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1. Introduction 

 

Todays need for more energy that can also can be clean energy and that provide energetic 

security is becoming more and more valuable. There are global, regional and national goals for 

achieve either one or all of this energy challenges. There are emerging economies claiming for 

their right for industrialization using fossil fuels, regions and countries claiming for energetic 

independence and also others claiming for clean energies that don’t compromise world 

sustainability on the long term. 

 

There are worldwide efforts to get to clean and cheap energy sources. One of this initiatives is 

International Energy Agency goal to reduce by 50% Greenhouse effect Gases (GHG) on 2050. 

 

Solar energy is the most abundant form of energy in the world. In one hour the earth receives 

more energy than the one used by human activity. There are three main forms developed for 

harvesting energy from the sun. Solar Heating and Cooling (SCH), Concentrating Solar Power 

(CSP) and solar Photovoltaics (PV). Solar PV is a clean energy harvesting technology that also 

provides energy security. Also in the following years it is expected that solar PV prices will drop 

down enough to offer cheap energy as well. 

 

Today it’s true that when solar PV technology is manufactured produces GHG emissions. These 

emissions are mainly associated with the electricity needed for manufacture process, so if while 

clean energy develops also PV manufacture produce lower quantity of GHG emissions. 

 

PV industry is growing almost exponentially. Today’s residential PV prices are competitive with 

electricity retail prices and in the mid-term utility PV will became competitive without special 

policies. On PV industry silicon related technologies have the challenge to reduce their energy 

intensity during the manufacture process and to increase the conversion efficiency of turning 

solar energy into electricity. Other PV technologies that are not based on silicon use scarce 

materials, making them not viable for wide world extended use. 

 

Efficiency, embedded energy and GHG emissions are the most important variables for PV 

manufacture and therefore will be the ones treated on this study. In order to understand 

embedded energy, the PV technologies manufacture process must be understood. GHG on PV 

industry are closely related to the embedded energy and to the energy mix of where it is 

manufactured. 

 

Life Cycle Assessment (LCA) can help us to evaluate the sustainability of silicon-based PV 

industry. We can understand better embodied energy and energy payback times on a common 

baseline. It is important to establish a common methodology so the different LCAs can be 

integrated and/or compared. For this study we will focus of manufacture and transport LCA 

analysis. Also we will evaluate how the irradiance and temperature according to each 

geographical location can affect payback times. 

 

We will finally evaluate GHG emissions associated to the energy use during the manufacture 

process. We will evaluate if we can save energy and therefore CO2 emissions transporting only 

solar cells from the main suppliers and building the module on suppliers region. 
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2. Solar Photovoltaic Outlook 

 

PV has experienced a constant growth in the last decades at an average rate of more than 40% 

since 2000. At 2013 it provided 0.1% of total global electricity generation and it is expected to 

provide 5% in 2030 and 11% in 2050 (International Energy Agency, 2010). On Figure 1 world 

growth per region is presented, Europe remains as the main region for PV installed capacity, 

however China and APAC (Asia Pacific) regions has almost tripled and doubled their capacity 

respectively. 

 
Figure 1. Evolution of global PV cumulative installed capacity 2000-2013 on Megawatts 

 
RoW: Rest of the World, MEA: Middle East and Africa, APAC: Asia Pacific. 

Source: EPIA – Global Market Outlook for Photovoltaics 2014-2018 (2014). 

Nevertheless, this important increase of PV worldwide capacity is insufficient to meet the power 

needs for the next decades. As shown if Figure 2, the increase of energy needs by emerging 

economies are so intense that will increase use fossil energy sources for the next decades. Even 

tough, developed countries will have the opportunity to grow renewable energy production and 

more particular PV solar energy, which is the one with the best rate of increment of use (EPIA - 

European Photovoltaic Industry Association, 2014). Also in countries like the United States of 

America, that are looking for stop depending of foreign oil using their own shale gas reserves, 

will increase their PV electricity participation in the long term (Jones & Martin, 2014). Therefore, 

PV electricity generation and other renewable energy sources should be developed enough in 

order for them to be more viable options for emerging economies. 

 

Even with the emerging economies effect, if the 11% of worldwide electricity production for 

2050 is achieved, PV generation will reach 3 TW of installed capacity. This will produce 4500 

TWh from PV and will avoid 2.3 Gigatonnes of CO2 emissions per year (International Energy 

Agency, 2010). 

 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Europe 129 265 399 601 1306 2291 3289 5312 11020 16854 30505 52764 70513 81488

APAC 368 496 686 916 1198 1502 1827 2098 2628 3373 4951 7513 12159 21992

Americas 21 24 54 102 163 246 355 522 828 1328 2410 4590 8365 13727

China 19 24 42 52 62 70 80 100 140 300 800 3300 6800 18600

MEA 0 0 0 0 1 1 1 2 3 25 80 205 570 953

RoW 751 807 887 964 993 1003 1108 1150 1226 1306 1590 2098 2098 2098

0

20000

40000

60000

80000

100000

120000

140000

160000



 

 
3 

 

Figure 2. World Energy Consumption per Region. 

 
Source: OECD / IEA World energy Outlook 2009 – Reference Scenario. 

From: World Nuclear Association. World Energy Needs and Nuclear Power. 

 

PV market divides on residential systems and utility systems. Residential systems have a higher 

cost than utility systems. Nevertheless, residential systems compete with the retail prices of 

distribution grid, rather than utility systems that compete with the generation grid prices 

(International Energy Agency, 2010). 

 

Investment cost on PV systems is still relatively high, although they are decreasing constantly 

because of the technology improvements and economies of volume and scale. Therefore, the 

viability of the systems depend on interest/discount rate and the sunlight irradiation. Residential 

and utility systems are more viable in countries with high electricity costs and with better 

sunlight irradiation (IEA-ETSAP and IRENA, 2013). 

 

Many countries and world regions are looking to increase R&D (Research and Development) and 

to stimulate economies of volume and scale by implementing different programs, such as Solar 

Europe Industry Initiative, the Solar America Initiative (SAI), Japan’s PV roadmaps towards 2030 

(PV2030) and Australia’s Solar Flagships. Also emerging economies like India and China are 

pursuing an aggressive solar PV growth strategy. Latin America and Africa are considered as a 

high potential for generation but have no expectations for rapid growth in an immediate stage 

(International Energy Agency, 2010). 

 

By 2020 PV generation costs at residential and commercial applications are expected to be lower 

than the electricity retail prices in many countries and utility PV systems are expected to arrive 

at the edge of competitiveness with wholesale electricity costs (International Energy Agency, 

2010) & (IEA-ETSAP and IRENA, 2013). 

 

In PV Industry, Crystalline silicon (c-Si) modules represent more than 80% of the global market 

today with the best commercial module efficiency of 19-20% and more than 25-year lifetime. C-

Si modules are subdivided in two main categories: i) single crystalline (sc-Si) and ii) multi-

crystalline (mc-Si). Meanwhile, thin film modules have 10-15% of global PV module sales with 

an efficiency of 6-12% (International Energy Agency, 2010) & (IEA-ETSAP and IRENA, 2013). PV 
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film technologies are subdivided into three main families: i) amorphous (a-Si) and micromorph 

silicon (a-Si/μc-Si), ii) Cadmium-Telluride (CdTe), and iii) Copper-Indium-Diselenide (CIS) and 

Copper-Indium-Gallium-Diselenide (CIGS). On Figure 3 different types of PV technologies are 

illustrated according to their efficiency, price and market share.  

 
Figure 3. Current performance and price of different PV module technologies.  

 
* Percentage share of 2008 market 

Source: IEA International Energy Agency - Solar photovoltaic energy, 2010. 

 

On crystalline silicon modules it is single crystalline the one that has reached best efficiency 

compared with multi-crystalline or other thin film technologies, as shown on table 1. 

 
Table 1. Current efficiencies of different PV technology comercial modules. 

 
Source: IEA International Energy Agency - Solar photovoltaic energy, 2010. 

 

Each technology has their own challenges to reach major development. For c-Si modules, the 

main concern is to improve the efficiency and effectiveness of resource consumption through 

materials reduction and improved cell concepts and automation of manufacturing. Meanwhile, 

thin film must be developed for obtaining higher efficiency. (International Energy Agency, 2010). 

Particularly for CdTe and CIS/CIGS technologies today’s production of necessary materials is not 

enough for meeting PV industry needs. Also mineral reserves are concentrated in only few 

countries (EPIA - European Photovoltaic Industry Association, 2014). 
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3. Silicon PV Technologies 

 

Silicon is the second element on abundance 

in the Earth´s crust with 28.2% by weight 

(Lide, 1996). It´s distributed in all regions of 

the world (U.S. Geological Survey, 2008) and 

is found in different forms of silicon oxide or 

silicates. Quartz and quartzite are the 

minerals in which crystal silicon dioxide is 

found in a relatively pure form. In order to 

get silicon for use in PV industry this raw 

materials must be transformed into purified 

form of silicon. Figure 4 illustrates the 

manufacturing process of silicon-based PV 

modules. Transformation from silica sand to 

silicon requires high temperatures and a 

pure form of carbon in order to reduce 

dioxide silicon into silicon metal and CO2 

(Lifton, 2008). This silicon metal is called 

Metallurgic Grade Silicon (MG-silicon) which 

is the base product for manufacturing 

amorphous silicon (a-si) and crystal silicon 

(c-si), both single and multi-crystalline 

(Peng, Lu, & Yang, 2013). Once the MG-

silicon is produced it follows different 

processes according to the type of solar cell 

that will be produced (a-Si, mono-Si or multi-

Si). 

 

Figure 5. Manufacturing processes of Si based PV 
modules. 

 
Source: Peng, Lu, & Yang, 2013 

 

 

 

Figure 4. Carbothermic Arc Reduction for MG-silicon manufacture. 

Source: Wendman, 2006. Picture from Elkem Silicon of Norway. 
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3.1 Amorphous Silicon 
 

Amorphous silicon (a-si) have the lowest ecological 

impact of PV materials (Kreiger, Shonnard, & Pearce, 

2013). It has a lower efficiency compared to crystalline-

based PV or even to other thin film PV technologies like 

CdTe or CIS/CIGS (International Energy Agency, 2010). 

The main advantages of a-si PV are their low cost, 

availability of raw materials, lower negative effect of high 

temperatures compared c-Si and the wide range of 

possible applications due to their possibility to take 

different shapes and sizes (Panasonic Corporation, 2014). 

 

As shown on Figure 4, the MG-silicon is transformed into silane. This process take two steps, first a 

reaction is needed between MG-silicon powders with hydrogen chloride at about 300 oC in order 

to get trichlorosilane combined with hydrogen. Then the trichlorosilane is boiled in a bed with a 

special catalyst in order to transform trichlorosilane into silane and silicon tetrachloride (O’Lenick, 

1999). 

 

Deposition of a-Si layers are made by running a substrate through a set of chambers and exposing 

it to a mix of silane and hydrogen using plasma enhanced chemical vapor deposition (PECVD). Once 

PECVD is made a-Si layers get deposited in solid state on the substrate. PECVD process get place at 

low temperatures (about 65 oC) so the deposition can be made in a wide range of substrates, even 

on plastic (Kreiger, Shonnard, & Pearce, 2013). 

 

A-Si layer are constructed in a p-i-n and n-i-

p device structure as shown on Figure 6. P-

i-n- or n-i-p diodes consist on classic P and 

N material doped regions and an intrinsic (I) 

region between them. This I region makes 

the diode more suitable for photo-

electronic applications (Doherty, 1997). P-

layer is usually doped with boron, it is 

followed by I-layer which is either undoped 

or doped with germanium. Finally n-layer is 

doped with phosphorous. Once the doping 

is done the substrate is ready for cell 

production. 

 

 

3.2 Crystalline silicon. 

 

The embodied energy represents the quantity of energy used on all the life cycle of a product, from 

cradle (raw materials) to grave (disposal) or even to recycling (Costanza, 1980). The main concern 

on crystalline silicon for PV is the amount of embodied energy accumulated during the manufacture 

process. Greenhouse effect gas emissions have a wide variation depending on the energetic mix of 

each country or region in which the cells are manufactured (Blakers & Weber, 2000). 

 

Picture 1. Amorphous silicon cells 

Source: www.wifinotes.com 

Source: University of New South Wales, 2008. 

Figure 6. The structure of amorphous silicon. 
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In order to produce either mono-crystalline silicon (also called 

single-crystalline silicon) or multi-crystalline silicon (or poly-

crystalline silicon) the MG-silicon must be processed. MG-

silicon has a purity of 98% which is too low for PV needs and 

needs to be purified to electronic grade silicon (EG-silicon) with 

a purity of 99.9999999%. This is achieved via the Siemens 

process, in which silicon is reacted with HCl to produce 

trichlorosilane, which is then decomposed with the aid of 

hydrogen at 1200oC in order to produce EG-silicon and silicon 

tetrachloride (SiCl4) in a proportion of 2:7 respectively. SiCl4 is 

used in other industries so it can account its own embodied 

energy (Blakers & Weber, 2000). 

 

Since solar PV does not require so much high silicon purification, there has been developed a 

modified Siemens process in which silane and hydrogen are only heated to about 800oC. Therefore, 

Siemens modified process allows to save large amount of energy during the process of producing 

solar grade silicon (SoG-silicon). Also off-grade silicon, that is a by-product from the original Siemens 

process to produce EG-silicon, can meet the requirements of SoG-silicon (Peng, Lu, & Yang, 2013). 

 

Initially scale economy make more viable to produce crystalline silicon from EG-silicon or from off-

grade silicon. With the increase of the PV industry it has become more viable to produce SoG-silicon 

so that important energy saves (and therefore reduce embodied energy) can be achieved. On 2006 

off-grade silicon was reduced to 5% of total PV supply (Peng, Lu, & Yang, 2013). 

 

 

3.2.1 Multi-crystalline silicon. 

 

For multi-cSi manufacture SoG-silicon, EG-silicon or off-grade silicon 

is melted and crystalized by casting process to make a large grained 

multi-crystalline ingot (Blakers & Weber, 2000). Compared with 

single-crystalline silicon, multi-cSi production is more simple and 

cheaper. Wafers are directly produced from the ingot with no 

additional process (Peng, Lu, & Yang, 2013). Multi-cSi have lower 

efficiency than single-cSi. Grain boundaries reduce solar cell 

performance because the carrier flows is blocked, creating shunting 

paths of the current flow on the semiconductor n-p junction. Also 

overall minority carrier lifetime is reduced due to extra defect energy 

level on the band gap, caused because grain boundaries introduce 

high localized regions of recombination (Card & Yang, 1977). 

Multi-cSi silicon crystals can be observed at simple sight of grain 

boundaries noted in the wafer. This kind of PV technology has being 

experiencing important growth in the last years, by 2013 there are over 

100 manufacturers compared with only twelve on 2006 (ENF Solar, 2014). 

Multi-cSi PV is expected to dominate solar industry on 2014 with more of 

the 60% of the PV market (Solarbuzz, 2013). 

 

 

  

Picture 2. MG-silicon. 

Source: Qatar Solar Technologies 

Picture 3. Polysilicon ingot. 

Source: Dow Corning Corporation.  

Picture 4. Multi-cSi wafer. 

Source: Card & Yang, 
1977 
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3.2.2 Mono-crystalline silicon. 

 

Mono-crystalline silicon, or single-crystalline silicon, is the most 

energy intensive and efficient PV technology. This because 

while having a single crystal there are no problems with grain 

boundaries presented on multi-cSi. Because of this energy 

intensive process the current share market for multi-cSi is in a 

slow declination (29.6% on 2013 to 29.3% projected to 2014) 

(Solarbuzz, 2013). The main difference compared to multi-cSi is 

that SoG-silicon, EG-silicon or off-grade silicon melted to form 

multiple crystals must be transformed into one single crystal 

ingot. The process most used for this to happen is the 

Czochralski (CZ) method (Blakers & Weber, 2000). CZ process 

was invented in 1916 by Polish chemist Jay Czochralski. This 

method for crystal growth consists on pulling fibers of different 

metals from their melts and get a product composed by a single 

crystal. 

 

High-purity silicon is melted at 1400oC in an inert atmosphere on 

a chamber usually made of quartz. Then dopant can be added 

(typically boron or phosphorous) to make a p-type or n-type 

silicon. Then a rod seed crystal is inserted into de molten silicon. 

The rod seed starts rotating while it is slowly pulled upwards. 

Having an adequate control of temperature, speed rotation and 

pulling upward speed makes possible to produce a cylindrical 

ingot (Talik & Oboz, 2013). Figure 7 illustrates CZ process in which 

rotation and principal variables can be observed. Picture 5 shows 

a single crystal ingot produced by CZ process. At this point to 

produce 1.6 kg of CZ silicon requires 5.8 kg of MG-silicon (2.4 kg if 

silicon incorporated into SiCl4 is excluded) (Blakers & Weber, 

2000). 

 

CZ process is commonly used for commercial substrates, but it has several disadvantages for high 

efficiency cell market because of the oxygen impurities in the silicon wafer. This impurities reduce 

the carrier lifetime in the solar cell reducing voltage, current and efficiency. It also makes solar cell 

more sensitive to heat, reducing its efficiency under high heat conditions. (Honsberg & Bowden, 

Float Zone Silicon, 2013). 

 

An alternative for CZ method is Float-zone (FZ) method. FZ use an EG-Si ingot placed vertically, 

which is passed along back and forward with a circular magnetic heater (RF coil) melting only one 

zone of the ingot. The ingot have a seed rod in it. In this process the ingot impurities are removed 

from the ingot at the time it grows single crystal ingot. At the end of the process high purity mono-

cS is produced. Principal difficulties are growing large diameter mono-cSi ingot (because it has to 

be enough surface tension in order to and the elevated price of the process). FZ wafers are 

commonly used on laboratory cells and high efficiency cell applications rather than common cell 

commercial production (Green, 2009). 

 

 

Figure 7. Czochralski crystal growth. 

Source: N Cheung, Berkeley, 2006. 

 

Picture 5. Single crystal ingot. 

Source: N Cheung, Berkeley, 2006. 
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3.3 Cell and module production. 

 

After production of Ingots from mono-cSi or multi-cSi, they need to 

be sliced into wafers losing the top and the tail of the ingot. This is 

made using a multiwire saw and abrasive slurry. The ingot is sliced 

with a pitch of 0.5 to 1 mm to produce wafers of 0.3 to 0.5 mm, thus 

40-50% of the ingot is lost as dust. This dust can be recovered to 

make a new ingot, but it has to be processed again in order to 

produce an ingot. (Blakers & Weber, 2000). Any way energy from 

upgrading silicon from MG-silicon to EG-silicon could be avoided in 

some fraction. This process dominates the PV ingot market, but 

there are other processes under development that try to grow 

wafers so that the cutting process could be avoided. Edge Defined 

Film Fed Growth (EFG) is a technique that permits to crystalize 

silicon wafers with large grains (Honsberg & Bowden, Float Zone 

Silicon, 2013). 

 

Si solar cell processing starting substrates are uniformly doped with boron giving a p-type base. The 

n-type emitter layer is formed through phosphorous doping. This is achieved by Solid state diffusion 

method for introducing dopant atoms into semiconductors (Honsberg & Bowden, Float Zone 

Silicon, 2013). Once either the doped wafer of c-Si or the doped substrate of a-Si is produced a step 

of a sequence of high temperature diffusion, oxidation, deposition and annealing are made on the 

cells. Then, after metallization, cells are connected with copper tabs. Up to 9% of the area is lost 

due to spaces leaved between cells (Blakers & Weber, 2000). 

 

Then cells are encapsulated into a module behind glass with Ethylene-Vinyl Acetate (EVA) and 

Polyvinyl Fluoride film (PVF or Tedlar) using only heat and pressure. Depending on the Si technology 

and application the modules are mounted on different type of frames with different type of front 

materials. 

Figure 8. Float Zone wafer growth 

Source: Honsberg & Bowden, 2013. 

Source: Honsberg & Bowden, 2013. 

Figure 9. Silicon brick being sliced. 
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4. Life Cycle Assessment 

 

PV is recognized as one of the cleanest technologies for electricity generation. In order to be 

sustainable, energy consumed on its lifetime has to be lower than the one generated by the PV 

appliance. Life Cycle Assessment (LCA) allows to know how sustainable a PV technology is (Peng, 

Lu, & Yang, 2013). On this analysis we will consider only embedded energy and CO2 equivalent 

emissions to determine sustainability. It is clear that other factors could be of great importance for 

determine an absolute sustainability but for the present analysis the other factors will not be 

considered. There will be no possible sustainability if embedded energy is greater than the energy 

generated by the PV appliance, either if the CO2 emissions are greater than the ones generated by 

conventional fossil electricity generation technologies. 

 

 

4.1 Methodologies 

 

There is a methodology guidelines for developing LCA for PV electricity made by the International 

Energy Agency (IEA). Having a standard methodology allows to make comparisons or 

homologations on different LCA studies (Alsema, et al., 2009). Methodology guidelines establish 

that all PV LCA studies must be elaborated according to the ISO standards 14040 and 14044. It also 

structures the guidelines into three main areas: recommendations for technical characteristics 

related to PV systems, aspects regarding modeling in both LCA inventory and impact approaches 

and aspects about reporting and communication (Alsema, et al., 2009). Guidelines will be presented 

in a resumed way showing the relevant facts for the present analysis and that are followed by LCA 

reports analyzed.  

 

 Photovoltaics-specific aspects. 

o Recommended life expectancy. 

 Modules: 30 years on mature module technologies (EVA-Tedlar encapsulation) 

 Inverters: 15 years for residential PV and 30 years for large plants with 10% of 

part replacement each 10 years. 

 Structure: 30 years for roof-top al facades and 30 to 60 years for ground mount. 

 Cabling: 30 years. 

 Manufacturing plants: less than 30 years because technology development. 

o Irradiation. It depends on the location and orientation of the modules. 

 Analysis of industry average and best case. Assume optimal orientation of the 

array plane. Case specific irradiation for façade installations. 

 For analyzing the average of installed systems in a grid use actual orientation 

and irradiation. 

o Performance ratio (PR). Depends on the kind of installation. Well controlled 

temperature installations and large installations will have a better performance. 

 For roof-top installations use a default value of 75%. 

 For ground-mount installations use 80% for default PR. 

 Use performance data when is available or use assumptions accord grid data. 

o Degradation. Results on reduction of efficiency over the life time. Mature technologies 

assume 80% of degradation at the end of 30 years. Assume lineal degradation over the 

life time. 

o Back-up systems. For PV LCA analysis is not necessary to include even if it’s present. 
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 LCA modelling aspects. 

o System modelling 

 Define and distinguish the following goals of the LCA: 

 Report environmental impacts. 

 PV systems comparison or comparison vs. other technologies. 

 Long-term energy policies based of future PV systems. 

 Recommendations: 

 An attributional, decisional or consequential approach should be 

chosen. 

 Product system shall be divided into foreground and background 

processes. 

 Use the present average mix when modelling future PV production. 

 Use specific electricity mix when the analysis is bounded to a certain 

country. 

 Identify clearly country o company specific cases. 

 For long-term use an average future mix and adapt performance of 

power plants contributing for this future mix. 

 On long-term analysis adapt the efficiency of material supply, transport 

and waste management. 

o Functional unit and reference flow. Use ISO definitions of functional unit and reference 

flow. Functional unit is quantified with the reference flow as KWh electricity or m2 

laminate. Location, module type, voltage and how the transmission and distribution 

loses are accounted must be specified. 

 PV Comparison. Use kWh of electricity fed into the grid 

 For quantify environmental impacts of buildings or for quantifying energy gains 

on roofs use m2 of PV module. 

o System Boundaries. It is important to define what to include and what to exclude from 

the analysis. 

 Product system must include the panel, the mounting system, the cabling, the 

inverter and all components since generation until injection to the grid. 

 Include energy and material flows of manufacturing process like climate 

control, ventilation, lighting, emissions control or waste treatment. 

 Exclude transportation of human resources. 

 If administration, sales and distribution, and research and development are 

included in the analysis try to keep separated from manufacturing inventory. 

 Reporting and communication. 

o Key parameters to be reported: 

 Explicit goal of the study, name of the commissioner and intended purpose and 

audience. 

 Module efficiency, Irradiation, performance data (including PR) and define the 

region / location of the PV plant. 

 Assumptions for production of major input materials, for system type, method 

of module mounting and Balance of System components (BOS). 

o Reporting results: 

 Adapt category indicators to audience. 

 Describe Cumulative Energy Demand (CED) method used for Energy Pay-Back 

time (EPBT) 
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 Give clear reference to the impact assessment method applied and separate 

“background” and “foreground” contributions to the impact. 

 

 

4.2 Objectives and Scope. 

 

The main goal of this study is to analyze different LCA for a-Si, mono-cSi and multi-cSi PV 

technologies and focus on embedded energy and EPBT, as well as GHG emissions. The scope of this 

analysis is limited to recent LCA studies in order to use information of the most recent technology 

available. The range of years in which LCA results were published goes from 2005 to 2011. 

 

Even though each of LCA studies have its own objective and scope, the total embedded energy an 

EPBT are similar in the order of magnitude and allows to have a good idea of the magnitude and 

effect on each PV technology. 

 

GHG emissions have a big variation between different LCA studies, but have a similar order of 

magnitude. This variation can be caused by a very wide range of reasons (different electricity mix 

of the country where it was manufactured, kind of process used, etc.). This effect will be analyzed 

in Chapter 5 in which it will be considered the geographical influence. Balance of System (BOS) will 

not be considered because it’s the same for all the silicon-based PV technologies studied. 

 

The functional unit is one square meter of PV module. EPBT will be expressed in years and will be 

independent of functional unit because is also function of the irradiance received per square meter. 

GHG emissions will be expressed on grams of CO2 equivalent per kWh, but will also be related to 

the kWh produced per square meter of module. 

 

 

4.3 Parameter Inventory. 

 

Inputs and outputs considered are not always presented in the same way on all the LCA analysis. 

Sometimes are integrated on other inputs. Table 2 shows the input and output parameters that will 

be considered. 

 
Table 2. LCA Parameter Inventory. 

 
 

  

PV Tech Inputs Units PV Tech Inputs Units

mono-cSi Energy for produce MG-silicon MJ/m2 a-Si Cell Material MJ/m2

multi-cSi Si feedstock production energy MJ/m2 a-Si Process Energy MJ/m2

mono-cSi CZ Process MJ/m2 cSi & aSi Irradation kWh/m2/yr

mono-cSi Wafer slice MJ/m2 cSi & aSi Module efficiency

multi-cSi Casting and cutting MJ/m2 cSi & aSi Lifetime Years

cSi & aSi Cell production MJ/m2
cSi & aSi Performance Ratio (PR)

cSi & aSi Module assembly MJ/m2
PV Tech Outputs Units

cSi & aSi Frame MJ/m2 cSi & aSi Total Embedded Energy MJ/m2

multi-cSi Other manufacture parameters MJ/m2 cSi & aSi EPBT Years

a-Si Capital Equipment MJ/m2
cSi & aSi GHG emissions rate g of CO2-eq /kWh
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4.4 Results. 

 

Data was collected from different LCA analysis and is presented in comparative tables. At the end 

averages for each silicon-based PV technology are compared. On reference section the detail of 

each LCA publication can be found. 

 
Table 3. Embedded energy from mono-cSi manufacture. 

 
 

On Table 3 embedded energy from manufacture process of mono-cSi is presented collected from 4 

LCA analysis. In the total energy there is a clear difference between 2005 compared with 2009 and 

2011 studies. The best improvement is noted on CZ process which was importantly reduced on that 

period. Other stages remain almost in the same quantity on energy use. In some LCA separated 

energy data for wafer or frame was given. 

 
Table 4. Embedded energy from multi-cSi manufacture. 

 
 

Embedded energy analysis for multi-cSi manufacture process is shown on Table 4. There is a more 

attenuated reduction tendency (compared to mono-cSi) on total energy, mostly caused by 

improvements on Si feedstock production. For Pacca and Sivaraman study cell production groups 

several stages of the manufacture process so no individual analysis can be studied. 

 
Table 5. Embedded energy from amorphous-Si manufacture. 

 
 

On Table 5 energy consumption for a square meter of amorphous-Si module is evaluated on two 

LCA analysis. There is no tendency to reduce energy consumption, even it appears to be increasing. 

But if we compare these results with 1998 LCA analysis we can see a clear reduction of more than 

a half of energy use (Peng, Lu, & Yang, 2013). 

 

Authors Year
MG-silicon

(MJ/m2)

CZ process

(MJ/m2)

Wafer

(MJ/m2)

Cell

production

(MJ/m2)

Module

assembly

(MJ/m2)

Frame

(MJ/m2)

Total

(MJ/m2)

Alsema and Wild-Scholten 2005 1759 2391 473 394 236 5253

Jungbluth and Stucki 2009 1029 1208 562 595 466 3860

Wild-Scholten 2009 728 1266 389 477 2860

Laleman 2011 2397 432 684 3513

Authors Year

Si feedstock

production

(MJ/m2)

Wafer

(MJ/m2)

Cell

production

(MJ/m2)

Module

assembly

(MJ/m2)

Frame

(MJ/m2)

Others

(MJ/m2)

Total

(MJ/m2)

Alsema and Wild-Scholten 2005 1759 1078 473 276 236 118 3940

Pacca and Sivaraman 2007 1075 3247 4322

Alsema and Wild-Scholten 2007 1400 550 400 500 270 3120

Jungbluth and Stucki 2009 1030 968 544 523 3065

Wild-Scholten 2009 1110 744 378 467 2699

Authors Year
Cell Material

(MJ/m2)

Substrate, encapsulation,

materials and cell production

(MJ/m2)

Process

energy

(MJ/m2)

Capital

equimpment

(MJ/m2)

Total

(MJ/m2)

Pacca and Sivaraman 2007 172 690 862

Wild-Scholten 2009 50 350 400 189 989
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Table 6. LCA Results of mono-cSi, multi-cSi and aSi PV systems. 

 
 

Table 6 shows EPBT and GHG emissions for 15 different LCA studies since 2005 until 2010. EPBT 

depends on irradiation available where the PV panel is allocated. On Switzerland analysis of all PV 

technologies show an increase on EPBT because low irradiation. Also too much irradiation like 

shown on Ito and Kato LCA on China, does not necessarily reflects on an EPBT improvement. High 

irradiation can increase module temperature and decrease efficiency and therefore EPBT. 
 

High temperatures cause silicon semiconductors become a more resistant conductive material, 

reducing the band gap of the semiconductor affecting its efficiency (Honsberg & Bowden, Effect of 

Temperature, 2013). On Table 6 a-Si shows a better performance at high temperatures, while 

mono-cSi and multi-cSi have better performance on low temperature locations. 

PV Tech. Authors Year Location
Irradiation

(kWh/m2/yr)

Module

Efficeincy

Lifetime

(yr)

Performance

Ratio
EPBT (yr)

GHG emissions rate

(g CO2-eq/kW he)

mono-cSi Alsema and Wild-Scholten 2005 South Europe 1700 13.7% 30 0.75 2.6 41

mono-cSi Alsema and Wild-Scholten 2006 South Europe 1700 14.0% 30 0.75 2.1 35

mono-cSi Jungbluth and Dones 2007 Switzerland 1117 14.0% 30 0.75 3.3

mono-cSi Wild-Scholten 2009 South Europe 1700 14.0% 30 0.75 1.8 30

mono-cSi Ito and Komoto 2010 China 1702 0.78 2.5 50

multi-cSi Alsema and Wild-Scholten 2006 South Europe 1700 13.2% 30 0.75 1.9 32

multi-cSi Pacca and Sivaraman 2007 U.S. 1359 12.9% 20 2.1 72.4

multi-cSi Jungbluth and Dones 2007 Switzerland 1117 13.2% 30 0.75 2.9

multi-cSi Raugei and Bargigli 2007 South Europe 1700 14.0% 20 0.75 2.4 72

multi-cSi Wild-Scholten 2009 South Europe 1700 13.2% 30 0.75 1.8 29

multi-cSi Ito and Komoto 2010 China 1702 0.78 2.0 43

aSi Jungbluth and Dones 2007 Switzerland 1117 6.5% 30 0.75 3.1

aSi Pacca and Sivaraman 2007 U.S. 1359 6.3% 20 3.2 34.3

aSi Ito and Kato 2008 China 2017 6.9% 30 0.81 2.5 15.6

aSi Wild-Scholten 2009 South Europe 1700 6.6% 30 0.75 1.4 24

PV Tech

Embedded

energy

(MJ/m2)

Module

efficiency
EPBT (yr)

GHG emissions rate

(g CO2-eq/kW he)

mono-cSi 3871.5 13.9% 2.5 39.0

multi-cSi 3429.2 13.3% 2.2 49.7

aSi 925.5 6.6% 2.6 24.6

0
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mono-cSi multi-cSi aSi

0.0
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20.0
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(g CO2-eq/kW he)

mono-cSi multi-cSi aSi

Table 7. Average values of LCA results. 

Figure 12. Average EPBT Figure 11. Average module efficiency Figure 10. Average embedded energy 

Figure 13. Average GHG emissions rate 
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Table 7 shows the average values of LCA results for all the three PV technologies on total embedded 

energy from manufacture, module efficiency, EPBT and GHG emissions. Figures 10, 11, 12 and 13 

shows the data on Table 7 for comparison. 

 

Figures 10 and 11 shows that mono-cSi is the most energy intensive and more efficient of the three 

type of modules, followed closely by multi-cSi. Amorphous silicon shows very low energy 

consumption on the manufacture process, but it also have less than half efficiency of the crystalline 

technologies. Neither the most efficient nor the more low energy consume module is the ideal for 

achieving the best EPBT. As shown on Figure 12 the best EPBT is presented by multi-cSi. We have 

to look for the correct balance in order to have a most sustainable technology. This doesn´t mean 

than multi-cS is the ideal in all cases, each project must be evaluated individually. For this analysis 

it only show a possible market tendency, which is true as analyzed at the end of Chapter 3.2.1 of 

this study. One important consideration is that the most developed countries on use of PV 

technology are not the ones with best irradiation and high temperatures. The best PV technology 

can change for regions with high temperatures and irradiation. 

 

On Figure 13 average GHG emissions is presented. There is no relation between GHG emissions and 

embedded energy or module efficiency. This is because GHG emissions reported are the ones 

generated directly by the different steps on manufacture process. GHG emissions related to 

electricity and therefore to the energy mix of the network used are not reported con LCA analysis. 

Even though, later we will take this factor under consideration.   
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5. Geographic Influence. 

 

After analyzing the Si PV technologies it’s clear that embodied energy is a very important factor on 

determining technologies viability. Embodied energy accumulated during the manufacture process 

of Si-based PV have a direct relationship with the CO2 footprint but the scale depends on the 

energetic mix of electricity used during the different manufacture processes. It is important to 

consider that, even that the majority of embedded energy comes for electricity, there are some 

processes that may use other energy sources. Also there is the possibility that some part of 

materials manufacture can had taken place in a different country that the one where the solar cell 

is produced. 

 

Other important factor on embedded energy and CO2 footprint is the transportation of the cells or 

modules from the manufacturer to the facilities where is installed. On many cases the distances 

between them can be very large and therefore accumulate more embedded energy and CO2 

footprint. 

 

In order to determine how these parameters influence on CO2 footprint an embodied energy we 

will study which countries are the main suppliers and buyers and energy mix for each of these 

countries. We will make a comparison between transporting solar cells and build modules on the 

country of final use or sending modules from the supplier country. For calculating embedded energy 

and CO2 footprint for transport and manufacture we will use Granta CES Edupack 2012 from Granta 

Design Limited. CES Edupack is a software program for materials analysis with a database of most 

common materials. 

 

 

5.1 Main Suppliers and main buyers 

 

When analyzing main PV suppliers it is important to 

consider where the cells and modules are made, rather 

than where are based the companies that make them. 

On Figure 8 global PV production by region is 

presented, it’s calculated on percentage of MW of 

capacity produced. If we consider all Asia in 

concentrates up to 86% of worldwide production, 

followed by Europe and U.S. with 11% of market share. 

This is a big difference compared with recent years ago. 

On 2007 Europe and U.S. held 40% of market share 

(Mehta, 2014). It doesn`t mean that if they are losing 

market share they also are decreasing their MW 

produced. Market has been growing constantly (Figure 

1). The difference in market share shows which 

countries are expanding more their production. 

Figure 14. Global PV Production by region, 2013. 

Source: Metha, 2014. 
Rest of Asian nations refer primarily to Malaysia, 

South Korea and Taiwan. 



 

 
17 

 

Main world buyers have significant differences with 

main suppliers. On Figure 11 it can be seen that the 

main markets for PV demand are China, Germany, 

North America, Japan, Italy, India, Australia, France, 

Greece and United Kingdom. China has the mayor 

growth also as a consumer of PV, not because a 

renewable energy policy or tendency, but because 

their big energy growing needs. China electricity 

needs are growing faster than renewable energy 

production (Solarbuzz, 2013). China is the biggest 

consumer but they export almost double quantity of 

the PV modules they consume. Germany an U.S. are 

big importers because their demand is far greater 

than their production. 

 

 

5.2 Transporting modules vs. transporting cells. 
 

As analyzed on previous chapters, embedded energy from PV cell manufacture represents the main 

energy concern. As shown on Chapter 5.1, there is a lot of PV modules commerce between Asia and 

Europe - U.S. markets. On this and the next chapter embedded energy from transporting will be 

evaluated. For this evaluation we will assume several characteristics of a PV solar cell and module. 

The most important parameter to obtain is the weight of solar cells on a module and the complete 

module. Also different route scenarios will be created in order to analyze the distances between 

suppliers and buyers. 

 

A one square meter of mono-cSi PV Panel is assumed for 

transport evaluation. As suggested by Blakers and Webber 

a square meter of PV Panel will require 90 solar cells with a 

total mass of 725 grams of mono-cSi (Blakers & Weber, 

2000). For module and encapsulation we will assume the 

following elements (Dunmore Corporation) with a total 

weight of 13.12 kg (including solar cells) 

 One acrylic Layer for protecting PV cells and 

electronic on the exposed to sunlight face of the 

panel. Weight according to density and thickness: 

3.6 Kg 

 Two Ethylene Vinyl Acetate (EVA) layers for cell 

encapsulation. Weight: 0.095kg x 2 = 0.19kg. 

 Copper wire. Weight 0.13 kg estimated to 

interconnect all cells. 

 Polyethylene for insulation. Weight: 1.4 Kg 

 Polyester base and frame. Weight: 7 kg 

 Bakelite electrical contacts. Weight: 0.07 kg 

Two options of transportation will be evaluated. The first considering only solar cells with a mass 

of 725 grams and the second considering a complete module of 13.12 Kg. The next step is to 

establish what routes will be analyzed. 

Figure 15. Global PV Demand in 2013. 

Source: Marketbuzz, 2013. 

Figure 16. Solar Module Exploded View 

Source: Dunmore Corporation. 
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Since Asia is the main PV cell al module producer we will consider that the supplier will be China 

and Japan. For the transport embedded energy we will not expect be relevant, but when analyzing 

electricity mix we expect to see considerable differences on GHG emissions. 

 

The main buyers worldwide are China, Europe (mainly Germany), U.S. and Japan. Since China and 

Japan are also big suppliers they can meet their own PV needs and don´t have to import PV modules 

or cells, thus we will consider Germany and U.S. as the main buyers. 

 

The Chinese port that will be considered for distance calculations will be Beijiao Terminal, while for 

Japan will be Fukuyama terminal. The port considered for importing on U.S. will be San Francisco 

Terminal, while for Germany will be Hamburg Terminal. Route distances will be calculated using 

SeaRates.com port distance calculator (SeaRates.com, 2014). 

 

 

5.3 Embedded Energy and GHG emissions from transport. 

 

Distances, module and cells weight have been entered into CES Edupack 2012 software considering 

that the distances will be covered by sea freight transportation. Distances and results are showed 

on Table 8. 

 
Table 8. Transport embedded energy and GHG emissions for sea transportation. 

 
Source: Data from SeaRates.com and CES Edupack 2012. 

 

When comparing Table 8 embedded energy from transportation with manufacture embedded 

energy on Table 7 we can see that there is a small but significant reduction on total embedded 

energy when solar cells are transported to be assembled on the buyers region. The greatest save 

will be the case on which Japan sells solar cells to Germany, in that scenario the reduction will be 

equivalent of a 4.5% reduction on manufacture embedded energy. The complete set of possible 

saving on this scenario are shown on Table 9. 

 

Supplier Port Buyer Port
Distance

(km)

Mass

transported

(kg)

Transport

Emboddied Energy

(MJ)

CO2-eq Footprint

(kg CO2-eq)

Beijiao, China San Francisco, U.S. 11330 0.725 1.3 0.093

Fukuyama, Japan San Francisco, U.S. 8995 0.725 1 0.074

Beijiao, China Hamburg, Germany 18600 0.725 2.2 0.15

Fukuyama, Japan Hamburg, Germany 20748 0.725 2.4 0.17

Beijiao, China San Francisco, U.S. 11330 13.12 24 1.7

Fukuyama, Japan San Francisco, U.S. 8995 13.12 19 1.3

Beijiao, China Hamburg, Germany 18600 13.12 39 2.8

Fukuyama, Japan Hamburg, Germany 20748 13.12 44 3.1
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Table 9. Possible savings compared to manufacture embedded energy. 

 
 

The savings described are considering energy only. Differences could appear when building the rest 

of the module on the buyer region. Assuming that the energy saving are absolute real is to assume 

that supplier and buyer regions can gather resources and build in the same conditions as supplier 

region. 

 

 

5.4 Regional energy mix 

 

Energy mix is very important when referring to GHG emissions. Manufacture embedded energy can 

come from more than one country. For the purpose of this study we will consider that all the solar 

cell and all the raw materials used are made in the same country. There are three scenarios that we 

will study: 

 China has an energy mix dominated by the use of coal. 2/3 of electricity generation comes 

from coal, followed by 22% of hydropower (U.S. Energy Information Administration, 2014). 

This mix make China one of the countries with higher emission of GHG per MWh with a 

factor of 920 kg CO2 per MWh (CO2Benchmark Ltd, 2013). Figure 17 shows China energy 

mix on 2012. 

 Japan is one of the countries that invest more on renewable energies, and until 2009 it also 

had an important energy share of nuclear energy. Since 2009 Fukushima disaster Japan 

have gradually reduced nuclear generation. For purpose of getting the effect of nuclear and 

renewable energy on energy mix we will consider values of 2009 before Fukushima 

disaster. By 2009 Japan had 27% percent of nuclear energy on their mix, also 26% with gas 

and only 28% with coal (U.S. Energy Information Administration, 2011). That energy mix let 

them to have GHG emissions of 436 kg CO2 per MWh (International Energy Agency, 2009). 

Figure 18 show Japan energy mix on 2009. 

 Germany is a country that has bet for renewable energy sources not only above fossil fuel 

generation, also above nuclear energy. On 2013 coal generation is in around 46% of energy 

mix, while renewable energy represents 24% of energy mix (Morris, 2014). Figure 19 

illustrates Germany energy mix. With high participation of renewable energy but with half 

of their production on coal, Germany has a GHG emission rate of 670 kg CO2 per MWh 

(CO2Benchmark Ltd, 2013). 

PV Tech Supplier Port Buyer Port

Energy 

Savings

(MJ)

Manufacture

embedded energy

(MJ)

Savings /

Manufacture energy

mono-cSi Beijiao, China San Francisco, U.S. 22.7 3871.5 0.59%

mono-cSi Fukuyama, Japan San Francisco, U.S. 18 3871.5 0.46%

mono-cSi Beijiao, China Hamburg, Germany 36.8 3871.5 0.95%

mono-cSi Fukuyama, Japan Hamburg, Germany 41.6 3871.5 1.07%

multi-cSi Beijiao, China San Francisco, U.S. 22.7 3429.2 0.66%

multi-cSi Fukuyama, Japan San Francisco, U.S. 18 3429.2 0.52%

multi-cSi Beijiao, China Hamburg, Germany 36.8 3429.2 1.07%

multi-cSi Fukuyama, Japan Hamburg, Germany 41.6 3429.2 1.21%

a-Si Beijiao, China San Francisco, U.S. 22.7 925.5 2.45%

a-Si Fukuyama, Japan San Francisco, U.S. 18 925.5 1.94%

a-Si Beijiao, China Hamburg, Germany 36.8 925.5 3.98%

a-Si Fukuyama, Japan Hamburg, Germany 41.6 925.5 4.49%
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5.5 CO2 Emissions. 

 

Considering GHG emissions rate for China, Japan and Germany on Table 10 shows an example of 

CO2-eq produced by the use of electricity on Si-based PV technologies. 
Table 10. CO2 emissions from manufacture on Si-based PV based on LCA for China, Japan and Germany 

 
 

PV Tech

Manufacture

embedded energy

(MJ)

Manufacture

embedded energy

(MWh)

CO2 Emission

on China

(kg CO2-eq)

CO2 Emission

on Japan

(kg CO2-eq)

CO2 Emission

on Germany

(kg CO2-eq)

mono-cSi 3871.5 1.075 989 469 721

multi-cSi 3429.2 0.953 876 415 638

a-Si 925.5 0.257 237 112 172

Figure 18. China Energy mix on 2012. Figure 17. Japan Energy mix on 2009. 

Figure 19. Germany Energy mix on 2013. 

Source: U.S. Energy Information Administration, 2014. 
Source: U.S. Energy Information Administration, 2011) 

Source: Morris, 2014. 
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Japan GHG emissions prove to be low when considering 2009 energy mix. Considering that 

manufacture embedded energy given is calculated for a PV module of one square meter we can 

estimate that buying it in Japan instead of China will save over 50% of the GHG emissions. 

 

It is important to notice that this GHG emissions study considers that all the embedded energy 

comes from electricity. Of course we know that not all the embedded energy come from electricity, 

but the majority does. Exact data cannot be used because of the lack of access to the complete LCA 

studies. The purpose is to highlight the influence of the energy mix on GHG emissions, not to get 

exact emission calculations. 

 

Also transportation prove to have small influence on CO2 emissions when transporting on freight. 

In the best case with a-Si saves could reach up to 2% of CO2 emissions saving. 
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6. Conclusions. 

 

Silicon-based PV industry is growing and it is expected to continue growing on the mid and long 

term. The effect on emerging economies is that energy needs are growing faster that PV industry 

and therefore more Research and Development must be made on the next years. 

 

Crystal silicon have the biggest market share and it´s expected to continue that way, with a 

tendency for growth on multi-cSi PV. Also the LCA analysis is consequent with this assumption, 

providing bases that multi-cSi PV hast the best EPBT. 

 

In the last decade energy needed for PV manufacture has decrease but it is still too intensive in 

order to compete with conventional energy sources. Different technologies offer different 

advantages and the best technology to use must be evaluated individually for each project. 

 

LCA is a fundamental tool to understand and evaluate sustainability of PV technologies, but also to 

identify the areas that have more impact on sustainability in all their variables (EPBT, GHG, 

embedded energy). Also for correctly understand LCA analysis main manufacture process and PV 

fundamentals must be understood and evaluated. Geographic irradiance and temperature are very 

important, and can make one or another PV technology better for a specific project. Mono-cSi and 

multi-cSi prove to work better under low temperature conditions. A-Si increase its PR on high 

temperature conditions, making it more viable on regions with high irradiance and temperature. 

 

LCA cannot account GHG emissions from electricity use because it varies from country to country 

and even from time of the day or day of the year. Therefore it is fundamental to establish some 

guidelines for evaluating the effect of the energy mix on PV technologies. The risk is that high GHG 

emission technology can be disguised using PV clean energy or any other intensive clean energy. 

Within this guidelines, it should be important to differentiate embedded energy according to the 

primary energy source and country where the particular process has been made. 

 

Transporting solar cells from suppliers instead of modules must be carefully evaluated in order to 

have energy, CO2 and price saves. Today will not make great difference on the embedded energy 

of the PV modules, but as the manufacture process use less energy transport will become more 

relevant. 
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ABSTRACT 

 

Energy produced from solar PV (Photovoltaic) have been increasing constantly and is expected to 

continue growing into the energy market share in the following years. In the last decades the 

photovoltaic industry had succeeded to make an important decrease on the amount of energy 

necessary for manufacturing and installing solar panels. Therefore it has decreased the financial 

and energy payback for new installations. This has allowed to achieve low cost energy from PV 

systems and to decrease in many cases the amount of greenhouse gas emissions associated to PV 

manufacturing. So then, it is important to continuously improve PV panel’s state of the art 

manufacturing and installing framework. The silicon based PV technologies dominate today’s world 

market and are expected to continue ruling the PV industry. This because they depend more on the 

improvement of the manufacturing process requiring less energy, rather than other PV 

technologies based on scarce materials that are founded only on certain regions. Amorphous, 

mono-crystalline and poly-crystalline are the main silicon based PV technologies used today and 

will be the ones studied in this paper. Different LCA (Life Cycle Assessment) will be considered for 

these PV technologies as also as the transportation influence into the PV panels embedded energy, 

and, as a consequence of the energy required, the CO2 emissions associated to the place where the 

panels or modules are manufactured. Only embedded energy and quantity of CO2 emissions will be 

considered (it depends on the electricity mix of where it’s manufactured), other possible financial 

aspects or pollutant matters will not be studied on this paper. 

 

RESUMEN 

 

La energía producida a partir de la energía solar fotovoltaica (PV, por sus siglas en inglés) se ha ido 

incrementando constantemente y se espera que su participación en el mercado energético siga 

creciendo durante los próximos años. En las últimas décadas la industria fotovoltaica ha logrado 

disminuir de manera importante la cantidad de energía necesaria para la fabricación e instalación 

de paneles solares. Debido a esto, el tiempo de retorno de inversión financiera ha disminuido, así 

como la energía necesaria para desarrollar nuevas instalaciones. Esto ha permitido alcanzar costos 

bajos en la producción de energía procedente de sistemas fotovoltaicos; así como también 

disminuir, en muchos casos, la cantidad de emisiones de gases de efecto invernadero (GHG, por sus 

siglas en inglés) asociadas a la fabricación de los sistemas fotovoltaicos. Así pues, es importante 

mejorar continuamente el proceso de fabricación e instalación de sistemas fotovoltaicos utilizando 

tecnologías de última generación. Las tecnologías fotovoltaicas basadas en silicio dominan el 

mercado mundial actual, y se espera que continúen siendo la tecnología líder en la industria 

fotovoltaica. Este comportamiento se debe a que el desarrollo de estas tecnologías depende en 

gran medida de la mejora del proceso de fabricación en cuanto al menor uso de energía; a 

diferencia de otras tecnologías fotovoltaicas, que están basadas en materiales escasos, y que se 

obtienen sólo en ciertos países o regiones. El silicio amorfo, el monocristalino y el policristalino son 

los principales tipos de tecnologías fotovoltaicas basadas en silicio utilizadas en la actualidad, las 

cuales serán estudiadas en este trabajo. Diferentes análisis de ciclo de vida (LCA, por sus siglas en 

inglés) serán considerados para analizar estas tecnologías fotovoltaicas. Además se estudiará la 

influencia del transporte en la energía incorporada de los paneles fotovoltaicos. Como 

consecuencia de esta energía incorporada, se analizarán las emisiones de CO2 asociadas al lugar 

donde los paneles o módulos fueron fabricados. Sólo la energía incorporada y la cantidad de 

emisiones de CO2 serán considerados en este análisis (las emisiones GHG dependen en gran medida 

del “mix” energético de donde es fabricado). Otros posibles aspectos financieros o de materiales 

contaminantes no serán estudiados en este trabajo. 
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