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Resumen 
La corteza cerebral conforma la mayor parte del volumen total del cerebro

humano y es a su vez el área mayormente responsable de funciones cognitivas y de

procesamiento de orden superior. Desde los primeros estudios a principios del siglo

XX tras el desarrollo de la electroencefalografía, se entendió que el cerebro exhibe

abundante actividad electroquímica espontánea. Dicha actividad eléctrica, registrada

mediante el electroencefalograma, proviene de neuronas que se activan durante la

ausencia de estímulos sensoriales o de la ejecución de un comportamiento motor. 

La  actividad  espontánea  de  la  corteza  cerebral  se  manifiesta  de  manera

permanente durante los distintos “estados cerebrales” (brain states) presentes entre

el  sueño y la  vigilia,  donde la  dinámica interna del  cerebro interacciona con la

actividad  desencadenada  por  estímulos  sensoriales.  A pesar  que  inicialmente  se

pensó  que  dicha  actividad  espontánea  era  meramente  “ruido  neuronal”,  i.e.

actividad que no  representaba información  relevante  alguna,  durante  las  últimas

décadas se ha enfatizado su participación en posibles funciones computacionales

que van desde la exploración de experiencias sensoriales previas a la formación de

nuevas memorias. De hecho, estudios recientes durante los últimos años refuerzan

las teorías de que la actividad espontánea cortical producida durante el sueño - más

precisamente  durante  el  sueño  de  onda  lenta  -  tiene  un  rol  esencial  en  la

consolidación de la memoria. 

El estado cerebral de un sujeto está definido en base a la estructura de su

actividad espontánea.  El cerebro opera en un aparente continuo de regímenes en

cuyos extremos se encuentran, respectivamente, los estados desincronizados (tales

como con vigilia activo, atención o sueño MOR) y sincronizados (tales como sueño

de  onda  lenta,  anestesia,  vigilia  reposo).  Durante  los  estados  desíncronizados,

poblaciones de neuronas de la corteza cerebral disparan potenciales de acción de

manera tónica, aparentemente estocástica y no correlacionada entre ellas. Por otra

parte,  durante  los  estados  sincronizados,  las  neuronas  de  la  corteza  cerebral

muestran  de  manera  coherente  la  alternancia  entre  intervalos  de  ausencia  de

actividad  (DOWN)  e  intervalos  donde  eventualmente  descargan  potenciales  de

acción (UP).  Más aún, la actividad generada por las redes corticales durante los

intervalos  UP muestra  aparente  similitud  con  aquella  observable  en  el  animal
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despierto,  y  por  lo  tanto  sugiere  que  durante  estos  intervalos  se  llevan  a  cabo

procesamientos de información o computaciones  similares a aquellos  que tienen

lugar  durante la vigilia.  En estos  últimos años se  ha entendido también que los

estados cerebrales no definen categorías discretas, sino más bien un continuo de

posibles estados. De hecho, se ha visto recientemente que los intervalos DOWN

pueden aparecer incluso en el animal despierto. A pesar de décadas de investigación

acerca  de  la  actividad  espontánea  cortical,  su  importancia  y  significado para  el

correcto funcionamiento del cerebro permanecen mayormente inciertos, así como

también los mecanismos que la generan. 

La  presente  Tesis  Doctoral  se  dedica  al  estudio  y  caracterización  de  la

actividad espontánea de la corteza cerebral en distintos estados cerebrales, y de los

posibles  mecanismos  que  la  generan.  Concretamente  en  esta  Tesis  Doctoral  se

abordan  los siguientes objetivos:

1. Determinar  el  perfil  laminar  de  la  sincronización1 de  la  actividad

intracortical  de  frecuencias  rápidas  en  la  columna  cortical  durante  los

intervalos UP de estados cerebrales sincronizados  in vivo y en el circuito

cortical aislado in vitro.

2. Mediante  el  estudio  detallado  de  la  estadística  de  la  actividad  de

poblaciones de neuronas durante los estados sincronizados in vivo, construir

un modelo computacional para explorar los mecanismos de red que causan

las transiciones entre intervalos UP y DOWN durante los estados cerebrales

sincronizados.

3. Mediante el análisis de la actividad de poblaciones de neuronas en distintos

estados  cerebrales,  determinar  cómo  los  estados  cerebrales  modulan  la

dinámica  y  la  estadística  de  la  actividad  espontánea  en  los  circuitos

corticales.

A continuación se detallan los resultados obtenidos en relación a cada uno de estos

puntos.

1 El termino sincronización se refiere a la actividad colectiva de neuronas en una escala
de  tiempo  del  orden  de  milisegundos,  y  no  debe  ser  confundido  con  los  estados
cerebrales  sincronizados  o  desincronizados,  que  se  refieren  a  escalas  de  tiempo del
orden de minutos.
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1.  La actividad de la  corteza cerebral  del  animal despierto se caracteriza por la

presencia de oscilaciones rápidas (10-100Hz) en las señales de potencial de campo

local. Dichas oscilaciones se encuentran circunscritas en dos dominios conformados

por capas supra e infra granulares (capas superficiales y profundas de la corteza,

respectivamente). No está claro, si esta es una característica general de la activación

cortical, si depende de neuromoduladores o de inputs característicos del estado de

vigilia. Por otra parte, las redes corticales producen oscilaciones rápidas, no sólo

durante el estado de vigilia y tareas cognitivas, sino también durante el sueño de

onda lenta o anestesia profunda.  También se han observado oscilaciones rápidas

durante  los  intervalos  UP generados espontáneamente  en rodajas  de neo-corteza

mantenidas  in vitro.  El estudio presentado en el Capítulo 4.1 de esta Tesis tiene

como  fin  determinar  si  dicha  segregación  laminar  de  las  oscilaciones  rápidas

observada durante la vigilia  también se  produce durante la actividad espontánea

observada  durante  los  intervalos  UP.  Con  este  objetivo,  se  registraron señales

extracelulares de múltiples capas en rodajas de corteza visual de hurones in vitro y

también registros laminares in vivo en la corteza visual de hurones anestesiados.

Registros laminares de dieciséis canales  in vivo revelaron la existencia de

compartimentos laminares de oscilaciones rápidas a través de la columna cortical

durante  los  intervalos  UP.  Observamos  altos  niveles  de  coherencia  para  los

electrodos  del  mismo dominio  laminar  (supra/infra  granulares),  mientras  que  se

encontraron niveles más bajos de coherencia entre electrodos de dominios laminares

distintos. Por una parte, las capas infragranulares mostraron oscilaciones rápidas de

mayor  frecuencia  que  las  capas  supragranulares  durante  los  intervalos  UP,  un

hallazgo que  resultó  coherente  tanto  in  vivo como  in  vitro.  Específicamente,  la

potencia de las fluctuaciones en la banda de frecuencias beta (10-30Hz) fue mayor

en  capas  supragranulares  mientras  que  los  picos  de  potencia  sobre  la  banda  de

frecuencias gamma (30-100Hz) fueron la característica espectral más prominente de

las capas infragranulares. Las oscilaciones gamma en capas infragranulares in vivo

resultaron más fuertes y más robustas que aquellas observadas in vitro. Con el fin de

probar si la diferencia observada en la potencias de las oscilaciones in vivo e in vitro

podría ser explicada por una excitabilidad más alta del circuito cortical  in situ, se

incrementó la excitabilidad en rodajas mediante la aplicación de ácido kaínico, un

agonista de los  receptores  de kainato a menudo utilizado con este  fin.  El  ácido

kaínico indujo un aumento significativo en la potencia de las oscilaciones gamma en

capas infragranulares, pero también generó un desacoplamiento entre capas supra y

capas infragranulares durante la alternancia entre intervalos UP y DOWN, un efecto
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que no se observa en circunstancias fisiológicas in vivo. 

Estos  resultados  demuestran  que  la  segregación  en  diferentes  dominios

laminares es también una característica de actividad de la red cortical espontánea

durante los intervalos UP, a pesar de la fuerte conectividad vertical intracolumnar y

los patrones de activación cortical altamente síncronos durante la alternancia entre

intervalos UP y DOWN. Por otra parte, nuestro estudio  in vitro demuestra que la

modulación de la excitabilidad local puede controlar acoplamientos entre laminas y

la dinámica oscilatoria en circuitos corticales.

Este trabajo ha sido2 presentado en:

Annual Meeting of the Society for Neuroscience 2013, San Diego (Estados Unidos)

Laminar profile of fast oscillations during cortical Up states in vivo and in vitro

D Jercog, M Ruiz-Mejias, R Reig, A Compte and MV Sanchez-Vives

FENS 2010, Amsterdam, (Holanda)

Oscillations in the beta/gamma range during spontaneous up states in supra versus

infragranular layers of the cerebral cortex in vitro and in vivo

DA Jercog, S De La Torre, A Compte & MV Sanchez-Vives

2.  Como fue  descrito  anteriormente,  durante  el  sueño de  onda  lenta  y  bajo  los

efectos de anestesia, los circuitos corticales muestran fluctuaciones globales lentas

en su actividad, consistentes en la alternancia de intervalos UP y DOWN. Aunque

este patrón de actividad es ubicuo durante el sueño de onda lenta y bajo el efecto de

muchos anestésicos, todavía carecemos de una descripción clara de los mecanismos

que   lo  generan.  La  hipótesis  estándar  de  generación  de  dicho patrón  en  redes

corticales con conexiones recurrentes supone la existencia de un mecanismo celular

o  sináptico  de   fatiga  (e.g.,  corrientes  transmembrana  de  adaptación)  que  se

acumula durante los intervalos UP en los que las neuronas disparan de modo tónico.

Progresivamente la fatiga neuronal disminuye la excitabilidad de las neuronas hasta

que  la  actividad  recurrente  ya  no  puede  ser  sostenida  y  el  circuito  pasa  a  un

intervalo  DOWN.  Durante  los  períodos  de  “descanso”  en  los  que  las  neuronas

permanecen en silencio, las redes corticales se recuperan de dicha fatiga hasta que el

circuito  se  auto-excita  y  transiciona  a  un  nuevo  intervalo  UP.  Este  mecanismo

produce una alternancia oscilatoria entre intervalos UP y DOWN. Alternativamente,

2 Neuroscience 2013 tendrá lugar en Noviembre de 2013.
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se ha propuesto que estructuras subcorticales tales como el tálamo, ganglios basales

o el  propio hipocampo, generan  inputs sobre los circuitos corticales que pueden

causar  transiciones  entre  UP/DOWN  y  en  consecuencia,  asumiendo  la

independencia  en  el  tiempo  de  dichos  inputs,  generar  transiciones  UP/DOWN

estocásticas.

Para  comprender  la  contribución  de  los  diferentes  mecanismos,  se

analizaron registros extracelulares de la actividad de poblaciones de neuronas de la

corteza  cerebral  de  ratas  anestesiadas  con  uretano.  Basado  en  la  actividad  de

potenciales de acción de la población de neuronas, se determinaron las duraciones

de los intervalos UP (U) y DOWN (D). Se encontró que las distribuciones de U y D

se asemejan a distribuciones gamma sesgadas - con alto coeficiente de variación

(CV  promedio  =  0.7).  Además  dichas  duraciones  exhibieron  correlaciones

significativamente  positivas  entre  las  duraciones  de  intervalos  consecutivos

(corr(DU)=0,15  y  corr(UD)  =  0.1).  Adicionalmente,  la  tasa  de  descarga  de

potenciales de acción durante los intervalos UP reveló rastros débiles de la presencia

de adaptación (decaimiento de la tasa de descarga). Esta evidencia, puede sugerir

que  los  mecanismos  de  fatiga  tienen  un  papel  débil  pero  significativo  en  la

determinación  de  la  duración  de  los  intervalos  U y  D,  mientras  que  los  inputs

externos o las fluctuaciones de la actividad durante los U, podrían tener un gran

impacto generando las transiciones entre UP/DOWN. Por otra parte, basada en la

forma  de  la  espiga  promedio  de  cada  una  de  las  neuronas  registradas

extracelularmente, clasificamos las neuronas en putativa inhibitoria (I) y putativa

excitatoria  (E).  La segregación de neuronas en I  y  E reveló que las  neuronas I

durante  períodos  U  mostraron  más  adaptación  en  la  tasa  de  descarga  que  las

neuronas E, contrario a las respuestas típicas de estos dos tipos de células frente a la

inyección de impulsos de corriente despolarizantes.

Mediante  el  uso  de  un  modelo  de  red  de  baja  dimensión  representando

poblaciones de neuronas umbral-lineal (linear-threshold) E e I, se encontró que por

medio de la combinación de adaptación celular en las neuronas E y la presencia de

fluctuaciones externas se podría producir la alternancia entre períodos UP y DOWN

describiendo  una  dinámica  que  coincide  con  las  estadísticas  obtenidas  en  los

experimentos.  Además,  el  modelo  propuesto  se  basa  en  un  nuevo  tipo  de

biestabilidad entre un intervalo de ausencia de actividad (DOWN ) y un intervalo de

descarga  de  potenciales  de  acción  (UP),  cuya  tasa  de  descarga  puede  ser

arbitrariamente baja. La biestabilidad surge de la asimetría  entre las poblaciones I y

E, donde la ganancia y el umbral de disparo de las neuronas I deben ser más grandes
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que las de las neuronas E, ambas  características observadas experimentalmente. En

estas condiciones, a pesar de que la adaptación celular sólo afecta a la subpoblación

E, la adaptación de la tasa la descarga durante los intervalos UP es más pronunciada

para la subpoblación I, tal como se observa en los experimentos. 

En resumen, nuestros análisis sobre los datos experimentales revelaron que

la  estadística  de  duraciones  de  los  intervalos  UP  y  DOWN  durante  estados

cerebrales sincronizados observados bajo el efecto de uretano son más irregulares

que  lo  descrito  previamente  bajo  otros  anestésicos.  Además  observamos  trazas

débiles de decaimiento en la tasa de descarga promedio de la población durante

intervalos  UP.  Estas  dos  características  enfatizan  el  rol  de  las  fluctuaciones

causando  transiciones  UP/DOWN.  Por  otra  parte,  la  presencia  de  correlaciones

positivas  entre  intervalos  UP/DOWN  indirectamente  revela  la  existencia  de  un

proceso  de  fatiga  lento  que  contribuye  a  la  generación  de  dichas  transiciones.

Asimismo,  el  modelo  propuesto  proporciona  una  explicación  mecanística  a  la

estadística de los intervalos UP y DOWN de la corteza in vivo, basada en un nuevo

régimen de biestabilidad que se basa en intervalos UP estabilizados por inhibición y

a una tasa de descarga baja.

Este trabajo ha sido presentado en:

Barcelona Computational & Systems Neuroscience 2013, Barcelona, (España)

Mechanisms underlying UP and DOWN states in the neocortex

D Jercog, A Roxin, P Barthó, A Luczak, A Compte & J de la Rocha

Annual Meeting of the Society for Neuroscience 2011, Washington, (Estados Unidos)

Slow global fluctuations in cortical circuits under urethane anesthesia

DA Jercog, A Roxin, A Renart, P Bartho, L Hollender, KD Harris, A Compte, J de la Rocha

3. Los estados desincronizados se caracterizan por pequeñas fluctuaciones rápidas

de baja amplitud en el potencial de campo local, que corresponden con la descarga

tónica de neuronas individuales. Por otro lado, los estados síncronos se caracterizan

por  fluctuaciones  lentas  de  gran  amplitud  en  la  LFP que  corresponde  con  la

alternancia entre intervalos UP y DOWN, que se expresan coherentemente en las

neuronas  individuales  del  circuito  cortical  local.  Como  ha  sido  mencionado

anteriormente, los estados sincronizado y desincronizado no son estados cerebrales

discretos sino, más bien , los extremos en un continuo de estados posibles .
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El  objetivo  de  este  estudio  fue  entender  cómo  los  diferentes  estados

cerebrales en dicho espacio continuo afectan la dinámica de la alternancia entre

intervalos UP-DOWN y, por otra parte, estudiar si un modelo simple que muestra

adaptación y fluctuaciones puede explicar dichos cambios en la dinámica de los

circuitos corticales .

El  análisis  de  los  datos  experimentales  reveló  que  las  variaciones

espontáneas en el estado del cerebro durante los experimentos impacta la dinámica

UP-DOWN en una forma sistemática en casi todos los experimentos analizados. A

pesar  de que los  estados desincronizados extremos  no muestran la  presencia  de

intervalos  DOWN,  en  principio,  para  una  amplia  gama  de  niveles  de  estados

sincronizados pudimos detectar  transiciones UP-DOWN. Hemos cuantificado las

estadísticas de U y D y de la actividad durante diferentes niveles de sincronización

del estado cerebral. Este análisis revela que hacia los estados más desincronizados :

i. los intervalos UP aumentan su duración y variabilidad, mientras que los intervalos

DOWN las disminuyen,  ii. la correlación entre intervalos consecutivos disminuye.

Un  modelo  de  red  sencillo  que  incluye  tanto  adaptación  y  fluctuaciones  puede

producir la alternancia entre intervalos UP y DOWN y, más aún, mediante cambios

en la adaptación y las fluctuaciones puede reproducir cualitativamente los cambios

observados  entre  los  extremos  de  estados  cerebrales  desincronizados  y

sincronizados.

Este trabajo ha sido presentado en:

FENS 2012, Barcelona, (España)

Dynamics Of Up And Down States In Cortical Circuits Under Urethane Anesthesia 

DA Jercog, A Roxin, P Barthó, A Luczak, A Renart, KD Harris, A Compte & J de la Rocha
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1. Introduction

1.1. Cortical Spontaneous activity

Even during the absence of sensory input or behavioral output, the brain
exhibits abundant ongoing activity in many structures. As a matter of fact,  from
resting state imaging studies in humans we know that the ongoing brain activity
consumes 20% of the body energy and moreover, task-related increases in neuronal
metabolism only represents  a remarkably small  increase of  <5% compared with
baseline levels  (Raichle and Mintun,  2006). Despite the prominence and several
decades  of  research  about  ongoing  spontaneous  activity,  its  importance  and
significance  during  normal  brain  functioning  is  still  poorly  understood.  The
following sections will discuss some basic aspects of what we know regarding this
still mysterious phenomenon.

Not just noise

 When an identical stimulus is presented repeatedly, cortical neurons exhibit
variability  in  their  responses,  approximately  following  Poisson  statistics  (Dean,
1981; Tolhurst et al., 1981). A common procedure to extract the signal from the
variable  responses  obtained  during  electrophysiological  recordings  is  to  average
over  repeated  presentations  of  the  stimulus.  This  procedure  assumes  that  the
variability of neural responses is an annoyance for cortical processing that the brain
somehow must overcome. If this variability is uncorrelated across a population of
neurons, averaging the single-trial responses over the many cells in the population
would average out the noise and result in a reliable estimate of the stimulus input
(van  Kan  et  al.,  1985;  Shadlen  and Newsome,  1998a;  Softky and Koch,  1993;
Tolhurst  et  al.,  1983).  This  commonly  assumed  “signal-plus-noise”  model  of
cortical  responses  downgrades  the  meaning  of  the  spontaneous  activity,  which
might  provide  a  source  of  this  variability as  it  has  a  strong impact  on  sensory
evoked  responses.  Moreover,  it  has  been  proposed  that  the  variability  of  the
neuronal response might be important for coding purposes (reviewed in (Stein et al.,
2005), (Ma et al., 2006)).

The  spontaneous  activity  is  not  an  independent  random  process  of
individual neurons, but it is generated by the synaptic inputs from other coherently
activated  neurons.  This  effect  is  observed  when  without  any  sensory  input,
spontaneous activity can be as  large as  the  evoked activity  (Arieli  et  al.,  1995;
Petersen et al., 2003a). Moreover, activity can be correlated across millimeters of
the cortex as reported by Amos Arieli and colleagues (1995), but also over different
time scales ranging from milliseconds to  seconds  (Kohn and Smith,  2005).  The
magnitude and spatio-temporal correlations of the spontaneous activity demonstrate
that this is not just random independent noise coming from individual neurons.

Additionally,  it  has  been  proposed that  responses  in  single  trials  can  be
predicted by linear summation of a deterministic component (the average response
over trials) and the preceding ongoing activity in paralyzed cats (Arieli et al., 1996).
However, average responses and trial-to-trial responses variability strongly depend
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on the level of anesthesia which might lead to failure of the simple linear model
interactions  (Kisley and Gerstein, 1999; Petersen et al., 2003b). It is however an
appealing  idea  that  sensory  input  processing  might  be  a  combination  of  a
deterministic response and ongoing cortical dynamics (Curto et al., 2009).

Anyhow, spontaneous activity is one of the factors that account for the inter-
trial variability in cortical responses. In this case, evoked sensory responses are a
result of the interaction between spontaneous activity and external stimulation rather
than an overtake of the cortical circuit by the external input, reflecting the structure
of the input signal itself, and this interaction might depend on the stimulus strength
(Fiser et al., 2004; Nauhaus et al., 2009). 

As mentioned before, the interaction with the external world can lead to
response  patterns  across  cortical  populations  that  are  similar  to  those  observed
during the spontaneous activity, as if thalamic input would be a triggering signal to
produce  stereotypical  responses,  resembling  the  idea  of  attractor  networks  or
ingrained trajectories in the state space (Cossart et al., 2003; MacLean et al., 2005).
The spontaneous activity may replay previous experienced sensory responses, since
the spatio-temporal structure of activity on engaged networks are likely to be similar
to those observed during evoked-responses (Tsodyks et al., 1999; Kenet et al., 2003;
Fiser et al., 2004; Han et al., 2008; Luczak et al., 2009). Consequently, it has been
suggested  that  the  patterns  of  spontaneous  activity reveal  the  realm of  possible
cortical network responses (Luczak et al., 2009).

In  this  way,  spontaneous  activity  is  more  than  noise  and  possibly  an
instrumental  part  of  cortical  processing  by  modulation  cortical  responses  in  a
context dependent manner.

Reveals the underlying connectivity

During  development,  spontaneous  activity  is  crucial  in  defining  cell
properties (i.e.  receptive field, tuning) and early patterns of connections that are
built even without any sensory perception experience (Ruthazer and Stryker, 1996;
Weliky and Katz,  1997) (reviewed  in  (Feller,  1999)).  The  inherent  mechanisms
generating such structured patterns of ongoing spontaneous activity are unknown.
However, it is reasonable to rely on the hypothesis that spontaneous activity reflects
the underlying connectivity of cortex. A clear example is provided by primary visual
cortex orientation maps found in cats, monkeys and tree-shews (but not in mice and
rats). Whether is evoked or spontaneous activity from a cell tuned for a particular
orientation are used to trigger averaging of optical imaging signal from a piece of
cortical surface, a pattern emerges highlighting those cortical columns matching the
orientation preference of the cell  (Bonhoeffer and Grinvald, 1991; Tsodyks et al.,
1999). The connectivity map unveiled in this way confirms results from anatomical
studies and cross-correlation analysis of pairs of single-unit recordings (Ts’o et al.,
1986). These same orientation maps can interestingly emerge during spntaneous
activity (Kenet et al., 2003; Murphy and Miller, 2009). However, this result occur
mostly under anesthesia,  as the spatio-temporal structure of spontaneous activity
changes during waking. Thus, even though spontaneous activity is clearly affected
by the circuit connectivity, this is not the only factor that determines its structure as
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the same networks can display very different patterns of spontaneous activity.
At a larger spatial scale, a similar approach is commonly used in imaging

studies to find anatomically separate cortical networks observed as covariation of
measured activity, a procedure called functional connectivity analysis (Friston et al.,
1997;  Biswal  et  al.,  2010).  The  spontaneous  activity  can  reveal  those  global
networks as measured by functional-Magnetic-Resonance-Imaging (fMRI) during
resting-state  conditions  (Vincent  et  al.,  2007;  van  den  Heuvel  et  al.,  2009).
Additionally, this spontaneous activity that covariates is relatively stable across a
wide  range  of  cognitive  states,  ranging  from  fully  awake  to  light  sleep  and
anesthesia  (Fox and Raichle, 2007). Therefore, spontaneous activity reveals to the
same extent, both the underlying functional and structural connectivity of cortical
networks.

During sleep: a window for perception & the link with learning

During sleep, the brain is not “turned-off” or disconnected from the external
world. Indeed, initially shown by a number of behavioral experiments in humans
during the 1970s, during sleep we are capable of fairly complex processing, such as
auditory (Perrin et al., 1999; Portas et al., 2000) or somatosensory (Nishihara and
Horiuchi, 1998). In such way, the spontaneous activity observed during sleep has
been proposed as a way of providing a gate of information processing in the cortex
(Massimini et al., 2003; Schabus et al., 2012; Luczak et al., 2013).

Moreover, during the last decade there has been an explosion in the number
of studies concerning the spontaneous activity produced during sleep, which replay
sequential  firing  patterns  observed  during  prior  behaviour  in  the  hippocampus
(Skaggs and McNaughton,  1996;  Wilson,  1996;  Diba and Buzsáki,  2007;  Ji  and
Wilson, 2007) and neocortex  (Qin et al., 1997; Hoffman and McNaughton, 2002;
Ribeiro et al., 2004; Euston et al., 2007; Ji and Wilson, 2007; Peyrache et al., 2009).
This replay of activity may be involved in the process of memory consolidation by
producing a structural re-organization of the wiring of brain circuitry (Walker and
Stickgold,  2006;  Marshall  et  al.,  2006;  Ngo  et  al.,  2013) inducing  synaptic
potentiation (Chauvette et al., 2012). It seems unlikely that sequential firing patterns
would be purely related with learning, instead they might reflect a constraint of the
cortical circuitry on the possible response patterns - “the vocabulary”- that local
cortical circuits are able to generate, since sequences are observable even before a
stimulus is ever presented (Luczak et al., 2009). However, it seems clear that after
repetitive presentation of  a  given stimulus,  the  evoked activity patterns  strongly
reverberates  modifying  the  patterns  of  ongoing  cortical  activity  during  several
minutes in this way mimicking the evoked activity patterns (Han et al., 2008), and
learning processes alters the patterns of subsequent ongoing spontaneous activity
(Maquet et al., 2000; Ohl et al., 2001). This learning-dependent plasticity process
may alter the underlying circuitry, reflected as changes produced in the strength of
networks  correlation  structures  (Lewis  et  al.,  2009). According  to  the  Hebbian
theory of learning,  persistence or repetition of interaction between cells  tends to
induce long lasting cellular changes such as an increase in their associative strength
(Hebb, 1949). In this sense, reverberation of the activity in cell assemblies carried
out by the spontaneous activity could serve as a mechanism of short-term memory
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formation  or  as  facilitation  of  long-term perceptual  learning  (Han et  al.,  2008).
Overall,  spontaneous  activity during  sleep  may sculpt  traces  within  the  cortical
circuit for memory formation.

1.2. Laminar architecture and physiology of neocortex

Perhaps one of the most striking features of the anatomical structure of the
mammalian cortex is the laminar organization, defined primarily by the density and
size of cell bodies. Given the amount of layers, cortex can be broadly categorized
into  neocortex  (with  6  layers)  and  allocortex  (with  less  than  6  layers).  The
allocortex is composed by the hippocampus and olfactory cortex. On the other hand,
the neocortex is  an area of the brain responsible  for "higher functions" such as
sensory perception, motor commands, spatial reasoning, abstract planning, working
memory or language, and different functional areas are topographically organized
(Brodmann, 1909; von Economo and Koskinas, 1925).

The use and improvements of the Golgi staining technique during early XX
century,  lead  to  the  suggestion  from anatomists  like  Campbell  and  Bolton  that
superficial  layers  of  cortex  might  be  involved  in  “receptive  and  associative”
functions whereas deep layers had “corticofugal and commissural” functions. The
fine degree of laminar functional organization, however, was first assessed with the
combination of tracers and intracellular recordings performed in the visual cortex of
cats during the 1970s (reviewed by (Douglas and Martin, 2004)) 

Cortical cells can be classified into excitatory or inhibitory, according to the
effect of their action potentials in the postsynaptic neuron. Excitatory cells use the
excitatory neurotransmitter  glutamate,  whereas inhibitory cells  use the inhibitory
neurotransmitter g-amino-butyric acid (GABA). Cortical cells can also be classified
into projection neurons and interneurons, according to their spatial connectivity in
the  local  circuit.  Excitatory  cells  are  composed  of  the  projection  neuron  class,
namely the pyramidal cells (located in layers III, V and VI), and the interneuron
type spiny stellate cells (located in layer IV). On the other hand, several types of
inhibitory  GABA-ergic  interneurons  have  been  distinguished  based  on  their
connection-pattern  and  the  co-transmitters  they  contain  (Ascoli  et  al.,  2008;
Markram et al., 2004). Pyramidal cells constitute 70-80% of the cortical cells, while
the remaining percentage are mostly inhibitory neurons which exhibit several sub-
families of diverse morphology (reviewed in (Markram et al., 2004)). The similarity
of certain response properties (e.g. orientation tunning of V1 neurons) of nearby
cells  across  all  layers  suggested  that  the  cortex  is  organized  into  elementary
processing units, arranged in columns (Mountcastle, 1957; Jones, 2000).

Analysis of  in vivo intracellular recordings across different neuronal types
and  layers  combined  with  micro-anatomical  data  suggests  the  existence  of  a
canonical microcircuit within the neocortex (Douglas et al., 1989; Binzegger et al.,
2004). Many  details  regarding  the  connectivity  structure  at  laminar  level  are
preserved  across  different  areas  to  the  most  extent  for  excitatory  (Barbour  and
Callaway, 2008; Shepherd and Svoboda, 2005; Weiler et al., 2008; Xu et al., 2010)
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and inhibitory (Kätzel et al., 2011) connections. Even if stereotypy is an appealing
concept for understanding how the brain works, the diversity of neuronal types and
the complex connectivity observed suggest that a unique stereotypical neocortical
microcircuit seems unlikely (Silberberg et al., 2002). 

Figure  1. Cortical  laminar  connectivity  organization.  A. Connectivity  structure  of  excitatory
neurons within and across different cortical areas (A and B) and their sub-cortical relations. Thick
lines represent the connectivity within the cortical column whereas thin lines represent subcortical
and inter-areal connections (LX: layer, Thal: thalamus, Sub: sub-cortical structure such as basal
ganglia). Modified from (Douglas and Martin, 2004). B, Minimal cortical “canonical microcircuit”
that explains intracellular responses of visual cortical neurons to stimulation of thalamic afferents,
composed  by  inhibitory  (GABA)  and  excitatory  (Pyr:  pyramidal,  SS:  spiny  stellate)  cortical
neurons within a column. Modified from (Douglas et al., 1989).

The layer IV is the major thalamo-recipient layer, which provides incoming
sensory information to neocortex,  and the prominence or lack of prominence of
layer IV is associated with the amount of thalamic input received. Moreover, layer
VI provides feedback to thalamic relay nuclei and projects towards superficial and
deeper cortical layers, whereas layer V/VI projects to pulvinar and motor structures
like superior culliculus other cortical areas and the spinal cord  (Binzegger et al.,
2004) (extensively reviewed  in  (Thomson  and  Bannister,  2003)).  Although  this
model has been the dogma of the cortical microcircuit for decades, recent multiple
patch  clamp  recordings  challenge  this  flow  of  information  across  the  cortical
column  (Constantinople and Bruno, 2013). Furthermore, the laminar structure of
cortical activity can vary under different behavioural conditions (Sakata and Harris,
2009; Buffalo et al.,  2011). Despite the increasing amount of studies concerning
cortical layer specific properties, the precise function of neocortical layers remains
unclear. In Chapter 4.1 of this thesis we will study the laminar profile of neocortical
fast oscillations occurring during periods of spontaneous activity.

The input-output function of cortical neurons

The relationship between output firing as a function of the amplitude of the

9



1. Introduction

injected input current, often called f-I curve or input-output transfer function, is one
of the basic electrophysiological properties of neurons. Input-output relationships
are typically described as sigmoidal-shaped functions: enhancing the output of weak
inputs leads to a gradual increase in the firing response, where intermediate inputs
elicit  steep  increase  in  firing  response,  while  larger  inputs  exhibit  response
saturation (Haider and McCormick, 2009). However, in the absence of background
activity in some in vitro preparations the Input/output relationship cam be modeled
as pice-wise linear function (Schiff and Reyes, 2012; Stafstrom et al., 1984), usually
called  threshold-linear  relationship.  The  linear  relationship  between input-output
holds for a range of firing rates (<30Hz) for some in vitro preparations (Mason and
Larkman,  1990) because the response  saturation is  generally achieved at  higher
firing rates (La Camera et al., 2006; McCormick et al., 1985), while in other in vitro
preparations response saturation can sometimes be observed at lower firing rates
(Amatrudo  et  al.,  2012).  Saturation  in  vivo tends  to  occur  at  high  firing  rates
(Anderson et al., 2000b; Nowak et al., 2003; Priebe and Ferster, 2008). On the other

Figure 2. Cortical f-I curves.  A. Some examples of f-I curves in vivo showing little saturation
effects in their  f-I curves for different neuronal types in the anesthetized cat (Modified from
(Nowak et  al.,  2003)).  B and C, In vitro,  injecting noisy current  inputs  to  model  synaptic
background  smooths  the  "hard"  threshold  nonlinearity  (B  modified  from  (Prescott  and  De
Koninck, 2003) C modified from (Shu et al., 2003a) ).

hand, the hard threshold defined by the union of the pice-wise linear functions (i.e.,
the “sharp knee”) observed in the Input-output relationship in vitro when generated
using DC current with no fluctuations is smoothed in the in vivo condition, where
background synaptic  input  shape the Input-output  relationship in  an exponential
manner by causing firing when the mean input current is subthreshold (Anderson et
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al.,  2000b;  Priebe  and Ferster,  2008).  Moreover,  this  smooth  effect  of  the  hard
threshold  can  be  reproduced  by  the  injection  of  input  noisy  current  into  cells
(Prescott and De Koninck, 2003; Shu et al., 2003a). In Chapter 4.3 from Results, we
will show that the choice of the transfer function has consequences as the on the
dynamics exhibited by recurrently connected networks.

Classification of cortical neurons

Apart from the excitatory and inhibitory classification, cortical neurons can
be classified with regard to their  intrinsic  electrophysiological  properties.  Under
controlled conditions  in vitro,  differences in biophysical membrane properties of
individual neurons are manifested in distinct patterns of responses. Therefore, an
electrophysiological classification is possible taking into account both the onset and
the  steady-state  response  to  a  current  step  injection  into  the  soma  of  neurons
(McCormick et al., 1985; Connors and Gutnick, 1990). In this way, cortical neurons
can be divided into the following, more standard, cell classes: regular spiking (RS),
fast spiking (FS), intrinsically bursting (IB), fast repetitive bursting or chattering or
stuttering (FRB) and low-threshold spiking (LTS) (Nowak et al., 2003) (reviewed in
(Contreras,  2004)).  Nevertheless,  recently  the  Petilla  Interneuron  Nomenclature
Group  (PING)  —  composed  by  several  laboratories  specialized  in  interneuron
related studies during many years — established a detailed landmark of possible
firing  patterns  of  interneurons  given  the  diversity  of  their  electrical  properties
previously reported (Ascoli et al., 2008; Druckmann et al., 2012).

Anatomically, RS, IB and FRB cells are almost always pyramidal neurons
and, therefore, excitatory. The electrophysiological phenotype of the spiny stellate
cells is also RS, leaving them as the only class of excitatory non-pyramidal cell
(McCormick  et  al.,  1985).  On  the  other  hand,  FS  and  LTS  cells  are  almost
exclusively GABA-ergic interneurons, although RS GABA-ergic interneurons also
have  been  observed  (Contreras,  2004).  In  layer  V,  parvalbumin-expressing
GABAergic neurons account for approximatley 60% of the total inhibitory neurons,
and all  of them exhibit  FS properties  (Ascoli et  al.,  2008; Gonchar et al.,  2007;
Kawaguchi and Kubota, 1997; Markram et al., 2004).

The  intrinsic  properties  of  some  electrophysiological  classes  of  neurons
have different  signatures in  the input-output  relationships.  It  has been shown  in
vitro that FS cells have higher gain and steeper input-output curves than RS cells,
which exhibit spike frequency adaptation or accommodation to steady-state current
responses  (Connors  and Gutnick,  1990;  McCormick et  al.,  1985;  Nowak et  al.,
2003). Moreover, FS cells require several times higher input current than RS cells to
reach  spike  threshold  when  studied  in  thalamocortical  slices  in  vitro under  the
absence of background synaptic activity (Cruikshank et al., 2007; Schiff and Reyes,
2012). On the contrary,  the FS inhibitory partners LTS, need a lower amount of
current to evoke an action potential and also show steeper input-output relationship
when compared to RS (Fanselow et al., 2008). 

Subsets of excitatory and inhibitory – but not LTS (Cruikshank et al., 2010;
Gibson et al., 1999) -  cells are innervated by the excitatory thalamic relay neurons,
which are the main source of extrinsic input to the neocortex. FS show less input
resistance and higher thresholds than RS, however, they respond stronger than RS
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cells to thalamic input (Cruikshank et al., 2007, 2010; Gibson et al., 1999) even if
cortico-thalamic synapses are depressed after repetitive firing of thalamic cells as
observed both in vitro and in vivo (Castro-Alamancos, 2004; Gabernet et al., 2005).
Perhaps  due  to  these  differences  in  synaptic  transmission  and  in  the  impact  of
background synaptic activity across cell types there are only few reports regarding
the input-output relationship of cortical neurons  in vivo (Nowak et al., 2003). In
Chapter  4.3  from  Results,  we  will  implement  these  differences  in  gain  and
thresholds between inhibitory and excitatory neurons in a computational model of a
cortical network.

Figure 3. Cortical f-I curves on steady state responses to constant current injection for excitatory

and inhibitory neurons in vitro. A. f-I curves for different neuronal types LTS, RS and FS in the

somatosensory cortex.  B. f-I curves of RS and FS neuronal types from auditory cortex.  C.  f-I

curves of RS (red) and FS (blue) neuronal types from somatosensory cortex where firing rate is

also shown for 1st, 2nd and 4th interspike interval along with the steady state responses (SS). (A,

Modified from (Fanselow et al., 2008). B, Modified from (Schiff and Reyes, 2012). C, Modified

from (Tateno et al., 2004).)

Although the characterization of electrophysiological neuronal types from
an intracellular perspective is relatively well established, to date there is no agreed
criteria available for a reliably classification of extracellular recorded neurons  in
vivo (Ascoli  et  al.,  2008).  However,  FS neurons  are  characterized  by “narrow”
spikes  (Mountcastle et al.,  1969) compared to spikes from other cells due to the
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existence of Kv3 potassium channels in the first case  (Rudy and McBain, 2001).
Therefore,  classification methods into either putative inhibitory FS or excitatory
cells  for  cortical  neurons  have  been  proposed  based  on  the  spike-waveform
dynamics and properties of the spiking statistics (Barthó et al., 2004) and it is used
both in rodent  (Fujisawa et al., 2008; Sirota et al., 2008) and monkey (Mitchell et
al.,  2007) electrophysiological  studies.  In  Chapter  4.2  we  will  use  this
categorization to study the dynamics of putative excitatory and inhibitory neurons
during spontaneous activity. 

Spike Frequency adaptation

The  ability  of  neurons  to  fire  action  potentials  is  dependent  on  their
previous  electrical  activity.  One  clear  example  is  the  absolute  refractory period
produced  by  Na+  channel  inactivation.  However,  the  history  on  the  electrical
activity  can  also  affect  the  neuronal  firing  abilities  on  much  longer  timescales.
Spike-frequency adaptation (SFA) for instance refers to a decrease in instantaneous
discharge rate during a sustained current injection and is a common feature of many
types of neurons in mammal and non-mammal species. 

In  neocortex,  SFA has  been  observed  in  most  pyramidal  neurons,  in
particular those classified as RS, whereas their counterpart cells, FS cells, shows
little or no adaptation effects (Connors and Gutnick, 1990; McCormick et al., 1985),
although they show slow adaptation in the timescales of tens of seconds  in vitro
(Descalzo  et  al.,  2005).  The  underlying  mechanism is  usually  attributed  to  the
accumulation  of  an  afterhyperpolarization  current  (AHP),  which  is  an  outward
current triggered in the wake of action potentials (Baldissera and Gustafsson, 1971;
Partridge and Stevens,  1976).  Some possible  roles  have been proposed for  SFA
including  the  stabilization  of  oscillations  (Crook  et  al.,  1998),  the  “forward
masking” effect (Wang, 1998), perceptual bistability (Moreno-Bote et al., 2007). 
SFA also has  been shown as  a  possible  mechanism to reduce output  variability
(Farkhooi et al., 2011) improving coding accuracy (Cortes et al., 2012). Moreover,
adaptation  has  been  proposed  as  a  crucial  factor  of  constraining  the  preferred
frequency of synchronization over  neuronal  assemblies,  setting the frequency of
population  rhythms  in  neocortex  (Fuhrmann  et  al.,  2002;  Sanchez-Vives  and
McCormick, 2000). It has also been shown that, the presence of neuromodulators
like acetylcholine blocks or reduces the magnitude of K+ conductances that  are
responsible for spike frequency adaptation in cortical neurons (McCormick, 1992).
In Chapter 4.3 and 4.4 we will implement SFA in a computational network model of
spontaneous activity.

1.3. Neocortical oscillations
Ever  since  the  studies  done  by Luigi  Galvani  during  the  end  of  XVIII

century, the electrical nature of nerve impulses started to dismiss previous theories
by which the nervous system was essentially hydraulic (originally proposed by the
Greek physician Galen during II century). Modern electrophysiology was developed
during the XIX century even if it was not until 1929 that Hans Berger for the first
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time reported that the electrical activity of the brain could be recorded through the
scalp, leading to the origin of the electroencephalogram (EEG). One striking finding
by Berger was that the EEG signal could display an oscillatory pattern at particular
frequencies  (~10  Hz)  when  subjects  closed  their  eyes.  Since  then,  the
characterization of oscillatory brain activity and the theoretical investigation of their
role in brain normal function has grown enormously.

Oscillations  can  arise  from  intrinsic  neuronal  mechanisms,  from  the
interaction among neurons in a network, or from the dynamic interplay between
both  intrinsic  and  network  properties  (for  a  review  see  (Buzsáki  and  Draguhn,
2004)).  On  a  single  cell  level,  oscillations  can  be  observed in  the  subthreshold
membrane potential or in the temporal pattern of spike trains. On the other hand,
oscillations on the macroscopic level as shown by EEG, or by the mesoscopic local
field potential (LFP) that presumably reflect the pooled synaptic activity from of a
population of neurons in a certain volume of tissue (Buzsáki et al., 2012), although
the contribution of intrinsic properties may be larger than commonly considered
(Reimann et al., 2013).

The term “oscillator” in neuroscience was not used until recent times —
popularized by Steriade and Deschênes in 1984 — perhaps because “brain rhythms
are not usually oscillators as described by physics textbooks” (Buzsáki, 2006). The
tendency of  cortical  circuits  to  exhibit  oscillations  suggests  that  they  could  be
considered  analogous  to  central  pattern  generators   commonly  observed  in
vertebrates,  which  are  self-contained  functional  circuits  in  which  sensory  input
provides  primarily  a  modulation  of  the  function  like  respiration,  walking  or
swallowing  (reviewed  in  (Yuste  et  al.,  2005)).  The  principle  governing  central
pattern generators can be studied in the framework of systems composed by coupled
oscillators, whereas for cortical circuits the applicability of this framework is more
questionable since cortical  oscillations are usually reflected by weak and broad-
band power spectral signatures which can occur intermingled in short periods of
time  and  are  typically  confined  to  small  neuronal  populations  (Wang,  2010).
Another feature of cortical activity which seems at odds with the idea of central
pattern  generators,  is  the  stochasticity  exhibited  by  spike  trains.  In  particular,
cortical cells tend to emit Poisson-like spike trains which differ qualitatively from
those displayed by oscillators.

In the cerebral cortex, neural activity exhibits a continuous presence and
modulation of oscillations, which is suggestive of a role as one of the fundamental
mechanisms for information processing. Cortical oscillations not only occur during
sleep or anesthesia  (Steriade et al., 1993a, 1996), but also during the awake state
and cognitive performance. The frequencies of oscillations observed in the cortex
spans from infra-slow 0.5 Hz to ultra fast 500 Hz (Buzsáki and Draguhn, 2004), and
electrophysiological  studies  have  shed  some  light  on  the  different  underlying
mechanism.  Next,  I  will  focus  on  discussing  aspects  of  slow-wave  activity,
comprising the slow-oscillation (0.1-1 Hz), delta waves (1-4 Hz) and spindles (7-15
Hz).  Then I  will  continue  with  fast-oscillations  (20-80 Hz),  which  includes  the
oscillations in the beta (15-30 Hz) and gamma (30-80 Hz) range of frequencies. 
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The slow-wave activity

During slow-wave sleep and under the effect of several anesthetics (Steriade
et al., 1993a; Achermann and Borbély, 1997) or during drowsy or quite-wakefulness
periods  (Buzsaki et al., 1988; Petersen et al., 2003b; Crochet and Petersen, 2006;
Luczak  et  al.,  2009),  EEG/LFP signal  are  dominated  by  high  amplitude  slow
fluctuations in the slow/delta range (0.1 to 4 Hz).  Intracellularly,  this  pattern of
activity is characterized by alternations between an hyperpolarizing phase where
neurons mostly show no firing – so-called DOWN state-, and a depolarizing phase
were neurons fire tonically at low rates – so-called UP state – (Buzsaki et al., 1988;
Steriade et al., 1993a; Crochet and Petersen, 2006) (see below).

Although  delta  waves  and  slow-oscillation  are  considered  to  represent
different  phenomena  (Achermann  and  Borbély,  1997),  the  definition  for  both
follows the same criteria and from this perspective some authors suggested that they
are not separate patterns but delta waves represent DOWN intervals from the slow
oscillation  (Sirota  and  Buzsáki,  2005).  Moreover,  delta  waves  have  also  been
proposed to have both thalamic and cortical origin, for example, thalamectomy in
cats does not prevent delta waves (reviewed in (Villablanca, 2004))  and thalamic
slice preparations show delta waves (see review by (Sirota and Buzsáki, 2005)). In
anesthetized  animals,  both  types  of  delta  waves  are  nested  on  top  of  the  slow-
oscillation  (Steriade et al., 1993b; Steriade, 2006).

Another  rhythm grouped as  slow oscillation are  the  spindles  (7-15  Hz),
displaying  waxing-and-waning  oscillation  at  7-14Hz  appearing  irregularly  in-
between 5-15 sec.  The  thalamic  origin  of  this  rhythm is  well  established  since
spindles  are  absent  in  thalamectomized  animals  (Steriade  and  Contreras,  1998)
while  they  appear  in  isolated  thalamic  slices  (von  Krosigk  et  al.,  1993).
Nevertheless, in the same way as  delta waves, spindles also appear over imposed
on slow-oscillations which suggest at least a cortical coordination  (Steriade et al.,
1993b).

Slow waves during sleep propagate in a fast way across the cortex, covering
the whole human cortex in 115 ms in average, as revealed by high-density EEG
recordings  (Massimini et al., 2004). The propagation of the slow waves are also
observed in anesthetized rodents by means of voltage sensitive dyes (Petersen et al.,
2003b; Mohajerani et al., 2010) or indirectly using electrode arrays (Nauhaus et al.,
2009;  Ruiz-Mejias  et  al.,  2011) yielding  similar  values  of  about  20-30  mm/s.
Simultaneous  intracellular  recordings  reveal  that  neighboring  cortical  neurons
undergo synchronous transitions on spontaneous slow fluctuations  (Lampl  et  al.,
1999),  something  that  was  originally  observed  in  striatal  neurons  (Stern  et  al.,
1998). This synchronization in the transitions can span several millimeters (Amzica
and  Steriade,  1995a;  Volgushev  et  al.,  2006),  and  horizontal  cortico-cortical
connections  seems  to  play  a  fundamental  role  in  the  wave  propagation  since
pharmacological disruption of these connections between pairs of neurons largely
reduce  the  synchronization  of  these  slow-waves  (Amzica  and  Steriade,  1995b).
Although slow waves are considered a global cortical phenomenon, some evidence
from  the  last  years  suggest  that  slow  waves  can  take  place  locally  as  well
(Volgushev et al., 2006; Nir et al., 2008),  even within few hundreds of microns
(Sirota and Buzsáki, 2005). In humans, the propagation generation of slow-waves in

15



1. Introduction

the cortex tends to originate at prefrontal areas (Massimini et al., 2004). However, a
more recent study shows that this locus of generation could be age dependent and
move from occipital areas in the child towards prefrontal areas in adults  (Kurth et
al., 2010). In anesthetized mice (age>2 months), the predominant propagation is in
the anteroposterior direction (Ruiz-Mejias et al., 2011) and the locus of generation
tends to be at motor/sensory areas (Mohajerani et al., 2010), whereas simultaneous
intracellular  recordings  in  adult  cats  suggest  that  take  place  at  parietal  cortex
(Volgushev et al., 2006). 

Steriade and colleagues have suggested that  the  origin of  slow-waves is
cortical  since  extensive  thalamic  lesions,  even  several  days  after  producing  the
intervention, does not prevent their appearance  (Steriade et al., 1993c). The same
group  has  also  shown  that  the  thalamus  (the  main  input  to  neocortex)  of  one-
hemisphere-decorticated cats does not display slow-waves (Timofeev and Steriade,
1996a) and that slow waves are present in cortical slabs  (Timofeev et al., 2000).
Furthermore, slow-waves can appear in a robust manner in vitro, resembling those
slow-waves  observed under  anesthesia  in  vivo (Sanchez-Vives  and McCormick,
2000). 

Nevertheless, the cortical origin of slow waves, and in particular the slow
oscillation,  is  still  an  ongoing debate  and an  active role  of  the  thalamus  in  the
generation and shaping of the rhythm has also been proposed (Crunelli and Hughes,
2010). Supporting this idea it has been shown that a thalamic  in vitro preparation
can  generate  a  similar  a  slow rhythm if  metabotropic  gluatamate  receptors  are
activated  (Hughes et al., 2002, 2004). Moreover, certain type of thalamic neurons
seem to exhibit oscillatory behaviour in the delta band, observed in the deafferented
thalamus  of  cats  (Steriade  et  al.,  1991).  In  vivo,  thalamic  low-threshold  Ca2+
potential  neurons that  bursts  at  the  onset  of  the  UP state  present  them as  good
candidates of UP state triggers (Contreras and Steriade, 1995; Crunelli and Hughes,
2010). More recent in vivo evidence in anesthetitzed rats support this idea showing
that some thalamo cortical neurons fire prior to the onset of active phases of cortical
slow waves (Slézia et al., 2011; Ushimaru et al., 2012). Crunelli and Hughes in their
review from 2010 suggest “... the illustrated examples of cortical UP and DOWN
states  from  the  cat  in  vivo [referring  to  the  studies  carried  by  Steriade  and
colleagues]  appear  less  regular  and  rhythmic  in  the  absence  of  thalamic  input”
(Crunelli  and Hughes, 2010).  This idea suggests that even though the cortex in
isolation might be able to generate slow-waves, thalamic input can entrain those
waves  which  inherit  to  some  extent  the  rhythmic  behaviour  generated  in  the
thalamus.  Nevertheless,  a  recent  study  combining  calcium-imaging  and
optogenetics tools has shown that : (i) the stimulation of a small subset of layer V
pyramidal cells from visual cortex of mice is sufficient to initiate UP global cortical
states  similar  that  are  to  those  observed  spontaneously,  (ii)  activity  is  first
propagated in cortex and secondly in thalamus (Stroh et al., 2013). 

Fast oscillations

Fast oscillations refer to oscillations occurring in the range of tens of Hz. At
these  frequencies,  spikes  locked to  a  certain  phase  tend  to  occur  in  synchrony.
Neuronal synchrony, on the other hand,  is a potential mechanism for information
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encoding and transfer simply because neurons are very sensitive to the coincident
arrival of input spikes versus asynchronous inputs (Nowak et al., 1997; Salinas and
Sejnowski, 2000). Neuronal synchrony may play a role in well timed coordination
and communication between neural populations simultaneously engaged in a certain
cognitive process.  Originally proposed as a way to solve the “binding problem”
(Singer, 1993), synchrony and the role of fast oscillations in a neural code is still a
matter of intense research.

During awake and REM sleep, the EEG of spontaneous activity exhibits
fluctuations  at  high  frequencies  (14-80Hz)  with  low  amplitude  and  apparently
asynchronous across distant areas. Fast oscillations in the beta and gamma range of
frequencies, have been associated with cognitive processing such as attention (Fries
et  al.,  2001),  working  memory  (Lisman  and  Idiart,  1995;  Palva  et  al.,  2005),
decision making (Haegens et al., 2011), but also with motor functions (MacKay and
Mendonça,  1995;  Baker  et  al.,  1997),  and  sensory  processing  in  primates  and
rodents (extensively reviewed in (Wang, 2010)). 

However,  fast  oscillations  are  not  only  present  during  the  wakefulness
domain since they are also present in the depolarizing phase of slow-waves in the
EEG (Steriade et al., 1996; Le Van Quyen et al., 2010), better observed in human
intracraneal EEG  (Valderrama et al.,  2012). Moreover, ultra-fast short oscillatory
episodes  (80-400Hz),  also  called  “ripples”  are  observed  superimposed  over  the
depolarizing phase of the slow oscillation in neocortex (Grenier et al., 2001), which
might  also  be  fundamental  for  memory  consolidation  (Eschenko  et  al.,  2008;
Girardeau et al., 2009). The similarity of these fast oscillations with those observed
during wakefulness, suggested that they might reflect previous acquired experiences
which are  subsequently stored by highly synchronized events  such as  the  slow-
waves in the EEG (Sejnowski and Destexhe, 2000). 

Oscillations across the cortical layers

The slow oscillation is a nearly synchronous event across the cortical layers
(Steriade  et  al.,  1996),  although  detailed  analysis  in  multi-site  laminar  LFP
recordings suggest that deep layers of cortex tend to precede the depolarizing phase
(Chauvette et al., 2010). Moreover, the leading firing of layers V cortical neurons in
the depolarizing phase suggest a role of deep layers in the initiation of this pattern
of activity in vitro (Sanchez-Vives and McCormick, 2000) and in vivo (Sakata and
Harris,  2009;  Chauvette  et  al.,  2010;  Stroh et  al.,  2013;  Beltramo et  al.,  2013).
However, slow waves with leading firing at superficial layers are observed in the
human cortex surrounding epileptic foci (Csercsa et al., 2010). Another remarkable
feature  of  the  slow-waves  is  the  laminar  profile,  exhibiting  a  phase  reversal
occurring between the border of layer IV and layer V (Buzsaki et al., 1988), which
is suggested to occur due to differential location of recording electrodes relative to
the dipoles of large pyramidal cells (Chauvette et al., 2010).

Recent studies have reported the existence of laminar differences regarding
the presence of fast oscillations during cognitive tasks in monkeys, where gamma-
band synchrony (40-80 Hz) predominates in superficial layers and slower rhythms
(10-30Hz) rules the synchronization in deep layers of visual areas  (Buffalo et al.,
2011; Spaak et al., 2012). The synchrony of the fast oscillations across the layers in
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the cortical circuit is not restricted to specific layers but both group of supragranular
(SG) and infragranular  (IG)  layers  act  like independent  compartments,  in  which
coherence values within layers from the same compartment are high and coherence
values between layers from different compartments are low and, furthermore, this
occurs during visual processing and rest in awake monkeys  (Maier et al., 2010).

Laminar differences in oscillations can also be observed in a number of
different in vitro preparations by activating slices in various different ways: kainate
receptor activation (Cunningham et al., 2003; Roopun et al., 2006, 2008; Ainsworth
et  al.,  2011),  the  cholinergic  agonist  carbachol  (van  Aerde  et  al.,  2009),  a
combination of the aforementioned agonists (Oke et al., 2010; Roopun et al., 2010),
or electrically  (Metherate and Cruikshank, 1999). Some of these pharmacological
models  suggest  that  local  cortical  circuits  from  SG  and  IG  can  generate  fast
oscillations independently  (Roopun et al.,  2006). Moreover, the different profiles
observed  in  the  laminar  oscillatory  content  depend  on  the  pharmacological
manipulation:  for  example,  faster  frequency  oscillations  in  SG  than  in  IG  in
auditory area A1 under carbachol perfusion  (Roopun et al., 2010) or the opposite
profile under kainate perfusion (Ainsworth et al., 2011). 

As  mentioned  above,  fast  oscillations  are  also  present  during  the
depolarizing  phase  of  in  vivo slow-waves  in  the  EEG,  and  simultaneous  LFP
laminar recordings suggest that these oscillations are synchronized across all layers
within  a  column  (Steriade  and  Amzica,  1996;  Steriade  et  al.,  1996).  Moreover,
during the depolarizing phase of the slow-oscillation in cortical slices  (Sanchez-
Vives and McCormick, 2000), beta/gamma (10-100Hz) oscillations are observed as
an emergent  property of  the  cortical  circuit  (Compte  et  al.,  2008),  although the
compartmentalization and the detailed laminar specificity of these fast oscillations
remains to be elucidated. In Chapter 4.1 of this Thesis we will address this specific
question.

1.4. UP-DOWN states
The definition of UP and DOWN states refers to the condition by which the

membrane  potential  of  neurons  exhibits  two  different  preferred  sub  threshold
values. This effect can be observed as a bimodality in the histogram of the voltage
membrane values of individual neurons. This property was observed in vivo for the
first  time  in  spiny  neurons  from neostriatum  of  anesthetized  rats  (Wilson  and
Groves, 1981). 

Since the discovery made  by Wilson and colleagues,  much of  the  work
about UP and DOWN states has been performed in anesthetized animals. However,
UP and DOWN states has been described to appear naturally in the cortex during
the slow-wave-sleep (SWS) phase in cats  (Steriade et al., 1993a).  In the seminal
work of Steriade and colleagues, mentioned in previous sections, it has been shown
that UP and DOWN states are observed in intracellular recordings in the presence of
slow waves (<1Hz) under deep ketamine or urethane anesthesia. Although the terms
UP and DOWN states and slow oscillations are commonly intermixed, we interpret
the term UP and DOWN states as a pattern contingent to the occurrence of slow

18



1. Introduction

waves complexes  observed  during  sleep  or  anesthesia:  DOWN  states  might
occasionally appear e.g. when rats perform a behavioral task under sleep pressure
(Vyazovskiy  et  al.,  2011),  during  periods  of  drowsiness  or  quite-wakefulness
(Crochet and Petersen, 2006; Poulet and Petersen, 2008; Poulet et al., 2012), under
different anesthetics (Steriade et al., 1993a), in cortical slabs (Timofeev et al., 2000)
and also in different in vitro slices preparations exhibiting diverse UP and DOWN
states dynamics (Sanchez-Vives and McCormick, 2000; Cossart et al., 2003; Rigas
and  Castro-Alamancos,  2007;  Sanchez-Vives  et  al.,  2008;  Mann  et  al.,  2009;
Fanselow and Connors, 2010).

The UP and DOWN states in vivo have been observed across many different
species including mice  (Petersen et  al.,  2003b),  rats  (Cowan and Wilson,  1994),
ferrets  (Hasenstaub et  al.,  2005), cats  (Steriade et  al.,  1993a) and there are also
indirect  evidence  of  their  presence  in  humans  analyzing  EEG  (Achermann  and
Borbély, 1997) and multiple LFP and single unit recordings (Cash et al., 2009; Le
Van Quyen et al., 2010; Csercsa et al., 2010). Moreover, they are also observed in
numerous  different  cortical  areas  such  as  frontal  (Lewis  and  O’Donnell,  2000;
Léger et al.,  2005; Isomura et al.,  2006), somatosensory  (Petersen et al.,  2003b;
Sachdev et al., 2004; Steriade et al., 2001), visual  (Lampl et al., 1999; Steriade et
al., 2001), olfactory (Murakami et al., 2005), auditory (Metherate and Ashe, 1993;
Saleem et al., 2010), enthorinal  (Isomura et al., 2006; Hahn et al., 2012), to name
some  studies. Although  they recur  to  spread  across  the  entire  cortex,  there  are
differences in their profile and statistics across areas (Ruiz-Mejias et al., 2011).
 Despite the intracellular definition,  UP and DOWN states are commonly
inferred indirectly from LFP signals (Mukovski et al., 2007; Steriade et al., 1993a;
Compte et al., 2008; McFarland et al., 2011), given that synaptic barrages of activity
occur  during  UP  states  and  are  absent  during  DOWN  states  (Haider  and
McCormick, 2009) and that neighboring neurons undergo UP-DOWN transitions in
a synchronous way (Amzica and Steriade, 1995a; Volgushev et al., 2006). Another
procedure  to  infer  UP  and  DOWN  states  is  from  multi-unit  activity  (MUA)
(Hasenstaub et al., 2007; Luczak et al., 2007; Sanchez-Vives et al., 2010), given that
action potentials in MUA are observed almost exclusively during UP states (Luczak
et  al.,  2007).  However,  the  detection  of  these  periods  is  not  a  straight  forward
process and comparison across studies is problematic since there is no universal
definition concerning what constitutes an UP or DOWN state, and it is not clear
how the detection using different signals (i.e.,  intracellular  membrane potentials,
MUA spikes, LFPs) are comparable (but see (Hasenstaub et al., 2007; Saleem et al.,
2010)). Anyhow, this dynamical pattern seems to be a ubiquitous feature of cortex
but the underlying mechanism and functional role and the are still under debate. In
the following sections I will briefly go over on what is known regarding the nature
and possible mechanisms.
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Figure 4. Simultaneous intracellular (top), LFP (middle) and Multi single-unit activity (bottom)
recordings in the auditory cortex of urethane anesthetized rats (modified from  (Saleem et al.,
2010)).

Intra-cortical mechanisms underlying cortical UP and DOWN states

Some  neurons  in  the  brain  are  intrinsically  bistable,  like  motoneurons
(Hounsgaard and Kiehn, 1985) or purkinje cells from cerebellum (Loewenstein et
al.,  2005).  In  those  cases,  the  hyperpolarization  of  the  membrane  potential
eliminates the bimodality of the membrane potential histogram whereas the brief
depolarization/hyperpolarization of a neuron can induce different plateau potentials,
which is a sufficient proof in order to asses bistability of the cells.

Persistent activity in the absence of synaptic input is reported to be observed
in vitro in a minority of cortical cells from different cortical areas such as enthorinal
(Egorov et al., 2002), prefrontal (Winograd et al., 2008; Thuault et al., 2013)  and
visual  cortex  (Le  Bon-Jego  and  Yuste,  2007).  Some  modeling  studies  of  have
exploited this idea of intrinsic bistability as mechanisms underlying UP and DOWN
states  (Parga and Abbott, 2007). However, a recent study in transgenic mice with
deletion of HCN1 channels (responsible for Ih current related to persistent activity),
exhibit no effect on UP and DOWN states dynamics, suggesting that  mechanisms
underlying  persistent  activity  and  UP and  DOWN  states  might  be  independent
(Thuault et al., 2013).

What maintains cortical neurons in the UP states? One hypothesis says that
local  reverberation,  given  the  strong recurrent  connectivity,  keeps  the  necessary
synaptic  background  in  order  to  give  cortical  neurons  input  to  sustain  their
depolarized  low firing  states  (Contreras  et  al.,  1996;  Cowan  and Wilson,  1994;
Sanchez-Vives and McCormick, 2000; Petersen et al., 2003b). The balance between
excitatory  and  inhibitory  activity  could  be  keeping  the  firing  at  low  rates  and
producing irregular spike trains (Haider et al., 2006). Furthermore, contribution and
interplay of active membrane currents might play a fundamental role in sustaining
UP states (Compte et al., 2003; Metherate and Ashe, 1993). This is supported by in
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vitro experiments  showing  that  blocking  excitatory  transmission  prevents  the
generation of UP states in vitro (Sanchez-Vives and McCormick, 2000; Compte et
al., 2003). 

Patch-clamp recordings have shown that  neurons displays  average firing
rates from 0.4 to 4 Hz during UP states  (Constantinople and Bruno, 2011; Waters
and Helmchen, 2006; Gentet et al., 2012). Cortical intracellular recordings in cats
reveal higher firing rates on an average of 15 Hz pooled across neurons (Steriade et
al., 2001). One possible explanation for these differences is that in the last case the
recording pipettes are filled with high concentrations of potassium acetate, which
likely depolarizes  neurons  and  affects  their  firing  rates  (Waters  and  Helmchen,
2006; Timofeev, 2011). Estimation of firing rates during UP states by extracellular
single  unit  recordings  shows  an  average  of  11  Hz   (Ruiz-Mejias  et  al.,  2011)
whereas the population rates observed by multielectrode recordings are below 5 Hz
(Renart et al., 2010).

Intracellular recordings have revealed a balance of excitatory and inhibitory
conductances during the UP states in vitro (Shu et al., 2003b) and in vivo (Haider et
al.,  2006).  In  contrast,  dynamic  clamp  recordings  suggests  that  inhibitory
conductances  dominate  during  the  UP  states,  although  an  abrupt  decrease  in
inhibitory conductance is observed towards the offset of the UP state  (Rudolph et
al., 2007). Consistent with this, a decrease in the firing rate of inhibitory neurons is
observed prior to the offset of UP states  (Haider et al., 2006; Luczak and Barthó,
2012). The recording of isolated excitatory and events (EPSPs and IPSPs) reveals
simultaneous increases/decreases of both events at the initiation/end of UP states in
vivo (Compte et al., 2009). 

DOWN  states,  on  the  other  hand,  are  associated  with  hyperpolarized
potentials caused by a lack of synaptic drive, known as disfacilitation (Contreras et
al., 1996; Timofeev et al., 2001), and not by GABAergic cortical inhibition as first
suggested.

The mechanisms underlying the transitions from the UP to the DOWN state
are not  entirely clear but a number of non-mutually exclusive mechanisms have
been proposed. First, UP to DOWN transitions could occur in response to short-
term  synaptic  depression  produced  for  instance  by  neurotransmitter  depletion
(Contreras et al., 1996). Reduction in post-synaptic potentials could be explained
through activity-dependent decreases in extracellular Ca2+ concentration (Crochet et
al.,  2005;  Boucetta  et  al.,  2013).  Alternatively,  UP state  duration  seems  to  be
controlled  by  Na+  and  Ca+  dependent  intrinsic  K+  currents  whereas  DOWN
duration might be controlled by a K+ dependent intrinsic after-hyperpolarization
(AHP) current that acts as a pacemaker for the UP/DOWN generation  (Sanchez-
Vives  and  McCormick,  2000;  Compte  et  al.,  2003).  Moreover,  the  unspecific
intracellular blocking of K+ conductances by the use of Cs- in the recording pipette
reduces dramatically the hyperpolarization of voltage membrane observed during
DOWN states (Timofeev et al., 2001). Steriade and colleagues concur with this idea
by  showing   that  the  slow  oscillations  are  suppressed  by  the  presence  of
neuromodulators  that  suppress  specialized  K+  conductances  (McCormick  and
Prince, 1986; Steriade et al., 1993b). However, a gradual increase in input resistance
of pyramidal cells during the UP state  in vivo revealing a steady  decrease of the
overall membrane conductance, suggests a stronger role of synaptic depression over
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the  activation  of  K+  conductances  in  causing  the  UP  to  DOWN  transitions
(Contreras et  al.,  1996;  Timofeev et  al.,  2001).  However,  synaptic depression is
notably reduced during slow wave activity (Reig et al., 2006). Furthermore, a recent
modeling  study suggest that synaptic depression could contribute to the elongation
rather than to the termination of UP states  (Benita et al., 2012). Another “fatigue”
mechanisms  proposed  is  a  decrease  in  adenosine-tryphosphate  (ATP)  levels
occurring during UP states that affect ATP dependant K+ channels (Cunningham et
al., 2006).

During DOWN periods, the membrane potential  of  individual  neurons is
hyperpolarized at values that are close to the resting membrane potential observed
in deafferented slabs (Timofeev et al., 2000) and the firing rates are zero or very low
(Ruiz-Mejias et al., 2011). This enables the network to recover from any activity
dependent fatigue mechanism. The beginning of a new UP state could be triggered
by some neurons that are particularly excitable (LTS) which, after recovery from the
fatigue accumulated during the previous UP period, will fire spontaneously and then
recruit  the  rest  of  the  cortical  network  (Sanchez-Vives  and  McCormick,  2000;
Compte et al., 2003). It also has been proposed that pacemaker cortical neurons,
cells  which fire  rhythmically even in  the  absence of  synaptic  activity,  could be
responsible of UP state initiation based on in vitro experiments (Cossart et al., 2003;
Le  Bon-Jego  and  Yuste,  2007).  On  the  other  hand,  spontaneous  release  of
neurotransmitter (Timofeev et al., 2000; Chauvette et al., 2010) or a contribution of
astrocytes (Poskanzer and Yuste, 2011) has also been proposed for the initiation of
UP states.

Despite the particular way of implementing the fatigue mechanism, it is not
straight forward to derive the collective behavior of UP-DOWN switching based on
individual cellular-based changes. In this way, it is challenging to reconcile these
single cell mechanisms with the high synchrony of the UP-DOWN transitions that is
observed  in  neurons  which  are  several  millimeters  apart  (Amzica  and Steriade,
1995a;  Volgushev  et  al.,  2006).  This  suggests  “the  existence  of  a  network
mechanism that switches activity to silence” (Volgushev et al., 2006). As previously
described,  although the isolated cortex is  capable  of  generating UP and DOWN
states, it has been proposed that generation of natural slow-waves during sleep may
also rely on input from intrinsic thalamic oscillators, which in turn are driven by
cortico-thalamic activity  (Crunelli  and Hughes,  2010).  As reviewed in  (Steriade,
2001), “... instead of pure, simple rhythms generated in circumscribed territories as
found in simplified in vitro preparations, the global electrical activity of the intact
brains in living animals displays complex waves sequences...”. Indeed, as described
in the following section and at least under particular conditions, external inputs to
the thalamocortical circuit can also influence the UP-DOWN dynamics in cortical
circuits.

In Chapter 4.2 of this Thesis we will scrutinize the evidence supporting a
fatigue  mechanism in  the  generation  of  UP-DOWN  switching  in  in  vivo data,
finding  that  under  urethane  anesthesia,  there  is  little  or  no  evidence  of  this
mechanism in the spiking activity of a cortical population.  Moreover, in Chapter
4.3  we  will  use  a  computational  model  to  explore  alternative  mechanisms
generating the switching.
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Coactivation of sub-cortical structures with cortical UP/DOWN transitions

In slices showing slow oscillatory activity, intracortical stimulation is able
to evoke transitions from UP to DOWN states and viceversa  (Shu et al., 2003b).
Studies in thalamocortical slices that exhibit UP and DOWN states, have shown that
electrical  (MacLean et al., 2005; Rigas and Castro-Alamancos, 2007) or chemical
(Rigas and Castro-Alamancos, 2007) thalamic stimulation during DOWN states can
induce DOWN to UP transitions, while thalamic stimulation during UP states is not
able to trigger UP to DOWN transitions (Rigas and Castro-Alamancos, 2007). This
has been proposed to reflect a protective role of the ongoing cortical activity from
external thalamic input (Watson et al., 2008). However, many in vivo studies have
shown  that  UP-DOWN  transitions  can  be  triggered  by  sensory  stimulation
(Anderson et al., 2000a; Petersen et al., 2003b; Sachdev et al., 2004; Hasenstaub et
al., 2007; Haider et al., 2007; Reig and Sanchez-Vives, 2007; Curto et al., 2009). On
the other hand, although some studies show that sensory stimulation in a particular
sensory modality can trigger DOWN-UP and UP-DOWN transitions in a reliable
way  (Hasenstaub  et  al.,  2007),  in  others  studies  this  effect  cannot  be  observed
(Petersen et al., 2003b). Indeed, this difference could be explained by the type of
anesthesia and dose combined with the global brain state of the animal, which will
have  an  impact  in  the  strength  of  the  interaction  between  the  ongoing  cortical
dynamics and the sensory-evoked activity (Livingstone and Hubel, 1981; Marguet
and Harris, 2011).

There  is  growing  evidence  that  the  activity  in  different  brain  structures
occurs in a tight temporal relation with the occurrence of UP-DOWN transitions,
presumably having a role in the generation of these transitions. Hippocampal sharp
waves have a higher probability to occur during a DOWN state, and are positively
correlated  with  DOWN to  UP cortical  transitions  of  the  slow-oscillation  in  the
prefrontal cortex during the natural sleep of rats (Battaglia et al., 2004; Hahn et al.,
2006), and the firing of hippocampal neurons anticipates ~100ms the firing from
prefrontal cortex cells  (Wierzynski et al., 2009). During natural sleep of rats, the
firing of noradrenergic neurons from locus coeruleus precede the DOWN to UP
state transitions in prefrontal cortex, which could provide neuromodulatory input to
the cortex in  order  to  momentary increase excitability and promote intracortical
plasticity  (Eschenko  et  al.,  2012).  Moreover,  some  basal  ganglia  and  reticular
thalamic cells activity sometimes precedes the initiation of cortical UP states (Slézia
et  al.,  2011;  Ushimaru et  al.,  2012),  and thalamocortical  neurons fires bursts  of
action potentials before firing is observed during cortical UP states (Contreras and
Steriade,  1995;  Crunelli  and  Hughes,  2010).  This  effect  is  also  observed  in
thalamocortical slices  in vitro (Rigas and Castro-Alamancos, 2007). Overall, to a
greater  or  lesser  extent,  although the  cortex  can  generate  and maintain  UP and
DOWN states by itself, the aforementioned evidence suggest that incoming inputs
to the neocortex can induce transitions between UP and DOWN states in cortical
networks. In the computational model presented in this Thesis (see Chapter 3) the
external afferents coming into the cortical network will provide excitatory inputs
which will turn essential to trigger DOWN to UP and UP to DOWN transitions. 
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Regular vs. Irregular UP-DOWN states.

The alternation between UP and DOWN states during the slow-wave sleep
or anesthesia is originally described as an oscillation at 0.1-1.0 Hz (Steriade et al.,
1993a). However in some instances the aperiodicity observed makes the timing of
UP-DOWN transitions very irregular putting into question the oscillatory nature of
this pattern (Stern et al., 1997; Lampl et al., 1999). Dynamics of slow waves depend
on the level  of  anesthesia  where experimental  data  suggests  that  the  deeper  the
anesthesia  level  the  more  regular  the  activity  becomes  (Steriade  et  al.,  2001;
Erchova et al.,  2002; Deco et  al.,  2009a;  Chauvette et al.,  2011). The regularity
might not only depend on the dose levels but also on the anesthetic agent, where e.g.
barbiturates tend to display very irregular UP and DOWN states and short-range
synchronization of voltage membrane of cortical neurons (Lampl et al., 1999; Okun
and Lampl, 2008). Moreover, a recent study comparing the slow waves observed
under ketamine anesthesia versus natural slow-wave-sleep, show that the natural
slow-wave-sleep displays considerable more irregularity in the UP-DOWN interval
durations  than  under  ketamine  anesthesia  as  derived  from a  comparison  of  the
autocorrelograms of the LFP signals for each condition (Chauvette et al., 2011). In
agreement, in cortical chronic recordings in rats, from Bruce McNaughton's lab, the
UP+DOWN cycle distribution observed during SWS is observed to be exponential
and the authors suggests that DOWN state occurrence is “not due by the presence of
an oscillator, but it's a random process” (Johnson et al., 2010).

One  study  performing  a  detailed  quantitative  analysis  on  the  UP  and
DOWN statistics is provided by the group of Charles Wilson (Stern et al., 1997). In
this work, the authors show that although voltage membrane of individual neurons
display clear bimodality in cortical & striatal intracellular recordings in urethane-
anesthetized rats: i) a broad peak in the power spectrum of voltage membrane at ~1
Hz  is  observed,  ii)  UP and DOWN states  durations  shows gamma-like  skewed
distributions — with a coefficient of variation (CV), defined as the ration between
the standard deviation and the mean, equal to 0.65 and 0.47, respectively — and iii)
the serial correlations between consecutive UP and DOWN states are zero (Stern et
al., 1997). In the associative cortices of ketamine anesthetized cats, the variability in
the duration times seems to be lower with CV(UP)=0.45 and CV(DOWN)=0.31
(Volgushev et al., 2006). Additionally, a recent study on ketamine anesthetized mice
have shown that the duration variability of UP and DOWN periods across different
areas  were  quite  variable,  with  prefrontal  areas  displaying  lower  variability
(CV(UP)=0.2 and CV(DOWN)=0.3) and motor areas displaying higher variability
(CV(UP)=0.3 and CV(DOWN)=0.4) (Ruiz-Mejias et al., 2011).

Modeling studies about UP and DOWN states

The majority of the studies proposing the underlying mechanisms causing
the  transitions  between  UP  and  DOWN  states  does  not  provide  a  detailed
quantitative  analysis  of  UP  and  DOWN  occurrence,  even  if  the  mechanisms
producing  transitions  constrains  the  UP  and  DOWN  statistics.  As  previously
described, the initial observations from Steriade and colleagues suggested “fatigue”
as the key mechanism underlying UP and DOWN switching (Contreras et al., 1996).
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Activity dependent adaptive processes have been used in different computational
models, implemented as synaptic short-term depression (Bazhenov et al., 2002; Hill
and Tononi, 2005; Holcman and Tsodyks, 2006; Benita et al., 2012), synaptic short-
term facilitation  (Melamed et al., 2008) or spike frequency adaptation  (Latham et
al., 2000; Compte et al., 2003; Destexhe, 2009). On the other hand, stochastically
induced  transitions  in  cortical  network  models  could  be  implementing  synaptic
noise  (Holcman  and  Tsodyks,  2006;  Mejias  et  al.,  2010).  The  interplay  of
fluctuations and adaptation causing transitions between two states has been studied
in the context of developing (excitatory) networks and pacemaker central pattern
generators (Tabak et al., 2000; Lim and Rinzel, 2010; Tabak et al., 2011; Mattia and
Sanchez-Vives, 2012).

On  the  other  hand,  other  mechanisms  have  been  proposed  to  cause
transitions  such  as  the  existence  of  pacemakers  neurons  (Kang  et  al.,  2004).
Additionally,  UP to DOWN transitions  have been proposed to  be generated via
increasing feedback inhibition during the UP state (Melamed et al., 2008; Parga and
Abbott, 2007; Chen et al., 2012).

In Chapter 4.3 of this Thesis, we will use a low dimensional model of two
inhibitory (I) and excitatory (E) populations in order to explore the contribution of
fluctuations and adaptation in causing UP and DOWN switching. We will propose a
novel type of bistability based on an asymmetry in the firing threshold of the E and I
populations, which can lead to arbitrary low firing rates. We will also performe a
qualitative comparison of second order stats in the duration of UP and DOWNs and
spiking activity (FF and correlations of spike counts) vs the same measurements
performed in the data in Chapter 4.2. Moreover, the model permits to also compare
the activity generated by the E and I populations with that obtained after putative
classification of narrow and broad spiking isolated neurons from the multi-single
unit activity recordings.

1.5. Cortical brain state
By the end of 1920's,  Hans Berger observed that brain electrical activity

recorded on the scalp of human subjects changes its spectral properties according to
different behavioral states of the subject: closing the eyes in the awake calm subject
can induce the “alpha” oscillations (with frequency ~10Hz), while opening the eyes
cause the presence of “beta” oscillations (~20Hz). Although different states were
originally described in terms of cortical electrical activity, it was later understood
that they reflect global brain differences associated with different cognitive states. 

By  means  of  EEG,  cortical  activity  can  be  broadly  categorized  into  a
continuum of regimes at the extreme of which are the desynchronized state (also
called Activated state)  and the synchronized state (also called Inactivated state).
While  desynchronized  states  are  characteristic  of  wakefulness  and  REM  sleep
(that's the reason behind why is also called paradoxical sleep),  synchronized states
are  characteristic  of  SWS and  anesthetized  states  under  most  anesthetics   (see
(Steriade and McCarley, 2005)). Many structures and neurotransmitters seem to be
involved in forebrain activation, although the precise mechanisms by which brain
states changes ramains largely unknown (see e.g. (Saper et al., 2001; Lee and Dan,
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2012) for a review). 

How is the cortex desynchronized?

Synchronized states are characterized by slow-waves and UP and DOWN
switching,  described  in  previous  sections.  On  the  opposite  extreme,  during
desynchronized states neocortical neurons tend to fire tonically although their firing
rate is not necessarily higher than during the synchronized state  (Steriade, 2001;
Rudolph et al., 2007). During waking, periods of cortical silence can be sometimes
observed in  immobile  inattentive animals  (Petersen et  al.,  2003b;  Luczak et  al.,
2009).  Sleep  pressure,  moreover  can  significantly  increase  their  appearance
(Vyazovskiy et al., 2011).

Many  structures  and  neurotransmitters  seem  to  be  deeply  involved  in
forebrain  activation  or  desynchronization.  Cholinergic  projections  arising  in  the
basal forebrain (Moruzzi and Magoun, 1949) and the brain stem pedunculopontine
tegmental (PPT) nucleus and serotonergic projections arising in the raphe nucleus
(Dringenberg and Vanderwolf, 1997) seem to have a privileged role. Stimulation of
the Nucleus Basalis (NB) in the basal forebrain can activate the cortex (Buzsaki et
al., 1988; Metherate et al., 1992; Alitto and Dan, 2012) as well as stimulation of the
PPT nucleus (Sakata and Harris, 2012). Cholinergic neurons in the NB send diffuse
projections throughout the neocortex and to subcortical areas such as the reticular
nucleus in the thalamus (reviewed in  (Lee and Dan, 2012)). Additionally,  in vitro
studies  have  shown  that  the  activation  of  cholinergic  receptors  decreases  the
efficacy of intracortical feedback connections via muscarinic receptors  (Gil et al.,
1997), and an enhancement ot thalamocortical transmission via nicotinic receptors
(Kawai  et  al.,  2007).  Moreover,  under  the  presence of  acetylcholine,  adaptation
related  conductances  in  cortical  cells  decrease  (McCormick  and  Prince,  1986;
Steriade et al., 1993b). In this way these changes seem to set the cortex to be more
“sensitive” to sensory inputs, minimizing the impact of the internal dynamics (Curto
et al., 2009). Indeed, NB stimulation produced an enhancement in the encoding of
natural images by reducing correlations among cortical neurons  (Goard and Dan,
2009;  Hirata  and  Castro-Alamancos,  2011),  which  might  improve  sensory
information coding (Zohary et al., 1994).

On  the  other  hand,  electrical  stimulation  of  the  raphe  nucleus,  which
contains  serotoninergic  cells,  can  induce  desynchronization  (Dringenberg  and
Vanderwolf,  1997).  In  fact,  tail  pinching  can  also  induce  desynchronization
(Marguet and Harris,  2011) and this process is  blocked by serotonin antagonists
(Neuman  and  Thompson,  1989).  Additionally,  it  has  recently  shown  that
noradrenergic  signaling  is  also  involved  in  desynchronized  states  since  the
pharmacological blockage prevents the desynchronization when the animal is awake
(Constantinople and Bruno, 2011). 

It has been suggested that the desynchronized states are consequence of the
depolarization of cortical and thalamical cells via cholinergic inputs coming from
pedunculopontine  and  laterodorsal  tegmental  nuclei  which  increase  the  voltage
membrane of cortical and thalamic cells near the action potential threshold (Steriade
et al.,  1982), giving the thalamus a key control of the cortical state  (Hirata and
Castro-Alamancos, 2010; Poulet et al., 2012). Consistent with this idea, it has been
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shown that local application of ACh in the thalamus is enough to activate the cortex,
arguing that this could be an alternative pathway by which local microcircuits in the
neocortex could be focally desynchronized given the connection specificity of the
thalamocortical  projections  (Hirata  and  Castro-Alamancos,  2010).  However,
extensive  lesion  in  the  thalamus  does  not  prevent  cortical  desynchronization
(Buzsaki  et  al.,  1988;  Constantinople and Bruno,  2011). Altogether these results
suggest  that  thalamus  is  not  necessary but  it  is  sufficient  to  desynchronize  the
cortex. 

To summarize,  although there is  a  large body of  work on the effects  of
neuromodulators in the activation of the cortex and the thalamocortical loop, the
relationship between neuromodulators and brain state is not completely understood.

Brain states under anesthesia

Under most anesthetics, cortical circuits usually display synchronized states.
The patterns of activity might depend on the levels of anesthesia. This was shown
already in the seminal work from Lord Adrian. In moderate degrees of chloroform
and ether anesthesia in the cortex of rabbits, electrophysiological recordings carried
with  a  wire  electrode  showed  that  “...The  slow  waves  have  a  characteristic
frequency of 3-4 per sec. With brief waves at 25-40 per sec superimposed. In very
deep anaesthesia, the 3-4 per sec. rhythm gives way to a slower beat at intervals of
1-2 sec. The super imposed brief waves are on the whole more regular and their
frequency usually lies in the region of 25-30 per sec...In lighter anesthesia sensory
stimulation often abolishes the rhythmic beat and substitutes a continuous train of
brief  waves...”  (Adrian  and  Matthews,  1934).  It  has  become  clear  that  under
different  anesthetics  and anesthesia  levels,  the  synchronized  brain  states  exhibit
qualitative  and  quantitative  differences  (Steriade,  2001;  Erchova  et  al.,  2002;
Chauvette et al., 2011). 

Under  moderate  levels  of  urethane  anesthesia,  cortical  activity
spontaneously  undergoes  transitions  between  synchronized  and  desynchronized
states (Clement et al., 2008; Li et al., 2009; Curto et al., 2009; Sakata and Harris,
2012). Moreover, under a very tight control of the urethane dose, the state of an
animal oscillates between desynchronized and synchronized states  (Clement et al.,
2008) in a way that very closely resembles the alternation between natural SWS and
REM  (Steriade, 1999). Although some computational studies have been proposed
showing  different  possible  regimes  of  activity  across  this  synchronized  and
desynchronized axis (Bazhenov et al., 2002; Compte et al., 2003; Hill and Tononi,
2005; Wilson et al., 2005; Curto et al., 2009; Mattia and Sanchez-Vives, 2012), the
fundamental mechanisms which account for brain states transitions remains largely
unexplored. 

Transitions between synchronized and desynchronized brain states occur in
a  continuum  space  of  possible  states  defined  by  spectral  properties  of  brain
electrical  signals  (Gervasoni  et  al.,  2004), and this can be observed both during
natural occurring brain states and under anesthesia  (Clement et al., 2008; Curto et
al.,  2009).  Moreover  —  as  observed  by  intracellular  recordings—  while
synchronized states are dominated by UP and DOWN states dynamics,  transition
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Figure 5.  Anesthesia induces synchronized states in the cortical EEG signals in dose dependent
manner. A. Cortical EEG recordings in  urethane anesthetized rabbits: A: Moderately light, B-C: deep
levels of anesthesia. White squared time markers on the film each 0.25 sec. “In deep anaesthesia the
slow waves become more regular. The “brief” waves [observable in A] are just visible” (Adrian and
Matthews,  1934)).  B. Intracellular  recordings  in  the  auditory  cortex  of  ketamine-xylazine
anesthetized rats under light (top) and deep (bottom) levels of anesthesia (modified from (Deco et al.,
2009a)). C. Multi single-unit recordings in somatosensory cortex of urethane anesthetized rats under
different doses of anesthesia (modified from (Erchova et al., 2002)).

 
from  synchronized  towards  desynchonized  states  are  accompanied  with  a
concomitant increase in UP period and decrease DOWN period duration. Moreover,
individual neurons fire at their “preferred”  brain states, so can either increase or
decrease their firing rate according to different states (Steriade et al., 2001; Rudolph
et al., 2007).

Understanding how these changes between states are achieved constraints
the mechanisms governing the cortical activity in a particular state and could help to
elucidate how brain state transitions are achieved. In Chapter 4.4 of this Thesis we
will  study how cortical  states shapes  the  dynamics  of UP and DOWN states in
cortical circuits.

28



2. Objectives

1. To  determine  the  laminar  specificity  of  intracortical  fast  frequency
oscillations  across  a  cortical  column  during  UP  intervals  from
synchronized  brain  states,  and  to  compare  this  laminar  specificity
between in vivo experiments and the isolated cortical circuit in vitro.

2. To  quantify  the  spiking  statistics  of  cortical  populations  during
synchronized  states  in  vivo,  and  to  build   computational  models  to
explore the network mechanisms causing the UP and DOWN transitions
observed in the experiments.
 

3. To determine how changes in global brain state impact the dynamics of
spontaneous  activity  in  cortical  circuits  and  to  investigate  the
mechanistic network basis of this variations in dynamics
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3. Methods

3.1. Experimental methods

In vitro experiments §

§ performed by  Daniel Jercog and Ramon Reig  in Sanchez-Vives Laboratory
(Chapter 4.1). 

In vitro slice preparation. The methods for preparing cortical slices were similar
to those previously described in  (Compte et al., 2008). Briefly,  cortical slices
were prepared from 6- to 16-month-old ferrets of either sex that were deeply
anesthetized  with  sodium  pentobarbital  (40  mg/kg)  and  decapitated.  Four
hundred-micrometer-thick  coronal  slices  of  the  visual  cortex  were  cut  on  a
vibratome. Slices were then placed in an interface-style recording chamber (Fine
Sciences Tools, Foster City, CA) and bathed in ACSF containing (in mM): NaCl,
124; KCl, 2.5; MgSO4, 2; NaHPO4, 1.25; CaCl2, 2; NaHCO3, 26; and dextrose,
10, and was aerated with 95% O2, 5% CO2 to a final pH of 7.4. Bath temperature
was maintained at  34-36°C. In order for spontaneous rhythmic activity to be
generated, the solution was switched to “in vivo-like” ACSF which consists in a
bathing milieu similar to that present  in vivo, containing (in mM): NaCl, 124;
KCl, 3.5; MgSO4, 1; NaHPO4, 1.25; CaCl2, 1.2; NaHCO3, 26; and dextrose, 10
(Sanchez-Vives and McCormick, 2000).  

In vitro recordings. Simultaneous extracellular  field potential recordings were
obtained from supra (SG) and infragranular (IG) layers with 2-4 MOhm tungsten
electrodes (FHC, Bowdoinham,  ME) and amplified using a Neurolog system
(Digitimer, UK). Electrodes positioned for SG and IG recordings were vertically
aligned in order to capture columnar effects (Fig 4.3.A). Electrodes were placed
in the first (for SG) and last third (for IG) of the distance from the pial surface to
the  white  matter.  The  signal  was  recorded  unfiltered  (0.1Hz-10  kHz)  at  a
sampling frequency of 10 kHz.  Recordings were digitized and acquired using a
data  acquisition  interface  and  software  from  Cambridge  Electronic  Design
(Cambridge, UK).

Pharmacology. In a set of experiments (n=10), kainic acid (Tocris Bioscience)
was  applied  to  the  cortical  network  by  adding  up  the  drug  at  increasing
concentrations to the “in vivo-like” ACSF bathing solution. The action of kainic
acid is not reversible and thus no “washed-up” conditions are shown.

Extracellular signals extraction. Two extracellular signals were extracted from
the  unfiltered  extracellular  recordings:  one  for  the  UP  and  DOWN  state
transitions detection and another one for the spectral analysis. In both cases, raw
signals were first downsampled to 1KHz for ease of manipulation. LFP signals
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for  the  UP and  DOWN state  transitions  detection  were  obtained  by  band-pass
filtering the extracellular signals between 10 and 300 Hz using a zero-phase lag
third-order Butterworth filter. LFP signals for the spectral analysis were obtained
applying the same filter configuration in the 2 to 300 Hz band. Recording length
used for the analysis were approximately  300 s.

In vivo experiments

Visual cortex recordings from anesthetized ferrets (§) 

§ performed by Marcel Ruiz-Mejias in Sanchez-Vives Laboratory (Chapter 4.1). 

Recordings were performed in 3 male ferrets 5 month old.  The recordings
were  performed  in  both  hemispheres.  Animals  were  anesthetized  with  an
intramuscular  injection  of  a  mixture  of  ketamine  (30  mg/Kg,  Imalgene  1000®,
Merial)  and  medetomidine  (1  mg/Kg,  Domtor®,  Orion  Pharma),  and  were
supplemented with intramuscular bolus of ¼ to ½ of the induction dose on demand.
ECG  and  temperature  (36-37ºC)  were  monitored  continuously  during  the
experiments. After placing the animal in the stereotaxic frame, a subcutaneous dose
of atropine was given to prevent respiratory secretions (0.15 mg/Kg). A craniotomy
of 2x2 mm was opened over the area spanning AP -11 to -14 mm and L 5 to 8 mm
from bregma (areas 18-21, visual cortex). 

Local  Field  Potential  (LFP)  recordings  were  obtained  using  vertical  16-
channel  silicon  probes  (Neuronexus®)  with  100  µm  of  separation  between
recording sites and impedances ranging 0.4-1 MΩ.. The electrode was introduced
perpendicularly to the cortical surface until the top electrode contact disappeared
below the surface. Recordings were obtained from both hemispheres in 2 animals
and from 1 hemisphere  in 1 animal  and were amplified with a 16-multichannel
system (Multi Channel Systems®). The signal was digitized at 9.920 KHz with a
CED acquisition  board  and  Spike  2  software  (Cambridge  Electronic  Design®).
Recording length used for the analysis were approximately  300 s.

Somatosensory(¢) and auditory(¤) cortices recordings from anesthetized rats

¢  Performed by  Peter Bartho  and  Arthur Luczak in Kenneth Harris' Laboratory
(Chapter  4.2),  and  Ainhoa  Hermoso  Mendizabal  in  de  la  Rocha  Laboratoy
(Chapter 4.4).

¤ Performed by Shuzo Sakata in Sakata Laboratory (Chapter 4.4).

For detailed descriptions of surgery and recording procedures see (Barthó et
al.,  2004).  Briefly,  rats  (Sprague-Dawley;  400-900  g)  were  anesthetized  with
urethane (1.3-1.6 g/kg body weight) and ketamine (25-40 mg/kg) plus additional
injections of urethane (0.2 g/kg) as needed. Rats were placed in a stereotaxic frame
or  naso-orbital  restraint,  and  a  window  in  the  scalp  was  prepared  over  the
somatosensory  or  auditory  cortex.  A  silicon  microelectrode  (Neuronexus
technologies,  Ann  Arbor  MI)  was  attached  to  a  micromanipulator  and  moved
gradually to its desired depth position. Probes consisted of four or eight linearly 
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arranged shanks with 200 μm separation between consecutive shanks. Each shank
had  eight  recording  sites  arranged  in  a  staggered  configuration  or  in  tetrode
configuration (20 μm separation). Recordings were performed in deep layers  of
auditory and somatosensory cortices. Data from several of these animals were used
in previous studies (Barthó et al., 2004; Renart et al., 2010). 

Extracellular signals were high-pass filtered (1 Hz) and amplified (1,000
gain) by using a 64-channel amplifier (Sensorium, Charlotte,VT), and digitized at
25 kHz (DataMax System; RC Electronics, Santa Barbara, CA) or 20 kHz (United
Electronic  Industries,  Inc.,  Canton,  MA).  LFP signals  are  obtained by high-pass
filtering the raw signal either at 1000 kHz or 1250 kHz. Units were isolated by a
semiautomatic  algorithm  (http://klustakwik.sourceforge.net)  followed  by  manual
clustering  procedures  (for  Chapter  4.2)  (http://klusters.sourceforge.net).  We
considered MUA as the pool of spikes from isolated units. For some experiments,
LFP  signals  were  provided  as  low-pass  filter  at  1000  Hz  from  the  original
extracellular signals.

3.2. LFP data analysis

UP and DOWN detection.  Individual  LFP signals were used to identify UP and
DOWN state transition times for each recording site. An increase in fast fluctuations
in the LFP signals is taken as a signature of an UP state occurrence (Mukovski et al.,
2007; Compte et al., 2008). Following previously described methods in (Compte et
al., 2008), the instantaneous amplitude (envelope) of the LFP was computed as the
absolute value of the complex Hilbert transform which is smoothed with a 100 ms
box- kernel. Possible slow (<0.1 Hz) linear trends – drifts the recordings – were
removed and transitions were determined by thresholding the resulting signal by it's
mean value. In the last set of  in vitro experiments (kainic acid administration at
400nM, Fig. 4.1.6, 4.1.7 and 4.1.8) UP and DOWN transitions ceased in IG layers
as a result of the drug application. In this case, the interval times for analysis of IG
recordings were defined as those intervals defined by UP and DOWN transitions
detected in the simultaneous SG recordings. 

Spectral analysis. Spectral analysis was performed using Chronux software package
(Bokil et al.,  2010), Matlab Signal Processing Toolbox (The Mathworks, Natick,
MA)  and  the  use  of  in-house  algorithms.  Chronux  built-in  multitaper  spectral
estimation  (5  tapers,  unpadded  configuration,  time-bandwidth=3)  was  used  to
estimate frequency spectra (power spectra, time-frequency spectrum and coherence
estimations).  In  order  to  have  long  enough  time  series  to  perform the  spectral
analysis in the studied range of frequencies, we used a window size of 300 ms (400
ms  for  in  vivo)  taken  from  the  centre  of  each  UP/DOWN  period  detected
(UP/DOWN periods shorter than the window size were discarded, typically within a
few  percent  of  the  total  number  of  periods).  In  order  to  compare  the  spectral
properties of signals obtained from different recording sites,  we normalized each
power spectrum by the variance of the signal. Multi-taper time-frequency spectrum
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was  computed  over  a  moving  window of  200  ms  with  a  step  size  of  100 ms.
Coherence  analysis  across  recording  sites  was  performed  over  a  time-window
consisting on the intersection (in time) of detected UP state epochs in both recording
sites  (intervals  with  duration  below the  window size  for  spectral  analysis  were
discarded). Described procedure was repeated changing the window size from 200
ms  up  to  450  ms  and  changing  the  number  of  tapers  from  2  to  5  (time-
bandwidth=(#tapers+1)/2), obtaining analogous results. 
The parameters for spectrograms calculation were the following: 

Chapter Window/Step size (s) #Tapers Figure

4.1 0.2/0.1 4 4.1.3, 4.1.6

4.2 5/3 7 4.2.1

4.4 5/3 7 4.4.1

Error bars for spectral estimation represent jackknife 95%CI.

Peaks detection in Power Spectra. For each mean power spectrum during UP states
P, the “1/f” power spectral decay of P was fitted by the function a∗ f b

, where the
coefficients  a and  b where  obtained  through  a  linear-regression  of  log(P)  as  a
function of log(f) (Miller et al., 2009). Excess power is defined as the power ratio
between the lower error  band (95% CI)  for  P estimation and the power law fit
a∗f b

. Excess power was used to compare the magnitude of peaks in the power
spectrum  across  different  experiments,  recording  sites  and  different  ranges  of
frequencies. Thus, a peak in P is defined by a local increment in the excess power,
exceeding by at least 20% over the fitted power  a∗f b

 (i.e. excess power >1.2).
The power law a∗f b

 was fitted to P in the range of frequencies 5 to 105 Hz in the
in vitro case, and 5 to 20Hz in the in vivo case (Fig 4.1.4.D). This was due to the
fact that peaks in the power spectrum in vivo differ very pronouncedly from the
power law fit, especially at frequencies > 20 Hz. With these choices, power law fits
to our data captured the expected trend of decaying power over the frequencies of
interest, as evaluated by visual inspection.  Using the residuals from the P power-
law  fit,  or  computing  the  power  spectra  from  the  residual  of  a  low-order
autoregressive  model  of  the  LFP signal  —  a  procedure  known  as  signal  pre-
whitening (Mitra and Pesaran, 1999) — returned analogous results.

Statistical  analysis. The significance of paired comparisons (across layers)  were
assessed  using  non-parametric  Wilcoxon tests.  Confidence  intervals  (95%)  were
estimated by a non-parametric jackknife procedure. Multi factorial ANOVA analysis
was  used  to  assess  the  significance  of  changes  in  detected  peak  frequency and
power  across  layers  under  pharmacological  manipulations  of  the  slices
(factors=layer  domain,  pharmacological  condition (continous),  slice id  (random);
model=interaction). 

L/H ratio. Traditionally, the cortical state assessment is based on spectral properties
of  EEG or  LFP.  Synchronized  states  are  characterized  by slow high  amplitude

34



3. Methods

fluctuations in the LFP signals, whereas desynchronized states are characterized by
fast low amplitude fluctuations (Steriade et al., 1993b). Therefore, the power ratio
between the low (0.5-4 Hz) and high (20-55 Hz) frequency bands, the L/H ratio, is
high when the cortex is in a synchronized state and hence switching between UP
and DOWN states occur (Li et al., 2009). To the contrary, when the cortex display
low power in low frequency bands and high power in the higher frequency bands,
the low/high ratio remains low in desynchronized state and switching between UP
and DOWN states are rarely observed. Thus, for each shank we randomly choose
the LFP signal from one channel  and compute the L/H ratio in non-overlapping
windows of 20 sec as the ratio of mean power in (low) 0.5-4 Hz band and mean
power in (high) 20-55 Hz band as previously described (Curto et al., 2009; Li et al.,
2009).

3.3. MUA data analysis
Silence density.  Another way of characterizing the cortical state is by taking into
account the spiking activity of individual neurons from a local population (Renart et
al., 2010). Even though during UP states individual neurons might fire only a few
action potentials,  pooling the spiking activity of many individual  neurons in the
multi-unit activity can reveal the presence of co-fluctuations in the firing activity of
the individual neurons. Given that the presence of DOWN state is characterized by
quiescent activity in cortical networks  (Steriade et al., 1993a), we can also assess
the activation level based on the MUA activity by quantifying the Silence density of
20 ms bins with the absence of spikes in the MUA in 20 sec windows (Renart et al.,
2010).  The mean and standard deviation of the silence density is computed in 50
seconds windows.  For  data  analyzed  in  Chapter  4.2,  periods  with mean silence
density above 0.5 and standard deviation below 0.1 were considered as sustained
synchronized. For last section of Chapter 4.4, in order to compare silence density
values  across  experiments,  the  window-size  to  compute  the  silence density was
defined as 5 times the mean inter-spike interval from the MUA.

UP and DOWN detection.  We used a hidden semi-Markov probabilistic model to
infer  a  discrete  two-state  process  based  on  the  MUA observation,  proposed  by
(Chen et al., 2009). The simultaneously recorded spike trains are considered as a
single stochastic point processes that is modulated by the discrete hidden state and
the firing history of  the ensemble of  neurons recorded.  In order to estimate the
hidden state and the unknown parameters of the probabilistic models,  the method
uses the expectation maximization (EM) algorithm for the parameter estimation.
Although the discrete-time HMM provides a reasonable state estimate with a rather
fast computing speed, the model is restricted to locate the UP and DOWN transition
with a certain time bin size (10 ms in our case). The initial parameters that we use
for the UP and DOWN detection in our model are the following:
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T (bin-size, error in transition detection) 10 ms
μ           -2
α 2
J (# history bins; J=0 for Markov process) 1
β (history-dependance weight; β=0 for Markov process) 0.01
P (transition matrix,0 DOWN  1 UP) P01=P10=0.9 

                                                                                                          P00=P11=0.1

An  example  of  the  detection  is  shown  in  Fig.  M1.  MUA spike-count
(MUAc) is computed in 20 ms sliding windows of 5ms steps (Fig M1B, gray bars).
An expectation-maximization algorithm (a statistical inference algorithm within the
maximum likelihood estimation framework) is used for the estimation of model's
parameters. Finally, the probability of being in an UP state is assessed by the output
of the Viterbi algorithm (Fig M1B, green trace).

About  the  UP and  DOWN  intervals  detection  methods.  Many methods  for  the
detection of UP and DOWN transitions have been designed based on intracellular
(Stern et al., 1997; Volgushev et al., 2006; Haider et al., 2006; Seamari et al., 2007),
LFP  (Amzica and Steriade,  1995b; Mukovski  et  al.,  2007;  Compte et  al.,  2008;
McFarland  et  al.,  2011),  MUA  (Luczak  et  al.,  2007;  Hasenstaub  et  al.,  2007;
Sanchez-Vives et al., 2010) or a combination of these signals (Saleem et al., 2010).
These methods are  typically “threshold-based”,  which means that  a transition is
determined when a threshold is crossed. The pattern of transitions depends therefore

 

Figure M1. Example of UP and DOWN transitions detections.  A. Cortical state assessment by
silence density (black trace). Mean and standard deviation of the silence density are shown in
violet and turquoise traces, respectively. B. Hidden Markov Model (HMM) based detection (from
Chen et al 2009). Raster plots of the pooled detected units is shown (each row represent one cell
and each dot represent a spike from that particular cell). MUA spike-count (MUAc) is computed
in  20  ms  sliding  windows  (5ms  steps)  and  normalized  for  displaying  purposes  (in  gray).
Probability of being in an UP state is computed by the Viterbi algorithm and shown in green.
Finally, DOWN-TO-UP and UP-to-DOWN transitions are indicated by red and blue vertical lines
respectively.
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on the value of the threshold which is a priori arbitrary. For this reason the method
requires  of  an  independent  assesment  of  the  detection  errors  to  optimize  the
threshold value or  of  independent  arguments  to  set  it  (e.g.  at  the  trough of  the
bimodality found in the voltage membrane histogram). Moreover, given that brain
signals exhibit in general large fluctuations, threshold crossings can be caused by  a
state  transition  or  by  a  random  fluctutation.  A  common  procedure  used  to
distinguish  these  two  has  been  to  assume  that  fluctuations  are  short  lived  and
produced  much  shorter   intervals  than  “real”  UP/DOWN  intervals,  which  are
merged to the surrounding  intervals. It must be noticed however, that imposing a
lower  cutoff  in  the  duration  of  UP and  DOWN  intervals  can  also  modify  the
distribution  of  durations  and  decrease  for  instance  the  coefficients  of  variation
CV(U) and CV(D).  More  recent  approaches to  detection of  transitions  consider
hidden Markov probabilistic models to infer a two-state (UP/DOWN) process based
on the LFP (McFarland et al., 2011; Hahn et al., 2012) or MUA (Chen et al., 2009).
This provides a more principled framework than setting a particular threshold and,
moreover, better accommodates to non-stationarities of the data  (McFarland et al.,
2011). We used tthe detection method proposed by (Chen et al., 2009), which might
be another  cause of the differences with previous reports on UP/DOWN duration
variability.  However, although we did not merge or discard short UP or DOWN
intervals  ,  the  large  duration  variability  that  we  reported  here  might  be  more
influenced by the long tail  in  the  UP/DOWN duration distributions  than by the
presence of the short intervals. Moreover, we observed coefficients of variation of D
and U close to those reported by intracellular studies in a similar preparation where
threshold-based methods were used  (Stern et al., 1997). Therefore, we discard the
possibility  that  interval  duration  statistics  reported  here  are  an  artifact  of  the
detection method.

Spike trains statistics

We first divide the time in bins of  dt=1 ms and define the spike train if the  j-th
neuron as:

 (1)

The spike count of the j-th neuron over a the time window (t-T/2, t+T/2) is obtained

n j(t ; T )=(K∗s j)(t)  (2)

where * refers to a discrete convolution and K(t) is a square kernel which equals
one in (-T/2,T/2) and zero otherwise.

The instantaneous  population count  is defined as the sum over all neurons of the
individual spike counts n j(t ; T ) :

PC(t ;T )=∑j=1

N
n j(t ;T )  (3)
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where N is the total number of well isolated and simultaneously recorded neurons.
The  instantaneous rate  of the  j-th neuron and the instantaneous population rate
are defined as 

(4)

where we have dropped the dependence on T from r i(t) and R(t) to ease the notation.
We also defined the instantaneous E-population and I-populations rates, RE(t) and
RI(t)  respectively,  as  those  based  in  the  population  count  of  E-cells  and  I-cells
separately.  

Statistics of U and D durations

We generally used onset and offset referring to the onset and offset of UP intervals.
The time series {t i

on
}i=1

M contains to the onset times and {t i
off
}i=1

M the offset times
of the putative UP intervals detected and M being the total number of intervals. We
define the i-th putative UP and DOWN intervals as (see Fig. 4.4.1)

(5)

The mean and the coefficient of variation of  Ui  are defined as

 (6)

and equivalently for  〈D i〉 and  CV (Di) .  The serial correlation between  Ui

and the consecutive Di is quantified with the Pearson correlation coefficient defined
as:

(7)

where the covariance is defined as:

(8)

The correlation between  Di   and Ui+1 (i.e. the DOWN interval and its following UP
interval)  named  Corr (Di ,U i+1) was  defined  equivalently.  To  remove
correlations between Ui and  Di  produced by slow covariation of the durations, for
instance as those observed during drift in the synchronization state level (Fig. 4.4.2
in Chapter 4.4 ), we subtracted from the  Cov(U i , Di) the covariance obtained
from a surrogate U and D series obtained from the original by shuffling the values
{U i}i=1

M .  Specifically,  we  defined  the  k-th  shuffled  series  of  UP intervals  as
{
̂u i

k
}i=1

M as  the  one  obtained  by randomly shuffling  the  order  of  the  Us  over
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Corr (U i , Di)=
Cov (U i , Di)

√Var (U i)Var (Di)

Cov(U i , Di)=
1
M∑i=1

M
(U i−〈U i〉)(Di−〈Di〉)

〈U i〉=
1
M∑i=1

M
U i

CV (U i)=
√Var (U i)

〈U i〉

U i=t i
off
−t i

on

Di=t i+1
on
−t i

off

r i(t)=
ni(t ; T )

T

R(t)=
PC (t ; T )

T N
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intervals of 10 seconds. The same was done to define the shuffled series {
̂d i

k
}i=1

M .
Because the shuffled was done over 10 second intervals the two series lack any
correlation except that introduced by slow co-variations in the statistics (i.e. slower
than 10 seconds). We generated  S=100 independent shuffled series  {̂u i

k
}i=1

M and
{
̂d i

k
}i=1

M with k =1, ...S, computed the covariance Cov(ui
k , di

k
) for each and the

averaged over all of them to obtain  Cov(ui , d i)=〈Cov(u i
k ,d i

k
)〉k . Finally we

replaced the covariance in equation 7 by the difference , that is we subtracted the
correlations solely due to  slow co-variations in the statistics  of  UP and DOWN
periods. 

Population firing statistics during Us and Ds

We next defined the average and variance across the onset and offset times of UP
intervals.  Specifically,  given  the  onset  times  series  {t i

on
}i=1

M the  averaged
population rate aligned at the onset is defined as:

(9)

where the population rate R(t) has been aligned to the onset times as described in
Fig.  4.4.4 in Chapter 2.   More importantly,  the brackets  〈x (t )〉on implies the
average across UP intervals lasting longer than t, that is the sum in equation 9 runs
over  t '∈{ti

on
}  only if  (t−t i

on
)<U i .  By doing this  we remove  the  trivial

decay  we  would  observe  in Ron(t) as  t   increases  due  to  the  increasing
probability  to  transition  into  a  the  consecutive  DOWN  interval.  The  average
population rate aligned at the offset Roff (t) is defined equivalently by replacing
{t i

on
}i=1

M by the series of offset times {t i
off
}i=1

M . We also defined the onset and
offset-aligned  averaged  population  rate  for  excitatory  (E)  and  inhibitory  (I)
populations, termed Ron

E
(t ) and Roff

E
(t ) for the E case and similarly for the I

case.

We also computed the instantaneous second order statistics of the firing activity
across putative UP intervals aligned both at the onset and offset. The instantaneous
Fano factor of the population spike count PC(t ;T ) aligned at the U onset was
defined as

 (10)

where the variance and the mean are taken across  the  onset  times  {t i
on
}i=1

M as
describe in equation 9. The offset-aligned Fano factor FPoff ( t ; T ) was obtained
equivalently by using the offset times {t i

off
}i=1

M . 

The autocorrelogram of the instantaneous population rate is defined as:

(11)
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FPon(t ; T )=
Var (PC (t ; T ))on

〈PC (t ;T )〉on

Ron(t)=〈R( t)〉on=
1
M∑t '∈{t i

on
}

R(t−t ')

A (τ )=
1
L∑t=1

L
R(t )R( t+τ)−〈R (t)〉t

2
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with the sum in  t running over the L time bins of the entire period of data analysed
(e.g.  a ~ 10 min period).  The brackets 〈· 〉t define an average over time.   The
autocorrelogram shown in Figure 4.2.3 in Chapter 4.2 was normalized by the value
at lag zero A (τ=0) .

Power spectrum of population rate R(t). The power spectrum of the instantaneous
population rate R(t) was computed using the  Chronux software package  (Bokil et
al.,  2010).  Chronux  built-in  multitaper  average  spectral  estimation  (21  tapers,
unpadded configuration, time-bandwidth=11) was performed over non-overlapping
windows of 60 s. 95% CI error bars are estimated via jackknife procedure.

Individual Neuron firing statistics during Us and Ds

We defined the spike count of the j-th neuron during the interval Ui  as

(12)

and the average firing rate of the j-th neuron across U intervals as:

(13)

The average firing rate across D intervals rD
j was defined equivalently. 

As defined above using the population rate (equation 9) we now define the average
single neuron rate across the onset and offset times of UP intervals. Specifically,
given the onset times series {t i

on
}i=1

M the averaged rate of the j-th neuron aligned
at the onset is defined as:

(14)

We defined the individual Fano factor of the j-th neuron spike count n j(t ; T ) as

(15) 

and generally show the average of FF j ,on(t ; T ) across neurons

 (16)

The instantaneous correlation between the spike counts from cells i and j  aligned at
the onset was defined as

 (17)
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Corr ij, on(t ;T )=
Cov (ni( t ;T ) , n j(t ; T ))on

√Var (ni(t ;T ))on Var (n j(t ; T ))on

FF j ,on(t ; T )=
Var (n j(t ; T ))on

〈n j(t ;T )〉on

FFon(t ; T )=
1
N∑j

F j , on(t ; T )

r j ,on(t)=〈r j(t)〉on=
1
M∑t '∈{t i

on
}
r j(t−t ' )

r j
U=

1
M
∑i

n j(U i)

U i

n j(U i)=∑t '∈U i

s j(t ' )
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where both the covariance and the variances of the spike counts are obtained across
the onset  times of UP intervals as shown in equation 9.  We generally show the
average spike count correlations across neuronal pairs defined as

(18)

The statistics r j, off (t ) ,   F j ,off (t ;T ) and Corrij, off (t ;T ) aligned at  the  U
offset, are computed equivalently to equations 14, 15 and 17 but replacing the onset
times with the offset times {t i

off
}i=1

M

Putative E/I neuronal classification.

Isolated  units  were  classified  into  putative  E  or  I  based  on  three  parameters
extracted from their mean spike waveforms (see Fig. 4.2.9A top), grouped into two
classes by k-means clustering. Each dot represents a single unit. Putative Is were
characterized by narrower spike waveforms and relatively higher asymmetry index.
Putative Es were characterized by wider spike waveforms and relatively smaller
asymmetry  index.  Previous  studies  suggest  that  the  narrow-spiking  and  wide-
spiking  cells  may  correspond  primarily  to  inhibitory  INs  and  excitatory  PCs,
respectively (Csicsvari et al., 1998; Barthó et al., 2004; Sirota et al., 2008).

3.4. Model data analysis

Simulation details.

Chapter  4.3  Network  parameters. The  parameters  for  the  network  used  for  the
simulations  are  described in  the  following table,  and  changes in  parameters  for
different figures are denoted in the caption of the respective figure.

αE=1, αI =4, ωE=5, ωI =25, transfer function

JEE =5, JEI =1, JiE =10, JII =0.5, connectivity

θE=0, θI=0, main input to each pop

τE=10, τI=2, τE=500, τN =1, time constants

σ=0 amplitude of fluctuations

Chapter 4.4 Network parameters. Parameters are described at Fig. 4.4.6 caption.

Stochastic  fluctuations.  Stochastic  fluctuations  were  modeled  by  an  Ornstein–
Uhlenbeck process, which was computed in the exact form numerically following
the methods described (Gillespie, 1996).
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Numerical simulation of the differential equations were performed using 4th order
Runge-Kutta methods (dt):

• Integration step dt=0.1 

• Length of each simulation=100000 dt

For Fig. 4.3.6, each point from the color plot was generated by 50 simulations.

All simulations were performed by in-house algorithms coded in C++/ MeX and
Matlab (The Mathworks, Natick, MA).

Analysis of simulations.

UD detection. U and D intervals were defined by threshold-based  detection method
(threshold  on  rE=1).  Intervals  with  duration  less  than  50dt  were  merged  with
neighboring intervals. We didn't used the HMM detection method used in Chapter
4.2 given that  the complexity of the method turns it  prohibitive to analyze long
numerical simulations. 

Fano Factor and correlations in the rate model.  In order to compare the results
obtained from our rate model with the statistics of the spike counts obtained in the
data, we extended the rate model and assumed a two-stage model consisting in two
populations  of  E  and I  neurons  firing  inhomogeneous  and  independent  Poisson
spike trains with rate given by the trajectories of rE(t) and rI(t) defined by equations
1.1  and  1.2  from Chapter  4.3.  Notice  that  the  neurons  in  each  population  are
independent  conditioned  on  the  trajectories  rE(t)  and  rI(t),  but  because  this
trajectories are stochastic spike trains from two neurons will show correlations. This
model  can  be  interpreted  as  a  double  stochastic  Poisson  process  since  the  rate
follows a stochastic differential  equation (Eq.  1.1 and 1.2,  Chapter 4.3) and the
spike trains are stochastically generated from the rate trajectories. The spike count
statistics of this  model can be computed given the ensemble of rate trajectories
during Us (obtained numerically from simulations of the system Eq. Eq. 1.1 and 1.2,
Chapter 4.3)   without the need of generating the Poisson spike trains because the
expectation  with  respect  to  the  ensemble  of  spike  trains  can  be  analytically
expressed.  The  average  spike  count  ni(t ;T )  across  Us  of  the  i-th  E-cell  is
defined as:

(19) 

where we have replaced the integral of rE(t), i.e. the filtered rate with a Heavie side
function of width T, with  RE(t). The brackets  〈·〉 refer to an average across Us
and can be defined both aligned at the onset or offset as defined above (Eq. 14).
Here we omit the notation referring to the alignment for brevity.  For simplicity, we
define the statistics of E-cells but the definitions are the same for the I-cells. The
variance of the spike count ni(t ;T ) can be decomposed by the law of the total
variance in (Shadlen and Newsome, 1998b; Churchland et al., 2011) 
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Var (ni(t ; T ))=Var (〈n i(t ;T ) |rE (t)〉 )+〈Var (ni(t ;T ) | rE (t))〉 (20)

In the first term in the r.h.s., called the variance of the conditional expectation,  the
variance is taken across the ensemble of rate trajectories rE(t) whereas the brackets
〈·〉 refer to the ensemble of spike trains at fixed rE(t) . In the second term of the

r.h.s. the variance is taken with respect to the ensemble of spike trains whereas the
brackets  〈·〉 refer to the ensemble of rate trajectories  rE(t). Thus the first term
acounts for the variability of the rates (i.e. it would be zero if the rate trajectories are
the same in every U) whereas the second accounts for the variability associated to
the realization of the spike trains (i.e. it is always larger than zero unless the rate is
zero). Since a the variance of the count of a Poisson process equals its mean:

 〈Var (ni(t ;T ) | rE (t))〉=〈RE(t )〉 (21)

The variance of the conditional expectation Var (〈ni( t ;T ) |r E( t)〉) can be simply
expressed as

Var (〈ni(t ;T )| r E(t )〉)=Var (RE( t)) (22)

Putting all  these  expression together,  the  Fano factor  of  the  spike count  can be
expressed as:

(23)

Both  the  mean  and  the  variance  of  RE(t)  were  computed  numerically  from the
simulations.

Using the law of the total covariance the covariance of two spike counts from the E
population can be decomposed in:

           (24)

Because by definition the spike trains  are  conditionally  independent,  the  second
term of the r.h.s. is zero. The first term in the r.h.s.  due to the Poisson statistics of
the spike trains can be expressed as:

Cov (n i(t ; T ) , n j( t ;T ))=Var (RE(t ))  (25)

whereas if the two neurons where from the E and I population the covariance reads,

43

FF (ni(t ; T ))=
Var (RE (t ))+〈RE(t)〉

〈RE(t)〉

Cov (n i(t ;T ) , n j( t ;T ))=Cov (〈ni(t ;T ) |r E(t)〉 ,〈n j(t ;T ) |rE (t)〉 )+〈Cov (n i(t ;T ) , ni(t ;T )|r E(t ))〉



3. Methods

Cov (n i(t ; T ) , n j( t ; T ))=Cov (RE(t) , RI (t)) (26)

Using  the  expression  of  the  variance  derived  above  (equations  20-22)  we  can
expressed the spike count correlation coefficient as:

           (27)

for pairs within the E population and 

 (28)
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4.1. Laminar profile of fast oscillations during UP
states

The microcircuit of cortical columns is defined by specific feedforward and
feedback connections between layers. As a result, laminar patterns of activation can
differ  depending  on  the  activation  of  incoming  inputs  or  neuromodulation,  for
example,  during evoked sensory responses and spontaneous activity.  Neocortical
fast oscillations (10-100Hz) occur not only during awareness, but also during UP
states in synchronized network states characteristic of anesthesia and natural slow-
wave sleep. In this chapter we studied the intracortical synchronization of activity
across layers of the cortical column during such synchronized states in vivo, and we
compared it with analogous synchronized states in the isolated cortical circuit  in
vitro. First, we observed the existence of compartmentalization of fast oscillations
during UP states from existing in vivo laminar recordings in anesthetized animals.
Then, we compared those fast oscillations to the ones observed during UP states of
slow-oscillation  in  vitro,  which  exhibited  laminar  differences.  By  doing
pharmacology manipulations  in vitro, we showed that an increase of  the isolated
network excitability can control inter-laminar couplings and oscillatory dynamics in
cortical circuits, leading to a similar laminar profile of fast oscillations as observed
in the in vivo condition. 

Fast oscillations during UP states are compartmentalized in SG and IG

We investigated the laminar profile of fast oscillations (10-100 Hz) during
spontaneous UP states in the visual cortex in vivo analyzing existing multilaminar
LFP recordings (16 electrodes, 100μm inter-electrode distance) in the visual cortex
of ketamine-anesthetized ferrets1 (n=3 animals). The recordings were obtained from
both  hemispheres  (in  total  1  hemisphere  was  damaged  during  the  craneotomy
procedure  and  1  recording  showed  drift,  consequently  both  recordings  were
discarded  for  further  analysis).  In  order  to  compare  results  across  different
experiments, unfiltered LFP signals were used to assess by visual inspection the
location  of  the  phase  reversal  from the  LFP which  is  produced  near  the  limit
between layers  IV and V  (Buzsaki  et  al.,  1988;  Chauvette  et  al.,  2010).  Signal
reversion  was  found  around  channels  7/8  in  the  4  experiments analyzed (Fig.
4.1.1A, marked with an asterisk).  For each recording channel we independently
identified the  transition times between UP and DOWN states based on the LFP
signals (Compte et al., 2008). In the example shown in Fig. 4.1.1A, the detected UP
state onset/offset periods are marked with magenta/black circles, respectively, where
1 Experiments performed by Marcel Ruiz-Mejias from Sanchez-Vives Lab.
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the inter UP state periods define the DOWN states.

It has recently been reported that signals recorded from SG and IG layers in 

Figure  4.1.1.  Laminar recording  of  spontaneous  activity  in  anesthetized  animals  shows
compartmentalization of  fast  oscillations  in  supragranular (SG)  and infragranular (IG)
visual cortex in vivo. A, On the left, a schematic illustration of the in vivo experimental setup. On
the right, an example of laminar LFP data traces. For each signal, UP states are detected (onset in
magenta  circles,  offset  in  black  circles)  while  DOWN states  are  defined  as  inter-UP states
intervals. Location of the slow-oscillation phase reversion is marked with an asterisk and is used
to compare the results across experiments.  B, For the example showed in A and for different
reference channels (on top of each panel), mean coherence during UP states between reference
and the rest of channels (in the x-axis, same color code as in A). Traces represent the coherence
for different bands: light = beta band, intermediate = low gamma, dark = high gamma. Note that
signals coming from the same laminar zone (SG/IG) are more coherent within themselves that
with  signals  from  other  zones.  These compartments  are  separated  around  channel  8,  which
corresponds to the identified location of the slow-wave phase reversion.

the  visual  cortex  of  monkeys  show  different  spectral  signatures,  revealing  two
separate functional domains: LFP signals within each laminar domain (SG/IG) are
highly coherent, whereas those across laminar domains are not, both during visual
stimulation and rest (Maier et al., 2010)). Similarly, we sought to assess the degree
of synchronization across layers during UP states by means of signal coherence to
study  functional  domains  in  the  anesthetized  ferret  cortex.  The  independent
detection of an UP state in the SG with respect to the IG layer might be shifted in
time given that UP states in vivo have been observed to predominantly originate in
layer 5 and then spread towards superficial layers ((Sanchez-Vives and McCormick,
2000;  Sakata  and  Harris,  2009). For  this  reason,  the  coherence  analysis  was
performed over time-windows consisting of the intersections (in time) of detected
UP state  epochs in  all  channels  (Fig.  4.1.1A,  black horizontal  lines).   For  each
channel, we computed the mean coherence from this reference channel with the rest
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of the channels during UP state intersection intervals  (Fig. 4.1.1B). We computed
the mean coherence for beta (10-30Hz, Fig. 4.1.1B light traces), low-gamma (30-
60Hz, Fig. 4.1.1B mid-dark traces) and high-gamma (60-100Hz, Fig. 4.1.1B dark
traces) frequency bands. In 3 out of 5 experiments a clear compartmentalization in
SG and IG domains for fast oscillations during spontaneous activity was observed,
consisting on high levels of coherence between electrodes from different domains
and low levels of coherence between electrodes from different domains. The limit
between those compartments coincided with the channel in which slow oscillation
phase reversion was detected (eg, channel 8 in Fig. 4.1.1). Thus, the anesthetized
cortex of the ferret presents similar functional compartmentalization in SG and IG
domains than the visual cortex of the monkey during visual stimulation and at rest,
suggesting that this is a general principle of the activation of cortical circuits across
species. We next tried to evaluate if, in addition to independent coherence in fast
oscillations  in  the  two  laminar  domains,  distinct  patterns  of  fast  oscillations
characterized SG and IG domains.

A substantial  increment  in  the  power  of  fast  frequency fluctuations  was
present during the UP states compared to the DOWN states. Since we wanted to
compare  the  spectral  component  of  the  signals  disregarding  gain  effects,  we
normalized each computed power spectrum by the variance of the signal during the
considered  period.  To compare the spectral  components  during  UP and DOWN
states, we computed the power spectrum of the normalized signal separately for UP
and DOWN states.  Although power  spectra  profiles  during  DOWN states  were
quite  similar,  power  spectra  profiles  during  UP  states  differed  for  different
recording sites (Fig. 4.1.2A, error bars displays 95% CI). In order to compute the
coherence between SG and IG during UP states intersections, we selected two SG
and two IG channels at least 300 microns away from where the phase reversion of
the LFP was identified.  We computed the coherence between SG-IG pairs  (Fig.
4.1.2B, black traces) and the average coherence across those pairs (Fig. 4.1.2.B, red
trace), showing a broad band effect which was also observable in the rest of the
experiments (Fig. 4.1.2D). In Fig. 4.1.2C from the different in vivo experiments, we
show  the  power  spectra  during  UP states  for  all  different  channels  vertically
displaced for  displaying purposes  (black power  spectra  corresponds to  the  slow
oscillation  phase  reversion  location).  In  all  the  experiments,  strong  oscillations
ranging from 45 to 55 Hz were observed in IG and SG determined as peaks in the
power spectral densities, while SG also displayed an oscillation at ~30 Hz that was
not present in IG in 3 out of 4 cases (Fig. 4.1.2C). These results suggest that in the
anesthetized visual cortex of ferrets, SG and IG display fast oscillations and the low
coherence  of  those  oscillations  observed  across  both  laminar  domains
(compartmentalization)  suggests  that  are  independently  generated.  Moreover,
gamma oscillations are strong in both domains, while slower beta oscillations, if
present, are dominant on SG. 

Fast oscillations in vitro are enhanced during UP states in SG and IG

Next,  we wanted to  compare our  observations  in  the  anesthetized ferret
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cortex in vivo with circuit activations in ferret cortical slices in vitro. We performed
extracellular  recordings from SG and IG layers  on active slices  of  ferret  visual
cortex2 (n=55).  Slices became spontaneously active after  switching from regular
ACSF  to  an  “in  vivo like”  ACSF  consisting  in  a  bathing  milieu  with  ionic
concentrations similar to that present in vivo (see Methods, section 3.1), where slow
rhythmic activity with   alternating UP and DOWN states emerged, as previously

Figure 4.1.2. Laminar profile of fast oscillations during UP states  in vivo  (n=4). A, Mean
power  spectrum during  UP states  (left)  and  DOWN states  (right)  for  different  channels.  B,
Coherence between different SG and IG channels shown by black traces. Mean coherence shown
in red.  C, Power spectra for different recordings, vertically displaced for displaying purposes.
Power spectrum corresponding to the channel where slow-oscillation phase reversion is identified
in black. D, Mean coherence values as a function of frequency (as in panel B, red trace) for the
different experiments.

described  (Sanchez-Vives  and  McCormick,  2000).  We  recorded  the  activity
simultaneously from SG and IG with two extracellular electrodes, which represent
signals from the SG and IG compartments (Fig. 4.1.3A, left).  We independently
identified periods of transitions between UP and DOWN states as in the  in vivo

2 Experiments performed by Daniel Jercog and Ramon Reig in Sanchez-Vives Lab.
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condition (Fig. 4.1.3A, right).
In  both  SG and  IG recording  sites,  an  increase  in  the  power  of  signal

fluctuations is observed over the beta/gamma range of frequencies (10Hz to 100Hz)
during UP states when compared to the DOWN states  (Fig.  4.1.3B).  However,

Figure 4.1.3. Fast oscillations during UP states are present in supra-granular (SG) and infra-

granular (IG) layers of visual cortex in vitro. A, Schematic illustration of the in vitro experimental

setup. Example of LFP data traces and spectrograms for SG (top) and IG (bottom), shown for

simultaneous  UP  states  are  detected  (onset  in  magenta  circles,  offset  in  black  circles)

independently for each signal, while DOWN states are defined as inter-UP states intervals.  B,

Mean normalized power spectrum during UP and DOWN states epochs for SG (top) and IG

(bottom) recordings.  C, Fit of the “1/f” decay of the power during UP states for each spectrum

(dashed gray; SG left, IG right ). D, Ratio between the power during UP states and the “1/f”-fit,

in order to amplify spectral peaks (showed in circles).  E, Mean coherence between SG and IG

LFP signals during all UP state intersection periods (defined in the inset).  Panels  F,G and  H

exhibit the results for another example. Jackknife error bars showing 95% CI.
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we found that  the  average power  spectra  during UP sates  in  SG and IG layers
differed (Fig. 4.1.3C). In the particular example shown in Fig. 4.1.3C, SG shows a
weak and broad increase in power spectrum over the “1/f” decay for frequencies
around ~20 Hz, while IG in addition shows a weak broad peak at ~60Hz. In order to
quantify  this  effect,  for  each  average  power  spectrum  we  computed  the  ratio
between the average power spectrum and the  a/f  b  least square fit in the range of
frequencies  studied,  10-100Hz  (Fig.  4.1.3C,  dashed  lines  represent  the  fit).
Computing the ratio of the lower error bar of the power during UP and the “1/f” fit,
a measure that  we call  “excess power”, led to amplification of the peaks in the
power spectra by removing the   power law decay on the power spectral densities
from LFPs.  We refer to a peak in the power spectra if the local maximum of the
excess power was above 1.5 STD of the excess power.  In this example,  excess
power revealed peaks in SG at ~26 Hz and ~79 Hz while IG showed peaks at ~24
Hz  and  ~64  Hz  (Fig.  4.1.3D).  We  also  computed  the  power  spectra  from the
residual of a low-order autoregressive model of the LFP signal, a process known as
signal pre-whitening (Mitra and Pesaran, 1999),  which returned analogous results.

 In order to assess the degree of synchronization of SG and IG layers during
UP states we used signal coherence. As in the in vivo condition, UP states in vitro
also originate in IG and then spread towards superficial layers, although the peak of
activity  in  both  domains  is  reached  at  the  same  time  (Sanchez-Vives  and
McCormick,  2000). Coherence  analysis  was performed over  the  intersection  (in
time) of detected UP state epochs in IG and SG LFP. Significant levels of coherency
were found over a broad range of frequencies, showing maximal values between 10
and 30 Hz that revealed strong broad-band coherency between signals recorded in
the  two  layers  (Fig.  4.1.3E).  Figures  4.1.3F,  4.1.3G  and  4.1.3H  show  results
obtained for another example recording. Peaks in the power spectra were detected at
~28 Hz in both IG and SG, and at ~64 Hz for IG. Typically, the strongest peaks in
the power spectra in vitro were observed in SG.

Beta oscillations dominate SG while gamma oscillations dominate IG in vitro

When we computed the mean power spectrum during UP states from SG
and IG layers, pooled across experiments, SG showed significant more power on
LFP fluctuations for the beta band (10-30Hz) than IG,while gamma frequencies in
IG displayed significant  more power on fluctuations  than SG (Fig.  4.1.4A, non
overlapping error bars showing 95% CI).

To  quantify possible  differences  between SG and  IG recordings  on  the
power of fast signal fluctuations across different frequency bands, we computed the
mean relative area under the power spectra for beta (10-30Hz), low-gamma (30-
60Hz)  and  high-gamma  (60-100Hz)  frequency  bands  for  pairs  of  SG  and  IG
recordings obtained from the same column. For SG layers, beta frequencies showed
a higher  contribution to  total  spectral  power,  whereas  IG layers  had a  stronger
contribution  of  the  gamma  range   of  frequencies  (Fig.  4.1.4B;  non-parametric
Wilcoxon  signed-rank  test  on  SG-IG  recording  pairs,  p<0.0001  for  beta,  low-
gamma and high-gamma conditions). 
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Mean excess power for SG and IG recordings revealed average stronger
oscillations  for  the  beta  band  of  frequencies  for  SG,  while  IG showed  weaker
oscillations  mainly  in  the  low-gamma  range  of  frequencies  (Fig.  4.1.4C,  non
overlapping error bars showing 95% CI).  When significant  peaks for individual
recordings in the excess power were compared, marginal distributions revealed that
SG and IG displayed peaks in the whole range of frequencies studied, with SG
showing significant peaks at slower frequencies than those observed in IG (Fig.
4.1.4D;  SG  median=26.1  Hz,  IG  median=46.1  Hz;  non-parametric  Wilcoxon
signed-rank test, p=0.0002). On the other hand, SG showed higher excess power
values  on  the  peaks  compared  to  those  observed  in  IG  (Fig.  4.1.4.D;  SG-
median=1.54,  IG  median=1.32;  non-parametric  Wilcoxon  signed-rank  test,
p=0.0011). The mean coherence over UP state intersections was computed as the
mean  of  the  coherence  for  every  SG-IG  recording  pair  during  UP  

Figure 4.1.4. Fast  oscillations during UP states are present in supra-granular (SG) and infra-
granular (IG) layers in vitro (n=10). A, Mean normalized power during UP states for all SG and
IG recordings (Jackknife error bars for the mean showing 95% CI).  B, Relative area under the
power spectrum of paired SG and IG recordings for Beta (10-30Hz, left), Low-Gamma (30-60Hz,
center) and High-Gamma (60-100Hz, right) frequency bands (each pair joined by a line). Box-
plot whiskers display 95%CI. C, Mean power during UP and “1/f”-fit ratio (Jackknife error bars
for the mean show 95% CI).  D, Power during UP and “1/f”-fit ratio detected peaks (circles in
main panel) as a function of frequency, for all recordings. Marginal distributions are presented,
stars showing the location of the median of each distribution. E, Mean coherence between SG and
IG signals during UP state intersections.
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state intersections.  Coherence on fast  frequencies was found to have significant
values in a broad band, although maximum levels were reached at 19Hz in average
(Fig. 4.1.4E,  error bars showing 95% CI). We found that fast oscillations in vitro
are segregated in SG and IG, while SG displayed stronger oscillations in the beta
range and IG displayed  weaker oscillations in the gamma range of frequencies.

Fast oscillations across SG and IG are stronger and at similar frequencies 
in vivo

In order to compare the  in vitro results with those obtained  in vivo, we
chose a SG and IG channel (±400 microns away from the channel where the slow
oscillation phase reversion was identified) and computed the excess power (Fig.
4.1.5).  Although  fast  oscillations  during  UP states  in  vitro displayed  different
frequency domains for SG and IG, these differences are not clear in vivo where SG
and  IG  displayed  fast  oscillations  with  similar  frequencies,  despite  the
compartmentalization across layers (Fig. 4.1.5.A). Nevertheless, there is a tendency
for  SG to also display a  second slower  oscillations  (Fig.  4.1.5.A,  blue arrows)
although  we  do  not  have  enough  statistical  power  to  assess  that  difference
observed. 

Figure 4.1.5. A, From each laminar recording, SG and IG channels are selected and fit of “1/f”

decay is performed. B, Excess power for SG and IG, peaks indicated by circles. 

Furthermore, fast oscillations in SG displayed more power than in IG  in
vitro. However, those differences in power between SG and IG are not clear in vivo,
although the excess power of oscillations for both layer domains is at least 2 times
larger  than for  the  in  vitro condition (Fig.  4.1.5D;  average  excess  power  peak,
SG=7.2 IG=6.2). In sum, the difference in frequency domain and power of the fast
oscillations  (specially in  IG)  across  SG and IG when in  vitro and  in  vivo fast
oscillations are compared, suggests that the local microcircuit from the slice missed
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an  ingredient  for  the  generation  of  fast  oscillations  as  observed in  the  in  vivo
condition. We address this issue in the following section.

Oscillation dynamics in enhanced excitability with kainic acid in vitro

We observed that fast frequency oscillations were boosted in vivo compared
to in vitro, especially the oscillations observed in IG. In order to test whether these
differences were due to a reduced excitability in the slice, we applied kainic acid to
the ACSF at different concentrations (200 nM and 400 nM) in a set of  in vitro 

Figure  4.1.6. Increasing  the  excitability  in  the  slice  via  kainic  acid  administration  in  vitro
changed the dynamics of the slow oscillation (n=10).  A, Top:  raw traces  for  the SG and IG
recordings for Control (left),  Kainate 200nM (middle) and Kainate 400nM (right) conditions.
Bottom: Spectrogram of signals displayed on top.  B, Statistics of UP durations (left),  DOWN
durations (center) and ratio between signals STD during UP and DOWN states (SNR) for each
pharmacological condition is shown for SG (top) and IG (bottom).
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experiments (n=10). Bath perfusion of  kainate induced a dose dependent effect on
the field activity that was consistent in all slices (Fig. 4.1.6). After the perfusion
with  the  200  nM  concentration  of  kainic  acid,  there  was  an  increase  in  the
frequency of the slow oscillation. However, the perfusion with a higher dose of
kainic acid (400 nM) resulted in a dissociation of the activity in SG and IG layers in
9  out  of  10  cases:  while  IG  layers  displayed  a  continuum UP state  with  fast
oscillations at around 30 Hz, SG layers maintained the slow oscillation rhythm (ca.
1 Hz) similar to the one observed in the presence of 200 nM kainate. An example of
this effect is shown in Fig. 4.1.6A. 

As in previous analyses,  we identified periods of UP and DOWN states
under the three different conditions in each SG and IG recordings. Because DOWN
states were absent (or not detectable) in IG in the 400 nM condition, we selected
the time of UP and DOWN states occurrence on SG as the periods for analyzing the
IG signal in order to compare the spectral properties with the SG signals.The effect
of kainate was not reversible and therefore there is no “washout” condition.

The presence of kainic acid in the bath not only increased the frequency of
the slow oscillations but also changed the statistics of UP/DOWN durations (Fig.
4.1.6B). There were no significant differences between UP duration in control and
200nM kainic acid neither in SG nor in IG (mean±SEM: 0.48±0.03 s vs 0.46±0.04
s for SG, 0.51±0.03 s vs 0.51±0.05 s for IG; Wilcoxon signed-rank test: p=0.56
p=1, respectively).  However, DOWN states were significantly shorter comparing
kainic acid 200 nM with control condition in SG and IG (1.89±0.19 s vs 0.74±0.14
s for SG and 1.47±0.2 s vs 0.57±0.14 s for IG; p=0.002 for both SG and IG).
Increasing the kainic acid concentration from 200 nM to 400 nM disrupted the slow
oscillation in IG, and increased the slow oscillation frequency further in SG along
with a significant decrease in both UP and DOWN durations in SG (UP duration:
0.34±0.02 s, DOWN duration: 0.3±0.04; Wilcoxon p=0.002). On the other hand,
kainic acid increased the activity during the DOWN states period,  with respect to
control condition, what can be observed in the fluctuations of LFP signals (Fig.
4.1.6A). This effect is captured by the signal-to-noise ratio of UP/DOWN states
(SNRUP/DOWN), that represents the ratio between standard deviation of LFP signal
during UP states and standard deviation during DOWN states (Fig. 4.1.6B, right
panel).  A decrease in the signal-to-noise ratio in this case is  associated with an
increase in the LFP fluctuations during DOWN states (Fig. 4.1.6A).

We next explored possible alterations in the LFP spectral content following
the enhancement of network excitability. The mean power spectra during UP states
for SG and IG revealed spectral changes in the cortical network (Fig. 4.1.7.A). We
computed the excess power for each condition, which revealed that an increase in
the  excitability of  the  network  increased  the  frequency of  dominant oscillatory
mode in SG and decreased it in IG towards an intermediate value around 35 Hz
(Fig.  4.1.7B,  right  panel).  We  repeated  the  analysis  for  all  the  experiments
performed in Fig.  4.1.4B by quantifying the relative areas of the power spectra
under  the  beta  and  low/high  gamma  frequency  bands.  The  relative  difference
between SG and IG in the power of fluctuations for the different frequency bands is
maintained invariant across the conditions (Fig. 4.1.7C). 
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Figure 4.1.7. Kainic acid administration on the ACSF amplified the spectral differences between
SG and IG during spontaneous UP states in vitro (n=10). A, Mean power spectrum for SG and IG
recordings for the Control (right), Kainate 200 nM (center) and Kainate 400 nM (left) conditions.
B, Mean power during UP and “1/f”-fit ratio for Control (right), Kainate 200 nM (center) and
Kainate 400 nM (left).  C, Relative area under the power spectrum of SG and IG recordings for
Beta (left),  Low-Gamma (center) and High-Gamma (right) frequency bands,  for  the different
pharmacological conditions.

Comparing  SG  and  IG  power  spectra  between  control,  low  and  high
concentration conditions revealed that kainic acid produced a stronger effect in IG
compared to SG (Fig. 4.1.8A-B). The distribution of the frequencies and amplitude
of the detected peaks in the excess power are shown in Fig. 4.1.8C and D. Multi

57



4. Results 

factorial ANOVA analysis (factors = layer domain, pharmacological condition, slice
id)  revealed  a  significant  main  effect  on  pharmacological  condition  for  the
frequency of peaks (p=0.0054). Significant interaction between layer domain and
pharmacological condition was found for the amplitude of peaks (p=0.0088), while
only a main effect on the condition was found for IG (p=0.0138). The coherence
profile did not change significantly for the different conditions between SG and IG
during UP states intersection (Fig. 4.1.8E).

Figure 4.1.8.  Kainic acid affected activity in IG and SG layers different. A, Mean normalized
power during UP states for SG under different pharmacological conditions. B, Same as A, but for
IG.  C,  Distribution of frequencies of peaks in the Excess power for SG (left column) and IG
(rigth column), and the different pharmacological conditions.  D,  Distribution of amplitudes of
peaks in the Excess power for SG (left column) and IG (rigth column), and different conditions.
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Pharmacological manipulation by kainic acid in the slice had a significant
effect on changes in amplitude and frequency of peaks, whereas changes on peaks
amplitude  for  pharmacological  condition  depended  on  the  layer  domain.  The
presence of an increased excitability in the slice by kainic administration, produced
complex change in  the  structure of the fast  oscillations in the different  laminar
domains. On one hand, increasing the excitability produced a shift in the frequency
of  fast  oscillations in SG towards the frequency of  fast  oscillations in IG, which
remained at similar frequencies. On the other hand, the power of oscillations in SG
remained  at  similar  values  whereas  the  power  of  the  oscillations  in  IG  was
significantly  increased.  This  result  suggest  that  a  tonic  increase  in  excitability
disrupts the slow oscillation dynamics in the cortical column, but the boost in the
fast oscillations results in a closer match to the fast oscillations observed in the in
vivo condition.
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4.2. Analysis of synchronized state dynamics in vivo

Cortical synchronized states are characterized by the presence of UP and
DOWN  dynamics.  The  mechanisms  proposed  for  causing  the  UP and  DOWN
transitions during synchronized states include intrinsic cellular or network fatigue
mechanisms and incoming external inputs to cortical circuits. However, the nature
of each mechanism would imprint different signatures in the transition statistics and
in the spiking dynamics. In this chapter, we analyzed existing population recordings
of spontaneous activity obtained using multisite silicon electrodes in somatosensory
cortex  of  urethane-anesthetized  rats  during  synchronized  states3.  We  show  that
statistics of UP and DOWN transitions are consistent with the existence of both
stochastically generated transitions caused by external inputs and a weak adaptive
mechanism. 

Cortical state assessment

Under  urethane  anesthesia,  the  cortex  undergoes  spontaneous  transitions
between synchronized and desynchronized states. The presence of large amplitude
slow fluctuations  in  cortical  LFP signals  is  characteristic  of  synchronized  brain
states, whereas during desynchronized states these fluctuations are suppressed (Fig.
4.2.1A).  Alternatively,  synchronized  brain  states  are  characterized  by  coherent
spiking activity of neuronal ensembles, so that MUA spiking activity shows periods
of collective silence. We classified cortical brain state using two different methods
that  quantify  these  two  aspects  of  synchronized  brain  states  and  which  give
essentially equivalent outcomes: (i) the ratio between the LFP spectral power at low
(0.5-4 Hz) and high (20-55 Hz) frequencies, the L/H ratio (Fig. 4.2.1B, green trace)
(Goard  and  Dan,  2009;  Marguet  and  Harris,  2011),  (ii)  the  fraction  of  20  ms
windows in the MUA recording with no spikes over a period of 10 s, a measure we
called “silence density” (Fig. 4.2.1B, black trace)  (Renart et al., 2010). For each
experiment,  we identified sustained  periods (~5-10 min)  of  high silence density
values, corresponding to periods of a clear synchronized brain state, and used those
periods exclusively to carry out the analysis presented in this Chapter (see methods
section 3.3).  A characterization of the different levels of synchronization will  be
carried out in Chapter 4.4 in this Thesis. 

We  identified  putative  UP  and  DOWN  intervals,  termed  U  and  D
respectively, based on the instantaneous spiking activity of the population. For this

3 Experiments performed by Artur Luczak and Peter Barthó in Harris Lab.
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Figure 4.2.1. Cortical state assessment and detection of putative UP & DOWN intervals . A,

Average spectrogram from simultaneously recorded LFP signals is shown using two different

frequency  scales  (0-100  Hz,  top;  0-15  Hz  bottom).  Notice  the  abrupt  transition  from  a

synchronized to a desynchronized state marked by the decrease in the energy at low frequencies

(< 5 Hz; middle panel)  B, Assessment of cortical state by LFP spectral L/H ratio (green trace)

and from MUA Silence density (black trace). MUA was computed using the merged spiking

activity of all isolated cells in the recording. Shaded interval indicated the synchronized state

period used for analysis. C, Example LFP trace during 10 s during the synchronized state shows

the characteristic slow fluctuations (top) while the population raster of 85 well isolated single

units (middle) shows the corresponding intervals of tonic activity intercalated with intervals of

quiescent activity (cells are sorted based on mean firing rate). Instantaneous population rate R(t)

(bottom) is computed and used to identify UP and DOWN intervals (orange and violet horizontal

lines, respectively).
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we  used  a  hidden  semi-Markov  statistical  model  developed  previously  that
exhibited less classification errors than traditional threshold-based methods (Chen et
al., 2009).  The method uses the instantaneous population rate  R(t) defined as the
population-averaged rate of the spike trains of well isolated units, with 20 ms count
windows slided  in  5ms steps  (see  equation 4 in  Chapter  3.3 from Methods for
further  details;  Fig.  4.2.1C bottom).  Based on the  trace of  R(t),  an expectation-
maximization algorithm  (a recursive method to determine the maximum likelihood
estimation  of  the  model  parameters)  is  used  for  the  estimation  of  the  model
parameters and the subsequent extraction of the U and D sequence  (Fig. 4.2.1C
orange and violet horizontal lines, respectively). 

From the  example  shown in  Figure 4.2.1,  some  remarkable  features  are
observable: (i) Us and Ds are variable, (ii) there is no clear relationship between the
U and the following or preceding D, (iii) the  population rate R(t) during different
Us shows large fluctuations, even for Us of similar length. We next performed a
quantitative analysis on the statistics of these particular features across our data set
(recordings from somatosensory cortex in n=7 rats). 

Statistics of UP and DOWN states during synchronized states

We first computed the distribution of U and D and the cycle intervals C,
where C=D+U for the example experiment of Fig. 4.2.1C (Fig. 4.2.2A; orange,
violet and brown histograms, respectively). For this particular example, the mean
U is 0.82 s, mean D is 0.48 s and mean C is simply the sum, i.e. 1.3 s. In order to
measure the variability in the U and D duration, we use the coefficient of variation
(CV) defined as the standard deviation divided by the mean, commonly used in
Neuroscience  to  quantify  the  variability  of  inter-spike-intervals.  In  this
experiment,  CV(U)=0.62  and  CV(D)=0.69,  whereas  CV(C)=0.5.  The  relation
between the duration of consecutive periods was assessed by the linear correlation
between consecutive (Ui,Di) and (Di-1,Ui)  pairs with the subscript i indicating the
position  in  the  sequence  of  U  and  D  intervals  (Fig.  4.2.1C). The  correlation
coefficient  displayed  positive  values  corr(Di-1,Ui)=0.12  and  positive  trend
corr(Ui,Di)=0.08   (Fig.  4.2.2B  top  and  bottom:  p<0.05,  p>0.05,  respectively).
Durations 3 standard deviations away from mean durations were discarded for the
correlation  estimation.  We  also  corrected  for  slow  drift  in  the  statistics  by
subtracting the correlation obtained after shuffling of Us and Ds over a running
window of 10 s periods. The results for all the experiments (n=7 animals) shows
that  mean U and D for the different  experiments take a wide range of  values
(mean±SEM: U=0.53±0.1 s, D=0.54±0.05 s; Fig. 4.2.2C left panel). Moreover, the
variability of U and D seems consistently large across experiments (mean±SEM:
CV(U)=0.68±0.03  CV(D)=0.68±0.04;  Fig.  4.2.2C  middle  panel)  while  the
correlation  between  consecutive  intervals  showed  consistently  positive  values
(mean±SEM: corr(Di-1,Ui)=0.18±0.03 corr(Ui, Di)=0.13±0.03; Fig 2C right panel).

 Visual  inspection  of  the  data  and  the  distribution  of  durations,  and  in
particular the broadness of the distribution of the cycle C, suggests that rhythmicity
in  the  U  and  D  alternation  is  weak.  We  wanted  to  study  to  what  extent  the
alternation between states is consistent with an oscillatory mechanism. A standard
way of characterizing oscillatory behavior in LFPs or spike trains is by looking at
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Figure 4.2.2.  Statistics of UP and DOWN intervals during synchronized brain states.  A,

Distribution of U, D and C durations in one representative experiment. Inset shows the mean and

CV values. B, D duration vs the consecutive (top) and the previous (bottom) U duration  exhibit

weak but significant serial correlations. U or D values 3 standard deviations away from the mean

(circles) and discarded for the correlation analysis. C, Summary of experimental results (n=7 rats)

show the mean (left),  the coefficient of variation CV (middle) and the serial correlation (right) of

U and D. While the average durations are quite heterogeneous across experiments, the variability

is  consistently  large  and  the  correlations  are  consistently  significantly  positive.  Boxplots

displaying median in red line, box 1st and 3rd quartile and whiskers are defined as 1.5 times the 1st

to 3rd quartile distance (outliers in red cross).

the temporal structure of the autocorrelogram (ACG) or equivalently at the structure
of the  power  spectral  density.  The existence of a  ringing  structure  in the  ACG,
indicative  of  oscillatory  behavior,  corresponds  to  the  presence  of  peaks  at  the
oscillation frequency in the spectral density. To distinguish between the temporal
structure given by an oscillatory behavior and non-oscillatory stochastic switching
behavior, we compared the ACG and the spectral density of the population rate R(t)
obtained from the original spike trains against the instantaneous rates obtained from
two surrogate data sets: (i) the first surrogate set is generated by drawing Us and Ds
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independently from exponential distributions with respective means matching the
data, and within each U and D spikes are generated from a homogeneous Poisson
process  with rate  matching the average  R(t)  during Us  or  Ds,  respectively.  The
instantaneous rate of this surrogate data, termed RE(t), corresponds to the statistics
expected if the UP/DOWN transitions were purely triggered by fluctuations (i.e.
exponentially distributed durations) and there were no fatigue mechanisms which
could generate an oscillation (i.e. the firing is stationary within each period). (ii)
The second surrogate set, with rate termed RG(t), is generated identically except that
the distributions of U and D durations are not exponential but Gamma distributions,
with the mean and the order of the Gamma chosen to match the mean and standard
deviation of the original data (e.g Gamma of order 2 yields a CV equal to 0.7 which
is approximately the average across experiments).  This distribution corresponds to
the statistics of a process in which transitions are triggered by fluctuations but with
a  soft refractory period after each transition preventing the occurrence of very short
U or  D durations.  We reason that  none of  these two surrogate data  sets  has an
oscillatory nature and we use them as a benchmark against which to compare the
original data.

We computed the power spectrum and the ACG of the rate  R(t) from the
original data and the rates RE(t) and RG(t) from the two surrogate sets (Fig. 4.2.3A;
bin size 5 ms). As expected, the power spectrum of RE(t) does not reveal any peaks
and the ACG shows an exponential decay with no ringing (Fig. 4.2.3 A-B gray). On
the other  hand,  the  power  spectrum of  RG(t)  shows a  clear   peak in  the  power
spectrum at low frequencies <1 Hz (Fig. 4.2.3A-B green). The power spectrum of
the original  R(t) shows a very similar structure than the one obtained from  RG(t)
(Fig. 4.2.3A, compare black and green). However, different from RG(t), the power
spectrum of  the  original  R(t)  shows  a  small  “bump”  at  a  fast  frequency  near
approximately 30 Hz.  

Figure  4.2.3.  Periodicity  analysis  on  the instantaneous population rate.  A, Power  spectra  of

original population rate  R(t) (black), and the rates  RE(t) (gray) and RG(t) (green) of the exponential

and Gamma surrogate sets, respectively,  for an example experiment (bin size 5ms; error bars are

95%CI).  B, Autocorrelograms of R(t),  RE(t) and RG(t) (same color code as in A),  Autocorrelograms

are normalized to have amplitude one at zero lag.
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The ACG from  RG(t)  shows the  zero-lag  peak  sided  by a  first  negative
trough and then goes to zero. The ACG of the original  R(t) reveals a similar fast
decay towards a negative trough and weak noisy ringing (Fig. 4.2.3B). This steep
decay towards zero in the ACG from the data was a robust feature confirmed in the
rest of the experiments (see Fig. A1 from Appendix).

This  analysis  shows that  stochastic  alternation  between UP and DOWN
intervals  can  yield  ACGs  and  power  spectra  showing  signatures  commonly
interpreted as  a  sign of  oscillatory behavior  (e.g.  the  surrogate  RG(t)).  Thus we
conclude  that  the  temporal  structure  of  the  original  MUA  spike  train  is
approximately consistent with a system showing transitions between two conditions
which are driven by fluctuations with a soft refractory period (see e.g.  (Moreno-
Bote et al., 2007)).

Dynamics of MUA during UP and DOWN states

Motivated  by  the  previous  result  suggesting  that  UP/DOWN transitions
could  be  triggered  by  external  fluctuations  and  not  by  the  accumulation  and
recovery of a fatigue mechanism, we examine the dynamics of the instantaneous
firing rate during UP and DOWN intervals and ask whether there are traces of a
fatigue mechanism. We aligned Us at the onset or at the offset  (Fig. 4.2.4B) and
obtained two population rates averaged across Us: Ron(t)  is the average rate aligned
at the onset, and Roff(t) at the offset (Fig. 4.2.4C; see equation 9 in section 3.2 from
Methods).  The  time  course  of  these two quantities gives  a  measurement  of  the
average instantaneous firing rate of the population across the U (Fig. 4.2.4C).  Two
things are worth noticing: first, that  Ron(t)  at time  t is an average across Us with
duration  U>t,  meaning  that  the  number  of  Us  averaged  at  every  time  point  is
different  (see solid gray line indicating number of Us considered as a function of
time in Fig. 4.2.4C). Second, that the two traces can not be viewed as the two halves
of a U interval, i.e. they cannot be temporally concatenated. Because of the way in
which they are built, the temporal relation between them does not remain consistent
for all the component Us  (Fig. 4.2.4B). When onset and offset-aligned averaged
rates  are  compared  for  an  example  experiment,  no  significant  differences  in
amplitude are observed (Fig.  4.2.4C).  This seems to indicate that  the population
average firing rate during U intervals remains constant. 

To further investigate whether the distribution of the rate is also stationary,
we compare the activity for two specific 100 ms windows associated to the onset
and offset of each U: (i) transient windows are defined just after (before) the onset
(offset) times (Fig. 4.2.5A, light gray area); (ii) sustained windows are defined just
after (before) the onset (offset) transient window (Fig. 4.2.5A, dark gray area). We
plotted the average population rate in the onset transient window versus the average
population  rate  in  the  offset  transient  window  for  each  U  for  one  example
experiment (Fig. 4.2.5B left). The same was done for the stationary windows (Fig.
4.2.5B right).  For  this  particular  case,  population rate  at  offset  was higher  than
population rate at onset for transient periods, whereas population rate at onset was
higher than population rate at offset for the stationary period (Wilcoxon signed rank
test;  p=0.04  and  p=0.03,  respectively).  However,  in  the  the  summary  for  all
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experiments, we found no significant differences between the average rate at the
onset  versus the offset  neither for transient  nor stationary intervals (Fig.  4.2.5C,
Wilcoxon: transient  p=0.16, stationary p=0.69).

Fig.  4.2.4.  Onset  and  Offset  aligned  firing  statistics.  A, Population  raster-gram  (top),

instantaneous population rate  R(t) (middle)and detected Us and Ds (bottom).  B, The rate  R(t)

from each U in A (i,  i+1 and i+2) is aligned at  the onset  (left)  and at  the offset  (right). C,

Averaged Population Rate aligned at the onset (left) and aligned at the offset (right) are obtained

by averaging R(t) across all Us (equation 9 in Methods 3.2). Error bars indicate 95% confidence

intervals. Gray line indicates number of Us considered at each time point.

We reasoned that a fatigue mechanism would be more detectable on long Us
in which neurons fire a larger number of spikes and a rate adaptation conductance,
for instance, would exhibit a greater increase. We segregated Us into short and long
based on whether  the  duration was below or  above the median duration (in the
example experiment shown in Fig. 4.2.5, median(U)=0.76 s).  For the short group
we considered only Us longer than 0.5 s  (dashed lines in Fig. 4.2.5D). After 0.5 s
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Fig. 4.2.5. Dynamics of the Population Rate at onset and offset of UP intervals. A, Example

experiment where the  averaged Population Rate aligned at the onset  (Ron(t), orange) and at the

offset (Roff(t), brown) are very similar (notice that the time axes for Roff(t) is  reversedFig. 4.2.).

Transient (light gray) and stationary (dark gray) windows are defined at both the onset and the

offset. B, Comparison of the rate R(t) at the onset and the offset for each U (same experiment as

in A). Left: Each dot shows the average of R(t) over the 100 ms offset transient window vs. the

onset transient window, in a single U lasting more than 400 ms. Mean values are shown in

magenta. Right: same as left for the stationary window. C, Summary results from n=7 animals.

Left: Each line compares the  population rate averaged across Us at the onset and offset transient

windows (magenta cross in B is represented by the magenta line). Right: same as left but for the

stationary window.  D, Population averaged rate aligned at the onset (left) and the offset (right)

The rates were averaged separately across long (orange and brown) or short  Us (yellow and

green) defined as being longer or smaller than median(U), respectively. Minimum duration of Us

considered is 500ms (dashed vertical lines).  E, Same analysis as in C, but considering only Us

longer than the 85-percentile of the distribution of all Us. Numbers inside the panels indicate the

p-values of Wilcoxon two-sided test, respectively.

from the onset, the average rate for short Us decreases due to drop in R(t) produced
by  the  transition  into  the  consecutive  D4.  This  example  shows  that  a  more
pronounced  rate  decay  was  not  observed  either  for  short  or  long  UP  states.
Moreover, comparison of the average rates Ron(t) and Roff(t) obtained from Us above
the 85% percentile (i.e. intervals from the tail of the U distribution) averaged over
the  transient  window or  over  the  stationary  window,  yielded  no  significant

4 Note that the Ron(t) is an average acros Us with U i>(t−t i
on
) , i.e. at each time point t, Ron(t)

only averages Us longer than t.  With this we ensure that the rate Ron(t) only averages firing during
UP intervals and not during the consecutive D. However, the transition into the consecutive D is
not instantaneous, but takes between 100 and 200 ms for  R(t) to decrease to near zero from the
stationary values during the Us (Fig. 4.2.5A and D). The impact of this transient decrease in R(t)
during this short window is barely noticeable in  the average  Ron(t), except when we impose an
upper bound in U such as for the set of  short UP intervals with U<0.76 s. This bound reveals the
transient drop in rate because as t approaches this upper bound Ron(t) should mimic the behavior of
Roff(t)  approaching  the  offset,  as  it  is  averaging  Us  which  terminate  near  the  bound.   The
symmetrical  argument is true for  the average rate aligned at  the offset  Roff(t)  due to the non-
instantaneous transition from D to U.
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differences (Fig. 4.2.5E; Wilcoxon: p=0.69 transient, p=0.58 stationary windows).
In sum, the population average firing rate during UP intervals exhibits no traces of a
fatigue mechanism.

Dynamics of single cells during UP states

We now consider the statistics of individual spike trains of isolated cells.
We first computed the mean firing rate for individual neurons across each U,  i.e.
spike count for each U divided by the length U (and analogously for each D). We
then averaged these rates across U and D intervals, respectively, for each neuron j to
obtain rU

j and rD
j  (equation 17 in Methods section 3.2) estimates (Fig. 4.2.6A). The

marginal  distribution of  rU
j displays  the  common Gamma-like shape with a low

population mean rate of 2.6 spikes per second (orange marginal distribution in Fig.
4.2.6A; mean±SEM: 2.6±0.004 spks/s). In contrast to the common view describing
DOWN intervals  as  totally  silent  (Steriade  et  al.,  1993a) many neurons  in  this
experiment  showed  rD

j  >  0 (violet  marginal  distribution  in  Fig.  4.2.6A  with
mean±SEM: 0.051±0.006 Hz). We obtained an average over experiments (n = 7) of
the mean rates during Us and Ds and obtained 3.33±0.28 spks/s and 0.067±0.01
spks/s respectively (mean±SEM; Fig.  4.2.6B). Thus the rate during D periods is
around fifty times lower than during U intervals.  The correlation between firing
rates  rU

j  and  rD
j displayed positive values although neurons showing higher rates

during  Us  are  not  necessarily  showing  higher  rates  during  Ds  (Pearson
corr(rD

j,rU
j)=0.26, p=0.012, Fig. 4.2.6A). This was confirmed across the different

experiments (mean(corr(rD
j,rU

j))±SEM=0.42±0.08,  Fig. 4.2.6C).

Figure 4.2.6.  Firing rate distributions during UP and DOWN intervals. A, Scatter plot of
firing rate during UP intervals versus firing rate during DOWN intervals for different isolated
cells (rU

j vs rD
j). Marginal distribution of firing rates rU

j  . B, Mean firing rates rU
j  and rD

j  for the
different experiments (experiment from panel A showed in magenta). Mean across experiment in
thick black circle (gray lines showing 2 standard deviations of the mean; Pearson corr(rD,rU)=
-0.044, p=0.92). C, Mean correlation between firing rates during UP and DOWN intervals across
neurons for the different experiments.

We next  assess  the  heterogeneity across  neurons in  the dynamics  of the
firing rates during UP intervals. We computed the average rate of individual neurons
aligned  at  onset  r j , on(t ) (equation  14  in  Methods section  3.2)  and  offset
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r j , off (t ) of  U(Fig.  4.2.7A,  shows  3  different  examples  in  thick  traces).  We
classified  neurons  into  (i)  adaptive,  (ii)  anti-adaptive  or  (iii)  n.s.  depending  on
whether the average rate  decays,  increases or shows no significant  trend. More
specifically, a neuron is  adaptive if (1) the area under r j , on(t )  is higher than the
area under r j , off (t )  during the transient and stationary periods, and (2) the slope
of the linear regression of r j , on(t )  is less than the slope of the linear regression
of r j , off (t ) (Fig.  4.2.7A,  thin  traces).  If  the  negation  of  these  two  conditions
holds, the neuron is  anti-adaptive, and otherwise it is classified as n.s. Fig. 4.2.7A
shows three example neurons classified as adaptive (top),  n.s. (middle) and  anti-
adaptive (bottom). Averaging  r j , on(t ) and  r j , off (t ) across neurons classified
as the same type  reveals, as expected, different temporal profiles at the onset and
offset  aligned  conditions  (Fig.  4.2.7B;  inset  shows  the  proportion  of  classified
neurons for this particular experiment). The proportion of neurons classified into
adaptive, anti-adaptive and n.s. for different experiments reveals that consistently
across  experiments  there is  heterogeneity in the  dynamics  of  individual  neurons
(Fig. 4.2.7C; colored circles represent different experiments and black circles show
mean values). Overall,  this simple classification shows that individual cells may
exhibit different dynamics during UP intervals.

Figure 4.2.7.  Firing rate dynamics of individual neurons during UP intervals. A, Three cells

examples classiefied as adaptive (top), n.s. (middle) and anti-adaptive (bottom) illustrate the different

firing rate dynamics during onset (orange) and offset (brown) aligned conditions. Dashes lines show

linear  regression  of  r j , on(t ) and  r j , off (t )  ).  B,  Mean   rate  across  neurons  classified

adaptive (blue), anti-adaptive (green) and n.s.  (gray).  Inset:  Proportion of cells classified in each

category for this example experiment . C, Summary results of the proportion of cells in each class are

shown for different experiments (colored circles). Means across experiments are shown with black

circles.

Second order statistics of spiking activity during UP intervals

In order to obtain a more thorough characterization of the spiking statistics
across  U  intervals,  we  turn  our  attention  to  the  interaction  of  the  spike  count
variability and correlations  with  the  UP and DOWN switching.  Analysis  of  the
neuronal  variability  may  reveal  many  features  not  captured  by  the  mean  
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Figure 4.2.8.  Second order statistics of spiking activity during UP intervals.  A, Fano factor

of  the  population  spike  count  at  onset  (FPon(t;T),  left)  and  offset  (FPon(t;T),  right)  aligned

conditions. Error bars are 95% CI. B, Mean FP over the transient and the stationary windows at

the onset and offset for n = 7 experiments (each one joined by lines). Example experiment shown

in  A,C,E is  shown in  magenta.  C,   Population  averaged  Fano factor  of  the  spike  count  for

individual cells aligned at the onset (Fon(t;T), left) and offset (Foff(t;T), right). D, Same as B for

Fon(t;T)  and  Foff(t;T).  E,  Instantaneous  spike  count  pair-wise  correlation  coefficient  averaged

across cell pairs  aligned at the onset (Corron(t;T), left) and offset (Corroff(t;T), right) F, Same as B

for Corron(t;T) and Corroff(t;T).

activity  such  as  Poisson-like  firing  across  UP  intervals  or  alternatively  very
repeatable  firing produced for  instance by reproducible  spike  train patterns.  We
computed  the  instantaneous  Fano  factor  of  the  population  spike  count  FP(t;T)
(equation 10 in Methods section 3.2), which quantifies the spike-count variability
across Us in the population activity. The population count variance depends on the
variance of the individual cell spike counts, and on the correlations across spike
counts. To disentangle the different contributions to the population variability we
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computed the Fano factor of individual cells averaged over the population (F(t;T),
equation 16 in Methods section 3.2) and the instantaneous  spike count pair-wise
correlation  coefficient  averaged  across  cell  pairs  in  the  population  of  isolated
neurons recorded (Corr(t;T) equation 18 in Methods section 3.2). We analyzed these
statistics  aligned at  the  onset  and at  at  the offset  of  Us using T= 20ms sliding
windows (5ms step). Two things stand out: first, there is a transient  surge in the
variability  of  the  population  activity  at  the  onset  of  UP intervals  (Fig.  4.2.8A,
orange and brown shows the onset  and offset  aligned condition for  a  particular
example experiment, respectively). Second, after this surge that variability seems to
reach a plateau at FP ~1.5 and does not display a similar strong surge at the offset.
Although the example experiment shown in Fig. 4.2.8A shows a small bump in the
variability  at  the  offset,  this  was  not  a  robust  feature  across  experiments  (Fig.
4.2.8B). The sharp decrease in Fon(t;T) and Foff(t;T) at time t=0 is an artifact of the
detection of Us and Ds: Our method behaves qualitatively like the threshold based
detection of Us and Ds where, by construction, the variability of the population rate
is zero at the threshold crossing points. The onset bump in the population variability
is also present at the single cell level as exhibited by  Fon(t;T)  and the mean pair-
wise correlation coefficient Corron(t;T) (Fig. 4.2.8C and E, respectively). When we
averaged these measurements over the transient and stationary windows at the onset
and offset aligned conditions in all the experiments, we observed that the trend is
systematic  (Fig. 4.2.8B,D,F; example shown in left panels is shown in magenta). 

The transient surge of variability observed in the FPon(t;T) could be due to a
misalignment in the UP intervals produced by detection inaccuracies. For instance,
if  the  firing  rate  during  each  UP interval  followed  the  same  ramp-and-plateau
profile, but the imprecisions in the U-D detection misaligned the onset of the ramp,
the variability of the spike count would show a bump and a plateau similar to what
we observe in the data. To control for this possibility, we generated surrogate data
sets obtained from the original data but removing the first 100ms of each U. We
then repeated the UP and DOWN detection over the surrogate sets and computed
FPon(t;T). We reasoned that if the surge in variability was only due to misalignment
in the detection, we should observe a similar bump in FPon(t;T) obtained from the
surrogate sets. We found however, that the bump in FPon(t;T) was not present in
these  surrogate  data  sets  (Fig.  A5  from  Appendix  of  this  Chapter).  We  also
generated surrogates by removing the last 100 ms from each U and performed the
full  analysis.  This manipulation left  the absence of bump at  the offset  unaltered
(Fig. A5 from Appendix of this Chapter). This implies that the bump in FP on(t;T)
cannot be attributed to imprecisions in the UP onset alignment. 

 The dynamics of spike count  statistics are characterized by a  transitory
increase in the variability across Us at the onset consistently across experiments.
Moreover, the increased onset variability is followed by stationary dynamics and the
offset is not preceded by any surge in variability with a magnitude comparable to
the onset case. Furthermore, after this transient increase, the mean single cell F(t;T)
values are consistent with Poisson spike train statistics with near-zero in average
correlations. In the next chapter we will use a computational model to investigate
the network mechanisms which could give rise to this transient. In the Discussion
we will address possible interpretations and implications of this finding.
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Dynamics of putative excitation and inhibition during UP states

Next,  we  studied  the  dynamics  of  excitation  and  inhibition  during  UP
intervals. In cortical activity, the spike waveform can be used to classify cells into
narrow spiking putative fast-spiking (I) and broad spiking putative excitatory (E)
cells (Barthó et al., 2004; Sirota et al., 2008). From 5 out of 7 experiments we were
able to save the waveforms from individual cells. We used the half-width, trough-to-
peak and asymmetry  from the average waveform of each neuron to classify the  

Figure 4.2.9. Dynamics of putative inhibitory (I) and excitatory (E) spiking activity during
UP intervals. A, Classification into putative E and I neurons based on waveform. Top: definition
of the three variables used to classify each waveform. Middle: representation of the waveforms in
the 3D space defined by those variables shows two separate clusters. Bottom: average waveform
for  each  cells  colored  according  to  the  classification. B, Averaged  E  and  I  population  rates
aligned at the onset (RE

on(t) and RI
on(t), blue and red repectively) and at the offset (RE

off(t) and
Ri

off(t)) for an example experiment.  C,  Same as in B but with normalized population rates.  D,
Individual firing rates aligned at the onset and offset, compared in the transient (left) and the

stationary (right) windows for all cells in the example experiment (each line compares r j , on

vs.  r j , off  of one neuron;  average across  cells  shown in black).  E, Average  rates  across

neurons for the  conditions described in D (black lines) across different experiments. Error bars
represent 95% CI. Numbers over each panel indicated the p value of the Wilcoxon signed rank
test.

population of recorded cells from each experiment into two groups based on a k-
means clustering algorithm:  putative E cells and putative I cells (Fig. 4.2.9A). The
onset-aligned averaged rate for E and I populations, RE

on(t) and RI
on(t) respectively,

displayed relatively similar profiles although the average firing rates were higher for
I neurons (Fig. 4.2.9B). However, for the offset-aligned condition the profiles of
RE

off(t)  and RI
off(t)  were quite different:  RI

off(t)   decreased with an approximately
constant slope from around 150ms before the  offset,  whereas RE

off(t) seemed to
decrease  after  Ri

off(t)  and  it  did  so  in  a  more  abrupt  way  (Fig.  4.2.9B).  This
difference is particularly noticeable when the rates are normalized by the area under
the curves to remove differences in the overall magnitude  (Fig. 4.2.9.C). 

We then compared the average firing rates for individual E and I neurons at
the transient and stationary periods for the onset and offset aligned condition. We
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found no significant differences neither for E nor for I neurons (Fig. 4.2.9D example
experiment from panel A-B; Fig. 4.2.9.E mean rates for I and E are compared across
experiments). Note, however that the small number of I neurons identified in our
recordings could compromise the detection of a possible rate effect in this neuronal
type. As we will see in the following chapter, our computational model makes a
specific  prediction  regarding  the  rate  dynamics  during  Us  for  I  neurons,  which
would require additional experiments to be tested.

Figure 4.2.10. Instantaneous second order statistics of putative inhibitory (I) and excitatory (E)
spiking activity during UP intervals. A, Fano factor of the E and I population spike counts from the
example experiment (count window T=20ms). B, Summary results across n = 5 experiments of the
population Fano factor aligned at the onset and offset for the transient and stationary windows.  C,
Instantaneous mean pair-wise correlation coefficient across E-E (red), I-I (blue) and E-I (purple) pairs
of neurons from the example experiment aligned at the onset and offset. D, Summary results across
experiments for the average instantaneous mean pair-wise correlation for the E-E (left), E-I (center)
and I-I (right) pairs aligned at the onset and offset for the transient and stationary windows.

We finally studied the temporal dynamics of the variability and correlations
for the I and E populations (as done in Fig. 4.2.8 for all neurons combined). The E
population Fano factor  showed the surge in  variability across  Us  at  the  onset,
whereas the I population Fano factor remained relatively flat (Fig. 4.2.10.A, single
experiment; Fig. 4.2.10.B, all  experiments).  We also computed the instantaneous
mean correlation coefficient for E-E, I-I and E-I pairs of neurons (Fig. 4.2.10C).
Our results for all experiments showed that correlations in I-I pairs were higher than
in  E-E  pairs and  both  were  positive,  whereas  correlations  in  E-I  pairs  for  2
experiments were positive and for 3 experiments were around zero (Fig. 4.2.10D).
Stronger  correlations  in  I-I  pairs  during  Us  have  been  reported  in  the  past
(Hasenstaub et al., 2005) and have commonly been explained by the existence of
gap junctions among fast  spiking cells  (Galarreta  and Hestrin,  1999;  Lewis and
Rinzel,  2003). In  the  next  chapter  we present  a  model  which  proposes  a  novel
explanation for this difference based on differences in the transfer function of I and
E cells. 
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Appendix

Figure A1. Individual MUA ACGs for the different experiments (n=7) from Chapter 4.2 shown  in
different panels.

Figure A2. MUA ACGs computed in contiguous small 20 s windows. A. Individual ACGs in black
and average in red. A particular single window ACG showing strong ringing is shown in green
trace. B, Comparison of ACGs for the window with strong ringing in the ACG and the neighboring
windows: previous 20 s (Top panels), the 20 s with strong ringin showed in A (Middle  panels) and
the following 20 s (Bottom  panels). ACG (left) and MUA count traces (right) shown for each case.

Figure A3. Power spectrum of MUAc during synchronized states of urethane anesthesia for the
different  experiments  (columns)  from  Chapter  4.2.  MUAc  is  computed  in  non  overlapping
windows of 30s, with a count window t=5ms. Averages in red, 95%CI indicated in black lines. Top
Panels showing 0-4 Hz band, bottom panel showing 4-100 Hz. (nr. tapers=13, nw=7). 
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Figure  A4. Population  rates  at  onset  and  offset  of   DOWN and  UP intervals  for  individual

experiments (each row is a different experiment). 

Figure A5. Surge on variability at U onset is not due to missalignment in the transition detection.

As a control we repeated the entire analysis (U-D detection + spike stats.) in a surrogate data set

obtained from the original data after removing the 100 ms after each U onset (red) or before each

U offset (violet). The peak in the FF was only present when the initial 100ms of each U state were

included in the analysis. This implies that the FF peak cannot be attributed to imprecision in the U

onset alignment. 
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Figure A6 Ratio between the average pop. rate of putative I and E putative neurons (spks/s) for the

differents experiments.
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4.3. Exploring the mechanisms underlying
cortical UP and DOWN dynamics

In the previous chapter we showed that the statistics of UP and DOWN
states  activity  is  consistent  with  both  adaptation  and  random  fluctuation
mechanisms  causing  transitions  between  the  two  states.  On  the  one  hand,  the
existence  of  positive  correlations  between  consecutive  UP-DOWN  permanence
times suggests the presence of an adaptation mechanism involved in the transitions
between UP and DOWN states. On the other hand, the variability obtained in the
permanence  times  in  each  state  was  high,  and  the  firing  rates  were  relatively
stationary and without  signatures in the spiking statistics as UP state progresses
predicting a transition to a DOWN state, which is all consistent with fluctuation
mechanisms causing transitions in a bistable regime. In this Chapter we study from
a computational perspective the contribution of each aforementioned mechanism to
the  UP and  DOWN  state  statistics.  We  propose  a  simple  computational  model
implementing  both  mechanisms,  which  can  generate  UP and  DOWN dynamics
based on a novel bistability regime that relies on a low-rate inhibition-stabilized UP
state.  This model  shows that  the combination of strong random fluctuations and
weak cellular  adaptation provides  a  regime in which the statistics  of  transitions
match those observed in the experimental in vivo data.

A novel bistability mechanism based on inhibition stabilization.

The network model proposed is based on the Wilson-Cowan model (Wilson
and Cowan,  1972;  Latham et  al.,  2000), and it  can  be  derived  as  a  mean-field
approximation to two interconnected populations of excitatory (E) and inhibitory (I)
neurons (Fig. 4.3.1.A). The two populations are recurrently connected and receive
external  constant  inputs  for  each  population  θX,  where  X={E,I},  and  common
fluctuations ξX of mean amplitude σ. 

This rate model represents the dynamics of the excitatory population rate
(rE), inhibitory population rate (rI) , and is described in Eq. 1.1-1.2, respectively:

τE ṙ E=−r E+φE (J EEr E−J EI rI+θE+σξE) (1.1)
τ I ṙI=−rI+φI (J IE rE−J II r I+θI+σ ξI ) (1.2)

The time constants for each dynamical variable are denoted by τE, τI. The
parameters  JXY  ,  where  X,Y={E,I},  describe  the  strength  of  the  respective
connections (from Y to X).  Each population receives constant  external  input  θX.
Each population receives a fluctuating input (ξX) and  σ defines the amplitude of
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these  fluctuations.  The transfer  functions  ΦX   are  described by piece-wise  linear
functions, in which the gains and thresholds are defined by αX and ωX, respectively:

φX(k )=[αX k−ωX ] +               , X= {E , I } (1.3)

An appropriate  selection of  the  connectivity,  transfer  functions  and time
constant parameters leads to a bistable regime, and the critical conditions for the
emergence of this bistability is that firing threshold and gain for inhibitory neurons
is higher than the threshold and gain for excitatory neurons. This can be understood
graphically in the 2-dimensional phase plane rE vs rI , where E and I nullclines of the
system are obtained by setting the right side of Eq. 1.1 and 1.2 equal to zero (Fig.
4.3.1C; E-nullcline in red, I-nullcline in blue). Both E and I  nullclines determine 3
fixed-points (Fig 4.3.1.C, circles) from which 2 of them are stable solutions of the
system (Fig 4.3.1.C, filled circles) and one is an unstable solution (Fig 1.C, empty
circle). The phase plane is divided into 2 different regions split by the separatrix of

Figure 4.3.1. A novel bistability mechanism based on inhibition stabilizations. A, Scheme of

the network architecture.  B, Transfer  functions  for  the  E and  I populations.  C, Phase  plane

analysis (rE vs rI). E-nullcline (red) and I-nullcline (blue) intersections define the fixed points of

the system (circles), where 2 of them are stable (filled circles) and 1 unstable (empty circle). The

separatrix (dashed line) divides the phase plane into 2 different semi-planes (indicated in violet

and orange colors). According to the separatrix, given an initial condition the system relaxes

towards the stable fixed-point of the corresponding semi-plane. black arrows indicate the flow of

the system, which are indicative of the trajectories described by the network relaxation dynamics

in the absence of noise, (i.e. σ =0). Parameters: αE =1, αI =4, ωE=5, ωI =25, JEE =5, JEI =1, JiE =10,

JII =0.5,  θE=0,  θI=0,  τE=10,  τI=2,   τN =1,  σ=0 are maintained for the rest of the Chapter if not

specified. 

the system (Fig. 4.3.1.C, dashed line). Thus, depending on the initial conditions for
rI and  rE,  the  network  evolves  towards  one  of  the  two  steady  state  solutions
determined by the positions of the stable fixed-points. Notice that modifying the
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threshold values ωX in the transfer functions of the  E and I populations does not
change the slope of the nullclines,  but  rather produces their  displacement in the
vertical (for the E-nullcline) and horizontal (for the I-nullcline) axis. It is also clear
in  this  representation  that  a  critical  condition  to  obtain  bistability  is  that  the
inhibitory threshold is sufficiently high  and that the effective gain of the inhibitory
nullcline (which depends on both the transfer function gain aI and the connectivity
couplings JII and JIE) is larger than that of the excitatory nullcline. Moreover, by
tuning these thresholds and effective gains it is possible to achieve bistable states of
rE and rI at arbitrary low values. For the remainder of this chapter, we will focus on
this bistable regime, and we assume higher gain for the inhibitory than excitatory
populations, i.e. αE < αI, and higher threshold for the I population, i.e. ωE <ωI   (Fig.
4.3.1B).  Notably,  these  conditions  are  supported  by electrophysiological  data  in
cortical slices in vitro (Schiff and Reyes, 2012). 

The role of random fluctuations in generating UP and DOWN transitions

In  this  bistable  scenario,  we  turned  to  consider  the  role  of  random
fluctuating  inputs  in  generating  UP  and  DOWN  transitions.  These  inputs  are
assumed  to  reflect  neural  activity  in  other  brain  areas,  non-correlated  with  the
network's internal dynamics. We modeled this as an Ornstein-Uhlenbeck process
with zero mean dξX  (t) = - ξX/ τN dt + s dWt   , where Wt is the Wiener process or
Brownian motion, and τN   is the time constant of the fluctuations (typically τN  =1).
We  assume  for  the  rest  of  the  Chapter  that  the  time  constant  units  represent
milliseconds.

Figure 4.3.2. Fluctuations induced transitions in the bistable regime. A, Rates from E and I,

in red and blue respectively, as a function of time. B, Distribution of permanence times: DOWN

in violet, UP in orange, Cycle (defined as Di-1+Ui ) in brown. CV values are displayed in legend.

C,  Correlation  of  the  permanence  time  in consecutive  periods  (Left:  D i-1,Ui  ,  Right:  Di  ,Ui).

Parameters: θE= -0.5, σ =3.

If  the network is in one of the two stable states (UP or DOWN) in the
bistable regime, a large enough incoming fluctuation (ξ) can perturb the system,
making it cross the separatrix and, therefore, produce a transition from one to the
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other state (Fig. 4.3.2A). This effect can be interpreted from a physical perspective
as a potential energy landscape conformed by a double-well representing the two
states, in which external fluctuations produce transitions from one to the other state
(Fig. 4.3.2A, Bottom). A critical parameter therefore for the effectiveness of random
fluctuations in producing these transitions is the amplitude of the fluctuations  σ,
which needs to be sufficiently large to reach the separatrix from each of the stable
fixed points  of  the  system  (Fig.  4.3.2A).  However,  this  is  not  the only relevant
parameter. It is also important that the timescale of the fluctuations is at least of the
same order of magnitude as those of the rates in order to make fluctuations effective
in  producing  transitions  among  the  states.  Thus,  taking  into  account  this
considerations,  we  can  find  a  set  of  parameters  in  which  stochastic  transitions
between UP and DOWN states occur (Fig. 4.3.2B).

In  this  fluctuation  induced  transitions  scenario  we  achieve  a  very  high
irregularity in the duration of UP and DOWN states: the distributions of dwell times
are exponential, with high CV values close to 1 (Fig. 4.3.2C). However, correlations
between consecutive UP and DOWN durations are zero: Since transitions occur at
random times based on the random occurrence of large current  fluctuations,  the
duration of a given DOWN (UP) state is totally uncorrelated with the subsequent
UP (DOWN) state (Fig.  4.3.2D).  This is  in disagreement  with our experimental
analysis shown in Chapter 4.2, since we found that correlations between adjacent
durations were systematically positive. We thus conclude that a pure fluctuation-
driven mechanism in a bistable system is not a good description for the cortical UP
and DOWN state dynamics observed in vivo.

A model for UP and Down dynamics

We next  introduce  an  adaptation  mechanism in  the  system to  study the
impact of this particular mechanism in the UP and DOWN dynamics. We add spike
frequency adaptation to the excitatory population E: it receives a negative feedback
from an adaptation variable (a) that grows with the activity of the E population (Eq.
1.4 & 1.6, Fig. 4.3.3A). We did not consider an analogous negative feedback for the
inhibitory population I  for  simplicity (Eq.  1.5 is  equal  to Eq.  1.2),  and because
inhibitory neurons show little or no spike frequency adaptation when depolarized
with current injections (McCormick et al., 1985). The dynamics for the adaptation
variable is described by Eq. 1.6, and the system now is described by:

τE ṙ E=−r E+φE (J EEr E−J EI rI−a+θE+σξE) (1.4)
τ I ṙI=−rI+φI (J IE rE−J II r I+θI+σ ξI ) (1.5)
τa ȧ=−a+β rE (1.6)

The time constant of the adaptation variable is denoted by τa. The parameter
β describes the strength of the adaptation affecting the  E population. We further
assume  that  the  time  constant  for  the  adaptation  is  much  larger  (2  orders  of
magnitude larger) than the E and I time constants, i.e.  τa <<{τE, τI} (Latham et al.,
2000).This allows us to dissect the system into fast (rE, rI) and slow (a) components:
rE and rI relax rapidly to their steady-state while a is slow enough to be considered
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constant in the rE, rI dynamics (Rinzel and Lee, 1987; Latham et al., 2000).
We first describe the effect produced by the adaptation a while fluctuations

in  the  system are  suppressed  (σ=0).  The  effect  produced  by  increasing  a is  a
downward displacement of the E-nullcline. Thus, if  a is large enough the UP state
fixed point loses the stability and the only stable fixed-point is the DOWN state
(Fig. 4.3.3B, Top). In the same way as before, this effect can be interpreted from a
physical perspective as a potential energy landscape conformed by a double-well
representing  the  two  states,  but  now  adaptation  deforms  the  wells  producing
transitions from one state to another (Fig. 4.3.3B, Bottom). 

In this way, the increase and decrease of the adaptation variable a following
its own deterministic dynamics can induce transitions between the  quiescent and
elevated firing rate states. Indeed, we can find parameters of β, θE, and θI, such  that
UP and DOWN state  dynamics  emerges  in  the  absence of  noise,  driven by the
negative  feedback  from  a (Fig.  4.3.3C,  top  panel  shows  the  values  of  rX as  a
function of time in arbitrary units and the bottom panel shows the time course of
adaptation  a). When adaptation is recovered, the system shows a single high-rate
stable fixed point and rates relax towards this stable solution (Fig. 4.3.3C, yellow-
box  inset).  As  soon  as  the  network  is  in  this  UP state,  adaptation  accumulates
displacing downwards the E-nullcline, and a second stable fixed-point emerges at
rE=0, rI=0 which corresponds to the DOWN state (Fig. 4.3.3C, black-box inset). As
the E-nullcline continues moving downwards driven by adaptation, the intersection
between the E and I nullclines at (rE>0, rI>0) eventually disappears. At this point the
UP state loses stability and the network relaxes towards the only remaining stable
fixed-point, the DOWN state (Fig. 4.3.3C, dark red-box inset). While the system
remains  in  the  DOWN state,  the  adaptation  variable  a  recovers  so  that  the  E-
nullcline moves upwards, and eventually a second stable fixed point at the UP state
emerges (Fig. 4.3.3C, analogous to black-box inset). At some point the adaptation is
low enough to make the intersection determining the fixed-point of the DOWN state
disappear, the system loses stability in the DOWN state and it transitions again to
the UP state, thus initiating a new cycle (Fig. 4.3.3C, yellow-box inset).

Interestingly,  a  particular  feature  of  this  model  is  that  although  the
adaptation mechanism is introduced only in the E population, it is the firing rate of
the I population the one that presents a more pronounced rate decay during the UP
state. This is a direct consequence of the specific conditions that allow for bistability
in our model: the higher threshold and gain in the I-nullcline impose that rI decays
from the  initial  value  achieved at  the  UP onset  all  the  way to  zero  rate  at  the
moment of the UP-to-DOWN transition, while rE shows a decay going from the rate
reached at the onset to the value of rate determined by the knee of the  I-nullcline
(see gray inset in Fig. 4.3.3C). Thus, increasing the slope of the  I-nullcline would
reduce even more the rate decay during UP states observed in the E population. A
particularly pronounced decay of firing rates in inhibitory neurons would thus be a
signature of the role of cellular adaptation in excitatory neurons in driving UP and
DOWN dynamics,  according to our model.  We will  study this particular  feature
later in the present Chapter.

This regime of adaptation induced transitions generates oscillatory network
activity with deterministic UP and DOWN state transitions. As a result, permanence
times  in  each  state  are  constant  and  do  not  display  any  variability  (CV=0).
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Moreover, although adaptation provides a “memory” of the permanence time in the
previous state, under the lack of variability the correlations are undefined. Both of
these statistical features are also in contrast with our observations in the previous
chapter of this Thesis.

Figure 4.3.3. UP & DOWN states in the model induced by adaptation. A, Adding adaptation

to the model. while supressing the effect of fluctuations (σ=0) B, Top: Effect of slow adaptation a

in the phase plane. When  a  is small enough, the only fixed point is an elevated rate state (UP

state), and the system relaxes towards it (orange arrow). As a increases (a depends on rE), the E

nullcline moves downwards and  so does the UP state fixed point  (following the black arrows).

When a is large enough, the high-rate intersection of the E and I nullclines is lost and the system

evolves to the only remaining stable fixed point, the DOWN state (following the dark red arrow).

Bottom: Schematic representation of a double well inducing transition from UP to DOWN states.

C, Transitions induced by adaptation in the model. The rates of E and I populations are displayed

on top and the adaptation variable a on bottom  panels, both as function of time. Parameters:

τa=500, β=5, θE= 6, σ=0.

Although pure-adaptation  or  pure-fluctuation  regimes  cannot  explain  the
statistics observed in UP and DOWN switching in vivo, the scenario changes when
both mechanisms are intermixed (Fig. 4.3.4). In this case, the adaptation-induced
transitions (oscillatory) regime (b>0) under the presence of fluctuations (σ>0) can
generate variability in the permanence times (Fig. 4.3.4.B) and positive correlations
between the dwell times in consecutive intervals (Fig. 4.3.4.C). Hence, a mixture of
both  mechanisms  can  explain  the  statistics  that  we  observed  experimentally
(Chapter 4.2), at least qualitatively. In the following, we investigate in a quantitative
way how the interplay between both mechanism impacts the statistics of UP and
DOWN states permanence times.
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Figure 4.3.4. UP & DOWN states caused by adaptation + fluctuations. A, Rates from E and I,
in red and blue respectively, as a function of time. B, Distribution of permanence times: DOWN
in violet, UP in orange, Cycle (defined as Di-1+Ui  ) in brown. CV values are displayed in legend.
C,  Correlation  of  the  permanence  time  in  consecutive  periods  (Left:  D i-1,Ui  ,  Right:  Di  ,Ui).
Parameters: β=5, θE= 8, σ=2.

UP and DOWN state statistics for different regimes

Although until this point we considered the stability analysis by doing the
fast/slow dissection and freezing  a, for the following analysis we incorporate the
slow analysis to the dynamics. We analyze the different regimes of activity obtained
by  modifying  the  strength  of  adaptation  (β),  and  the  input  to  the  excitatory
population (θE) in the absence of fluctuations  σ=0. Instead of dissecting fast/slow
variables and freezing a in the dynamics for the stability analysis, as we did before,
we  now incorporate  the  slow variable  in  the  dynamics.  Based  on  the  nullcline
equations, the simplicity of the system permits to easily obtain the different regimes
that arise by changing β and θE  , which are summarized in Fig. 4.3.5.A. Here, we
consider stationary a state if adaptation is unable to make the system transition away
from it, while a non-stationary state is a fixed-point that is stable temporarily while
adaptation increases or decreases, but eventually loses stability to the other state due
to adaptation dynamics.  In  the  absence of  random fluctuations,  six  qualitatively
different  regions  are  observed:  1.  single  stationary  DOWN  (in  dark  blue);  2.
stationary-DOWN  nonstationary-UP  (light  blue);  3.  nonstationary-DOWN
stationary-UP (light brown); 4. single stationary UP (dark brown); 5. nonstationary-
DOWN nonstationary-UP or oscillatory (green); 6. stationary-DOWN  stationary-
UP or  bistable  (pink).  The  bifurcation  diagrams  of  rE (in  red)  and  rI (in  blue)
showing the existence of stationary states as a function of the input  θE for three
different values of β={0,3,6}, are shown in Fig. 4.3.5.B. This summarizes how the
stationary rates are modified as θE changes in the absence of fluctuations. 
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When β is increased, the range in θE with co-stationary states (where both
the DOWN and UP states are stationary) is reduced (Fig. 4.3.5B, middle and bottom
panels, range indicated by horizontal pink lines). When β is large enough (β>4) the
range θE values for co-stationary states (bistable range) vanishes and an  oscillatory
regime emerges for a range of  θE values (Fig. 4.3.5B, horizontal green line in top
panel).  Once  the  system  dynamics  is  considered  in  the  presence  of  random
fluctuations,  transitions  can  be  caused  by  either  fluctuations+adaptation  if  a
stationary state is present, or purely by fluctuations, if both  states are non-stationary
(i.e., adaptation is unable to cause a transition on its own) (Fig. 4.3.5A, see arrow
code). In this way, it is expected that the time spent on a stationary state will be
more variable than in a non-stationary state. Indeed, while stochastic fluctuations
are the only mechanism to move out of a stationary state, non-stationary states will
on average decay away deterministically in a time scale of the range of τa and the
stochasticity  of  the  fluctuations  gets  diluted  in  the  regularity  of  deterministic
adaptation.  For this reason,  we expect  to find regimes compatible with the high
irregularity in both UP and DOWN durations observed experimentally in the co-
stationary or bistable regimes represented by the pink region in Fig. 4.3.5A or the
bistable ranges of Fig. 4.3.5B, i.e. for relatively low adaptation strength β. We thus
turned to testing this in numeric simulations with different amplitudes of random
input fluctuations.

Figure 4.3.5. Different dynamical regimes in the model. A, Six regimes of activity as function
of β and θE. Violet and orange circles represent the presence of DOWN and UP states. Each state
can be stationary or meta-stationary according to if transitions from that state are induced by
fluctuations  or  adaptation+fluctuations,  respectively  (see  arrow code  legend).  B, Bifurcation
diagram for  three values  of  β={6,3,0}  showing  rE  and  rI as  a  function of  θE.  Bistable  range
indicated by pink horizontal line. Oscillatory range indicated in green horizontal line and bicolor
thick bar.
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How do changes in  β,  θE,  σ  impact the statistics of  UP and DOWN states
permanence times? For the remainder of this section we denote the duration of UP
and DOWN states U and D, respectively,  as in the previous Chapter. We run long
simulations of the model dynamics and we compute the statistics of U and D  for
each point in the (β,  θE) plane and for different levels of the random fluctuations
amplitude  σ={0,1,2,3,4}  (Fig.  4.3.6).  We  find  that  in  order  to  obtain  high  

Figure 4.3.6. U and D statistics as a function of β, θE and σ. Each row of color plots correspond to
the different statistic studied indicated at the left and together with the respective color scale for
the row. The absence of color for a specific value of (β, θE) is due to the absence or low amount of
transitions achieved during the simulations.  From top row: logarithm of mean U, logarithm of
mean D, CV of U,  CV of D, correlation between consecutive D-U and between consecutive U-D.
Each  panel shows in colour plot the statistics obtained by changing  β and θE. Different columns
show the effect on the statistics of changing the amplitude of fluctuations.
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variability in the permanence times (CV(U),CV(D) > 0.5),  we must consider large
fluctuation amplitudes (with at least σ>3). On the other hand, we observe in Figure
4.3.5 that high values of CV(D) are achieved in the vertical edge while high values
of CV(U) are achieved in the slanting edge of the region displaying UP and DOWN
dynamics. Therefore, a regime in which both CV(U) and CV(D) are large enough
(>0.5)  implies low values of β  (where the  two aforementioned edges meet,  see
square mark on Fig. 4.3.6). This is the regime where the UP and DOWN state are
co-stationary in the sense of Figure 4.3.5, i.e. both of them are stable with respect to
the adaptation dynamics and only random fluctuations can cause transitions.

Figure 4.3.7. CV and correlation values for different amplitudes of fluctuations s. A, CV of
U versus mean U on the left and CV of D versus mean D on the right.  B, Correlation between
consecutive D-U (left)  and U-D  (right)  versus the square root of CV(U) times CV(D),  as  a
measure of combined value of CV(U) and CV(D). 

Although the range of high variability in U and D is increased for higher
values of σ, the correlation between consecutive intervals decreases towards values
of zero as σ increases. We study the  role of fluctuations in determining the values of
CV and correlations between consecutive UP/DOWN periods by pooling the results
from different values of β and θE (Fig. 4.3.7). For different values of σ, we compute
the CV changes for different values of mean permanence time in the UP or DOWN
state (Fig. 4.3.6A left and right panels, respectively). Given that we are interested in
a regime in which both CV(U) and CV(D) are high, we compute the correlation
between consecutive intervals and we plot it against a measure of combined U and
D variability ( √cv (U )cv (D) )  (Fig. 4.3.7.B). In this way, in order to achieve
values of CV around 0.6 and positive correlation values around 0.1, as observed in
the experimental data (see Chapter 2), we must consider σ >=3. 

Altogether,  this  analysis  suggests  that  a  regime  with  random  input
fluctuations of high amplitude and weak adaptation will be able to match in our
model  the  statistics  of  variability  in  the  permanence  time  in  each  state  and
correlations  between  consecutive  intervals   observed  in  the  experimental  data
(Chapter 2). Indeed, an example of a simulation in this particular regime is shown in
Figure 4.3.8. Panel A shows the traces of rE and rI  on top, while a is shown in the
bottom panel. The contribution of adaptation is drastically reduced compared to the
adaptation induced regime (Fig. 4.3.2.B), but its dynamics of accumulation during
UP periods and recovery during DOWN periods have an impact on the D and U
statistics.  Panel B shows, on left, the distribution of permanence times of U and D
and the cycle C, where the CV are 0.59, 0.66 and 0.48, respectively. Right panels
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show the correlation between consecutive intervals,  where corr(Di-1,Ui)=0.13 and
corr(Di,Ui)=0.14. Thus, this simulation presents both the high variability of U and D
caused by random fluctuating inputs and the weak correlation between consecutive
D and U of adaptation mechanisms. These statistics resemble those observed in our
experimental data analysis in recordings in vivo (Chapter 4.2, see Fig. 4.2.2).

Figure 4.3.8. UP & DOWN states in the weak adaptation and strong fluctuation regime. A,
The rates for E and I populations are shown on top and the adaptation variable on bottom (lowest
panel is an expanded view). B, Left, distribution of permanence time (in arbitrary units) for U, D
and C with mean and CV shown on the inset. Right, consecutive D-U periods (top) and U-D
periods (bottom) are indicated in dots, and used to compute the correlation between the duration
of consecutive periods (U or D values 3 standard deviations away from the mean are shown in
circles and discarded for the correlation analysis). Parameters from this regime marked in black
square in Figure 4.3.5. Parameters: β=0.5, θE= 0, σ=3.

Oscillations in the rate model

We want to characterize the dynamics of activity in the system during the
UP state. Stability analysis of the high-rate solution (Appendix) shows that  this
model can produce a regime with oscillations occurring during the UP states, for
slow enough inhibitory time constant τI (Brunel and Wang, 2003). Since we observe
no clear stable oscillations in the  firing rates during UP states in the experimental
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data (Chapter 4.2), we assume for the rest of our analyses that we are not in such
conditions, so that we take for our model τI < 7.5 (Appendix). However, even in this
condition the UP state shows some interesting transient dynamics: depending on
parameters there is a more or less prominent rate peak at UP state onset or offset
(Fgiure 4.3.9). We characterize this behavior in the phase plane of the full model of
Figure  4.3.7.  When  the  E-nullcline  moves  downwards  during  the  UP state  (a
increases, or θE decreases) and the UP fixed-point gets closer to becoming unstable,
the  separatrix  folds  surrounding  the  UP fixed-point  and  reducing  its  basin  of
stability. This effect is more evident as the  τI   value is increased  τI={2,..,7} (Fig.
4.3.9A). These effects in the phase plane explain the dynamics during UP states, as
we discuss below.

When computing the mean rate at the onset and offset aligned conditions for
simulations of the model, we observe that increasing the τI  value generates peaks in
firing rate at the transition times at the onset and offset of the UP state (Fig. 4.3.9B).
The average trajectory in phase plane at the onset and offset of the UP states for a
time interval of [-0.05,0.05] shows that at the UP onset average trajectories describe
a spiral that becomes larger with τI , despite the strong presence of fluctuations (Fig.
4.3.9C, left). Also the offset average firing rate describes a spiral, of even larger
amplitude (Fig.  4.3.9C,  right).  Although the oscillation described at  the  onset  is
related  with  the  fact  that  the  UP fixed  point  is  a  stable  focus,  the  oscillation

Figure 4.3.9. Dynamics of activity during UP states at onset and offset aligned conditions for
different τI   values.  A, Phase plane and separatrix in dashed lines for different  τI  values and
bistable scenarios. B, Mean rate for E (top) and I (bottom) populations at onset and offset aligned
conditions for the model in the sweet-spot region of parameters. C, Mean average trajectories in
the phase plane at time t=[-0.05,0.05] from transition time (same as in B). D, Example of activity
from a single UP state for different τI  (τI  =2 in cyan, τI  =7 in magenta) Parameters: β=0.5, θE= 0,
σ=3.

described at the offset is produced by changes in the separatrix, which determines
the way in which transitions from UP to DOWN states occur.  Indeed, when the
separatrix folds surrounding the UP fixed-point at  UP state offset,  positive large
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fluctuations impinging on rE will be effective in causing a transition to the DOWN
state via a large spiral excursion (Fig. 4.3.9C, right). This analysis reveals that large
values of τI , approaching the time constant of the E population, produce signatures
at the temporal edges of UP states that we do not observe in the experimental data.
We  thus  conclude  that  the  regime  observed  experimentally  corresponds  to  a
condition of significantly faster inhibition than excitation, and we consider in the
following the lower value of τI  (=2ms), which does not induce ringing in the rates at
the UP state transition times.

In these conditions of fast enough inhibition, the average firing rate aligned
to UP state onset or offset shows little temporal dynamics (Fig. 4.3.9B, cyan traces).
Adaptation seems insufficient to imprint a characteristic rate dynamics on the UP
state. We analyzed this by considering two models, one has strong adaptation and
weak fluctuations (Fig. 4.3.10A) and the other has strong fluctuations and weak
adaptation (Fig. 4.3.10.B),  which matches better the experimental data. For both
regimes we observe a decay in rE and rI as the UP state progresses (Fig. 4.3.10.A-B,
central  panel).  However,  the  decay  in  rate  is  especially  prominent  for  the  I
population,  and  is  barely  observable  in  the  E  population  in  any  of  the  two
conditions. AThis can be illustrated directly in the ratio between  rI and  rE, which
reveals that the decay in rate for the I population is stronger throughout the UP state

Figure 4.3.10. Dynamics of activity during UP states for adaptation and fluctuation driven
regimes. A, Strong adaptation and weak fluctuation regime. Top: sample traces of rI and rE  and
UP and DOWN period detections (horizontal lines). Middle: mean rate of rI and rE  for onset (left)
and offset (right) aligned conditions. Bottom: ratio between rI and rE  for onset and offset aligned
conditions.  B,  Same  plots  as  in  A for  the  weak  adaptation  and  strong  fluctuation  regime.
Parameters A: β=4, θE= 6, σ=2; B: β=0.5, θE= 0, σ=3. 
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and for both models (Fig. 4.3.8A-B, bottom panel). This is related to the way in
which bistability is achieved as previously mentioned (see Fig. 4.3.3C inset)  Notice
also  that  the  UP offset  is  preceded  by  a  faster  decay  towards  zero  for  the  I
population, due to the faster decay time constant  (τI) compared to the time constant
from the E population (τE). 

Temporal profile of variability during UP states in the model

We next  studied the time  course  of  neural  variability across  UP periods
(quantified by the Fano Factor) and pairwise neuronal correlations through the UP
state. We considered the onset and offset aligned conditions in the model, and we
explored the impact of both mechanisms in the second order statistics. 

In order to study those second order statistics, we assumed a population of
inhomogeneous  Poisson  independent  spike  trains  with  a  rate  obtained  from the
output of the model simulations. Notice that, although we assume that all neurons
are unrealistically describing the same firing rate, in this way we can define the
Fano Factor and correlations (see Eq. 23 and 28, respectively, from Methods section
3.4). 

We  analyze  two  models  corresponding  to  strong  adaptation  or  strong
fluctuation regimes (as in Fig. 4.3.10). For both models, the onset and offset of the
UP states are associated with a transient increase in variability (Fig. 4.3.11). In the
case of strong adaptation and weak fluctuations, the Fano Factor and correlation
display a “ramp”. This is due to two factors: On the one hand in this model there is
a mean rate decay as the UP state progresses (Fig. 4.3.10). On the other hand, there
is an increase in variance (Fig. 4.3.11A, top), due to the increasing instability of the 

Figure  4.3.11.  Dynamics  of  variability during  UP states  for adaptation and  fluctuation
driven regimes. A, Strong adaptation and weak fluctuations regime.  B,  Weak adaptation and
strong fluctuations regime. From top to bottom: variance of rate rE and rI (inset), fano factor of
the rate, correlations between rE-rE (red), rE-rI  (magenta) and rI-rI  (blue, inset). 
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UP produced by the adaptation process  (Mattia and Sanchez-Vives, 2012). In the
same  way,  a  weak  adaptation  and  strong  fluctuations  regime  also  displays  this
“ramp”, but it is a weaker effect since  both the mean rate and the variance of the
rate during the UP state exhibit much weaker dynamics (4.3.10B, middle, and Fig.
4.3.11B, top). 

The  surge  on  variability observed for  the  E  population  at  the  UP onset
condition precedes the UP onset,  whereas the surge on variability for the UP to
DOWN transition is observed only prior to the UP offset and after this transition the
variability is reduced, reflecting an asymmetry in the way that the network evolves
from  one  attractor  state  towards  the  other  (Fig.  4.3.9A-B,  middle  and  bottom
panels).  Although  changes  between  the  attractor  states  could  be  systematically
associated with an increase in variability,  the aforementioned asymmetry of  this
variability could be model dependent. Additionally, beside the surge of variability at
the temporal edges of UP states, correlations display positive values generally with
the highest values for rI-rI correlations and intermediate values for rE-rI correlations
(Fig. 4.3.11A-B, bottom panels). 

What is the origin of this surge of variability observed at the temporal edges
of the UP states? To study the origin of this surge, we consider both weak adaptation
and strong fluctuation regimes. We first analyze a possible role of the imprecision of

Figure  4.3.12. Asymmetry in the surge of variability associated with state transitions. A,
Fano Factor and overlapped single UP traces when the detection threshold is set  right at  the
trough of the rE bimodal distribution. B, Same as A, but for threshold set at half of the trough of
the  rE bimodal distribution.  C, Contour  values  showing  the  joint  and  marginal  E,I rate
distributions at different time points: onset (orange), middle (black) and offset (dark red) of UP
states. D, Comparison of marginal distributions for rE and rI shown in C.
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UP-DOWN transition detection on this variability.  We compare Fano Factor and
rates for 2 different conditions: when the threshold for UP detection is set in the
trough of the bimodal  rE distribution, and when the threshold is lowered at half of
this value (Fig. 4.3.12A-B, respectively). Overlapping the  rE  traces from different
UP states for the onset  and offset aligned conditions reveals that UP to DOWN
transitions are  less  variable and are followed by more reduced activity than the
DOWN to UP transitions (Fig. 4.3.12A). Moreover, when the detection threshold is
reduced, it is observable the same behavior in the Fano Factor and rate traces (Fig.
4.3.12B). Therefore, it confirms that the surge on variability at the temporal edges
of UP states is related to the variability of the rate trajectories at the transition times
at onset and offset is not due to the detection method. Although we initially study
this phenomenon on rE , we observe an analogous effect on rI  when we consider the
distribution of combined rates at the time of the surges occurrence, where marginal
distributions are more skewed at  the onset-surge than the middle-UP and offset-
surge conditions (Fig. 4.3.12C). The surge in variability at the onset is therefore
higher, and this is observed also when comparing the marginal distributions of the
rates for both E and I populations (Fig. 4.3.12D). These results show that changes
between states are associated with periods of increased rate variability in the model,
and these transitions between the two states are asymmetric possibly due to the
differences in the two basins of attraction.

Average time course of incoming fluctuations at transition times

To further investigate the role of fluctuations in transitions, we computed
the transition-triggered (UP onset and offset) average fluctuations at the onset and
offset in the strong fluctuation and weak adaptation regime. Typically, the onset of
the UP state in the model is preceded by positive input fluctuations arriving to the E
population. Instead, the average fluctuations to the I population are flat around UP
state onset showing that incoming fluctuations to the I population do not play any
role in the DOWN to UP transitions (Fig. 4.3.13.A, left panel). Before the positive
fluctuations into the E population triggering the UP state, average fluctuations for
the E population are biased below zero (Fig. 4.3.13.A, left panel inset). During the 

Figure  4.3.13.  Transition triggered average fluctuations. A, Transition-triggered averages of
time courses of the input fluctuations (ξX)  to  E and  I populations (red and blue traces) the  for
weak adaptation strong fluctuations regime at the onset and offset aligned condition (dashed line
is the results for strong adaptation weak fluctuations regime). B, Schematics of the more effective
fluctuations causing transitions in the model. 
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UP state  periods,  fluctuations  in  the  E population  are  above  zero  on  average
whereas fluctuations in the  I population are below zero (Fig. 4.3.13A, right panel
inset). UP state offset is preceded by a coincident positive incoming fluctuation to
the I population followed by a negative fluctuation to the E population in order to
drive  the  UP to  DOWN  transition  (Fig.  4.3.13A,  right  panel).  This  is  another
asymmetry observable in the way that network transitions from one to the other
attractor, and it is a robust feature of the model since it is also observable in the
strong adaptation weak fluctuations regime (Fig. 4.3.13A, dashed line). Moreover,
this  analysis  shows  the  way in  which  fluctuations  are  more  effective  to  cause
transitions in the model (Fig. 4.3.13B).
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Appendix

Stability  analysis.  The  stability  of  fixed  points  is  determined  not  only  by  the
connectivity of the network (JXY values) but also by the time constant of the rate for
the  E and  I populations (τE  and  τI  , respectively). We explore how changes in the
time constant of the I population impact the stability of UP states and the network
dynamics during UP states. The behaviour of the dynamical system near a fixed
point  is  determined by the eigenvalues  of  the  Jacobian matrix  of  the  dynamical
system. If we consider  β=0 and a regime with one fixed point  in the UP (large
enough θE), The eigenvalues of  the system are given by Eq. 1.7:

  (1.7)

Considering fixed τE  =10 and the previously defined connectivity,  we vary
the value of τI . For τI < 7.5 the eigenvalues are complex with negative real part
(Fig. 4.3.8.A), so that the UP state fixed point is a stable focus. This means that for
an initial condition close to the fixed point the system describes a spiral trajectory in
the phase plane collapsing into the UP state, thus producing damped rate oscillations
as the rates from E and I settle down to the stable fixed point (Fig. 4.3.8.B). When τI

> 7.5, the real part of the complex eigenvalues becomes positive and the fixed point
becomes  an  unstable  focus:  trajectories  in  the  phase  plane  describe  a  spiral
expanding outwards from the fixed point. Without any rectification in the transfer
functions, the spiral would grow indefinitely (Fig. 4.3.8.C, dashed lines). However,
the  rectification  non-linearity  in  the  threshold  transfer  functions  prevents  the
trajectory from expanding and it stabilizes a limit cycle (Fig. 4.3.8.C, solid lines).
Additionally,  under  the  presence  of  a  DOWN state  fixed  point  (in  the  bistable
regime), these trajectories collapses into the DOWN state. 

96

λ=
1
2(
αE J EE−1
τE

−
αI J II+1
τ I

±√(αE J EE−1
τE

−
αI J II+1
τI
)

2

−
4αEαI J EI J IE

τE τI )



4. Results 

Figure 4.3.8. Activity in the network model. A,  Real (top panel) and imaginary (middle panel)
parts of the eigenvalues determining the stability of the UP state fixed point as function of  τI

(bottom panel).  B, Trajectories  in  the phase plane for  stable  focus fixed  points  in  the UP  for
different values of  τI <7.5.  Open circle marks the initial condition.  C, Trajectories in the phase
plane for unstable focus (τI =10) that stabilizes into a limit cycle (solid line). Without the threshold
definition of the transfer functions, trajectory expands indefinitely (dashed line).
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4.4. Statistics of spontaneous activity
across brain states

The  neocortex  is  thought  to  operate  in  a  continuum  of  regimes  in  which
desynchronized and synchronized states are loosely defined as categorical extremes in a
high  dimensional  continuous  space  of  possible  brain  states.  Although  there  are
numerous studies about the role of different neuromodulators and subcortical structures
in forebrain activation, the precise mechanisms underlying cortical desynchronization
remain to a large extent unknown. As shown in the previous chapter, the nature of the
mechanisms underlying the generation of UP/DOWN transitions constrains the statistics
of  switching  times.  In  this  chapter,  we  analyzed  population  recordings  of  ongoing
activity  obtained  using  multisite  silicon  electrodes  in  auditory  and  somatosensory
cortices  of  urethane-anesthetized  rats  during  spontaneous  transitions  across  a  broad
range  of  brain  states,  going  from  desynchronized  to  strongly  synchronized.  We
characterized the statistics of UP and DOWN intervals as brain state varies and found
systematic and continuous changes in all the statistics of the UP and DOWN intervals
which were consistent for the two cortical areas studied. We proposed a mechanistic rate
model with adaptation which can qualitatively reproduce the changes in the statistics of
UP-DOWN  intervals  observed  in  the  data,  as  a  few  of  the  model  parameters  are
continuously varied.

Brain state assessment

We first characterized the changes in brain state in long recordings (up to 2
hours), from auditory (n=6 rats) or somatosensory cortices (n=4 rats) using the same
methods employed in Chapter 4.2 and described in the section 3.3. We used (i) the
silence density (fraction of 20 ms windows with no spikes over a period of 10 s) and
(ii)  the L/H ratio (ratio of  the  LFP spectral  power  of  low (0.5-4 Hz)  over  high
frequencies (20-55 Hz)) to quantify the instantaneous variations in brain state and
found  spontaneous  transitions  across  the  spectrum  of  synchronized  and
desynchronized  states  (Fig.  4.4.1).  Low  values  for  both  L/H  ratio  and  silence
density  correspond  to  more  desynchronized  states  whereas  high  values  are
associated  with  more  synchronized  states.  We  observed  that  silence  density
provided a one-to-one mapping over a larger domain of brain states than the L/H
ratio. This can be observed by the non-monotonic relation between L/H ratio and
silence  density  (Fig.  4.4.1C).  For  states  yielding  very  high  silence  density  the
frequency of slow fluctuations was clearly reduced (Fig. 4.4.1D; period iii versus ii
and iv), which produced a drop in the L/H ratio given the reduction in power for
low frequencies (Fig. 4.4.1B; period iii shows lower L/H power ratio than periods ii
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and iv, but higher silence density). Based on this comparison, in this chapter we
used the silence density to assess the degree of cortical state synchronization. 

In several experiments an extra dose of urethane was administered towards
the end of the experiment which tended to cause a similar change in brain state: first
becoming  desynchronized  and  after  progressively  becoming  more  synchronized
(Fig. 4.4.1A-B, administration time indicated by red lines). The example experiment
shown  in  figure  4.1.1  shows  that  under  this  increased  level  of  anesthesia  state
variations showed similar values of L/H ratio and silence density as they displayed
before injecting the anesthesia boost (Fig. 4.4.1C, compare black and red dots). This
indicates  that  the  brain  states  visited  were  the  same  across  a  broad  range  of
anesthesia concentrations (Fig. 4.4.1D; compare points ii and iv with an addition of
20% of urethane).

Figure  4.4.1. Brain  State  assessment  from spontaneous  activity  recordings  in  the  urethane
anesthetized rat. Animals are initially anesthetized with 1.5gr/kg urethane.  For this example,
additional supplement of 0.3 gr/kg is administered (indicated by red arrow and vertical lines on
panels A and B). A. Spectrogram from the local field potential for 1-to-100 Hz (top) and 1-to-15
Hz (bottom) B. On top, L/H (LFP power) ratio computed as the ratio between power at 0.4-to-
5Hz/20-55Hz. Bottom, silence density computed from the multi-unit activity spike train (MUA).
C. L/H power ratio versus silence density (every point corresponds to 10 s of recording). Red
dots indicate the period after the urethane supplementary dose. Magenta boxes showing values
for particular periods indicated in magenta vertical lines in panel B.  D. LFP and MUA from
different 10 seconds sampled periods (indicated by gray bars in B). Note that periods ii and iv
showing similar values in panel B show similar traces on panel D, disregarding the different
levels of anesthesia in both periods. In panel B, period iii shows lower L/H power ratio than
periods ii and iv, but higher silence density,  because the frequency of UP/DOWN transitions
inperiod iii is lower than in ii and iv (D).

Spontantaneous activity across the desyncrhonized and synchronized brain state
axis

As explained in the Introduction of this thesis, spontaneous activity during
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synchronized states is characterized by UP and DOWN dynamics, whereas during
desynchronized states DOWN periods are nearly absent.  To study the mechanistic
basis  underlying  this  repertoire  of  dynamics  displayed  by  cortical  circuits,  we
performed  a  quantitative  analysis  on  how  spontaneous  population  activity  is
affected by brain state transitions.

 In non-overlapping epochs W (length(W)=50 seconds) we first computed
the mean silence density value from the spike train of multiunit activity (MUA), i.e.
without performing spike sorting and unit isolation (Fig. 4.4.2A). For each of these
epochs, we detected UP and DOWN intervals using the same methods used for the
detection in in Chapter 4.3.2 (described in section 3.3 from Methods). The UP and
DOWN interval detection algorithm assumes the existence of 2 different states in

Figure 4.4.2. Statistics of U and D durations as function of silence density for auditory cortex
recordings.  A. Silence density computed in W=50 s epochs (using T=5<ISI_MUA>=0.011) for
the  whole  experiment,  showing  spontaneous  variations  over  a  broad  interval  indicative  of
transitions between brain states. B, Top: Distribution of Silence density values, mean U, mean D,
mean cycle (C), correlation between (D i-1,Ui) . Bottom: Number of U to D transitions detected,
CV of  U,  CV of  D,  CV of  C,   correlation  between  (U i,Di).  C, Summary  results  for  n=6
experiments  for  the  same  statistics.  Different  experiments  are  indicated  by  different  colors.
Vertical  dashed  line  corresponds  to  Silence  density  value  of  0.1  below which  the  method
detecting of U and D intervals is starts to be inaccurate.
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the population rate, and estimates the parameters of the hidden-Markov model in an
iterative way   (Chen et al., 2009). Thus, we expected that the detection accuracy
would decrease during desynchronized states where such 2 different stationary rates
are  not  necessarily  observed  because  DOWN intervals  occur  very  sporadically.
Indeed, visual inspection of the detection results showed that the DOWN detection
was not reliable for intervals with silence density values less than 0.1. This was
further confirmed by running the detection routines on  surrogate data obtained from
a rudimentary generative model  of  state transitions (not  shown).  Despite  of  this
limitation  of  the  method,  if  the  amount  of  DOWN intervals  in  one  epoch  was
sufficiently large (>20) we computed the same statistics of UP and DOWN interval
duration (U and D, respectively) as in Chapter 4.3.2, and plotted them as a function
of silence density for the whole range of silence density values measured. In the
following, results for silence density values below 0.1 should be interpreted with
caution.  Changes in mean and coefficient of variation of U and D and correlation
between  consecutive  U/D  periods  as  a  function  of  silence  density,  described
manifolds showing that changes between synchronized and desynchronized states
occured in a continuous way (Fig. 4.4.2B).

We first analyzed an example experiment from auditory cortex (Fig. 4.4.2B).
As  the  state  became  more  synchronized,  Us  became  shorter  and  less  variable
whereas Ds did the contrary, they became longer and more variable (Fig. 4.4.2B).
The  mean  and  CV of  the  cycle  C  described  a  non-monotonic  behavior  with  a
minimum  at  around  0.4  in  silence  density   (Fig.  4.4.2B).  Correlation  between
consecutive  U-D  periods  vanished  towards  desynchronized  states.  For  the
synchronized states, consecutive (Ui,Di) remained uncorrelated, while correlations
between consecutive (Di-1,Ui) periods turned positive, presenting higher correlation
values than those observed in the somatosensory cortex recordings of  Chapter 4.2
(see below).  

In order to compare the different U and D statistics across experiments, we
needed  to  “renormalize”  the  silence  density  to  be  able  to  compare  it  across
experiments  with  different  number  of  neurons  and  different  overall  density  of
spikes. We did that by tailoring the size of the silence window used to compute  the
silence density in each experiment. We computed the average rate  R of the multi-
unit spike train containing all the detected spikes, and defined the silence window
equal to T=5/R, that is five times the mean ISI value of the multi-unit spike train.
With this definition, if the spikes had a uniform probability to occur across time, i.e.
they  were  a  homogeneous  Poisson  process,  the  silence  density  would  be

exp(−RT )=exp (−5)=0.007  for any experiment, thus providing a common
baseline  for  all  experiments  to  compare  against.   We  compared  the  U  and  D
statistics  across  n=  6  experiments  from  auditory  cortex  and  found  that  they
exhibited remarkably similar  behavior as a function of this  renormalized silence
density (Fig. 4.4.2C). This implies two things: (i) that silence density, despite its
simplicity, provides a very accurate assessment of brain state synchronization; and
(ii) that the changes observed in U and D statistics as silence density varies are
systematically found across experiments.
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We analyzed another badge of long experiments recording population spiking
activity from  somatosensory cortex (with duration > 2 hours)  and repeated the
analysis  regarding  brain  state  variations  and  U  and  D  statistics.  Although
somatosensory  experiments  displayed  a  smaller  silence  density  range,  the
comparison of the population averages for somatosensory and auditory experiments
revealed that the statistics evolved in general agreement across similar manifolds
(Fig. 4.4.3). The only noticeable difference was the apparent asymmetry between
the serial correlations between consecutive Us and Ds at high silence density: while
in  auditory  cortex  Corr (U i , Di)<Corr (Di−1 ,U i) in  somatosensory  cortex

Corr (U i , Di)≈Corr (Di−1,U i) .

Figure  4.4.3. Average  U  and  D  statistics  as  function  of  silence  density  for  auditory  (n=6,
magenta) and somatosensory (n=4, gray) recordings. Same panel layout as figure 4.4.2B-C. Thick
lines show mean values across experiments and thin lines show 95% CI. Notice that the range of
silence density values obtained in experiments from somatosensory cortex is narrower than the
range obtained from auditory cortex experiments. Despite this difference, the behavior of U and
D statistics vs. silence density is very similar. 

Population spiking activity across brain states

We next characterized the spiking activity of the population across epochs
with different silence density values spanning a range of brain state synchronization
levels  (Fig.  4.4.4A top).  We  observed  that  average  population  rate  during  UP
intervals,  aligned  at  the  onset  and  the  offset,  was  surprisingly  lower  for
desynchronized  epochs  compared  to  synchronized  epochs  (Fig.  4.4.4A bottom
traces). We computed overall average population rate in each epoch (i.e. population
spike count in an epoch divided by epoch length W) and then averaged epochs with
similar  silence  density  (density  bins  of  width  0.1).  As  expected,  the  overall
population rate decays as silence density increases, i.e. the more silence the fewer
spikes (Fig. 4.4.4A top). We then computed the same averaged population rate but
considering only U intervals. As expected from the analysis shown in figure 4.4.4A
(bottom traces), the averaged rate showed an increase as a function of the silence
density in all experiments except for one recording from S1 (Fig. 4.4.4B bottom).
This indicates that the population rate during U intervals tends to increase as the
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brain  state  becomes  more  synchronized.  This  increase  compensates  partly  the
decrease in the overall average rate (considering both Us and Ds) that would be
obtained by only introducing more silence (compare dotted line with the rest of the
experiments).

Figure 4.4.4. Average Population rate during UP intervals as a function of Silence Density.  A,
Top:  An  example  experiment  showing  spontaneous  changes  silence  density  levels  (same
experiment is shown in Fig. 4.4.2A-B). Bottom: Averaged population rate R(t) aligned at the onset
and the offset of Us for the different epochs showed in the top panel. The color of the rate trace
indicates the silence density observed in that epoch (see top trace). B, Summary of n=6 A1 and
n=4 S1 experiments. Top: population rate averaged within W= 50 s epochs versus silence density
(dots represent averaged of all epochs within silence density bins of size 0.1) normalized by the
rate obtained at the lower value of silence density reached in that experiment.  Bottom: same as
top plots except that population rates were averaged exclusively during UP intervals. Experiment
shown in A is marked in magenta. Vertical dashed line indicate the silence density value below
which the detection of U and D can be inaccurate.

Network model exhibiting changes between synchronized and 
desynchronized states

Can a model that shows adaptation and fluctuations capture the features of
UP and  DOWN  statistics  across  different  brain  states?  We  considered  a  low-
dimensional  model  describing  the  collective  dynamics  of  a  single  excitatory
population,  characterized by the rate  r(t)  (expressed in  Hz), which exhibits  rate
adaptation,  a(t) (in arbitrary units; Fig. 4.4.5A). This is a particular instance of an
extensively  used  class  of  models  describing  the  activity  of  a  self-excitable
population with a slow negative feedback, here provided by the adaptation, which
can induce transitions between quiescent and sustained firing rate intervals (Latham
et al., 2000; Holcman and Tsodyks, 2006; Curto et al., 2009; Melamed et al., 2008;
Mejias et al., 2010; Mattia and Sanchez-Vives, 2012) (Fig. 4.4.5A). The dynamics
of these variables are described by:

τr

dr (t )
dt

=−r (t )+ φ (J r (t )−a(t )+ θ+ σ ξ(t )) (1.1)
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τa

da (t )
dt

=−a (t )+ β r (t ) (1.2)

The time constants for each dynamical variable are denoted by τr and τa

(taking the values 10 and 1000 ms, respectively) and the strength of the excitatory
recurrent connection is  J  (with units of Hz-1). The population receives an external
fluctuating current  with mean input θ and standard deviation σ (in arbitrary units).
ξ(t) is a stochastic Gaussian process (see Methods section 3.4 for details). As in the
previous chapter, these ad hoc fluctuating term represents inputs coming from other
brain areas plus the fluctuations of the network activity whose mean rate is r(t). The
parameter β,  with units  of  Hz-1,  sets  the  strength of  the  adaptation.  We use the
transfer function Φ (Fig. 4.4.5B; (Brunel, 2003)) described by 

φ (x )={
0 x< 0
x2

3
0≤x< 1

√4x−3
3

x≥1

(1.3)

This  function  captures  nicely  the  change  of  concavity  observed  in  the
transfer function of cell recorded in vitro or spiking neuronal models. In contrast to
the classic sigmoid function, it does not saturate but exhibits a square root behavior
at high rates (Fig. 4.4.5C). We set the output rate of the inflection point where the
function changes its concavity at unrealistically low values (Fig. 4.4.5C). This is
necessary to obtain stable solutions of the system at low rates representing the UP
state. As mentioned in Chapter 4.3 this is a problem when using this type of models
with  sigmoid-like  transfer  function  and  slow  negative  feedback  to  generate
bistability: the state with high rate is obtained at values of the rate where the transfer
function  is  already “saturating”  (i.e.  concave  down)  which  generally occurs  for
much higher  rates (20-40 spikes/s)  than those observed during UP intervals (~3
spikes/s).

Based  on  the  nullclines  of  the  system  (Fig.  4.4.5C),  in  the  absence  of
fluctuations  σ=0,  according  to  the  mean input  θ and adaptation  strength  β   the
system can operate  in  qualitatively different  regimes in  a similar  way as it  was
observed in the previous chapter5:  mono-stable  DOWN (violet),  mono-stable UP
(orange),   bi-stable  UP and  DOWN(magenta)  and  oscillatory  (turquoise)  (Fig.
4.4.5C). An example of the UP and DOWN dynamics produced by the model in the
oscillatory regime in the presence of external fluctuations is shown in figure 4.4.5D.

5 We consider a state as stationary if adaptation was unable to make the system transition
away from it,  while a non-stationary state is  a fixed-point  that  is  stable temporarily
while adaptation increases or decreases, but eventually loses stability and switches to the
other state.
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Figure  4.4.5.  Model  of  UP  and  DOWN  switching  dynamics.  A, Scheme  of  the  network
architecture showing a single population of recurrently connected excitatory cells, characterized
by  its  population  rate  r(t),  which  exhibit  spike  frequency  adaptation,  characterized  by  the
variable a(t),  and receiving and external fluctuating input with mean θ and standard deviation σ.
B, Transfer function shows the dependence of the population rate on its input current. C, Top left:
a-nullcline for various values of the strength of adaptation (β). Top right: r-nullcline for various
values of the mean external input θ. Bottom:  stability regimes in the noise-free system (σ=0) as a
function  of  β  and  θ  can be  mono-stable  (UP-stable  is  purple  and  DOWN-stable  is  orange),
bistable (UP and DOWN stable, pink) or show a limit cycle (turquoise). D, Top: phase-plane (r,a)
showing the r-nullcline (black) and a-nullcline (brown) superimposed with an example trajectory
showing UP and DOWN transitions.  Bottom: the same example trajectory is shown as  r  and a
versus time. Parameters: β=8 Hz-1,  θ=3 (see asterisk in C), σ=3 and J=10 Hz-1 .

The next question was if such a simple model could reproduce qualitatively
the  changes  observed  in  UP  and  DOWN  statistics  along  the  desynchronized-
synchronized axis by gradually changing some of the model's parameters along a
specific trajectory in the parameter space. As we observed in our data,  different
levels of silence density were associated with systematic changes in the statistics of
UP and DOWN states. For the rest of the analysis we focus on on the statistics of
the extremes of high and low values of silence density  observed in auditory cortex
(summarized in Fig. 4.4.2C), and tried to qualitatively reproduce the changes in the
UP and DOWN statistics observed between those extremes. 

The low silence density periods showed high values of mean(U) and CV(U)
and low values of mean (D) and CV(D) (Fig. 4.4.6A). The longer Us versus shorter
Ds, suggested that this state corresponded to the the mono-stable UP regime (Fig.
4.4.5C orange). In this regime, the transitions UP to DOWN are triggered by the
external  fluctuations (because the UP is  a  stable  fixed point)  thus  yielding high
CV(U).  In  contrast  the  transitions  DOWN to UP result  from the recovery from
adaptation and fluctuations do not play an important role yielding low mean(D) and
low CV(D)  (Fig.  4.4.6B-C).   Equivalent  arguments  apply  for  the  high  density
periods with mean(D)>mean(U) and CV(D)>CV(U).  In  the  mono-stable DOWN
regime the system spends more time around the DOWN fixed point (large mean(D))
and  external  fluctuations  play a  larger  role  triggering  the  transitions  to  the  UP
(increased CV(D)).
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Modeling serial correlations between D and U

Next we turned our attention to the serial correlations between Us and Ds
and their dependence on brain state. In the data, during periods with low silence
density, both corr(Ui,Di) and corr(Di-1,Ui) were close to zero (Fig. 4.4.6A right). In
contrast,   high silence density periods were characterized by an asymmetry with
large corr(Di-1,Ui) and corr(Ui,Di) close to zero (Fig. 4.4.6A right). This scenario is
remarkably  similar  to  the  correlations  between  inter-burst-interval  and  burst
duration observed in the spontaneous activity of developing spinal cord  (Tabak et
al., 2001) which  led Rinzel and colleagues to investigate the mechanisms yielding
serial correlations extensively. The key observation from those studies was that the
amount  of  correlation  between  consecutive  intervals  was  determined  by  the
broadness  of  the  distribution  of  the  adaptation  variable  at  the  transition  times
(Tabak et al., 2001; Lim and Rinzel, 2010). This means that to obtain corr(Di-1,Ui)>0
the transitions between the lower and the upper branch of the r-nullcline must occur
at different points along the a-axes (see how the trajectories at the D to U transitions
in Fig. 4.4.6B right are quite scattered). When the variability of the adaptation is
large at the transitions times, the transitions do not reset the system because the
value of  a(t)  acts as a buffer that “stores” the information about the length of the
previous interval and correspondingly impacts the length of the current one: if a
strong fluctuation kicked the system early during D to the U (short D), the value of
a is rather large at transition time (far from the lower knee), and the following U
will tend to be short because the system is closer to the upper knee. This necessary
condition is also sufficient to obtain corr(Di-1,Ui)>0 in the oscillatory regime (Fig.
4.4.5C turquoise  region)  (Tabak et  al.,  2001;  Lim and Rinzel,  2010). However,
under the presence of a stable fixed point in the upper brunch (Fig. 4.4.6B left), the
value of a(t) at the transition, i.e. the distance to the UP fix point, does not have a
great impact on the U duration anymore. This is simply  because the system spends
most  of  the  U  around  this  UP fixed  point  until  a  large  fluctuation  triggers  a
transition  to  the  lower  branch.  For  an  equivalent  argument  an  UP fixed  point
prevents  the  system from generating  corr(Ui,Di)>0.  This  is  the  reason  why our
network model yields near zero corr(Ui,Di) and corr(Di-1,Ui) during desynchronized
states of low silence density (Fig. 4.4.6C bottom). 

During synchronized states the system has now a DOWN fixed point (Fig.
4.4.6B right)  but,  in  contrast  to  the  desynchronized case,  it  does  not  effectively
spend much time around it because the fluctuations, which are now bigger (σ=1),
are  very  effective  triggering  transitions  to  the  upper  branch  before  the  system
reaches the fixed point (see D-to-U transitions in 4.4.6B right panel). These D-to-U
transitions occurring at different values along the lower branch  generate a broad
distribution of a(t) values at the transition times (condition 1) and, because there is
no fixed point in the upper branch  (condition 2), yield large corr(D i-1,Ui)>0 (Fig.
4.4.6C bottom). The asymmetry between the upper and the lower branches, caused
by the shape of the transfer function Φ  (Eq. 1.3),   makes the fluctuations much less
effective triggering U to D transitions at different values of the upper branch making
corr(Ui,Di)~0 as observed in the data (compare Fig. 4.4.6A right with C bottom).
Replacing  Φ  by the standard sigmoid function made the r-nullcline symmetric and
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impaired  the ability of  the  system to  generate  asymmetric  serial  correlations  as
observed in the data (not shown).

All the changes in the U and D statistics observed in the data along the
silence  density  axis  (Fig.  4.4.6A),  are  schematically reproduced by two sets  of
model parameters (Fig. 4.4.6C). The two sets only differed in the values of  β, σ and
θ  which were chosen based on the mechanistic arguments given above. Therefore,
the model predicts that more synchronized states are associated with an increase in
the strength of adaptation β, an increase in the amplitude of fluctuations  σ  and a
reduction of the mean input θ received by the network. The plausibility of changes
in adaptation and external input mediating changes in brain state will be discuss in
the next chapter (Discussion).

Figure 4.4.6. Model of UP and DOWN transitions reproducing changes in dynamics like those
caused by brain state variations.  A, Summary of variations of the U and D statistics versus
silence  density  observed  in  A1  experiments:  mean  duration  (left),  coefficient  of  variation
(center) and serial correlations (right) averaged across n=6 animals (replotted from Figure 4.4.3
pink solid lines). B, Phase plane (r,a) and bottom r traces as in figure 4.4.5D. Variation of β, θ
and  σ  generates  different  model  regimes qualitatively mimicking the variations  in  U and D
statistics observed in A .  Left: a desynchronized state  generates long and irregular Us and short
and regular  Ds (see  bottom trace)  with  negligible  (Di-1,Ui)  and  (Ui,Di)  correlations (see  C).
Right:   the  synchronized state  generates  shorter  and  more  regular  Us and longer  and more
irregular Ds compared to the desynchronized state. It also exhibits strong (D i-1,Ui) correlations
but  negligible  (Ui,Di)  correlations  (C).  C, U  and  D  statistics  in  the  desynchronized  and
synchronized states obtained in the model. Parameters: J=10 Hz-1, τr=10 ms, τa=1000 ms, τnoise=5
ms; Desynchronized:  β=5 Hz-1, σ=0.5 and  θ=1.5 (a.u.); Synchronized:  β=8 Hz-1, σ=1 and θ=-1
(a.u.). 
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In this Thesis we studied different aspects of  neocortical  spontaneous
slow waves. First, we studied how fast oscillations observed during UP periods
are expressed across the cortical layers both  in vitro and  in vivo.  Second, we
analyzed  the  dynamics  of  slow  waves  in  vivo to  test  the  hypothesis  that
adaptation  and  random  fluctuations  are  mechanisms  participating  in  their
generation.  Third,  we built  a computational  model  to explore how those two
mechanisms would affect the dynamics and statistics of UP and DOWN periods
in a recurrently sustained bistable network. Fourth, we characterized how brain
state shapes the dynamics of slow waves in the neocortex.

Fast oscillations across the cortical layers during UP states 

 We found that fast oscillations occurring during UP periods in vivo had
similar spectral characteristics across cortical laminae. However, fast oscillations
were “compartmentalized” in SG and IG domains: coherence between recording
sites from the same domain was high while coherence between recording sites
from  different  domains  was  significantly  reduced.  This  suggests  that  fast
oscillations in SG and IG are locally generated in these two domains while they
are coupled more weakly with each other. Fast oscillations in SG and IG were
also observable in vitro. However, the spectral properties for both domains were
different:  while  SG fast  oscillations  were  stronger  and  in  the  beta  range  of
frequencies, IG fast oscillations where weaker and tended to reside in the gamma
range. Fast oscillations  in vivo were stronger than those observed  in vitro for
both domains. We hypothesized that the differences between the isolated cortical
network  in  vitro and  the  same  cortex  in  situ could  be  due  to  a  reduced
excitability  in  the  in  vitro  preparation.  In  order  to  increase  excitability,  we
applied kainic acid  in vitro,  an agonist of excitatory kainate receptors.  Kainic
acid produced dramatic changes in the slow wave dynamics, leading to a specific
disruption of slow waves in IG. In addition, kainic acid also boosted the power
of the oscillations observed in control ACSF and increased the frequency of the
primary fast oscillation in SG while reducing that in IG towards an intermediate
approximately common value. Therefore, from the perspective of fast oscillatory
dynamics, increasing excitability produced a more similar laminar pattern to the
one observed in vivo.

Fast oscillations during UP periods in vivo are compartmentalized in 
SG and IG domains

Fast oscillations  in the LFP across the cortical column  during the UP
states  have  been  described  to  occur  in-phase  across  the  cortical  layers  in
anesthetized and natural sleeping animals,  based on cross-correlation analysis
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between neighbouring pairs of electrodes at different cortical depths and on visual
comparison of 15-80 Hz filtered traces (Steriade et al., 1996). In this way, the phase-
locking  of  fast  oscillations  between  adjacent  LFP cortical  signals  in  the  same
column is  preserved during REM and desynchronized states in anesthetized cats
after  electrical  stimulation  of  brainstem areas  related  to  the  activating  systems
(Steriade et al., 1996). In contrast, laminar recordings in the visual cortex of awake
monkeys  during  resting  or  visual  stimulation  shows  that  coherence  between
electrodes  from different  laminar  domains  (supra/infra  granular)  is  substantially
decreased even when fast oscillations coherence between electrodes from the same
domain is high (Maier et al., 2010). This compartmentalization of fast oscillations
observed would imply a lack of consistency in the oscillatory phases from SG and
IG.  By doing  a  detailed  analysis  of  laminar  recordings  on  the  visual  cortex  of
ketamine  anesthetized  ferrets,  we  revised  this  apparent  contradiction  in  the
literature. 

We  observed that fast oscillations occurring during the UP states in vivo
were  also  compartmentalized in the SG and IG domains,  and  the limits between
those compartments coincided with the location of the phase reversion of the slow
waves. Our results in the anesthetized ferret are in agreement with those reported in
the awake monkey (Maier et al., 2010), but contrast with those in anesthetized and
natural  sleeping  cats,  where  in-phase  fast  oscillations  were  concluded  to  occur
across the cortical laminae (Steriade et al., 1996). However, it is important to note
that the results from Steriade and colleagues based on cross-correlation analysis of
neighboring electrodes could mask the drop in coherence that might occur across
distant recording sites.  Considering this, our observations can be reconciled with
those  from  (Steriade  et  al.,  1996) since  compartmentalization  implies  that
neighboring  electrodes  exhibit  high  coherence  except  at  the  edge  of  the
compartments.

Another  result  in  our  analysis  supports  a  compartmentalization  of  fast
rhythms in SG and IG  in  vivo;  fast  oscillations  observed in  the  average power
spectrum  during  UP  periods  in  vivo for  SG  and  IG  showed  similar  spectral
properties, but in 3 out of 4 cases a second oscillatory peak at slower frequencies
(beta range) appeared in SG recordings  (Figure  4.1.2, Figure  4.1.5, blue arrows).
This  sets  a  qualitative  difference  between  fast  rhythms  generated  in  these  two
domains. Steriade and colleagues  did not report this effect,  even when the precise
location of peaks in their  example cross-correlograms varies for different layers in
the same direction (i.e., see Figure 5.1 below). 

As  Steriade  et  al  1996,  our  recordings  were  obtained  under  ketamine-
xylazine  anesthesia.  This  specific  pharmacological  manipulation  could  have  an
effect on the layer specificity of fast oscillations. Indeed, NDMA receptor activation
controls different microcircuits involved in gamma rhythm generation in superficial
layers of enthorinal cortex in vitro (Middleton et al., 2008). Moreover, the use of
ketamine  in vitro reduces the power of gamma oscillations in superficial layers of
enthorinal  cortex,  while  IG  gamma  oscillation  properties  are  not  altered
(Cunningham et  al.,  2006).  In  addition,  anesthetic  agents  per  se  may alter  fast
cortical  dynamics  without  changing  cortical  activations  to  slow  wave  patterns.
Subanesthetic administration of ketamine in vivo induces an enhancement of gamma
oscillations in neocortex (Pinault, 2008), and volatile anesthetics such as halotane or
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isofluorane  —  which  potentiate  GABAA transmission  while  inhibiting  AMPA
receptors — can produce an enhancement in spontaneous gamma oscillations at low
doses (Vanderwolf, 2000; Imas et al., 2004). Further studies are needed in order to
assess if the compartmentalization of fast oscillations observed during UP periods in
ketamine-anesthetized animals is also present across different brain states, in natural
sleeping, unanesthetized preparations and under different anesthetics. Nevertheless,
the similarity of the compartmentalization reported here and that observed in the
awake monkey across different brain states (Maier et al., 2010), suggest that SG and
IG compartmentalization of fast-frequency oscillations might be a general feature of
neocortical operation.

Figure 5.1. Cross correlation analysis of LFP signals from neocortex of ketamine-anesthetized cats
during slow-wave activity at different depths (modified from  (Steriade et al.,  1996)). On the left,
simultaneous LFP signals at different depths. Phase reversion of slow-waves is obtained around -0.5
mm (darkest trace). Negative peaks in the LFPs are used as trigger signal for choosing 2-seconds
windows in order to perform cross-correlation analysis. On the right, cross-correlation of pairs of
electrodes indicated by curly brackets. Coloured lines for different frequencies are shown.

Laminar specificity of fast oscillations during UP states in vitro

Given the compartmentalization observed in vivo, we considered that during
UP periods cortical layers from visual cortex can be grouped into SG and IG as two
functional blocks from the oscillatory perspective. We then studied if the isolated
cortical circuit can generate such laminar patterns of fast oscillations as observed in
vivo. 

Fast oscillations have also been observed during spontaneously generated
UP states in neocortical slices maintained  in vitro, showing that the local cortical
circuit  has the necessary components for their  generation  (Compte et  al.,  2008).
Although these spontaneous UP states are propagated across the cortical column
(Sanchez-Vives  and  McCormick,  2000),  the  laminar  specificity  of  these  fast
oscillations  has  not  been explored,  and  this  was  one of  the  central  aims  of  the
present study. 
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We observed that during UP states in vitro fast oscillations occur in SG and
IG  domains  and  display  clear  different  frequency  domains:  while  SG  fast
oscillations dominated the beta range of frequencies, IG fast oscillations tended to
occur in the gamma range. Moreover, the power of oscillations in SG was stronger
than in IG. These results differ from our observations in vivo, where fast oscillations
tended to occur at approximately similar frequencies, although also in vivo SG often
displayed an additional beta-frequency oscillation in parallel to our in vitro results.
A clear difference between in vivo and in vitro was that both SG and IG oscillations
were stronger in vivo than in vitro (Figure 4.1.5). 

Mechanisms of fast oscillations potency and coherence

Balanced excitatory and inhibitory forces have been suggested to be at the
root of fast rhythms  (Compte et al., 2008). Slowing down the time course of fast
inhibition by GABAA agonist thiopental displaces the peak of fast rhythms towards
lower  values,  suggesting  that  GABAA time  course  is  critical  to  determine  the
oscillatory frequency  (Compte et al., 2008). We hypothesized that the differences
observed between the in vivo and in vitro preparations might arise in the slices by a
decrease of excitability. Therefore, we investigated to what degree an excitability
increase in the slice mimics cortical dynamics observed  in vivo.  To this end, we
administered kainic acid (an agonist for kainate receptors) into the perfusion bath, a
common procedure to activate cortical slices (Ainsworth et al., 2011).

Kainic acid administration produced changes in the slow wave dynamics in
vitro.  Increasing  the  excitability  with  the  lower  dose  (200nM)  of  kainic  acid
produced  an  increase  in  the  frequency  of  UP states  by  reducing  DOWN  state
durations.  The  blockage  of   GABAA receptor  by  bicuculine  in  cortical  slabs,
increasing the excitability of the slab, produces a decrease in the duration of both
UP and DOWN intervals (Chen et al., 2012). Moreover, a previous study using our
slices preparation shows that bicuculine reduce UP durations and increases DOWN
durations  (Sanchez-Vives  et  al.,  2010).  Altogether,  these  result  suggests  that
depending  on  the  way  that  excitability  is  modulated,  alterations  in  slow  wave
dynamics are diverse. 

The presence of 200 nM kainic acid boosted the power of fast oscillations in
IG significantly.  In  the  400nM kainic  acid,  fast  oscillations  were  even  stronger
across  the  cortical  column,  although  the  UP and  DOWN  states  dynamics  was
disrupted in IG. Furthermore, in the average across experiments, the frequency of
oscillations  in  IG  was  reduced,  while  it  was  increased  in  SG  towards  an
intermediate and approximately equal value. Altogether, our results indicate that an
excitability  increase  boosts  fast  frequency  oscillations  and  homogenizes  the
frequency of the rhythms generated in the two domains of the cortical column, as in
the in vivo condition. This suggests that local cortical excitability modulates inter-
laminar coupling and intra-laminar oscillatory dynamics, and is an important factor
in  understanding  dynamical  differences  between  in  vitro and  in  vivo  cortical
network dynamics.

Our in vitro study the mechanisms of fast frequency modulation across the
cortical  laminae.  Previous  experimental  and  computational  studies  have  rather
concentrated on synaptic mechanisms, but not on the role of network excitability on

112



5. Discussion 

fast oscillations. In particular, inhibitory synaptic transmission and mutual inhibition
are key components for gamma oscillations, based on studies in the hippocampus
(reviewed by (Bartos et al., 2007)). Computational network models of gamma-range
synchronization with sparse neuronal participation have implicated time scales and
strengths of fast excitatory and inhibitory currents in the control of the oscillation
frequency (Brunel and Wang, 2003). In the context of UP and DOWN states, fast
oscillations during UP states might also rely on the interplay between excitatory and
inhibitory populations (Compte et al., 2008). 

Our data brings forward network excitability as a modulatory mechanism of
fast rhythms in the cortex. Note that even if we employ a synaptic receptor agonist
in  our  manipulation,  this  does  not  potentiate  synapses  functionally  but  instead
activates kainate receptors, resulting in a sustained increase in excitability without
significant  synaptic  strength  modulation  (Campbell  et  al.,  2007).  Can  we
mechanistically  understand  such  an  effect  of  excitability?  Is  an  increase  of
excitability responsible for the increase of power of fast oscillations in IG? Are SG
oscillations getting synchronous with the oscillations boosted in IG? One way to test
these hypothesis is to use the model proposed by (Compte et al., 2003) and decrease
the leak conductance to mimic the increase in the excitability of the network. 

The laminar distribution of kainate receptor shows maximal concentration
in layers V-VI in the visual cortex of adult ferrets, whereas the expression in the rest
of  layers  remains  low  (Smith  and  Thompson,  1994).  This  suggests  that  our
manipulation could indeed have engaged differently the two layer domains of the
cortical circuit, triggering changes associated with their specific coupling dynamics.
More detailed computational models with SG and IG compartments (as in (Roopun
et  al.,  2008;  Ainsworth  et  al.,  2011)),  might  help  to  elucidate  the  mechanisms
underlying the fast  oscillations occurring during kainate-evoked UP states in the
cortical laminae.

Relation to other in vitro preparations to study fast oscillations in vitro.

To  our  knowledge,  this  study  is  the  first  to  investigate  the  laminar
specificity of fast oscillatory activity during UP states  in vitro. However, different
previous in vitro studies explored the mechanisms of fast oscillations in other brain
emergent  patterns.  Indeed,  in  vitro models  have  often  been  used  to  study  the
mechanisms underlying the generation of fast  oscillations in cortex by electrical
(Metherate and Cruikshank, 1999) or pharmacological  (Cunningham et al., 2003;
Roopun et al., 2006, 2008, 2010; van Aerde et al., 2009; Oke et al., 2010; Ainsworth
et al., 2011) activation of the slices. Under exogenous activation, the generated fast
oscillations in some of these in vitro preparations shows strong and narrow peaks in
their power spectra. However, this feature differs to what is typically observed in
the neocortex in vivo (Wang, 2010). Neverthless, they are succesful to reproduce the
laminar decoupling observed in awake  monkeys (Buffalo et al., 2011; Spaak et al.,
2012; Xing et al., 2012). Moreover, different drugs and concentrations on some of
these in vitro preparations can generate diverse laminar activation profiles (Roopun
et  al.,  2010;  Ainsworth  et  al.,  2011),  showing that  the  isolated  circuitry of  the
neocortex is capable to generate distinct laminar profiles of fast oscillatory activity.

Although other in vitro preparations display slow waves in SG but not in IG
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(Cunningham et  al.,  2006),  our  preparation  spontaneously  displays  robust  slow
waves both in SG and IG (Sanchez-Vives and McCormick, 2000). Moreover, our in
vitro preparation showed robust UP and DOWN states and generated layer-specific
fast  oscillations  during  UP  periods  in  the  absence  of  externally  applied
neuromodulators, synaptic agonists or electrical stimulation protocols  (Compte et
al., 2008). 

Kainic acid produce different laminar profile of fast oscillations in different
cortical areas in vitro. On the one hand, in secondary somatosensory cortex kainic
acid at 400nM generates two independent local fast oscillators in SG and IG, where
SG expresses gamma oscillations and IG beta oscillations (Roopun et al., 2006). A
similar profile is observed in the visual cortex when the agonist carbachol is also
added  on  the  bath,  where  SG  and  IG  exhibit  gamma  oscillations  with  faster
frequencies  in  IG  (Oke  et  al.,  2010).  On  the  other  hand,  the  same  researchers
reported the reverse situation using the same preparation but in primary auditory
cortex in vitro: kainic acid generated two independent local gamma generators at
30-45 and 50-80 Hz in layer 2/3 and layer 4, respectively (Ainsworth et al., 2011).
While the emergence of the faster oscillation in layer 4 occurs at maximal (800nM)
kainate concentration, for lower concentrations (<=600nM) slower fast oscillations
are present in both layers and the frequency of the oscillation depends linearly on
the concentration (Ainsworth et al., 2011). 

In our in vitro experiments, kainic acid administration produced an opposite
effect in SG and IG: while spontaneous UP states in vitro show fast oscillations at
different frequencies in SG and IG, with higher frequency for IG than SG, addition
of  kainic  acid  tends  to  equalize  the  frequency  of  fast  oscillations  towards  an
intermediate  value.  Moreover,  in  our  in  vitro  preparation,  increasing kainic  acid
concentration further  than 400 nM leads to spreading depression and epileptiform
activity in the slice.

Regarding  the  mechanisms  regulating  laminar  segregation  of  fast
oscillations,  computational  simulations  suggest  that  inhibitory  interlaminar
connections  could  facilitate  the  frequency segregation in  auditory cortical  slices
(Ainsworth et al., 2011). In the secondary somatosensory cortex, SG and IG local
networks  fast  oscillatory  activity  has  been  suggested  to  rely  on  electrical  and
chemical synapses, respectively, in order to produce the segregation of frequencies
(Roopun et  al.,  2006). However,  pharmacological  blockage  of  gap  junctions  by
carbenoxolone in visual cortical slices supresses fast oscillatory activity in a more
robust  way  for  the  faster  rhythm  that  is  present  in  SG,  suggesting  that  the
mechanisms  underlying  different  frequencies  in  SG  and  IG  might  depend  on
experimental conditions  (Oke et al., 2010). In our case, the mechanisms by which
the local SG and IG networks equalize their fast oscillation frequencies (without
significant  coherence increase) by increasing neuronal  excitability are still  to be
determined.  Further  in  vitro pharmacological  manipulations  and  computational
models might be required to understand how fast oscillations are generated across
the cortical column during UP states.

Methodological caveats in our in vitro studies

Fast oscillations in IG in vivo were remarkable strong, whereas in vitro fast
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oscillations were weaker and often difficult to identify distinctly in the bare power
spectrum. This is due to the fact that LFP power spectra are dominated by a power
law both in vitro and in vivo (Buzsáki and Draguhn, 2004). A rhythm is manifested
by the existence of a small peak superimposed on such a broad-band power-law
power spectrum (Wang, 2010). While such bumps are readily observable in vivo, in
vitro they are generally small  as previously described  (Compte et  al.,  2008). To
overcome this problem we used an analysis method to emphasize departures from
the power-law baseline power spectrum (excess power, see Methods for Chapter 4.1
in section 3.2 from Methods). This analysis has been used before to characterize the
power-law observed in the power spectra of human EEG recordings (Miller et al.,
2009). This analysis allowed us to better compare the frequency of oscillations in
spite of the different power in vivo and in vitro. One possible caveat of this approach
is the fact that  in vitro,  the method would emphasize random fluctuations in the
power spectrum, falsely attributing them to oscillations. However, this is unlikely to
be  the  case  since  this  would  imply  that  the  identified  bumps  should  be  either
uniformly distributed along the frequency axis,  or equally biased to high or low
frequencies  for  IG  and  SG recordings.  Instead,  we  found that  SG  peaks  were
distributed over the beta range of frequencies whereas IG peaks were more spread
but more preferentially on the gamma band. 

A second possible caveat in our in vitro study is the fact that we used two
different  electrodes to record  from SG and IG domains.  Systematic  differences
observed in these two domains could therefore reflect not a difference in layer, but
the different band-pass properties of the two electrodes. We ruled out this possibility
in three different ways. Firstly, we randomly selected the electrodes used to perform
the recordings in each cortical domain for each  in vitro experiment, so the same
electrode used to record in SG in one experiment was subsequently used to record in
IG in another experiment. Population averages would therefore average out possible
differences in filtering properties of the electrodes.  Secondly,  we computed LFP
power spectra in both UP and DOWN states and computed the ratio of these power
spectra, i.e. the relative increase of power in UP relative to DOWN state for each
frequency. We computed this relative power independently for SG and IG domains,
so that any possible difference due to filtering properties of the electrodes would be
eliminated through this analysis. The qualitative results of such analysis were the
same as reported in the Results section. Thirdly, in some experiments we placed
both electrodes in the same layer and recorded LFP signals separated horizontally
on the slice.  We then  analyzed signals  from the  two electrodes  using  the same
methods as we used for vertically separated recordings. The resulting power spectra
overlapped in all cases, with no significant power deviation from one another. Taken
together, this confirms that differences measured in LFP signals recorded from the
two different electrodes in SG and IG domains reflected actual differences in neural
activity in the two cortical domains.

Finally,  we  assumed  that  the  compartmentalization  of  fast  oscillations
observed  in  vivo  also  applied  in  vitro.  Another  possibility  would  be  that  fast
oscillations  in vitro have multiple laminar generators. Laminar recordings  in vitro
would  be  necessary  to  test  this  hypothesis.  In  our  in  vitro recordings,  single
electrodes  for  SG and IG recordings  were  placed  on  the  first  and  last  third  of
cortical depth. Similar to in vivo, we observed that  fast oscillations in SG and IG in
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vitro  were segregated in different frequency bands, and coherence levels between
SG and IG were in the range 0.4-0.6. The analogy between our results  in vitro and
those  obtained in  vivo,  suggest  that  the  assumption  of  two  domains  for  fast
frequency generation is justified in vitro.

UP and DOWN statistics in vivo

A quantitative  analysis  of  population spiking  activity during synchronized
states under urethane anesthesia  has revealed that the statistics of  UP and DOWN
intervals  together  with  the  statistics  of  the  instantaneous  population  rate  in  our
experimental  data  indicates  that  the  role  of  an  adaptive  process  in  causing
transitions is  weak,  whereas fluctuations might  have a larger impact  driving the
dynamics of UP-DOWN transitions. 

We  found  that  during  synchronized  states,  U  and  D durations   displayed
skewed  gamma-like  distributions,  exhibiting  large  coefficients  of  variation
(mean±SEM: CV(U)=0.68±0.03 CV(D)=0.68±0.04,  Figure 4.2.2.C). Consistently,
UP  and  DOWN  dynamics  where  characterized  by  a  weak  periodicity  in  the
temporal  pattern  of  the  population  rate.  However,  U  an  D  durations  showed
positive  correlations  between  consecutive  periods  (Figure  4.2.2.C),  a  common
signature  of  slow fatigue  processes  which  carry the  information  about  previous
activity to subsequent intervals. We searched for that fatigue process but found that
during  UP intervals the population firing rates did not revealed significant traces of
rate  adaptation,  as  indicated  by  a  lack  or  non-evident  progressive  decrease  of
average population rate. Together, these seemingly contradictory results suggest that
an adaptive mechanism exists but has a weak but significant role in determining the
durations of Us and Ds, and that fluctuations, in the external inputs or in the local
activity, might have a large impact driving the dynamics of UP-DOWN transitions. 

We found  a skewed average rate distribution of individual cells during UP or
DOWN  intervals  with  low  and  near-zero  population  mean,  respectively.  The
temporal  profile  of  population  spike  count  variability  across  UP intervals  was
characterized by a transient  surge at  the U onset  followed by relative stationary
dynamics. 

Irregular UP and DOWN intervals during synchronized states under 
urethane anaesthesia

During synchronized states,  in particular  those observed in natural slow-
wave  sleep  (SWS)  and  under  different  anesthetics,  cortical  UP  and  DOWN
transitions  have  been  described  to  be  modulated by  a  slow  oscillation  with  a
depolarizing and hyperpolarizing phase at less than 1 Hz that  also groups faster
population  oscillatory  events  such  as  delta  waves  or  spindles  during  those
depolarizing phases (Steriade et al., 1993b, 1996). 

The ability of  cortical  microcircuits  to  generate  slow oscillatory activity
with  alternating  UP  and  DOWN  intervals  has  been  shown  in  isolated  cortex
preparations  (Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000). This
suggests a central role of cortex in their generation since no slow oscillatory activity
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is  displayed  in  the  thalamus  of  decorticated  animals  (Timofeev  and  Steriade,
1996b). In this context, fatigue mechanisms, such as spike frequency adaptation or
synaptic depression, are appealing candidates to explain the oscillatory switching.
This  idea  has  been  implemented  by  different  computational  modeling  studies
((Bazhenov et al., 2002; Compte et al., 2003), to name some examples). Moreover,
if this type of mechanisms underlie the switching between UP and DOWN intervals
it  would   be  reflected  as  low  variability  in  the   U  and  D  durations,  positive
correlation between consecutive periods and, a decrease in population firing rate as
UP interval progresses. For this reason, a previous quantitative analysis of  in vivo
intracellular  recordings  during  synchronized  states  in  urethane  anesthetized  rats,
questioned the characterization of the activity as a slow oscillation since they found
skewed U and D distributions  and correlation between consecutive intervals not
significantly different than zero (Stern et al., 1997). In agreement with those results,
during natural  SWS of  rats  the  statistics  of  D and cycle  duration times display
exponential shape distributions (Johnson et al., 2010). In contrast, the variability of
U and D duration observed in ketamine–xylazine anesthetized mice is smaller for
various cortical areas (CV<0.4, on average) with a special reduction in variability in
prefrontal areas (CV<0.2) (Ruiz-Mejias et al., 2011). 

Our results  are in  agreement with those reported in  (Stern et al.,  1997)
where  distribution  of  U  and  D  durations  are  skewed  with  high  coefficient  of
variation.  However,  we  observed  significant  positive  correlations  between
consecutive U-D and D-U (Figure 4.2.2) when they don't. A possible explanation of
this discrepancy might be the reduced amount of considered intervals (30 in their
case; we  usually  consider  at  the  order  of  thousands  of  intervals)  leading  to
difficulties in detecting the presence of weak correlations. Another possibility could
be related with differences in cortical state. At moderate doses of urethane (similar
to those used in our experimental data set and in (Stern et al., 1997)), spontaneous
transitions between synchronized and desynchronized states are observed (Clement
et al., 2008; Curto et al., 2009; Steriade et al., 1994). For this reason, we focused our
analysis  on  sustained  periods  of  synchronized  states  in  the  far  end  of  the
synch./desynch.  spectrum (Fig.  4.2.1).  The study by Stern and colleagues might
have analyzed desynchronized periods where serial correlations between U and D
become weaker (Fig. 4.4.2C). The difference with (Ruiz-Mejias et al., 2011)  might
be related with the anesthesia, ketamine vs. urethane,  which generally has a strong
impact in the UP and DOWN dynamics as  discussed below.

Comparison of UP and DOWN dynamics across different anesthetics.

Deep levels of ketamine–xylazine tend to generate regular UP and DOWN
dynamics with approximately Gaussian U and D distributions  (Deco et al., 2009a),
while low levels induce exponential shapes (Deco et al., 2009a). In a similar way,
under  light  levels  of  barbiturate  sodium thiopental  anesthesia,  UP and  DOWN
intervals are irregular with duration spanning from tens of milliseconds to seconds
(Lampl et al., 1999).
Urethane is commonly used to induce synchronized states  (Steriade et al., 1993a;
Luczak et al., 2007, 2009). At high doses it induces sustained synchronized states
(Détári et  al.,  1997) were more regular slow waves appear compared to what  is
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observed during SWS  (Steriade et al., 1993a). However, moderate levels produce
spontaneous cyclic alternations between synchronized and desynchronized states,
which closely resemble the alternations observed between SWS and REM in rats
natural sleep. For this reason, moderate levels of urethane have been proposed as a
good model of sleep (Clement et al., 2008; Pagliardini et al., 2013). Moreover, the
alternations of cortical states observed under urethane are not caused by variations
in its concentration in the blood (Clement et al., 2008). Thus, with the doses used in
our experiments and in contrast to what is sometimes assumed, synchronized and
desynchronized periods are uniformly distributed over several hours following the
administration of the anesthesia (i..e there is no drift towards desynchronized states
as the drug is being metabolized). This does not mean that the dose of anesthesia
does not affect the brain state (e.g. desynchronized periods can be triggered by a
strong boost of urethane, Fig. 4.4.1A) but that the spontaneous alternations in brain
state are observable for a considerable range of dose levels (Clement et al., 2008).
Additionally, neural activity during synchronized states under urethane resembles
that observed during natural SWS  (Wolansky et al., 2006; Clement et al., 2008),
although  differences  in  the  spontaneous  firing  properties  of  neurons  have  been
reported (Luczak et al., 2007).

Ketamine-xylazine  induces  faster  and  stronger  slow  waves  than  those
observed under  urethane  (Steriade et  al.,  1993a;  Sharma et  al.,  2010).Moreover,
ketamine-xylazine also induces greater mean D values than those observed during
natural  SWS  conditions  (Chauvette  et  al.,  2011).  When  ketamine-xylazine  and
urethane anesthesias are compared, visual inspection of LFP ((Sharma et al., 2010),
Fig. 2) and intracellular ((Steriade et al., 1993a), Fig. 5) traces during synchronized
states  suggest  that  the  periodicity  is  weaker  in  the  last  condition.  Although  no
rigorous comparison has been made under both anesthetics regarding the differences
in UP and DOWN dynamics, these observations somewhat explain the difference
between our results and those reported by  (Ruiz-Mejias et al.,  2011). Given that
properties of slow fluctuations depend on experimental conditions (Chauvette et al.,
2011; Contreras and Steriade, 1997), further quantitative comparisons of the UP-
DOWN dynamics  under  different  anesthetics  would  be necessary to  clarify this
discrepancy.

Weak periodicity of the slow global fluctuations during synchronized states
under urethane anesthesia

In the seminal work of Steriade and colleagues on natural sleep in cats, UP
and DOWN states appear in a slow oscillatory manner, which  generates a strong
rhythmicity manifested as ringing in the auto-correlogram (ACG) of the membrane
voltage and LFPs and, therefore, causes the UP and DOWN intervals to be regular
(Steriade et al., 1993a). In contrast, later work from the same group reported data
showing ACGs with a steep decay and little  ringing obtained from 20 sec time
windows during SWS. The authors suggested that higher levels of rhythmicity (i.e.
ACG  ringing)  can  be  revealed  when  ACGs  are  calculated  from  smaller  time
windows (Destexhe et al., 1999).  In a control analysis we used small time windows
and found that in some individual windows the ACG displayed ringing comparable
to those reported by (Steriade et al., 1993a; Contreras and Steriade, 1997) (Figure
A2.A  from  Appendix).  However,  the  rhythmicity  was  temporally  confined  to
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particular windows and decreased at neighboring windows. We conclude therefore
that  the  rythmicity  was  not  a  robust  and  representative  pattern  of  the  global
dynamics observed (Fig.  A2.B). Power spectrum of the MUAc revealed a broad
peak  at  ~0.7  Hz,  which  is  consistent  with  previous  studies  that  suggests  this
evidence as against a single oscillatory process causing UP/DOWN switching (Stern
et al., 1997).

Although deep ketamine–xylazine anesthesia is commonly used as a model
of SWS, a quantitative comparison of the two conditions reveals differences in the
dynamics of spontaneous activity such as a robust UP/DOWN periodicity expressed
by strong ringing in ACG under ketamine–xylazine that is greatly reduced in SWS
(Chauvette  et  al.,  2011).  On  the  other  hand,  during  synchronized  states  under
moderate levels of urethane anesthesia, the ACG of cortical LFPs exhibit low levels
of ringing (Figure 4.2.3) in agreement with previous results (Wolansky et al., 2006;
Clement et al., 2008), and with those observed during natural SWS (Chauvette et
al., 2011; Destexhe et al., 1999). 

Figure 5.2. A. Rhythmicity of slow waves in local field potential is higher during ketamine–
xylazine anesthesia than in SWS (modified from  (Chauvette et al.,  2011)). B, Example of
autocorrelogram of local  field potential  during synchronized states  of urethane anesthesia
(same experiment as in Fig. 4.2.3).

Average Population rate during UP intervals does not display adaptation

UP and DOWN switching is thought to be generated by adaptive processes
which build up during UP intervals and recover during DOWN intervals (Contreras
et al., 1996; Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000). This type
of process generally cause a decrease in the population rate along the UP intervals.
This decrease is observed during the UP/DOWN switching observed in vitro, where
the rate of multiunit spiking activity decreases as evidenced by comparing the rate
at the onset and the offset (Mattia and Sanchez-Vives, 2012). Our results showed in
contrast  that  averaged  population  rates  were  stable  during  the  UP  intervals
presenting  no  significant  decrease  between  the  onset  and  offset.  Moreover,  we
performed the same analysis over D intervals and compared the average population
rate  at  the  onset  and offset  but  found again no significant  differences  (data  not
shown).  This  finding  is  consistent  with  the  idea  of  UP and  DOWN  intervals
correspond to transitions between two attractor of the network dynamics (Cossart et
al., 2003). Transitions between the two attractors in this framework must be caused
my external inputs which “kick” the system from one basin of attraction to the other
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(Martí et al., 2008; Deco et al., 2009a, 2009b) or by intrinsic fluctuations generated
in the local activity of the circuit (Braun and Mattia, 2010) (particularly during the
UP intervals  since  DOWN  intervals  are  quiescent).  It  has  been  proposed  that
thalamic neurons showing rhythmic firing might cause DOWN to UP transitions
(Crunelli  and  Hughes,  2010).  This  mechanism,  however,  causes  in  principle
rhythmic  transitions  and,  unless  elaborated  further  to  account  for  the  lost  of
rythmicity  in  the  UP/DOWN  transitions,  is  not  directly  compatible  with  our
findings.

Stationary variability of MUA activity during UP states and the surge at 
UP onset

Besides the strong rhythmicity usually observed during slow waves, another
observed feature in the spiking activity from in vitro  UP/DOWN transitions is an
increase in the variability of the multiunit spike count at the UP offset compared to
the onset  (i.e. the  spike count  distribution at  the  offset  is  broader)  (Mattia  and
Sanchez-Vives, 2012). This might be caused by an increase in activity-dependent
self-inhibition  that  reduces  the  stability  of  the  UP  attractor  yielding  larger
fluctuations in the population activity (Mattia and Sanchez-Vives, 2012). In contrast
to  this,  our  results  showed  that  variability displays  a  surge  at  the  onset  of  UP
intervals that is followed by stationary dynamics (i.e. a plateau in the Fano factor of
the population spike count). We also observed that the offset is not preceded by an
increase in variability. Moreover, after the transient surge in variability, mean single
cell Fano factors are approximately one, consistent with Poisson statistics, and the
mean instantaneous pair-wise correlation coefficient does not exhibit any build-up
but  just  stationary  positive  and  near-zero  values.  Simultaneous  intracellular
recordings during UP/DOWN dynamics of multiple cells have shown an increased
variability across the membrane voltages of the recorded neurons at the onset but
not at offset of UP intervals  (Chen et al., 2012). Although the variability in this
study refers to the degree to which neurons transition synchronously from DOWN
to UP and viceversa (the study did not measure variability across UP intervals),
together  with our  finding describes  a  system exhibiting a  repertoire  of  different
ways to undergo DOWN to UP transitions but a homogenous way to undergo UP to
DOWN transitions.  This is  reminiscent  of  the observation reporting a variety of
different traveling waves causing the initiation of UP intervals  (Massimini et al.,
2004;  Sanchez-Vives  and  McCormick,  2000;  Luczak  et  al.,  2007,  2013).
Additionally, the initial portion of UP states might reflect different patterns (Luczak
et al., 2007, 2009) that might be related to consolidation processes (Chauvette et al.,
2012).  We  summarized  our  finding  in  Figure  5.3  showing  a  cartoon  of  the
population instantaneous rate during various individual UP intervals:  at the DOWN
to UP transition, the rate follows a variety of trajectories until it reaches the steady
state. The transitions from UP to DOWN occur in a stereotyped fashion (something
for which there is no mechanistic explanation).
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Figure 5.3. Schematics of population instantaneous rates during different UP intervals.

We found that the average individual firing rate during UP intervals,  3.6
spikes  per  second,  was comparable  with recent  patch clamp studies(Waters  and
Helmchen,  2006;  Constantinople  and  Bruno,  2011;  Gentet  et  al.,  2012) and
extra/juxta  cellular  recordings  (Sakata  and  Harris,  2009;  Massi  et  al.,  2012).
Nevertheless, this value overestimates the real average rate in the cortical network
given that  our extracellular  recording method is  not  sensitive to the presence of
neurons in the local network that do not fire spontaneous action potentials during
synchronized states  (Rudolph et  al.,  2007;  Steriade et  al.,  2001).  Moreover,  the
spike sorting method is biased towards high firing rate neurons, because isolating a
handful of waveforms is statistically more difficult than a large cluster. Regarding
the average rate during DOWN intervals, 0.08 spikes/s, it is to our knowledge the
first  report  of  this  magnitude  and  cannot  therefore  be  compared  with  previous
analysis.

Dynamics of putative E and I neurons during UP states

Classification of units based on waveforms into narrow spiking (putative
inhibitory, I) and broad spiking cells (putative excitatory, E) revealed that the UP
offset  was preceded by a drop in firing rate of the I population  which was the
followed  by  a fast  decrease  of  E  population  rate. In  agreement  with  our
observations,  intracellular  studies  in  vivo,  comparing  onset  and  offset  aligned
conditions, show that excitatory RS cells display sustained firing rates during the
UP intervals whereas inhibitory FS cells show firing rates that decrease towards the
end  of  the  UP interval  (Haider  et  al.,  2006).  The  same  temporal  profiles  were
observed  in  the  excitatory  and  inhibitory  synaptic  conductances  inferred  from
voltage clamp recordings (Haider et al., 2006). In the same way, other intracellular
studies have shown similar dynamics in the conductances with a drop of inhibitory
conductance  preceding  the  UP offset  (Rudolph et  al.,  2007),  despite  differences
observed in the conductance values.  Altogether,  these results  contradict  previous
theoretical  work  suggesting  that  UP intervals  are  terminated  by  an  increase  in
inhibitory activity  (Compte et al., 2003; Parga and Abbott, 2007; Melamed et al.,
2008; Chen et al., 2012). 
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Mechanisms underlying UP and DOWN dynamics in neocortex

We have investigated the mechanisms of intrinsic UP-and-DOWN dynamics
in cortical networks using a computational low dimensional model that implements
cellular adaptation and random input fluctuations. We studied the contribution of
each mechanism to the statistics of UP and DOWN states and the interplay between
excitation and inhibition that can lead to stable quiescent and low firing rate states.
In particular, we showed that a network model with: i) bistability based on a specific
asymmetry in the f-I curves of excitatory and inhibitory cells (larger threshold and
gain for the inhibitory population), ii) a weak activity-dependent adaptation current
in the excitatory population, and iii) large-amplitude external input fluctuations, can
reproduce  the  key  features  of  UP  and  DOWN  statistics  observed  during  the
synchronized  states  of  cortical  activity  under  urethane  anesthesia  presented  in
Chapter 4.2.

Bistablity at low rates

In the isolated cortex, UP and DOWN state dynamics has been proposed to
emerge  as  a  consequence  of  synaptically  amplified  spontaneous  activity.  Such
activity would be initiated by spontaneous release of neurotransmitter (Timofeev et
al., 2000) or by spontaneously active cells  (Sanchez-Vives and McCormick, 2000;
Compte et al., 2003), and then it would be amplified by strong recurrent excitation
in the cortical circuit. Eventually, synaptically sustained activity is overcome by an
activity-dependent  negative  feedback  provided  by a  fatigue  mechanism such  as
synaptic depression  (Contreras et al.,  1996; Timofeev et al.,  2001) or adaptation
membrane currents  (Sanchez-Vives and McCormick, 2000). These principles have
been  implemented  in  detailed  computational  models  (Bazhenov  et  al.,  2002;
Compte et al., 2003; Kang et al., 2004; Hill and Tononi, 2005; Cunningham et al.,
2006; Parga and Abbott, 2007; Destexhe, 2009; Benita et al., 2012). Additionally,
alternation  between  two  rate  states  using  these  principles  have  been  studied  in
different low-dimensional rate models and mean-field approximations  (Latham et
al., 2000; van Vreeswijk and Hansel, 2001; Holcman and Tsodyks, 2006; Melamed
et al., 2008; Deco et al., 2009a; Lim and Rinzel, 2010; Mejias et al., 2010; Mattia
and Sanchez-Vives, 2012). 

Although there are numerous computational studies exploiting these ideas,
there  are  few studies  concerned about  the  low firing  rates  observed during  UP
periods  (Latham et al., 2000) and the variability and correlations observed in the
permanence times of UP and DOWN states (Holcman and Tsodyks, 2006; Mejias et
al., 2010). Our modeling effort in Chapter 4.3 of this Thesis sought to address these
statistical  constraints,  and  their  implications  for  the  mechanistic  hypotheses
currently formulated in the literature. This was done in direct relationship to the
experimentally observed statistics of UP and DOWN state dynamics reported in
Chapter 4.2.

Our model is based on the Wilson-Cowan equations  (Wilson and Cowan,
1972), which describe the activity of a local network of excitatory and inhibitory
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neurons and which has been used to study many different neuroscience problems
from a computational perspective (Destexhe and Sejnowski, 2009). In the seminal
paper  by Wilson and Cowan (1972), it was shown that it is possible to obtain a
bistable  regime  of  quiescent  and  active  states  with  a  network  composed  of  an
excitatory and an inhibitory population (EI network). However, the bistable active
state was obtained on the saturating parts  of the  f-I  curves  (Wilson and Cowan,
1972), thus leading to high firing rates. In addition, Latham and colleagues (Latham
et  al.,  2000) concluded that  robust  bistability  could  only be  achieved in  an  EI
network if the active state had high firing rates. Indeed, a bistable active state could
be obtained at lower rates, but it was restricted to a very small parameter region
(Fig.  4B in  (Latham et  al.,  2000)),  which  is  in  addition  incompatible  with  the
straight  phase-plane  nullclines  expected  in  high  connectivity  networks  (van
Vreeswijk and Sompolinsky, 1998). This must now be revised on the light of our
modeling results. Our model shows that bistability can be achieved with “straight”
nullclines from linear-threshold f-I curves based on one additional key assumption:
firing threshold for I  neurons is higher than for  E neurons. In agreement with this
assumption, patch clamp experiments  in vitro reveal that the firing threshold for
inhibitory fast-spiking neurons is higher than for excitatory regular-spiking neurons
(Cruikshank  et  al.,  2007;  Schiff  and  Reyes,  2012).  These  differences  in  firing
thresholds were measured in the absence of synaptic input (silent slices) in similar
conditions  to  DOWN state  periods,  which  are  characterized by synaptic  silence
(Contreras  et  al.,  1996;  Timofeev  et  al.,  2001).  Therefore,  we  show  that  one
additional  parameter,  the  threshold  of  the  inhibitory  population,  allows  an  EI
network of the type considered by Latham et al. (2000) to have a robust bistable
regime  with  an  active  state  with  arbitrarily  low  firing  rate  in  the  absence  of
fluctuations.

Impact of adaptation and fluctuations on the UP and DOWN state 
statistics

Transitions  between  UP  and  DOWN  states  can  occur  by  a  mixture  of
adaptation  and  fluctuation  mechanisms  in  our  model,  and  a  regime  of  weak
adaptation and strong fluctuations predicts the experimental  statistics reported in
Chapter 4.2 of this Thesis. 

As discussed before, the cellular and network mechanisms involved in the
initiation, maintenance and termination of UP states are still a matter of debate. On
the  one  hand,  an  adaptive  process  might  be  responsible  for  generating  the
alternation between activity states in the isolated cortex. This is  consistent with the
firing  rates  and  statistics  of  permanence  times  observed  in  some  in  vitro
experiments, where Gaussian permanence time distributions and firing rate decay
through the UP states are observed  (Mattia and Sanchez-Vives, 2012). On the other
hand,  the  cortical  network  in  vivo can generate  more  complex patterns  of  slow
waves,  with  increased  variability  in  the  alternating  dynamics,  and  additional
mechanisms  such as  the  role  of  subcortical  input  causing  transitions  have  been
proposed  (Battaglia et  al.,  2004;  Crunelli  and Hughes, 2010; Slézia et al.,  2011;
Ushimaru et al., 2012). In this context, previous computational studies have stressed
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the role of external input fluctuations in generating irregular UP and DOWN states
dynamics (Holcman and Tsodyks, 2006; Mejias et al., 2010) that reproduce the large
variability observed in permanence times in some in vivo preparations (Lampl et al.,
1999; Deco et al., 2009a). Our model also stresses the role of fluctuations in order to
obtain  high  variability  in  permanence  times.  Additionally,  it  emphasizes  the
presence of a weak adaptation mechanism, which provides a memory trace of the
amount  of  time  spent  in  the  previous  DOWN/UP state  and  it  constrains  the
permanence  time  in  the  current  UP/DOWN  state,  thus  introducing  positive
correlations between consecutive permanence times. The effect of fluctuations in
state switching and their impact on permanence time correlation has been studied in
the context of self excitatory systems with activity-dependent depression such as
central pattern generators and models of the developing spinal cord  (Tabak et al.,
2001; Lim and Rinzel, 2010; Tabak et al., 2011).  

We found that in a noise-driven regime, where fluctuations are necessary to
induce transitions between UP and DOWN states, weak adaptation was needed to
introduce  positive  correlations  between  consecutive  states  and  shape  the
permanence time distributions to match the experimental data. In a different context,
this  interplay  between  strong  noise  and  weak  adaptation  has  been  proposed  to
underly perceptual  bistability processes  (Moreno-Bote et al.,  2007; Shpiro et al.,
2009). Again, in that context the criteria to identify the plausible mechanistic regime
was to compare with experimental distributions of perceptual permanence times and
correlations.  Interestingly,  they  reached  similar  conclusions  to  us  even  if  their
network  dynamics  was  totally  different  from ours.  Those  perceptual  bistability
models  consist  of  two  populations  that  compete  to  determine  the  dominant
population in a winner-take-all  regime. Instead, our UP and DOWN state model
also  includes  two  populations,  but  they  do  not  interact  symmetrically  through
competition, and the ensuing dynamics is not winner-take-all  (Deco et al., 2009a)
but  both  populations  are  simultaneously  active  or  silent  in  the  dynamics.  The
convergence  onto  similar  mechanisms  based  on  different  alternating  network
dynamics suggests that this interplay between noise and adaptation might be a basic
principle of neuronal networks operation. 

Oscillations in the rate model

The model proposed can operate in two different regimes. In one, the UP state
fixed point is an unstable focus, and robust periodic oscillations develop during the
UP state as the system stabilizes in a limit cycle. In the second regime, the UP state
fixed point is a stable focus, and damping oscillations are observable  as the system
relaxes to the focus through a spiral dynamics. These damped oscillations are more
prevalent at the temporal edges of UP states, but they will also persist through the
UP state when the system is subject to random fluctuations that continuously move
the system away from the focus. This is consistent with our experimental data in the
first chapters of these thesis.  In Chapter 4.1, we found that fast oscillations (30-80
Hz) can be detected in LFPs recorded in both supragranular and infragranular layers
during UP states, especially in vivo but also in in vitro recordings. In Chapter 4.2,
we showed that fast oscillations are also observable in the MUA activity of deep
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layers of cortex during UP states (see Appendix from Chapter 4.2, Fig. A3). 
The ability of linear threshold neuronal networks to generate oscillations

has  been studied previously  (Hahnloser,  1998;  Tang et  al.,  2005).  Although our
model  is  capable  of  generating  robust  oscillations  during  the  UP  states,  for
sufficiently slow inhibitory time constant, we restricted our analysis to the stable
focus regime because our experimental data did not reveal large-amplitude robust
oscillations during UP states but rather weak dynamics. However, we observed that
also in this regime the lengthening of the inhibitory time constant generates a surge
in rate  right  at  the  temporal  edges  of  the  UP states,  and specially in the UP to
DOWN  transition  due  to  changes  in  the  shape  of  the  UP basin  of  attraction.
Interestingly,  spontaneous  termination  of  self-sustained  (persistent)  activity  in
integrate and fire spiking networks can also be associated with a strong transient
population event (Kumar et al., 2008). In contrast, as shown in Chapter 4.2, we did
not observe such a surge in firing rate at the temporal edges of UP states in the
experimental data. This suggests that the effective time constants of the excitatory
and  the  inhibitory  populations  in  vivo are  approximately  the  same.  This  is  in
agreement  with  some  experimental  studies,  which  have  reported  equal  time
constants for both EPSCs and IPSCs (Matsumura et al., 1996), but at variance with
other in vitro studies that found slower inhibitory than excitatory synaptic currents
(Tarczy-Hornoch et al., 1998; Williams and Stuart, 2002). Slower inhibition than
excitation generates in our model firing rate peaks at the onset and offset of the UP
state that we do not see experimentally.

Transition between attractor states associated with a transitory increase in 
variability

The  evidence  of  relatively  stable  rates  during  UP  and  DOWN  states
(Chapter 4.2) is in agreement with the view of UP and DOWN states as attractor
states as previously suggested (Cossart et al., 2003). In this thesis we also explored
the signature of different network regimes in the dynamics of variability across UP
states. In Chapter 4.2, we showed that experimentally the transition from DOWN to
UP is associated with a surge in variability, whereas in the UP to DOWN transition
this  variability  was  generally  smaller.  Moreover,  throughout  the  UP  state  the
variability showed stationary values. When we study this in the model, we observe
that transitions between states are also generally associated with a brief period of
increased variability. Instead, the dynamics of rate variability in the course of the
UP state is different for different network regimes. In the oscillatory regime, with
periodic transitions between UP and DOWN states, rate variability increases during
the  time  course  of  the  UP state.  This  is  consistent  with  previous  experimental
observations in UP and DOWN states  in vitro  (Mattia and Sanchez-Vives, 2012).
However, in the regime with strong fluctuations and weak adaptation that provides
permanence  time  statistics  compatible  with  the  in  vivo  data  from Chapter  4.2,
variability remains stationary through the UP state, consistent with the view of UP
states a stable attractor states.  
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Predictions and Future work

Electrophysiological recording techniques have improved dramatically in the
last decades, and we are now able to record the activity of hundreds to thousands of
neurons  and  to  manipulate  selectively  network  activity  through  optogenetic
techniques. Such new techniques open exciting new possibilities to test predictions
and mechanisms suggested by computational models of the cortical network. 

Bistability in our model relies on the assumption that the firing threshold of
inhibitory neurons is higher than for excitatory neurons. Although this is reported to
occur in vitro (Cruikshank et al., 2007; Schiff and Reyes, 2012), as discussed above,
the question of whether firing threshold is larger for inhibitory cells during DOWN
states, when synaptic background is abolished, remains to be explored in vivo. Some
problems like the fact that  DOWN states can occur locally  (Sirota and Buzsáki,
2005), might be necessary to tackle in order to provide an answer to this question. 

Moreover, our model predicts that the rate decay of I neurons is stronger than
the rate decay observed in E neurons during UP states . We test this hypothesis in
the  experimental  data  from Chapter  4.2,  where  E  and  I  neurons  are  putatively
defined  based on their extracellular spike form. The reduced number of putative I
neurons obtained makes this ratio noisy, although for some experiments this effect
was present (see Figure  A5 in Appendix  from Chapter 4.2). Further experiments
need to be performed in order to confirm this prediction.

Another feature observed in the model is the average incoming fluctuations
causing  transitions,  which  determine  the  most  effective  way of  stimulating  the
network in order to cause transitions in a state dependent manner (Fig. 4.4.13). In
this  way,  selective  stimulation  of  inhibitory and  excitatory cells  by optogenetic
manipulations  (Beltramo et al.,  2013) could test this hypothesis. Specifically,  the
model  predicts  that  a  concomitant  excitation  of  inhibitory  cells  followed  by
inhibition of excitatory cells is the most effective way of causing UP to DOWN
transitions, whereas the solely stimulation of excitatory cells would trigger DOWN
to UP transitions.

Our model also suggests future computational work. We have considered a
single source of fluctuations modelled as an Ornstein-Uhlenbeck stochastic process,
although  it  is  meant  to  capture  two  possible  sources  of  noise  in  the  system:
subcortical  inputs  and  self-generated  noise  by  the  recurrent  network.  The  time
scales of these two sources might be different, and this could have an impact on the
dynamics. On the one hand, the external input coming from subcortical structures
could be modelled as sporadic “shot noise”, with very rare but very high amplitude
fluctuation events which would potentially increase the variability. Moreover, self-
generated fluctuations by the network could have two different components (such as
additive or multiplicative on the rate). Furthermore, another possibility is that noise-
induced  amplification  of  oscillations  (Bressloff,  2010) could  also  increase  the
variability  of  the  permanence  time  and  capture  better  the  statistics  observed
experimental data.

Finally, the principles of our low-dimensional EI network model can be used
to implement a more realistic spiking network model in the future. Such a model
would allow to explore in detail additional network dynamics emerging from the
interactions  between  single  cells  during  UP  states,  and  would  allow  a  more
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principled  biological  implementation  of  both  the  adaptation  and  the  random
fluctuation mechanisms that we have found to play an important role in generating
UP and DOWN dynamics in the cortical network in vivo.

Statistics of UP and DOWN dynamics across synchronized and desynchronized
states

In Chapter 4.4 we showed that the spontaneous and continuous variations in
brain state observe in the rat cortex under urethane anesthesia were associated with
systematic changes in the UP and DOWN statistics, and that brain state along this
broad range was well described by the silence density. . The changes in UP/DOWN
statistics as the brain changes from desynchronized to more synchronized states can
be summarized as:  i) Ds became longer and more variable, whereas Us became
shorter and less variable; ii) correlation between consecutive periods increased and
correlation between (Di-1,Ui) pairs was strongly increased for A1 experiments; iii)
population firing rates during UP intervals increased. Although it has been shown
that  spontaneous  brain  states  as  those induced by anesthesia  have an impact  in
cortical dynamics (Adrian and Matthews, 1934; Steriade et al., 2001; Erchova et al.,
2002;  Curto  et  al.,  2009;  Deco et  al.,  2009a;  Clement  et  al.,  2008),  the  results
presented in this Thesis are to our knowledge the first statistical characterization of
the changes in UP/DOWN dynamics as brain states varies continuously. The results
obtained for this analysis (Chapter 4.4) from the somatosensory cortex experiments
that  were  performed  in  different  setups  and  by  different  experimenters  (see
Methods), support the robustness of our estimations described in Chapter 4.2, since
the  statistics  of  U  and  D  at  the  maximum  silence  density  (~0.5)   for  the
somatosensory experiments are similar to those reported there (see Fig. 4.2.2)

The characterization of UP and DOWN dynamics in vivo varies in different
studies  and  preparations.  On  one  extreme,  UP  duration  duration  ranges  from
hundreds of milliseconds to seconds  (Lampl et al., 1999; Anderson et al., 2000a).
On the other extreme, a recent study states that UP intervals are manifested as "rare"
transitory bumps (DeWeese and Zador, 2006; Hromádka et al., 2013). In between,
UP and DOWN states are characterized to appear as slow oscillations  (Steriade et
al., 1993a; Petersen et al., 2003b; Haider et al., 2006; Poulet and Petersen, 2008;
Sakata and Harris,  2009;  Ruiz-Mejias  et  al.,  2011),  to  name some studies).  The
heterogeneity of these dynamics shows the different possible repertoire of regimes
in the cortical spontaneous activity dynamics under different anesthetics and brain
states. Despite this seemingly contradictory set of possible UP/DOWN dynamics,
we showed that  spontaneous transitions  between synchronized and synchronized
states altered the statistics of UP and DOWN dynamics in a robust and continuous
manner and that these changes could be related by means of a simple computational
network model

Mechanisms underlying  transitions  between synchronized  and  desynchronized
states

Cortical  desynchronization  via  basal  forebrain  stimulation  induces  an
increase  in  the  firing  rate  of  thalamocortical  neurons  (Castro-Alamancos  and
Oldford, 2002). Moreover, cortical desynchronization caused by either cholinergic
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thalamic stimulation or basal forebrain stimulation in urethane anesthetized rats is
associated with a reduction of spontaneous firing rate for most  RS cortical cells
while  the  firing  rate  of  cortical  FS  is  increased  (Hirata  and  Castro-Alamancos,
2010). In addition, recordings in alert/nonalert awake rabbits shows that firing rate
of L4 pyramidal cells does not change across brain states, whereas L4 FS increase
their firing rate towards alert (more desynchronized) states in unanesthetized rabbits
(Stoelzel et al., 2008). Desynchronized states are overall associated with a reduction
in the firing rate in superficial layers of cortex of RS and FS cells, so the effect in
firing rates seems layer dependent(Gentet et al., 2012; Sakata and Harris, 2012).
The picture might be even more complex since a recent study in layer II/III has
shown that the firing rate of excitatory and parvalbumin-positive cells increases at
low levels  of  cortical  desynchronization  as  a  result  of  activation  of  muscarinic
receptors and decreases under strong desynchronization as a result of activation of
nicotinic  receptors  (Alitto  and  Dan,  2012).  Indeed,  the  mechanisms  by  which
arousal affect cortical dynamics are unclear and the precise role of neuromodulators
is still  debated.  The common description that  emerges from these studies is that
acetylcholine  decreases  the  efficacy  of  intracortical  EPSPs  (via  muscarinic
receptors) (Gil et al., 1997) and enhances thalamocortical synaptic transmission (via
nicotinic  receptors)  (Gil  et  al.,  1997;  Kawai  et  al.,  2007;  Disney et  al.,  2007).
Moreover,  the  presence  acetylcholine  blocks  or  reduces  the  magnitude  of  K+
conductances that are responsible for spike frequency adaptation in cortical neurons
in  thalamocortical  cells in  vitro (McCormick,  1992),  which  presumably  would
produce the same effect in cortical cells in vivo (Steriade et al., 1993b). However,
the central  role  of acetylcholine has been recently challenged by a  study which
suggests that norepinephrine is the crucial neuromodulator responsible for cortical
desynchronization (Constantinople and Bruno, 2011). 

Consistent  with  this  common  view  derived  largely  from  in  vitro
experiments,   previous  computational  work  have  modeled  the  transitions  from
synchronized to desynchronized states by modeling the effects of  an increase in
acetylcholine in the network: (i)  decreasing K+ conductances and (ii) decreasing the
strength  of  intra-cortical  excitatory  connections,   constrained  by  experimental
observations regarding input resistance values and voltage membrane traces in sleep
and awake recordings (Bazhenov et al., 2002; Compte et al., 2003; Hill and Tononi,
2005; Rudolph et al., 2005; Destexhe, 2009). Moreover, the phenomenology of the
transitions had also been study from a mean-field approximation  (Wilson et  al.,
2005). However, the impact on the statistics of UP and DOWN transitions has not
been a matter of discussion in the aforementioned computational studies, despite
that each particular mechanism imprints a particular signature in those statistics, as
described in Chapter 4.4.

To understand the changes in network dynamics caused by the transitions
between desynchronized and synchronized states, we proposed a simple rate model
including adaptation and external fluctuating inputs as the underlying mechanisms
generating  UP and  DOWN  switching.  The  model  qualitatively  reproduced  the
experimental  observations  regarding  UP/DOWN  statistics  in  the  extremes
desynchronized and synchronized axes, by changing two parameters. As the state
became more synchronized i) the mean external input decreased, ii) the amplitude
of  fluctuations  increased.  The  first  condition  is  supported  by  the
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electrophysiological  aforementioned  evidence  (Castro-Alamancos  and  Oldford,
2002).

Moderate levels of urethane anesthesia induce cyclic alternations between
desynchronized and synchronized states resembling those observed during SWS and
REM sleep (Clement et al., 2008; Pagliardini et al., 2013). Alternatively to the idea
of a central role of acetylcholine and monoamines in cortical desynchronization, it
has also been proposed that there are two inhibitory populations in the brain stem
that compete via mutual inhibition producing alternation between REM and SWS
(the “flip-flop” model)  (Lu et  al.,  2006). This mechanism has been proposed to
underlie the sleep regulation  (Borbély and Achermann, 1999) and has been used
from a computational perspective  (Rempe et al., 2010; Phillips et al., 2010). The
picture, however, gets more complicated when considering that alternations between
REM and SWS during natural sleep alter the properties of slow waves and the firing
rates of individual cells when going from early to late phases of sleep (Vyazovskiy
et al., 2009). The impact of subsequent cyclic alternations in the UP and DOWN
dynamics is however beyond the scope of this Thesis.

The model presented in Chapter 4.4 is the first step towards the understanding
of the basis of cortical desynchronization. We did not explore the possibility that
changes  in  other  model  parameters  such  as  the  connectivity (J),  the  adaptation
strength (β)  or  the statistical  structure  of the  external  fluctuations  could explain
better the observations from the experimental results. Moreover, the bistability at
low rates obtained in the Chapter 4.4 model relies in unrealistic assumptions of the
transfer function which “start to saturate” at low values of firing rate. Regarding
this, the EI model proposed in Chapter 4.3  could be used to explain how cortical
desynchronization in  achieved in  a  more  realistic  way. In  sum,  there  are  still  a
number  of  questions  to  solve  about  the  impact  of  changes  in  different  model
parameters to understand the fundamental aspects playing a role in shaping the UP
and DOWN statistics changes towards cortical desynchronization, and this will be
explored in future work.
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(From Chapter 4.1): 

1. Segregation in different laminar domains of fast oscillations (10-100 Hz)
can be observed during spontaneous cortical UP states  in vivo, despite
the  strong  intracolumnar  vertical  connectivity  and  the  highly
synchronous cortical activation patterns during slow oscillations.

2. Although  supra  and  infragranular  cortical  layers  displayed  fast
oscillations  at  different  frequency  ranges  in  vitro,  increasing  the
excitability homogenized the frequency of  fast  oscillations across the
cortical column, mimicking our observations in vivo. This suggests that
modulation of local excitability can control inter-laminar couplings and
oscillatory dynamics in cortical circuits.

(From Chapter 4.2): 

3. The  statistics  of  the  duration  of  UP  and  DOWN  intervals  during
synchronized states under urethane anesthesia together with the lack of a
decrease in average rate during UP intervals, stress the role of external
fluctuating inputs in causing UP-DOWN transitions, although positive
correlations  among consecutive UP and DOWN intervals  suggest  the
existence of a slow fatigue process (such as spike frequency adaptation)
contributing in the generation of transitions.

(From Chapter 4.3): 

4.  A low dimensional rate model of a EI network with: i) bistability based
on an asymmetry in the f-I curves of E and I cells (larger I threshold &
gain), ii)  spike frequency adaptation in the E cells,  iii)  external input
fluctuations, can reproduce the key features of UP and DOWN statistics
observed under urethane anesthesia.

(From Chapter 4.4):

5. Spontaneous  variations  in  brain  state  (i)  can  be  easily  tracked  by
computing the silence density over short epochs (~1 min) and (ii) have
an enormous impact on the statistics of UP and DOWN intervals.  This
impact  can  be  quantitatively  described  by  relations  between  silence
density and UP/DOWN statistics which are consistently observed across
animals.

6. A simple rate model of a recurrent network including both adaptation
and noisy inputs can produce UP and DOWN statistics similar to the
experimental  data.  Changes  observed  in  the  statistics  across  the
desynchronized  and  synchronized  extremes  can  qualitatively  be
reproduced by changes in the model parameters.

131





7. Bibliography

7. Bibliography
Achermann, P., and Borbély, A.A. (1997). Low-frequency (< 1 Hz) oscillations in the human
sleep electroencephalogram. Neuroscience 81, 213–222.

Adrian, E.D., and Matthews, B.H. (1934). The interpretation of potential waves in
the cortex. J. Physiol. 81, 440–471.

Van Aerde, K.I., Mann, E.O., Canto, C.B., Heistek, T.S., Linkenkaer-Hansen, K.,
Mulder, A.B., van der Roest,  M.,  Paulsen,  O.,  Brussaard,  A.B.,  and Mansvelder,
H.D.  (2009).  Flexible  spike  timing  of  layer  5  neurons  during  dynamic  beta
oscillation shifts in rat prefrontal cortex. J. Physiol. 587, 5177–5196.

Ainsworth, M., Lee, S.,  Cunningham, M.O., Roopun, A.K., Traub, R.D., Kopell,
N.J., and Whittington, M.A. (2011). Dual γ rhythm generators control interlaminar
synchrony in auditory cortex. J. Neurosci. Off. J. Soc. Neurosci. 31, 17040–17051.

Alitto,  H.J.,  and  Dan,  Y.  (2012).  Cell-type-specific  modulation  of  neocortical
activity by basal forebrain input. Front. Syst. Neurosci. 6, 79.

Amatrudo, J.M., Weaver, C.M., Crimins, J.L., Hof, P.R., Rosene, D.L., and Luebke,
J.I. (2012). Influence of highly distinctive structural properties on the excitability of
pyramidal  neurons in monkey visual and prefrontal  cortices. J.  Neurosci.  Off.  J.
Soc. Neurosci. 32, 13644–13660.

Amzica,  F.,  and  Steriade,  M.  (1995a).  Short-  and  long-range  neuronal
synchronization of the slow (< 1 Hz) cortical oscillation. J. Neurophysiol.  73, 20–
38.

Amzica,  F.,  and  Steriade,  M.  (1995b).  Disconnection  of  intracortical  synaptic
linkages disrupts synchronization of  a slow oscillation.  J.  Neurosci.  Off.  J.  Soc.
Neurosci. 15, 4658–4677.

Anderson,  J.,  Lampl,  I.,  Reichova,  I.,  Carandini,  M.,  and  Ferster,  D.  (2000a).
Stimulus dependence of two-state fluctuations of membrane potential in cat visual
cortex. Nat. Neurosci. 3, 617–621.

Anderson, J.S., Lampl, I., Gillespie, D.C., and Ferster, D. (2000b). The contribution
of noise to contrast invariance of orientation tuning in cat visual cortex. Science
290, 1968–1972.

Arieli,  A.,  Shoham,  D.,  Hildesheim,  R.,  and  Grinvald,  A.  (1995).  Coherent
spatiotemporal patterns of ongoing activity revealed by real-time optical imaging
coupled with single-unit  recording in the  cat  visual  cortex.  J.  Neurophysiol.  73,
2072–2093.

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of ongoing
activity: explanation of the large variability in evoked cortical responses. Science
273, 1868–1871.

133



7. Bibliography

Ascoli, G.A., Alonso-Nanclares, L., Anderson, S.A., Barrionuevo, G., Benavides-
Piccione, R., Burkhalter, A., Buzsáki, G., Cauli, B., Defelipe, J., Fairén, A., et al.
(2008). Petilla terminology: nomenclature of features of GABAergic interneurons of
the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568.

Baker, S.N., Olivier, E., and Lemon, R.N. (1997). Coherent oscillations in monkey
motor cortex and hand muscle EMG show task-dependent modulation. J. Physiol.
501 ( Pt 1), 225–241.

Baldissera,  F.,  and  Gustafsson,  B.  (1971).  Regulation  of  repetitive  firing  in
motoneurones by the afterhyperpolarization conductance. Brain Res. 30, 431–434.

Barbour,  D.L.,  and  Callaway,  E.M.  (2008).  Excitatory  local  connections  of
superficial neurons in rat auditory cortex. J.  Neurosci. Off.  J. Soc. Neurosci.  28,
11174–11185.

Barthó, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K.D., and Buzsáki, G.
(2004). Characterization of neocortical principal cells and interneurons by network
interactions and extracellular features. J. Neurophysiol. 92, 600–608.

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized
gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci.  8, 45–
56.

Battaglia, F.P., Sutherland, G.R., and McNaughton, B.L. (2004). Hippocampal sharp
wave  bursts  coincide  with  neocortical  “up-state”  transitions.  Learn.  Mem.  Cold
Spring Harb. N 11, 697–704.

Bazhenov,  M.,  Timofeev,  I.,  Steriade,  M.,  and Sejnowski,  T.J.  (2002).  Model  of
thalamocortical slow-wave sleep oscillations and transitions to activated States. J.
Neurosci. Off. J. Soc. Neurosci. 22, 8691–8704.

Beltramo, R., D’Urso, G., Dal Maschio, M., Farisello, P., Bovetti, S., Clovis, Y.,
Lassi,  G.,  Tucci,  V.,  De  Pietri  Tonelli,  D.,  and  Fellin,  T.  (2013).  Layer-specific
excitatory  circuits  differentially  control  recurrent  network  dynamics  in  the
neocortex. Nat. Neurosci. 16, 227–234.

Benita, J.M., Guillamon, A., Deco, G., and Sanchez-Vives, M.V. (2012). Synaptic
depression  and slow oscillatory activity  in  a  biophysical  network  model  of  the
cerebral cortex. Front. Comput. Neurosci. 6, 64.

Binzegger, T., Douglas, R.J., and Martin, K.A.C. (2004). A quantitative map of the
circuit of cat primary visual cortex. J. Neurosci. Off. J. Soc. Neurosci.  24, 8441–
8453.

Biswal,  B.B.,  Mennes,  M.,  Zuo,  X.-N.,  Gohel,  S.,  Kelly,  C.,  Smith,  S.M.,
Beckmann, C.F., Adelstein, J.S., Buckner, R.L., Colcombe, S., et al. (2010). Toward
discovery science of human brain function. Proc. Natl.  Acad. Sci.  U. S. A.  107,
4734–4739.

Bokil, H., Andrews, P., Kulkarni, J.E., Mehta, S., and Mitra, P.P. (2010). Chronux: a
platform for analyzing neural signals. J. Neurosci. Methods 192, 146–151.

Bonhoeffer, T., and Grinvald, A. (1991). Iso-orientation domains in cat visual cortex

134



7. Bibliography

are arranged in pinwheel-like patterns. Nature 353, 429–431.

Le Bon-Jego, M., and Yuste, R. (2007). Persistently active, pacemaker-like neurons
in neocortex. Front. Neurosci. 1, 123–129.

Borbély, A.A., and Achermann, P. (1999). Sleep homeostasis and models of sleep
regulation. J. Biol. Rhythms 14, 557–568.

Boucetta,  S.,  Crochet,  S.,  Chauvette,  S.,  Seigneur,  J.,  and  Timofeev,  I.  (2013).
Extracellular Ca2+ fluctuations in vivo affect afterhyperpolarization potential and
modify firing patterns of neocortical neurons. Exp. Neurol. 245, 5–14.

Braun, J., and Mattia, M. (2010). Attractors and noise: twin drivers of decisions and
multistability. Neuroimage 52, 740–751.

Bressloff,  P.C.  (2010).  Metastable states and quasicycles  in a  stochastic  Wilson-
Cowan model of neuronal  population dynamics.  Phys.  Rev.  E Stat.  Nonlin.  Soft
Matter Phys. 82, 051903.

Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde (Barth-
Verlag).

Brunel, N. (2003). Dynamics and plasticity of stimulus-selective persistent activity
in cortical network models. Cereb. Cortex New York N 1991 13, 1151–1161.

Brunel, N., and Wang, X.-J. (2003). What determines the frequency of fast network
oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-
inhibition balance. J. Neurophysiol. 90, 415–430.

Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., and Desimone, R. (2011).
Laminar differences  in  gamma and alpha coherence in  the  ventral  stream.  Proc.
Natl. Acad. Sci. U. S. A. 108, 11262–11267.

Buzsaki, G., Bickford, R.G., Ponomareff, G., Thal, L.J., Mandel, R., and Gage, F.H.
(1988). Nucleus basalis and thalamic control of neocortical activity in the freely
moving rat. J. Neurosci. Off. J. Soc. Neurosci. 8, 4007–4026.

Buzsáki, G. (2006). Rhythms of the Brain.

Buzsáki,  G.,  and Draguhn, A. (2004). Neuronal oscillations in cortical networks.
Science 304, 1926–1929.

Buzsáki,  G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular
fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420.

La Camera,  G.,  Rauch,  A.,  Thurbon,  D.,  Lüscher,  H.-R.,  Senn,  W.,  and Fusi,  S.
(2006).  Multiple time scales of temporal  response in pyramidal  and fast  spiking
cortical neurons. J. Neurophysiol. 96, 3448–3464.

Campbell, S.L., Mathew, S.S., and Hablitz, J.J. (2007). Pre- and postsynaptic effects
of kainate on layer II/III pyramidal cells in rat neocortex. Neuropharmacology 53,
37–47.

Cash,  S.S.,  Halgren,  E.,  Dehghani,  N.,  Rossetti,  A.O.,  Thesen,  T.,  Wang,  C.,

135



7. Bibliography

Devinsky, O., Kuzniecky, R., Doyle, W., Madsen, J.R., et al. (2009). The human K-
complex represents an isolated cortical down-state. Science 324, 1084–1087.

Castro-Alamancos, M.A. (2004). Absence of rapid sensory adaptation in neocortex
during information processing states. Neuron 41, 455–464.

Castro-Alamancos,  M.A.,  and  Oldford,  E.  (2002).  Cortical  sensory  suppression
during  arousal  is  due  to  the  activity-dependent  depression  of  thalamocortical
synapses. J. Physiol. 541, 319–331.

Chauvette, S., Volgushev, M., and Timofeev, I. (2010). Origin of active states in
local neocortical networks during slow sleep oscillation. Cereb. Cortex New York N
1991 20, 2660–2674.

Chauvette, S., Crochet, S., Volgushev, M., and Timofeev, I. (2011). Properties of
slow oscillation during slow-wave sleep and anesthesia in cats. J. Neurosci. Off. J.
Soc. Neurosci. 31, 14998–15008.

Chauvette,  S.,  Seigneur,  J.,  and  Timofeev,  I.  (2012).  Sleep  oscillations  in  the
thalamocortical  system induce  long-term neuronal  plasticity.  Neuron  75,  1105–
1113.

Chen, J.-Y., Chauvette, S., Skorheim, S., Timofeev, I., and Bazhenov, M. (2012).
Interneuron-mediated  inhibition  synchronizes  neuronal  activity  during  slow
oscillation. J. Physiol. 590, 3987–4010.

Chen, Z., Vijayan, S., Barbieri, R., Wilson, M.A., and Brown, E.N. (2009). Discrete-
and continuous-time probabilistic models and algorithms for inferring neuronal UP
and DOWN states. Neural Comput. 21, 1797–1862.

Churchland, A.K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and Shadlen,
M.N.  (2011).  Variance  as  a  signature  of  neural  computations  during  decision
making. Neuron 69, 818–831.

Clement, E.A., Richard, A., Thwaites, M., Ailon, J., Peters, S., and Dickson, C.T.
(2008). Cyclic and sleep-like spontaneous alternations of brain state under urethane
anaesthesia. PloS One 3, e2004.

Compte,  A.,  Sanchez-Vives,  M.V.,  McCormick,  D.A.,  and  Wang,  X.-J.  (2003).
Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave
propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725.

Compte, A., Reig, R., Descalzo, V.F., Harvey, M.A., Puccini, G.D., and Sanchez-
Vives, M.V. (2008). Spontaneous high-frequency (10-80 Hz) oscillations during up
states in the cerebral cortex in vitro. J. Neurosci. Off. J. Soc. Neurosci. 28, 13828–
13844.

Compte,  A.,  Reig,  R.,  and  Sanchez-Vives,  M.V.  (2009).  Timing  Excitation  and
Inhibition in the Cortical Network. In Coherent Behavior in Neuronal Networks, K.
Josic, J. Rubin, M. Matias, and R. Romo, eds. (Springer New York), pp. 17–46.

Connors,  B.W.,  and  Gutnick,  M.J.  (1990).  Intrinsic  firing  patterns  of  diverse
neocortical neurons. Trends Neurosci. 13, 99–104.

136



7. Bibliography

Constantinople,  C.M.,  and  Bruno,  R.M.  (2011).  Effects  and  mechanisms  of
wakefulness on local cortical networks. Neuron 69, 1061–1068.

Constantinople, C.M., and Bruno, R.M. (2013). Deep cortical layers are activated
directly by thalamus. Science 340, 1591–1594.

Contreras, D. (2004). Electrophysiological classes of neocortical neurons. Neural
Networks Off. J. Int. Neural Netw. Soc. 17, 633–646.

Contreras, D., and Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study
of dynamic corticothalamic relationships.  J.  Neurosci.  Off.  J.  Soc.  Neurosci.  15,
604–622.

Contreras,  D.,  and  Steriade,  M.  (1997).  State-dependent  fluctuations  of  low-
frequency rhythms in corticothalamic networks. Neuroscience 76, 25–38.

Contreras, D., Timofeev, I., and Steriade, M. (1996). Mechanisms of long-lasting
hyperpolarizations  underlying  slow  sleep  oscillations  in  cat  corticothalamic
networks. J. Physiol. 494 ( Pt 1), 251–264.

Cortes,  J.M.,  Marinazzo,  D.,  Series,  P.,  Oram,  M.W.,  Sejnowski,  T.J.,  and  van
Rossum,  M.C.W.  (2012).  The  effect  of  neural  adaptation  on  population  coding
accuracy. J. Comput. Neurosci. 32, 387–402.

Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network UP
states in the neocortex. Nature 423, 283–288.

Cowan,  R.L.,  and  Wilson,  C.J.  (1994).  Spontaneous  firing  patterns  and  axonal
projections of single corticostriatal neurons in the rat medial agranular cortex. J.
Neurophysiol. 71, 17–32.

Crochet,  S.,  and  Petersen,  C.C.H.  (2006).  Correlating  whisker  behavior  with
membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610.

Crochet,  S.,  Chauvette, S.,  Boucetta,  S.,  and Timofeev,  I.  (2005).  Modulation of
synaptic  transmission  in  neocortex  by  network  activities.  Eur.  J.  Neurosci.  21,
1030–1044.

Crook,  S.M.,  Ermentrout,  G.B.,  and  Bower,  J.M.  (1998).  Spike  frequency
adaptation affects the synchronization properties of networks of cortical oscillations.
Neural Comput. 10, 837–854.

Cruikshank, S.J., Lewis, T.J., and Connors, B.W. (2007). Synaptic basis for intense
thalamocortical  activation  of  feedforward  inhibitory  cells  in  neocortex.  Nat.
Neurosci. 10, 462–468.

Cruikshank, S.J., Urabe, H., Nurmikko, A.V., and Connors, B.W. (2010). Pathway-
specific feedforward circuits between thalamus and neocortex revealed by selective
optical stimulation of axons. Neuron 65, 230–245.

Crunelli, V., and Hughes, S.W. (2010). The slow (<1 Hz) rhythm of non-REM sleep:
a dialogue between three cardinal oscillators. Nat. Neurosci. 13, 9–17.

Csercsa, R., Dombovári, B., Fabó, D., Wittner, L., Eross, L., Entz, L., Sólyom, A.,

137



7. Bibliography

Rásonyi, G., Szucs, A., Kelemen, A., et al. (2010). Laminar analysis of slow wave
activity in humans. Brain J. Neurol. 133, 2814–2829.

Csicsvari, J., Hirase, H., Czurko, A., and Buzsáki, G. (1998). Reliability and state
dependence  of  pyramidal  cell-interneuron  synapses  in  the  hippocampus:  an
ensemble approach in the behaving rat. Neuron 21, 179–189.

Cunningham, M.O., Davies, C.H., Buhl, E.H., Kopell, N., and Whittington, M.A.
(2003). Gamma oscillations induced by kainate receptor activation in the entorhinal
cortex in vitro. J. Neurosci. Off. J. Soc. Neurosci. 23, 9761–9769.

Cunningham,  M.O.,  Pervouchine,  D.D.,  Racca,  C.,  Kopell,  N.J.,  Davies,  C.H.,
Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism
governs cortical network response state. Proc. Natl. Acad. Sci. U. S. A. 103, 5597–
5601.

Curto, C.,  Sakata, S.,  Marguet,  S.,  Itskov, V.,  and Harris,  K.D. (2009). A simple
model  of cortical  dynamics explains variability and state dependence of sensory
responses  in  urethane-anesthetized  auditory  cortex.  J.  Neurosci.  Off.  J.  Soc.
Neurosci. 29, 10600–10612.

Dean,  A.F.  (1981).  The variability of discharge of simple cells  in the cat  striate
cortex. Exp. Brain Res. Exp. Hirnforsch. Expérimentation Cérébrale 44, 437–440.

Deco,  G.,  Martí,  D.,  Ledberg,  A.,  Reig,  R.,  and  Sanchez  Vives,  M.V.  (2009a).
Effective  reduced  diffusion-models:  a  data  driven  approach  to  the  analysis  of
neuronal dynamics. PLoS Comput. Biol. 5, e1000587.

Deco, G., Rolls, E.T., and Romo, R. (2009b). Stochastic dynamics as a principle of
brain function. Prog. Neurobiol. 88, 1–16.

Descalzo,  V.F.,  Nowak,  L.G.,  Brumberg,  J.C.,  McCormick,  D.A.,  and  Sanchez-
Vives,  M.V. (2005).  Slow adaptation in fast-spiking neurons of  visual  cortex.  J.
Neurophysiol. 93, 1111–1118.

Destexhe,  A.  (2009).  Self-sustained  asynchronous  irregular  states  and Up-Down
states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-
fire neurons. J. Comput. Neurosci. 27, 493–506.

Destexhe, A., and Sejnowski, T.J. (2009). The Wilson-Cowan model, 36 years later.
Biol. Cybern. 101, 1–2.

Destexhe, A.,  Contreras, D.,  and Steriade, M. (1999). Spatiotemporal analysis of
local field potentials and unit discharges in cat cerebral cortex during natural wake
and sleep states. J. Neurosci. Off. J. Soc. Neurosci. 19, 4595–4608.

Détári, L., Rasmusson, D.D., and Semba, K. (1997). Phasic relationship between the
activity of basal forebrain neurons and cortical EEG in urethane-anesthetized rat.
Brain Res. 759, 112–121.

DeWeese,  M.R.,  and  Zador,  A.M.  (2006).  Non-Gaussian  membrane  potential
dynamics imply sparse, synchronous activity in auditory cortex. J. Neurosci. Off. J.
Soc. Neurosci. 26, 12206–12218.

138



7. Bibliography

Diba,  K.,  and  Buzsáki,  G.  (2007).  Forward  and  reverse  hippocampal  place-cell
sequences during ripples. Nat. Neurosci. 10, 1241–1242.

Disney, A.A., Aoki, C., and Hawken, M.J. (2007). Gain modulation by nicotine in
macaque v1. Neuron 56, 701–713.

Douglas, R.J., and Martin, K.A.C. (2004). Neuronal circuits of the neocortex. Annu.
Rev. Neurosci. 27, 419–451.

Douglas,  R.J.,  Martin,  K.A.C.,  and  Whitteridge,  D.  (1989).  A  Canonical
Microcircuit for Neocortex. Neural Comput. 1, 480–488.

Dringenberg,  H.C.,  and  Vanderwolf,  C.H.  (1997).  Neocortical  activation:
modulation  by multiple  pathways  acting on  central  cholinergic  and serotonergic
systems.  Exp.  Brain Res.  Exp.  Hirnforsch.  Expérimentation Cérébrale  116,  160–
174.

Druckmann,  S.,  Hill,  S.,  Schürmann,  F.,  Markram,  H.,  and  Segev,  I.  (2012).  A
Hierarchical  Structure  of  Cortical  Interneuron  Electrical  Diversity  Revealed  by
Automated Statistical Analysis. Cereb. Cortex New York N 1991.

Von Economo, C., and Koskinas, G. (1925). Die Cytoarchitektonik der Hirnrinde
des erwachsenen Menchen. (Springer).

Egorov, A.V., Hamam, B.N., Fransén, E., Hasselmo, M.E., and Alonso, A.A. (2002).
Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178.

Erchova, I.A., Lebedev, M.A., and Diamond, M.E. (2002). Somatosensory cortical
neuronal population activity across states of anaesthesia. Eur. J. Neurosci. 15, 744–
752.

Eschenko, O., Ramadan, W., Mölle, M., Born, J., and Sara, S.J. (2008). Sustained
increase in hippocampal sharp-wave ripple activity during slow-wave sleep after
learning. Learn. Mem. Cold Spring Harb. N 15, 222–228.

Eschenko, O., Magri, C., Panzeri, S., and Sara, S.J. (2012). Noradrenergic neurons
of the locus coeruleus are phase locked to cortical  up-down states during sleep.
Cereb. Cortex New York N 1991 22, 426–435.

Euston, D.R., Tatsuno, M., and McNaughton, B.L. (2007). Fast-forward playback of
recent  memory sequences  in  prefrontal  cortex during sleep.  Science  318,  1147–
1150.

Fanselow, E.E.,  and Connors,  B.W. (2010).  The roles of somatostatin-expressing
(GIN)  and  fast-spiking  inhibitory  interneurons  in  UP-DOWN  states  of  mouse
neocortex. J. Neurophysiol. 104, 596–606.

Fanselow,  E.E.,  Richardson,  K.A.,  and  Connors,  B.W.  (2008).  Selective,  state-
dependent activation of somatostatin-expressing inhibitory interneurons in mouse
neocortex. J. Neurophysiol. 100, 2640–2652.

Farkhooi, F., Muller, E., and Nawrot, M.P. (2011). Adaptation reduces variability of
the neuronal  population code.  Phys.  Rev.  E  Stat.  Nonlin.  Soft  Matter  Phys.  83,
050905.

139



7. Bibliography

Feller, M.B. (1999). Spontaneous correlated activity in developing neural circuits.
Neuron 22, 653–656.

Fiser, J., Chiu, C., and Weliky, M. (2004). Small modulation of ongoing cortical
dynamics by sensory input during natural vision. Nature 431, 573–578.

Fox,  M.D.,  and Raichle,  M.E. (2007).  Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–
711.

Fries,  P.,  Reynolds,  J.H.,  Rorie,  A.E.,  and  Desimone,  R.  (2001).  Modulation  of
oscillatory  neuronal  synchronization  by  selective  visual  attention.  Science  291,
1560–1563.

Friston, K.J., Buechel, C., Fink, G.R., Morris, J., Rolls, E., and Dolan, R.J. (1997).
Psychophysiological and modulatory interactions in neuroimaging. Neuroimage  6,
218–229.

Fuhrmann, G., Markram, H., and Tsodyks, M. (2002). Spike frequency adaptation
and neocortical rhythms. J. Neurophysiol. 88, 761–770.

Fujisawa, S., Amarasingham, A., Harrison, M.T., and Buzsáki, G. (2008). Behavior-
dependent  short-term  assembly  dynamics  in  the  medial  prefrontal  cortex.  Nat.
Neurosci. 11, 823–833.

Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M., and Scanziani, M. (2005).
Somatosensory  integration  controlled  by  dynamic  thalamocortical  feed-forward
inhibition. Neuron 48, 315–327.

Galarreta,  M.,  and  Hestrin,  S.  (1999).  A network  of  fast-spiking  cells  in  the
neocortex connected by electrical synapses. Nature 402, 72–75.

Gentet,  L.J.,  Kremer,  Y.,  Taniguchi,  H.,  Huang,  Z.J.,  Staiger,  J.F.,  and Petersen,
C.C.H. (2012). Unique functional properties of somatostatin-expressing GABAergic
neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612.

Gervasoni,  D.,  Lin,  S.-C.,  Ribeiro,  S.,  Soares,  E.S.,  Pantoja,  J.,  and  Nicolelis,
M.A.L. (2004). Global forebrain dynamics predict rat behavioral states and their
transitions. J. Neurosci. Off. J. Soc. Neurosci. 24, 11137–11147.

Gibson, J.R., Beierlein, M., and Connors, B.W. (1999). Two networks of electrically
coupled inhibitory neurons in neocortex. Nature 402, 75–79.

Gil, Z., Connors, B.W., and Amitai, Y. (1997). Differential regulation of neocortical
synapses by neuromodulators and activity. Neuron 19, 679–686.

Gillespie  (1996).  Exact  numerical  simulation of  the  Ornstein-Uhlenbeck process
and its integral. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 54,
2084–2091.

Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., and Zugaro, M.B. (2009).
Selective  suppression  of  hippocampal  ripples  impairs  spatial  memory.  Nat.
Neurosci. 12, 1222–1223.

140



7. Bibliography

Goard, M., and Dan, Y. (2009). Basal forebrain activation enhances cortical coding
of natural scenes. Nat. Neurosci. 12, 1444–1449.

Gonchar,  Y.,  Wang, Q.,  and Burkhalter,  A.  (2007).  Multiple  distinct  subtypes  of
GABAergic neurons in mouse visual  cortex identified by triple immunostaining.
Front. Neuroanat. 1, 3.

Grenier, F., Timofeev, I., and Steriade, M. (2001). Focal synchronization of ripples
(80-200 Hz) in neocortex and their neuronal correlates. J. Neurophysiol. 86, 1884–
1898.

Haegens, S., Nácher, V., Hernández, A., Luna, R., Jensen, O., and Romo, R. (2011).
Beta  oscillations  in  the  monkey  sensorimotor  network  reflect  somatosensory
decision making. Proc. Natl. Acad. Sci. U. S. A. 108, 10708–10713.

Hahn, T.T.G., Sakmann, B., and Mehta, M.R. (2006). Phase-locking of hippocampal
interneurons’ membrane potential to neocortical up-down states. Nat. Neurosci.  9,
1359–1361.

Hahn,  T.T.G.,  McFarland,  J.M.,  Berberich,  S.,  Sakmann,  B.,  and  Mehta,  M.R.
(2012).  Spontaneous  persistent  activity  in  entorhinal  cortex  modulates  cortico-
hippocampal interaction in vivo. Nat. Neurosci. 15, 1531–1538.

Hahnloser, R.L.T. (1998). On the piecewise analysis of networks of linear threshold
neurons. Neural Networks Off. J. Int. Neural Netw. Soc. 11, 691–697.

Haider, B., and McCormick, D.A. (2009). Rapid neocortical dynamics: cellular and
network mechanisms. Neuron 62, 171–189.

Haider, B., Duque, A., Hasenstaub, A.R., and McCormick, D.A. (2006). Neocortical
network activity in vivo is generated through a dynamic balance of excitation and
inhibition. J. Neurosci. Off. J. Soc. Neurosci. 26, 4535–4545.

Haider,  B.,  Duque,  A.,  Hasenstaub,  A.R.,  Yu,  Y.,  and McCormick,  D.A.  (2007).
Enhancement  of  visual  responsiveness  by spontaneous  local  network  activity in
vivo. J. Neurophysiol. 97, 4186–4202.

Han, F., Caporale, N., and Dan, Y. (2008). Reverberation of recent visual experience
in spontaneous cortical waves. Neuron 60, 321–327.

Hasenstaub, A.,  Shu, Y.,  Haider, B.,  Kraushaar,  U.,  Duque,  A.,  and McCormick,
D.A.  (2005).  Inhibitory  postsynaptic  potentials  carry  synchronized  frequency
information in active cortical networks. Neuron 47, 423–435.

Hasenstaub,  A.,  Sachdev,  R.N.S.,  and  McCormick,  D.A.  (2007).  State  changes
rapidly  modulate  cortical  neuronal  responsiveness.  J.  Neurosci.  Off.  J.  Soc.
Neurosci. 27, 9607–9622.

Hebb, D.O. (1949). The Organization of Behavior: A Neuropsychological Theory.

Van den Heuvel, M.P., Mandl, R.C.W., Kahn, R.S., and Hulshoff Pol, H.E. (2009).
Functionally  linked  resting-state  networks  reflect  the  underlying  structural
connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141.

141



7. Bibliography

Hill,  S.,  and  Tononi,  G.  (2005).  Modeling  sleep  and  wakefulness  in  the
thalamocortical system. J. Neurophysiol. 93, 1671–1698.

Hirata, A., and Castro-Alamancos, M.A. (2010). Neocortex network activation and
deactivation states controlled by the thalamus. J. Neurophysiol. 103, 1147–1157.

Hirata, A.,  and Castro-Alamancos, M.A. (2011). Effects of cortical activation on
sensory responses in barrel cortex. J. Neurophysiol. 105, 1495–1505.

Hoffman,  K.L.,  and  McNaughton,  B.L.  (2002).  Coordinated  reactivation  of
distributed memory traces in primate neocortex. Science 297, 2070–2073.

Holcman, D., and Tsodyks, M. (2006). The emergence of Up and Down states in
cortical networks. PLoS Comput. Biol. 2, e23.

Hounsgaard,  J.,  and  Kiehn,  O.  (1985).  Ca++  dependent  bistability  induced  by
serotonin in spinal motoneurons. Exp. Brain Res. Exp. Hirnforsch. Expérimentation
Cérébrale 57, 422–425.

Hromádka, T., Zador, A.M., and DeWeese, M.R. (2013). Up states are rare in awake
auditory cortex. J. Neurophysiol. 109, 1989–1995.

Hughes,  S.W.,  Cope,  D.W.,  Blethyn,  K.L.,  and  Crunelli,  V.  (2002).  Cellular
mechanisms of the slow (<1 Hz) oscillation in thalamocortical  neurons in vitro.
Neuron 33, 947–958.

Hughes, S.W., Lörincz, M., Cope, D.W., Blethyn, K.L., Kékesi, K.A., Parri, H.R.,
Juhász,  G.,  and Crunelli,  V.  (2004). Synchronized oscillations at alpha and theta
frequencies in the lateral geniculate nucleus. Neuron 42, 253–268.

Imas,  O.A.,  Ropella,  K.M.,  Wood,  J.D.,  and  Hudetz,  A.G.  (2004).  Halothane
augments event-related gamma oscillations in rat visual cortex. Neuroscience 123,
269–278.

Isomura, Y., Sirota, A., Ozen, S., Montgomery, S., Mizuseki, K., Henze, D.A., and
Buzsáki,  G.  (2006).  Integration  and  segregation  of  activity  in  entorhinal-
hippocampal subregions by neocortical slow oscillations. Neuron 52, 871–882.

Ji, D., and Wilson, M.A. (2007). Coordinated memory replay in the visual cortex
and hippocampus during sleep. Nat. Neurosci. 10, 100–107.

Johnson, L.A., Euston, D.R., Tatsuno, M., and McNaughton, B.L. (2010). Stored-
trace  reactivation  in  rat  prefrontal  cortex  is  correlated  with  down-to-up  state
fluctuation density. J. Neurosci. Off. J. Soc. Neurosci. 30, 2650–2661.

Jones, E.G. (2000). Microcolumns in the cerebral cortex. Proc. Natl. Acad. Sci. U.
S. A. 97, 5019–5021.

Kang,  S.,  Kitano,  K.,  and  Fukai,  T.  (2004).  Self-organized  two-state  membrane
potential transitions in a network of realistically modeled cortical neurons. Neural
Networks Off. J. Int. Neural Netw. Soc. 17, 307–312.

Van Kan, P.L., Scobey, R.P., and Gabor, A.J. (1985). Response covariance in cat
visual cortex. Exp. Brain Res. Exp. Hirnforsch. Expérimentation Cérébrale 60, 559–

142



7. Bibliography

563.

Kätzel,  D.,  Zemelman,  B.V.,  Buetfering,  C.,  Wölfel,  M.,  and  Miesenböck,  G.
(2011).  The  columnar  and  laminar  organization  of  inhibitory  connections  to
neocortical excitatory cells. Nat. Neurosci. 14, 100–107.

Kawaguchi, Y., and Kubota, Y. (1997). GABAergic cell subtypes and their synaptic
connections in rat frontal cortex. Cereb. Cortex New York N 1991 7, 476–486.

Kawai,  H.,  Lazar,  R.,  and  Metherate,  R.  (2007).  Nicotinic  control  of  axon
excitability regulates thalamocortical transmission. Nat. Neurosci. 10, 1168–1175.

Kenet,  T.,  Bibitchkov,  D.,  Tsodyks,  M.,  Grinvald,  A.,  and  Arieli,  A.  (2003).
Spontaneously emerging cortical  representations of visual  attributes.  Nature  425,
954–956.

Kisley,  M.A.,  and  Gerstein,  G.L.  (1999).  Trial-to-trial  variability  and  state-
dependent modulation of auditory-evoked responses in cortex. J. Neurosci. Off. J.
Soc. Neurosci. 19, 10451–10460.

Kohn, A., and Smith, M.A. (2005). Stimulus dependence of neuronal correlation in
primary visual cortex of the macaque. J. Neurosci. Off. J. Soc. Neurosci. 25, 3661–
3673.

Von Krosigk, M., Bal, T., and McCormick, D.A. (1993). Cellular mechanisms of a
synchronized oscillation in the thalamus. Science 261, 361–364.

Kumar, A., Schrader, S., Aertsen, A., and Rotter, S. (2008). The high-conductance
state of cortical networks. Neural Comput. 20, 1–43.

Kurth,  S.,  Ringli,  M.,  Geiger,  A.,  LeBourgeois,  M.,  Jenni,  O.G.,  and  Huber,  R.
(2010). Mapping of cortical activity in the first two decades of life: a high-density
sleep electroencephalogram study. J. Neurosci. Off. J. Soc. Neurosci.  30,  13211–
13219.

Lampl, I., Reichova, I., and Ferster, D. (1999). Synchronous membrane potential
fluctuations in neurons of the cat visual cortex. Neuron 22, 361–374.

Latham,  P.E.,  Richmond,  B.J.,  Nelson,  P.G.,  and  Nirenberg,  S.  (2000).  Intrinsic
dynamics in neuronal networks. I. Theory. J. Neurophysiol. 83, 808–827.

Lee, S.-H., and Dan, Y. (2012). Neuromodulation of brain states. Neuron 76, 209–
222.

Léger, J.-F., Stern, E.A., Aertsen, A., and Heck, D. (2005). Synaptic integration in
rat frontal cortex shaped by network activity. J. Neurophysiol. 93, 281–293.

Lewis,  B.L.,  and  O’Donnell,  P.  (2000).  Ventral  tegmental  area  afferents  to  the
prefrontal cortex maintain membrane potential “up” states in pyramidal neurons via
D(1) dopamine receptors. Cereb. Cortex New York N 1991 10, 1168–1175.

Lewis, T.J., and Rinzel, J. (2003). Dynamics of spiking neurons connected by both
inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309.

143



7. Bibliography

Lewis,  C.M.,  Baldassarre,  A.,  Committeri,  G.,  Romani,  G.L.,  and  Corbetta,  M.
(2009). Learning sculpts the spontaneous activity of the resting human brain. Proc.
Natl. Acad. Sci. U. S. A. 106, 17558–17563.

Li,  C.-Y.T.,  Poo,  M.-M.,  and  Dan,  Y.  (2009).  Burst  spiking of  a  single  cortical
neuron modifies global brain state. Science 324, 643–646.

Lim, S.,  and Rinzel,  J.  (2010). Noise-induced transitions in slow wave neuronal
dynamics. J. Comput. Neurosci. 28, 1–17.

Lisman, J.E., and Idiart, M.A. (1995). Storage of 7 +/- 2 short-term memories in
oscillatory subcycles. Science 267, 1512–1515.

Livingstone,  M.S.,  and Hubel,  D.H. (1981).  Effects  of  sleep and arousal  on the
processing of visual information in the cat. Nature 291, 554–561.

Loewenstein, Y., Mahon, S., Chadderton, P., Kitamura, K., Sompolinsky, H., Yarom,
Y., and Häusser, M. (2005). Bistability of cerebellar Purkinje cells modulated by
sensory stimulation. Nat. Neurosci. 8, 202–211.

Lu, J., Sherman, D., Devor, M., and Saper, C.B. (2006). A putative flip-flop switch
for control of REM sleep. Nature 441, 589–594.

Luczak,  A.,  and  Barthó,  P.  (2012).  Consistent  sequential  activity across  diverse
forms of UP states under ketamine anesthesia. Eur. J. Neurosci. 36, 2830–2838.

Luczak,  A.,  Barthó,  P.,  Marguet,  S.L.,  Buzsáki,  G.,  and  Harris,  K.D.  (2007).
Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl. Acad.
Sci. U. S. A. 104, 347–352.

Luczak,  A.,  Barthó,  P.,  and Harris,  K.D. (2009).  Spontaneous events outline the
realm of possible sensory responses in neocortical populations. Neuron  62,  413–
425.

Luczak,  A.,  Bartho,  P.,  and  Harris,  K.D.  (2013).  Gating  of  sensory  input  by
spontaneous cortical activity. J. Neurosci. Off. J. Soc. Neurosci. 33, 1684–1695.

Ma, W.J., Beck, J.M., Latham, P.E., and Pouget, A. (2006). Bayesian inference with
probabilistic population codes. Nat. Neurosci. 9, 1432–1438.

MacKay,  W.A.,  and Mendonça,  A.J.  (1995).  Field potential  oscillatory bursts  in
parietal cortex before and during reach. Brain Res. 704, 167–174.

MacLean, J.N., Watson, B.O., Aaron, G.B., and Yuste, R. (2005). Internal dynamics
determine the cortical response to thalamic stimulation. Neuron 48, 811–823.

Maier, A., Adams, G.K., Aura, C., and Leopold, D.A. (2010). Distinct superficial
and  deep  laminar  domains  of  activity  in  the  visual  cortex  during  rest  and
stimulation. Front. Syst. Neurosci. 4.

Mann, E.O., Kohl, M.M., and Paulsen, O. (2009). Distinct roles of GABA(A) and
GABA(B)  receptors  in  balancing  and  terminating  persistent  cortical  activity.  J.
Neurosci. Off. J. Soc. Neurosci. 29, 7513–7518.

144



7. Bibliography

Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., Aerts, J.,
Del Fiore, G., Degueldre, C., Meulemans, T., et al. (2000). Experience-dependent
changes in cerebral activation during human REM sleep. Nat. Neurosci. 3, 831–836.

Marguet,  S.L.,  and  Harris,  K.D.  (2011).  State-dependent  representation  of
amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci. Off. J. Soc.
Neurosci. 31, 6414–6420.

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu,
C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5,
793–807.

Marshall,  L.,  Helgadóttir,  H.,  Mölle,  M.,  and  Born,  J.  (2006).  Boosting  slow
oscillations during sleep potentiates memory. Nature 444, 610–613.

Martí,  D.,  Deco,  G.,  Mattia,  M.,  Gigante,  G.,  and  Del  Giudice,  P.  (2008).  A
fluctuation-driven mechanism for slow decision processes in reverberant networks.
PloS One 3, e2534.

Mason,  A.,  and  Larkman,  A.  (1990).  Correlations  between  morphology  and
electrophysiology  of  pyramidal  neurons  in  slices  of  rat  visual  cortex.  II.
Electrophysiology. J. Neurosci. Off. J. Soc. Neurosci. 10, 1415–1428.

Massi, L., Lagler, M., Hartwich, K., Borhegyi, Z., Somogyi, P., and Klausberger, T.
(2012). Temporal dynamics of parvalbumin-expressing axo-axonic and basket cells
in the rat medial prefrontal cortex in vivo. J. Neurosci. Off. J. Soc. Neurosci.  32,
16496–16502.

Massimini, M., Rosanova, M., and Mariotti, M. (2003). EEG slow (approximately 1
Hz)  waves  are  associated  with  nonstationarity  of  thalamo-cortical  sensory
processing in the sleeping human. J. Neurophysiol. 89, 1205–1213.

Massimini, M., Huber, R., Ferrarelli, F., Hill, S., and Tononi, G. (2004). The sleep
slow oscillation as a traveling wave. J. Neurosci. Off. J. Soc. Neurosci.  24, 6862–
6870.

Matsumura,  M.,  Chen,  D.,  Sawaguchi,  T.,  Kubota,  K.,  and  Fetz,  E.E.  (1996).
Synaptic interactions between primate precentral cortex neurons revealed by spike-
triggered averaging of intracellular membrane potentials in vivo. J. Neurosci. Off. J.
Soc. Neurosci. 16, 7757–7767.

Mattia, M., and Sanchez-Vives, M.V. (2012). Exploring the spectrum of dynamical
regimes and timescales in spontaneous cortical activity. Cogn. Neurodyn.  6, 239–
250.

McCormick,  D.A.  (1992).  Cellular  mechanisms  underlying  cholinergic  and
noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal
lateral geniculate nucleus. J. Neurosci. Off. J. Soc. Neurosci. 12, 278–289.

McCormick, D.A., and Prince, D.A. (1986). Acetylcholine induces burst firing in
thalamic  reticular  neurones  by activating  a  potassium conductance.  Nature  319,
402–405.

McCormick,  D.A.,  Connors,  B.W.,  Lighthall,  J.W.,  and  Prince,  D.A.  (1985).

145



7. Bibliography

Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of
the neocortex. J. Neurophysiol. 54, 782–806.

McFarland, J.M., Hahn, T.T.G., and Mehta, M.R. (2011). Explicit-duration hidden
Markov model inference of UP-DOWN states from continuous signals. PloS One 6,
e21606.

Mejias, J.F.,  Kappen, H.J.,  and Torres, J.J.  (2010). Irregular dynamics in up and
down cortical states. PloS One 5, e13651.

Melamed,  O.,  Barak,  O.,  Silberberg,  G.,  Markram,  H.,  and Tsodyks,  M. (2008).
Slow  oscillations  in  neural  networks  with  facilitating  synapses.  J.  Comput.
Neurosci. 25, 308–316.

Metherate, R., and Ashe, J.H. (1993). Ionic flux contributions to neocortical slow
waves and nucleus  basalis-mediated activation:  whole-cell  recordings in  vivo.  J.
Neurosci. Off. J. Soc. Neurosci. 13, 5312–5323.

Metherate,  R.,  and  Cruikshank,  S.J.  (1999).  Thalamocortical  inputs  trigger  a
propagating envelope of gamma-band activity in auditory cortex in vitro. Exp. Brain
Res. Exp. Hirnforsch. Expérimentation Cérébrale 126, 160–174.

Metherate,  R.,  Cox,  C.L.,  and  Ashe,  J.H.  (1992).  Cellular  bases  of  neocortical
activation: modulation of neural oscillations by the nucleus basalis and endogenous
acetylcholine. J. Neurosci. Off. J. Soc. Neurosci. 12, 4701–4711.

Middleton, S., Jalics, J., Kispersky, T., Lebeau, F.E.N., Roopun, A.K., Kopell, N.J.,
Whittington,  M.A.,  and  Cunningham,  M.O.  (2008).  NMDA receptor-dependent
switching between different gamma rhythm-generating microcircuits in entorhinal
cortex. Proc. Natl. Acad. Sci. U. S. A. 105, 18572–18577.

Miller, K.J., Sorensen, L.B., Ojemann, J.G., and den Nijs, M. (2009). Power-law
scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609.

Mitchell,  J.F.,  Sundberg,  K.A., and Reynolds, J.H. (2007). Differential  attention-
dependent  response  modulation  across  cell  classes  in  macaque  visual  area  V4.
Neuron 55, 131–141.

Mitra,  P.P.,  and  Pesaran,  B.  (1999).  Analysis  of  dynamic  brain  imaging  data.
Biophys. J. 76, 691–708.

Mohajerani, M.H., McVea, D.A., Fingas, M., and Murphy, T.H. (2010). Mirrored
bilateral  slow-wave  cortical  activity  within  local  circuits  revealed  by  fast
bihemispheric  voltage-sensitive  dye  imaging in  anesthetized and awake mice.  J.
Neurosci. Off. J. Soc. Neurosci. 30, 3745–3751.

Moreno-Bote, R., Rinzel, J., and Rubin, N. (2007). Noise-induced alternations in an
attractor network model of perceptual bistability. J. Neurophysiol. 98, 1125–1139.

Moruzzi,  G.,  and  Magoun,  H.W.  (1949).  Brain  stem  reticular  formation  and
activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473.

Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of
cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434.

146



7. Bibliography

Mountcastle,  V.B.,  Talbot,  W.H.,  Sakata,  H.,  and  Hyvärinen,  J.  (1969).  Cortical
neuronal  mechanisms  in  flutter-vibration  studied  in  unanesthetized  monkeys.
Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32, 452–484.

Mukovski, M., Chauvette, S., Timofeev, I., and Volgushev, M. (2007). Detection of
active and silent states in neocortical neurons from the field potential signal during
slow-wave sleep. Cereb. Cortex New York N 1991 17, 400–414.

Murakami, M., Kashiwadani, H., Kirino, Y., and Mori, K. (2005). State-dependent
sensory gating in olfactory cortex. Neuron 46, 285–296.

Murphy, B.K., and Miller, K.D. (2009). Balanced amplification: a new mechanism
of selective amplification of neural activity patterns. Neuron 61, 635–648.

Nauhaus, I., Busse, L., Carandini, M., and Ringach, D.L. (2009). Stimulus contrast
modulates functional connectivity in visual cortex. Nat. Neurosci. 12, 70–76.

Neuman, R.S., and Thompson, P.M. (1989). Serotonin mediates suppression of focal
epileptiform activity induced by noxious stimulation. Epilepsia 30, 307–313.

Ngo, H.-V.V., Martinetz, T., Born, J., and Mölle, M. (2013). Auditory closed-loop
stimulation of the sleep slow oscillation enhances memory. Neuron 78, 545–553.

Nir, Y., Mukamel, R., Dinstein, I., Privman, E., Harel, M., Fisch, L., Gelbard-Sagiv,
H., Kipervasser,  S.,  Andelman, F.,  Neufeld, M.Y., et  al.  (2008). Interhemispheric
correlations of slow spontaneous neuronal fluctuations revealed in human sensory
cortex. Nat. Neurosci. 11, 1100–1108.

Nishihara, K., and Horiuchi, S. (1998). Changes in sleep patterns of young women
from  late  pregnancy  to  postpartum:  relationships  to  their  infants’ movements.
Percept. Mot. Skills 87, 1043–1056.

Nowak, L.G., Sanchez-Vives, M.V., and McCormick, D.A. (1997). Influence of low
and high frequency inputs on spike timing in visual cortical neurons. Cereb. Cortex
New York N 1991 7, 487–501.

Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M., and McCormick, D.A.
(2003). Electrophysiological classes of cat primary visual cortical neurons in vivo as
revealed by quantitative analyses. J. Neurophysiol. 89, 1541–1566.

Ohl, F.W., Scheich, H., and Freeman, W.J. (2001). Change in pattern of ongoing
cortical activity with auditory category learning. Nature 412, 733–736.

Oke,  O.O.,  Magony,  A.,  Anver,  H.,  Ward,  P.D.,  Jiruska,  P.,  Jefferys,  J.G.R.,  and
Vreugdenhil,  M.  (2010).  High-frequency  gamma  oscillations  coexist  with  low-
frequency gamma oscillations in the rat visual cortex in vitro. Eur. J. Neurosci. 31,
1435–1445.

Okun,  M.,  and  Lampl,  I.  (2008).  Instantaneous  correlation  of  excitation  and
inhibition during ongoing and sensory-evoked activities.  Nat.  Neurosci.  11,  535–
537.

Pagliardini,  S.,  Gosgnach,  S.,  and  Dickson,  C.T.  (2013).  Spontaneous sleep-like
brain state alternations and breathing characteristics in urethane anesthetized mice.

147



7. Bibliography

PloS One 8, e70411.

Palva,  J.M.,  Palva,  S.,  and  Kaila,  K.  (2005).  Phase  synchrony among  neuronal
oscillations in the human cortex. J. Neurosci. Off. J. Soc. Neurosci. 25, 3962–3972.

Parga,  N.,  and  Abbott,  L.F.  (2007).  Network  model  of  spontaneous  activity
exhibiting synchronous transitions between up and down States. Front. Neurosci. 1,
57–66.

Partridge,  L.D.,  and  Stevens,  C.F.  (1976).  A  mechanism  for  spike  frequency
adaptation. J. Physiol. 256, 315–332.

Perrin, F., García-Larrea, L., Mauguière, F., and Bastuji, H. (1999). A differential
brain response to the subject’s own name persists during sleep. Clin. Neurophysiol.
Off. J. Int. Fed. Clin. Neurophysiol. 110, 2153–2164.

Petersen, C.C.H., Grinvald, A., and Sakmann, B. (2003a). Spatiotemporal dynamics
of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-
sensitive  dye  imaging combined  with  whole-cell  voltage  recordings  and neuron
reconstructions. J. Neurosci. Off. J. Soc. Neurosci. 23, 1298–1309.

Petersen, C.C.H., Hahn, T.T.G., Mehta, M., Grinvald, A., and Sakmann, B. (2003b).
Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel
cortex. Proc. Natl. Acad. Sci. U. S. A. 100, 13638–13643.

Peyrache,  A.,  Khamassi,  M.,  Benchenane,  K.,  Wiener,  S.I.,  and  Battaglia,  F.P.
(2009).  Replay  of  rule-learning  related  neural  patterns  in  the  prefrontal  cortex
during sleep. Nat. Neurosci. 12, 919–926.

Phillips,  A.J.K.,  Robinson,  P.A.,  Kedziora,  D.J.,  and  Abeysuriya,  R.G.  (2010).
Mammalian  sleep  dynamics:  how  diverse  features  arise  from  a  common
physiological framework. PLoS Comput. Biol. 6, e1000826.

Pinault, D. (2008). N-methyl d-aspartate receptor antagonists ketamine and MK-801
induce  wake-related  aberrant  gamma  oscillations  in  the  rat  neocortex.  Biol.
Psychiatry 63, 730–735.

Portas,  C.M.,  Krakow,  K.,  Allen,  P.,  Josephs,  O.,  Armony,  J.L.,  and Frith,  C.D.
(2000).  Auditory processing across the sleep-wake cycle: simultaneous EEG and
fMRI monitoring in humans. Neuron 28, 991–999.

Poskanzer, K.E., and Yuste, R. (2011). Astrocytic regulation of cortical UP states.
Proc. Natl. Acad. Sci. U. S. A. 108, 18453–18458.

Poulet, J.F.A., and Petersen, C.C.H. (2008). Internal brain state regulates membrane
potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885.

Poulet,  J.F.A.,  Fernandez,  L.M.J.,  Crochet,  S.,  and  Petersen,  C.C.H.  (2012).
Thalamic control of cortical states. Nat. Neurosci. 15, 370–372.

Prescott, S.A., and De Koninck, Y. (2003). Gain control of firing rate by shunting
inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl. Acad. Sci. U.
S. A. 100, 2076–2081.

148



7. Bibliography

Priebe,  N.J.,  and  Ferster,  D.  (2008).  Inhibition,  spike  threshold,  and  stimulus
selectivity in primary visual cortex. Neuron 57, 482–497.

Qin,  Y.L.,  McNaughton,  B.L.,  Skaggs,  W.E.,  and Barnes,  C.A.  (1997).  Memory
reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos.
Trans. R. Soc. Lond. B. Biol. Sci. 352, 1525–1533.

Raichle, M.E., and Mintun, M.A. (2006). Brain work and brain imaging. Annu. Rev.
Neurosci. 29, 449–476.

Reig, R., and Sanchez-Vives, M.V. (2007). Synaptic transmission and plasticity in
an active cortical network. PloS One 2, e670.

Reig, R.,  Gallego, R.,  Nowak, L.G., and Sanchez-Vives, M.V. (2006). Impact of
cortical  network  activity on  short-term synaptic  depression.  Cereb.  Cortex  New
York N 1991 16, 688–695.

Reimann, M.W., Anastassiou, C.A., Perin, R., Hill, S.L., Markram, H., and Koch, C.
(2013). A biophysically detailed model of neocortical local field potentials predicts
the critical role of active membrane currents. Neuron 79, 375–390.

Rempe,  M.J.,  Best,  J.,  and  Terman,  D.  (2010).  A mathematical  model  of  the
sleep/wake cycle. J. Math. Biol. 60, 615–644.

Renart,  A.,  de la Rocha,  J.,  Bartho,  P.,  Hollender,  L.,  Parga,  N.,  Reyes,  A.,  and
Harris, K.D. (2010). The asynchronous state in cortical circuits. Science 327, 587–
590.

Ribeiro, S., Gervasoni, D., Soares, E.S., Zhou, Y., Lin, S.-C., Pantoja, J., Lavine,
M.,  and  Nicolelis,  M.A.L.  (2004).  Long-lasting  novelty-induced  neuronal
reverberation during slow-wave sleep in  multiple  forebrain areas.  PLoS Biol.  2,
E24.

Rigas,  P.,  and  Castro-Alamancos,  M.A.  (2007).  Thalamocortical  Up  states:
differential effects of intrinsic and extrinsic cortical inputs on persistent activity. J.
Neurosci. Off. J. Soc. Neurosci. 27, 4261–4272.

Rinzel,  J.,  and  Lee,  Y.S.  (1987).  Dissection  of  a  model  for  neuronal  parabolic
bursting. J. Math. Biol. 25, 653–675.

Roopun,  A.K.,  Middleton,  S.J.,  Cunningham,  M.O.,  LeBeau,  F.E.N.,  Bibbig,  A.,
Whittington,  M.A.,  and  Traub,  R.D.  (2006).  A  beta2-frequency  (20-30  Hz)
oscillation in nonsynaptic networks of somatosensory cortex. Proc. Natl. Acad. Sci.
U. S. A. 103, 15646–15650.

Roopun, A.K., Kramer, M.A., Carracedo, L.M., Kaiser, M., Davies, C.H., Traub,
R.D., Kopell, N.J., and Whittington, M.A. (2008). Temporal Interactions between
Cortical Rhythms. Front. Neurosci. 2, 145–154.

Roopun, A.K., Lebeau, F.E.N., Rammell, J., Cunningham, M.O., Traub, R.D., and
Whittington, M.A. (2010). Cholinergic neuromodulation controls directed temporal
communication in neocortex in vitro. Front. Neural Circuits 4, 8.

Rudolph, M., Pelletier, J.G., Paré, D., and Destexhe, A. (2005). Characterization of

149



7. Bibliography

synaptic conductances and integrative properties during electrically induced EEG-
activated states in neocortical neurons in vivo. J. Neurophysiol. 94, 2805–2821.

Rudolph,  M.,  Pospischil,  M.,  Timofeev,  I.,  and  Destexhe,  A.  (2007).  Inhibition
determines membrane potential dynamics and controls action potential generation in
awake and sleeping cat cortex. J. Neurosci. Off. J. Soc. Neurosci. 27, 5280–5290.

Rudy,  B.,  and  McBain,  C.J.  (2001).  Kv3  channels:  voltage-gated  K+  channels
designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526.

Ruiz-Mejias,  M.,  Ciria-Suarez,  L.,  Mattia,  M.,  and Sanchez-Vives,  M.V.  (2011).
Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. J.
Neurophysiol. 106, 2910–2921.

Ruthazer, E.S., and Stryker, M.P. (1996). The role of activity in the development of
long-range horizontal connections in area 17 of the ferret. J. Neurosci. Off. J. Soc.
Neurosci. 16, 7253–7269.

Sachdev, R.N.S., Ebner, F.F., and Wilson, C.J. (2004). Effect of subthreshold up and
down  states  on  the  whisker-evoked  response  in  somatosensory  cortex.  J.
Neurophysiol. 92, 3511–3521.

Sakata, S., and Harris, K.D. (2009). Laminar structure of spontaneous and sensory-
evoked population activity in auditory cortex. Neuron 64, 404–418.

Sakata, S., and Harris, K.D. (2012). Laminar-dependent effects of cortical state on
auditory cortical spontaneous activity. Front. Neural Circuits 6, 109.

Saleem, A.B., Chadderton, P., Apergis-Schoute, J., Harris, K.D., and Schultz, S.R.
(2010). Methods for predicting cortical UP and DOWN states from the phase of
deep layer local field potentials. J. Comput. Neurosci. 29, 49–62.

Salinas,  E.,  and  Sejnowski,  T.J.  (2000).  Impact  of  correlated  synaptic  input  on
output firing rate and variability in simple neuronal models. J. Neurosci. Off. J. Soc.
Neurosci. 20, 6193–6209.

Sanchez-Vives, M., and McCormick, D. (2000). Cellular and network mechanisms
of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034.

Sanchez-Vives,  M.V.,  Descalzo,  V.F.,  Reig,  R.,  Figueroa,  N.A.,  Compte,  A.,  and
Gallego, R. (2008). Rhythmic spontaneous activity in the piriform cortex. Cereb.
Cortex New York N 1991 18, 1179–1192.

Sanchez-Vives, M.V., Mattia,  M., Compte, A., Perez-Zabalza, M., Winograd, M.,
Descalzo, V.F., and Reig, R. (2010). Inhibitory modulation of cortical up states. J.
Neurophysiol. 104, 1314–1324.

Saper, C.B., Chou, T.C., and Scammell, T.E. (2001). The sleep switch: hypothalamic
control of sleep and wakefulness. Trends Neurosci. 24, 726–731.

Schabus, M., Dang-Vu, T.T., Heib, D.P.J., Boly, M., Desseilles, M., Vandewalle, G.,
Schmidt, C., Albouy, G., Darsaud, A., Gais, S., et al. (2012). The Fate of Incoming
Stimuli during NREM Sleep is Determined by Spindles and the Phase of the Slow
Oscillation. Front. Neurol. 3, 40.

150



7. Bibliography

Schiff, M.L., and Reyes, A.D. (2012). Characterization of thalamocortical responses
of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro
and in silico. J. Neurophysiol. 107, 1476–1488.

Seamari, Y., Narváez, J.A., Vico, F.J., Lobo, D., and Sanchez-Vives, M.V. (2007).
Robust off- and online separation of intracellularly recorded up and down cortical
states. PloS One 2, e888.

Sejnowski, T.J., and Destexhe, A. (2000). Why do we sleep? Brain Res. 886, 208–
223.

Shadlen,  M.N.,  and  Newsome,  W.T.  (1998a).  The  variable  discharge  of  cortical
neurons:  implications  for  connectivity,  computation,  and  information  coding.  J.
Neurosci. Off. J. Soc. Neurosci. 18, 3870–3896.

Shadlen,  M.N.,  and Newsome,  W.T.  (1998b).  The variable  discharge of  cortical
neurons:  implications  for  connectivity,  computation,  and  information  coding.  J.
Neurosci. Off. J. Soc. Neurosci. 18, 3870–3896.

Sharma, A.V., Wolansky, T., and Dickson, C.T. (2010). A comparison of sleeplike
slow oscillations in the hippocampus under ketamine and urethane anesthesia. J.
Neurophysiol. 104, 932–939.

Shepherd, G.M.G., and Svoboda, K. (2005). Laminar and columnar organization of
ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex.
J. Neurosci. Off. J. Soc. Neurosci. 25, 5670–5679.

Shpiro, A.,  Moreno-Bote, R.,  Rubin, N.,  and Rinzel,  J.  (2009). Balance between
noise and adaptation in competition models of perceptual  bistability.  J.  Comput.
Neurosci. 27, 37–54.

Shu,  Y.,  Hasenstaub,  A.,  Badoual,  M.,  Bal,  T.,  and  McCormick,  D.A.  (2003a).
Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J.
Neurosci. Off. J. Soc. Neurosci. 23, 10388–10401.

Shu,  Y.,  Hasenstaub,  A.,  and  McCormick,  D.A.  (2003b).  Turning  on  and  off
recurrent balanced cortical activity. Nature 423, 288–293.

Silberberg,  G.,  Gupta,  A.,  and  Markram,  H.  (2002).  Stereotypy  in  neocortical
microcircuits. Trends Neurosci. 25, 227–230.

Singer,  W.  (1993).  Synchronization  of  cortical  activity  and  its  putative  role  in
information processing and learning. Annu. Rev. Physiol. 55, 349–374.

Sirota, A., and Buzsáki, G. (2005). Interaction between neocortical and hippocampal
networks via slow oscillations. Thalamus Relat. Syst. 3, 245–259.

Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., and Buzsáki, G.
(2008).  Entrainment  of  neocortical  neurons  and  gamma  oscillations  by  the
hippocampal theta rhythm. Neuron 60, 683–697.

Skaggs, W.E., and McNaughton, B.L. (1996). Replay of neuronal firing sequences
in rat hippocampus during sleep following spatial experience. Science  271, 1870–
1873.

151



7. Bibliography

Slézia, A., Hangya, B., Ulbert, I., and Acsády, L. (2011). Phase advancement and
nucleus-specific timing of thalamocortical activity during slow cortical oscillation.
J. Neurosci. Off. J. Soc. Neurosci. 31, 607–617.

Smith,  A.L.,  and  Thompson,  I.D.  (1994).  Distinct  laminar  differences  in  the
distribution of excitatory amino acid receptors in adult ferret primary visual cortex.
Neuroscience 61, 467–479.

Softky, W.R., and Koch, C. (1993). The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J. Neurosci. Off. J. Soc.
Neurosci. 13, 334–350.

Spaak, E., Bonnefond, M., Maier, A., Leopold, D.A., and Jensen, O. (2012). Layer-
specific entrainment of gamma-band neural activity by the alpha rhythm in monkey
visual cortex. Curr. Biol. CB 22, 2313–2318.

Stafstrom, C.E., Schwindt, P.C., and Crill, W.E. (1984). Repetitive firing in layer V
neurons from cat neocortex in vitro. J. Neurophysiol. 52, 264–277.

Stein, R.B.,  Gossen, E.R., and Jones, K.E. (2005). Neuronal variability: noise or
part of the signal? Nat. Rev. Neurosci. 6, 389–397.

Steriade, M. (1999). Brainstem activation of thalamocortical systems.  Brain Res.
Bull. 50, 391–392.

Steriade,  M.  (2001).  Impact  of  network  activities  on  neuronal  properties  in
corticothalamic systems. J. Neurophysiol. 86, 1–39.

Steriade,  M.  (2006).  Grouping  of  brain  rhythms  in  corticothalamic  systems.
Neuroscience 137, 1087–1106.

Steriade, M., and Amzica, F. (1996). Intracortical and corticothalamic coherency of
fast spontaneous oscillations. Proc. Natl. Acad. Sci. U. S. A. 93, 2533–2538.

Steriade, M., and Contreras, D. (1998). Spike-wave complexes and fast components
of cortically generated seizures. I. Role of neocortex and thalamus. J. Neurophysiol.
80, 1439–1455.

Steriade, M., and McCarley, R.W. (2005). Brain control of wakefulness and sleep
(New York: Springer).

Steriade,  M.,  Oakson,  G.,  and  Ropert,  N.  (1982).  Firing  rates  and  patterns  of
midbrain reticular neurons during steady and transitional states of the sleep-waking
cycle. Exp. Brain Res. Exp. Hirnforsch. Expérimentation Cérébrale 46, 37–51.

Steriade, M., Dossi,  R.C.,  and Nuñez, A. (1991). Network modulation of a slow
intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves:
cortically  induced  synchronization  and  brainstem  cholinergic  suppression.  J.
Neurosci. Off. J. Soc. Neurosci. 11, 3200–3217.

Steriade, M., Nuiiez, A., Neurophysiologie, L.D., Mbdecine, F.D., Laval, U., and
Glk,  C.  (1993a).  A  Novel  Slow  (less  I  Hz  )  Oscillation  Depolarizing  and
Hyperpolarizing of Neocortical NATURAL. 73.

152



7. Bibliography

Steriade,  M.,  McCormick,  D.A.,  and  Sejnowski,  T.J.  (1993b).  Thalamocortical
oscillations in the sleeping and aroused brain. Science 262, 679–685.

Steriade, M., Nuñez, A., and Amzica, F. (1993c). Intracellular analysis of relations
between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the
electroencephalogram. J. Neurosci. Off. J. Soc. Neurosci. 13, 3266–3283.

Steriade, M., Contreras, D., and Amzica, F. (1994). Synchronized sleep oscillations
and their paroxysmal developments. Trends Neurosci. 17, 199–208.

Steriade, M., Contreras, D., Amzica, F., and Timofeev, I. (1996). Synchronization of
fast  (30-40  Hz)  spontaneous  oscillations  in  intrathalamic  and  thalamocortical
networks. J. Neurosci. Off. J. Soc. Neurosci. 16, 2788–2808.

Steriade, M., Timofeev, I., and Grenier, F. (2001). Natural waking and sleep states: a
view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985.

Stern,  E.A.,  Kincaid,  A.E.,  and  Wilson,  C.J.  (1997).  Spontaneous  subthreshold
membrane potential fluctuations and action potential variability of rat corticostriatal
and striatal neurons in vivo. J. Neurophysiol. 77, 1697–1715.

Stern, E.A., Jaeger, D., and Wilson, C.J. (1998). Membrane potential synchrony of
simultaneously recorded striatal spiny neurons in vivo. Nature 394, 475–478.

Stoelzel,  C.R.,  Bereshpolova,  Y.,  Gusev,  A.G.,  and  Swadlow,  H.A.  (2008).  The
impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the
sustained/transient distinction. J. Neurosci. Off. J. Soc. Neurosci. 28, 5018–5028.

Stroh,  A.,  Adelsberger,  H.,  Groh,  A.,  Rühlmann,  C.,  Fischer,  S.,  Schierloh,  A.,
Deisseroth, K., and Konnerth, A. (2013). Making waves: initiation and propagation
of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150.

Tabak,  J.,  Senn,  W.,  O’Donovan,  M.J.,  and  Rinzel,  J.  (2000).  Modeling  of
spontaneous activity in developing spinal cord using activity-dependent depression
in an excitatory network. J. Neurosci. Off. J. Soc. Neurosci. 20, 3041–3056.

Tabak, J., Rinzel, J., and O’Donovan, M.J. (2001). The role of activity-dependent
network depression in the expression and self-regulation of spontaneous activity in
the developing spinal cord. J. Neurosci. Off. J. Soc. Neurosci. 21, 8966–8978.

Tabak, J., Rinzel, J., and Bertram, R. (2011). Quantifying the relative contributions
of divisive and subtractive feedback to rhythm generation. PLoS Comput. Biol.  7,
e1001124.

Tang,  H.J.,  Tan,  K.C.,  and  Zhang,  W.  (2005).  Analysis  of  cyclic  dynamics  for
networks of linear threshold neurons. Neural Comput. 17, 97–114.

Tarczy-Hornoch, K., Martin, K.A., Jack, J.J., and Stratford, K.J. (1998). Synaptic
interactions between smooth and spiny neurones in layer 4 of cat visual cortex in
vitro. J. Physiol. 508 ( Pt 2), 351–363.

Tateno, T., Harsch, A., and Robinson, H.P.C. (2004). Threshold firing frequency-
current  relationships  of  neurons in  rat  somatosensory cortex:  type  1 and type 2
dynamics. J. Neurophysiol. 92, 2283–2294.

153



7. Bibliography

Thomson,  A.M.,  and  Bannister,  A.P.  (2003).  Interlaminar  connections  in  the
neocortex. Cereb. Cortex New York N 1991 13, 5–14.

Thuault,  S.J.,  Malleret,  G.,  Constantinople, C.M., Nicholls,  R.,  Chen, I.,  Zhu, J.,
Panteleyev,  A.,  Vronskaya,  S.,  Nolan,  M.F.,  Bruno,  R.,  et  al.  (2013).  Prefrontal
Cortex HCN1 Channels  Enable  Intrinsic  Persistent  Neural  Firing and Executive
Memory Function. J. Neurosci. Off. J. Soc. Neurosci. 33, 13583–13599.

Timofeev,  I.  (2011).  Neuronal  plasticity  and  thalamocortical  sleep  and  waking
oscillations. Prog. Brain Res. 193, 121–144.

Timofeev, I., and Steriade, M. (1996a). Low-frequency rhythms in the thalamus of
intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168.

Timofeev, I., and Steriade, M. (1996b). Low-frequency rhythms in the thalamus of
intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168.

Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J., and Steriade, M. (2000).
Origin of  slow cortical  oscillations  in  deafferented cortical  slabs.  Cereb.  Cortex
New York N 1991 10, 1185–1199.

Timofeev,  I.,  Grenier,  F.,  and  Steriade,  M.  (2001).  Disfacilitation  and  active
inhibition  in  the  neocortex  during  the  natural  sleep-wake  cycle:  an  intracellular
study. Proc. Natl. Acad. Sci. U. S. A. 98, 1924–1929.

Tolhurst,  D.J.,  Dean,  A.F.,  and  Thompson,  I.D.  (1981).  Preferred  direction  of
movement as an element in the organization of cat visual cortex. Exp. Brain Res.
Exp. Hirnforsch. Expérimentation Cérébrale 44, 340–342.

Tolhurst, D.J., Movshon, J.A., and Dean, A.F. (1983). The statistical reliability of
signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785.

Ts’o, D.Y., Gilbert, C.D., and Wiesel, T.N. (1986). Relationships between horizontal
interactions and functional architecture in cat striate cortex as revealed by cross-
correlation analysis. J. Neurosci. Off. J. Soc. Neurosci. 6, 1160–1170.

Tsodyks, M., Kenet, T., Grinvald, A., and Arieli, A. (1999). Linking spontaneous
activity  of  single  cortical  neurons  and  the  underlying  functional  architecture.
Science 286, 1943–1946.

Ushimaru, M., Ueta, Y., and Kawaguchi, Y. (2012). Differentiated participation of
thalamocortical  subnetworks  in  slow/spindle  waves  and  desynchronization.  J.
Neurosci. Off. J. Soc. Neurosci. 32, 1730–1746.

Valderrama,  M.,  Crépon,  B.,  Botella-Soler,  V.,  Martinerie,  J.,  Hasboun,  D.,
Alvarado-Rojas,  C.,  Baulac,  M.,  Adam,  C.,  Navarro,  V.,  and Le Van Quyen,  M.
(2012). Human gamma oscillations during slow wave sleep. PloS One 7, e33477.

Vanderwolf, C.H. (2000). Are neocortical gamma waves related to consciousness?
Brain Res. 855, 217–224.

Le Van Quyen, M., Staba, R., Bragin, A., Dickson, C., Valderrama, M., Fried, I., and
Engel, J. (2010). Large-scale microelectrode recordings of high-frequency gamma
oscillations in human cortex during sleep. J. Neurosci. Off. J. Soc. Neurosci.  30,

154



7. Bibliography

7770–7782.

Villablanca, J.R. (2004). Counterpointing the functional role of the forebrain and of
the brainstem in the control of the sleep-waking system. J. Sleep Res. 13, 179–208.

Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C.,
Zempel,  J.M.,  Snyder,  L.H.,  Corbetta,  M.,  and  Raichle,  M.E.  (2007).  Intrinsic
functional architecture in the anaesthetized monkey brain. Nature 447, 83–86.

Volgushev, M., Chauvette, S., Mukovski, M., and Timofeev, I. (2006). Precise long-
range synchronization of activity and silence in neocortical neurons during slow-
wave oscillations [corrected]. J. Neurosci. Off. J. Soc. Neurosci. 26, 5665–5672.

Van Vreeswijk, C., and Hansel, D. (2001). Patterns of synchrony in neural networks
with spike adaptation. Neural Comput. 13, 959–992.

Van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state in a model
of cortical circuits. Neural Comput. 10, 1321–1371.

Vyazovskiy, V.V., Olcese, U., Lazimy, Y.M., Faraguna, U., Esser, S.K., Williams,
J.C.,  Cirelli,  C.,  and  Tononi,  G.  (2009).  Cortical  firing  and  sleep  homeostasis.
Neuron 63, 865–878.

Vyazovskiy,  V.V.,  Olcese,  U.,  Hanlon,  E.C.,  Nir,  Y.,  Cirelli,  C.,  and  Tononi,  G.
(2011). Local sleep in awake rats. Nature 472, 443–447.

Walker, M.P., and Stickgold, R. (2006). Sleep, memory, and plasticity. Annu. Rev.
Psychol. 57, 139–166.

Wang, X.-J.  (2010).  Neurophysiological  and computational  principles  of cortical
rhythms in cognition. Physiol. Rev. 90, 1195–1268.

Wang, X.J. (1998). Calcium coding and adaptive temporal computation in cortical
pyramidal neurons. J. Neurophysiol. 79, 1549–1566.

Waters,  J.,  and  Helmchen,  F.  (2006).  Background  synaptic  activity is  sparse  in
neocortex. J. Neurosci. Off. J. Soc. Neurosci. 26, 8267–8277.

Watson,  B.O.,  MacLean,  J.N.,  and  Yuste,  R.  (2008).  UP states  protect  ongoing
cortical activity from thalamic inputs. PloS One 3, e3971.

Weiler, N., Wood, L., Yu, J., Solla, S.A., and Shepherd, G.M.G. (2008). Top-down
laminar organization of the excitatory network in motor cortex. Nat. Neurosci.  11,
360–366.

Weliky, M., and Katz, L.C. (1997). Disruption of orientation tuning in visual cortex
by artificially correlated neuronal activity. Nature 386, 680–685.

Wierzynski, C.M., Lubenov, E.V., Gu, M., and Siapas, A.G. (2009). State-dependent
spike-timing  relationships  between  hippocampal  and  prefrontal  circuits  during
sleep. Neuron 61, 587–596.

Williams, S.R., and Stuart, G.J. (2002). Dependence of EPSP efficacy on synapse
location in neocortical pyramidal neurons. Science 295, 1907–1910.

155



7. Bibliography

Wilson, M. (1996). Dynamics of hippocampal memory formation in waking and
sleep states. J. Physiol. Paris 90, 351–352.

Wilson,  C.J.,  and Groves,  P.M. (1981).  Spontaneous firing patterns of identified
spiny neurons in the rat neostriatum. Brain Res. 220, 67–80.

Wilson,  H.R.,  and Cowan,  J.D.  (1972).  Excitatory and inhibitory interactions  in
localized populations of model neurons. Biophys. J. 12, 1–24.

Wilson,  M.T.,  Steyn-Ross,  M.L.,  Steyn-Ross,  D.A.,  and  Sleigh,  J.W.  (2005).
Predictions  and  simulations  of  cortical  dynamics  during  natural  sleep  using  a
continuum approach. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 051910.

Winograd, M., Destexhe, A., and Sanchez-Vives, M.V. (2008). Hyperpolarization-
activated graded persistent activity in the prefrontal cortex. Proc. Natl. Acad. Sci. U.
S. A. 105, 7298–7303.

Wolansky, T., Clement, E.A., Peters, S.R., Palczak, M.A., and Dickson, C.T. (2006).
Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing
neocortical activity. J. Neurosci. Off. J. Soc. Neurosci. 26, 6213–6229.

Xing,  D.,  Yeh,  C.-I.,  Burns,  S.,  and  Shapley,  R.M.  (2012).  Laminar  analysis  of
visually evoked activity in the primary visual cortex. Proc. Natl. Acad. Sci. U. S. A.
109, 13871–13876.

Xu, X., Olivas, N.D., Levi, R., Ikrar, T., and Nenadic, Z. (2010). High precision and
fast functional mapping of cortical circuitry through a novel combination of voltage
sensitive dye imaging and laser scanning photostimulation. J. Neurophysiol.  103,
2301–2312.

Yuste, R., MacLean, J.N., Smith, J., and Lansner, A. (2005). The cortex as a central
pattern generator. Nat. Rev. Neurosci. 6, 477–483.

Zohary,  E.,  Shadlen,  M.N.,  and  Newsome,  W.T.  (1994).  Correlated  neuronal
discharge rate  and its  implications  for  psychophysical  performance.  Nature  370,
140–143.

156


	Agradecimientos
	phdThesis_DanielJercog.pdf
	Table of Contents
	1. Introduction
	1.1. Cortical Spontaneous activity
	1.2. Laminar architecture and physiology of neocortex
	1.3. Neocortical oscillations
	1.4. UP-DOWN states
	1.5. Cortical brain state

	2. Objectives
	3. Methods
	3.1. Experimental methods
	3.2. LFP data analysis
	3.3. MUA data analysis
	3.4. Model data analysis

	4. Results
	4.1. Laminar profile of fast oscillations during UP states
	4.2. Analysis of synchronized state dynamics in vivo
	4.3. Exploring the mechanisms underlying cortical UP and DOWN dynamics
	4.4. Statistics of spontaneous activity across brain states

	5. Discussion
	6. Conclusions
	7. Bibliography

	resumen.pdf
	Resumen


