Respiratory Physiology & Neurobiology xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Respiratory Physiology & Neurobiology

journal homepage: www.elsevier.com/locate/resphysiol

Importance of mitochondrial P_{O2} in maximal O₂ transport and utilization: A theoretical analysis

³ Q1 I. Cano^{a,*}, M. Mickael^b, D. Gomez-Cabrero^b, J. Tegnér^b, J. Roca^a, P.D. Wagner^c

^a Hospital Clinic, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Catalunya, Spain

5 ^b Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden

6 Q2 ^c School of Medicine University of California, San Diego, San Diego, CA 92093-0623A, United States

ARTICLE INFO

Article history:
Accepted 29 August 2013

- 12 _____
- 13 Keywords:
- 14 Bioenergetics
- 15 Mitochondrial respiration
- 16 Mitochondrial Po₂
- 17 Oxygen transport
- 18 V₀₂ max

ABSTRACT

In previous calculations of how the O₂ transport system limits \dot{V}_{O_2} max, it was reasonably assumed that mitochondrial P_{O_2} (Pm_{O_2}) could be neglected (set to zero). However, in reality, Pm_{O_2} must exceed zero and the red cell to mitochondrion diffusion gradient may therefore be reduced, impairing diffusive transport of O₂ and \dot{V}_{O_2} max. Accordingly, we investigated the influence of Pm_{O_2} on these calculations by coupling previously used equations for O₂ transport to one for mitochondrial respiration relating mitochondrial \dot{V}_{O_2} to P_{O_2} . This hyperbolic function, characterized by its P_{50} and \dot{V}_{MAX} , allowed Pm_{O_2} to become a model output (rather than set to zero as previously). Simulations using data from exercising normal subjects showed that at \dot{V}_{O_2} max, Pm_{O_2} was usually <1 mm Hg, and that the effects on \dot{V}_{O_2} max were minimal. However, when O₂ transport capacity exceeded mitochondrial \dot{V}_{MAX} , or if P_{50} were elevated, Pm_{O_2} often reached double digit values, thereby reducing the diffusion gradient and significantly decreasing \dot{V}_{O_2} max.

© 2013 Published by Elsevier B.V.

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

19 1. Introduction

At rest or during exercise, production of ATP requires both 20 physical O₂ transport from the environment to the mitochondria 21 and subsequent chemical utilization of O₂ by oxidative phospho-22 rylation. Oxygen transport has been well described (Dejours and 23 Kayser, 1966; Gnaiger et al., 1998; Weibel et al., 1981) based on the 24 O₂ transport pathway, consisting of the lungs/chest wall, the heart, 25 vascular tree and blood, and the tissues. These structures conduct O_2 as an in-series system in which the main sequential transport 27 steps are ventilation, alveolar-capillary diffusion, circulatory transport, and tissue capillary to mitochondrial diffusion. At each step, 29 the mass of O_2 must be conserved, and this allows a set of simple equations to be defined (Wagner, 1993, 1996b) that quantifies how 31 the transport process at each step integrates with those of the other 32 steps to determine how much O₂ is delivered to the mitochondria 33 per minute (Wagner, 1996a). In this construct, it is shown that each 34 of the four steps contributes to limitation to \dot{V}_{0_2} max and that the 35 quantitative effects of changes at each step are similar. 36

Systems physiological investigations (Wagner, 1993, 1996b) targeting the understanding of the limits to maximal \dot{V}_{O_2} , have previously been performed on the basis of an important simplifying

E-mail address: iscano@clinic.ub.es (I. Cano).

1569-9048/\$ – see front matter © 2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.resp.2013.08.020 approximation. This has been that the downstream mitochondrial P_{O_2} (Pm_{O_2}) is so small in comparison to tissue capillary P_{O_2} that it can be ignored and therefore set to zero, thus making the analyses of O_2 transport much more tractable. However, because O_2 is one of the molecules that drive oxidative phosphorylation according to the law of mass action, this approximation cannot be physiologically correct, or otherwise \dot{V}_{O_2} would itself be zero.

Given that Pm_{O_2} must exceed zero, the P_{O_2} difference between red cells and mitochondria must be less than when Pm_{O_2} is assumed to be zero, and thus the diffusive movement of O_2 between them must also be reduced. Therefore, if Pm_{O_2} is now considered as greater than zero, there is an additional resistance, from the process of mitochondrial respiration, to O_2 movement through the entire pathway of O_2 transport and utilization. We therefore hypothesize that this additional resistance must reduce maximal \dot{V}_{O_2} below that which would be expected if this resistance were ignored. Clearly, the degree to which \dot{V}_{O_2} max would be reduced will depend on how the high mitochondrial P_{O_2} rises above zero. This in turn will depend broadly on the capacity for O_2 transport (how many O_2 molecules can be delivered to the mitochondria per minute) compared to the capacity for metabolism (how many O_2 molecules can be consumed by the mitochondria per minute).

The importance of including consideration of oxidative phosphorylation goes beyond asking how much does mitochondrial respiration contribute to the overall impedance to \dot{V}_{O_2} . Because the value of Pm_{O_2} is dependent on the mitochondrial respiration curve/O₂ transport interaction, hypoxia-induced biological

Please cite this article in press as: Cano, I., et al., Importance of mitochondrial P₀₂ in maximal O₂ transport and utilization: A theoretical analysis. Respir. Physiol. Neurobiol. (2013), http://dx.doi.org/10.1016/j.resp.2013.08.020

Q3 * Corresponding author at: IDIBAPS, C/Villarroel 170, 08036 Barcelona, Spain. Tel.: +34 666186748.

2

ARTICLE IN PRESS

I. Cano et al. / Respiratory Physiology & Neurobiology xxx (2013) xxx–xxx

Fig. 1. Graphical analysis of diffusive transport of O₂ from muscle capillary to the mitochondria (dashed line) and subsequent utilization of O₂ through oxidative phosphorylation (solid line). See text for details.

changes may be affected by this interaction. Thus, the significance of the present study is in the degree to which \dot{V}_{O_2} max is reduced by the resistance imparted by oxidative phosphorylation and the consequent effect on mitochondrial P_{O_2} , which in turn may affect processes such as generation of reactive oxygen species and hypoxia-induced gene expression.

The purpose of the present paper is therefore to expand the 73 prior theoretical analysis of the integrated O₂ transport pathway 74 (Wagner, 1993, 1996a) by analyzing the consequences for O₂ trans-75 port of allowing mitochondrial P_{O_2} to be greater than zero. This 76 requires integration of the previously described O₂ transport equa-77 tions with an equation for mitochondrial respiration, followed by 78 the application of mass conservation principles to solve this new 79 equation system. The same data that were used in (Wagner, 1993, 80 1996a) are used here. 81

82 2. Material and methods

2.1. Principles

67

70

71

72

83

87

80

or

91

92

97

97

Oxidative phosphorylation ensues via the following Eq. (1) that
embodies the law of mass action:

 $3ADP + 3Pi + NADH + H^+ + 1/2O_2 \rightarrow 3ATP + NAD + H_2O \quad (1)$

In this equation, Pm_{O_2} corresponds to O_2 . Clearly, this mass action equation can only move from left to right and produce ATP if Pm_{O_2} is greater than zero.

To illustrate this effect, a graphical depiction of mitochondrial respiration is presented in Fig. 1. Here, the solid line is the relationship between velocity of the reaction (i.e., mitochondrial \dot{V}_{O_2}), and Pm_{O_2} , similar to what has been found experimentally (Gnaiger et al., 1998; Scandurra and Gnaiger, 2010; Wilson et al., 1977). It shows how \dot{V}_{O_2} is a positive but non-linear function of mitochondrial P_{O_2} , and indicates that at low Pm_{O_2} , \dot{V}_{O_2} is very sensitive to (and thus limited by) P_{O_2} , while at higher Pm_{O_2} , \dot{V}_{O_2} becomes independent of P_{O_2} , and is limited by factors other than O_2 .

The hyperbolic curve through the origin displayed in Fig. 1 represents mitochondrial respiration. It is of note that despite mitochondrial respiration kinetics is not really a Michaelis–Menten type (Johnson and Goody, 2011; Michaelis and Menten, 1913), experimental data (Gnaiger et al., 1998; Scandurra and Gnaiger, 2010) are well fitted by such a curve. As a hyperbola, it can be represented by Eq. (2):

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

$$\dot{V}_{O_2} = \frac{\dot{V}_{MAX} \cdot Pm_{O_2}}{Pm_{O_2} + P_{50}}$$
(2) 106

where \dot{V}_{O_2} is mitochondrial \dot{V}_{O_2} (the ordinate in Fig. 1); \dot{V}_{MAX} is the asymptote of the curve, and represents the maximal rate of use of O_2 when O_2 is in excess; Pm_{O_2} is mitochondrial P_{O_2} (the abscissa in Fig. 1) and P_{50} is the P_{O_2} at 50% of \dot{V}_{MAX} . Thus, the mitochondrial respiration curve is defined by two parameters: \dot{V}_{MAX} and P_{50} .

Also shown in Fig. 1 is a straight (dashed) line of negative slope. It represents the Fick law of diffusion and depicts diffusive O_2 transport between the tissue capillary and the mitochondria as a function of mitochondrial P_{O_2} for a given tissue O_2 diffusional conductance (DM) and a given tissue mean capillary P_{O_2} (P \bar{c}_{O_2}), both at maximal exercise. We previously utilized this representation as a tool for interpreting intracellular oxygenation data obtained using magnetic resonance spectroscopy (Richardson et al., 1999). The equation is as follows:

$$\dot{V}_{O_2} = DM \cdot (P\bar{c}_{O_2} - Pm_{O_2})$$
 (3)

As the figure indicates, as Pm_{O_2} is increased, \dot{V}_{O_2} in Eq. (3) must fall because the P_{O_2} difference between mean capillary and mitochondrial P_{O_2} is reduced. Thus, Fig. 1 shows how \dot{V}_{O_2} increases with mitochondrial P_{O_2} according to oxidative phosphorylation, but *decreases* with mitochondrial P_{O_2} according to the laws of diffusion.

The key concept in Fig. 1 is that in a steady state of O₂ consumption, \dot{V}_{0_2} given by both Eqs. (2) and (3) must be the same at the same mitochondrial P_{O_2} (i.e., the law of mass conservation applies). This can occur only at the single point of intersection between the two relationships, as indicated by the solid circle placed there. If, as previously approximated (Wagner, 1996b), mitochondrial P₀₂ were truly zero, \dot{V}_{O_2} would be higher, as indicated by the open circle at the left end of the dashed straight line in Fig. 1. For a given O_2 transport system defined by the conductances for O_2 allowed by ventilation, alveolar-capillary diffusion, circulation, and capillary to mitochondrial diffusion, the values of mitochondrial VMAX and P₅₀ (Eq. (2)) will thereby influence maximal rate of O₂ utilization, \dot{V}_{0_2} max. In the remainder of this paper, it will be important to distinguish between \dot{V}_{MAX} (the asymptote to the mitochondrial respiration curve) and V₀₂max (actual maximal rate of O2 utilization, solid circle in Fig. 1) to avoid confusion. In general, \dot{V}_{MAX} can exceed \dot{V}_{0_2} max, but \dot{V}_{0_2} max cannot exceed \dot{V}_{MAX} .

2.2. Modeling the O₂ transport/utilization system

The present study augments our prior approach (Wagner, 1993, 1996b) by adding Eq. (2) to the equation system used previously. Fig. 2 recapitulates the O_2 transport pathway, and the associated four mass conservation equations governing O_2 transport at each step. It adds Eq. (2), describing O_2 utilization as a function of Pm_{O_2} . The important point is that in this way, the system has expanded from four equations with four unknowns into a system of five equations and five unknowns.

Briefly, using specified input values for O_2 transport step parameters (i.e., values of inspired O_2 fraction (FI_{O_2}), ventilation (VI, inspired; VA, expired), lung diffusing capacity (DL), cardiac output (Q), [Hb], acid base status, tissue (muscle) diffusing capacity (DM), and mitochondrial respiration curve parameters (V_{MAX} and P_{50})), five mass conservation equations are written for O_2 (see Fig. 2). They describe (a) ventilatory transport; (b) alveolar–capillary diffusion; (c) circulatory transport; (d) muscle

Please cite this article in press as: Cano, I., et al., Importance of mitochondrial P_{O_2} in maximal O_2 transport and utilization: A theoretical analysis. Respir. Physiol. Neurobiol. (2013), http://dx.doi.org/10.1016/j.resp.2013.08.020

I. Cano et al. / Respiratory Physiology & Neurobiology xxx (2013) xxx-xxx

Fig. 2. Schematic representation of the oxygen transport and utilization system considered in this study and the five associated mass conservation equations governing O₂ transport (Eqs. (a)–(d)) and utilization (Eq. (e)).

capillary-mitochondrial diffusion; and (e) mitochondrial respira-162 tion. There are five unknowns in these equations: Alveolar P_{0_2} 163 (PA_{O_2}) , arterial P_{O_2} (Pa_{O_2}) , venous P_{O_2} $(P\bar{v}_{O_2})$, mitochondrial P_{O_2} 164 (Pm_{O_2}) and \dot{V}_{O_2} itself. In Fig. 2, Eqs. (b) and (d) are differential 165 equations describing the process of diffusion across the lung blood: 166 gas barrier and across the tissue capillary wall, respectively. They 167 specifically describe the time rate of change of O₂ concentration, 168 [O₂], along the respective capillary as a function of the diffusing 169 capacity, blood flow, red cell capillary transit time (T_L (lungs); T_M 170 (tissues)) and the instantaneous difference between upstream and 171 downstream P₀₂ values (alveolar and pulmonary capillary in (b); 172 capillary and mitochondrial in (d)). The two equations are each 173 expressions of the Fick law of diffusion. 174

The additional inputs of mitochondrial \dot{V}_{MAX} and P_{50} , and the additional coding for the fifth equation were added to the prior model, and the same (numerical) method of solution employed before (Wagner, 1996b) was used to find the solutions for any set of input variables, defined as the unique values of the five unknowns listed above that simultaneously satisfy all five equations for the given input data defining O₂ transport and utilization.

182 2.3. Input data for simulations

The input data defining the O₂ pathway parameters used in 183 this analysis were essentially identical to those used previously 184 (Wagner, 1996b), and come from Operation Everest II (Sutton et al., 185 1988). They reflect maximal exercise by normal subjects at sea 186 level, at a chamber "altitude" of 4573 m (approximately 15,000 ft.) 187 and at the chamber altitude of the Everest summit, 8848 m (approx-188 imately 29,000 ft.). They are reproduced in Table 1. It is clear that 1804 data do not exist for the two new key variables: mitochondrial V_{MAX} 190 and P₅₀. Therefore, for each of the three data sets we computed 191 192 solutions to the equation system over a systematic range of five mitochondrial \dot{V}_{MAX} (1000, 2000, 3000, 4000, and 5000 ml/min) 193

and four mitochondrial P_{50} values (0.1, 0.3, 0.5 and 1.0 mm Hg), resulting in 20 combinations of the two, and thus 20 mitochondrial respiration curves. The values of \dot{V}_{MAX} were chosen to encompass the range of \dot{V}_{0_2} max from the very sedentary to the elite athlete. Values of P_{50} on the other hand were based on physiological studies inscribing the mitochondrial respiration curve from samples of normal muscle (Gnaiger et al., 1998; Scandurra and Gnaiger, 2010).

A typical example from one of these papers is reproduced with permission in Fig. 3, where the hyperbolic character of the curve and its P_{50} can both be seen by the fitted curve. In this and other similar published cases (Gnaiger et al., 1998; Scandurra and Gnaiger, 2010), P_{50} is close to 0.3 mm Hg. This accounts for our choice of P_{50} values – from a third of this typical value to about threefold greater. However it should be stressed that the modeling can be based on

Fig. 3. Graphical depiction of the hyperbolic equation for oxidative phosphorylation fitted to the data of Scandurra and Gnaiger (2010), p16.

Please cite this article in press as: Cano, I., et al., Importance of mitochondrial P₀₂ in maximal O₂ transport and utilization: A theoretical analysis. Respir. Physiol. Neurobiol. (2013), http://dx.doi.org/10.1016/j.resp.2013.08.020 4

4

Table 1

ARTIC	LE IN	PF	RESS

I. Cano et al. / Respiratory Physiology & Neurobiology xxx (2013) xxx-xxx

Parameter	Normal subjects at		
	Sea level	15,000 ft.	Everest summit
Barometric pressure (PB), Torr	760	464	253
Fractional inspired oxygen (FI ₀₂)	0.2093	0.2093	0.2093
Alveolar ventilation (\dot{V}), BTPS, ($L \min^{-1}$)	112	125	165
Blood flow (\dot{Q}), (Lmin ⁻¹)	23	21	16
Hemoglobin concentration ([Hb]) (g dl ⁻¹)	14.5	15.5	18.0
Body temperature (T), (°C)	38	38	37
O ₂ dissociation curve P ₅₀ (Torr)	26.8	26.8	26.8
Total lung O ₂ diffusing capacity (DL) (ml/min Torr ⁻¹)	51	80	100
Total muscle O ₂ diffusing capacity (DM) (ml/min Torr ⁻¹)	102	88	62
Maximum O ₂ uptake (V _{O2} max) (L min ⁻¹)	3.82	2.81	1.46

any combination of P_{50} and \dot{V}_{MAX} , and need not be limited to the choice of specific parameters appearing here. \dot{V}_{O_2} max/Pm_{O2} solution points for each mitochondrial respiration curve. These are the dashed lines in the figure.

2.52

253

254

255

256

257

258

259

260

261

262

263

264

265

210 2.4. Analysis

Across the matrix of \dot{V}_{MAX} and P_{50} values, we posed two ques-211 tions: First we asked how much would Pm_{O_2} have to rise above 212 zero to satisfy mass conservation and drive mitochondrial respira-213 tion for the given set of physiological O_2 transport variables, \dot{V}_{MAX} 214 and P_{50} – and as a result, how much would that cause \dot{V}_{0_2} to be 215 reduced (compared to assuming $Pm_{0_2} = 0$) as per Fig. 1 (compar-216 ing the open and closed circles). This question allows a quantitative 217 description of the theoretical consequences for \dot{V}_{0_2} max of any com-218 bination of mitochondrial \dot{V}_{MAX} and $P_{50}.$ While this is a very useful 219 question to answer, in reality \dot{V}_{0_2} max is a directly measured vari-220 able. Therefore, asking how much would it be reduced by any pair 221 of \dot{V}_{MAX} and P_{50} values is hypothetical. On the other hand, muscle 222 diffusing capacity, DM, is a variable calculated on the assumption 223 that mitochondrial P_{O_2} can be neglected and set to zero – the very 224 approximation that the present study is addressing. 225

Thus, another way to interrogate the model system can be proposed, leading to a second question: It recognizes that the muscle O_2 diffusion step was previously modeled, and muscle diffusing capacity estimated, on the basis of $Pm_{O_2} = 0$. However, if Pm_{O_2} is greater than zero, the capillary to mitochondrial O_2 diffusion gradient would be reduced, and this would necessitate, by the Fick law of diffusion, a higher value of DM to accomplish a given, measured \dot{V}_{O_2} max (compared to the value calculated assuming $Pm_{O_2} = 0$).

Therefore, for each of the combinations of \dot{V}_{MAX} and P_{50} , we asked how much would muscle diffusing capacity have to increase to maintain \dot{V}_{O_2} constant at the measured value as a result of Pm_{O_2} being greater than zero.

238 3. Results

239 3.1. Effects of mitochondrial respiration on Pm_{O_2} and maximal 240 \dot{V}_{O_2}

Fig. 4 shows how the different combinations of mitochondrial 241 \dot{V}_{MAX} and P_{50} affect \dot{V}_{O_2} max. The upper panel covers the mitochon-242 drial P_{O_2} (Pm_{O₂}) range from 0 to 20 mm Hg; the lower panel shows 243 the same data, but expands the abscissa to better reflect the lower 244 Pm_{0_2} range between 0 and 5 mm Hg. In both panels, each solid 245 curved line emanating from the origin represents one of the 20 246 mitochondrial respiration curves (as in Fig. 3) for a particular V_{MAX} 247 and P50 combination. Solid circles reflect sea level conditions; solid 248 squares represent moderate altitude and solid triangles are for the 249 250 equivalent of the Everest summit. It turns out that at each altitude, 251 an approximately straight line can be drawn through the resulting The values of \dot{V}_{O_2} max at each altitude at the point where Pm_{O_2} equals zero (open symbols at zero Pm_{O_2}) are the same as those described in (Wagner, 1996b) where Pm_{O_2} was taken to be zero. The figure shows how relaxing that approximation affects \dot{V}_{O_2} max for each combination of mitochondrial \dot{V}_{MAX} and P_{50} .

At sea level (solid circles), results show that allowing for a non-zero Pm_{O_2} has a small but significant impact on \dot{V}_{O_2} max. For example, \dot{V}_{O_2} max at $Pm_{O_2} = 0$ mmHg (open circle) would be 3827 ml/min, but if \dot{V}_{MAX} were 4000 ml/min and P_{50} 1.0 mm Hg, \dot{V}_{O_2} max would be significantly less, by 9%, and would be 3477 ml/min. Moreover, this would require a mitochondrial P_{O_2} of 6.7 mm Hg to drive oxidative phosphorylation, as the figure shows.

Fig. 4. Effects of considering mitochondrial respiration on maximal \dot{V}_{0_2} and mitochondrial P_{0_2} . For each \dot{V}_{MAX} value, the four hyperbolic curves represent P_{50} values of 0.1, 0.3, 0.5 and 1.0 mm Hg, left to right. See text for details.

Please cite this article in press as: Cano, I., et al., Importance of mitochondrial P₀₂ in maximal O₂ transport and utilization: A theoretical analysis. Respir. Physiol. Neurobiol. (2013), http://dx.doi.org/10.1016/j.resp.2013.08.020

I. Cano et al. / Respiratory Physiology & Neurobiology xxx (2013) xxx-xx

In general, for the fixed set of O_2 transport parameters used (see Table 1), the lower the \dot{V}_{MAX} and the higher the P_{50} , the greater is the reduction in \dot{V}_{O_2} , and the higher is the Pm_{O_2} required to drive ATP generation. The range of possible values of mitochondrial P_{O_2} is considerable, from a fraction of a mm Hg to more than 10 mm Hg, depending on \dot{V}_{MAX} and P_{50} .

The same outcome is seen at each altitude, but with \dot{V}_{O_2} lower at any Pm_{O_2} as Pl_{O_2} is reduced. The reduction in \dot{V}_{O_2} per unit change in Pm_{O_2} is somewhat less at altitude than at sea level, but if examined as a percent of \dot{V}_{O_2} at $Pm_{O_2} = 0$ at each altitude, the effects of allowing for mitochondrial respiration on maximal \dot{V}_{O_2} are relatively similar across altitudes.

In summary, the higher the mitochondrial \dot{V}_{MAX} and the lower 278 the P_{50} , the more O_2 can be metabolized for a given upstream 279 (heart, lungs, blood, muscle) transport system. Mitochondrial P_{O2} at 280 \dot{V}_{0_2} max can be neglected when considering O_2 transport only when 281 mitochondrial P_{50} is low and mitochondrial \dot{V}_{MAX} is high. When 282 \dot{V}_{MAX} is low and/or P₅₀ is high, the mitochondrial P₀₂ required to 283 drive oxidative phosphorylation may reach double digit values, and 284 the impact on \dot{V}_{0_2} max can be considerable. 285

286 3.2. Maintenance of maximal \dot{V}_{0_2} in the face of non-zero Pm_{0_2}

The preceding subsection showed how \dot{V}_{O_2} max would have to decrease as a function of mitochondrial \dot{V}_{MAX} and P_{50} with constant values for all O_2 transport conductances. In this subsection we investigate how much higher the muscle O_2 diffusing capacity would have to be to maintain \dot{V}_{O_2} max constant over the same range of \dot{V}_{MAX} and P_{50} values as Pm_{O_2} increases above zero.

The results are shown in Fig. 5, which displays the simulation 293 outcomes across the entire matrix of \dot{V}_{MAX} and P_{50} values, using 294 \dot{V}_{MAX} on the abscissa and isopleths for each P₅₀. Results are shown 295 for each altitude as indicated by the different symbols. The top panel 296 shows mitochondrial P_{O_2} for every combination of \dot{V}_{MAX} and P_{50} 297 examined, and the bottom panel the corresponding values of mus-298 cle diffusing capacity (DM), that would have to exist to maintain 299 \dot{V}_{Ω_2} max at measured levels (indicated at each altitude by the verti-300 cal dashed lines). Comparing panels shows that when Pm_{O2} is high 301 302 (thus reducing the P_{O2} gradient between capillaries and mitochondria), DM must also be high to maintain diffusive O₂ transport. 303

Also, when mitochondrial V_{MAX} substantially exceeds measured 304 \dot{V}_{0_2} max (at each altitude), Pm₀₂ remains low, and therefore DM 305 does not need to be substantially increased to maintain O2 flux. 306 However, the closer mitochondrial \dot{V}_{MAX} is to measured \dot{V}_{O_2} max, 307 the higher Pm_{O_2} must be (see Fig. 4), and therefore, DM is also 308 required to be elevated to maintain O_2 transport. When \dot{V}_{MAX} and 309 actual \dot{V}_{0_2} max are very close, the required DM may be as much as 310 four times the value needed when Pm_{O_2} is (close to) zero, and the 311 associated Pm_{O2} would reach double digit values. 312

313 4. Discussion

314 4.1. Summary of major findings

This study shows that including mitochondrial respiration in 315 analyzing O₂ transport and utilization generally poses a very small 316 additional resistance to the system (over that of the transport path-317 way alone), only slightly reducing V_{0_2} max below that computed 318 ignoring this contribution (Fig. 4). The associated mitochondrial 319 P_{O_2} is also usually low (<1 mm Hg). If however mitochondrial V_{MAX} 320 is low in relation to O₂ transport capacity, or if mitochondrial P₅₀ 321 322 is high, V_{O_2} max may be considerably reduced. Mitochondrial P_{O_2} 323 would then increase more, and may reach double digit values.

Fig. 5. Mitochondrial P_{O2} (upper panel) and muscle O₂ diffusing capacity (lower panel) required to maintain \dot{V}_{O2} constant at the measured value across the domain of \dot{V}_{MAX} and P₅₀ values at each altitude studied (see text for details).

In order to maintain V_{O_2} max when mitochondrial P_{O_2} is high, muscle diffusing capacity (DM) would need to be higher than when Pm_{O_2} is assumed to be zero. Under most conditions, the necessary increase in DM would be minimal, being significant only when Pm_{O_2} is considerably elevated (Fig. 5).

4.2. Unifying principles

The main principle demonstrated in the present study is that the final step in the O₂ pathway – mitochondrial respiration–may contribute a non-negligible resistance to O₂ movement through the system from the air to its conversion to CO₂, resulting in a lower \dot{V}_{O_2} max compared to a system where metabolism imposed no resistance to overall O₂ flow. The higher the mitochondrial P_{O2} required to drive oxidative phosphorylation, the greater would be the relative resistance and thus the more effect there will be on reduction in \dot{V}_{O_2} max. When mitochondrial P₅₀ is about 0.30 mm Hg as reported by Gnaiger (Gnaiger et al., 1998; Scandurra and Gnaiger, 2010) the effects are generally minor.

The simulations at the three inspired P_{O_2} values shown here demonstrate that it is the relative capacities (rather than individual absolute values) of the physiological transport system and the mitochondrial respiratory chain that effectively determine both the mitochondrial P_{O_2} and the associated effect on \dot{V}_{O_2} max, and that both variables, but especially mitochondrial P_{O_2} , may vary over a wide range depending on mitochondrial respiratory function.

330

331

332

333

324

342

343

344

345

346

347

Please cite this article in press as: Cano, I., et al., Importance of mitochondrial P₀₂ in maximal O₂ transport and utilization: A theoretical analysis. Respir. Physiol. Neurobiol. (2013), http://dx.doi.org/10.1016/j.resp.2013.08.020

I. Cano et al. / Respiratory Physiology & Neurobiology xxx (2013) xxx–xx

Mitochondrial PO₂ (PmO₂)

Fig. 6. Graphical depiction of the concept that even when the capacity for O₂ delivery exceeds O₂ utilization (upper panel) a change in O₂ delivery will change actual V₀₂. Conversely, when the capacity for O₂ utilization exceeds O₂ delivery (lower panel) a change in O2 utilization (increase in P50 in this example) will change actual \dot{V}_{0_2} . Open circles: maximal O_2 delivery to mitochondria if Pm_{0_2} was zero. Closed circles: actual \dot{V}_{0_2} . Solid and dashed lines: as in Fig. 1.

An additional important principle is shown in Fig. 6: even when O_2 transport capacity (i.e., potential for O_2 delivery) is considerably 349 greater than mitochondrial respiratory capacity (i.e., potential for 350 O₂ utilization), as illustrated in concept in the top panel, a change 351 352 in the former will change overall V₀₂. The converse is also true – that when mitochondrial respiratory capacity exceeds O₂ transport 353 capacity, (lower panel), a change in the former will have an effect 354 on \dot{V}_{O_2} . It is thus not correct to think that when one component 355 is greater than the other, only the lesser of the two determines 356 overall \dot{V}_{O_2} max. This conclusion is much the same as described for 357 individual components of the physiological transport pathway of 358 the lungs and chest wall, the heart, blood and circulation, and the 359 muscles, where we previously showed (Wagner, 1996a,b) that all 360 components affect \dot{V}_{0_2} max, not just the step with the least trans-361 port capacity. 362

4.3. Effects of mitochondrial respiration kinetics on both \dot{V}_{02} max 363 and Pm_{O_2} may be small or large 364

For the examples shown - fit normal subjects - the effects of 365 considering mitochondrial respiration are generally less on \dot{V}_{0_2} 366 than on the associated Pm₀₂ (Fig. 4). Examining the sea level results 367 for the example of $\dot{V}_{MAX} = 4000 \text{ ml/min}$ and P_{50} increasing from 0.1 368 to 1.0 mm Hg, \dot{V}_{0_2} max would fall by 9% while Pm₀₂ would increase 369 by an order of magnitude, from less than 1 mm Hg to more than 370 371 6 mm Hg. Just how much variation there is in mitochondrial P₅₀ 372 in the normal population is unknown, let alone whether this may

Respir. Physiol. Neurobiol. (2013), http://dx.doi.org/10.1016/j.resp.2013.08.020

change systematically with training, or in chronic diseases such as chronic obstructive pulmonary disease (COPD) or chronic heart failure. The calculations presented herein however point out that the quantitative nature of the mitochondrial respiration curve may be a critical determinant of the values of mitochondrial P_{O_2} and \dot{V}_{O_2} max, over and above any influence of upstream O_2 transport.

373

374

375

376

377

378

379

380

381

382

383

384

385

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

Even if the effects on \dot{V}_{O_2} max are numerically small, they would likely be important in the competitive endurance athlete where very small differences may separate success from failure. But possibly even more significant might be the potentially large variation in mitochondrial P_{O_2} depending on P_{50} and \dot{V}_{MAX} due to known hypoxia-induced biological effects (Semenza, 2011). Thus, hypoxiainduced gene expression or reactive O2 species generation may vary according to mitochondrial P₀₂.

4.4. Potential for estimating mitochondrial P₅₀ based on the current modeling approach

The analysis presented here suggests a possible method for estimating the characteristics of the mitochondrial respiration curve in vivo. Currently, mitochondrial \dot{V}_{MAX} and P_{50} are measured in vitro in respirometers where mitochondria are exposed to different levels of O_2 and V_{O_2} measured (as in Fig. 3), (Gnaiger et al., 1998; Scandurra and Gnaiger, 2010; Wilson et al., 1977). To obtain this information in humans would therefore necessitate a muscle biopsy, and even if that were done, the result would be subject to the usual sampling constraints as for any other measure of muscle structure or function determined from a single biopsy.

The fitting of a hyperbolic function to paired measured values of \dot{V}_{O_2} max and mitochondrial P_{O_2} has the potential for estimating P_{50} and \dot{V}_{MAX} in vivo, and this is illustrated in Fig. 7. The intervention to garner several points on the curve would come from acutely varying FI_{O_2} and measuring \dot{V}_{O_2} and mitochondrial P_{O_2} during maximal exercise at each FI₀₂, as indicated by the theoretical example of the two solid circles in the upper panel of Fig. 7. These two points reflect a mitochondrial respiration curve with P_{50} of 0.30 mm Hg and \dot{V}_{MAX} of 4000 ml/min. If such data were to span both the steep and flat parts of the respiration curve, as shown in the figure, identifying the \dot{V}_{MAX} and P_{50} of a hyperbola that resulted in a least squares best fit to the data points would be possible, as shown in the lower panel of Fig. 7. Here, over a range of trial values of both V_{MAX} and P_{50} , the root mean square (RMS) residual \dot{V}_{0_2} between the data and the hyperbola corresponding to each trial combination of P_{50} (and the V_{MAX} providing the lowest RMS for that P_{50}) is shown. In this error-free theoretical case, one could quite accurately estimate \dot{V}_{MAX} (4000 ml/min) and P₅₀ (0.3 mm Hg) from the values at the nadir of the relationship in the figure. However, if measured data happened to lie on only the flat or only on the steep parts of the curve, ability to estimate V_{MAX} and/or P₅₀ would be considerably reduced.

While whole body or large muscle mass \dot{V}_{0_2} can be measured relatively easily, the experimental challenge would be to measure mitochondrial P₀₂ (during exercise) (Mik, 2013). The closest approach to date in intact subjects has used MRS-based determination of myoglobin O₂ saturation (Jue et al., 1994; Richardson et al., 1995), where the signal comes from a relatively large muscle region. This approach gives intracellular $\mathrm{P}_{\mathrm{O}_2}$ estimates of 3–4 mm Hg during exercise (Richardson et al., 1995), but this is the P_{0_2} associated with myoglobin, inferred from the finding of about 50% myoglobin saturation during peak exercise combined with accepted values of myoglobin P₅₀ of about 3 mm Hg (Rossi-Fanelli and Antonini, 1958). This P_{0_2} is an order of magnitude greater than that projected at the mitochondria based on the preceding discussion. In the end, a method would have to be developed for direct measurement of mitochondrial P_{O_2} . Whether a candidate signaling atom

434 435 Please cite this article in press as: Cano, I., et al., Importance of mitochondrial P₀₂ in maximal O₂ transport and utilization: A theoretical analysis.

I. Cano et al. / Respiratory Physiology & Neurobiology xxx (2013) xxx-xxx

Fig. 7. Estimation of mitochondrial P₅₀. Upper panel: least squares best fit (solid lines) to data (solid circles) for five trial P₅₀ values. Lower panel: closeness of fit to data reflected by the Root Mean Square error, showing that a P₅₀ of 0.30 mm Hg provides the best estimate.

436 or molecule can be found for an MRS-based approach is currently437 unknown.

438 4.5. *Limitations of the analysis*

As in previous work (Wagner, 1993, 1996b), the entire analysis is 439 applicable only to steady state conditions (meaning, that O₂ partial 440 pressures are constant in time as is \dot{V}_{0_2} itself). Therefore, the anal-441 ysis cannot be used to study transient changes in metabolic rate. 442 Another limitation is not taking into account ventilation-perfusion 443 mismatch in the lung and/or metabolism-perfusion mismatch in 444 445 the muscle as contributors to impaired oxygen transport. However, using methods to quantify both of these phenomena, this limita-446 tion could be removed. A final limitation is that non-muscle blood 447 flow during maximum exercise is neglected.

5. Conclusions

Considering the hindrance to overall O₂ flux caused by mitochondrial respiration using an established model of O₂ transport to the mitochondria revealed that in normal subjects exercising maximally, the step of oxidative phosphorylation, with its requirement for a mitochondrial P_{O₂} > 0, likely plays only a small role in total O₂ flux resistance. However, we identified conditions in which mitochondrial P_{O₂} can rise to double digit values. This occurs particularly when the mitochondrial respiration curve has either a low \dot{V}_{MAX} (relative to O₂ transport), or a high P₅₀, and under such conditions, mitochondrial function may significantly impair O₂ flux and cell function may be affected, for example, in reactive oxygen species generation and/or oxygen-sensitive gene expression.

Acknowledgements

We would like to acknowledge the contributions made by the Synergy-COPD consortium and NIH P01 HL091830.

References

- Dejours, P., Kayser, C., 1966. Respiration. Oxford University Press.
- Gnaiger, E., Lassnig, B., Kuznetsov, A., Rieger, G., Margreiter, R., 1998. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome *c* oxidase. J. Exp. Biol. 201, 1129–1139.
- Johnson, K.A., Goody, R.S., 2011. The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264–8269.
- Jue, T., Kreutzer, U., Chung, Y., 1994. ¹ HNMR approach to observe tissue oxygenation with the signals of myoglobin. Adv. Exp. Med. Biol. 361, 111–118.
- Michaelis, L., Menten, M.L., 1913. Die kinetik der invertinwirkung. Biochem. Z. 49, 352.
- Mik, E.G., 2013. Measuring mitochondrial oxygen tension: from basic principles to application in humans. Anesth. Analg..
- Richardson, R.S., Leigh, J.S., Wagner, P.D., Noyszewski, E.A., 1999. Cellular PO₂ as a determinant of maximal mitochondrial O₂ consumption in trained human skeletal muscle. J. Appl. Physiol. 87, 325–331.
- Richardson, R.S., Noyszewski, E.A., Kendrick, K.F., Leigh, J.S., Wagner, P.D., 1995. Myoglobin O₂ desaturation during exercise. Evidence of limited O₂ transport. J. Clin. Invest. 96, 1916–1926.
- Rossi-Fanelli, A., Antonini, E., 1958. Studies on the oxygen and carbon monoxide equilibria of human myoglobin. Arch. Biochem. Biophys. 77, 478–492.
- Scandurra, F.M., Gnaiger, E., 2010. Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics. Adv. Exp. Med. Biol. 662, 7–25.
- Semenza, G.L., 2011. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547.
- Sutton, J.R., Reeves, J.T., Wagner, P.D., Groves, B.M., Cymerman, A., Malconian, M.K., Rock, P.B., Young, P.M., Walter, S.D., Houston, C.S., 1988. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J. Appl. Physiol. 64, 1309–1321.
- Wagner, P.D., 1993. Algebraic analysis of the determinants of V₀₂ max. Respir. Physiol. 93, 221–237.
- Wagner, P.D., 1996a. Determinants of maximal oxygen transport and utilization. Annu. Rev. Physiol. 58, 21–50.
- Wagner, P.D., 1996b. A theoretical analysis of factors determining V₀₂max at sea level and altitude. Respir. Physiol. 106, 329–343.
- Weibel, E.R., Taylor, C.R., Gehr, P., Hoppeler, H., Mathieu, O., Maloiy, G.M., 1981. Design of the mammalian respiratory system: IX. Functional and structural limits for oxygen flow. Respir. Physiol. 44, 151–164.
- Wilson, D.F., Erecinska, M., Drown, C., Silver, I.A., 1977. Effect of oxygen tension on cellular energetics. Am. J. Physiol. Cell Physiol. 233, C135–C140.

,

448

449

450

451

452

453

454

455

456

457

458

459

460

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503