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ABSTRACT  

 

In the search for appropriate models for Alzheimer’s disease (AD) involving animals other than rodents, 

several laboratories are working with animals that naturally develop cognitive dysfunction. Among the 

animals tested, dogs are quite unique in helping to elucidate the cascade of events that take place in brain 

amyloid-beta (Aβ)  deposition aging, and cognitive deficit. Recent innovative research has validated human 

methods and tools for the analysis of canine neuropathology and has allowed the development of two 

different approaches to investigate dogs as natural models of AD. The first approach relates AD-like 

neuropathy with the decline in memory and learning ability in aged housed dogs in a highly controlled 

laboratory environment. The second approach involves research in family-owned animals with cognitive 

dysfunction syndrome. In this review, we compare the strengths and limitations of housed and family-owned 

canine models, and appraise their usefulness for deciphering the early mechanisms of AD and developing 

innovative therapies. 

 

KEYWORDS:   aging, Amyloid-beta, animal model, canine cognitive dysfunction syndrome, family dog, 

therapies.  
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Why a canine model of AD? 

For years, the search for appropriate animal models for Alzheimer’s disease (AD) has focused on a variety of 

manipulations to reproduce the disease in various species, such as yeast, Drosophyla melanogaster, 

Caenorabditis elegans, rodents, and rabbits, with a particular interest in obtaining knockout and transgenic 

animals (for a review, see [1]research is currently performed in the mouse because its brain structure is 

somewhat similar to that of humans, and it is amenable to highly sophisticated genetic engineering. Because 

age-related cognitive decline is a common feature of most mammals, other laboratories have focused on the 

few species that naturally develop cognitive dysfunction with various Alzheimer-like characteristics. These 

animals include the monkey, polar bear, cat and dog [2-5]. Canine models are currently considered a useful 

intermediate between genetically modified mouse models and humans [6,7]. Although many of the 

transgenic AD models have provided insights into the molecular mechanisms of the pathology, none of them 

encompass all the cognitive deficits observed in AD (see Table 1). One of the first transgenic mouse AD 

models was the amyloid precursor protein transgenic mouse, PDAPP mouse, which develops age-dependent 

amyloid beta accumulation and deposition in both diffuse and fibrillar neuritic plaques in the hippocampus, 

cerebral cortex, and corpus callosum [8]. Other models with AD-like pathology are apolipoprotein E (ApoE) 

or Tau transgenic mice, and also mice in which other genes have been modified. In more sophisticated 

approaches, important information has been gained from crossing PDAPP and ApoE models and with mice 

lacking or over-expressing genes for beta-secretase, alpha-secretase, or the insulin-degrading enzyme [9,10]. 

All these models have provided valuable information on AD pathology and on the possibility of developing 

new treatments such as secretase inhibitor therapy or immunotherapy. 

However, transgenic models are plagued with limitations, especially in terms of their ability to fully 

represent a correspondence between mutations and disease. For example, in mouse models, mutations in 

amyloid precursor protein (APP) and presenilin frequently trigger only Aβ plaques, whereas in humans these 

mutations lead to AD with plaques, tangles, and severe brain atrophy.  These models also give information 

mainly on the pathogenic factors of inherited forms of the disease, whereas mammals’ models characterized 

by cognitive deficit syndrome and AD markers are more likely to address the underlying pathology of the 

disease and identify therapeutic targets for innovative therapies.  

As a large mammal, the dog has the advantages of a larger brain and larger cerebrospinal fluid (CSF) volume 

and, like the monkey, presents a diversity of cognitive assessments that are close to the human cognitive 

processes impaired in AD [11,12].  The correlation established between the progression of canine cognitive 
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dysfunction, Aβ plaque maturation, and several cellular and molecular AD markers confirms the dog as a 

natural model for the study of both AD and human brain aging [6] and should reduce the need of non-human 

primates. With regard to the numerous AD canine similarities, the APP, an iron-export ferroxidase [13], and 

the Aβ 1-40 and Aβ 1-42 peptides present a high homology in dogs and humans[2,14,15], and soluble Aβ 

peptide deposition in the form of senile plaques and cerebral amyloid angiopathy in the dog brain parallels 

that in humans. Canine presents the same characteristics of cortical neuronal loss but, in contrast to humans, 

its tau hyperphosphorylation is not accompanied by neurofibrillary pathology [16,17] probably due to 

differences between human and dog protein sequences. In any case, the deposition of Aβ is one of the 

earliest neuropathological occurrences in AD and the aging process, and since neurofibrillary tangles are 

common to a number of types of dementia, a central role of Aβ peptides is generally accepted and referred to 

as the “amyloid hypothesis” [18]. To test this hypothesis, which holds that soluble Aβ peptide accumulation 

in the brain extracellular space (forming soluble oligomers, fibrils and Aβ plaques, in equilibrium between 

blood and brain compartments) is responsible for neuronal dysfunction and degeneration, the only natural 

candidates at present are dogs over 7-8 years [16,19-22]. Because of that, dogs are quite unique to investigate 

the early events taking place in the diffuse Aβ plaque maturation and its relationship with cognitive deficit. 

Detailed explorations of the neurochemical cascade of toxicity, and the identification of the specific proteins 

involved in each step, are major lines of research [23,24] that can be profitably pursued in canines [25]. The 

same is true for the identification of the exact mechanisms that trigger sporadic AD. The correlation between 

chronic stress, the rate of AD incidence and the presence of Aβ found in clinical studies [26] can also be 

investigated in canine to decipher AD mechanisms and understand the physiological consequences of that 

correlation . Dogs also offer multiple druggable targets for the identification of novel disease-modifying 

agents interfering with Aβ production, oligomer formation, fibrils and plaque formation and maturation, the 

neurotoxic effects of these products or their clearance process [11,23,27-31].  

Two different approaches are currently used to investigate the dog as a natural model of AD, each one 

applying a different cognitive assessment methodology. The first relates AD-like neuropathology with 

decline in memory and learning ability in aged dogs of a specified strain (in general, beagles) raised in highly 

controlled laboratory environments. The second investigates family animals (also named companion dogs, 

client-owned dogs or non-housed dogs) diagnosed with cognitive dysfunction syndrome (CDS), a well-

defined clinical disease in aging dogs. Besides the diversity of breeds (including sex, size and genetic 

background) and family life conditions [32], CDS dogs represent a validated model for AD research [16] 
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(Figure1). This last approach has the advantage to rule out the need of a specific strain to be housed during 

years in controlled conditions.  

In this paper, we first review the CDS, and then compare the features the canine models with special focus in 

the comparisons between behavioral modification of housed and family dogs. The robustness of these 

models to provide new insights into AD pathophysiology mechanisms is also discussed. Then we propose 

new targets for the development of new therapeutic approaches to early AD intervention.  

 

The canine Cognitive Dysfunction Syndrome 

With improved standards of veterinary care and the maintenance of the human-animal bond, the veterinary 

profession is treating a larger number of elderly animals than ever before, and elderly dogs are the most 

rapidly growing segment in many veterinary clinic populations. Current estimates suggest that there are more 

than 30 million senior and geriatric dogs over the age of seven years in the USA [33]than 15 million in 

Europe, accounting for approximately 30-40% of the total canine population in these geographical areas. 

Their owners tend to take a strong interest in their aging process. 

As in humans, the canine aging process involves progressive, irreversible changes in the whole body, and is 

frequently associated with severe specific behavioral and cognitive deficits [34] that lead to changes in 

interactive, elimination or navigational behaviors that are not due to the primary failure of any organ system. 

When cognitive dysfunction is not due to a primary cause such as a brain tumor or infarct, its clinical 

diagnosis as CDS requires the presence of one or more of the following nine behavioral changes  

1) Decreases or changes in reactivity to routine stimuli  

2) Confusion or disorientation    

3) Changes in elimination behaviors, ranging from sporadic inappropriate elimination to    

   incontinence  

4) Decreased interaction with owners  

5) Increased irritability  

6) Slowness in obeying orders  

7) Alteration in sleep-wake cycles  

8) Decreased responsiveness to sensory perception  

9) Changes in the capacity to solve problems (e.g., increased frequency of getting stuck in corners 

or lost in the garden or house) and in general problems in performing previously learned 
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behaviors.  

All these symptoms are included in CDS [35], which corresponds to the broad spectrum of behavioral 

problems equivalent to the definition of human dementia in the Diagnostic Criteria of Mental Disorders [36] 

stage 4-6 of the Global Deterioration Scale [37]. Some authors suggest a correspondence between aging dogs 

and human mild cognitive impairment [11].  In a study of 180 dogs with no identifiable health problems, 

28% of owners of 11- to 12-year olds reported at least one category consistent with cognitive impairment and 

10% in two or more categories; this figure rose to 68% for dogs of 15 to 16 years of age with owner reports 

of signs in at least one category and 36% in two or more categories [38]. Other studies suggest that the 

diagnostic rate is underestimated by veterinary neurologist [39]. 

 

In-vivo studies to assess canine cognitive deficit 

Magnetic resonance imaging techniques and aging 

To complete the cognitive assessment of aging dogs, magnetic resonance imaging (MRI) techniques are of 

major interest. They are currently applied to dogs in veterinary clinical practice to confirm a suspected lesion 

or to identify its extent or location, and also to diagnose central nervous system (CNS) diseases such as 

inflammation or brain anomalies. However, they are not commonly used for the prediction, diagnosis or 

follow-up of canine aging with cognitive dysfunction. The relationship between progressive canine brain 

atrophy and aging has been evidenced in several post-mortem studies [40-42] and recently confirmed in 

housed dogs, frequently beagles, using a variety of MRI techniques [43,44]. To determine whether 

progressive global cerebral atrophy is a marker of aging in dogs as well as in humans, an MRI study in 

companion dogs was performed with an adapted version of a simple human visual rating assessment (Fig.2). 

This new scale represents a reliable, rapid, universal method of canine brain atrophy measurement with the 

advantage that it does not require specialist supervision [45]. The results are similar to those of human brain 

aging and show that both hippocampal and progressive global atrophy correlate with aging. This reinforces 

the possibility of using housed and non-housed dogs to investigate the human cerebral atrophy process in 

greater depth. 

 

CSF parameters and canine cognitive deficit 

The correlation of CSF parameters with cognitive deficit reflects some of the central pathogenic processes of 

AD [46,47], and makes it possible to detect early dysfunctions of energy metabolism, proteosomal activity, 
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and lipid oxidation related with Aβ deposition. As such, the Aβ peptide binds to complex-1 NADH 

dehydrogenase [48] and increases mitochondrial dysfunction, oxygen free radicals and derived reactive 

oxygen species production [49]. These products result in the massive generation of damaged proteins with 

cross-linked polypeptides that not only resist proteolytic attack but also inhibit proteosomal activity, thereby 

establishing a deleterious cycle that may eventually result in the cell’s demise [50]. Deficiency in the fatty 

acid beta-oxidation pathway is also associated with neurodegeneration, possibly due to binding of Aβ peptide 

to hydroxyacyl-CoA dehydrogenase [51] resulting in increased mitochondrial dysfunction (Fig.3). Finally, 

neuronal energy metabolism is fuelled by glucose and lactate specifically supplied by astrocytes due to the 

close neuronal-astrocyte cross-talk, whose CSF levels reflect the intensity of neurodegeneration and may 

serve as a marker of CNS activity [52]. For example, CDS dogs, the large glucose variability and the higher 

values of pyruvate and lactate and K+, only found in the group with severe cognitive deficit (SCD), relate to 

an impaired cerebral oxidative glucose metabolism that participates in the advanced cognitive impairment 

[32]. In a pathological situation, lactate constitutes a critical neuronal energy substrate with positive 

vasodilatatory effects, and with no reason to be considered a noxious agent [53]. In fact, a new paradigm 

considers lactate to be a central neuroprotective agent [52,54]. In the group with light cognitive deficit (LCD) 

these values are normal, probably due to the capacity of adaptive mechanisms to compensate for a lower 

brain insult [55].   

 

Post-mortem studies to assess canine cognitive deficit 

Aβ diffuse plaque maturation, Aβ oligomers, neuronal vulnerability and glial reactivity 

Senile plaques and the diffuse deposits of Aβ are considered the hallmarks of the aging dog [35,56]. Their 

presence in association with cognitive decline has led to their being proposed as the major factor implicated 

in neurodegeneration. Beginning around the age of eight, and increasing with age, the formation and 

maturation of diffuse deposits of Aβ can be observed by immunostaining throughout all canine cortical gray 

matter layers in a characteristic four-stage distribution that correlates with the severity of cognitive deficit in 

the dog. 

This characterization of canine Aβ plaque composition, maturation and distribution, of tissue reactivity in 

terms of specific death or resistance of subsets of neurons, and of glial reactivity has produced similar results 

in housed beagles and non-housed dogs. Their brain section examination shows typical age-changes such as 

nerve cell loss, lipofuscine accumulation in neurons and the presence of corpora amylacea [57-60]. Like AD 
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patients, dogs with SCD present large, isolated, scarce calcium deposits – mostly hydroxyapatites – some of 

which localize within the astrocyte cytoplasm [61]. As shown in rat brain lesions [62], these deposits result 

from an excitotoxic process associated with the activation of microglia and astrogliosis, which participate in 

neuronal death. 

 

 Brain Aβ Distribution   

Except for some limited reports of Congo red staining plaques, investigators generally agree that canine 

plaques are formed by Aβ 1-40 and 1-42, and are of the diffuse human type [63-66], rather than the beta-

pleated-sheet-conformation (and so negative for Congo red and thioflavine stainings). As in humans, plaque 

distribution within the brain is heterogeneous and its abundance increases in parallel to the increase in 

cognitive decline. In all cases, canine prefrontal cortex is the main site of the plaque onset, followed 

progressively by the parietal, entorhinal and occipital cortices [67]. In these regions, Aβ plaques appear to act 

as the insult causing brain tissue neuronal and glial responses, leading to the dog’s progressive cognitive 

decline [37,68].   

In prefrontal cortex, Aβ precipitates are initially detected in low numbers in the deeper layers (V, VI), 

forming the dispersed plaques of stage I distribution; some can fuse together and sometimes extend to layers 

IV and III, taking on the cloud-like appearance characteristic of stage II distribution. The stage III pattern 

presents dense positive plaques localized mainly in the superficial layers (III, II), together with cloud-like 

depositions similar to those seen in stage II in the lower layers. In stage IV, the positive plaques observed in 

stage III extend throughout all cortical layers, but are smaller and more dense (Fig.4a). However, aside from 

these marked differences, all the plaques observed are of the diffuse human type and lack any cerebral 

neuritic component. Stage II-IV distribution also presents significant differences in the density and size of 

the Aβ plaques. For example, the mean plaque size falls from 5543.50 mm2 (stage II) to 4618.48 mm2 (stage 

III) and 1240.01 mm2 (stage IV). These differences are also observed when data are adjusted for age [68]. 

In AD, the specific functional and pathological alterations are less severe in the cerebellum than in other 

brain areas, particularly the entorhinal cortex and hippocampus. Since dense core Aβ plaque formation has 

been associated with an acetylcholinesterase heterogeneous nucleator action [69], the relation between 

cerebellar pathology, acetylcholinesterase density and cognitive dysfunction has also been studied in family 

dogs [70]. In these animals, the late cerebellum involvement is evidenced by the absence of Aβ plaque. 

However, the highest acetylcholinesterase reduction correlates with aging and loss of granule cells, but the 
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cognitive deficit only with the loss of Purkinje cells. This result does not support an interaction between 

cerebellar acetylcholinesterase activity and Aβ deposition, and indicates that symptoms and clinical signs of 

canine cognitive dysfunction are mainly of non-cerebellar origin. 

In AD patients, the levels of fibrillar oligomers correlate with Mini Mental State Examination (MMSE) 

scores and with Aβ plaque stages. These levels are high in frontal cortex regions, hippocampus, entorhinal 

cortex, transentorhinal cortex and cerebellum, all regions involved in AD. In aged dogs, no correlation has 

been found canine cognitive dysfunction and pre-fibrillar oligomers, but the possible association with 

fibrillar oligomers is yet to be studied [22]. 

 

Amyloid reactivity 

Abundant reactive microglia is found within the AD neuritic plaques diffuse canine plaques are closely 

associated with microglia and astrocyte reactivities [49,71]. Together with cortical reactive astrocytosis, 

activated hypertrophic astrocytes over-expressing S100β are generally found just outside the human AD 

plaque boundary with processes deep into the Aβ deposition. Because of this, S100β has been considered an 

important pathogenic factor in the genesis and evolution of AD plaques. The hypothesis that the absence of 

canine dense-core Aβ plaques is due to differences in the neurotrophic effects of astrocytes has been 

explored in companion dogs. Classifications of dogs according to their cognitive deficit correlated with the 

relative abundance and stage of cortical Aβ plaques, and with the interaction with S100β negative 

astrocytosis [68]. For example, stage IV plaques are closer to astrocytes, and astrogliosis correlates with 

diffuse plaque maturation, but in absence of any S100β over-expression (Fig.5). Therefore, Aβ plaques might 

attract reactive astrocytes to participate directly in the tissue response, without a direct S100β involvement. 

With regard to the microglia reaction, only fine processes of ramified microglia are stained in dogs with 

cognitive deficit. Capillaries present intense staining that increases with aging and stage of Aβ deposition. 

Perivascular macrophages present a granular pattern of cytoplasmic staining. Few positively stained 

activated microglia cells are associated with dense core Aβ plaques and no significant correlation of any 

positively stained microglia cells with Aβ plaques has been established. So, the involvement of S100β and 

microglia in the progression of AD does not seem to initiate in the very early stage of plaque formation. 

However, the lack of a significant microglial reaction associated with diffuse plaque maturation also 

described by other laboratories [72] should be considered with caution because monoclonal antibodies used 

for immunohistochemistry were not shown to be specific for dog microglia cell surface markers, nor cross 
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reacted with them. Research into this area is currently underway based on in vitro autoradiography analysis. 

At the cellular level, the specific vulnerability to neuronal death of the α-aminobutyric acid (GABA) cortical 

subset of interneurons, characterized by their calcium-binding protein content and relationship with Aβ 

deposition, has been investigated in companion dogs and compared with results from human AD and housed 

beagles [73]. In companion dogs younger than 8 years, the general distribution and cell typology of 

Parvalbumin (PV)-, calretinin (CR)-, and calbindin (CB)-positive interneurons is similar to those described 

previously for beagles [74], suggesting the presence of a common pattern that is not breed- or sex-specific. In 

old dogs with cognitive deficit the study demonstrates specific vulnerability among CB-immunopositive 

GABAergic cortical interneurons and resistance among PV-positive and CR-positive ones. As AD patients 

present similar data [75,76], a similar highly conserved role of these calcium-binding proteins characterized 

by their different capacity to buffer calcium may confer different levels of protection on their neuronal 

subpopulation in humans and dogs[77]. In addition, when analyzed for age-related loss and Aβ toxicity, 

aging appears critical for the fate of CB-positive neurons, with the amyloid deposition in stage II being a 

second key factor that renders these neurons vulnerable to death. So, the Aβ deposition in stage II, when 

dogs are 10 - 14 years old, may be the toxic factor that renders the subset of cortical CB-immunopositive 

neurons (GABAergic neurons) vulnerable to death. If so, this would explain why in AD these same neurons 

are also more vulnerable to death. 

However, it remains to be established whether this amyloid deposition directly causes a Ca2+ dysregulation 

through glutamate receptor induced excitotoxicity, or whether it is the parallel increased level of Aβ 

oligomers that is responsible for this effect [22,78]. In AD, the correlation between plaque stage and levels of 

fibrillar oligomers also makes it difficult to clarify the precise cascade of events that controls specific 

neuronal fate [79]. 

In any case, this deleterious effect, not detectable in stage III or IV plaque deposition, may act as an early 

event in the pathological cascade leading to neuronal death and glial reaction. In the initiation phase, stage II 

(or the soluble toxic oligomers) may reinforce the ongoing aging process, increasing the generation of free 

radicals [80] and leading to more severe neuronal dysfunction. As found in AD, oxidative stress may also be 

related to high Zn2+ levels that inhibit APP ferroxidase activity [13]. In any case, these results confirm the 

view that aging in certain brain areas begins relatively early in adult life, and also corroborate the sequence 

of events described in the housed aged canine brain and proposed as the initiation phase of human brain 

aging [25], associated with a peak of oxidative stress and a dramatic drop in bcl-2 expression. In these 
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animals, Bax expression is also increased after 15 years of age, when stage II has terminated. The presence 

of oxidative stress markers like 4-hydroxynonenal in high concentrations detected by immunohistochemical 

techniques in the Aβ deposits, vascular wall areas, perivascular spaces and inside some neurons in aged 

canine brains confirms their participation in the same degenerative process [58].  

Localization, distribution, and the relationship between Aβ deposition and tau hyperphosphorylation in 

companion dogs (Fig.4b) are not associated with increased active mitogen activated protein kinase 

(MAPK/ERKP), p38 kinase (p38-P) expression, or tau hyperphosphorylation in neighboring cell processes. 

Hyperphosphorylation, as revealed by the presence of phospho-specific antibodies, increases with age in 

individual neurons but does not correlate with cognitive impairment [16]. This negative result, also found by 

other laboratories [49], suggests that tau hyperphosphorylation is not directly involved in canine brain 

damage.  

The question of why neurofibrillary pathology is absent in the aged canine brain remains controversial. As 

neuritic plaque formation is a multiple-step process that develops over decades, a simple explanation is that 

the dog life-span (usually not longer than 18 years) is too short to allow this formation. Another explanation 

for the lack of tangles relates to the specific pattern of excessive tau protein phosphorylation, since the canine 

tau peptide sequence differs from that of humans, and no paired helical filaments are formed [81]. Another 

explanation focuses on the accelerated time course formation of aggregates of cathepsin D and advanced 

glycation end products in canines, the scarcity of these structures in humans being explained by the fact that 

their biological aging process is slower [82]. In this situation, dogs may not develop tangles, and aging CB-

immunopositive neuronal loss and Aβ deposition, together with these other anomalous structures, would 

drive cognitive decline. If this is the case, interventions to preserve CB-positive neurons and to avoid ROS 

action in the early stage of plaque formation, will be of major interest for reducing GABAergic cortical 

neuronal loss associated with aging. In any case, the redox state of the intracellular environment is 

particularly important, given its involvement in neurodegeneration and aging.  

These numerous similarities found between canine and human brain argue for the incidence of common risk 

factors in their cognitive decline. The CB-positive neuronal loss in AD patients may reflect, at least in part, 

the early diffuse plaque boosting of the aging vulnerability effect. This early loss of GABAergic neurons 

would then modify a series of events and potentiate the excitotoxic process leading to increased neuronal 

loss, astrogliosis, microgliosis, reactive oxygen species formation and chronic brain damage with reactive 

amyloid plaque. 
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Behavioral studies in aged dogs 

A fine-grained, graded cognitive assessment is necessary to ensure proper classification of each animal and 

adequate follow-up of its cognitive process. Numerous studies have applied different procedures to evaluate 

learning and memory deficits in aging dogs. All these procedures are based on two types of evaluation: the 

first, applied to housed dogs, assesses learning and evaluates tasks in the laboratory, and the second, applied 

to companion animals, is based on clinical explorations and surveys or interviews with owners whose 

responses are then scored.  

These behavioral studies performed with one methodology or the other represent the true difference between 

the two paradigms of dog AD models. So, as other in vivo and post-mortem studies carried out in each type 

of canine model are similar, they will be reviewed as a whole, and the specific characteristics of each model 

commented on when appropriate.  

 

 Behavioral assessment of housed dogs 

In the laboratory, several tasks have been selected due to their sensitivity for reflecting specific cortical 

circuits and/or specific brain regions functions. By means of a cognitive test apparatus (a canine adaptation 

of the Wisconsin General Test Apparatus) all laboratory behavioral tests (such as the object recognition 

memory task, delayed-non-matching-to-position task, delayed-non-matching-to-sample test), are conducted 

using food as a reward to motivate learning in the animal [83-86]. Aging dogs (mostly beagles) are 

diagnosed with substantial cognitive decline when they present reduced capacity in the learning of tasks such 

as object recognition memory [83], visuospatial learning and memory [87,88], allocentric spatial function 

[86], discrimination learning and discrimination reversal learning [89]. From all these studies two main 

conclusions have emerged: a) the detection of canine cognitive dysfunction depends on the cognitive process 

engaged, on the task used and on the relative level of difficulty; and b) the variability in the cognitive 

abilities of dogs increases with age. An important aspect that can limit the use of this canine model is the 

length of time required to perform each test, and the cost of their handling and housing: for example, a 

simple associative learning task may require up to two weeks to be completed, and more complex tests such 

as a memory test up to four months [83].  
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 Behavioral assessment of companion dogs 

In companion dogs, a clinical approach and surveys or interviews with owners, whose responses are then 

scored, can determine the presence of the characteristic signs of CDS. The animal’s cognitive performance is 

appraised in only 15-20 minutes, but the appraisal depends on the ability of the veterinary neurologist to 

explain the various questions, and on the reliability of the owner’s answers. The well-known disadvantages 

of interview usage must be taken into consideration in the final diagnosis, especially the reluctance of some 

owners to answer certain questions concerning their pet such as aggressiveness, the importance of the 

interviewer's experience, and the subjectivity of some answers. 

In recent years, several questionnaires have been developed with specific items to classify dogs’ behavior 

and to establish correlations with several neuropathological markers of aging or of cognitive dysfunction 

[19,32,39,90,91] . For example: Colle et al.[90] designed an easy-to-apply clinical scale (Evaluation of Age-

Related Cognitive and Affective Disorders-ARCAD), based on owner interviews, which provides a global 

evaluation comparable to the clinical scales used in human practice such as the MMSE or the Activities of 

Daily Living. Canine evaluation with the ARCAD scale allows a good correlation between behavioral 

deficits related with maintenance behavior (eating, drinking, auto-stimulatory behavior, elimination behavior, 

sleep) and Aβ deposition. However, it does not correlate with environment-dependent symptoms (such as 

learned specific behavior, self-control, learned social behavior and adaptive capabilities), probably due to the 

difficulty of evaluating them through owner interviews, or because the loss of maintenance behavior has a 

better clinical value.  

The Criteria for Evaluation of Dementia in dogs proposed by Kiatipattanasakul et al. [19] include several 

items for analysing the correlation between behavioral changes and apoptosis of neuronal and glial cells. 

These items do not include several important behavioral and cognitive aspects such as walking, posture, or 

sensorial symptoms (hearing loss, hypersensitivity to smell). To investigate the relationship between 

cognitive performance and markers of brain pathology (cortex atrophy, Aβ, oxidative damage, demyelination 

and accumulation of macrophages), Rofina et al. recently used a questionnaire to score the behavioral 

changes of aging dogs [72], and established high correlations with most of these pathological data. Their 

analysis suggested a key role for cellular and nuclear oxidative damage in behavioral changes. 

Around the same time, in our laboratory we developed a new 16-item questionnaire to identify the 

discriminative events in early and late stages of cognitive dysfunction of aging dogs based on our expertise 

and on the human MMSE and The Diagnostic and Statistical Manual of Mental Disorders [32]. Detection of 
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dogs with LCD is important to help identify significant cellular and molecular events requiring investigation 

in early stages of AD. The questionnaire assesses the global and progressive decline of memory, cognition, 

and personality in canines of different age, sex and breed [32]. 

It was completed during the veterinary neurologist’s interview of the owners, and the results were analyzed 

and compared with the data obtained directly from the clinical exploration. Because owners’ understanding 

and the capacity of evaluation of the behaviors covered by these seven items were different, the similarity of 

the scores obtained in all dogs must be due to other factors. For instance, several items like eating, barking, 

drinking and self-control are easy for owners to understand but difficult to evaluate, and the item aggressive 

is difficult to qualify because of the owners’ reluctance to acknowledge this behavior in their pet. The items 

“auto-stimulatory” and “learned social behavior” are difficult for owners to understand or evaluate. So, these 

seven items had to be removed, not because they reflect behaviors that do not change with aging and 

cognitive deficit, but because the difficulties in defining and evaluating them may distort their scores and 

mask their relevance.  

The nine items finally selected cover a diversity of behaviors considered sufficient to evaluate the cognitive 

status of each dog and to ensure good discrimination between animals (Table 2). Items such as maintenance 

behavior (including elimination behavior and life rhythm) and others such as walking, posture, playful and 

exploratory behaviors, are easy to understand and evaluate. In contrast, except for interaction with other 

animals or with owners, the items identified as environment-dependent behavior, such as learning of specific 

behaviors and adaptive capabilities, are more difficult to understand and require explanations from the 

veterinarian. The validated nine-item test gives a similar classification of the dogs as the full 16-item version, 

is less time-consuming and has gained in accuracy and selectivity, especially for the classification of dogs 

with LCD. The scores suggest the existence of three groups of dogs that differ in age and cognitive status. 

Specific aspects like breed or sex did not influence the classification. So the test appears to be a valid tool for 

rapid, easy diagnosis of the initiation and progression of canine cognitive deficit. Dogs varying widely in 

terms of breeds and family environment are easily classified based on their age and cognitive status into 

three well-defined groups, namely young control (YC), LCD and SCD animals. Further characterization and 

comparison of each group allows the identification and follow-up of the early molecular and cellular aspects 

of the disease, and validation of new treatments. For example, this classification into three groups correlates 

with the relative abundance and stage of cortical Aβ plaques, even when data are adjusted for age. 

A significant correlation between behavioral test scores and Aβ accumulation is also found in housed dogs, 
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with a strong correlation between errors in discrimination memory, reversal memory and spatial learning and 

Aβ load in frontal and entorhinal cortices [37,89]. In these dogs the stage of plaques correlates with the age 

[92]. Table 3 shows these correlations in both canine models. 

Overall, these data demonstrate that a fine-grained assessment of graded canine cognitive dysfunction is 

necessary to establish accurate correlations between the different central events that take place progressively 

in cognitive decline through a cascade of molecular and cellular interactions. The point is that companion 

dogs can provide a more precise diagnosis of cognitive deficit, due to the richer family environment and the 

easier detection of any change by owners. In our view, companion dogs represent a better model for 

deciphering the complex relationship between Aβ deposition, Aβ oligomers, neuronal activity and neuronal 

loss, glia participation, brain aging and the progressive cognitive dysfunction. Translating research into AD 

clinical outcomes may be easier with this dog paradigm, except in the case of initial research in 

pharmacological studies. Interestingly, the availability of companion dogs, despite their variety in breeds, 

sex, and life conditions, means there is no need to house a specific strain for years in controlled conditions.  

 

Canine cognitive deficit and treatment studies  

Until now, pharmacological studies of a variety of targets in canine with cognitive deficit have only partially 

improved cognitive decline and their development has required at some point the use of housed and no-

housed dogs. Some of these treatments derive directly from AD pharmacology, and others, such as anti-Aβ 

immunotherapy, relate to innovative approaches in development. Influence of the dietary and environment 

quality is also considered to interfere with cognitive delay, as recently evidenced with the vitamin B 

supplementary treatment efficacy of AD patients [93]. 

 

Pharmacological treatments of CDS 

1. L-deprenyl  

L-deprenyl is currently used to treat Parkinson’s disease and is also considered a potential treatment for AD. 

[94,95]. It selectively inhibits monoamine oxidase-B activity, increases the activity of several neuronal 

pathways and selectively induces catalase and superoxide dismutase activities in housed canine brain, 

conferring neuroprotection and prolonged cell survival. It was the first therapeutic agent approved (Anipril®) 

for use in canine CDS [35,96-98]. Although not all the mechanisms by which it produces cognitive 

improvement are clearly understood, enhancement of dopamine and other neurotransmitters in the cortex and 
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hippocampus is presumed to be a central aspect [99], improving neuronal impulse function and enhancing 

the learned cognitive function [96,100,101].  

2. Nicergoline 

Nicergoline is an ergoline derivative with a broad spectrum of action in many species, like rodents, dogs and 

humans: 1) as an α1-adrenoceptor antagonist, it induces vasodilatation and increases arterial blood flow, 2) it 

enhances cholinergic and catecholaminergic neurotransmitter function, 3) it inhibits platelet aggregation, 4) it 

promotes metabolic activity, resulting in increased utilization of oxygen and glucose; and 5) it has 

neurotrophic and antioxidant properties due to its inhibition of lipid peroxidation, and it acts as a scavenger 

of free radicals [102,103]. Chronic treatment with nicergoline increases neuronal nitric oxide synthase 

expression in the cerebral cortex and basal ganglia, resulting in improved blood-brain perfusion [104]. 

Nicergoline is commercially available for the treatment of cognitive impairment in elderly dogs. 

3. Propentofylline 

Propentofylline is a neuroprotective glial cell modulator, which in preclinical studies has addressed some of 

the common pathological processes of AD and vascular dementia, including glial cell activation and 

increased production of cytokines, free radicals, and glutamate [105]. However, there is limited evidence that 

propentofylline might benefit cognition, global function and activities of daily living of patients with AD 

and/or vascular dementia [106]. Propentofylline is licensed for the treatment of dullness and lethargy in old 

dogs, in which it increases CNS oxygen supply without increasing glucose demand.  

4. Adranafil 

Adranafil increases the activity of the noradrenergic system and helps maintain alertness, wakefulness, 

attention and normal sleep-wake cycles by increasing daytime exploration and activity. Adranafil is also used 

in elderly humans to improve alertness. It is used off-label by individuals wishing to avoid fatigue, such as 

night workers or others to stay awake and alert for long periods of time. In housed dogs, oral administration 

of adranafil improves discrimination learning, increased locomotor activity, and causes a transient increase in 

directed sniffing [97].  

5. Aβ Immunotherapy 

This innovative approach is still under development as different vaccines for AD treatment, in order to 

accomplish pre-clinical and clinical objectives of efficacy and safety. This implies at least fours stages: 1) the 

identification of an appropriate animal model to facilitate translation of the results to humans, 2) stimulation 

of a Th2 response modulating microglia cells to avoid cytotoxic activity, 3) CNS clearance of Aβ plaques 
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and of soluble Aβ monomers and oligomers, 4) proof of human cognitive improvement, and 5) proof of 

suitability in aged systems. 

As noted above, certain limitations have restricted the use of transgenic models in the field of Aβ 

immunotherapy: owing to the complexity of AD and of the human immune response, it has not been possible 

to create mice that replicate these characteristics. In both these aspects dogs also presents many advantages. 

Their complete nuclear genome has a closer homology with human sequences than other AD models, except 

for the non-human primate model [14,107], and as noted above, the amino acid sequence of Aβ 1-40 and 1-

42 is the same in canines and humans, and develops spontaneously as soluble mono- and oligomers, and Aβ 

plaques. In addition, canine and human aging present similar modifications of the innate immunity and cell-

mediated changes, with significant reductions in lymphocytes, monocytes, granulocytes, T-cells, CD-8 cells 

and CD-4 cells [108,109]. As such, the total percentage of B-cells decreases while the percentage of T-cells 

increases. Both canines and humans also present the significant change from a predominance of naïve 

CD45RA+ to memory CD45RO+ phenotypes in CD4+ and CD8+ subsets [110], resulting in a reduction in the 

ability to respond to new antigens that correlates with the decreased naïve T-cells.  Nonetheless, the ability to 

respond to recall antigens is maintained. In old dogs, as in aged humans, B-cell and T-cell functions are 

impaired due to a reduction of interleukin-2 (IL-2) receptor expression and IL-2 production [111,112], and 

with senescence the Th1 (pro-inflammatory):Th2 (anti-inflammatory) subpopulation ratio of blood 

lymphocytes also increases in both species [113,114]. Cytokines produced by these subpopulations regulate 

the immune response: while Th1 cells support CD-8 cellular function including cytokines such as Interferon 

γ (IFN γ), IL-12 and IL-15, Th2 cells provide humoral immune responses including IL-4, IL-5. Although in 

humans Th1 cells are more numerous than Th2 cells, these last ones produce more cytokines. Recently 

laboratories have been investigating the Th17 responses after any immunization [115]. The Th17 response 

has been associated with experimental autoimmune encephalitis in mice [116] and inflammatory diseases 

such as multiple sclerosis [117]. As in humans, dogs Th17 responses may relate to immunotherapy [118]. All 

these similarities between aging in humans and dogs full-fill the objectives mentioned above and make the 

aged canine a good model for investigating the safety and efficacy of human Aβ immunotherapy.  

Some studies have already been carried out in housed beagle dogs [119] with no clear advantage. In our 

laboratory, an innovative active vaccine from different Aβ fibrillar fragments and compounds which induces 

Th2 responses has been developed in housed beagles and is being tested in companion CDS dogs. Our first 

results indicate at 2 months a significant and stable cognitive improvement in all treated animals, without any 
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side effect. The mechanisms involved in the amyloid clearance and their relationship with canine cognitive 

improvement are being studied.  

Furthermore, Aβ immunotherapy in both aged housed and non-housed dogs make possible investigate the 

complex cellular and molecular mechanisms that would explain its effects on cognition. Experimental data 

from Aβ clearance highlight microglia participation [120-122] and that microglia clearance deficiency or 

reduced phagocytosis increase Aβ deposition in AD patients [123,123,124] and AD transgenic mice [125]. 

Aβ vaccine activates antigen presentation cells that in turn activate T cells through cytokines and peptide 

presentation. After a second signal, the soluble antigen presented by T cells binds to memory B cells for 

antibody production. Immunization produces Th1 (pro-inflammatory) or Th2 (anti-inflammatory) response 

in the peripheral immune system that affects CNS via a series of signals, such as cytokines, and activates Aβ 

clearance mechanisms.  As shown in Fig.6, CNS Aβ removal (plaque and soluble forms) has been putatively 

attributed to five main mechanisms [126], with microglia and the CNS or periphery location of the anti-Aβ 

antibodies, the main parameters involved, either alone or in combination. Microglia removal action, 

implicated in the first and second mechanisms, is regulated by cytokines from the peripheral immune cells 

and/or from microglia modulation release. Then, microglia modulation will regulate synaptic processes and 

the blood-brain barrier (BBB) permeability which is altered in inflammatory processes. [127,128]. These five 

mechanisms illustrated in Fig.6 can be briefly described as follow: 

A) Microglial cell-mediated removal. Phagocytosis of the Aβ plaque by activated microglia and/or by CNS 

invasion of circulating macrophages-monocytes through scavenger receptors. 

B) Microglial cell-mediated removal by specific binding to the amyloid plaque  

C) Combined direct CNS interaction of antibodies and binding of microglia to the amyloid plaque  

D) Direct interaction of CNS antibodies to neutralize soluble toxic Aβ, resulting in a progressive reduction in 

the amyloid plaque   

E) The peripheral sink hypothesis, in which the peripheral Aβ antibodies and other plasma components such 

as albumin produce an efflux of CNS Aβ to the periphery in order to maintain the equilibrium between the 

central and peripheral compartments. The CNS amyloid load (plaque and soluble forms) is progressively 

reduced.  

However, these five mechanisms cannot be considered mutually exclusive, as they depend on the type of 

immunotherapy used in each assay. It is generally accepted that the Aβ clearance response may differ 

according to the kind of immunotherapy used. For example, recently, RAGE specific modulation by a C-
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terminal antibody has been shown to increase Aβ clearance in an in vitro BBB model, whereas the N-

terminal antibody directly enhanced the basolateral-to-apical transcytosis of Aβ [129]. 

 

Dietary and complimentary therapy  

Numerous studies have been performed in housed and no-housed aged dogs involving diets supplemented 

with a broad spectrum of antioxidants, and in some cases environmental enrichment [130,131]. Positive 

results have been recorded for memory, learning capacity and immune status [132-138].  

A wide variety of complimentary therapies including nutriceuticals, herbal extracts and vitamins are 

currently marketed to improve or prevent canine cognitive deficits. For example, Senilife® (Innovet Italia 

S.l., Milano, Italy) is a combination of phosphatidylserine, Gingko biloba, pyridoxine, and Vitamin E; 

Novifit® tablets (Virbac, Forth Worth, USA) contains S-Adenosyl-L-Methionine-Tosylate Disulfate for the 

management of age-related mental impairment [139]. Geriactive® (Centaur Pharmacy, Guelph, USA) 

contains Gingko biloba, ginseng, bilberry and alpha-lipoic acid.  

 

 Environmental enrichment 

More stimulating environments may facilitate treatment and improvement in a diverse variety of brain 

diseases such as AD, whereas lack of stimulation may impair cognitive development [140,141]. In dogs, the 

age-associated decline can be attenuated by physical exercise, social enrichment, and cognitive training, 

especially when combined with a complementary diet [132,133,142,143]. As a result, this cognitive 

enrichment has multiple effects and also improves functions not only related to regional neuronal loss or 

limited cellular parameters [134,144]. 
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Conclusion 

This review advocates the use of canines as a natural model to investigate the cascade of events in human 

aging and early stages of AD, as well as to validate innovative therapies, especially anti-amyloid 

immunotherapies, because of the similarities between human and canine immune systems. Together with a 

well-defined, complex behavior, dogs also have greater brain size and CSF availability than other mammals 

tested to date as AD animal models. Housed and non-housed dogs require specific behavior testing (which is 

more expensive and time-consuming in the case of housed animals), but both models are useful for other 

studies, bearing in mind the closer AD similarity of dogs with CDS and the difficulty to do complete 

pharmacological studies with them. Despite their variety in breed, sex and life conditions, the similar results 

obtained with housed and no-housed dogs indicate that many aspects can be investigated without the need to 

house a specific strain for years in controlled conditions. Therefore, dogs appear to be a simpler and practical 

model for assessment of geriatric subjects and pharmacology studies, they could avoid the use of non-human 

primates, and the results show that the quality of life of senior dogs has the potential to be improved. 
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Figure legends 

 

Fig. 1 As a natural animal model of AD familiar dogs are a good alternative to housed dogs, besides their 

diversity of breed, sex and life conditions, 

   

.Fig.2 A) T1- coronal MR images of different dogs with their rating of cerebral atrophy (0-4). Cerebral sulci, 

ventricular size, width of the temporal horns, and hippocampal height were evaluated (0 or 1) for assessment 

of cerebral atrophy. Score 0 (each parameter 0); score 1 (ventricular size 1); score 2 (ventricular size 1 and 

cerebral sulci 1); score 3 (ventricular size 1, cerebral sulci 1 and height of hippocampus 1); score 4 

(ventricular size 1, cerebral sulci 1, height of hippocampus 1 and width of temporal horn 1). B) T1-axial MR 

images of different dogs with their rating of cerebral atrophy (0-4). Score 0 (each parameter 0); score 2 

(cerebral sulci 1 and width of temporal horn 1); score 4 (ventricular size 1, cerebral sulci 1, height of 

hippocampus 1 and width of temporal horn 1).  

 

Fig.3 Aβ peptide participates directly in mitochondrial dysfunction and reactive oxygen species formation 

present in neurodegeneration leading to DNA and protein oxidation and lipid peroxidation 

 

Fig.4 Representative micrographs of Aβ immunoreactivity in the prefrontal cortex of three dogs visualized 

with anti-Aβ8-17 antibody (A-C). A) In stage I- II Aβ deposition is localized in the deep layers of the cortex 

(V-VI) and showed a diffuse and cloud-like aspect. B) In stage III  Aβ deposition is localized in more 

superficial cortical layers (I-III) and consisted of more dense diffuse plaques, similar in morphological 

appearance to human senile plaques. C) In stage IV more compact plaques are progressively extended 

throughout all cortical layers.  

D) Represents phospho-tau Tau Thr181 immunofluorescence (green) and Aβ plaques (red) in one CDS dog 

(20 years old). E)  Represents phospho-tau Ser396 (green) and Aβ plaques (red) in another CDS (16 years 

old). In none of them positive neurite surrounding Aβ plaques were observed (A-C) =20µm. Bar (D-E)= 20 

µm. The sections were counterstained with TO-PRO-3 (blue) in D and E. 
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Fig.5 The proximity (µm) of astrocytes to the amyloid plaque (AP) is different when it expressed S100β. 

Immunoreactive GFAP astrocytes are in III and IV stage plaques.  S100β (S100β-IR, green line) astrocytes 

are closer in stage IV. (GFAP-IR blue square, negative S100β-IR)  

 

Fig.6 Proposed clearance mechanisms induced by an active Aβ immunization. Microglia cell mediates Aβ 

plaque phagocytosis by activated microglia and/or by central CNS invasion of circulating phagocytic cells 

(A,B), antibodies interact directly with the plaque, and for some authors also with microglia to participate in 

the disaggregation of the plaque (C), direct interaction of CNS antibodies to neutralize soluble Aβ(D), 

peripheral sink hypothesesis in which peripheral Aβ antibodies and other plasma components such as 

albumin produce an efflux of Aβ from CNS to periphery (E). 
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 Table 1: Characteristics of natural and induced models of Alzheimer’s disease 

 

 

 
Natural models of Alzheimer’s disease 
 

 
 

 
Cognitive aspects 

 
Neuropathology 

 
Limitations 

 
Aged primates 
[145] 
 

 
Learning, memory and cognition 
impairment 
 
 

 
Diffuse and neuritic Aβ plaques  
Soluble Aβ 
Phospho-tau tangles 
Dsytrophic neurites 
Neuronal loss 
Gliosis 

 
Elevated costs studies 
Long –term housing 
 

Non-housed CDS 
dog 
[68,91] 
 

 
Learning, memory and cognition 
impairment* 
Behavioral changes 
 

Diffuse Aβ plaques  
Soluble Aβ 
Hyperphosphorylated Tau 
Neuronal loss 
Gliosis 

Consent by the owner  
Lower costs studies 
Facilities not required 
 

 
Housed aged dogs 
[37] 

 
 
Learning, memory and cognition 
impairment 

 
Diffuse Aβ plaques  
Soluble Aβ 
Hyperphosphorylated Tau 
Neuronal loss 
Gliosis 

 
Time consuming training for 
tasks learning 
Elevated costs studies 
Long-term housing 
 

 
Induced models of Alzheimer’s disease 
 

 
Fruit fly 
Aβ 40 or 42 fly  
[146] 
Tau-pathology fly 
[147] 

 
 
Associative learning and memory 
impairment 

 
 
Amyloid deposits 
 
Primary tauopathy features 
Neuronal loss 

 
 
No parallelism between  fly 
brain and mmmalian brain 

Rabbit 
Hypercholesterolemia 
rabbit model 
[148] 

 
Cognitive impairment 

 
Aβ plaques 
Gliosis  
Neuronal loss 

 
Hypercholesteronemia 
model 
Limitation in learning, 
memory and cognition 
capacities 

Rat 
Intraventricular  
Abeta infusion 
[149] 

 
Mild impairment 
 
 
 

 
Aβ plaques 
Gliosis 

 
Aggregates in the pump 
No evidences of  learning, 
memory, cognitive 
impairment 

Transgenic rats 
Cited in review [145] 
 
 

 
 
 

 
Aβ plaques 
Gliosis 
 

 
Low efficacy in  the genome 
rats manipulations  
No evidence of  learning, 
memory, cognitive 
impairment 

Mouse 
SAMP8 
[150] 

 
Mild cognitive impairment model 
 

 
Oxidative damage 

 
Mild cognitive impairment 
model 
Time consuming training for 
tasks learning 

Trangenic mice 
Tg 2576 [8] 
PSAPP .[151] 
3xtg  [152] 

 
Spatial cognitive and learning 
impairment 

 
Neuritic and diffuse plaques 
Gliosis 
Neuritic dystrophy 
Hyperphosphorylated  Tau 

 
Time consuming training for 
tasks learning 
Elevated costs studies 



 44 

Table 2: Cognitive test for the valoration of cognitive deficit in companion dogs 

 

Total score in 21 items test; <23=normal; 23-33=Light cognitive deficits; >33=Severe cognitive deficits. 
Total score in the 9 intems test (indicated in bold): <12= normal; 12-26= l; >26=severe cognitive deficits               
Adapted from Pugliese et al. 2005 
 

 
Cognitive test 
 

 
Items 

 
Score 

 
Items 

 
Score 

 
Items 

 
Score 

 
   (1) Walking 

Normal 
Trudging 

    Abnormal, one direction,   
    circling 

 
 
1 
3 
5 

 
 (7) Life rhythm 
       Normal 
       Rest and sleep over 
       during the day  
       Switches between  
       insomnia &  hypersomnia 
       Restless at bedtime 
 

 
 
1 
2 
3 
 
5 
 

 
  (13) Auto-stimulatory 
   behavior 
         Normal 
         Alteration seeking  
         licking and nibbling 
         Stereotyped nibbling, 
         tail chasing 
         Repeated movements 
         of licking, straching and   
         nibbling 
 

 
 
 
1 
2 
 
3 
 
5 
 

 
(2) Eating 

 Normal 
 Regurgitation and re-ingestion 
 Anorexia 
 Hyperphagia/tachyphagia 

 
 
1 
2 
3 
5 

 
(8) Play behaviour 
      Normal 
      Increase 
      Decrease 
 

 
 
1 
3 
5 

 
 (14) Learned social 

behaviour 
        Normal (unchanged) 
        Bites without warning 
        Does no submit itself  
        when  rebuked 
       Steal and retains the   
        stolen objects 

 
 
 
1 
2 
3 
5 

 
 
(3) Posture/ emotional of expression 

   Normal 
   Decrease of body language 
  Abnormal, loss of body language 
 

 
 
1 
3 
5 

 
(9) Exploratory behaviour 
      Normal 
      Decrease (disorientation   
      expectance   posture, etc) 
      Increase (obsessive   
      exploration of  the same 
      place, including oral  
      exploration) 

 
 
1 
3 
 
5 
 

 
 (15) Adaptative capabilities 
        Normal 
        Retreats from novel  
        situation 
        Unable to accept  
        changes in  routine 
        Looks indifferent to 
        changes 

 
 
1 
2 
 
3 
 
5 
 

 
(4) Barking 

 Normal 
 Monotonous and loud 
 Barking throughout night or at 
 unusual  object 
    

 

 
 
1 
3 
5 
 

 
(10) Self-control 
        Normal 
        Difficulties to calm down  
        after a stressful event 
        Alternate periods of 
        hyperactivity  and  
        indifference 
       Tend to generalize aversive  
        experience 

 
 
1 
2 
 
3 
 
5 
 

 
  (16) Interaction with other 
   animals or with owners 
         Normal 
         Decreased (loss of    
         relationship with      
         humans or  other 
        animals) 
         Complete loss 
         relationship with owners 

 
 
 
1 
3 
 
 
 
5 

 
(5) Drinking 
     Normal 
     Champing at water without  
     swallowing 
     Polydipsia 

 
 
1 
3 
 
4 

 
(11) Aggressive behavior 

      Absence (never showed) 
      Aggressiveness for fear 
      Aggressiveness for  
      irritability 

 
 
1 
3 
5 

 
 
 
 
 
 

 
 
 
 

 
(6) Elimination behavior 
      Normal 
      Defecate and urinate at home: 
      occasionally in a small scattered  
      amount 
      Loss control of sphinters: 
      defecate and urinate outside of 
      sleeping area 
      Loss control of sphinters: 
      defecate and urinate inside of 
      sleeping area 
 

 
 
1 
3 
 
 
4 
 
5 

 
  
 
 (13) Learned specific 
   behavior 

      Normal (unchanged) 
      Random responses 
      Decreased response 

 
 
1 
3 
5 
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Table 3: Relation between Aβ plaques in prefrontal cortex and behavioral tests of companion and housed 
dogs 
 

 
Relation between A β plaques in prefrontal cortex and behavioral tests  

 
Companion dogs (Different breeds and sex) 

 
 

 
Age (years) 
 

 
Plaque  
density 
(Plaques/mm2) 

 
Plaque stage 
maturation 

 
Cognitive score test  
(using  9 item test) 

 
1-6(n=4) 

 

 
0) 

  
9-11(YC) 

 
8-15 (n=5) 

 

 
12.8±7.75 

 

 
I-II 

 
13-21(LCD) 

 
14-20 (n=7) 

 

 
26.85±12.10 

 
II-IV 

 
27-40(SCD) 

 
Housed dogs (Beagle breed and different sex) 

 
 

 
Age (years) 

 
Plaque occupancy 
(% area occupied by Aβ 
immunostaining) 

  
Cognitive tasks  
 

 
 

4.3-15.3 (n=7) 

 

 

0-0.9 
 

 
8.4-15.3 (n=13) 

 
0-21.3  

 
- Object discrimination learning   
 
- Reversal learning 
 

Companion dogs classified into 3 groups depending of their age and present a correlation between age, the 
abundance of plaques, their stage of maturation and the cognitive test score 
YC= young control group; LCD= Light cognitive deficit group; SCD= Severe cognitive group.   
Housed dogs classified into young and aged animals present a correlation with amyloid load, age and number of 
errors in two cognitive tasks   
Adapted from Pugliese et al. 2005 and Head et al. 1997 
 




