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1. SUMMARY 

Au-Cu-Cd alloys have been widely used in jewellery as decorative plating. Nowadays, Au-

Cu-In alloys have progressively replaced the first mentioned one due to the high toxicity 

cadmium presents. In spite of this, there is no knowledge on Au-Cu-Cd in terms of corrosion 

behaviour, thus information to establish a comparative basis between both alloys is required. 

The aim of this study is to produce Au-Cu-Cd alloy coating samples by galvanostatic 

electrodeposition (a purchased alkaline cyanide bath was used for such a purpose) on metal 

substrates and evaluate their corrosion behaviour via electrochemical measurements. The 

influence of electrodeposition experimental parameters (current density, rotation speed of 

working electrode, substrate geometry) in terms of corrosion behaviour and alloy composition is 

reported as well. It was found out that low negative current densities induce the reduction of 

larger gold quantity on the substrate, therefore enhancing corrosion resistance. By its part, 

rotation speed does not seem to affect corrosion behaviour nor the alloy composition. The 

adaptation of large-scale conditions to lab-scale has been proved to have some limitations: 

while at industry area is not a determining parameter to obtain 75% Au alloys, only low 

substrate areas provide alloy coatings with such gold purity approximately under our laboratory 

conditions.  

Keywords: Au-Cu-Cd alloy coatings, corrosion behaviour, galvanostatic electrodeposition, 

decorative plating, alkaline cyanide bath, polarization resistance, corrosion intensity. 
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2. RESUM 

En el sector de la joieria, els aliatges de Au-Cu-Cd s’han fet servir àmpliament a mode de 
recobriments decoratius. No obstant, nous aliatges de Au-Cu-In han anat substituint 

progressivament els primers degut a l’alta toxicitat que el cadmi presenta. Malgrat tot, 

pràcticament no existeixen estudis sobre el comportament enfront la corrosió pel que fa a 

l’aliatge Au-Cu-Cd, requerint això que s’estableixi una base de comparació entre els dos. 
L’objectiu d’aquest estudi és produir mostres de recobriments de Au-Cu-Cd a través 

d’electrodeposició galvanostàtica (tot fent servir un bany alcalí cianurat) sobre substrats 
metàl·lics, així com avaluar el seu comportament enfront la corrosió mitjançant mesures 

electroquímiques. A més, s’esbrina la influència de diferents paràmetres experimentals de 

l’electrodeposició (densitat de corrent, velocitat de rotació de l’elèctrode de treball, geometria 
del substrat) en el comportament enfront la corrosió i la composició de l’aliatge. S’ha trobat que 
densitats de corrent negatives i baixes provoquen la reducció d’una major porció d’or a la 
composició de l’aliatge, augmentant així la resistència a la corrosió de la mostra. Per l’altra 
banda, la velocitat de rotació no sembla afectar el comportament enfront la corrosió ni la 

composició de l’aliatge. S’ha demostrat que l’adaptació al laboratori de les condicions de gran 
escala presenta algunes limitacions: mentre que, a la indústria, l’àrea no és un paràmetre 
determinant alhora d’obtenir aliatges amb un 75% d’or, només àrees petites de substrat sota les 

nostres condicions de laboratori proporcionen recobriments de tal puresa aproximadament   

Paraules clau: recobriments d’aliatges de Au-Cu-Cd, comportament enfront la corrosió, 

electrodeposició galvanostàtica, recobriments decoratius, bany alcalí cianurat, resistència de 

polarització, intensitat de corrosió.  
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3. INTRODUCTION 

As it is already known, electrochemical metal coatings comprehend a very wide range of 

features such as anti-adherence, abrasion-resistance, solid-film lubrication, chemical resistance, 

corrosion protection and decoration. Particularly, jewellery applications require both the two 

latter mentioned features. Normally, coatings used in jewels are made of noble metals (gold, 

platinum, rhodium, rhenium, silver, iridium, osmium, etc.) or alloys (using other support 

elements like copper, indium, etc.) that play the role of both preventing the substrate metal from 

corrosion (high standard reduction potential values of such elements; barrier between substrate 

and oxidizing medium) and giving the object a shiny and attractive aspect, as well as making the 

object acquire an added value.   

 

3.1. AU-CU-CD TERNARY ALLOY 

In jewellery sector, gold-copper-cadmium (Au-Cu-Cd) alloy coatings have been widely used 

as decorative plating. Evidently, the added value is given to the object by making gold the 

predominant metal in the alloy composition. For its part, copper enhances alloy coating 

hardness, since gold is a very soft metal by itself. Even in low quantities, cadmium improves the 

alloy coating behaviour towards corrosion, as well as making its mechanical properties 

considerably better. 

However, industrial applications of cadmium are being progressively restricted due to the 

high toxicity (carcinogenic) such metal presents. The exposure of the human body to cadmium 

takes place mainly through inhalation and ingestion. Then, absorption through skin contact does 

not represent a serious risk for health. Nevertheless, the dangerousness of cadmium acquires 

importance when handled at industrial scale, with consequent problems in transport, storage, 

workers security and residue generation.  

In order to replace cadmium in Au-Cu-Cd alloys, indium is currently being used in industry, 

providing the same properties to the ternary alloy (Au-Cu-In) that the first mentioned metal did 

and representing a non-toxic alternative.  
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Despite having been widely used in jewellery, there are practically no studies related to Au-

Cu-Cd alloy in terms of corrosion behaviour. Although the use of cadmium has been 

suppressed, knowledge about such alloy is needed in order to establish a basis from which 

comparison with other ternary alloys (Au-Cu-In) can be done. Hence, this project focuses on the 

preparation of Au-Cu-Cd alloy coating samples through galvanostatic electrodeposition and the 

characterization of corrosion behaviour of such coatings by accelerating the process 

electrochemically. 

 

3.2. ALKALINE CYANIDE BATH 

Laboratory experiments performed for the purpose of this project were carried out imitating 

industrial conditions. For this, AuroloyTM 750 S (Enthone) was employed as electrochemical 

bath for electrodeposition, as well as it is made in large-scale conditions. The electrochemical 

bath is an aqueous alkaline solution of several components. The three metals that constitute the 

alloy are solved in the solution in the form of cyanide coordination complexes ([Au(CN)2]-, 

[Cu(CN)3]2- and  [Cd(CN)4]2-). Cyanide anions are present in excess in order to ensure the 

formation of the previously mentioned complexes and thus remaining a portion of free CN-. 

Such complexes are the main ones for each metal, although it is possible to find other 

compounds with different coordination number due to cyanide association/dissociation 

processes1.  

Apart from the metals, the electrochemical bath contains other substances or additives that 

help to obtain a coating with the desired properties. First of all, the levelling additives act by 

being adsorbed in high current density zones (peaks, surface defects), thus slowing alloy growth 

in such locations and levelling the surface of the electrodeposited layer, as depicted in Figure 1. 
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Figure 1 – Illustration of the action of leveling additives: electrodeposition with (right) and without additives (left). 

 

The presence of levelling additives is crucial in embellishment terms, since a completely flat 

alloy surface provides shiny coatings. 

Besides, structure modifiers perform the function of determining the preferential orientation 

and/or the crystalline structure of the alloy. His way, they act as internal stress diminishing 

agents. 

Finally, wetting agents reduce surface tension at the solid-liquid interface, ensuring a good 

contact between both phases. 

Despite knowing the criteria to classify the different types of additives, the composition of 

AuroloyTM 750 S is unknown due to industrial property protection. 

Specifically, AuroloyTM 750 S is meant to be used to obtain a 18 carat (kt) alloy. Gold carat 

rating is an indication of the purity of a gold alloy. Its range goes from 0 to 24, meaning 0 that 

the alloy does not contain gold and 24 that there is actually no alloy due to a 100% purity gold. 

Then, 18 kt shows that the percentage of gold is 75%. 
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4. OBJECTIVES 

The aim of this research work is the sample preparation of Au-Cu-Cd alloy coatings through 

galvanostatic electrodeposition and the electrochemical characterization of corrosion behaviour 

of coated samples doing measurements such as corrosion potential, polarization resistance, 

impedance and potentiodynamic polarization. Another purpose is to study the relationship 

between alloy composition and electrodeposition parameters (current density, rotation speed of 

the working electrode and system geometry), as well as making a comparison between two 

different substrate cleaning pre-treatments (electrolytic cathode degreasing and ultrasound 

treatment) in terms of coating surface homogeneity.    

5. EXPERIMENTAL 

 

5.1. SUBSTRATE PRE-TREATMENT AND GALVANOSTATIC ELECTRODEPOSITION OF AU-

CU-CD ALLOY COATINGS 

Samples of Au-Cu-Cd coatings were prepared via galvanostatic electrodeposition in a 

purchased alkaline cyanide bath (AuroloyTM 750 S, Enthone España S.A.). Before this, a 

cleaning pre-treatment was performed on each substrate in order to remove all the superficial 

organic matter. The electrodeposition was conducted at high temperature (68ºC) in a 500 mL 

glass cell using a standard three-electrode system.  

5.1.1. Substrate preparation and cleaning pre-treatment 

Several types of materials were used to make the substrates on which the gold-alloy coating 

was deposited. Such substrates consisted of flat metal sheets made of brass or iron (7 cm × 0,4 

cm). The first ones were used either as obtained or with a 10 µm nickel coating. The effect of 

this layer is simple: it makes the substrate look shiny and its thickness is high enough to mask 

brass copper in future Energy-Dispersive X-ray Spectroscopy (EDS) elemental analysis of the 

Au-Cu-Cd alloy coating. Additionally, some substrates presented a thin palladium flash (0,1 µm) 

on the nickel layer in order to enhance the adherence of the ternary alloy.  
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The cleaning pre-treatment was done to eliminate all the organic matter from the surface of 

the substrates. Specifically, two different processes were performed for such a purpose: an 

electrolytic cathode degreasing and ultrasonic treatment. Concerning to the first mentioned one, 

two stainless steel plates constituted the anode, using each substrate as the cathode. The 

electrolyte of this system was a purchased aqueous alkaline solution that contained sodium 

hydroxide, sodium carbonate and other additives such as surfactants. Such surfactants play the 

role of easing the organic matter removal by diminishing surface tension at the solid-liquid 

interface to enhance its wetting. Through a galvanostatic process (I ≈ 0,1 A), water reduction 
was induced in the cathode surface, thus appearing a hydrogen (H2) bubbling around the 

substrate: these bubbles facilitate the detachment of the organic substances. The electrolytic 

medium was heated to 41-42ºC through a water bath prior to starting the cleaning process.  

Once the electrolysis was performed, the substrates were submersed in distilled water to 

wash the excess of electrolyte and then placed inside a beaker with a purchased acidic solution 

with the purpose of neutralizing the alkali medium on the substrates surface and activating it 

towards electrodeposition (adherence enhancement). Again, the acidic solution contained 

surfactants that act the same way than the previously mentioned ones. Each substrate was then 

washed again with distilled water from a different beaker. 

An alternative cleaning pre-treatment consisted of submersing the substrates in an 

ultrasounds bath using ethanol and water respectively. The exposure of samples to the acidic 

solution and consecutive water washing was also required to activate the surface. 

5.1.2. Galvanostatic electrodeposition of Au-Cu-Cd alloy coating 

A standard three-electrode cell (500 mL) was used in order to coat the substrates with the 

alloy. A cylindrical platinized titanium net was employed as the counter-electrode, while the 

metal sheets were used as the working electrode and the reference electrode was Ag/AgCl 

(NaCl 1 M) connected to a 16 g/L KCN Luggin capillary. The latter mentioned electrodes were 

located inside the cylinder with a specific purpose: in such arrangement, the distance between 

the working electrode and the counter-electrode is equal in all directions, thus contributing to a 

homogeneous alloy growth in both sides of the substrate (current intensities approximately 

equal in the entire surface). In order to ensure that such distance was invariable, it was required 

to carefully place the substrate in a perfect perpendicular arrangement with respect to the base 

of the cell. Moreover, electrodepositions were carried out under rotation of the working 
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electrode. The reason for this is that, when metals are reduced and electrodeposited on the 

substrate, the concentration of cyanide anions that constituted the complexes is increased 

significantly around the cathode (substrate) due to decomplexation. High cathodic CN- 

concentration causes the formation of more reactive Au cyanocomplexes, which can be 

electrodeposited on the substrate in an easier way. This means that the content of gold in the 

alloy would increase with detriment to the percentage of Cu (time-dependent concentrations), 

while Cd proportion stays invariable. Rotation of the substrate homogenizes CN- concentrations 

through mass-transport effects that seem to strongly affect alloy electrodeposition2.  

Table 1 shows the operation conditions of AuroloyTM 750 S bath and some properties of the 

eletrodeposited alloy, according to the specifications of its technical data sheet. 

 

Au concentration (g/L) 4 (4-6) 

Cu concentration (g/L) 45 (45-60) 

Cd concentration (g/L) 1,0 (0,8-1,2) 

Free CN- concentration (g/L) 16 (16-20) 

pH 9,7 (9,5-10,0) 

Temperature (ºC) 67 (65-70) 

Cathodic efficiency (mg/A·min) 80 

Substrate area (dm2) 0,04 

Coating thickness (µm) 3 

Alloy density (mg/µm·dm2) 145 

Table 1 – Experimental specifications for AuroloyTM 750 S bath and properties of the Au-Cu-Cd electrodeposited 

alloy. 

 

 

The next expression (1) provides the required charge in order to coat a substrate of a given 

area with a certain alloy thickness: 
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 1       

 

 

 

Prior to alloy electrodepositing, it was required to settle the input current and the 

electrodeposition time. The charge values (A·min) equation 1 provides will enable the 

calculation of the electrodeposition time in minutes as a second setting.  

16 samples were prepared following the parameters (type of substrate, current density, 

electrodeposition time and rotation speed) shown in Table 2: 

 

Sample Type of substrate Area 

(cm2) 

Time (min) Rotation 

speed (rpm) 

Applied 

current (A) 

Current density 

(A/dm) 

GAL1 Brass/Ni/Pd flash 4,72 6 20 -0,04 -0,85  

GAL 2 Brass/Ni/Pd flash 4,84  6 20 -0,04 -0,83  

GAL 3 Brass/Ni/Pd flash 4,89  6 20 -0,04 -0,82 

GAL 4 Brass/Ni/Pd flash 5,17  6 20 -0,04 -0,77  

GAL 5 Brass/Ni/Pd flash 4,77 11 20 -0,02 -0,42  

GAL 6 Brass/Ni/Pd flash 5,17  4 20 -0,06 -1,16  

GAL 7 Brass/Ni/Pd flash 5,03  11 20 -0,02 -0,39  

GAL 8 Brass/Ni/Pd flash 5,79  6 30 -0,04 -0,69  

GAL 9 Brass/Ni/Pd flash 5,62  6 25 -0,04 -0,71  

GAL 10 Brass 5,55  6 20 -0,04 -0,72  

GAL 11 Brass/Ni 4,74  6 20 -0,04 -0,84  

GAL 12 Iron  6 20 -0,04  

GAL 13 Brass/Ni 5,46 6 20 -0,04 -0,73  

GAL 14 Brass/Ni 5,50  6 0 -0,04 -0,73  

GAL 15 Brass/Ni/Pd flash 4,51  6 20 -0,04 -0,89  

Q: charge (A·min)  d: thickness (µm)  A: area (dm2)  ρ: alloy density (mg/µm· dm2)  ŋ: cathodic efficiency (mg/A·min)  
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GAL 16 Brass/Ni/Pd flash 4,15  6 20 -0,04 -0,96  

GAL 18 Brass/Ni/Pd flash 4,00 6 20 -0,04 -1,00 

GAL 19 Brass/Ni/Pd flash 4,00 6 20 -0,04 -1,00 

GAL 20 Brass/Ni/Pd flash 4,00 6 20 -0,04 -1,00 

GAL 21 Brass/Ni/Pd flash 4,00 6 20 -0,04 -1,00 

GAL 25  Brass/Ni/Pd flash 0,50 6 20 -0,005 -1,00 

GAL 26 Brass/Ni/Pd flash 4,00 6 40 -0,04 -1,00 

GAL 27 Brass/Ni/Pd flash 2,00 6 20 -0,02 -1,00 

GAL 28 Brass/Ni/Pd flash 1,00 6 20 -0,01 -1,00 

Table 2 – Samples prepared via galvanostatic electrodeposition and followed parameters. All substrates were pre-

treated by electrolytic cathode degreasing except for GAL 16-GAL 28 (ultrasonic treatment). 

 

As it can be observed in Table 2, area must be measured in each case in order to determine 

current density. Time values were obtained through charge values provided by equation 1. 

However, times selected as input settings were an approximation to the closest higher integer 

number.    

Three different AuroloyTM 750 S baths were used to prepare the samples. GAL1-GAL14 

were obtained using Bath 1. Hence, GAL 15 and GAL 16 were created using Bath 2, while GAL 

18-GAL 28 were prepared from Bath 3. All three baths were chemically equal except for Bath 2, 

which was modified by adding an aliquote of nitriloacetic acid solution (NTA, concentration: 500 

g/L). 

Once electrodeposition was performed, all samples were rinsed with distilled water and kept 

covered with laboratory tissue until measuring their corrosion behavior in order to avoid 

contamination.  

5.2. CORROSION MEASUREMENTS OF AU-CU-CD ALLOY SAMPLES 

All corrosion measurements were taken using a three-electrode electrochemical system, 

where the samples were used as the working electrode (Figure 2).  
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Figure 2 – Experimental setup for corrosion measurements (left: counter-electrode; middle: sample; right: reference 

electrode). 

 

The reference electrode was Ag/AgCl (NaCl 1 M) connected to a NaCl 5% Luggin capillary 

and the counter-electrode was a platinized titanium net. The electrolyte used in such 

measurements had to be chosen carefully: it was required to reproduce an aggressive enough 

medium to test the samples under as realistic as possible conditions (e.g. sweat). For such a 

purpose, a rock salt solution (5% w/w) was chosen (200 mL). Cl- anions are well-known for their 

depassivating properties: they have the same charge and are quite similar to OH- anions 

(located in hydrated oxide layers) in terms of size so they can replace them, thus making 

passivating layers soluble. In order to minimize environmental noise, the whole experimental 

setup was placed inside a Faraday cage (Figure 3). 

 

 

 

 

 

 

 

Figure 3 – Faraday cage used to keep the experimental setup safe from noise. 
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The surface of each sample exposed to the saline solution was 2 cm2. In order to reduce the 

contact area of the samples, varnish was used to mask a part of the alloy. 

5.2.1. Corrosion potential test 

The first measurement that was performed in all samples was corrosion potential test, which 

basically consists of monitoring open circuit voltage (Eoc, a.k.a. Ecorr) depending on time (no 

current is being applied). The aim of this test is the characterization of the alloy coating: 

samples are not equal to each other, so the processes that take place in the metallic surface-

solution interface occur with a different importance or even different processes happen in each 

case. This variability is translated as a different value for corrosion potential (Ecorr) for each 

single sample. The data recording ends once voltage remains constant or after a previously 

established time.  

5.2.2. Polarization resistance 

Polarization resistance experiments were carried out by recording current versus voltage as 

the cell voltage was swept over a small range of potential close to Eoc (Eoc ± 5 mV), thus 

obtaining a straight line.  A numerical fit of the line provides a value for the slope, which is the 

polarization resistance (Rp). This resistance shows the opposition to the flow of current caused 

by an electrochemical reaction (corrosion process) at the solid-liquid interface. Hence, large 

values of Rp denote a better performance of a metal towards corrosion. The term “polarization” 
is used due to the input signal that is applied to the sample, that forces away potential from its 

value at Ecorr. 

5.2.3. Impedance   

Impedance experiments consisted of applying an oscillating input potential and recording an 

oscillating output current. Through Ohm’s Law, it is possible to obtain a value of impedance 
depending on frequency (20000 kHz – 1000 mHz). Impedance has two contributions at such 

frequency range: resistance (Z’) and reactance (capacitative elements, Z’’). They both are 
represented in a complex plane, being resistance the real coordinate and reactance the 

imaginary coordinate. The result of an impedance experiment is a representation of resistance 

versus negative reactance (Nyquist impedance plot). This plot presents a semi-circular shape at 

high-frequency/low-resistance values that turns into linear in low-frequency/high-resistance 
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regions. Semi-circular shape is related to charge-transfer control of the electrochemical process, 

while linear behaviour is connected to mass-transfer phenomena3 (Figure 4).  

 

 

 

 

 

 

 

 

 

Figure 4 – Nyquist impedance plot. Notice that two different regions can be distinguished (mass-transfer control: 

high resistance; charge-transfer control: low resistance) 

 

Thus, impedance techniques are useful to characterize and differentiate the processes that 

are taking place in an interface depending on frequency, as well as to determine Rp by 

subtracting Z’ (1) to Z’(2).  

5.2.4. Potentiodynamic polarization 

Potentiodynamic polarization (PP) is a voltamperometric technique that involves the 

application of a linear potential sweep to working electrode while current is registered. For all 

samples, potential sweep was performed increasing the value of applied voltage with time, 

showing an initial reduction process followed by an oxidation. Logarithm of total current 

depending on applied potential was represented as the result of the experiment. It is worth 

minding that current is the result of summing current values of cathodic (negative total current 

values, reduction of the oxidizing agent in the medium) and anodic (positive total current values, 

oxidation of the metal) processes. In charge transfer control regions, classic Tafel analysis was 

performed by extrapolating the linear portions of a log (I) vs. potential plot back to their 

intersection, making it coincide with the corrosion potential. When E=Ecorr, value of total current 

is zero. The reason for this is that anodic and cathodic current achieve the same absolute value 
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with inverted signs, so they annul each other. Such absolute value coincides with corrosion 

current (Icorr) at the previously mentioned intersection upon Ecorr (Figure 5).  

 

 

 

 

 

 

 

 

 

Figure 5 – PP plot with a demonstration of classic Tafel analysis. 

 

Icorr is a kinetic parameter that is directly proportional to the corrosion rate of the metal. 

Hence, high Icorr values show great tendency of the metal to corrode in a certain medium and 

vice-versa.  

5.3. SAMPLE ELEMENTAL ANALYSIS AND IMAGE ACQUISITION 

The aim of elemental analysis of the Au-Cu-Cd alloy was to check if any of the studied 

variables when electrodepositing (current density, rotation speed and system geometry) 

affected the proportion of each metal in the deposit and thus the corrosion behaviour of the 

sample. Also, morphology information was required to test which of the degreasing methods 

was preferable in terms of surface homogeneity: it was suspected that H2 generated during 

electrolytic cathodic degreasing could be absorbed by the Pd flash outer layer, since such metal 

presents exceptional hydrogen-absorbing properties. The absorbed gas was likely to be 

released at high temperature (68ºC) during the electrodeposition, with the inconvenience of 

irregular alloy electrodeposition (bubble formation, defects, etc.).  

Two microscopy techniques were used: Scanning Electron Microscopy (SEM) and Optical 

Microscopy (OM). Images of substrate morphology were obtained via both microscopes, while 

the elemental analysis of samples was performed through EDS. 
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6. RESULTS AND DISCUSSION 

6.1. CORROSION CHARACTERIZATION 

Most of the samples listed in Table 2 were tested in corrosion measurements. The results of 

the corrosion behaviour each sample presented are shown in Table 3. 

Since Icorr cannot be measured directly, Icorr via SG (Stern-Geary Equation, 2) was calculated 

in order to verify that the method used to obtain Icorr (classic Tafel analysis) is valid and was 

done properly (values in both columns coincide in their order of magnitude, proving reliable Tafel 

data analysis). 

 

     2                       

 

Similarly, Rp values obtained via polarization resistance and impedance tests do not differ 

much from each other. Thus, there is no difference in choosing ones or others when making 

comparisons between samples. In the previously shown table, there are also two columns 

referring to Ecorr. The difference between them is that PP values were obtained once all other 

Sample Ecorr (V) Rp(ohm) 
Rp via 
AC (Ω) 

Icorr 
(µA) 

Ecorr via 
PP (V) 

βc 
(mV) 

βa 
(mV) 

Icorr 
via SG 
(µA) 

GAL 1 -0,11 22391 23653 0,82 -0,1 53,4 81,5 0,63 

GAL 2 -0,11 17706 14404 0,76 -0,111 61 89,3 0,89 

GAL 3 -0,107 4443 4080 3,40 -0,135 94,6 121,5 5,20 

GAL 4 -0,103 8663 9459 2,23 -0,11 96 123,61 2,71 

GAL 5 0 149634 183434 0,07 -0,006 61,4 91,7 0,11 

GAL 6 -0,031 5725 5573 1,99 -0,074 85,4 78,5 3,11 

GAL 7 -0,101 28000 28118 0,57 -0,135 73,5 115,5 0,70 

GAL 8 -0,159 7562 7099 2,49 -0,156 111,8 84,9 2,77 

GAL 9 -0,102 16933 19733 0,72 -0,112 85,9 98,6 1,18 

GAL 10 -0,117 7329 9625 1,64 -0,134 101,9 105,1 3,07 

GAL 11 -0,118 8929 10344 1,98 -0,119 102,4 129,6 2,79 

GAL 18 -0,142 12301 12755 1,16 -0,146 85,8 118,1 1,76 

GAL 19 -0,073 54898 56285 0,22 -0,116 43,8 79,5 0,22 

GAL 20 -0,15 15218 15779 1,12 -0,161 82,4 115,4 1,37 

GAL 21 -0,143 20000 20898 0,95 -0,144 90,7 125,9 1,15 
 

 

                                          Table 3 - Results of corrosion measurements for samples GAL 1-GAL 11 and GAL 18-GAL 21.  
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corrosion measurements were performed in comparison with the other values (obtained firstly). 

As it can be observed, there are evident differences between both groups of values, being those 

obtained via PP more negative (Ecorr evolves during the corrosion experiment). This is a clear 

evidence that corrosion measurements made on the samples before performing PP affect the 

value of Ecorr, being this an indication of a variation in the interface system.   

As the results in Table 3 show, samples do not seem to be fully reproducible in terms of 

corrosion behaviour. This means that samples made under the same conditions exhibit different 

values of Icorr and Rp. For instance, GAL 1, GAL 2 and GAL 3 were prepared with equal rotation 

speeds and at very similar current densities (-0,85 A/dm2, -0,83 A/dm2 and -0,82 A/dm2, 

respectively, as shown in Table 2), but they show different results after corrosion measurements 

(Figures 6, 7 and 8): 

 

 

 

. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 6 – Rp plots of samples GAL 1, GAL 2 and GAL 3. 
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Figure 7 – Impedance plots of samples GAL 1, GAL 2 and GAL 3. Re is for “real axis” and Im for “Imaginary axis”. 

 
 
 
 
 
 

 
 

    Figure 8 – PP plots of samples GAL1, GAL2 and GAL3. Pulses in GAL2 appear due to noise. 
 

 

There are significant differences in Rp values according to data shown in Figures 6, 7 and 8. 

In Figure 6, the slope for GAL 3 is significantly higher in comparison to GAL 1 and GAL 2. As 
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explained above, this means that Rp is considerably lower (Ohm’s Law: I = V/R, the slope of the 
I vs. E representation corresponds to 1/R) for the first mentioned sample, thing that can also be 

pointed out in Figure 7. The differences between GAL 1 and GAL 2 are also noticeable. In terms 

of Icorr, there is a clear difference between samples: while values for GAL 1 and GAL 2 remain 

similar, GAL 3 data provides higher Icorr values (its PP plot is shifted upwards). 

Low values of Rp and high values of Icorr show a higher tendency of samples to experiment 

interface red-ox processes, thus having a poorer resistance towards corrosion. According to the 

previously shown data, corrosion behaviour is better in the following order: GAL 1, GAL 2 and 

GAL 3. 

In order to find an explanation to such differences in corrosion behaviour even in equally 

prepared samples, EDS elemental analysis was performed (Table 4): 

 
 

 
Table 4 – EDS microanalysis elemental weight proportion of samples GAL 1, GAL 2 and GAL 3. 

 
 

It is clear that samples considered above do not show big differences between them in 

terms of composition. Then, the worse corrosion behaviour of GAL 3 might be caused by the 

smaller percentage of cadmium that the alloy presents (it must be remembered that cadmium 

provides better corrosion behaviour even in small quantities).  

Sample Gold (%) Copper (%) Cadmium (%) 

GAL 1 54,24 39,04 6,72 

GAL 2 50,53 41,87 7,59 

GAL 3 50,80 43,40 5,80 
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Another fact that can justify the different corrosion behaviour in such three samples is the 

acquired stationary potential while galvanostatic electrodeposition was being performed, as 

shown in Figure 9. 

 

 

 

Figure 9 – Time evolution of potential during galvanostatic electrodeposition  

of samples GAL 1, GAL 2 and GAL 3. Peaks in GAL 1 correspond to noise. 

 

 

As depicted above, stationary potential grows negatively from GAL 1 to GAL3, just as the 

worsening observed in their corrosion behaviour. Differences in stationary potential while 

electrodeposition is taking place can induce the formation of different alloy crystalline structures 

without altering the coating elemental composition. Such different atomic arrangements might 

not behave the same way towards corrosion.  

The lack of reproducibility towards corrosion behaviour is not only related to composition, 

but also to the particular casuistry of each substrate (surface defects, scratches, bending, etc.). 

This might be an explanation to the observed differences between stationary potentials in Figure 

9. In addition, dispersion in Ecorr values between samples might also be related to differences in 

corrosion behaviour. 

The difficulty to obtain samples with invariable corrosion behaviour has been justified and 
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discussed. However, the electrochemical window in terms of composition does not seem to be 

so small: GAL 1, GAL 2 and GAL 3 were prepared at current densities of -0,85 A/dm2, -0,83 

A/dm2 and -0,82 A/dm2  while GAL 18 and GAL 19 were obtained at -1,00 A/dm2 (composition 

data shown in Table 5). In both groups of samples, gold percentage in the alloy coating is very 

similar (around 52-53% approximately or 12 kt).  

 

 Sample  Gold (%) Copper (%) Cadmium (%) 

GAL 18 54,41 40,08 5,51 

GAL 19 53,45 40,72 5,82 

 

Table 5 - EDS microanalysis elemental weight proportion of samples GAL 18 and GAL 19. 

6.2. CORROSION BEHAVIOUR VS. CURRENT DENSITY 

 

Obviously, the electrochemical window mentioned above has some limitations. There are 

clear differences in corrosion behaviour between samples prepared at very different current 

densities. For instance, samples GAL 1, GAL 5, GAL 6 and GAL 7 (-0,85 A/dm2, -0,42 A/dm2, -

1,16 A/dm2 and -0,39 A/dm2, respectively) exhibited different behaviour towards corrosion 

(Figures 10 and 11). 

 

Figure 10 – Impedance plots of samples GAL 1, GAL 5, GAL 6 and GAL 7. 
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Figure 11 – PP plots of samples GAL 1, GAL 5, GAL 6 and GAL 7.  

Inaccuracies in GAL5 are related to noise problems. 
 
 

For its part, GAL 6 presented the lowest resistance to corrosion among the group (Rp  = 

5600 Ω,  Icorr = 2 μA), showing the smallest semicircle in impedance measurements. GAL 1 

corrosion behaviour was better than the previous sample (Rp  = 23000 Ω,  Icorr = 0,82 μA), but 
not superior to GAL 5 (Rp  = 165000 Ω,  Icorr = 0,07 μA) and GAL 7 (Rp  = 28000 Ω,  Icorr = 0,57 

μA), as depicted. 

It seems clear that corrosion behaviour is improved when current density decreases, as 

demonstrated above. Once again, a better resistance to corrosion can be related to composition 

via EDS microanalysis (Table 6). 

 

Sample Gold (%) Copper (%) Cadmium (%) 

GAL 1 54,24 39,04 6,72 

GAL 5 71,40 24,9 3,70 

GAL 6 31,71 55,95 3,67 

GAL 7 73,75 19,54 6,72 

 

Table 6 - EDS microanalysis elemental weight proportion of samples GAL 1, GAL 5, GAL 6 and GAL 7. 
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According to the composition results, an increase in electrodeposition current density makes 

composition poorer in gold and richer in copper. This is the reason why low current density 

samples exhibit better corrosion behaviour than those prepared at high current densities (higher 

proportion of a noble metal).    

Differences between GAL 5 and GAL 7 in terms of corrosion behaviour are evident, despite 

having been prepared at similar current densities. However, their respective compositions do 

not differ much from each other, as shown in Table 6. One more time, this differential behaviour 

is related to the particular casuistry of each sample, especially in the case of GAL 5 (much 

difference when compared to the others). As it was mentioned above, substrate particularities 

can be linked to different Ecorr values, being them characteristic of each single case. 

In the case of this particular comparison, it was possible to show corrosion behaviour 

visually. Noticeably, GAL 6 was the sample which showed less corrosion resistance and even 

pitting was visible on its surface. SEM images of samples GAL 6 and GAL 7 show the effect of 

corrosion tests on both surfaces (Figure 12): 

 

 

  

Figure 12 – SEM images (x1000) of samples GAL6 (left) and GAL7 (right). Grains observed in GAL6 are problably 
oxide microcrystals, while GAL7 exhibits a clean surface with only some small scratches caused by prolonged 

storage. 
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6.3. CORROSION BEHAVIOUR VS. ROTATION SPEED 

 

Samples GAL 8, GAL 9 and GAL 10 were prepared at very similar current densities (-0,69 

A/dm2, -0,71 A/dm2 and -0,72 A/dm2, respectively). The factor that was varied during 

electrodeposition was rotation speed (30 rpm, 25 rpm and 20 rpm). As shown in Table 3, 

corrosion behaviour does not follow a linear trend when changing rotation speed. GAL 9 

presented better corrosion behaviour (Rp  = 18500 Ω,  Icorr = 0,72 μA)  than GAL 8 (Rp  = 7250 

Ω,  Icorr = 2,49 μA) and GAL 10 (Rp  = 8450 Ω,  Icorr = 1,64 μA). This seems to show that the 

optimal rotation speed is around 25 rpm in terms of corrosion resistance.  

Concerning composition, there is not a big difference between GAL 8 and GAL 9, as shown 

in Table 7, while GAL 14 (prepared without rotation) has a lack of gold: 

 

Sample  Gold (%) Copper (%) Cadmium (%) 

GAL 8 47,40 44,80 7,80 

GAL 9 51,70 41,50 6,80 

GAL 14 41,70 53,40 4,90 

Table 7 - EDS microanalysis elemental weight proportion of samples GAL 8 and GAL 9. 

 

Composition data in Table 7 and the fact that GAL 14 was affected more evidently by 

rotation speed in such terms demonstrate that the electrodeposition process is regulated by 

mass-transfer control2.   

6.4. COMPOSITION VS. SYSTEM GEOMETRY 

 

Apart from current density and rotation speed influence on corrosion behaviour, substrate 

geometry and its effect on composition were also studied. EDS microanalysis was performed in 

order to find out composition in samples GAL 25, GAL 26, GAL 27 and GAL 28 (Table 8). 

System geometry was varied by changing the area of each substrate (0,5 cm2, 4 cm2, 2 cm2 and 

1 cm2). It must be noticed that GAL 26 was prepared with 40 rpm rotation and not at 20 rpm as 

the rest of considered samples. This fact should not be taken into consideration when 
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comparing the effect of substrate area, since the influence of rotation speed is relatively low as 

mentioned above. Current density was -1 A/dm2 for all samples. 

 

Sample Gold (%) Copper (%) Cadmium (%) 

GAL 25 71,50 20,20 8,30 

GAL 26 53,49 39,42 7,09 

GAL 27 54,66 39,84 5,49 

GAL 28 60,66 33,59 5,75 

Table 8 - EDS microanalysis elemental weight proportion of samples GAL 25, GAL 26, GAL 27 and GAL 28. 

 

As showed above, increase of gold percentage in the alloy is observed when substrate area 

becomes smaller. In fact, gold portion in GAL 25 (71,50%) is quite close to expected 75% that 

this electrochemical bath should provide (18 kt).  

 

6.5. CLEANING PRE-TREATMENTS COMPARISON 

 

Samples GAL 15 and GAL 16 were specifically prepared in order to compare the effect of 

two different cleaning pre-treatments: cathodic degreasing and ultrasounds bath. The initial 

hypothesis that encouraged this comparison was that the Pd flash layer of the substrates was 

likely to absorb hydrogen generated during cathodic degreasing, and such hydrogen could be 

released afterward during the electrodeposition at 68ºC, thus forming bubbles and not smooth 

coating surface. OM images (Figure 13) were taken to explore the surface of both samples at 

micron scale to see if cathodic degreasing sample (GAL 15) presented more imperfections than 

ultrasounds bath sample (GAL 16). 
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Figure 13 – OM images of samples GAL 15 (left) and GAL 16 (right). 

 

As depicted, there are no clear differences between both images at micron scale. Then, the 

hydrogen-absorbing effect of Pd does not seem to affect the alloy coating regularity. Probably, 

higher thickness of Pd (Pd flash thickness: 0,1 μm) would present more problems in this way. 

Another argument on this point is that the time the substrate remains submersed in the 

electrochemical bath at 68ºC prior to electrodeposition may be enough to release the majority of 

the absorbed hydrogen. It is true that the image corresponding to GAL15 shows an 

imperfection, but does not seem to have been made by a hydrogen bubble. In fact, it is likely 

that such feature in GAL15 surface is an alloy agglomerate. 

7. CONCLUSIONS 

It has been shown that differences in corrosion behaviour among samples made under the 

same conditions are related to compositional variations. Specifically, cadmium composition 

plays a vital role at defining the corrosion response of the ternary alloy coating: a lack of such 

metal in a sample makes the decorative plating more prone to experiment corrosion compared 

to another sample with higher cadmium amount in its composition, even considering similar gold 

proportion in both. Moreover, differences in corrosion behaviour of equally made samples can 

also be justified by analysing the values of stationary potential that samples acquired during 
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electrodeposition: high negative values of E are related to less corrosion resistance. Such fact 

seems to find an explanation if it is taken into consideration that variation in stationary potential 

induces the electrodeposition of different crystalline phases of the alloy (different tendency to 

corrosion depending on the structure). Finally, it must also be considered that each substrate 

has its own particularities (e.g. defects), so casuistry plays a very important role in corrosion 

behaviour. This factor may even be related to variability in stationary potential and Ecorr. 

Evidences on the dependence of corrosion behaviour in electrodeposition current density 

have been provided: corrosion behaviour tends to be worse (less corrosion resistance) as 

current density is increased. Thus, such fact is related to alloy composition, which becomes 

richer in gold and poorer in copper when current density decreases (samples richer in gold 

experiment enhanced corrosion behaviour due to the noble nature of such metal). 

Concerning rotation speed, samples prepared at 25 rpm under the same current density 

conditions showed better response towards corrosion, without noticeable differences in 

composition. A dramatic drop of gold content in samples prepared without rotation demonstrates 

that the electrodeposition is controlled by mass-transfer processes.  

The effect of system geometry has a huge importance in alloy composition. It has been 

shown that electrodeposition performed on substrates with smaller areas provides samples 

richer in gold, even under the same current density and rotation conditions. Experimental work 

shows that the optimal substrate area is around 0,5 cm2 if ~18 kt alloy is wanted. In jewellery 

industry, area is not a limiting parameter and this demonstrates the existence of limitations 

when reproducing industrial conditions at small scale. Such limitations may be related to 

different hydrodynamic conditions (rotation) in comparison to industry. 

Both cleaning pre-treatments were compared and discussed: there is no evidence proving 

that cathodic degreasing is worse in terms of alloy surface homogeneity (the effect of absorbed 

hydrogen in the Pd flash layer is not observed).  
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9. ACRONYMS 

 

EDS: Energy-Dispersive X-Ray Spectroscopy. 

 

NTA: nitriloacetic acid. 

 

PP: Potentiodynamic Polarization. 

 

SEM: Scanning Electron Microscopy. 

 

OM: Optical Microscopy. 

 

SG: Stern-Geary Equation.  

 

 


