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1 Introduction

With the advent of the Large Hadron Collider (LHC) the field of heavy-ion collisions (HIC)
enters a new era. The center-of-mass energy per nucleon in LHC collisions,

√
sNN ' 5.5 TeV,

is almost 30 times larger than that of the most energetic collisions at the Relativistic Heavy
Ion Collider (RHIC). The highest temperature of the quark-gluon plasma (QGP) created
in RHIC experiments is approximately TRHIC ' 2Tc, with Tc ' 175 MeV the deconfinement
temperature of Quantum Chromodynamics (QCD). Despite the large increase in the colli-
sion energy, this is expected to lead only to a moderate increase in the plasma temperature
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at the LHC [2], i.e. TLHC ' (3 − 4)Tc.1 In contrast, high-energy partons originating from
hard initial collisions will be copiously produced at the LHC. This will allow the study
of quarks and gluons in the 100 GeV range, an order of magnitude larger than that at
the RHIC.

Experimentally, extremely valuable information is obtained by analyzing the energy
loss of these energetic partons as they travel through the QGP. In order to use this infor-
mation to learn about the plasma, a theoretical, quantitative understanding of the different
mechanisms of parton energy loss is needed. Several such mechanisms have been previously
studied, both in QCD itself [3–5] and in the context of the gauge/gravity duality [6–10].

A remarkable conclusion from the RHIC experiments [11, 12] is that the QGP does
not behave as a weakly coupled gas of quarks and gluons, but rather as a strongly coupled
fluid [13, 14]. Because of the moderate increase in the temperature and the logarithmic
running of the QCD coupling constant, a qualitatively rather similar behaviour may be
expected for the QGP at the LHC. This makes it particularly important to understand
mechanisms of parton energy loss that may operate at strong coupling. We recently uncov-
ered one such mechanism [1] whereby a sufficiently fast heavy quark traversing a strongly
coupled plasma loses energy by Cherenkov-radiating in-medium mesons.

The analysis in [1] showed that this mechanism takes place in all strongly coupled,
large-Nc gauge theory plasmas with a gravity dual. The argument is so simple that we
reproduce it in section 2 for completeness. This section emphasizes the universality of the
mechanism, since no reference to a specific model is necessary.

Ref. [1] also performed a quantitative analysis in the simple example of a quark moving
through the N = 4 super Yang-Mills (SYM) plasma. The quark Cherenkov-radiates both
vector and scalar mesons. The rate of energy loss into the transverse modes of the vector
mesons was calculated in [1], and again we reproduce it here for completeness. The vector
mesons in question are massive, and thus they also possess a longitudinal mode. Here we
extend the calculation of [1] and obtain the rate of energy loss into longitudinal vector
mesons and scalar mesons. The result for the former is qualitatively similar to that for the
transverse modes, whereas the result for scalar mesons displays some qualitative differences.

Ref. [1] presented a rather preliminary exploration of the potential implications of these
results for HIC experiments. Here we elaborate on that discussion and extend it to include
possible implications of the new results presented in this paper.

2 A universal mechanism of quark energy loss

The reason that the mechanism we are going to describe is universal is that it only relies on
two universal features of the gauge/gravity duality:2 (i) the fact that the deconfined phase
of the gauge theory is described by a black hole geometry on the gravity side [15], and (ii)
the fact that a finite number Nf of quark flavours is described by Nf D-brane probes [16, 17]
— see figure 1.

1A rough estimate is obtained by assuming that the temperature scales as the fourth root of the

energy density.
2In the limit Nc, g

2
YMNc →∞.
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Figure 1. D-branes and an open string in a black hole geometry.

In addition to the gauge theory directions, the gravity description always includes
a radial direction (denoted by ρ in figure 1) which is dual to the gauge theory energy
scale. The radial position of the horizon is proportional to the plasma temperature T .
The D-branes extend in the radial direction down to a minimum value proportional to the
quark mass Mq.

As it is intuitively clear, for Mq sufficiently larger than T the D-branes sit completely
outside the horizon [18–20, 22, 23].3 In this phase, scalar and vector gauge theory mesons
are described by small, normalizable fluctuations of scalar and vector fields propagating on
the branes, whose low-energy dynamics is governed by a Maxwell-like theory. The spectrum
of these fluctuations is discrete and gapped, which means that stable heavy meson states
exist in the plasma. In other words, sufficiently heavy mesons survive deconfinement, in
agreement with lattice and potential model predictions for QCD [25].

Consider now the in-medium dispersion relation ω(q) for these heavy mesons, where
ω and q are the energy and the spatial three-momentum of the meson, respectively. As
an illustrative example, the dispersion relations for vector and scalar mesons in the N = 4
SYM plasma4 are depicted in figure 2.

As q →∞, the DR becomes linear: ω(q) ∼ vlimq, with vlim < 1. This subluminal limit-
ing velocity, which is the same for all mesons, can be easily understood in the gravitational
description [19]. Since highly energetic mesons are strongly attracted by the gravitational
pull of the black hole, their wave-function is very concentrated at the bottom of the branes.
Consequently, their velocity is limited by the local speed of light at that point, vlim (see
figure 1). Because of the black hole redshift, vlim is lower than the speed of light at infinity
(i.e. at the boundary), which is normalised to unity. In the gauge theory this translates into
the statement that vlim is lower than the speed of light in the absence of a medium, namely
in the vacuum. The reason is that the absence of a medium in the gauge theory corresponds
to the absence of a black hole on the gravity side, in which case vlim = 1 everywhere.

Imagine now a heavy quark in the plasma. In the gravitational picture, this is described
by a string that starts on the D-branes and falls through the horizon — see figure 1. In

3In contrast, as the ratio Mq/T decreases, a first-order phase transition eventually occurs and a part of

the branes falls through the horizon. See section 3.
4With quarks introduced as D7-branes; see below for details.
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Figure 2. Left: dispersion relation for the transverse (black, continuous curve) and longitudinal
(red, dashed curve) n = 0 modes of a heavy vector meson with vlim = 0.35 in the N = 4 SYM
plasma. Right: analogous curves for a scalar (black, continuous curve) and pseudoscalar (red,
dashed curve) meson. In both plots the blue, continuous straight lines correspond to ω = vq

with vlim < v < 1. The black, dotted, vertical lines mark the crossing points between the meson
dispersion relations and the blue lines.

quarkquark
meson

Figure 3. Effective quark-meson coupling.

order to model a highly energetic quark we consider a string whose endpoint moves with an
arbitrary velocity v at an arbitrary radial position ρ0. Roughly speaking, the interpretation
of ρ0 in the gauge theory is that of the inverse size of the gluon cloud that dresses the quark.
This can be seen, for example, by holographically computing the profile of 〈TrF 2(x)〉 around
a static quark source dual to a string whose endpoint sits at ρ = ρ0 [26].

Two simple observations now lead to the effect that we are interested in. The first one
is that the string endpoint is charged under the scalar and vector fields on the branes. In
the gauge theory, this corresponds to an effective quark-meson coupling (see figure 3) of
order e ∼ 1/

√
Nc. We will derive these facts rigorously below, but physically they can be

understood very simply. The fields on the branes describe fluctuations around the branes
equilibrium configuration. The string endpoint pulls on the branes and therefore excites
(i.e. it is charged under) these fields. The branes tension is of order 1/gs ∼ Nc, where gs
is the string coupling constant, whereas the string tension is Nc-independent. This means
that the deformation of the branes caused by the string is of order e2 ∼ 1/Nc. We thus
conclude that the dynamics of the ‘branes+string endpoint’ system is (a generalization of)
that of classical electrodynamics in a medium in the presence of a fast-moving charge.

The second observation is that the velocity of the quark may exceed the limiting
velocity of the mesons, since the redshift at the position of the string endpoint is smaller
than at the bottom of the branes. As in ordinary electrodynamics, if this happens then the
string endpoint loses energy by Cherenkov-radiating into the fields on the branes.5 In the

5This can be viewed as a particular limit of string breaking — see section 7.
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gauge theory, this translates into the quark losing energy by Cherenkov-radiating scalar
and vector mesons. The rate of energy loss is set by the square of the coupling, and is
therefore of order 1/Nc.

3 Quarks in the N = 4 SYM plasma

The four-dimensional N = 4 SYM theory with gauge group SU(Nc) at non-zero temper-
ature is dual to type IIB string theory on the gravitational background sourced by Nc

black D3-branes. Nf quark flavours may be introduced in the gauge theory by adding D7-
branes on the gravity side. The relative orientation of the ‘colour’ and ‘flavour’ branes is
summarised by the array

0 1 2 3 4 5 6 7 8 9
Nc D3: × × × ×
Nf D7: × × × × × × × ×

(3.1)

In the limit Nf � Nc the backreaction of the D7-branes on the spacetime metric may
be ignored and the D7-branes may be treated as probes in the gravitational background
sourced by the D3-branes. Following [1, 19] we write the spacetime metric as ds2 =
L2ds2(G), where

ds2(G) =
ρ2

2

[
−f

2

f̃
dt2 + f̃dx2

i

]
+

1
ρ2

[
dr2 + r2dΩ2

3 + dR2 +R2dϑ2
]
, (3.2)

and

L4 = 4πgsNc`
4
s , ρ2 = R2 + r2 , f = 1− 1/ρ4 , f̃ = 1 + 1/ρ4 . (3.3)

The four gauge theory directions are xµ = {t, ~x} = {t, xi}, and they are identified with the
0123-directions shared by both sets of branes in (3.1). The metric inside the second set of
brackets in (3.2) is just the flat metric on R6 = R4×R2, which corresponds to the 456789-
directions in (3.1), written in terms of two sets of spherical coordinates {r,Ω3} and {R,ϑ}.
The coordinate ρ is the overall radial coordinate in R6. This splitting is convenient since
the D7-branes extend along the {r,Ω3}-directions. All coordinates above are dimensionless,
and they are related to their dimensionful counterparts (denoted with tildes) through

xµ = πT x̃µ , {r,R, ρ} =
1

πL2T
{r̃, R̃, ρ̃} . (3.4)

In particular, this means that we are measuring energy and momentum in the gauge theory
in units of πT . In addition, since the horizon of the metric (3.2) in dimensionless coordinates
lies at ρhor = 1, we see that the size of the horizon in physical units is proportional to the
gauge theory temperature, i.e. ρ̃hor ∝ T .

D7-brane embeddings. We now specialize to Nf = 1; we will discuss the case Nf > 1
in section 7. The action governing the dynamics of a D7-brane in the background sourced
by D3-branes takes the form

SD7 = −TD7

∫
d8x
√
−det (g + 2π`2sF ) + TD7

(
2π`2s

)2
2

∫
C4 ∧ F ∧ F . (3.5)
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Figure 4. Minkowski-type D7-brane embedding showing the S3 wrapped by the branes (left) and
the gauge theory directions (right). The angular coordinate ϑ is suppressed in both cases. The
asymptotic position of the brane is proportional to the quark mass Mq, whereas the size of the
black hole horizon (shown in dark grey) is proportional to the temperature T .

In this equation TD7 = 1/gs(2π)7`8s is the D7-brane tension, `s is the string length, xa

(a = 0, . . . , 7) are intrinsic coordinates on the brane’s worldvolume, g is the induced metric,
F = dA is the field-strength of the worldvolume U(1) gauge field Aa, and C4 stands for
the pull-back of the spacetime Ramond-Ramond four-form potential sourced by the D3-
branes. As we will see below, the term in the action involving C4 will not contribute to
any of our calculations.

In order to describe the D7-brane embedding we use xa = {xµ, r,Ω3} as worldvolume
coordinates. In other words, the brane extends along the gauge theory directions and
the radial direction r, and it wraps an S3 in the directions transverse to the D3-branes.
Translational symmetry along xµ and rotational symmetry along Ω3 then imply that the
embedding must be specified as R = R(r) and ϑ = ϑ(r). Since ϑ is also a symmetry
direction, a consistent solution is obtained by choosing ϑ = const. A typical D7-brane
embedding with different sets of coordinates suppressed is shown in figure 4.

Under these circumstances the induced metric on the D7-brane takes the form ds2 =
L2ds2(g) with

ds2(g) =
ρ2

2

[
−f

2

f̃
dt2 + f̃d~x2

]
+

(1 + Ṙ2)
ρ2

dr2 +
r2

ρ2
dΩ2

3 , (3.6)

where Ṙ = dR/dr. The function R(r) is determined by inserting (3.6) in (3.5), setting
F = 0, and varying with respect to R(r). The resulting Euler-Lagrange equation of motion
is

∂r

[
r3

(
1− 1

(r2 +R2)4

)
Ṙ√

1 + Ṙ2

]
= 8

r3R

(r2 +R2)5

√
1 + Ṙ2 . (3.7)

In the limit r →∞, this equation leads to the asymptotic behaviour

R(r) ' m+
c

r2
+ · · · . (3.8)
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Figure 5. First-order phase transition between Minkowski and black-hole type embeddings.

Holography relates the dimensionless constants m and c to the quark mass and condensate
as (see [19] for details)

Mq =
1
2

√
λT m , 〈ψ̄ψ〉 = −1

8

√
λNf Nc T

3 c , (3.9)

where λ = g2
YMNc = 2πgsNc is the ’t Hooft coupling. An important point is that the

constant m can also be written in terms of the mass Mmes of the lightest meson in the
theory at zero temperature as [19]:

m =
2Mq√
λT

=
Mmes

2πT
. (3.10)

eq. (3.7) cannot be solved analytically, but numerical solutions for any value of the asymp-
totic brane position, m = R(r → ∞), can be easily found. The constants m and c

correspond to the two solutions at infinity of the second-order equation of motion (3.7).
These solutions are mathematically independent, but not physically: once m is specified,
the requirement of regularity in the interior determines c. The physical solution is thus
uniquely characterized by the value of m.6 In the gauge theory this translates into the
statement that once the quark mass (and the temperature) are specified, the dynamics
determines the quark condensate.

Solutions of eq. (3.7) fall into two classes. For m > 1.3, i.e. for quark masses suffi-
ciently larger than the temperature, the brane bends towards the horizon because of its
gravitational pull, but the brane tension is able to compensate for this and the brane sits
entirely outside the horizon, as in figure 4 and on the left-hand side of figure 5. In this case
the brane embedding is of the so-called ‘Minkowski’ type [18, 19], and we will denote by
R0 = R(r = 0) the radial position of the bottom of the branes. For Minkowski embeddings
there is a one-to-one correspondence between m and R0, and the lowest value m = 1.3
corresponds to R0 = 1.2.

In contrast, for m < 1.3, the brane falls through the black hole horizon in a so-called
‘black-hole embedding’, since in this case the induced metric on the branes possesses a

6For thermodynamically stable embeddings. In the case of thermodynamically metastable or unstable

embeddings, c may be multivalued [18, 19].
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horizon — see figure 5. At m = 1.3 a first-order phase transition between the two phases
occurs, as indicated in figure 5. As we will see below, in the Minkowski phase stable mesons
exist, and their spectrum is discrete and gapped. In contrast, no stable mesons (in fact, no
quasi-particles) exist in the black hole phase. For this reason, the phase transition above is
interpreted in the gauge theory as a dissociation or ‘melting’ phase transition for mesons
in the N = 4 plasma [18, 19, 27].

The value m = 1.3 thus corresponds to the (stable) Minkowski-type brane that comes
closest to the horizon, and therefore to the one for which the in-medium meson dispersion
relation is most dramatically modified with respect to that in the vacuum. For this reason,
we have chosen the embedding with m = 1.3 to illustrate some results in the sections below.
Specifically, we see from eq. (3.6) that the local speed of light at the bottom of the brane
is

vlim =
√
−g00

g11

∣∣∣∣
r=0

=
f(R0)
f̃(R0)

, (3.11)

where we recall that R0 = R(r = 0). Since m = 1.3 corresponds to R0 = 1.2, the formula
above gives vlim ' 0.35, i.e. in this case the limiting velocity of mesons in the plasma is
about 1/3 of that in the vacuum.

4 Meson dispersion relations in the N = 4 SYM plasma

Despite the fact that the N = 4 SYM theory is in a deconfined phase at any T > 0, stable
quark-antiquark states exist for sufficiently large Mq/T , and the spectrum of these mesons
is discrete and gapped. In particular, scalar and vector mesons in the gauge theory are
dual to regular, normalizable modes of the scalar and vector fields on the D7-brane. Here
we will review the dispersion relations for these modes, which we will need in order to
compute the quark energy loss below. The dispersion relation for (some) vector mesons
in the D3/D7 system appeared in [1], but no details were presented there. The dispersion
relation for scalar mesons was first computed in [19] and then revisited in [28]. Here we
will review the result in the geometric parametrization of [28], which is particularly suited
for calculating the energy radiated into these modes by the quark.

4.1 Vector mesons

These are dual to regular, normalizable fluctuations of the worldvolume gauge field A. The
N = 4 SYM theory possesses an internal, global SO(6) symmetry that is broken down to
SO(4) by the addition of quarks. In the string description, SO(6) is the isometry group
of the spacetime metric (3.2), whereas SO(4) is the isometry group of the S3 wrapped
by the D7-branes. Under the preserved SO(4) symmetry, meson modes decompose into
singlet and non-singlet modes. Since we are interested in using the N = 4 SYM plasma
as a toy model for the QCD plasma, and since QCD possesses no analog of the SO(4)
symmetry, we will focus on singlet modes. The equation of motion for these modes receives
no contribution from the second term in the action (3.5) [29], and therefore we will ignore
this term in the following.

– 8 –
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In conclusion, since we are interested in singlet modes, we only need to consider the
first term in the action (3.5). In addition, since we are only interested in their dispersion
relation (as opposed to higher-order couplings), it suffices to expand this term to quadratic
order in F in the fixed worldvolume metric (3.6).7 The result is

Svector = −TD7L
4
(
2πl2s

)2 ∫
d8x
√−g 1

4
F abFab , (4.1)

leading to the equation of motion

√−g∇aF ab = ∂a(
√−g F ab) = 0 . (4.2)

The metric g that enters these expressions is that in eq. (3.6), which contains no factors of
L; these have been explicitly included in the prefactor of (4.1).

Singlet modes take the form

Aµ = Aµ(xµ, r) , Ar = Ar(xµ, r) , AΩ3 = 0 , (4.3)

i.e. they have no components along the S3 and depend only on r and the gauge theory
directions. The equations of motion are further simplified by the gauge choice Ar = 0,
which we will employ henceforth. In addition, we will work with the Fourier components
of the gauge field defined through

Aµ(t, x, r) =
∫
dωd3q

(2π)4 Aµ(ω, q, r) e−iωt+iq·x , (4.4)

where ω and q are the energy and the three-momentum of the meson, respectively. Finally,
we choose the momentum to point along x1 without loss of generality.

Under the conditions above, the equations of motion for the transverse modes A2, A3

decouple from each other and from those for the longitudinal mode A0, A1, so we will study
them in turn.

Transverse modes. Let us collectively denote A = {A2, A3}. Both modes obey identical
equations of motion which take the form

∂r
(√
g grrg33 ∂rA

)−√g g33
(
g00ω2 + g11q2

)A = 0 . (4.5)

Upon using (3.6) this becomes

∂r

(
fr3

2
√

1 + Ṙ2
∂rA

)
+
√

1 + Ṙ2
r3

ρ4

(
ω2f̃

f
− q2f

f̃

)
A = 0 . (4.6)

Since we are interested in regular, normalizable solutions, we can expand A as

A(ω, q, r) =
∑
n

An(ω, q) ξn(q, r) (4.7)

7At higher orders gauge field fluctuations would mix with scalar fluctuations. Similarly, at higher orders

singlet modes would generically mix with non-singlet modes.
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in terms of a basis of regular, normalizable eigenfunctions {ξn(q, r)} in the radial direction.
These are solutions of eq. (4.6) with q-dependent eigenvalues ω = ωn(q), i.e. they obey the
eigenstate equation

− ∂r
(

fr3

2
√

1 + Ṙ2
∂rξn(q, r)

)
+
√

1 + Ṙ2
fr3

f̃ρ4
q2 ξn(q, r) =

√
1 + Ṙ2

f̃ r3

fρ4
ωn(q)2 ξn(q, r)

(4.8)
and satisfy the orthonormality relations∫ ∞

0
dr
f̃r3

fρ4

√
1 + Ṙ2 ξm(q, r)ξn(q, r) = δmn . (4.9)

As we will see in more detail below, the discreteness of the spectrum is guaranteed by the
boundary conditions on the ξn: regularity at r = 0 and normalizability at r =∞. Inserting
the expansion (4.7) in (4.6), and using the eigenstate equation (4.8) and the orthonormality
relations (4.9), we find that each of the An(ω, q) fields obeys an independent equation of
the form [

ω2 − ω2
n(q)

]An(ω, q) = 0 . (4.10)

Thus, through the expansion (4.7) we have ‘Kaluza-Klein-reduced’ the five-dimensional field
A(ω, q, r) to a discrete, infinite tower of independent four-dimensional fields {An(ω, q)}.
Each of these fields is dual in the gauge theory to a transverse vector meson with dispersion
relation ω = ωn(q), which is the physical meaning of the wave equation (4.10). In the gauge
theory, each of the mesons in this infinite set is distinguished by its ‘internal’ quantum
number n. In the string description, each value of n corresponds to a different, q-dependent
radial ‘wave-function’ ξn(q, r). As we will see below, this structure of mesons in the fifth
dimension will play an important role in determining the strength with which each of them
couples to a quark.

Given that the brane embedding R(r) entering eq. (4.8) is only known numerically, the
radial profiles must also be found numerically. The general solution of eq. (4.8) behaves
as ξn ∼ a + b/r2 as r → 0, and as ξn ∼ ã + b̃/r2 as r → ∞, for some constants a, b, ã, b̃.
Regularity at r = 0 requires b = 0, whereas normalizability imposes the condition ã = 0.
For fixed q, these two requirements are mutually compatible only for a discrete set of values
of the energy, ωn(q). This is the origin of the dispersion relation.

Figure 6 shows several numerically-obtained radial profiles of the first lowest-lying
modes ξn(q, r) for several values of q for a D7-brane embedding with m = 1.3. The
corresponding values of the energy, ωn(q), are given by the dispersion relation curves in
figures 2 and 7. As is familiar with solutions of Schrödinger-like equations, the nth solution
possesses n zeros. More importantly, we see that the radial wave-functions for all these
modes become concentrated around the bottom of the brane, r ' 0, as q →∞. Relatedly,
we observe that the limiting velocity of all these modes agrees with the local speed of light
at the bottom of the brane, eq. (3.11), as expected from the general argument in section 2.

Longitudinal modes. Eq. (4.2) with b = 0, 1 and r yields two second-order dynamical
equations and a first-order constraint equation, respectively, in which the longitudinal
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Figure 6. Normalized transverse vector meson radial profiles ξn(q, r) for a D7-brane embedding
with m = 1.3. The blue, violet, brown and green curves (i.e. bottom to top on the left, top to
bottom on the right) correspond to q = 1, 2, 4, 11, respectively. The rescalings on the right-hand
side correspond to those in appendix C. Note that the area under the curves is not unity because
of the non-trivial measure in eq. (4.9).

components A0 and A1 are coupled to one another. Only two out of the three equations
are independent, which we take to be

∂r
(√−ggrrg00∂rA0

)
+ iq
√−gg11g00E = 0 , (4.11)

iωg00∂rA0 − iqg11∂rA1 = 0 , (4.12)

where we have introduced the gauge-invariant electric field

E = F10 = iqA0 + iωA1 . (4.13)
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Figure 7. Dispersion relation for the first transverse modes ξn of a heavy vector meson with
vlim = 0.35 in the N = 4 SYM plasma. The curves correspond to n = 0, 1, 2 from bottom to top.
The blue, continuous straight line corresponds to ω = vq with vlim < v < 1.

From these two equations, it is easy to see that E satisfies

− iq ∂r
(√−g grrg00g11

q2g11 + w2g00
∂rE

)
+ iq
√−g g11g00E = 0 . (4.14)

In order to turn this into an eigenstate equation we introduce a new field Φ defined as

Φ =
√−ggrrg00g11

q2g11 + w2g00
∂rE . (4.15)

eq. (4.14) then implies the inverse relation

E =
1√−g g11g00

∂rΦ (4.16)

which, when substituted back into (4.15), yields the equation of motion for Φ:

− ∂r
(

1√−g g11g00
∂rΦ

)
+
q2g11 + w2g00

√−g grrg00g11
Φ = 0 . (4.17)

Inserting the explicit form of the metric functions, we arrive at

∂r

(
fρ4

f̃ r3
√

1 + Ṙ2
∂rΦ

)
+ 2

√
1 + Ṙ2

fr3

(
w2 − f2

f̃2
q2

)
Φ = 0 . (4.18)

From this point onward, we proceed as in the case of transverse modes. We expand Φ as

Φ(ω, q, r) =
∑
n

Φn(ω, q)φn(q, r) (4.19)

in terms of a basis of regular, normalizable eigenfunctions {φn(q, r)} in the radial direction.
These are solutions of eq. (4.18) with q-dependent eigenvalues ω = ωn(q), and are subject
to the orthonormality relations∫ ∞

0
dr 2

√
1 + Ṙ2

fr3
φn(q, r)φm(q, r) = δmn . (4.20)
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Figure 8. Electric field E0(q, r) of the normalized longitudinal vector meson radial profiles φ0(q, r)
for a D7-brane embedding with m = 1.3. The blue, violet, brown and green curves (i.e. bottom to
top on the left, top to bottom on the right) correspond to q = 1, 2, 4, 11, respectively. The rescalings
on the right-hand side correspond to those in appendix C. Note that the area under the curves is
not unity because of the non-trivial measure in eq. (4.20).

As in the case of transverse modes, the longitudinal modes Φn(ω, q) obey the wave equation[
ω2 − ω2

n(q)
]

Φn(ω, q) = 0 , (4.21)

as appropriate for a four-dimensional field with dispersion relation ω = ωn(q). Again,
through the expansion (4.19) we have Kaluza-Klein-reduced the five-dimensional field
Φ(ω, q, r) to a discrete, infinite tower of independent four-dimensional fields {ϕn(ω, q)},
each of which is dual to a longitudinal vector meson in the gauge theory.

The general solution of eq. (4.18) behaves as φn ∼ a + br4 as r → 0, and as φn ∼
ã+ b̃ log r as r →∞, for some constants a, b, ã, b̃. Normalizability with respect to (4.20) as
r → 0 requires that a = 0, and regularity as r →∞ requires that b̃ = 0. As in the case of
the transverse modes, for fixed q these two requirements are mutually compatible only for
a discrete set of energies ωn(q).

Figure 8 shows the electric field, eq. (4.16), of several numerically-obtained radial
profiles of the lowest-lying mode φn=0(q, r) for several values of q. The corresponding
values of the energy, ωn=0(q), are given by the dispersion relation curve in figure 2. These
results correspond again to a D7-brane embedding with asymptotic position m = 1.3. We
observe the same limiting velocity vlim = 0.35 given by the local speed of light at the bottom
of the branes, eq. (3.11).

4.2 Scalar mesons

The scalar fields on the brane get excited by the string endpoint because the string tension
pulls on the brane. A crucial feature is the fact that the boundary conditions at the string
endpoint imply that the string must end orthogonally on the brane. (The unfamiliar reader
can find a concise derivation in appendix A.) For this reason it is convenient to work with
spacetime coordinates that locally parametrize the directions orthogonal to the brane. In
the case of interest to us, the ϑ coordinate in (3.2) satisfies this requirement, since the
vector field ∂/∂ϑ is orthogonal to the fiducial D7-brane embedding at each point on the
brane. However, the R coordinate does not meet this requirement, since ∂/∂R is in general
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not orthogonal to the brane due to the brane bending in the r−R directions. We therefore
follow [28] and work with two geometric coordinates XA defined as follows. At each point
on the brane, the two-dimensional space orthogonal to the brane is spanned by the unit
vectors

V1 ∝ ∂

∂R
− Ṙ(r)

∂

∂r
, V2 ∝ ∂

∂ϑ
, (4.22)

so a general vector orthogonal to the brane takes the form U = XAVA. For each vector U
we shoot off a geodesic with unit affine parameter that at the brane has U as its tangent
vector. The endpoint of this geodesic defines a point in a neighborhood of the brane. In this
way we obtain a one-to-one correspondence (the so-called exponential map [30]) between
the values of XA and the points near the brane. In other words, XA are the coordinates
orthogonal to the brane that we were seeking, since on the brane we have ∂/∂XA = VA
by construction. In particular, this implies that in these coordinates GAB = δAB when
evaluated precisely on the brane, where G is the spacetime metric (3.2). Note that in this
section the ten dimensionless coordinates of spacetime are thus {xa, XA}, with a = 0, . . . , 7
and A = 1, 2.

We chose the fiducial embedding of the brane to be given by XA = 0, so that the XA

fields parametrize fluctuations around it. As shown in [28], to quadratic order in these
fields the D7-brane action takes the simple form

Sscalar = −TD7L
8

∫
d8x
√−g

[
1
2
gab∂aX

A∂bX
BGAB +

1
2
m2
AB(x)XAXB

]
, (4.23)

where g is the induced metric (3.6) on the fiducial embedding of the brane, i.e. it is
XA-independent. As usual, this metric contains no factors of L, since this have been
factored out explicitly in front of the action. The position-dependent mass matrix m2

AB(x)
is diagonal and given in terms of geometric quantities as

m2
11 = R11 +R2112 + 2R22 + (8)R−R ,

m2
22 = −R22 +R2112 , (4.24)

where

R2112 = VM
2 V N

1 V P
1 V

Q
2 RMNPQ , (4.25)

R11 = VM
1 V N

1 RMN , (4.26)

R22 = VM
2 V N

2 RMN . (4.27)

RMNPQ and RMN are, respectively, the Riemann and the Ricci tensors of the ten-
dimensional spacetime metric G, R is the corresponding Ricci scalar, and (8)R is the Ricci
scalar of the eight-dimensional induced metric on the brane g. Again none of these quan-
tities contains any factors of L.

Using the fact that GAB = δAB the action (4.23) leads to the equation of motion

√−g∇2XA −√−gm2XA = ∂a
(√−g ∂aXA

)−√−gm2XA = 0 , (4.28)

– 14 –



J
H
E
P
1
1
(
2
0
1
0
)
0
9
1

where m = m11 or m22 as appropriate. Following the vector meson case, we focus on the
zero-mode of XA on the S3, and work with its Fourier components XA(ω, q, r), for which
the equation of motion is

∂r
(√−g grr∂rXA

)−√−g (g00ω2 + g11q2 +m2
)
XA = 0 , (4.29)

which upon substitution of the metric functions becomes

∂r

(
ff̃r3ρ2√

1 + Ṙ2
∂rX

A

)
+ ff̃r3

√
1 + Ṙ2

(
2f̃
ρ2f2

ω2 − 2
ρ2f̃

q2 −m2

)
XA = 0 . (4.30)

As usual, we expand XA as

XA(ω, q, r) =
∑
n

XA
n (ω, k)ϕAn (k, r) (4.31)

in terms of a basis of normalizable eigenfunctions {ϕAn (k, r)} in the radial direction. These
are solutions of eq. (4.30) with q-dependent eigenvalues ω = ωAn (k), and are subject to the
orthonormality relations∫ ∞

0
dr

2f̃2r3
√

1 + Ṙ2

ρ2f
ϕAm(q, r)ϕAn (q, r) = δmn . (4.32)

Inserting the expansion (4.31) in (4.30), and using the orthonormality relations (4.32), we
find that each of the XA

n (ω, q) fields obeys[
ω2 − ω2

nA(q)
]
XA
n (ω, q) = 0 , (4.33)

as expected. As explained in [22], the modes XA
n (ω, q) with A = 1, 2 correspond in the

gauge theory to scalar and pseudoscalar mesons, respectively.
Both masses (for A = 1, 2) in eq. (4.30) behave as m2 ' −3−m2/r2 + · · · for r →∞

and m2 ' −c1 + c2r
2 + · · · for r → 0, where c1,2 are positive constants. It follows that

the two independent solutions for XA behave as 1/r and 1/r3 for r → ∞ and as r0 and
1/r2 for r → 0. Thus in this case normalizability requires that XA ∼ 1/r3 for r →∞ and
regularity requires that XA ∼ r0 for r → 0. As in the case of vector modes, for fixed q these
two requirements are compatible with each other only for a discrete set of energies ωAn (q).

Figure 9 shows several numerically-obtained radial profiles of the lowest-lying mode
ϕn=0(q, r) for several values of q. The corresponding values of the energy, ωn=0(q), are
given by the dispersion relation curves in figure 2. These results correspond again to a
D7-brane embedding with asymptotic position m = 1.3. We observe the same limiting
velocity vlim = 0.35 given by the local speed of light at the bottom of the brane, eq. (3.11).

5 Quark energy loss in the N = 4 SYM plasma

We now turn to the main topic of this paper, namely the rate at which a heavy quark
traversing the N = 4 SYM plasma loses energy by Cherenkov-radiating mesons. As we
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Figure 9. Normalized scalar (top plots) and pseudoscalar (bottom plots) meson radial profiles
ϕn(q, r) for a D7-brane embedding with m = 1.3. The blue, violet, brown and green curves
(i.e. bottom to top on the left, top to bottom on the right) correspond to q = 1, 2, 4, 11, respectively.
The rescalings on the right-hand side correspond to those in appendix C. Note that the area under
the curves is not unity because of the non-trivial measure in eq. (4.32).

will see in detail below, the quark acts a source for the brane stress-energy tensor, defined
as

Tab = − 2√−g
δSD7

δgab
. (5.1)

This leads to its non-conservation, ∇aTab 6= 0, where ∇ is the covariant derivative defined
by the eight-dimensional worldvolume metric g. Under these circumstances the energy per
unit time deposited on the brane by the quark is given by

dE

dt
= −

∫
d7x
√−g∇aTa0 , (5.2)

where the integral is taken over the brane’s worldspace. For the reader’s convenience,
a short derivation of this formula is provided in appendix B. Our task below will be to
evaluate this formula for the cases of vector and scalar mesons.

5.1 Energy loss into vector mesons

The endpoint of an open string attached to the brane couples to the worldvolume gauge
field, so the action (4.1) is modified in the presence of the quark to

Svector = −TD7L
4
(
2πl2s

)2 ∫
d8x
√−g 1

4
F abFab −

∫
dτAa

dxa

dτ
, (5.3)
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where, as usual, the worldvolume metric g contains no factors of L. The second term is
the familiar coupling between an Abelian gauge field and a charged particle moving along
a worldline parametrized as xa(τ).8 In order to work with a canonically normalized gauge
field we rescale A→ eA with

e2 =
1

TD7 (2πl2s)
2 L4

=
8π4

Nc

, (5.4)

so that the action becomes

Svector = −
∫
d8x
√−g 1

4
F abFab − e

∫
d8xAaJ

a , (5.5)

where Ja = δ(7)(x − x(τ)) ẋa. As anticipated in section 2, the coupling e between the
quark and the vector mesons is of order 1/

√
Nc, which justifies our neglect of terms of

order higher than quadratic in the action.
Using the definition (5.1), the contribution from the gauge field to the brane’s stress-

energy tensor is easily calculated to be

Tab = FacF
c
b −

1
4
gabF

2 . (5.6)

In the presence of the string endpoint, the equation of motion (4.2) for the gauge field is
modified to √−g∇aF ab = ∂a(

√−g F ab) = eJb , (5.7)

which implies the non-conservation of the stress-energy tensor

√−g∇aTab = eFbaJ
a . (5.8)

Inserting this into the general formula (5.2) yields the rate at which the quark deposits
energy into the gauge field:

dEvector

dt
= −e

∫
d3xdrdΩ3 F0aJ

a . (5.9)

This formula has the simple interpretation of minus the work done on the quark by the
gauge field. In order to evaluate it, we need to specify the quark trajectory. For simplicity,
we will assume that the quark moves with constant velocity along a straight line at constant
radial and angular positions, so we write

Ja = δ(3)(~x− ~vt) δ(r − r0) δ(3)(Ω− Ω0)× (1, ~v, 0,~0) . (5.10)

In reality, r0 and v will of course decrease with time because of the black hole gravitational
pull and the energy loss. However, we will concentrate on the initial part of the trajectory

8The relative normalization between the two terms in the action can be confirmed by noting that it

ensures that supersymmetric BIon-like excitations on a D7-brane in flat space have tension 1/2π`2s, as

in [31, 32].
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(which is long provided the initial quark energy is large) for which r0 and v are approxi-
mately constant [33] — see figure 1. The delta-functions in (5.10) allow us to perform the
integral in (5.9) and obtain

dEvector

dt
= −eviF0i(t, ~vt, r0,Ω0) . (5.11)

We thus see that we need to compute the electric field sourced by the string endpoint
at the location of the string endpoint itself. To do so, we will solve the equation of motion
(5.7) by expanding the gauge field in normalizable modes in the radial direction, as in
section 4. Note that the fact that the quark is localized on the S3 means that it will
radiate both into S3 singlets and non-singlets. A simple group theory argument shows
that these two types of contributions can be calculated separately and independently at
the quadratic level at which we are working. For the reasons explained in section 4, we will
only calculate the energy loss into singlet modes, whose form in Fourier-space we recall to
be:

Aµ = Aµ(ω, q, r) , Ar = 0 , AΩ3 = 0 . (5.12)

Without loss of generality, we choose ~q = (q, 0, 0) and ~v = (v cos θ, v sin θ, 0). After inte-
grating over the S3, the relevant Fourier-space components of the current are then

Jµ = 2πδ(ω − qv cos θ) δ(r − r0)× (1, v cos θ, v sin θ, 0) . (5.13)

We are now ready to compute the energy loss into the transverse and longitudinal modes
of the gauge field.

Transverse modes. With the choice above the only transverse mode of the gauge field
excited by the source is A = A2, which couples to J = J2. The equation of motion (4.6)
for this mode now becomes

∂r

(
fr3 ∂rA

2
√

1 + Ṙ2

)
+
√

1 + Ṙ2
r3

ρ4

(
ω2f̃

f
− q2f

f̃

)
A = ẽJ , (5.14)

where ẽ = e/Ω3 and the volume factor Ω3 = 2π2 comes from integration over the S3.
We now follow section 4 and solve (5.14) by expanding A as in (4.7), where the radial
eigenfunctions {ξn(q, r)} satisfy exactly the same properties as in that section. In this
case, inserting the expansion (4.7) in (5.14), and using the eigenstate equation and the
orthonormality relations, we find that eq. (4.10) becomes[

ω2 − ω2
n(q)

]An(ω, q) = ẽJn(ω, q) , (5.15)

where

Jn(ω, q) =
∫
drJ (ω, q)ξn(q, r) = 2πδ (ω − qv cos θ) v sin θ ξn(q, r0) . (5.16)

An important fact implied by eqs. (5.15)-(5.16) is that each of the four-dimensional meson
modes An(ω, q) couples to the quark with an effective strength proportional to the value
of ξn at the location of the quark:

eeff(q, r0) = e ξn(q, r0) . (5.17)
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The intuition behind this is that the radial profiles ξn(q, r) roughly play the role of a ‘wave
function’ in the fifth dimension for the corresponding meson mode An(ω, q). This fact will
play an important role below.

With retarded boundary conditions, as appropriate for the reaction to the quark’s
passage, the solution of eq. (5.15) is

An(ω, q) =
ẽJn(ω, q)

(ω + iε)2 − ω2
n(q)

. (5.18)

In order to evaluate the energy loss (5.11), we first express F02(t, ~vt, r0,Ω0) as an integral
over its Fourier components:9

dEtrans

dt
= −ev2∂tA2(t, ~vt, r0,Ω0)

=
∫
dωd3q

(2π)4
(−ev sin θ)(−iω)A(ω, q, r0) e−iωteiq·x

∣∣
~x=~vt

. (5.19)

Inserting the expansion (4.7) we obtain

dEtrans

dt
=
∑
n

∫
dωd3q

(2π)4
(ev sin θ)(iω)An(ω, q)ξn(q, r0) e−iωteitq·v . (5.20)

Substituting the solution (5.18) for An and using the delta-function in (5.16) to integrate
over frequencies, we arrive at

dEtrans

dt
=
∑
n

∫
d3q

(2π)3
(ev sin θ)(iqv cos θ)

ẽv sin θ
(qv cos θ + iε)2 − ω2

n(q)
ξ2
n(q, r0) . (5.21)

Note that the two exponentials have cancelled out upon setting ω = qv cos θ. In order to
integrate over momenta we set d3q = 2πq2 dqdz, where z = cos θ, so that the integral above
becomes

dEtrans

dt
=
∑
n

−e
2v

Ω3

∫ ∞
0

dq

2π
q ξ2

n(q, r0)
∫ 1

−1

dz

2πi
z(1− z2)

(z + iε)2 − z2
n(q)

, (5.22)

where zn(q) = vn(q)/v, and vn(q) = ωn(q)/q is the phase velocity of the n-th mode. The
integral over z can be performed in the complex plane by considering the contour shown in
figure 10. The integral of interest corresponds to the integral over the segment Γ1. In the
limit ε→ 0, this coincides with the integral over Γ2, and the contribution from the vertical
sides of the contour vanishes. Thus in this limit the integral over z in (5.22) equals 1/2
times the contour integral of figure 10. Now consider the poles of the integrand, which lie
at z = ±zn − iε. If v < vn(q) then zn(q) > 1 and the poles lie outside the contour, so the
integral vanishes. In contrast, if v > vn(q), then both poles lie inside the contour and they
yield identical contributions equal to (1 − z2

n). Taking into consideration the extra minus
sign coming from the orientation of the contour, the final result is thus

dEtrans

dt
=
∑
n

e2v

2Ω3

∫ ∞
0

dq

2π
q ξ2

n(q, r0)
(

1− v2
n(q)
v2

)
Θ
(

1− v2
n(q)
v2

)
. (5.23)

9Note that the singlet mode is independent of the S3 position Ω0 of the string endpoint.
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Figure 10. Contour in the complex plane used to evaluate the z-integral in eq. (5.22).

We see that the energy loss is a discrete sum over all mesons, as well as an integral over
all the momentum modes of each meson into which the quark is allowed to radiate. As
expected for Cherenkov radiation, this can only happen if the velocity v of the quark
exceeds the phase velocity of the corresponding momentum mode, vn(q). For example, in
the case of transverse vector mesons, the quark can only emit momentum modes to the
right of the dashed, vertical line in figure 2. This cut-off is implemented by the Heaviside
function in eq. (5.23).

Since the radial profiles ξn(q, r0) and the dispersion relations vn(q) entering eq. (5.23)
are only known numerically, the energy loss must also be evaluated numerically. The result
for the n = 0 term in the sum is plotted in figure 11. As one may expect, for fixed r0 the
energy loss increases monotonically with v up to the maximum allowed value of v, the local
speed of light at r0. In other words, a quark sitting at a fixed radial position radiates more
the higher its velocity is. As r0 decreases, the limiting velocity of the quark approaches
that of the mesons from above. Therefore the quark and the meson dispersion relation
curves cross at a higher momentum, i.e. the vertical dashed line in figure 2 moves to the
right. This means that the characteristic momentum qchar of the modes contributing to the
integral in (5.23) increases. As r0 → 0 these modes become increasingly peaked at small
r (see figure 6(left)), and their effective couplings to the quark eeff(qchar, r0) diverge. This
explains why the energy loss at the maximum allowed value of the velocity diverges as
r0 → 0. As we will discuss in section 7, however, this mathematical divergence is removed
by physical effects that we have not taken into account.

Longitudinal modes. In the presence of the source eq. (4.11) becomes

∂r
(√−ggrrg00∂rA0

)
+ iq
√−gg11g00E = ẽJ0 . (5.24)

eq. (4.12) remains unchanged, and together with the eq. above it yields

− iq ∂r
(√−g grrg00g11

q2g11 + w2g00
∂rE

)
+ iq
√−g g11g00E = ẽJ0 . (5.25)

We now introduce a new field Φ defined as in eq. (4.15), but in this case the inverse relation
(4.16) is modified by the source:

E =
1√−g g11g00

∂rΦ +
1

iq
√−g g11g00

ẽJ0 . (5.26)
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Figure 11. Energy loss into the transverse vector mode A(n=0) for an embedding with m =
1.32, R0 = 1.2 (left) and m = 2.0, R0 = 2.0 (right). The continuous curves correspond (from top to
bottom) to r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The
dotted curve is defined by the endpoints of the constant-r0 curves.

Substituting back into eq. (4.15) we find the new equation of motion for Φ:

− ∂r
(

1√−g g11g00
∂rΦ

)
+
q2g11 + w2g00

√−g grrg00g11
Φ =

1
iq
∂r

(
1√−g g11g00

ẽJ0

)
. (5.27)

Inserting the explicit form of the metric functions, we finally arrive at

∂r

(
fρ4

f̃ r3
√

1 + Ṙ2
∂rΦ

)
+ 2

√
1 + Ṙ2

fr3

(
w2 − f2

f̃2
q2

)
Φ = − 1

iq
∂r

(
fρ4

f̃ r3
√

1 + Ṙ2
ẽJ0

)
.

(5.28)
We now follow section 4 and solve (5.28) by expanding Φ as in (4.19), where the radial

eigenfunctions {φn(q, r)} satisfy exactly the same properties as in that section. In this
case, inserting the expansion (4.19) in (5.28), and using the eigenstate equation and the
orthonormality relations, we find that eq. (4.21) becomes[

ω2 − ω2
n(q)

]
Φn(ω, q) = ẽJ0

n(ω, q) , (5.29)

whose solution with retarded boundary conditions is

Φn(ω, q) =
ẽJ0

n(ω, q)
(ω + iε)2 − ω2

n(q)
. (5.30)

The coefficients J0
n are given (after integration by parts) by

J0
n(ω, q) =

∫ ∞
0

dr
1
iq

fρ4

f̃ r3
√

1 + Ṙ2
J0(ω, q) ∂rφn(q, r) =

2π
iq
δ(ω − qv cos θ)Fn(q, r0) , (5.31)

with

Fn(q, r) = − 1√−g g11g00
∂rφn(q, r) =

fρ4

f̃ r3
√

1 + Ṙ2
∂rφn(q, r) . (5.32)

Note that the coefficients Fn appear in the expansion of the electric field (5.26), i.e.

E(ω, q, r) = −
∑
n

Φn(ω, q)Fn(q, r) +
1

iq
√−g g11g00

ẽJ0(ω, q, r) . (5.33)
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As in the case of transverse modes, we see from eq. (5.29) that the effective coupling
between a longitudinal meson Φn(ω, q) and the quark is determined by the radial wave
function of the meson, in this case

eeff(q, r0) = eFn(q, r0) . (5.34)

Our task now is to compute the rate of energy loss into longitudinal meson modes.
For this purpose, eq. (5.11) instructs us to evaluate the electric field at the location of the
quark. If we naively do so using the expression (5.26) for E then the second term gives
a divergent result, since J0(r0) ∝ δ(0). However, this divergence is unphysical: if one
replaces the delta-function by a smooth charge distribution, then the integral over space
in (5.9) vanishes. Indeed, suppose that the current (5.13) is replaced by

Ja = %(3)(~x− ~vt, r,Ω)× (1, ~v, 0,~0) , (5.35)

where % is a smooth function. Then in Fourier space

Ja = 2π δ(ω − ~q · ~v) %(3)(~q, r,Ω)× (1, ~v, 0,~0) (5.36)

and the energy loss (5.9) is

dE

dt
= −e

∫
drdΩ

∫
d3xE(t, ~x, r,Ω) · J(t, ~x, r,Ω)

= −e
∫
drdΩ

∫
dωdω̃

(2π)2
e−iωt−iω̃t

∫
d3q

(2π)3
z E(ω̃,−~q, r,Ω) J1(ω, ~q, r,Ω) , (5.37)

where as usual z = cos θ is the relative angle between ~q and ~v and d3q = 2πq2 dqdz. If we
substitute the term in E that is proportional to J0 we see that the integrand is proportional
to

1
iq
δ(ω̃ + qvz) δ(ω − qvz) %(−~q, r,Ω) %(~q, r,Ω) z . (5.38)

This is odd under ~q → −~q (since ω and ω̃ are dummy variables) and therefore the integral
over z vanishes.

We therefore conclude that we can neglect the second term in (5.33) in order to evaluate
(5.11). Following the previous section we have

dElong

dt
= ev1E(t, ~vt, r0,Ω0)

=
∑
n

−
∫
dωd3q

(2π)4
(ev cos θ) Φn(ω, q)Fn(q, r0) e−iωteitq·v

=
∑
n

−
∫

d3q

(2π)3
(ev cos θ)

ẽ

iq

1
(qv cos θ + iε)2 − ω2

n(q)
F2
n(q, r0)

=
∑
n

− e2

Ω3v

∫ ∞
0

dq

2π
1
q
F2
n(q, r0)

∫ 1

−1

dz

2πi
z

(z + iε)2 − z2
n(q)

. (5.39)
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Figure 12. Energy loss into the longitudinal vector mode Φ(n=0) for an embedding with m =
1.32, R0 = 1.2 (left) and m = 2.0, R0 = 2.0 (right). The continuous curves correspond (from top to
bottom) to r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The
dotted curve is defined by the endpoints of the constant-r0 curves.

The z-integral can be evaluated using the same contour of figure 10. In this case each pole
contributes -1/2, so the final result is

dElong

dt
=
∑
n

e2

2Ω3v

∫ ∞
0

dq

2π
1
q
F2
n(q, r0) Θ

(
1− v2

n(q)
v2

)
. (5.40)

The energy loss into the n = 0 mode is shown in figure 12. The same comments as in
the case of transverse modes apply here.

5.2 Energy loss into scalar mesons

The endpoint of an open string attached to the brane couples to the worldvolume scalar
fields, so in the presence of the quark the action (4.23) is modified to

Sscalar = −TD7L
8

∫
d8x
√−g

[
1
2
gab∂aX

A∂bX
BGAB +

1
2
m2
AB(x)XAXB

]
− L2

2π`2s

∫
dτ
√
−ẋ2GABX

AnB , (5.41)

where ẋ2 = gabẋ
aẋb and nA is the unit vector that is tangent to the string and orthogonal

to the brane at the string endpoint. As usual, in the last term we have explicitly factored
out the L-dependence associated to the spacetime metric (3.2). The square-root factor in
the last term is necessary to make the integrand a scalar density on the worldline of the
string endpoint, which is contained in the brane’s worldvolume. We emphasize that the
indices of ẋa are not contracted with the gauge theory metric ηab but with the D7-brane
metric gab. The relative normalization between the two lines in (5.41) can be confirmed as
described in footnote 8. As explained in appendix A, the boundary condition at the string
endpoint implies that the string ends orthogonally on the brane. The unit normal in the
last term of the action (5.41) means that the string couples to the scalar that parametrizes
the direction along which the string pulls on the brane, as one may intuitively expect.
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In order to work with canonically normalized fields we rescale XA → √TD7L8XA so
that the action becomes

Sscalar = −
∫
d8x
√−g

[
1
2
gab∂aX

A∂bX
BGAB +

1
2
m2
AB(x)XAXB

]
−e
∫
d8xJAX

A , (5.42)

where JA = δ(7)(x − x(τ))
√−ẋ2GAB n

B and e is the same coupling constant defined in
(5.4). Since the scalars do not interact with each other, they give independent contributions
to the stress tensor of the brane. Using the definition (5.1), the contribution from either
scalar field is easily found to be

Tab = ∇aX∇bX − 1
2
gab

[
(∇X)2 +m2X2

]
+X2 δm

2

δgab
. (5.43)

For ease of notation, in this equation we have dropped the superindex ‘A’ on the scalar, and
we will continue to do so below. The last term originates from the non-trivial dependence
of the scalar masses (4.24) on the metric. Fortunately, we will see that we do not need to
evaluate this term explicitly in order to compute the divergence of the stress-tensor.

In the presence of the string endpoint, the equation of motion (4.28) for the scalars is
modified to √−g (∇2 −m2

)
X = eJ . (5.44)

Using this, the divergence of the stress tensor takes the form

√−g∇aTab = J ∇bX −X2∇bm+∇a
(
X2 δm

2

δgab

)
. (5.45)

The second term on the right-hand side is due to the possible spacetime dependence of the
scalar masses m(x), but it vanishes identically for the case of interest here, b = 0, because of
the time-translation invariance of the theory. The last term on the right-hand side vanishes
when evaluated on a solution of the equations of motion, even in the presence of the source
J . To see this, recall that the stress tensor must be identically conserved in the absence
of the source because of the diffeomorphism invariance of the brane’s worldvolume theory.
This means, in particular, that when J = 0 we have

X∇a
(
δm2

δga0

)
+ 2

(
δm2

δga0

)
∇aX = 0 . (5.46)

The key point now is that this equation is linear in X. Since the solution in the presence
of the source is a linear supersposition of solutions of the source-less equation, linearity of
(5.46) implies that this expression also vanishes for solutions of eq. (5.44) with J 6= 0. We
thus conclude that (the time component of) the non-conservation of the stress-tensor in
the scalar sector takes the form

√−g∇aTa0 = J ∇0X . (5.47)

As in the case of vector mesons, we consider a rectilinear quark motion with constant
velocity, in which case

J =
√
−ẋ2(r0) δ(3)(~x− ~vt) δ(r − r0) δ(3)(Ω− Ω0) . (5.48)
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Note that, although the velocity v is the quark velocity as seen by a gauge theory observer,
the prefactor above is not just

√
1− v2 but depends non-trivially on the quark position in

the radial direction through√
−ẋ2(r0) =

√
−g00(r0)− g11(r0)v2 . (5.49)

Because of the black hole redshift, for fixed r0 this factor vanishes before v reaches the speed
of light, i.e. at v < 1. As we will see, this fact is responsible for a qualitative difference
between the energy radiated into scalar and into vector mesons.

Following section 4.2, we focus on the zero-mode of X on the S3, and work with its
Fourier components X(ω, q, r), for which the equation of motion takes the form

∂r
(√−g grr∂rX)−√−g (g00ω2 + g11q2 +m2

)
X = ẽJ , (5.50)

where the relevant Fourier-space components of the source are

J =
√
−ẋ2(r0) 2πδ(ω − qv cos θ) δ(r − r0) , (5.51)

and as usual ẽ = e/Ω3. We solve (5.50) by expanding X as in eq. (4.30). In the presence
of the source, the equation obeyed by the Xn mode is[

ω2 − ω2
n(q)

]
Xn(ω, q) = ẽJn(ω, q) , (5.52)

where

Jn(ω, q) =
∫
drJ(ω, q)ϕn(q, r) =

√
−ẋ2(r0) 2πδ(ω − qv cos θ)ϕn(q, r0) . (5.53)

With retarded boundary conditions, as appropriate for the reaction to the quark’s passage,
eq. (5.52) yields

Xn(ω, q) =
ẽJn(ω, q)

(ω + iε)2 − ω2
n(q)

. (5.54)

As in the case of vector modes, we see from eq. (5.52) that the effective coupling between
a scalar meson Xn(ω, q) and the quark is determined by the radial wave function of the
meson, in this case

eeff(q, r0) = e
√
−ẋ2(r0)ϕn(q, r0) . (5.55)

We are now ready to compute the rate of energy deposition into scalar mesons. From
eqs. (5.2) and (5.47) we have

dEscalar

dt
= −e

∫
d3xdrdΩ3 ẊJ = −e

√
−ẋ2(r0) Ẋ(t, ~vt, r0,Ω0) . (5.56)

Following the steps of the vector meson case we find:

dEscalar

dt
=
∑
n

−e
√
−ẋ2(r0)

∫
dωd3q

(2π)4
(−iω)Xn(ω, q)ϕn(q, r0) e−iωteitq·v

=
∑
n

−e [−ẋ2(r0)
] ∫ d3q

(2π)3
(−iqv cos θ)

ẽ

(qv cos θ + iε)2 − ω2
n(q)

ϕ2
n(q, r0)

=
∑
n

− e2

Ω3v

[−ẋ2(r0)
] ∫ ∞

0

dq

2π
q ϕ2

n(q, r0)
∫ 1

−1

dz

2πi
z

(z + iε)2 − z2
n(q)

=
∑
n

e2

2Ω3v

[−ẋ2(r0)
] ∫ ∞

0

dq

2π
q ϕ2

n(q, r0) Θ
(

1− v2
n(q)
v2

)
. (5.57)
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Figure 13. Energy loss into the scalar mode ϕ(A=1)
(n=0) for an embedding with m = 1.32, R0 = 1.2

(left) and m = 2.0, R0 = 2.0 (right). The continuous curves correspond (from top to bottom) to
r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The dotted curve
is defined by the maxima of the constant-r0 curves.
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Figure 14. Energy loss into the pseudoscalar mode ϕ
(A=2)
(n=0) for an embedding with m =

1.32, R0 = 1.2 (left-hand side plots) and m = 2.0, R0 = 2.0 (right-hand side plots). The con-
tinuous curves correspond (from top to bottom) to r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to
r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The dotted curve is defined by the maxima of the constant-
r0 curves.

The result for the energy loss into the lowest-lying scalar and pseudoscalar modes is shown
in figures 13 and 14. The main difference with respect to the case of vector mesons is the
fact that the constant-r0 curves do not rise monotonically as v increases, but instead they
vanish when v reaches the local speed of light at r0. The reason for this is of course the
factor in eq. (5.49).

6 Phenomenological implications for HIC experiments

As is clear from our general discussion in section 2, the mechanism of Cherenkov energy loss
depends only on two qualitative properties encoded in the dispersion relations of figure 2:
the fact that heavy mesons remain bound in the gauge theory plasma, and the fact that
their limiting velocity in the plasma is subluminal. Both properties can be motivated in
QCD irrespectively of whether or not a string dual of QCD exists. The first property is
suggested by the fact that sufficiently heavy mesons are smaller than the screening length
in the plasma [34], and is supported by calculations of both the static quark-antiquark
potential [35–39] and of Minkowski-space spectral functions in lattice-regularized QCD [40–
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45].10 The second property, which goes back to ref. [47], is suggested by the fact that moving
mesons see a boosted, higher energy density that will melt them if they move sufficiently
fast [48–51].11

Rigorously verifying these two properties in QCD is not presently feasible. For this
reason it is reassuring that, as we explained in section 2, they are both realized in all
gauge theory plasmas with a gravity dual in the large-Nc, strong coupling limit. In this
section we will assume that the two properties are also realized in the QGP and extract
some phenomenological consequences that might be observable in heavy ion collisions.12

Since the heavier the meson the more perturbative its properties become, we expect that
our conclusions are more likely to be applicable to the charmonium rather than to the
bottomonium sector.

An interesting feature of the energy loss by Cherenkov radiation is that, unlike other
energy-loss mechanisms, it is largely independent of the details of the quark excited state,
such as the precise features of the gluon cloud around the quark, etc. In the gravity
description these details would be encoded in the precise profile of the entire string, but
the Cherenkov emission only depends on the trajectory of the string endpoint. This leads
to a dramatic simplification which, with the further approximation of rectilinear uniform
motion, reduces the parameters controlling the energy loss to two simple ones: the string
endpoint velocity v and its radial position r0. The former is just the velocity of the quark
in the gauge theory, whereas the second roughly measures the size of the gluon cloud
that dresses the quark [26]. In order to obtain a ballpark estimate of the magnitude
of the energy loss, we will assume that in a typical collision quarks are produced with
order-one values of r0. Under these circumstances the energy loss is of order unity in
units of (2πT )2/Nc, which for a temperature range of T = 200 − 400 MeV and Nc = 3
leads to dE/dx ≈ 2 − 8 GeV/fm. This is is of the same order of magnitude as other
mechanisms of energy loss in the plasma; for example, the BDMPS radiative energy loss
dE/dx = αsCF q̂L/2 yields values of dE/dx = 7 − 40 GeV/fm for q̂ = 1 − 5 GeV 2/fm,
αs = 0.3 and L ≈ 6 fm. Since our gravity calculation is strictly valid only in the infinite-
quark energy limit (because of the linear trajectory approximation), we expect that our
estimate is more likely to be applicable to highly energetic quarks at LHC rather than to
those at RHIC.

Even if in the QGP the magnitude of Cherenkov energy loss turns out to be subdomi-
nant with respect to other mechanisms, its velocity dependence and its geometric features
may still make it identifiable. Indeed, Cherenkov energy loss would only occur for quarks
moving at velocities v > vlim, with vlim the limiting velocity of the corresponding meson
in the plasma. The presence of such a velocity threshold is the defining characteristic of
Cherenkov energy loss. The precise velocity at which the mechanism starts to operate may
actually be higher than vlim in some cases, since the additional requirement that the energy

10In some models light mesons also remain bound above Tc by Coulomb-like forces [46].
11An alternative possibility would be that meson states with q above some upper bound cease to exist.

In any event, our conclusions rely on meson states existing (with a sufficiently narrow width) only up to

some moderate q for which q & ω(q).
12Implications for photon production have been discussed in [52], and for deep inelastic scattering in [53].
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of the quark be equal or larger than the in-medium mass of the meson must also be met. A
related conclusion of our calculation in the N = 4 model is that the energy loss decreases as
the velocity of the quark approaches the speed of light. This is in fact a universal feature
of all plasmas with a gravity dual. The reason is that the quark velocity can approach
unity only in the limit r0 → ∞, in which the effective couplings (5.17), (5.34) and (5.55)
between the quark and the mesons vanish because the meson radial wave functions are
normalizable. In fact, in the case of scalar mesons the energy loss ceases completely at
some subluminal velocity at which (5.49) vanishes. If these properties also hold in QCD
then Cherenkov energy loss may be identifiable because it only operates in a limited range
of quark velocities.

Cherenkov mesons would be radiated at a characteristic angle cos θc = vlim/v with
respect to the emitting quark, where v is the velocity of the quark. Taking the gravity result
as guidance, vlim could be as low as vlim = 0.35 at the meson dissociation temperature [19],
corresponding to an angle as large as θc ≈ 1.21 rad. This would result in an excess of
heavy mesons associated to high-energy quarks passing through the plasma. Our estimate
of the energy loss suggests that the number of emitted J/ψ’s, for example, could range
from one to three per fm. This emission pattern is similar to the emission of sound waves
by an energetic parton [54] in that both effects lead to a non-trivial angular structure. One
important difference, however, is that the radiated heavy mesons would not thermalize
and hence would not be part of a hydrodynamic shock wave. As in the Mach cone case,
the meson emission pattern could be reflected in azimuthal dihadron correlations triggered
by a high-pT hadron. Due to surface bias, the energetic parton in the triggered direction
is hardly modified, while the one propagating in the opposite direction moves through a
significant amount of medium, emitting heavy mesons. Thus, under the above assumptions,
the dihadron distribution with an associated J/ψ would have a ring-like structure peaked
at an angle θ ≈ π − θc.

A final observation is that Cherenkov energy loss also has a non-trivial temperature
dependence, since it requires that there are meson-like states in the plasma, and therefore it
does not take place at temperatures above the meson dissociation temperature. Similarly,
it is reasonable to assume that it does not occur at temperatures below Tc, since in this
case we do not expect the meson dispersion relation to become spacelike.13 Under these
circumstances, the Cherenkov mechanism is only effective over a limited range of temper-
atures Tc < T < Tdiss which, if Tdiss & 1.2Tc as in [55], is a narrow interval. As was pointed
out in [56], a mechanism of energy loss which is confined to a narrow range of temperatures
in the vicinity of Tc concentrates the emission of energetic probes to a very narrow layer on
the collision geometry and is able to explain v2-data at high pT at RHIC [57, 58]. Provided
that the meson dissociation temperature Tdiss is not much larger than Tc, the radiation of
Cherenkov mesons is one such mechanism.

13This assumption is certainly correct for plasmas with a gravity dual, since the corresponding geometry

does not include a black hole horizon if T < Tc.
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Figure 15. Energy loss into the transverse vector mode A(n=0) for an embedding with m =
1.32, R0 = 1.2 (left-hand side curves) and m = 2.0, R0 = 2.0 (right-hand side curves). The continu-
ous curves correspond (from top to bottom) to r0 = 0.58, 0.70, 0.83, 0.98, 1.18 (left-hand side) and
to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right-hand side). The dotted curve is defined by the endpoints of
the constant-r0 curves.

7 Discussion

Cherenkov emission of mesons [59–71] and gluons [72, 73] in QCD has been considered be-
fore. Although some of the underlying physics is similar, the mechanism we have discussed
is different in several respects. First, it operates in the QGP, as opposed to in a hadronic
medium as in [59–71], and the radiated particles are colourless mesons, as opposed to gluons
as in [72, 73]. Second, the gauge/string duality provides a large class of completely explicit
examples (although none of them includes QCD) in which this mechanism is realized and
in which the energy loss can be calculated without further model assumptions.

Figures 11, 12, 13 and 14 show the rate of energy deposition into vector and scalar
modes on the brane. All these figures share the property that the energy loss diverges as
1/r6

0 (as shown analytically in appendix D) in the limit r0 → 0. However, this mathematical
divergence is removed by physical effects we have not taken into account. For example, for
sufficiently large q the radial profile of the mesons becomes of order the string length and
stringy effects become important [28]. Also, mesons acquire widths Γ ∝ q2 at large q [74]
and can no longer be treated as well defined quasiparticles. Finally, the approximation
of a constant-v, constant-r0 trajectory ceases to be valid whenever the energy loss rate
becomes large.

Figures 11, 12, 13 and 14 also illustrate the simple dependence of the energy loss on
the ratio m ∝ Mq/T . Increasing m decreases the redshift at the bottom of the branes,
and therefore increases the limiting velocity of mesons, vlim, at which quark energy loss via
Cherenkov emission starts to operate. This means that the energy loss becomes concen-
trated on a narrower range of velocities, closer to unity, as m is increased, but the structure
of the curves is roughly the same up to a rescaling. This can be seen in the figures above by
comparing the energy loss for m = 1.2 (left-hand side) and m = 2.0 (right-hand side). The
concentration of energy loss on a narrower velocity interval is also illustrated in figures 15
and 16, where the result for both values of m is shown simultaneously on the same plot
(for the transverse vector and scalar modes).
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Figure 16. Energy loss into the scalar mode ϕ(A=1)
(n=0) for an embedding with m = 1.32, R0 = 1.2

(left-hand side curves) and m = 2.0, R0 = 2.0 (right-hand side curves). The continuous curves
correspond (from top to bottom) to r0 = 0.64, 0.74, 0.86, 1.00, 1.18 (left-hand side) and to r0 =
1.50, 1.69, 1.91, 2.18, 2.52 (right-hand side). The dotted curve is defined by the maxima of the
constant-r0 curves.

f̃

f

f̃

f

f

f̃

f̃

f

f

f

Figure 17. Meson emissions by a quark in a theory with multiple flavours.

In this paper we have concentrated on the case Nf = 1, i.e. we have assumed the
presence of a single heavy flavour. Consider now a theory with multiple heavy quarks,
such as QCD with c and b quarks, for example. In the string description this corresponds
to a situation with Nf > 1 D-branes. If all quarks have identical masses (and R-symmetry
quantum numbers) then the D-branes are all coincident and their worldvolume theory is
described by a non-Abelian U(Nf) theory, corresponding to the fact that mesons mff̃ come
in multiplets that transform in the adjoint representation of U(Nf). A quark with flavour
f then may emit any of the Nf mesons with flavour ff̃ , with f̃ = 1, . . . , Nf. Under these
circumstances the energy loss is enhanced by a power of Nf.14 Note that if the resulting
meson has f̃ 6= f then the quark must change flavour f → f̃ in the emission process, as
shown in figure 17(left). A process in which the quark does not change flavour is also
possible, as shown in figure 17(right), but this requires the emission of at least two mesons
and is therefore further suppressed at large Nc.

14This corrects the corresponding statement in ref. [1].
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Consider now the opposite situation, more analogous to QCD, in which the heavy
quarks have different masses, so that the D-branes in the string description do not overlap.
This is depicted in figures 18, 19 and 20, which show the string description of the emission
processes of figures 17(left) and 17(right), respectively. Figures 18 and 19 correspond to
emissions with f̃ 6= f , whereas figure 20 describes the emission of an ff -meson. In this
geometric picture the necessity of a two-meson emission in the case f̃ 6= f in order to
preserve the quark flavour is due to the fact that the string must break twice in order to
stay attached to the same brane — see figure 19. Since string breaking is suppressed at
large Nc, this process is subleading with respect to one-meson emission. In any case, since
an open string must always have its endpoints attached to a brane, the emission of one
or multiple mesons with f̃ 6= f by a quark of flavour f requires a tunneling process in
which the string fluctuates and touches the f̃ -brane, as shown in figures 18 and 19. The
amplitude for this process can be studied semiclassically provided the distance between
the two branes is sufficiently large compared to `s, but it is far from straightforward to
calculate [75, 76]. In addition, in the present context the calculation would require a
precise specification of the string profile. On general grounds, however, one may expect
the amplitude to be exponentially suppressed, since it requires a large string fluctuation
that is classically forbidden. Note that the same exponential suppression applies to the
emission of a large ff -meson by an f -quark, as shown in figure 20. This is the reason why
we neglected this process in our calculation of energy loss. More precisely, our calculation
can be seen as accounting for this process in the limit in which the size of the emitted
meson is so small that it requires quantization of the resulting string. In this limit there is
no exponential suppression, and the emitted string must be described as a field propagating
on the brane.

We close with a comment on a possible extension of our work. In this paper we have
focused on the energy loss of quarks attached to branes that sit outside the horizon in
a Minkowski embedding. It would be interesting to study the energy loss in the case of
black hole embeddings, which describe light quarks. In this case no stable quark-antiquark
bound states exist in the plasma, which in the string description corresponds to the fact that
excitations on the brane are characterized by quasinormal modes with complex frequencies.
It would be interesting to explore whether the emission of quasinormal modes could also
lead to a significant energy loss.
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Figure 18. String description of the emission of an ff̃ -meson with f̃ 6= f . The quark changes
flavour in the process.

Figure 19. String description of the emission of two mesons with f̃ 6= f . The quark does not
change flavour in the process.

Figure 20. String description of the emission of an ff -meson by an f -quark. The quark does not
change flavour in the process.

A Boundary conditions at the string endpoint

The action for the string may be written as

S = −Tstring

∫
dτdσ

√−g 1
2
gαβ∂αX

M∂βX
NGMN . (A.1)
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In this form of the action g is an independent worldsheet metric and XM (τ, σ) specify the
embedding in spacetime of the string worldsheet. Since g appears undifferentiated, it can
be eliminated from the action through its equation of motion. This equation implies that

gαβ = ∂αX
M∂βX

NGMN , (A.2)

i.e. that g is the induced metric on the worldsheet. Substituting this into the action one
obtains the familiar Nambu-Goto action

S = −Tstring

2

∫
dτdσ

√−g . (A.3)

An alternative way to proceed, which is more convenient to elucidate the boundary
conditions at the string endpoint, is to choose the so-called conformal gauge. This means
that one uses the reparametrization invariance of the string action to ensure that the
worldsheet metric is conformally flat, i.e that gαβ = Ω2(τ, σ)ηαβ. (In addition, Weyl
invariance may be used to ensure that Ω = 1.) In this gauge the action becomes

S = −Tstring

∫
dτdσ

1
2
ηαβ∂αX

M∂βX
NGMN . (A.4)

Variation of this action with respect to the embedding coordinates yields a bulk term
proportional to the equation of motion, ηαβ∂α∂βXM = 0, plus the boundary term

− Tstring

∫
dτ
[
XM ′δXNGMN

]
bdry

, (A.5)

which is integrated over the string boundary. The equation of motion must be supplemented
by the constraints associated to the gauge fixing of g, which take the form

Ẋ ·X ′ ≡ GMNẊ
MXN ′ = 0 ,

Ẋ2 +X ′2 ≡ GMN

(
ẊMẊN +XM ′XN ′

)
= 0 . (A.6)

The boundary conditions follow from the requirement that the boundary term vanish. This
may be achieved by imposing either a Neumann boundary condition, XM ′|bdry = 0, or a
Dirichlet boundary condition, δXM |bdry = 0. If all coordinates satisfy Neumann boundary
conditions, then the second constraint immediately implies that Ẋ2|bdry = 0, namely the
familiar condition that the endpoint moves at the speed of light. Suppose however that the
string is attached to a Dp-brane, and let the first p+1 coordinates Xa be coordinates along
the brane directions, and XA be coordinates orthogonal to the brane. Then by definition
we must choose Neumann boundary conditions for Xa and Dirichlet boundary conditions
for XA:

Xa′|bdry = 0 , ẊA|bdry = 0 . (A.7)

The Neumann boundary condition on Xa implies that the string ends orthogonally on the
brane, since the vector tangent to the string at its endpoint, XM ′|bdry = 0, has no com-
ponents along the brane. Substituting both boundary conditions on the second constraint
equation one finds that

Ẋa 2 |bdry = − XA′ 2 |bdry ≤ 0 , (A.8)

which means that the endpoint moves along the brane at a speed lower than or equal to
the local speed of light.
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V

Σ1

Σ2

n

n

ñ

Σ∞

Figure 21. Brane’s worldvolume, to which Stokes’ theorem is applied.

B Energy loss formula

A charge can be defined for each of the isometries of the brane’s worldvolume metric (3.6).
For concreteness, in this section we will focus on the four-momentum associated to trans-
lations in the gauge theory, which is generated by the set of Killing vector fields kµ = ∂µ.

Let Σ be a spacelike 7-surface in the brane’s worldvolume, which we take to be a
t = const. surface, and n = ∂t/

√−g00 the future-pointing unit normal to Σ. The momenta
are then given by

Pµ =
∫

Σ
d7x
√
gsp n

a Tab k
b
µ =

∫
Σ
d7x
√
gsp n

a Taµ , (B.1)

where gsp is the spatial metric on Σ. Since the time-space off-diagonal components of g
vanish we have that

g00 = 1/g00 ,
√−g =

√−g00
√
gsp . (B.2)

Using these relations Pµ may be rewritten as

Pµ =
∫

Σ
d7x
√
gsp

1√−g00
T0µ = −

∫
Σ
d7x
√−g T 0

µ . (B.3)

For µ = 0, these formulas give the energy on the brane:

E = P0 =
∫

Σ
d7x
√
gsp

1√−g00
T00 = −

∫
Σ
d7x
√−g T 0

0 ≥ 0 . (B.4)

Note that this is non-negative because T00 ≥ 0.15

Consider now the brane’s worldvolume V as shown in figure 21. Σ1 and Σ2 are spacelike
hypersurfaces at times t1 and t2, respectively, and Σ∞ is a timelike hypersurface at spatial
infinity. Applying Stokes’ theorem we then have∫

V

√−g∇aTaµ =
∫

Σ2

√
gsp n

a
(1)Taµ +

∫
Σ1

√
gsp n

a
(2)Taµ +

∫
Σ∞

√
gsp n

a
(∞)Taµ . (B.5)

The unit normals must be taken inward-pointing if they are time-like, and outward-

15For example, in flat space eq. (5.6) gives T00 = E2/2+B2/2 ≥ 0, where Ei = Fi0, Ei = F i0, E2 = EiE
i,

and 2B2 = FijF
ij .
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pointing if they are space-like. Therefore we have na(1) = −na(2) = n and na(∞) = ñ, so
eq. (B.5) with µ = 0 yields

E2 − E1 + F∞ = −
∫
V

√−g∇aTa0 , (B.6)

where E1,2 is the energy contained in Σ1,2 and F∞ = − ∫Σ∞

√
gsp ñ

aTa0 is the energy flux
that has escaped through Σ∞ between t1 and t2.16 The left-hand side of eq. (B.6) is the
total energy deposited on the brane by the source. Since

∫
V =

∫
dtd7x, if t1 and t2 are

innitesimally close we obtain

dE

dt
= −

∫
d7x
√−g∇aTa0 . (B.7)

C High-momentum radial wave functions

As shown (on the left-hand side of) figures 6, 8, and 9, the high-momentum radial profiles
of the different modes are concentrated near the tip of the brane (r = 0). In this region of
high q and small r it is possible to find analytic expressions for the radial profiles [28]. In
this appendix we shortly review this computation and extend it to vector modes.

Following [28] we introduce the coordinate z which fulfills

dz

dr
=
√

grr
−g00

=

√
2f̃(1 + Ṙ2)

ρ4f2
. (C.1)

In terms of this new coordinate, the different modes Ψα = {φ1, φ2, A, Φ} satisfy a differ-
ential equation of the generic form

∂z [aα(z) ∂zΨα] + aα(z)
[
ω2 − f2

f̃2
q2

]
Ψα − bα(z) (mα)2Ψα = 0 , (C.2)

where mα = {m11, m22, 0 , 0 } and the different coefficient functions are given by

a1 = a2 = −√−g g00 ,

a3 = −√−g g00g11 ,

a4 = −g11g00/
√−g ,

b1 = b2 =
√−g . (C.3)

Via the simple rescaling ψα =
√
aα Ψα, the set of eqs. (C.2) can be written in the

Schrödinger form
− ∂2

z ψ
α + V α ψα = ω2ψα , (C.4)

where the potential is given by

V α(z, q) = q2 f
2

f̃2
+
∂2
z

(√
aα
)

√
aα

+
bα

aα
(mα)2 . (C.5)

16The minus sign in the definition of the flux comes from the fact that the energy current in the a-direction

is given by −Ta0, as can be seen from the continuity equation. For example, in flat space in the absence of

sources the continuity equation ∂aTa0 = 0 yields ∂0T00 − ∂iTi0 = 0.
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This potential is a complicated function of z which is only known numerically because
it depends non-trivially on the brane embedding. However, since the radial profiles are
concentrated near the tip of the brane, we focus on the small-z expansion of the potential
(C.5). In the limit z → 0, eq. (C.1) reduces to17

z =

√
2(R4

0 + 1)
R4

0 − 1
r , (C.6)

and the small-z potential is given by

V α(z, q) =
(

3
4

+ `α(`α + 2)
)

1
z2

+ v2
limq

2 +
1
4
z2q2Ω2 , (C.7)

where `α = {0, 0, 0, 1}, vlim is the meson limiting velocity (3.11), and

Ω2 =
16R2

0(R4
0 − 1)2(1 +R8

0)
(1 +R4

0)5
. (C.8)

As claimed, this potential has a minimum at z ∝ 1/
√
q which means that, at least for

the lowest modes, the wave functions are concentrated at small z. Different meson excita-
tions correspond to different states of the four-dimensional harmonic oscillator (C.7). The
eigenfunctions and eigenvalues are given by

ω2
n = v2

limq
2 + qΩ(2n+ 2 + `α) , (C.9)

ψαn = Nαz
3
2

+`αL(`α+1)
n

(
1
2

Ωqz2

)
exp

(
−1

4
Ωqz2

)
, (C.10)

where L`+1
n is the generalized Laguerre polynomial and Nα are normalization constants

determined by the requirements ∫
dz ψαn(z)ψαm(z) = δmn . (C.11)

These normalization conditions coincide with those in eqs. (4.9), (4.20) and (4.32).
For future use, we provide explicit expressions for the lowest excitations, which corre-

spond to n = 0. The normalization constants are given by

Nα =
(qΩ)1+ `α

2

√
2

1+`α√
(1 + `α)!

, (C.12)

and the radial wave functions take the form

Ψα
0 = βαNαz4`α exp

(
−1

4
Ωqz2

)
, (C.13)

17To derive this expression we have used the small-r expansion of the embedding, R(r) = R0 +

r2/
`
R0(R8

0 − 1)
´
.
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where βα = limr→0

√
aα:

β1 = β2 =
23/2R3

0(
R4

0 − 1
)3/2 , (C.14)

β3 =
2R2

0

(
1 +R4

0

)1/2(
R4

0 − 1
)3/2 , (C.15)

β4 =

(
R4

0 − 1
)3/2

2R2
0

(
1 +R4

0

)1/2 . (C.16)

D Energy loss at small r0

As the quark position approaches the tip of the branes, r0 → 0+, the maximum velocity of
the quark approaches the meson limiting velocity vlim from above. As a consequence, the
quark and meson dispersion relations cross at q0 � T . In figure 2 this means that the dotted
vertical lines move to the right. For a fixed r0 the smallest value of the crossing point, qmin

0 ,
is attained at the maximal velocity of the quark, vmax. Using the high-momentum dispersion
relation (C.9), the crossing momentum at an arbitrary quark velocity v is determined by
the condition

vlimq0 +
(

1 + n+
`α

2

)
Ω
vlim

= vq0 , (D.1)

which leads to

q0 =
(

1 + n+
`α

2

)
Ω
vlim

1
v − vlim

. (D.2)

The maximal velocity for a quark at r0 is

vmax(z0) =
√
−g00

gii

∣∣∣∣
r0

≈ vlim + z2
0

Ω2

8vlim

, (D.3)

where we have expanded to leading order in r0 and used the definition (C.6) of z. Substi-
tuting this value of v in eq. (D.2) we find that the minimum crossing point is

qmin
0 =

(
1 + n+

`α

2

)
8

Ωz2
0

. (D.4)

Thus, the energy loss can be reliably computed with the approximate solutions of ap-
pendix C. Since the energy-loss formulas are different for each mode, we will address them
separately. Furthermore, we will focus on the lowest state of each mode.

D.1 Scalar mesons

Since in the high-momentum, small-r region both scalar modes have the same radial profile,
the energy loss into scalar mesons in this limit will also be the same. Expanding the energy
loss formula (5.57) and using the radial profiles (C.13) we obtain

dEscalar

dt
=

e2

2Ω3

[
v2

max(z0)− v2

v

] [
1 +R4

0

2R2
0

] (
β1
)2 Ω2

2

∫ ∞
qmin
0

dq

2π
q3 exp

(
−1

2
Ωqz2

0

)
. (D.5)
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After integration, this yields

dEscalar

dt
=

e2

4πΩ3

(
1 +R4

0

)2 (
β1
)2

2R2
0

[
v2

max(z0)− v2

v

]
×[

48 + 24Ωqmin
0 z2

0 + 6Ω2(qmin
0 )2z4

0 + Ω3(qmin
0 )3z6

0

Ω2z8
0

]
exp

(
−1

2
Ωqmin

0 z2
0

)
. (D.6)

As expected on general grounds, and in agreement with figures 13 and 14, we see that the
energy loss vanishes both for v → vmax and for v → vlim. The former is due to the fact
that the factor (5.49) vanishes in this limit. The latter is implemented by the fact that
qmin

0 diverges as v → vlim, which in turn is a manifestation of the Heaviside theta function
in eq. (5.57). As reflected in figures 13 and 14, the maximum energy loss occurs at some
intermediate velocity such that vlim < vint < vmax. Although vint is not easy to compute, we
know that vmax− vlim ∝ z2

0 . It then follows that also vmax− vint ∝ z2
0 and therefore that the

maximum energy loss diverges as 1/z6
0 .

D.2 Transverse vector mesons

The energy lost into these modes is given by eq. (5.23) which, utilizing (C.13), leads to

dEtrans

dt
=
e2v

2Ω3

(
β3
)2 Ω2

2

∫ ∞
qmin
0

dq

2π
q3 exp

(
−1

2
Ωqz2

0

)(
1− v2

lim

v2
− 2Ω
qv2

)
. (D.7)

Unlike for scalar meson emission, it is easy to see that in this case the energy loss is a
monotonically growing function of the velocity. Thus, the maximum value of the energy
loss is attained for v = vmax and, to leading order in z0, it is given by

dEtrans

dt
=

e2

4πΩ3

(
β3
)2 76 exp(−4)

vlimz6
0

. (D.8)

This shows the same divergence for small r0 as in the case of scalar modes.

D.3 Longitudinal vector mesons

Inserting (C.13) into the expression for energy loss (5.40), and to leading order in z0 we
obtain

dElong

dt
=

e2

2Ω3

2Ω3

v

1
(β4)2

∫ ∞
qmin
0

dq

2π
q2

(
1− 1

8
Ωqz2

0

)2

exp
(
−1

2
Ωqz2

0

)
. (D.9)

As in the transverse vector case, the maximum energy loss is attained at v = vmax. Using
(D.4) and setting `α = 1 (see the definition below eq. (C.7)) the maximum energy loss is

dElong

dt
=

e2

4πΩ3

1
(β4)2

632 exp(−6)
vlim z6

0

. (D.10)

Again, this diverges with the same power of z0 as in the cases of transverse and scalar
modes. Note also that since β4 = 1/β3 and the numerical factors in eqs. (D.10) and (D.8)
are similar, we find that in this limit the energy lost into transverse and longitudinal vector
modes is comparable.
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Finally, we may comment on the mass dependence of the energy lost into vector mesons.
The maximal energy loss is proportional to

dE

dt

∣∣∣∣
max

∝ R4
0

(
R4

0 − 1
)2(

R4
0 + 1

) 1
r6

0

. (D.11)

The fact that this is a growing function of R0 means that the energy loss increases if
the quark mass is increased while keeping all other parameters such as r0, v, etc. fixed.
However, this should not be necessarily taken as an indication that Cherenkov energy loss
in a real HIC experiment increases as the quark mass increases, because the ‘preferred’ or
‘mean’ values of these parameters with which a quark is produced may themselves depend
on the quark mass.

E Low-temperature limit

As T → 0 with all other scales fixed, the redshift at the bottom of the branes decreases,
and so the limiting velocity of mesons, vlim, approaches unity. In turn, this means that the
momentum q0(T ) at which Cherenkov radiation turns on diverges as T → 0, much in the
same way as in the case r0 → 0 studied above. The purpose of this section is to estimate
q0(T ) in the low-temperature limit. As we will see, the product q0(T )T 2 remains finite as
T → 0, which makes this limit harder to study than the r0 → 0 limit.

As T → 0 with fixed quark mass, the parameter m ∝Mq/T controlling the asymptotic
position of the branes, R(r → ∞) = m, diverges. For this reason it is convenient to
introduce rescaled coordinates

x̂µ =
xµ√
ε
, {r̂, R̂, ρ̂} =

√
ε{r,R, ρ} , (E.1)

where ε ≡ 1/m2 and we are interested in the limit ε→ 0. The rescaling of the x-coordinates
is chosen so that the induced metric on the D7-brane takes the same form as that in (3.6),
i.e. ds2 = L2ds2(g) with

ds2(g) =
ρ̂2

2

[
−f

2

f̃
dt̂2 + f̃d~̂x2

]
+

(1 + ˙̂
R2)

ρ̂2
dr̂2 +

r̂2

ρ̂2
dΩ2

3 , (E.2)

where now

f(ρ̂) = 1− ε2

ρ̂4
, f̃(ρ̂) = 1 +

ε2

ρ̂4
. (E.3)

In this new set of coordinates the horizon is located at ρ̂hor =
√
ε, whereas R̂(r̂ →∞) = 1.

In fact, in the limit ε → 0 the gravitational pull of the black hole becomes very small
and the brane bends very little. Inserting the ansatz R̂(r̂) = 1 + δR̂(r̂) in eq. (3.7) and
linearizing in δR̂ one finds that δR̂ = O(ε4). Since we will work to order ε2 we will ne-
glect this correction. Furthermore, it is easy to see that the equations of motion for the
transverse (4.6), longitudinal (4.18) and scalar (4.30) modes are unmodified by the rescal-
ing (E.1) provided we rescale the momentum in a consistent way, i.e. {ω̂, q̂} =

√
ε{ω, q},
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so that we leave the product (ωt − ~q · ~x) invariant. For ease of notation, in the following
we will omit the hat symbol.

Following appendix C, eqs. (4.6), (4.18) and (4.30) can be rewritten in the Schrödinger
form (C.4). The potential (C.5) is in general a complicated function, but it simplifies in
the limit ε→ 0. Indeed, in this case eq. (C.1) can be integrated explicitly with the result

z(r) =
√

2 arctan r +
3

8
√

2

(
3 arctan r +

r(5 + 3r2)
(1 + r2)2

)
ε2 +O(ε4) , (E.4)

so that zmax ≡ z(r →∞) ' π/√2. The potential can then be written as

V α(z, q) = V1(z)q2 + V α
2 (z) , (E.5)

where

V1(z) = 1− 4 cos4

(
z√
2

)
ε2 + g(z)ε4 +O(ε6) , (E.6)

V α
2 (z) =

Aα cos2
(√

2z
)

+ Bα cos
(√

2z
)

+ Cα

2 sin2
(√

2z
) +

(mα)2

1 + cos
(√

2z
) + h(z)ε2 +O(ε4) , (E.7)

with Aα = {0, 0, 1, 1}, Bα = {−6,−6, 0, 8} and Cα = {9, 9, 2, 6}. The functions g(z) and
h(z) are smooth and bound, and their explicit form will not be needed.

Before proceeding further let us clarify one point. In the limit z → zmax, V 4
2(z) shows a

negative divergence. This is related to the fact that the radial profile Ψ4(r) = Φ(r) does not
vanish near the boundary. This may seem counterintuitive, since generically one expects a
‘confining’ potential near the boundary (the AdS ‘box’) which is partly responsible for the
discreteness of the spectrum. However, note that the physical electric field E is related to
Φ through eq. (4.16), which may be written as E = a4(z)∂zΦ. In the limit r → ∞, the
factor f2/f̃2 in eq. (C.2) approaches 1, so one can differentiate this equation with α = 4
and use the fact that a4(z) = 1/a3(z) to show that the asymptotic form of the equation
for E is identical to that for the transverse mode Ψ3 = A.

Let us now return to the potential (E.5). As explained above, we are interested in the
limit ε→ 0 and q ≥ q0(ε)→∞. In particular, we wish to determine whether in this limit
the product εq0 goes to zero, remains finite, or diverges. We will establish that the product
remains finite by showing that the other two possibilities lead to a contradiction.

Consider first the possibility that εq0 → ∞ as ε → 0. Then the potential takes the
form

V α(z, q)− q2 ' Aα cos2
(√

2z
)

+ Bα cos
(√

2z
)

+ Cα

2 sin2
(√

2z
) +

(mα)2

1 + cos
(√

2z
) − 4 cos4

(
z√
2

)
ε2q2 ,

(E.8)
where the last term dominates everywhere except near the endpoints z = 0 and zmax, at
which the order-one part of the potential, given by the first two terms on the right-hand
side, diverges. As an illustration, figure 22 shows the potential for the α = 3 - mode for
several values of εq. We see that the potential develops a minimum at a small value of z
as εq becomes large. This allows us to consider an expansion for small z in order to obtain
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Figure 22. Potential for α = 3, in the limit ε→ 0, q →∞ and εq fixed. From top to bottom the
curves correspond to εq = 4, 8, 12, 16, 20.

the energy levels associated to the potential. In this way we reproduce the result (C.9),
approximated for ε→ 0. For example, in the case α = 3 and n = 0 the dispersion relation
takes the form:

ω(q) =
(
1− 2ε2

)
q +

2√
5q

√
1 + 20q2ε2 +O(ε2) . (E.9)

The value of q0 is determined by the condition ω(q0) = vq0, where v is the quark velocity,
which depends on the quark position through

v(r0) = 1− 2ε2

ρ4
0

+O(ε4) . (E.10)

The result is

εq0 =

−10 +
√

5

√
20 + r2

0(2 + r2
0)
(
40 + 21r2

0(2 + r2
0)
)

(1 + r2
0)2

−1/2

. (E.11)

This expression is not parametrically large for any value of r0 except in the limit r0 → 0,
which was considered above and is unrelated to the zero-temperature limit under consider-
ation here. In particular, for small r0 eq. (E.11) yields εq0 = 1/r0

2 + 3/2 +O(r2
0), whereas

for large r0 one finds εq0 = 2.01 + 1.99/r4
0 + O(1/r6

0). We therefore conclude that εq0(ε)
remains finite as ε → 0, in contradiction with our initial assumption that εq0(ε) → ∞ in
this limit.

Consider now the opposite possibility, i.e. that εq0 → 0 as ε → 0. In this case the
last term in the potential (E.8) is small and the energy levels can be determined using
perturbation theory with the result

ω2
n(q) = q2 + λn − wnε2q2 +O(ε4q4) . (E.12)

Here, λn are the eigenvalues of the problem in the absence of the perturbation, and −ωn is
the (negative) first-order correction given by the expectation value of the perturbation in
the n-th eigenstate, 〈n|−4 cos4(z/

√
2)|n〉 . The key point is that λn and wn are independent

of ε and q. In order to find the crossing point, we need to solve ω2
n(q0) = v2q2

0. Since the
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minimum possible value of q0 corresponds to the maximum quark velocity, v = 1, we find

εq0 '
√
λn
wn

, (E.13)

which is in contradiction with our initial assumption that εq0 → 0.
We therefore conclude that the combination

εq̂ = ε
√
εq =

1
m3

q̃

πT
=

(√
λT

2Mq

)3
q̃

πT
=
(

2πT
Mmes

)3 q̃

πT
(E.14)

remains finite in the limit T → 0, where we have reinstated the hat and we recall that q̃ is the
physical, dimensionful momentum. We see that in this limit q̃(T )T 2 ∼ M3

q /λ
3/2 ∼ M3

mes,
which remains finite in the low-temperature limit, as we anticipated. This means that the
relevant potential in this limit is (E.8), where all terms are of the same order. This makes
the problem harder than that associated to the limit r0 → 0, and we have been unable to
find analytic expressions for the corresponding eigenfunctions and eigenvalues.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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