BANDLIMITED LIPSCHITZ FUNCTIONS
YURII LYUBARSKII AND JOAQUIM ORTEGA-CERDA

ABSTRACT. We study the space of bandlimited Lipschitz functions
in one variable. In particular we provide a geometrical description
of interpolating and sampling sequences for this space. We also
give a description of the trace of such functions to sequences of
critical density in terms of a cancellation condition.

1. INTRODUCTION

A standard model for one-dimensional bandlimited signals is the
space of functions (or distributions) that have Fourier transform f
supported on a finite interval. According to the Paley-Wiener-Schwartz
theorem the functions with compact frequency support can be extended
from the real line into the whole complex plane C as entire functions
of exponential type.

The size of a signal is usually measured either in terms of its energy,
i.e. the L?(R) norm, or in the supremum L*(R) norm. In the first
case we encounter the familiar Paley-Wiener space of entire functions
and in the second the Bernstein space (its definition is reminded on the
next page).

One objection to the use of the Bernstein space as a model for ban-
dlimited signals is that a very common operation in signal processing,
the filtering, does not preserve the space. By filtering we mean the op-
eration that to f corresponds a function 7'(f) with Fourier transform
wa<o- Here y.,<o denotes the characteristic function of the negative
axis. The content of the signal in all frequencies bigger than 0 has been
filtered out. The fact that the Bernstein space is not preserved by fil-
tering is due to the unboundedness of the Hilbert transform in L>°(R):
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for f € L>*(R) its Hilbert transform belongs to the space of functions
of bounded mean oscillation BMO(R). We refer the reader to [G07,
Ch. 6] for the definition and basic properties of functions in this space.
In view of this, a natural substitute for the Bernstein space has been
proposed in [T11]. Tt consists of entire functions of exponential type
that, when restricted to R, belong to BMO.

It was observed, see [T11, Thm 7|, that the bandlimited functions
in BMO enjoy a much better regularity than expected, they have
bounded derivative on R, i.e., they are Lipschitz. We provide a short
argument showing this: from the Fourier transform side taking deriv-
ative and applying the Hilbert transform corresponds to multiplying
the function by —iw and by sgn(w) respectively. If the function f has
Fourier transform supported on [—7, 7], say, then f' = f * ¢, where b
is any compactly supported smooth function which coincides with iw
on [—m,x|. If fis a BMO function then f = Hg+ h, where g,h € L
and H is the Hilbert transform. If, in addition, supp f C [—m, 7], then
f' =1 g+ ¢*h, where ¢ is as above and ﬁ(w) = Sgn(w)g?)(w). Both
¢ and v belong to L'(R) and f’ is therefore bounded.

Thus it seems natural to consider the following spaces: The Bernstein
space of entire functions:

B, ={F € L™(R),supp F C [, 7]}
endowed with its natural norm || F||p, := supg |F'(z)| and the space
B, ={F, F' € B:},

endowed with its natural seminorm: ||F|/p1 := supg |[F'(z)|. Clearly
by the Bernstein inequality B, C B} but the converse is not true, the
function f(x) = x belongs to Bl \ B,.

A fundamental problem in the study of bandlimited functions is the
process of discretization of signals. This problem can be decoupled in
two:

e The problem of stable reconstruction of a signal from the set
of its samples at a given sequence of points A C R. If this is
possible we say that A is a sampling sequence.

e Its companion problem of prescribing an arbitrary set of values
on a sequence A C R. If this is possible we say that A is an
interpolating sequence.

Beurling in [B89, Chapt. IV, V] considered both problems in the
Bernstein space and provided a complete geometric description of sam-
pling and interpolating sequences. We aim to do such description for
the space BL. The major difference between the two settings is related
to the fact that the set of traces of functions in B! is now defined
by the divided differences of the values rather than the values them-
selves, so the (now) classical machinery from [B89] cannot be applied
directly. We need to combine this machinery with additional tools in
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order to deal with spaces defined through the derivatives. In particular
we use ideas from [BNO04], this article deals with the Bloch space and
also [LMO5], this article studies functions whose derivatives are in the
Paley-Wiener space.

We now introduce the corresponding spaces of sequences.

Given A = {\}r C R, A\p < Aryq, and a function a : A — C we
denote the divided differences:

~a(Akg1) —a(Ag)
Balde) = Akt1 — Ak

)

and consider the space

(°(A) ={a: A = Cllallgen = s%p |AL (k)| < o0},

}<oo}.

It is clear that, given F' € Bl we have that a € £5° if a(\,) = F(\).

Equivalently it can be defined as

a(A) — a(N)

(5°(A) ={a: A= C; ||a||g<fo(A) = sup { SEEpY

MNEA, A£N

Definition 1. We say that a sequence A is sampling for B} if
IFll5: < CI{FA)}Hleges F € By
with some C' < oo independent of the choice of F.

By K = K(A) we denote the sampling constant, i.e. the smallest
possible value of C' in the above inequality.

Definition 2. We say that a sequence A is interpolating for Bl if for
each a € (5°(A) there is an F' € B! such that

(1) FOw) = al\), k€ Z.

If a sequence A is interpolating, then by the closed graph theorem it
is possible to interpolate with a size control. That is, there is a constant
C' such that, for each a € ¢3°(A), one can choose F' interpolating a on
A and in addition ||F||p1 < Cllal|ge(a). The smallest constant possible
in this inequality is called the wnterpolation constant and it will be
denoted by Ky(A).

The problem of describing of sampling and interpolating sequences
sequences in Bl presents an interesting challenge because the routine
interpolation tools such as Lagrange interpolation series cannot be ap-
plied directly to interpolation by divided differences. We develop tech-
nique of interpolation related to @ problem and combine them with the
classical techniques in [B89].

Our first aim is to provide a complete geometric characterization of
interpolating and sampling sequences in Bl. We introduce now the
geometric concepts that are used in the description.
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We say that a sequence A C R is separated whenever
a:=inf{A =N, A\ N €A, X# )N} >0,

we say that « is the separation constant for A.
We will also use the classical notions of upper and lower Beurling
densities:

: #(AN (2,2 4+ R))
DY (A) =1
W=
D~ (A) = lim inf #(AN (:c,x—l—R))‘
R—o0 z€R R

Theorem 1. A sequence A C R is interpolating for Bl if and only if
A = Ay UAy where Ay, Ay are two separated sequences, Ay N Ay = ()
and DT (A) < 1.

Theorem 2. A sequence A C R is sampling for B if and only if there
are separated sequences Ay, Ao C A, AyN Ay =0 and D~ (A UA,) > 1.

Remark. The fact that that A; N Ay = () is not relevant. This is due
to the fact that for the sake of simplicity in the exposition we are not
considering points with multiplicity. If we did, we would have to intro-
duce derivatives at the multiple points replacing divided differences.

We will also study two further problems in these spaces. As one can
see from Theorem 1, the trace of a function F' € B! on a sequence A
of density one is not arbitrary sequence with bounded divided differ-
ences. Apart from this necessary condition it must also satisfy a certain
cancellation property.

This was studied by Levin in [L56, Appendix VI], see also [L96], in
the case of the Bernstein space and A being the set of integers. We
carry out the analogous result in the context of bandlimited Lipschitz
functions. The characterization of the traces on a sequence which is a
zero set of a sine-type function (the integers is the main example) is
achieved through the use of the discrete and regularized Hilbert trans-
form, in a similar spirit as for the Bernstein space and integer nodes,
yet an additional regularization is needed. One consequence of our
result is that it is possible to reconstruct the function from its values
in the zeros of a sine-type function plus the value in any other given
point. Of course the reconstruction is not stable in view of Theorem 2.
This is the case also in the Bernstein space but it is curious that this
is possible in the strictly bigger space BL. This fact has already been
observed in [T11].

Remark It is interesting to know how wide a space X of functions of
exponential type m can be such that the zero set of a sine-type function
plus one point are sets of uniqueness for X. We do not know the general
answer to this question. Yet we observe that this property is more
related to the regularity of the Fourier transform (in the distributional
sense) of functions in X near the endpoints of the spectra, rather than



BANDLIMITED LIPSCHITZ FUNCTIONS 5

their growth properties. In particular the spaces considered in [LMO5]
possess this property yet contain functions of polynomial growth.

The structure of the paper is as follows. In Section 2 we prove
Theorem 2 providing a description of sampling sequences in B. In
Section 3 we prove the necessity part of the interpolating Theorem 1
and in Section 4 we prove the sufficiency of the geometric description.
In Section 5 we provide a description of the traces of functions in B}
on the zero sets of sine-type functions.

We will use the following notation: given two positive quantities a
and b we write a < b or b 2 a if there is a constant C' > 0 such that

a < Cb for all possible values of parameters. We write a ~ b if a < b
and b < a.

2. SAMPLING SEQUENCES

The strategy for the sampling part is to reduce the problem to the
analogous problem in B;.

Definition 3. A sequence A C R is called relatively dense if there is
R > 0 such that AN (£ — R, + R) # () for each £ € R.

Claim 1. Let A C R be a sampling sequence for BL. Then A is rela-
tively dense.

Proof. Let the opposite be true: for any R > 0 there is a £ € R such
that AN (£ — R, £+ R) = 0. Consider the function
Fe(2) := / Mdg € B,.
e C—¢
We clearly have || F¢|[g: = 1. On the other hand ||F|4 ;e < R™" since
|Fi(z)] S R'as o & (£ — R,{+ R) and also |[Fe|p, < 1. This
contradicts the sampling property of A. O

Claim 2. If a separated sequence A is sampling for BX then D=(A) > 1.

Proof. We will prove that in this case A is sampling for B, and we may
use then the results by Beurling, [B89].

It suffices to prove that, for any function F' € B, the inequality
| E|allie < 1 yields ||F||g, < C with some constant C' independent of
the choice of F. Indeed since A is separated then || F|a[|; < 1 yields
[ Flalleee S 1and F' € By, ||[F'||p, < 1 because A is sampling for B;.
The desired inequality follows now from the fact that, being a sampling
sequence for Bl the sequence A is relatively dense. U

Given two sequences A, I" C R we say that disty (A, ') < e if #{[u—
e, n+e€]NA} > 1 for each p € ' and #{[A — €, A+ ¢/ NT'} > 1 for each
A € A. Here disty stands for the Hausdorff distance.

We say that the sequences Ay converge weakly to A if, for each N > 0

distr (AN[=N, N)U{=N, N}, (AyA[=N, N)JU{=N, N}) = 0, as k — oc.
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In this case we write A, — A.
Given a sequence A we denote by W (A) the set of all its weak limits
of translates, i.e. sequences M such that

A+ zp — M, for some {z;} CR.

We will use the two following stability results. Their proof mimics the
one of [B89, Chapter iV, Thm. 2] with the natural modifications: the
divided differences should be approximated by the first derivatives and
then Bernstein’s theorem for the second derivative should be applied.

Claim 3 (First stability result). Let € > 0 and let the sequences A
and M be such that each pn € M has at least two e-neighbors in A, i.e.

#{(A\M)ﬂ[,u—g,,u—l—g]} > 2 for all p € M. Then
IK(A)™ = K(AUM)™Y < 10e

Corollary 1. If A is sampling then there is an € > 0 and a subsequence
Y. C A which is also sampling and such that $%N (x,z+¢) < 2 for each
x € R. In other words each sampling sequence A contains a sampling
sequence Y which is a union of two separated sequences.

Claim 4 (Second stability result). Let I';,T's C R be two separated

sequences T'1 NTy = 0 and ¥ = Ty UTy. Let also T be a separated
sequence Ty NIy =0, X =T UTY, and disty (T, T) < €. Then

1 1

K(X) K(X)

Corollary 2. If A is a sampling sequence which is a union of two

separated sequences, then, for some e > 0 there is a separated sampling
sequence N' such that disty (A, ') < e.

< 10e.

Theorem 3. A is a sampling sequence for Bl if and only if it contains
a subsequence Y which is the union of two separated sequences with
D=(¥) > 1.

Proof. The necessity part is just a compilation of the previous claims.

Now let D~(X3) > 1 and ¥ be a union of two separated sequences.
We follow the arguments in [B89, Chapter IV, theorem 3]: it suffices
to prove that each ¥’ € W (X)) is a uniqueness set for B..

Take any ¥’ € W (X). We still have D~ (X) > 1, here one has to count
points according to their multiplicities, some points in a weak limit may
have multiplicity two. The corresponding divided difference should be
replaced by the derivative then. It suffices to prove uniqueness for
functions F' € Bl such that F(z) € R for all z € R. Each such
function has zero increments on Y’ then its derivative is vanishing at
some intermediate points, the set of intermediate points has density
bigger than one so F’ = 0. O

Corollary 3. If A is sampling for Bl then there is an € > 0 such that
(1+€)A is still sampling for BY.
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3. INTERPOLATION THEOREM. NECESSITY.

Let A be an interpolating sequence for Bl. First we prove that
A = A; UA, where A, Ay are separated sequences, Ay N Ay = (). This
follows from the simple statement below.

Claim 5. There is € > 0 such that, for each A € A
BAN{GIC= A <d) <2

Proof. Indeed, if this were not the case then for each ¢ > 0 there
would exist points A\p_1, A\g, Agr1 € A, A1 — A1 < €. One can con-
struct a € £3°, |laljgx = 1 so that a(Ax) = 0, a(Ae—1) = A — A1,
a(Met1) = Mr1 — M. Let F € Bl be a solution of (1) satisfying
|Fllg: < Ko(A) and, hence, ||[F"|/p, < mKy(A). On the other hand
the choice of interpolation data yields ||[F”||p, > €', so € cannot be
chosen arbitrary small. U

We can now split the sequence A into blocks A = UjA(j) containing
at most two points each: either AV = {A} or AV = {\, A5}, in
addition k; < kjy; and dist(AY, AU+D) > g > 0 for all j € Z.

Denote I') = AW if #AU) =1 and TW = {\,, Ay, 41 + €} other-
wise, the number € will be chosen later. Let I' = U,T'V) = {1} with
enumeration corresponding to those of A.

Claim 6. If € is sufficiently small then I' is an interpolating sequence
for BL.

Proof.  Let for definiteness \y € A NT. Given any a € (°(I') we
may assume a(\g) = 0. We use induction to construct the sequences
a® € (3°(T), ¢ € (2(A) p=0,1,....

Set a® = a. Given a® construct ¢?) € £5°(A) such that ¢ (\g) = 0,

a (ppia) — a () P (Apga) — P (\g)

Hk+1 — Hi Akt1 = Ak

and let F,, € B} solve the interpolation problem F,()\;,) = ¢ ()\;) and
”Fp”B}T < KO(A)Ha(p)HQO(F). Further let

a(p+1)(u) - a(p)(,u) — Fy(u), peT.

We claim that for sufficiently small € there is ¢ € (0, 1), such that
qKo(A) <1 and

2) e Vg < dlla® ey, 1Epllny < aBo(A)l|E]| 5.

If this is proved we will use that F,(X\y) = 0 for all p’s, hence the
series I = ) F, converges on each compact set in C and delivers a
solution to the interpolation problem

F(p) =a(p), p€T, F € B}
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It remains to prove (2). Without loss of generality we may assume
that all data a® are real and also the functions F, are real on R. Let
Hi = Ak, Pry1 = Akg1 + € We have

a(p+1) (Mk+1) — a(p+1) (/"Lk) B

M1 — Mk
() — () Fy(pn) — Fol) _
(3) M1 — Mk Hrk4+1 — Mk
AP ) =P ) E(en) = Fp(u)
B Aet1 — Ak Me+1 — Mk B
_ Fy(ws) = Fp(M)  Fp(pern) — Fplpn)
B Akl — Ak M1 — Mk .

Let )\k+1 — )\k < 1/107‘(‘ Then
a(p+1) (,U/k:+1) _ a(p+1) (Mk)

Hi+1 — Mk
for some )\, € (Aks Akt1)s e € (A, Agg1 +€). For e < 1/10m we obtain

= F;;(S\k) - F;;(ﬁk)v

1 1
o= ol < - and | ) )| Ly
T P — [ 5
In the case A\g11 — A > 1/107 we have
a(pH)(MkH) — a(pH)(Mk) B
Me+1 — Mk B
Fp(Ner1) = Fp (M) perr — Ak Fp(Awn) — Fp(pinesn)
M1 — Mk Akl — Ak e — Ak
and an explicit estimate shows
i) )| <
Hi+1 — Mk
Relation (2) now follows. O

Corollary 4. Without loss of generality we can assume that the se-
quence A is separated.

We will prove that if A is an interpolating set for B!, then one can

refer to the classical Beurling result in order to get D*(A) < 1.
It suffices to construct a sequence of functions {fy}ren C By such
that

(4) f/\(:u> = 5)\,;” H € Aa
and
1
e — R.
(5) ‘f)\(‘r)|r\1 |$—)\’2—|—1’ S
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Then A will be an interpolating sequence for B since the solution
to the interpolation problem
F(X) =b(\); be >™(AN), F € By,

can be achieved by the function

Fb = Z b()\>f/\7
and according to [B89, Chaprer V, Theorem 1] D*(A) < 1.

The construction of the functions {f\}rea relies on the following
statement:

Claim 7. Let A be a separated interpolating sequence for BL. For each
£ € R\ A the sequence AU {&} is also interpolating for BE. Moreover
the constant Ko(A U {&}) depends only on dist(A,§).

Let us take this claim for granted for the moment being. Let «
be the separation constant for A. For each A € A, choose the points
EL =Xt a/8 & =X+ a/d The set Ay := AU {£,&,&} is BL-
interpolating and also Ky(A,) < C, C being independent of the choice

of A € A.
Define the sequence ay € (5°(Ay) as

(6) ax(u) = {1’ b=

0, otherwise

and take gy € B} such that gx(n) = a(p), p € Ay, ||oallsr S 1. Tt is
straightforward that one can find numbers ¢, such that |cy| ~ 1 and
the functions

. 9r(2)
falz) = M-z - &) - &)

satisfy (4) and (5).

In order to verify Claim 7 it suffices to prove that, for each £ € R\ A,
there is a function he € By such that

hela =0, he(§) = 1.

and ||he||p1 can be estimated by a quantity which only depends on
dist(A, ).
We mimic the proof of the corresponding fact in [B89], Chapter V.

Claim 8. If A is a separated interpolating sequence for Bl then each
[ € W(A) is also an interpolating sequence for BL, in addition Ko(T') <
Ko(A).

The proof follows that in [B89, Chapter V, Lemma 5.].
Given £ € R\ A denote
pa(€) = sup{|F(§)[, F € By, Fla =0, |[F|lp <1}
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Claim 9. Let A be an a-separated interpolating sequence. Then for
each o € (0,a/2) there is k > 0 such that

(7) pa(&) >k, if dist(&,A) > o

Proof. First we mention that pa(§) > 0, £ ¢ A. Indeed otherwise
F € B!, F|y = 0 yields F = 0 in other words the mapping T : F
Fla, T : BY — (5°(A) has zero kernel. Since A is an interpolating
sequence T acts onto and hence is invertible. This means that A is also
a sampling set and, by Theorem 3, D~(A) > 1. Take any three points
A1, A2, A3 € A and denoting A" = A\ {\;}iz123 we have D~ (A') > 1,
hence A’ is a sampling set as well, this contradicts the fact that A is
an interpolating sequence.

It follows now that, if A is an interpolating sequence and £ € A, then
AU {¢} is also an interpolating sequence.

Assume that there is a sequence of points &,, dist(&,, A) > o and
pa(&n) — 0asn — oo. Let A, = A —¢&,. Each A, is an a-separated
sequence and also Ko(A,,) = Ko(A), pa,(0) — 0. We may assume that
A, — T, then dist(0,T) > o/. Fix two points ¢1,t, & I' U {0}. The set
I = T'U{t1, t2} is also an interpolating sequence, hence 7 := pr/(0) > 0.

Therefore there exists F' € B} such that ||[F||p: = 1, F|r» = 0, and
F(0) =~. Then

F(z)
(Z — tl)(z — tz)

in addition G'(z) — 0, as © — oc.

We have now |G/, [lio(a,) — 0 as n — oco: for large values of the
argument this follows from the decay of G’ (we remind that all A,, are
a-separated) for limited values of the argument this follows from the
fact that G|r = 0 and A, — T". Since Ky(A,) = Ko(A) we can find a
function H, € B} such that H,|x, = G|, and also |[H,|z — 0 as
n — oo. In addition H,(0) — 0, n — co. Now the functions

D, (z) = G(z) — Hy(2)

satisfy @,[s, =0, ||®,]l5 < C and also ®,(0) — vt 't;". The latter
is incompatible with py, (0) — 0. O

G(z) = € B,lr, Glr =0, G(0) = fytfltgl,

4. INTERPOLATION THEOREM. SUFFICIENCY.

Let A = Ay U Ay C R satisfy the hypothesis of Theorem 1, i.e. the
subsequences Ay, Ay are separated, Ay N Ay = ), and DT(A) < 1. We
are going to prove that A is interpolating for Bl.

Claim 10. Let a sequence ¥ C R, X NA =0 be such thatT' = AU X
is interpolating for BL. Then A is also interpolating for B with the
same constant of interpolation.
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Proof. Given any data a € (3°(A) we may extend it on A U X with the
same Lipschitz constant as

(a(N\) + Lip(a)|x — A|), Ve e AUX

=1
where Lip(a) is the Lipschitz constant of a.

We have then a € £3°(T') and ||al[ser) = [|al|ee@a). Any solution of
the corresponding problem on I' gives now a solution on A. U

Corollary 5. Without loss of generality we may assume D~ (A) > 0.

Indeed, were this not the case one can add a relatively dense sequence
of points ¥ such that the union I' = A U X still has the property
D~ (") < 1 and we apply the previous Claim 10.

We start with proving the sufficiency assuming in addition that A is
a separated sequence. The corresponding machinery is related to the
notion of sine-type functions.

Definition 4. An entire function S is a sine-type function if it is of
exponential type, its zeros are simple and separated, and there is a
constant C' such that

15(2)] ~ emltm=l, Vz, |Imz| > C.

This definition was introduced by Levin, see e.g. [L96] who proved
that the zero set of a sine-type function, which lies in a strip around
the real axis, is both an interpolating and a sampling sequence for the
Paley-Wiener space.

Lemma 1. Let A = {\;} C R be separated, DT (A) <1 and D= (A) >
0. Then A is interpolating for BL.

Proof. Since the upper density of the sequence A is strictly smaller than
one, it is possible to find a sequence ¥ C R and a sine-type function S
with zero set A U 3. This is done in [OCS98, Lemma 3].

Moreover for for each A € R one can consider the sequences A\ =
AU {X + i} and, with the same proof as in [OCS98], one can find
sequences Y (A) and functions Sy with zero sets AU{\+ i} UX()\) and
such that

(8) |Sy(2)] = eIzl Vz, |Imz| > C,

with the constants implicit in (8) being uniform for all A € A. We split
the remaining construction into several steps

Elementary solutions: The hypothesis imply that there is an o > 0
such that A\gy 1 — A\ > a > 0.
Denote v, = A + /10 + iR and let

0, if Rez < \g + «/10;
Xi(2) = .
1, ifRez > A\ + «/10.
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Consider the functions

1 S [ C-Owti) &
(9)  Pp(z) = 2 2=t ), Sn(Q) C_Z‘FXk(Z)‘i‘dk,
where the constants dj are chosen so that ®,(0) = 0. Convergence of
the integral in the right-hand side follows from the estimate (8), @y
are well-defined and analytic functions outside 7. Furthermore, &,
can be extended as an entire function of exponential type 7: it follows
from the Sokhotskii-Plemelj formula that ®; are continuous on 7, so
the singularities along 7, can be removed. The growth estimates are
straightforward. We also have

and respectively
(11) (Dk()\jJrl) - (I)k()\]) = (5k,j-

Formal solution to the interpolation problem.:
Given a sequence a = {a(A\g)} € ¢5°(A) denote

a(Aps1) — a(Ar)

Ag(\y) = ,

() Akl — Ak

then the function

(12) F(2) = (A1 — M) Aa(A) B (2).
k

yields a solution to the interpolation problem (1) provided that the
series in the right-hand side is convergent to a function in BL.

Solution to the interpolation problem. Convergence:

Claim 11. The series (12) converges uniformly on compact sets in C,
to an entire function F € BL. This function provides a solution to the
interpolation problem (1).

Proof. 1t suffices to prove the convergence of the sum ) ®}(z) on each
compact set in C, to a function in B;. The convergence of (12) will
then follow due to the normalization ®4(0) = 0.

We remind that a set £ C R is called relatively dense if, for some
L >0,

;relﬂgmes(E U (z,z+ L))

For example the set

« (6%
(13) E:{meR,|x—()\k+E)|<%}

is relatively dense, since D~ (A) > 0. Observe also that dist(E, Uyg) >
0, here dist stands for the usual Euclidean distance.
We will use the following fact (see e.g. [Ka73, LS74])
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Given a relatively dense set E C R there exist a constant C such that
sup |F(z)| < C'sup |F(x)]
R E

for each entire function F of exponential type .

That is why it suffices to prove the uniform convergence of the series
> ®).(z) only on the set F defined by (13).

Let b(Ax) = (Mgr1 — M)As(Ar). Since {A,} € [°°(A) and also
D= (A) > 0 we have b € (>°(A) and

g@k(x)—g 227r x—( /\k—i—z / S,\k

(—x
Zb()\k) S, (x / ¢ — )\k—i—z d( N
- 2ir (z— ( A;ﬁ—z SAk (—x
- 227? xr — /\k+@ S)\k C—x)Q_
:2()+2x)+2g

We consider just the first sum, the rest can be treated similarly. It
follows from the construction of the sine-type functions S, that for
some C' > 0 and all &

¢ — (M +1)

1Sy ()] < C, z €R, 50

< Ce—ﬂImd/Z, C € Vs

so the Cauchy inequality gives
S () (= (A +1) dC

v—(Me+i) )y, S (-] T

Cile — M\ +9)| Yz — (M + a/10)| 72,
Now the proof of the claim is straightforward. O
This claim completes the proof of Lemma 1. O

Splitting of the sequence: In order to complete the sufficiency proof we
split the sequence into two interlacing parts: A = I'; U 'y so that

[; are separated, D~ (I';) > 0, D¥(T;) < 1/2, dist(I'y, ) > 0.

We remind that A already admits the representation A = A; U Ay
where A; are separated sequences, not necessarily satisfying the density
restrictions. Our goal is to rearrange this splitting. We enumerate the
sequence A in an increasing order, i.e. A = {Ag}trez with Ay < Agiq.
We define Iy = {Aog }rez and T's = {Aoki1 brez. This splitting satisfy
the desired properties.

Now we complete the proof of the general case. We use a trick from
[BNO4]. Consider the splitting A = I'y U Ty as above. It follows from
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Lemma 1 that each sequence I'; is interpolating in B} J2- They are also

interpolating for B/, by Beurling theorem. Since D (I'y) < 1/2 we
can construct a sine-type function S of type m/2 vanishing on I'y and,
perhaps, at some other points. Without loss of generality one may
assume that the distance between I's and the zero set of S is positive,
if need be on can move extra zeros form the real axis by increasing
their imaginary parts by one, say. In particular we obtain

Jmf [S()] > 0.

Now given a sequence a € (° we observe that the sequences ar,
belong to the spaces I5°(T;), ¢ = 1,2. We look for the solution of the
problem (1) in the form

(14) F(z) = Hy(2) + S(2)Ha(2), Hy € By )y, Hy € Brjs.
Let H, € B! /2 solve the interpolation problem
H1|F1 = a’|F17

then Hs should satisfy
a(p) — Hi(p)

(15) () =

We will prove that the right-hand side of (15) is bounded, then, since
I'; is separated the equation has a solution in By/;. The boundedness
is straightforward: let p/ be the nearest point to p in I'y. We then have

alp) — Hi(p) _ a(p) —a(p) — Hi(p) — Hi(1)
S(w) S(w) S(w)
It follows from the definition of the sine-type function that there are
€ > 0, and ¢ > 0 such that [S(z) — S()| ~ |z — /| if ¢/ € Ty,
|z — p'| <€, and that|S(z)| > ¢ if dist(z, 1) > €. Since |u — 1| < R,
a € (5°(A), and H; € B}F/Q the boundedness of the right-hand side in
(15) follows.

7MEF2~

5. TRACES

Let S be a sine-type function such that its zero set A = {\,}>* C R,
for simplicity assume that 0 ¢ A. In this section we study the traces
of functions in B! on A. In the classical case of the space B, and
AN = 7 the traces can be described in terms of boundedness of the
corresponding discrete Hilbert transform see e.g. [L56], Appendix VI,
[L96], Lecture 21 when S(z) = sinmz. We refer the reader to [E95, F9§]
for other spaces of entire functions of exponential type. In the case
of the space B! one needs in addition a regularization of the Hilbert
transform.

We introduce some additional notation. Given xz € R we denote by
| = |= max{n; A\, < x} and, for a sequence a = {a,} we define the
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usual and regularized Hilbert transforms (with respect to S())) at any
point x ¢ A) as

(16) (Ha)(z) = lim ) 5/6&) <x_1 " +Ain>

and

a7 mwm—;g%jNhﬁw(mih+%)‘§%}

assuming that the limits exist. The additional term in the right-hand
side of (17) regularizes the behavior at co: the sequence a needs not to
be bounded, we will consider the cases when (#a)(z) is bounded for
large values of x, in contrast to (Ha)(x).

Theorem 4. Let B C R be any separated sequence such that
dist(B,A) >0, D™ (B) > 1.

Given a sequence a € (3°(N) there exists a function f € Bl such that

(18) ar = f(Ak)
if and only if
(19) {Ha(B)}sep € (=(B).

Remark. We will see that this relation is independent of the choice of
the sequence B.

Proof. Let a sequence a € £3°(A) satisfy (19). We replace the problem
(18) by

(20) Fks1) = f(A) = agpr — a, =: by, f € By,

and look for the solution of this problem in the form

(21) )= b, (2),

where the functions ¥,, € B} satisfy the equations

(22) U (At1) = UnlAr) = Ok
and, in addition,
(23) ¥, (0) = 0.

The idea of constructing such functions is the same as in the previous
section, yet its realization is slightly different. Take a,, € (A, Api1) SO
that 3k := dist({a,}, AU B) > 0 and such that (A,,a,) N B =0 .
Denote v, = a,, + R and let

(2) 1, Rez > ay;
n\%) = .
X 0, otherwise.
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The functions

(24) U,(2) = 5;(;3 /7 (C i — - %) % + Xn(2) + dn,

belong to Bl and satisfy (22), (23) for an appropriate choice of d,’s.

Claim 12. Given any sequence b = {b,} € (> the series (21) con-
verges uniformly on compact sets in C to an entire function f of expo-
nential type 7.

Proof. We will prove the convergence of the series
(25) > b,
and then use (23). We write
, S’(z)/ ( 1 1> d¢ S(z)/ 1 d¢
20y e =i | 5=t ¢) 50 T 2w ), G075

g

In(2) In(2)

and consider the series

(27) D bly(z) and Y bpJy(x).

separately. Given a compact set K C C we prove the convergence in
the set {z € K; dist(K U (Uy,)) > k/2}, for the remaining piece of K
we replace the lines v, in (24) by 7/, = v, + . This does not change
V,,, and we repeat the same reasonings.

Now the uniform convergence on K follows from the estimates

(28) |z — (| 2 dist(v,, K), 2 € K,{ € 7,
and
(29) 1S(Q)] 2 ™™l ¢ € Uy,

The function f defined by (21) may not always belong to BL.

Claim 13. Let a € (5° satisfy (19), b = {b,}, where b, = an41 — a,
and f is defined by (21). Then f € BL.

Proof. Tt is straightforward that, for any b € ¢, the sum > b,J,,(x)
in (27) is uniformly bounded on B. So it suffices to prove that the
first sum > b, I,,(x) is also bounded on B. Then the function f’ itself
will be also bounded on B, so one can once again refer to [B89] to get
boundedness everywhere.

In order to estimate the first sum in (27) we observe that one can
apply the residue theorem in the halfplane Re { > «,, in order to express

I,(x):



BANDLIMITED LIPSCHITZ FUNCTIONS 17

@0) ) =51 ) <x 5 Ai) s«lm - ?(f))’

i>n J

Respectively

(31) A(z) =) buly(x) =

. al 1 1\ 1 1 &
| 30 2 (7545 5 51 2 )

J

v~ v~

Al(x) AQ(x)

Since b, = a,.1 — a, we have

N 1 1 1
(32) Ai(x) = Z an <$_An +A_n> SO0

~N+1
1 1 1
a— + — +
Nj;N (x — A )\j) S'(A)
> S ! = By(z) + Bs(z) + B ()
CLN+1' x—/\j )\j S’()\j)_ 1\T 2T 3\T)-
>N

For large N we have yy(x) = 0 therefore, using (30) once again and
then applying the dominated convergence theorem we obtain

Bs(z) = S'(z) tayIn(z) = 0 as N — oo

Besides, since

1 1
a_n (x . + /\_N) =0(1), as N — o0,

we may assume that the summation in By (x) is taken from —N to N.
Similarly we have

(33) As(z) =

N
1
[ Z n(Xn-1(7) = Xn(2)) = a-nX-N(7) + ans1Xn41(2) S(z)’
~N+1

Recall that we denote k =| = |€ Z so that 7, < & < 7Yxy1. Then
the only non-zero summand in the first term in (33) is a|,|. Besides
X~n+1(x) = 0 for sufficiently big N.
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We substitute this together with (32) in (31) and observe (using (30)
once again) that

By(x) +a_nx-n(z) =1_n(z) = 0as N — occ.

Finally we have

(34) Ax)= Jim (Bi(2) = 5) =

N 1 1 1 a
R {Z“" (a: T )\n) S0w)  S(@) }
N

Boundedness of this expression in x € B is equivalent to the bound-
edness of (Ha),|. Thus, the function f defined by (21) belongs to B}
and solves the interpolation problem (1) modulo an additive constant.
This proves the “if” part of Theorem 4.

In order to prove the “only if” part of Theorem 4 we need an auxiliary
statement.

Lemma 2. Given an € > 0, each function f € B admits the repre-
sentation:

(35) f=h+fe

where f1 € Bl is of exponential type at most € and fo € B.
We postpone the proof of this lemma until the end of the section.

Now, given f € Bl denote a = {f(\,)}. In order to prove (19) we
chose € = m/2 and we use the representation (35). Then
a=a'+a’ a'={fi\)}
That Ha? € (>°(B) is straightforward since a? is the trace on B of a

function from B, and we can use the known results from [L96].

In order to study the Hilbert transform of a! we consider the integral

1= [ 59 (e

where I'r = {(; || = R}. We consider only those values of R for which
dist(I'g, A) > « for some fixed a > 0.

Let ¢ = &+in. We have [f1(¢)] = O([¢|e™"2), ¢ € C, [S(¢)| 2 €™,
¢ € I'r and, by the Jordan lemma,

Ir(xz) = 0, as R — oc.

On the other hand the residue theorem gives

- N 1 1 1 f(z)  fi(0)
In(@) = > > Hilh) (x T )\_n) SO St | S0)

[An|<R —N
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We obtain £(0)

VRV

Ha (x) S(0)
for all x € R. This of course suffices to complete the proof of the
theorem. 0

We proceed now with the proof of Lemma 2. We say that a function
f has a spectral gap at the origin if there is an € > 0 such that supp fN
(—e,e) = 0. We start with the following Lemma:

Lemma 3. Let f € Bl have a spectral gap at the origin, then f € B,.

Proof. We start by observing that if f € Bl then g = f’ is bounded
on R as observed in the Introduction. Since j(w) = 2miwf(w), g has
also a spectral gap. Let ¢ be a compactly supported smooth function
such that ¢(w) = 1/(2miw) when e < |w| < 7. Thus f(w) = ¢(w)j(w).
Therefore f = —¢* g. Since —¢ belongs to the Schwartz space and g
is bounded then f is itself bounded. U

Proof of Lemma 2. Given ¢ > 0 it is possible to find, with a partition
of unity, two smooth, compactly supported functions ¢ and v such that
supp ¢ C [—2¢,2¢], p(w) = 1 if |w| < € and ¢(w) + P(w) = 1 for all
w € [—m,m]. Let &, ¥ be the two functions in the Schwartz space such
that & = ¢ and U = Y. Now given f € B} we can decompose

f=Pxf+Uxf=fi+]o
The function f] = ® x f/, thus it is bounded on the real line. Moreover
its spectrum lies in [—2¢,2¢] because f; = ¢f. Finally f}, = U x f/,
and therefore it is bounded on the real line. The spectrum of f, is
contained in the spectrum of f, thus fo € BL. Moreover f, = ¢ f and

(w) = 0 when |w| < ¢, thus f, has a spectral gap at the origin. By
Lemma 3, f5 is bounded. O

We finish by observing some elementary remarks on the zero sets
of functions in BE. When the functions are in the Bernstein class, its
zeros have been studied, [K11]. The novel case is when f € B!\ B;.
In this setting we can prove

Claim 14. Given any f € B\ By and A > 0 let Z4(f) be the set of
zeros of f located in the strip {z € C;|Im z| < A}. Then D= (Z(f)) =
0.

Remark. Here we use a slightly modified notion of density which
counts the number of points in a strip rather than on the real line.

Proof. Suppose that |f(x)] = M. Since f is Lipschitz there is an
interval I centered at x and of size comparable to M such that f is

zero free in I. Thus if |f(x,)| — oo there are arbitrary big gaps I,
without zeros. Therefore D~ (Z4(f)) = 0. O
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On the other hand given any € > 0, since A = (1 — ¢)Z is an inter-
polating sequence it is possible to construct a function f € Bl \ B,
vanishing on most points of A and such that

. #HZ(f)N (=R, R)}

1

oo 2R
This can be done prescribing the value 0 in very long intervals of A
alternating with shorter intervals in A (but still of increasing lenth)
where the values are bigger and bigger.

> (1 —e¢).
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