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Abstract

Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of
Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata
and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-
localizing fluorochrome DAPI (49, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These
estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes
(spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases
range from 1.15–1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the
vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The
results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis,
as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has
opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published
chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an
ancestral genome.
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Introduction

The marine red algal genera Asparagopsis and Bonnemaisonia

(Bonnemaisoniaceae, Bonnemaisoniales) have been the subject of

numerous life history studies [1,2,3,4,5,6], invasive species ecology

[7,8,9], phylogeography [10,11,12] and potential applications of

their bioactive metabolites [13,14]. Despite continuing interest in

members of this order, modern molecular techniques are only now

beginning to overcome a history of pervasive taxonomic and

nomenclatural confusion [8,15,6]. Although the Bonnemaisoniales

was separated from the Nemaliales on the basis of their then

known alternation of generations [1], it is now understood that this

life history pattern lacks taxonomic significance and many orders

of red algae are heterogeneous with regard to life history [16]. The

distinction of these two orders is now generally recognized on the

basis of sexual reproduction and cystocarp development [17],

ultrastructural details of pit plugs and plastids [18,19] as well as

molecular studies [20,21].

The Bonnemaisoniales, as originally proposed [1], is character-

ized by a heteromorphic life history. The Asparagopsis genus has a

much branched erect gametophyte, and a tufted sporophyte

(‘‘Falkenbergia’’ stage) with polysiphonous axes. The Bonnemaisonia

genus also has a much branched erect gametophyte, and a

mycroscopic and postrate sporophyte, (‘‘Hymenoclonium’’ stage), or

filamentous and tufted (‘‘Trailliella’’ stage). According to Dixon

[22], the information available for members of these taxa indicates

both a ‘Bonnemaisonia’-type life history as well as a direct

development of gametophytes from vegetative branches of the

assumed diploid sporophyte with an absence of tetrasporogenesis

[23,24,25,26]. In addition, in Bonnemaisonia asparagoides (Wood-

ward) C. Agardh and Bonnemaisonia clavata Hamel somatic meiosis

has been described [4,6] as reported in the ‘Lemanea’-type life

history [27]. Despite the numerous studies carried out on the life

history of the Bonnemaisoniales, the sequence of nuclear phases

has been demonstrated only in B. asparagoides and B. clavata [6].

Microspectrophotometry with the DNA-localizing fluoro-

chrome DAPI (49, 6-diamidino-2-phenylindole, dilactate) was used

successfully to demonstrate an alternation of ploidy levels

associated with meiosis and sexual reproduction in red algae

[28,29]. Among these algae there are members of Batrachosper-

males and Thoreales which have a ‘Lemanea’-type life history

[30,27], such us some Bonnemaisonia species.

The present research of nuclear DNA contents in Bonnemai-

soniaceae was initiated to determine the extent of nuclear DNA

content variation, to identify any correlation between genome size

and phylogeny, and to corroborate an alternation of haploid and

diploid nuclear DNA contents in gametophyte and sporophyte/

prostrate phases, respectively.

Materials and Methods

Source of specimens
‘‘The locations for plant collections in this study were not

privately-owned or protected in any way, so no specific
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permissions were required for these locations/activities; also none

of the species used in this study involve endangered or protected

species’’.

Five species of Bonnemaisoniaceae were collected from the

Mediterranean [Aiguafreda and Llançà (Girona), Porto Colom

(Majorca)] and Atlantic [Cabo Cruz (A Coruña), Zumaya

(Guipúzcoa)] coasts of Spain: Bonnemaisonia hamifera Hariot

(including Trailliella intricata Batters), B. asparagoides, B. clavata,

Asparagopsis armata Harvey (including Falkenbergia rufolanosa (Harvey)

F. Schmitz) and Asparagopsis taxiformis (Delile) Trevisan (including

Falkenbergia hillebrandii (Bornet) Falkenberg) (Table 1). Due to the

difficulty in obtaining ‘Hymenoclonium’ phases of B. clavata and B.

asparagoides, these phases were cultured in the laboratory from

carpospores which produced gametophytes [15].

Nuclear DNA content estimates
Algal specimens were fixed in Carnoy’s solution (3:1 95%

ethanol: glacial acetic acid) and stored in 70% ethanol at 4uC [28].

Preserved material was rehydrated in water and softened in 5% w/

v EDTA for 12 h [31]. Algal material was squashed, transferred to

cover slips treated with subbing solution, air dried and stained with

DAPI (0.5 mg mL-1) (Sigma Chemical Co., St. Louis, MO 63178)

as previously described [31,32]. Nuclear DNA content estimates

based on microspectrophotometry with DAPI followed procedures

specified previously [31,32] using a protocol modified after Goff &

Coleman [31]. This method was carried out at the University of

North Carolina Wilmington. Nuclear DNA content estimates

based on image analysis of DAPI-stained specimens followed a

procedure modified from Kapraun & Dunwoody [33] and Choi et

al. [34] using a Cooled CCD Miramax RTE 782-Y high

performance digital camera placed on a Leica DMRB fluores-

cence microscope and subsequently analyzed using MetaMorph

software (Molecular Devices, Toronto, Canada). This method was

carried out at the University of Barcelona. Fluorescence intensity

(If) values were obtained from image analysis and microspectro-

photometry for algal specimens [35,33].

DAPI binds by a non-intercalative mechanism to adenine and

thymine rich regions of DNA which contain at least four A-T base

pairs [36]. Chicken erythrocytes (RBC) with a DNA content of

2.4 pg [37] were used as standard to quantify nuclear DNA

contents. RBC can be used directly as a standard for determining

amounts of DNA only when the A-T contents of both standard

and experimental DNA are equivalent [38]. Chicken has a nuclear

DNA base composition of 42–43 mol % G + C [39]. Published

data indicate similar mean mol% values for the Rhodophyta

[40,41,42,43,44]. Algae investigated in this study are assumed to

have a similar range of base pair compositions, and linearity is

presumed between DAPI-DNA binding in both RBC and algal

samples [43]. Nuclear DNA contents were estimated by compar-

ing the If (intensity of fluorescence) values of the RBC standard

and algal samples [32]. Nuclear DNA content data for these and

other red algae are incorporated into the database of plant genome

sizes [28,45] compiled and hosted by the Royal Botanic Gardens

(RBG) Kew web page (http://www.rbgKew.org.uk/cval/

homepage.html).

Assignment of ploidy level
Assignment of estimated nuclear DNA contents to specific C-

values is presumptive in that no karyological research was

conducted on the algal samples used for nuclear DNA content

estimates. Nuclear DNA contents, referred to as C-values [46],

represent multiples of the minimum amount of DNA correspond-

ing to the non-replicated haploid chromosome complement

[47,48]. In the present study, the numerical relationship between

the C-values and the If values obtained was established from the

spermatia which can have a haploid genome = 1C (G1) or a

replicated haploid genome = 2C (G2), according to Goff &

Coleman [31].

Results

Nuclear genome size estimates (pg6SD) were obtained for five

species of Bonnemaisoniaceae. Table 1 includes information about

location, sampling dates, cycle phases and cell types studied, and

the number of nuclei examined, as well as all the results obtained.

Table 2 summarizes the mean estimates for 1C and 2C values.

The members of the Bonneamaisoniaceae studied showed

gametophytes with DNA content values from 1C (0.5–0.8 pg) to

4C (2.2–2.9 pg), and sporophytes or prostrate phases with values

from 2C (1.15–1.7 pg) to 4C (2.2–3.2 pg). A similar range of 1C

(0.55–0.85 pg) was obtained by extrapolation from the 2C mean

values found in the sporophyte or the prostrate phase (Table 1).

For all the species studied, the results obtained by microspectro-

photometry and by image analysis were similar.

Concerning reproductive structures, the DNA nuclear contents

of spermatia and carpospores were analyzed. The spermatia values

were obtained for the two species of Asparagopsis (1C = 0.7 pg), for

B. asparagoides (1C = 0.6 pg) and for B. clavata (1C = 0.7 pg). The

carpospores values were also obtained for of A. armata

(4C = 3.2 pg), B. asparagoides (4C = 2.3 pg) and B. clavata

(4C = 2.2 pg).

Discussion

Nuclear DNA content estimates
Sister taxa such as B. clavata-B. asparagoides and A. armata-A.

taxiformis [6] have similar DNA values (Table 2). B. clavata and B.

asparagoides present the lowest 2C mean values of all the species

studied (2C = 1.2 pg), while A. armata and A. taxiformis present the

highest values (2C = 1.6/1.7 pg). Regarding B. hamifera, the 2C

mean value (2C = 1.4 pg) is between the two groups. These results

agree with the unclear taxonomic position of this species,

previously considered within the Asparagopsis genus [6]. The only

data on DNA nuclear content of Bonnemaisoniales published in

picograms corresponds to B. hamifera with values of 2C = 1.3 pg

[28], coinciding with our results. The DNA range observed in the

gametophytes (1C–4C) agrees with the range indicated by

Salvador et al. [6] for B. asparagoides and B. clavata. However, for

the sporophytes or the prostrate phases, the same authors give a

range of 2C to 8C.

On the other hand, keeping in mind the 1C value of the

spermatia, it can be affirmed that the nuclear genome size of B.

clavata from Mediterranean (Girona) and Atlantic (A Coruña)

coasts did not show any differences.

The presence of 4C nuclei in the Bonnemaisoniaceae gameto-

phytes suggests the possible start of an endopolyploidy process

both in vegetative cells and in carpospores. These results agree

with those of Salvador et al. [6] in B. asparagoides and B. clavata that

showed a high endopolyploidy level in the axial cells of the

gametophytes, as well as in the carpospores. These authors give

DNA values for the carpospores of up to 32C in B. asparagoides and

up to 16C in B. clavata.

Molecular phylogeny and patterns of genome size
variation

A phylogenetic hypothesis for Bonnemaisoniales [20,8,21,6]

provides a picture of nuclear genome size evolution among these

taxa (Fig. 1). Southern hemisphere genera Delisea and Ptilonia are a

Nuclear DNA Content in Bonnemaisoniaceae
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sister group to a Bonnemaisonia-Asparagopsis clade according to the

phylogenetic tree resulting from SSU analysis [8]. Results of the

present study indicate 1C nuclear genome sizes in Bonnemaiso-

niaceae (0.5–0.8 pg) within similar range observed in other

members of the Florideophycidae [28].

Table 1. Nuclear DNA content of Bonnemaisoniales. Data standardized to the DNA level of chicken erythrocytes (RBC = 2.4 pg).

Nuclear Genome Size (pg)

Species Location Date Phase Cell Type

N6 of
Nuclei
examined 1C 2C 4C Method

Asparagopsis armata Llançà 04/02/2007 G C 11 3.260.6 IA

0 0 0 V 137 1.760.2 IA

0 0 0 Sp 51 1.860.3 IA

0 0 0 Sp 123 0,6560.1 M

0 0 S V 157 1.660.1 M

0 0 S V 14 2.760.4 M

Asparagopsis taxiformis Porto Colom 06/05/2007 G V 63 1.860.2 IA

0 0 G V 17 2,460.4 IA

0 0 G V 10 2.960.4 M

0 0 G Sp 160 0.760.2 M

0 0 G Sp 29 0.6560.1 IA

0 0 G Sp 67 1.760.1 IA

0 0 G Sp 4 1.660.1 M

0 0 S V 102 1.760.3 M

Bonnemaisonia asparagoides Aiguafreda 30/05/2007 G V 51 0.660.1 M

0 0 G V 46 0.660.2 IA

0 0 G Sp 21 0.560.1 M

0 0 G Sp 12 0.660.2 IA

0 0 G V 30 1.160.2 M

0 0 G V 34 1.4560.2 IA

0 0 G C 5 2.360.2 IA

culture G V 29 2.260.1 IA

culture G C 99 1.6560.2 IA

culture S V 168 1.1560.2 M

culture S V 183 2.2560.1 IA

Bonnemaisonia clavata Cabo Cruz 13/06/2006 G Sp 51 0.760.1 M

0 0 G Sp 13 1.160.1 M

Aiguafreda 30/05/2007 G V 8 0.660.2 IA

0 0 G V 25 1.660.1 IA

0 0 G Sp 83 0.660.2 IA

0 0 G C 71 2.260.2 IA

culture G C 84 1.660.1 IA

culture S V 87 1.260.2 M

culture S V 183 2.260.2 IA

Bonnemaisonia hamifera Zumaya 07/10/2006 G V 104 0.860.2 M

0 0 G V 89 1.560.3 M

0 0 G V 16 2.760.7 M

0 0 S V 172 1.3560.2 IA

0 0 S V 110 3.260.6 M

1Delisea plumosa New Zealand G V 47 1.060.2 M

1Ptilonia willana New Zealand G V 165 0.660.1 M

Unpublished data from Kapraun.
G = gametophe, S = sporophytic/prostrate phases, C = carpospora, V = vegetative cell, Sp = spermatia, IA = image analysis, M = microspectrophotometry.
doi:10.1371/journal.pone.0086006.t001
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Asparagopsis armata and A. taxiformis have become widely

distributed in Europe as an alien introduction [7,49,9] and fit

the definition of a marine invader [50]. The highest 2C levels

observed in their respective tetrasporophytes could be related with

the fact that in Asparagopsis this phase (‘‘Falkenbergia’’ type) is the

most resilient [10] and the primary means of dispersal [8].

Karyological studies limited to three species, Asparagopsis armata

(n = ca. 20), Bonnemaisonia asparagoides (n = ca. 18, n = ca. 20, n = ca.

30) and Bonnemaisonia hamifera (n = 20–25) [51], show that the n

chromosome number is variable. Reported chromosome comple-

ments of n = 10 in A. armata [52] should be reinvestigated. In red

algae, the hypothesised basal (ancestral) nucleotype is character-

ized both by small genome sizes and small chromosome

complements [28]. Chromosome complements greater than

n = 10 probably reflect ancestral polyploidy events [51,29]. Due

to the variation of the chromosome number and nuclear DNA

content estimates in the present study, we can suggest one or more

instances of aneuploidy following an ancestral polyploidy event

[53,54,55] as a possibility.

Nuclear DNA content variation associated with a
diplobiontic life history

Considerable life history variations have been reported in

species of Bonnemaisoniales [22,4,56]. Culture studies suggest

intraspecific variability in the development and life history of

Delisea pulchra (Greville) Montagne [57]. In Atractophora and

Naccaria, gametophytes develop directly from the prostrate

protonemal stage produced from carpospores [25]. Asparagopsis

taxiformis and A. armata have an alternation of generations with a

‘Falkenbergia’ tetrasporophyte [1,2,5]. Bonnemaisonia hamifera alter-

nates with a ‘Trailliella’ tetrasporophyte [26] and Bonnemaisonia

geniculata Gardner is reported to have a different type of

tetrasporophyte [3]. In contrast, recent research of B. asparagoides

and B. clavata confirms direct development of gametophytes from

the prostrate ‘Hymenoclonium’ phase following vegetative meiosis

[6].

The DNA-localizing fluorochrome DAPI and microspectro-

photometry have been used to demonstrate variations in nuclear

DNA levels consistent with an alternation of haploid and diploid

phases in red algae associated with a sexual life cycle [35,40,29]. In

the present study, no evidence of tetrasporogenesis was observed in

either collected or cultured material. However, in comparing the

mean values obtained between phases, the gametophytes showed a

1C range of 0.6–0.8 pg whereas their prostrate/sporophytic

phases (‘Falkenbergia’, ‘Hymenoclonium’ and ‘Trailliella’) had a

2C range of 1.2–1.7 pg (Table 2). In addition, the 1C values

observed in the gametophytes are corroborated by the 1C value

observed in the spermatia (0.5–0.7 pg). These results confirm the

alternation of haploid and diploid phases suggested by culture

studies [2,23,26,4,6], but not clearly demonstrated by previous

cytological research [58,59,4] in the Bonnemaisoniales.

Table 2. Nuclear DNA means content of Bonnemaisoniales. 1C values (spermatia) and 2C values (sporophytic/prostrate phases).

Nuclear Genome Size (pg)

Species Reproductive Phase 1C 2C

Asparagopsis armata G 0.760.1

( = ‘Falkenbergia’ phase) S 1.660.1

Asparagopsis taxiformis G 0.760.2

( = ‘Falkenbergia’ phase) S 1.760.3

Bonnemaisonia hamifera G

( = ‘Trailliella’ phase) S 1.460.2

Bonnemaisonia asparagoides G 0.660.2

( = ‘Hymenoclonium’ phase) S 1.260.2

Bonnemaisonia clavata G 0.760.3

( = ‘Hymenoclonium’ phase) S 1.260.2

G = gametophyte, S = sporophytic/prostrate phase.
doi:10.1371/journal.pone.0086006.t002

Figure 1. Nuclear DNA contents in picograms (pg) superim-
posed on a consensus molecular phylogenetic tree for
Bonnemaisoniales on the basis of supported clades in
published phylogenies [20,8,21,6]. (#) 1C nuclear DNA con-
tents. (N) 2C nuclear DNA contents.
doi:10.1371/journal.pone.0086006.g001

Nuclear DNA Content in Bonnemaisoniaceae

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86006



Therefore, in addition to contributing the nuclear DNA content

values of 7 Bonnemaisoniaceae species, this study confirms the

alternation of nuclear phases and reports significant information

about the understanding of the life histories of this group, where

several variations have been described.
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