results in even bigger paradoxes that the ones

that he was supposed to solve. This implies the necessity of further refinements or a whole new

theory of what a rational behaviour is. This is a fruitful tension and, probably, is one of the

reasons that still, nowadays, the expected utility theory is studied and well alive.

The lecture of this undergraduate thesis will give a nice scope of the theory. However, time,

knowledge and space constrains kept out of the work some interesting topics like,

• The role of the stochastic dominance and the convex ordering.

• Further explore the axioms of the subjective probability and their impact in the theory.

• The bijection between risk measures and the utility of acceptance sets.
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• The Yaari’s Dual Theory of Choice under Risk, which reverses the roles of the payment

and the probabilities.

• The Generalised Expected Utility as a response to the Allais and Ellberg paradoxes.

• Economics and Behavioural critiques to the idea that rational behaviour equals to maxi-

mize utility functions.

• Finite St. Petersburg Lotteries and under what circumstances two risk averse player will

buy and sell the gamble.

To conclude, I want to express my gratitude to my Director and the regular tutorials that he

offered during the elaboration of this work.
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in Lévy Markets. Nov., 2008.

[13] Rabin, Matthew, Risk Aversion and Expected-Utility Theory: A Calibration Theorem.

Econometrica, Vol. 68, No. 5 (Sep., 2000), pp. 1281-1292.

[14] Samuelson, Paul A., St. Petersburg Paradoxes: Defanged, Dissected, and Historically De-

scribed. Journal of Economic Literature, Vol. 15, No. 1, Mar., 1977

[15] Sigman, Karl, Lecture Notes on Financial Engineering. Personal Webpage,

http://www.columbia.edu/ ks20/FE-Notes/FE-Notes-Sigman.html

[16] Sigman, Karl, Lecture Notes on Financial Engineering. Personal Webpage,

http://www.columbia.edu/ ks20/FE-Notes/FE-Notes-Sigman.html

[17] Tsanakas, A., and Desli, E., Risk Measures and Theories of Choice. British Actuarial

Journal, Vol. 9, Issue 04, Oct., 2003, pp 959-991.


