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Abstract 

Forecasting coal resources and reserves is critical for coal mine development. 

Thickness maps are commonly used for assessing coal resources and reserves; however 

they are limited for capturing coal splitting effects in thick and heterogeneous coal 

zones. As an alternative, three-dimensional geostatistical methods are used to populate 

facies distribution within a densely sampled heterogeneous coal zone in the As Pontes 

basin (NW Spain). Coal distribution in this zone is mainly characterized by coal-

dominated areas in the central parts of the basin interfingering with terrigenous-

dominated alluvial fan zones at the basin margins. Resultant models are applied to 

forecast coal resources and reserves. Predictions using subsets of available well data are 

also generated to understand performance under limited data constraints.  

Facies interpolation methods tend to overestimate coal resources and reserves 

due to interpolation smoothing. Facies simulation methods yield similar resource 

predictions than conventional thickness map approximations. Reserves predicted by 

facies simulation methods are mainly influenced by: a) the specific coal proportion 

threshold used to determine if a block can be recovered or not, and b) the method 

capability to reproduce areal trends in coal proportions and splitting between coal-

dominated and terrigenous-dominated areas of the basin. Reserves predictions differ 

between the simulation methods, even with dense conditioning datasets. Simulation 

methods are ranked according to the correlation of their outputs with predictions to the 

directly interpolated coal proportions: with low-density datasets sequential indicator 

simulation with trends yields the best correlation, with high-density datasets sequential 

indicator simulation with post-processing using maximum a posteriori selection yields 

the best correlation.  
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Highlights 

 3D interpolation and simulation methods to reproduce facies distribution for a coal 

zone  

 Coal deposits dominate at the basin center and interfinger with terrigenous at the 

margins. 

 Models built with varying data density, and used to forecast resources and reserves. 

 Facies interpolation overestimates coal resources and reserves due to smoothing. 

 Forecasted differences in reserves due to methods capability to reproduce areal 

trends. 
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1. Introduction 

1.1. Coal resources, reserves and 3D facies models 

Forecasting coal resources and reserves is critical for assessing the feasibility 

and the optimal development of a coal mine. Resources comprise the estimated amount 

of coal in the subsurface. Typically, thickness maps have been used for assessing 

resources, either using: a) interpolation (Starks et al., 1982; Schuenmeyer and Power, 

2000; Tercan and Karayigit, 2001; Watson et al., 2001; Heriawan and Koike, 2008a and 

2008b; Tercan et al., 2013; Saikia and Sarkar 2013), or b) geostatistical simulation 

methods (Costa et al., 2000; Hohn and McDowell; 2001a and 2001b; de Souza et al., 

2004; Olea et al., 2011; Olea and Luppens 2012; Hohn and Britton, 2013; Cornah et al., 

2013; Pardo-Iguzquiza et al., 2013). Interpolation methods applied in this context are 

appropriate when the goal is to provide a unique composite global estimate for 

resources. On the other hand, simulations are more useful to capture short-scale 

fluctuations and local variability in predictions accounting for uncertainty (Goovaerts, 

1999; de Souza et al., 2004; Olea et al., 2011; Srivastava, 2013). 

Reserves comprise resources that are economically minable at the time of 

determination (Wood et al., 1983). Some authors have used minimum thickness 

thresholds to estimate reserves from thickness maps (Schuenmeyer and Power, 2000; 

Hohn and McDowell, 2001a; Pardo-Iguzquiza et al., 2013). Heterogeneous coal zones 

are characterized by frequent coal splitting and rejoining due to interfingering with 

terrigenous sediments. These result from the variability of sedimentary environments in 

which coal is generated and accumulated (Hacquebard, 1993; Hower et al., 1994; 

Thomas, 2003). In these cases reserves can be significantly reduced because thin coal 

beds cannot be economically mined (Heriawan and Koike, 2008b). The three-

dimensional effects of multiple coal splitting in heterogeneous coal zones are difficult to 

properly capture and quantify using maps (Figure 1A). 

3D facies models (Haldorsen and Damsleth, 1990, Figure 1B) provide an 

alternative to simulate coal intercalations and splitting, and improve reserve forecasts 

for heterogeneous coal zones (Whateley, 2002). Several modelling strategies exist, for 

example structure-imitating methods aim to reproduce the spatial patterns and 

distribution of the deposits without explicitly considering sedimentary processes 

(Koltermann and Gorelick, 1996). These have been widely used to reconstruct or 

simulate facies distributions in the subsurface, mostly in relation to hydrocarbon 

reservoirs or aquifers (for example: Johnson and Dreisss, 1989; Langlais and Doyle, 

1993; Gotway and Rutherford, 1994; de Marsily et al., 1998 and 2005; Lee et al., 2007). 

However, examples of their application to coal zones are limited (Falivene et al., 2007b; 

Heriawan and Koike, 2008b; Deutsch and Wilde, 2013). 

Tentative position for Figure 1 
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Figure 1: A) Summary maps characterizing coal versus terrigenous facies distribution in a heterogeneous 

coal zone. B) Three-dimensional model for coal distribution for the same coal zone viewed by means of a 

fence diagram. Vertical exaggeration 10x. Note preferential coal splitting due to interfingering with 

terrigenous sediments in the basin margins. 

1.2. Aims 

This paper focuses on analysing and comparing 3D structure-imitating methods 

to populate facies distribution within a heterogeneous coal zone in the As Pontes basin 

(NW Spain). Facies distributions in this coal zone resulted from the coeval evolution of 

different peat-forming environments in a continental basin bordered by alluvial systems, 

and are mainly characterized by interfingering and intercalations between coal-

dominated areas in the centre of the basin grading to terrigenous-dominated areas at its 

margins. 

Facies distribution models are used to estimate coal resources and coal reserves 

(only accounting for coal splitting, and assuming exploitation with a bucket wheel 

excavator). To highlight the effects of the different facies modelling methods, the total 

volume of the coal zone is considered as fixed, and coal quality parameter variations are 
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not explicitly considered. Predictions by using subsets of the dataset are also obtained to 

understand performance of the methods with limited data, such as in studies to 

determine economics of future mines. 

The paper is structured in five parts dealing with: a) studied data set and general 

set up for the models, b) application of traditional map-based interpolation methods for 

estimating resources, c) application of 3D facies interpolation and simulation methods 

to obtain facies distributions, d) resultant coal resources and reserves predicted by each 

method, and e) discussion and concluding remarks.  

2. Studied dataset and general set up 

2.1. 6AW coal zone 

The As Pontes basin (Oligocene-Early Miocene, NW Spain) is a small 

continental basin (12km
2
) developed in relation to a strike-slip fault system (Santanach 

et al., 1988, 2005; Figure 2A). Coal deposits in the basin can be classified as low mature 

lignite B (ASTM) or class 11/12 (UN-ECE), with huminite reflectance ranging from 

0.31% to 0.39%, relatively high to very high ash contents, low to moderate calorific 

values (Cabrera et al., 1995), and rich in sulphide due to the catchment rocks 

composition and paleohydrological closed-restricted basin conditions (Huerta et al., 

1997; Huerta, 1998, 2001).  

The basin fill can be split into 5 major genetic stratigraphic units (Ferrús, 1998; 

Sáez and Cabrera, 2002; Sáez et al., 2003), with the 6AW zone sitting on the upper part 

of Unit 1 in the Western subbasin, and bounded by nearly isochronous surfaces (Huerta 

et al., 1997; Ferrús, 1998; Figure 2B). This zone accumulated during the early 

evolutionary stages of the strike-slip fault system; in which the northern margin of the 

Western subbasin was affected by coeval thrusting involving mainly basement units. 

The eastern margin was bounded by active normal faults limiting the extension of the 

sedimentation area. And the south-western passive margin recorded progressive onlap 

and expansion of the depositional areas of the basin, reaching 2.5km
2

 during its late 

depositional stages (Figure 2B and C, Ferrús, 1998; Santanach et al., 2005). Coal 

deposition in 6AW took place in well-developed marshes and swamps; where tropical 

terrestrial and aquatic plant communities (Cavagnetto, 2002; Martin-Closas, 2003) were 

bordered by short radius alluvial fine-grained fans (Bacelar et al., 1988; Cabrera et al., 

1995, 1996; Ferrús, 1998; Sáez and Cabrera, 2002; Sáez et al., 2003; Falivene et al., 

2007b). The deposits of the 6AW zone average 30m in thickness, and are affected by 

post-depositional tilting towards the northern and eastern basin margin and gentle 

folding (Santanach et al., 2005). 

Tentative position for Figure 2 
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Figure 2. A) Location of the As Pontes basin in NW Spain. B) Longitudinal sketch of the basin showing 

the main stratigraphic units, sedimentary facies and basement structures (see arrows for location in frame 

C). Note stratigraphic position of the 6AW coal zone. C) Paleogeographic sketch of the basin during 

deposition of the upper part of 6AW. D) Location of wells used in this study. Location of the NW-SE 

reference section shown in Figure 5 and 8. Coordinates in the lower sketch are in kilometres.  

2.2. Coal facies distribution 

Three coal facies make up most of the 6AW deposits: a) dark brown coal (DBC), 

b) pale yellow brown coal (PBC), and c) xyloid brown coal (XBC); Cabrera et al., 1992, 

1995; Hagemann et al., 1997; Huerta et al., 1997; Huerta, 1998, 2001). The DBC is a 

huminite dominated, often very biodegraded brown coal generated in subaerial to 

shallow subaqueous marshes and arbored swamps. The PBC is a liptinite-rich brown 

coal resulting from the accumulation of highly degraded aquatic and marsh plant 

remains in shallow subaqueous water conditions (Huerta, 1998). The XBC records the 

accumulation of wood remnants, either in place on forested swamps or slightly 

transported to neighbouring areas by low-energy currents and then randomly deposited 

(Huerta, 1998). 
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Two mudstone facies occur interbedded and interfingered with the coal facies: a) 

light coloured, grey to brown, alluvial massive mudstones (AM); and b) green massive 

to dark thinly-bedded lacustrine mudstones and shales (LM). AM facies record 

sedimentation in the distal and marginal zones of the alluvial fans surrounding peat-

forming environments. LM facies record deposition in relatively stable, shallow to 

deeper lacustrine zones, which were subject to intense terrigenous input from the 

alluvial fans and variable organic matter contributions. Deeper water and terrigenous 

input inhibited peat accumulation. Coal facies (DBC, PBC and XBC) show frequent 

vertical transitions as well as lateral interfingering with siliclastic facies (AM and LM) 

which are difficult to capture through 2D analysis (Figure 1). 

2.3. Well data and well density levels 

Besides the heterogeneity in 6AW, this coal zone is also used herein due to the 

extensive well data available, with 174 vertical wells covering an area of nearly 

2.05km
2 

(84.9 wells/km
2
, note small difference in the areal distribution of the wells used 

for this study with the areal extension of the coal zone, particularly in the southeast, 

Figures 2C and D). Information from the wells comprises 3869 m of detailed core 

descriptions for 6AW, which makes it an ideal example to compare facies modelling 

strategies. Wells were drilled along a nearly regular square grid with a spacing of 

approximately 105m (Figure 2D). Facies descriptions from the cores recorded by 

ENDESA MINA PUENTES resolve beds over 0.15 m thick, and show the following 

facies percentages: LM (2.9%), PBC (12.2%), DBC (52.2%), XBC (6.8%) and AM 

(25.9%). 

Resources and reserves predictions are carried out considering the entire dataset 

(174 wells) and decimated subsets with 10, 30, 70 and 120 wells (respectively 4.9, 14.6, 

34.2 and 58.5 wells/km
2
). To minimize the effects of selecting specific well 

combinations and the sensitivity of each method to those specific combinations, 50 

different scenarios are considered for each well density level with randomly selected 

wells (Figure 3, Table 1). These scenarios are consistently used for all the methods and 

density levels compared, aiming to reduce the effects of specific well selections. To 

avoid cases of unrealistic clustering of selected wells, an equal number of wells are 

chosen in each of the 10 adjacent areas in which the coal zone is subdivided (Figure 3). 

Tentative position for Figure 3 
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Figure 3. Example of conditioning well subsets for the density level with 10 wells  

3. Coal proportions benchmark 

To provide a benchmark for comparison with 3D facies reconstruction and 

modelling methods, coal proportions and resources are first obtained by traditional map-

based methods. 

The simplest approach is by multiplying the volume of the entire coal zone and 

the coal facies proportion at the wells (1D-Pro). The volume is considered constant for 

all well selection levels and scenarios, and is computed from the thickness map 

interpolated from the entire dataset, with a horizontal grid spacing set to 20m (Figure 

4A). This allows the comparison against other methods to be focused on coal facies 

distribution without being influenced by differences in the coal zone total volume. To 

obtain the average coal proportion, the coal proportion measured at each well is 

weighted by the vertical thickness of the unit. No correction for varying bedding 

attitudes is used to derive proportions or thicknesses, as these are not very large except 

in very limited parts on the basin margins. 

The next levels of complexity use a coal proportion map (2D-Pro, Figure 4B) or 

directly the common coal thickness map approach (2D-Thick, Figure 4C) (Starks et al., 

1982; Schuenemeyer and Power, 2000; Hohn and McDowell, 2001; Tercan and 

Karayigit, 2001; Heriawan and Koike, 2008b; Saikia and Sarkar, 2013). For computing 

coal volumes using a coal proportion map the total thickness map of the coal zone 

(Figure 4A) is also used. Interpolations are carried out using ordinary kriging from the 
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GSLIB routines (Deutsch and Journel, 1998) with a maximum of 12 neighbouring data 

points considered for each cell. 

The coal proportion map conditioned to 174 wells allows delineating the 

influence areas of the alluvial fans located at the basin borders, with larger areas for the 

alluvial fans coming from the northern margin (Figure 4B). On the other hand, the coal 

thickness map conditioned to 174 wells shows similar thinning patterns towards each of 

the basin margins (Figure 4C). However coal thinning results from different causes at 

each margin. (1) Towards the northern and eastern margins is due to increased 

interfingering with terrigenous sediments and paralleled by a decrease in coal 

proportions (Figure 4B), despite overall thickening of the 6AW coal zone against 

syndepositional faults (thrusts for the northern margin and normal faults for the eastern 

margin; Figure 4A). (2) Towards the south-eastern basin margin is mostly due to 

gradual thinning of the entire zone onto an onlapped passive basin margin (Figure 4A), 

with smaller reductions in coal proportions (Figure 4B). As expected, the maps 

conditioned to decimated well data subsets display much more homogeneous 

proportions and thicknesses, which make it much more difficult to precisely delineate 

the influence areas of alluvial fans (Figure 4A and 4B). 

Tentative position for Figure 4 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
10 

 

 

Figure 4: A) Thickness map for the coal zone. B) Coal proportion map by interpolating well data (2D-

Pro). C) Total coal thickness map by interpolating well data (2D-Thick). Maps obtained with 10 wells 

correspond to the well selection in Scenario #2 in Figure 3. See text for detailed explanations 

4. Three-dimensional facies distribution methods 

Geostatistical structure-imitating methods (Falivene et al., 2007a) are used to 

populate a 3D grid covering the 6AW coal zone with facies distributions. Both 

interpolation and simulation methods are used. These methods are chosen because: a) 

can be conditioned to closely-spaced well data (Deutsch and Journel, 1998), b) can be 

tailored to a variety of depositional environments (including the ones for the 6AW coal 

zone) by assigning statistical parameters constraining the resultant facies distribution, 

such as global proportions, areal variations in proportions, and variograms (Mao and 

Journel, 1999; Gringarten and Deutsch, 2001; Yao, 2002; Leuangthong and Deutsch, 
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2004), c) do not require or impose extensive correlation of internal heterogeneities such 

as surface-based methods (Benndorf, 2013; Deutsch and Wilde, 2013); and d) are 

computationally efficient allowing to simulate hundreds of scenarios in a grid with 

several hundred thousand cells. 

4.1. General set up: modelling grid and indicator variograms 

Interpolations and simulations are carried out using shifted vertical coordinates 

transforming the top surface of the 6AW coal zone to a horizontal datum. This enables 

restoration of most of the post-depositional structural deformation along the northern 

basin margin (Santanach et al., 2005, Figure 2). 

Horizontal grid layering is designed to mimic those planes along which facies 

are expected to display more continuity (i.e. paleo-depositional surfaces or bedding; 

Jones, 1988). An hybrid approach is used: a) proportional layering between top and base 

in the centre of the basin and its northern and eastern active basin margins to reproduce 

post-depositional folded stratification and account for the near isochronous nature of the 

limits of the coal zone, and b) parallel to top layering for the southern passive margin to 

reproduce onlap of expansive intervals such as this one onto the basement (Cabrera et 

al., 1995; Ferrús, 1998; Santanach et al., 2005; Figure 5). This corresponds to the 

“geological layering” described in Falivene et al. (2007b). Vertical grid spacing is set to 

approximately 0.15 m following the resolution of core descriptions. The number of grid 

cells is around 770000. Facies described in the cores are upscaled to the size of grid 

cells by assigning the most abundant logged facies within each cell to average 

variability at smaller scales than cell size. Upscaled categories are the input data for all 

subsequent interpolations and simulations.  

Tentative position for Figure 5 

 

Figure 5: Reference section showing grid layering. See location of the section in Figure 2D and 3. Note 

that only 10% of the grid layers are shown. Vertical exaggeration 10x. 

Indicator variograms for each individual facies derived from the entire dataset 

reveal different lateral and vertical continuities (Figure 6A), due to their varying 

geometries and distributions (Figure 2, 4 and 7). Owing to these differences, facies 

reconstructions are built explicitly discriminating the five facies identified above (LM, 

PBC, DBC, XBC and AM).  

For simplicity, and assuming that good variogram approximations could be 

determined from available well data or complemented by analogues in cases of limited 
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constraints (Kupfersberger and Deutsch, 1999), the theoretical variograms fitted to the 

entire dataset are used in all well density levels (Figure 6A). Since indicator variogram 

sills are related to facies proportions (Kupfersberger and Deutsch, 1999; Gringarten and 

Deutsch, 2001; Guardiola-Albert and Gomez-Hernandez, 2001), using indicator 

variogram theoretical functions fitted to the entire dataset implies that some indirect 

knowledge about the exhaustive facies proportions is used even in those scenarios 

conditioned by a subset of wells. However, by using the same variograms for all well 

density levels allows isolating the effects of the different methods when comparing 

resources and reserves predictions, and this is deemed a more important objective. Two 

different nested exponential variogram structures are used for each theoretical 

variogram model of each facies (Hr and Vr stand for horizontal and vertical variogram 

ranges respectively): 

 

Tentative position for Figure 6 
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Figure 6. A) Horizontal and vertical indicator variograms derived from the entire dataset for the two most 

common facies: DBC and AM facies. B) Horizontal indicator variograms computed from IK models. C) 

Horizontal indicator variograms computed from SIS models. D) Horizontal indicator variograms 

computed from SIS-MA models. In frame A, grey dots and dashed curves correspond to the experimental 

variograms derived from upscaled well data. In frames B, C and D, dashed curves correspond to 

experimental variograms from models. For IK conditioned to 174 wells, the variograms computed with 

different azimuth directions are shown. For well data levels or modelling methods in which more than one 

scenario was generated, the variograms computed for one azimuth direction are shown. In all frames 

continuous curves correspond to the theoretical models used in the models. 
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4.2. Facies interpolations 

Deterministic facies interpolations are obtained with indicator kriging (IK; 

Johnson and Dreiss, 1989; Deutsch and Journel, 1998; Falivene et al., 2007b; Figure 8A 

and 9A). IK yields a unique and smooth solution aiming at local accuracy (Isaaks and 

Srivastava, 1989; Journel et al., 2000) with the most probable facies category at each 

grid node (Yamamoto et al., 2012). Due to the smoothing by interpolation methods, 

variograms computed from IK output facies distributions reveal larger continuity 

compared with theoretical variograms fitted to the exhaustive dataset, which increase 

with reducing conditioning wells (Figure 6B). 

Due to the presence of strong areal trends, as suggested by experimental vertical 

variograms for DBC and AM not reaching the expected sill considering facies 

proportions (Figure 6A; Gringarten and Deutsch, 2001), facies interpolations are also 

built with indicator kriging with an areal trend (Journel and Rossi, 1989; Leuangthong 

and Deutsch, 2004). Areal trends are mainly related to the preferential distribution of 

AM facies surrounding coal accumulation environments in the centre of the basin (PBC, 

DBC and Figure 2C, Figure 7). Two options are contrasted when dealing with well data 

conditioning levels. (1) Considering areal trends as previously unknown, and therefore 

calculated from the actual conditioning data for the scenario being modelled (IK-TC; 

Figure 8B). (2) Considering areal trends as previously known (assuming they can be 

derived from prior knowledge or complementary geological data such as indirect 

geophysical measurements), and therefore derived from the exhaustive well dataset for 

all the well levels (IK-TR; Figure 8C). In all cases, 48 neighbouring points are 

considered to compute facies in each cell (Deutsch and Journel, 1998). 

Tentative position for Figure 7: Areal trends for each facies 
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Figure 7. Areal trends for each facies computed with the entire dataset. The maps correspond to the areal 

proportions of each facies obtained by interpolation of well data. Note the changing greyscale ranges 

among the different facies. 

4.3. Facies simulations 

Stochastic facies simulations provide equiprobable realizations aiming to capture 

variability that can be inferred from existing data and general knowledge of the 

sedimentary depositional setting. Although it is assumed that the exact heterogeneity 

distribution cannot be totally identified by the conditioning data, at least a 

representation is achieved by incorporating a degree of randomness in the simulation 

(Journel, 1974). Sequential indicator simulation (SIS, Journel, 1983; Gomez-Hernandez 

and Srivastava, 1990; Journel and Gomez-Hernandez, 1993; Seifert and Jensen, 1999) is 

used to obtain facies realizations (Figure 8D and 9B). As expected, variogram 

continuity from SIS models is similar to the theoretical variograms fitted to the 

exhaustive dataset (Figure 6C, Goovaerts, 1999; Leuangthong et al., 2004). 

Similar to interpolation methods, facies simulations are also built using areal 

trends (Figure 7, Deutsch, 2006), either derived from the actual conditioning data (SIS-

TC, Figure 8E), or from the complete dataset (SIS-TR, Figure 8F). In all cases, 48 

neighbouring points are considered to compute facies in each cell (Deutsch and Journel, 

1998). 

A final set of models is obtained by post-processing SIS models using maximum 

a-posteriori selection (SIS-MA), based on a modification of the code by Deutsch 

(1998). This method reduces small scale variations in the output models (Deutsch, 

1998; Deutsch, 2002, compare Figure 8D and 8G, and Figure 9B and 9C), by retaining 

at each location the most probable facies according to: a) neighbouring facies 

distribution, b) proximity of conditioning data, and c) differences in target facies 

proportions. SIS-MA improves facies proportion reproduction while maintaining 

variogram range reproductions respect to the original dataset achieved by SIS (compare 

Figure 6C and 6D; Leuanghtong et al., 2004). 

Tentative position for Figure 8 
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Figure 8. Reference section showing facies distribution. See section location in Figure 2D and 3. Arrows 

indicate the position of intersected conditioning wells. Vertical exaggeration 10x. 
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Tentative position for Figure 9 

 

Figure 9. Fence diagrams viewed from the south showing facies distribution (grouped into coal and 

terrigenous facies) obtained by A) indicator kriging (IK), B) sequential indicator simulation (SIS) and C) 

sequential indicator simulation with post-processing (SIS-MA). The position stratigraphic position of the 

layer visualized is indicated in Figure 8. Vertical exaggeration 10x. 

5. Results 

In total, 1603 models are built: 201 for IK, 201 for IK-TC, 201 for IK-TR, 250 

for SIS, 250 for SIS-TC, 250 for SIS-TR and 250 for SIS-MA (Table 1).  

Tentative position for Table 1 
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Table 1: Summary of modelling strategies and conditioning density levels compared. For each modelling 

strategy, five well density levels were compared (10, 30, 70, 120 and 174 wells), and 50 different 

scenarios were tested for each density level considering subsets of the entire dataset, 50 stochastic 

realizations were also built for simulation methods conditioned to the entire dataset.  

5.1. Coal resources 

Coal percentages are computed by adding volumes of cells classified as coal 

facies (PBC, DBC and XBC) respect to the volume of the entire modelling grid (Figure 

10). This represents a proxy for resources assuming a known coal zone volume (which 

is close to the modelling grid volume, Figure 2), and coal density. Results can be 

summarized as follows: 

1) Average benchmark coal percentages (1D-Pro, 2D-Pro and 2D-Thick) are 

very close to those of the entire dataset (71.2%, Figure 10). 

2) Interpolation methods (IK, IK-TC and IK-TR) yield overestimations of 

average coal percentages compared to those of the entire dataset. Overestimations 

increase by decreasing the number of conditioning wells (reaching nearly 10 percentage 

units, Figure 10A). 

3) Simulation methods (SIS, SIS-TC, SIS-TR and SIS-MA) yield similar 

average coal percentage predictions to the entire dataset (Figure 10), with slight 

underestimations in high density levels (particularly for SIS-TC and SIS-TR, Figure 

10E). SIS-MA average coal percentages are those closer to the entire dataset (Figure 

10). 

4) SIS and SIS-MA have the smallest variability of predictions for different well 

selection scenarios (Figure 10). With the exception of those methods using trends 

derived from the complete dataset (IK-TR and SIS-TR), and some density levels of IK-

TC in which a small range is achieved but at the expenses of a very high smoothing 

effect. 
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5) Using trends derived from the available dataset for each well scenario does 

not improve reproduction of average predictions compared to not using trends (compare 

IK-TC with IK; and SIS-TC with SIS, Figure 10).  

6) Using trends derived from the complete dataset significantly contributes to 

reduce variability in the predictions, compare IK-TR with IK, and SIS-TR with SIS, 

particularly for the lowest conditioning density scenarios (10, 30 and 70, Figure 10A, B 

and C).  

Tentative position for Figure 10 

 

Figure 10: Average, minimum and maximum coal percentage summarized for each modelling strategy 

and wells density. For 1D-Pro, 2D-Pro and 2D-Thick only the average is reported, since these approaches 

did not considered variograms derived from the entire dataset (contrarily to other facies interpolation and 

simulation methods). Coal percentage measured in the exhaustive dataset (71.2%) is shown by a dashed 

line. This corresponds to 32.6·10
6
 m3 (assuming a coal zone volume of 45.7·10

6
 m3, as measured from 

the modelling grid), and resources of 39.1·10
6
 metric ton (assuming a density of 1.2 metric ton/m3 as 

reported in Chica-Olmo and Laille, 1984). 

5.2. Coal reserves 

Reserves measure the coal that can be economically mined, therefore are related 

to the 3D facies distribution in the coal zone, but also to the methods employed to mine 

and separate the coal from the associated clastic sediments. Herein, the case of an open-



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
20 

pit mine with bucket wheel excavators mining blocks of certain dimensions is 

simulated. Mined blocks are sent for economic usage or to the waste dump for disposal 

according to economic thresholds based on coal versus terrigenous sediment ratio and 

coal quality parameters in the block (Chica-Olmo and Laille, 1984). 3D facies 

distributions allow predicting reserves accounting by coal splitting using the ratio 

between coal and associated terrigenous sediment. Coal quality parameters are not 

considered herein to highlight the effects of variations in facies distribution. 

No attempt is made to include post-depositional local structural deformation of 

the 6AW coal zone, since the objective is to obtain a general comparison of coal 

reserves forecasts by several modelling strategies and conditioning levels, as if the 

deposit was presently horizontal and without being influenced by location-specific 

structural deformation patterns (Figure 11). 

Three coarse grids are used with the layering parallel to the top to simulate three 

general scenarios for the partition of the deposit into discrete mined blocks. Block 

dimensions of the coarser grids are 20x20x10m, 60x60x5m and 60x60x10m 

respectively. In each coarse block, modelled coal proportions are computed by 

considering the information from fine grid cells in the facies models (Figure 11B, C and 

D). Finally, coal reserves are obtained by adding coal volumes in cells meeting a certain 

threshold for coal proportions (0.9, 0.7 and 0.5), assuming that coal volumes in lower 

coal proportion cells would be discarded for being their processing non-economic. This 

approach represents an extension to the three-dimensions of using minimum thickness 

thresholds in 2D to estimate reserves (Schuenmeyer and Power 2000; Hohn and 

McDowell, 2001a; Pardo-Iguzquiza et al., 2013), and is similar to the approaches 

followed by Chica-Olmo and Laille (1984) and Bennderof (2013). Results are shown as 

percentages of recoverable coal respect the total volume of the coal zone (Figure 12). 

Tentative position for Table 2 

 

Table 2: Summary of scenarios for computing coal reserves. 

Results can be summarized as follows: 

1) Using a coal proportion threshold of 0.5, forecasted coal reserves are in the 

order of 60-75% (depending on modelling method, well density and block dimensions), 

with 0.7 around 45-65%, and with 0.9 around 20-60% (Figure 12). Note that reserves 

are reported herein as percentage respect to the total volume of the coal zone, which is 

assumed as constant for all the models, the percentage of coal for the entire coal zone 

according to the exhaustive dataset is 71.2%. 
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2) Reserve forecasts for 20x20x10m blocks are similar or even slightly smaller 

than those of 60x60x5m bocks (Figure 12). 

3) Facies interpolation methods (IK, IK-TC and IK-TR) predict the largest coal 

reserves, which decrease by using more conditioning wells (Figure 12).  

4) Differences between predictions by facies interpolation and simulation 

methods increase with increasing thresholds, reaching up to 40 percentage points 

(Figure 12C). 

5) Differences between specific simulation methods increase with increasing 

thresholds, being very small at a 0.5 threshold (Figure 12A), and reaching up to 15 

percentage points at 0.9 threshold (Figure 12C). Simulation methods can be ranked 

from largest to smallest predictions: SIS-TR, SIS-TC, SIS-MA and SIS (Figure 12).   

6) Adding conditioning data in SIS-TC, SIS-MA and SIS increases predictions 

by different amounts, while SIS-TR predictions are almost not affected (Figure 12).  

Tentative position for Figure 11 
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Figure 11. A) Fence diagrams viewed from the south showing facies distribution (simplified to coal 

versus terrigenous) obtained by indicator kriging (IK) and sequential indicator simulation (SIS) 

conditioned to the entire dataset. B, C, D) Coal proportion in the coarse grid blocks. Vertical exaggeration 

10x.  

Tentative position for Figure 12 
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Figure 12. Coal reserves shown as the average percentage of recoverable coal respect to the total volume 

of the coal zone for different block sizes, economic thresholds, facies distribution scenarios and 

conditioning levels. 

6. Discussion 

6.1. Interpolation methods, smoothing, coal resources and reserves 

Interpolation methods (IK, IK-TC and IK-TR) yield facies distributions with 

lower variability in the output facies percentages than the exhaustive dataset. This is 

equivalent to the variance reduction on interpolation results from continuous properties 

(Journel and Huijberts, 1978; Isaaks and Srivastava, 1989; Olea and Pawlowsky, 1996; 

Journel et al., 2000; Falivene et al., 2010). However, when dealing with categorical 

properties like facies, the variability reduction results in an increase on proportions for 

the most common categories (Figure 13C). Herein, this results in large overestimation 

of coal resources (up to 5-10% in some cases, Figure 10) and reserves (Figure 12). 

In contrast, methods using interpolation maps for continuous variables (2D-Pro 

and 2D-Thick) do not yield significant overestimations of coal proportions respect to 

the exhaustive dataset (Figure 10). Variability of interpolated values is lower than the 

entire dataset due to interpolation smoothing, but the average estimate remains similar 

(Figure 13A and B). This is consistent with previous comparisons of 2D interpolation 
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and simulation methods to calculate coal resources based on continuous properties like 

thickness (de Souza et al., 2004; Heriawan and Koike, 2008; Pardo-Iguzquiza et al., 

2013). 

Facies interpolation methods are therefore not suitable to provide quantitative 

predictions for coal resources or reserves. However, interpolations provide a 

representation of facies distribution that can be used to improve the qualitative 

understanding of the broad spatial distribution on the coal zone (Falivene et al., 2007b; 

Heriawan and Koike 2008b; Figure 9). Deutsch and Wilde (2013) recently proposed a 

novel cell-based facies interpolation approach for modelling coal splitting with the 

potential for respecting coal proportions. 

Tentative position for Figure 13 
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Figure 13: Distributions from well data for the entire dataset and values from interpolated/simulated 

values for 174 and 10 conditioning wells. A) Coal proportion by 2D-Pro. B) Coal thickness by 2D-Thick. 

C) Facies proportions by IK. D) Facies proportions by SIS. Note the distributions in A are not weighted 

by thickness, and this results in subtle differences with average coal proportions. 
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6.2. Simulation methods, areal trends, coal resources and reserves 

Facies simulation methods reproduce the variability measured by the input 

constraints such as facies proportions and indicator variograms (Figure 6 and 13D), and 

therefore yield predictions of coal resources similar to the exhaustive dataset regardless 

of the amount of conditioning wells (Figure 10). Variability of resources predictions for 

individual scenarios increases using trends derived from available data (SIS-TC) and 

decreases using trends derived from the entire dataset (SIS-TR, Figure 10).  

The most significant effect of using trends in simulation (SIS-TC and SIS-TR) is 

increasing coal reserve predictions respect to SIS (Figure 12). This is related to a 

sharper representation of the alluvial fans bordering the central parts of the basin in 

which most coal deposition took place (Figure 2 and 9), even with limited conditioning 

data (Figure 14A and 14B), and therefore predicting less coal splitting. Using trends 

derived from the entire dataset allows compensating for situations of limited well data 

(Figure 12B, 12C and 14C). This highlights the importance of including trends from 

additional data that can be potentially correlated to subsurface coal volumes or from 

general geologic knowledge of the coal seams to better constrain predictions when 

dealing with limited well data. 

Reserve predictions for SIS-MA are slightly larger than for SIS, despite the fact 

that SIS-MA appearance is much more continuous at large scales (Figure 9 and 12). 

Differences are due to the areal trends in coal proportions being enhanced in SIS-MA 

because of the post-processing technique looking at each cell for the surrounding facies 

to update its facies (Figure 14D). 

6.3. Method ranking for predicting reserves 

Differences in reserves predicted by each method can be significant, even with 

dense conditioning data, and particularly under high coal proportion thresholds (Figure 

12C). However, since there is no information available on actual reserves for the 

analysed coal zone in the As Pontes mine, the predictions for each method cannot be 

ranked against real data. 

As a proxy to understand how each method predicts coal reserves, we can at 

least measure how they capture the transition between coal-dominated areas in the 

central parts of the basin and terrigenous-dominated areas towards its borders. This can 

be achieved by comparing: a) coal proportion maps obtained by averaging simulated 

coal proportion maps from each method (Figure 14), to b) the coal proportion map 

directly obtained from the entire dataset (Figure 4B). The transition zone is critical to 

define coal reserves as it is where most of the mixed coal and terrigenous blocks are 

located (Figures 2B, 4B and 11). For each modelling method, the comparison is 

quantified by the slope and correlation coefficient of the linear regression obtained 

between pairs of coal proportion values from both maps. 
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The modelling method yielding a slope and correlation coefficient closer to one 

with low conditioning density is SIS-TR (Figure 14C), but if the trend from the entire 

dataset is not available then is SIS-TC (Figure 14B). With high conditioning density, all 

the methods perform similarly, but the one displaying a better fit is SIS-MA (Figure 

14D).  

The reason why reserves predicted by SIS are consistently lower than those by 

other simulation methods is related to the modelled short-scale facies variability in SIS 

throughout the entire coal zone, which is mostly expressed by volumetrically small and 

disconnected patches of terrigenous facies surrounded by coal (compare Figures 9B and 

9C). Increasing the amount of conditioning data, other simulation methods (SIS-TC and 

SIS-MA) predict higher reserves because the transition zones between coal-dominated 

and terrigenous-dominated areas become better defined and sharper (Figure 12). 

Actually, for SIS-TR the increase is minimal because the trend derived from the 

exhaustive dataset compensates for the lack of conditioning data in low-density 

scenarios (Figure 12). Reserves increase while increasing conditioning data is also 

minimal for SIS (Figure 12); but this is related to the fact that short-scale variability in 

the models is not influenced by increasing conditioning density. This variability cannot 

be explained in order to improve variogram reproduction in SIS (compare variograms 

from SIS and SIS-MA in Figures 6C and 6D), and it is also difficult to justify it from a 

geologic perspective. 

Tentative position for Figure 14 
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Figure 14: Coal proportion maps obtained by averaging simulated coal proportions in 50 

scenarios/realizations obtained by facies modelling methods. Arrows highlight areas in which differences 

in modelled coal proportions are more evident. Correlations with coal proportion maps obtained by 

directly interpolating well data (Figure 4B). The correlation coefficient and the slope for linear 

regressions are shown. See text for discussion. 

6.4. Dimensions of mined coarse blocks  

Contrary to general intuition, coal reserves predictions are not larger with the 

smaller mined blocks (Figure 12). This is due to the sedimentary deposits displaying 

much more heterogeneity in the vertical direction than in the horizontal direction 

(Figures 6 and 8). Therefore, the coarse grid with best discrimination potential between 

coal and terrigenous dominated blocks is the one with thinner blocks (60x60x5m in 

Figure 12); even if volumetrically these are not the smaller ones. This highlights the 

importance of aligning mined blocks within the flexibility allowed by other constraints 

(such as excavator specifications or bench stability parameters) to the main 

heterogeneity directions of the deposits to increase recoverable reserves. 
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7. Concluding remarks 

Three-dimensional facies interpolation and simulation methods are applied to a 

heterogeneous coal zone in the As Pontes basin (NW Spain) with varying densities of 

conditioning well data simulating different exploration stages. This heterogeneous coal 

zone is dominated by coal-deposits, particularly in the central parts of the basin, but 

these interfinger and intercalate with terrigenous deposits located preferentially at the 

basin margins. Several modelling strategies are compared in terms of predictions for 

coal resources and reserves: 

1) Facies interpolation methods (indicator kriging (IK) and indicator kriging 

considering areal trends (IK-TR and IK-TC)) overestimate coal resources and reserves 

due to interpolation smoothing, which increase when decreasing conditioning well 

density. Therefore these methods are not useful for quantitatively predicting volumes. 

However, they provide a unique representation which can be used to display and 

improve the qualitative understanding of the facies distribution in the coal zone. 

2) Facies simulation methods (sequential indicator simulation (SIS), sequential 

indicator simulation considering areal trends (SIS-TR and SIS-TC), and sequential 

indicator simulation with post-processing (SIS-MA)) yield similar resource predictions 

than conventional approaches based on thickness or coal proportion maps. 

3) Three-dimensional facies models can be used to estimate reserves accounting 

for coal splitting in heterogeneous coal zones. A general case of subdividing the deposit 

into discrete coarse blocks mimicking exploitation with bucket wheel excavators and 

considering coal proportion in the coarse block to determine potential reserves is 

simulated. If blocks containing significant volumes of terrigenous facies (maximum 

around 50%) can be economically processed and recovered then all simulation methods 

tested herein predict similar reserves. If conditions are more restrictive then reserves 

predicted by each method can differ significantly. 

4) Differences in reserves with restrictive conditions relate to the capability of 

each method to reproduce varying coal proportions and splitting between: a) the coal-

dominated areas of the central parts of the basin, and b) the clastic-dominated alluvial 

fan zones located at the basin borders. Using areal trends for facies modelling (SIS-TR 

and SIS-TC) reduces the amount of predicted splitting between the two areas and 

therefore predicts larger reserves. 

5) Using areal trends for facies modelling derived from the entire dataset (SIS-

TR) reduces variability on resource predictions when dealing with subsets of 

conditioning data, and reduces dependence of coal reserves predictions to the amount of 

conditioning data, demonstrating the importance of incorporating trends derived from 

additional data if available. 

6) Despite lacking actual real data on reserves for this specific coal zone, 

methods for predicting reserves can be ranked according to the correlation between 
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averaged output coal proportions from different realizations and interpolated coal 

proportions directly from well data. (A) In low-density data subsets (less than 15 

wells/km
2
), in which trends derived from the exhaustive dataset are not available, 

sequential indicator simulation with trends from the conditioning data (SIS-TC) 

displays the best correlation, and therefore would be the most accurate method to 

predict reserves. (B) In high-density datasets (more than 60 wells/km
2
) the best 

correlation is achieved by sequential indicator simulation with post-processing (SIS-

MA), although the differences in predicted reserves with other simulation methods 

incorporating areal trends (SIS-TC and SIS-TR) are not very large. (C) Sequential 

indicator simulation without explicitly incorporating the areal trends (SIS) must be used 

with caution to compute reserves for coal zones in which strong and consistent areal 

trends in facies distribution are present, such as the one herein, because of simulated 

geologically unrealistic short-scale facies variability that has the potential to artificially 

decrease predicted coal reserves. 

7) Aligning mined coarse blocks to the main heterogeneity direction of the 

deposit increases recoverable reserves. 
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