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Abstract

Chemical coupling between neurons is only active when the presy-
naptic neuron is firing, and thus it does not allow for the propagation
of subthreshold activity. Electrical coupling via gap junctions, on the
other hand, is also ubiquitous and, due to its diffusive nature, trans-
mits both subthreshold and suprathreshold activity between neurons.
We study theoretically the propagation of spikes between two neurons
that exhibit subthreshold oscillations, and which are coupled via both
chemical synapses and gap junctions. Due to the electrical coupling,
the periodic subthreshold activity is synchronized in the two neurons,
and affects propagation of spikes in such a way that for certain values
of the delay in the synaptic coupling, propagation is not possible. This
effect could provide a mechanism for the modulation of information
transmission in neuronal networks.

1 Introduction

Information transmission in the form of spike propagation plays a vital role
in the functioning of the nervous system [1]. The excitable nature of the
neuronal response to perturbations allows for the untarnished propagation of
action potentials along chains of neurons, coupled chemically to one another
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via unidirectional synaptic connections. But chemical synapses are only ac-
tivated when the presynaptic neuron undergoes an action potential, which
elicits a constant-shaped postsynaptic potential (PSP) at the receiving neu-
ron. Therefore, the only kind of information that is transmitted between
neurons due to synaptic coupling is the timing at which spikes occur. How-
ever, an increasing amount of evidence shows that subthreshold oscillations
constitute an important part of the dynamical activity of neurons [2], and
thus the question arises as to what is the functional role of subthreshold
activity. Here we study a potential effect of subthreshold oscillations in
modulating the propagation of spikes along a chain of neurons.

Indeed, since successful propagation of a spike requires that the postsy-
naptic neuron overcomes its excitation threshold upon receipt of the synaptic
current, the state of the postsynaptic neuron at the time at which it re-
ceives the synaptic pulse determines strongly whether a postsynaptic spike
will be produced. This is specially relevant for neurons with subthreshold
oscillations: if the pulse arrives to the neuron at around a minimum of a
subthreshold oscillation, the effective distance to the excitation threshold
will be large, and one could expect that producing a spike would become
more difficult. Oppositely, when the pulse arrives near a maximum of a sub-
threshold oscillation, excitation should be easier. Consequently, one would
expect that the propagation efficiency of a neuronal system would depend on
the relationship between the period of the subthreshold oscillations and the
delay incurred in the propagation due to the time required by the synaptic
mechanism to operate. A coherent modulation of the propagation efficiency
along a chain of neurons should be expected when the subthreshold activity
between all neurons in the chain is synchronized. This can be accomplished
by means of diffusive coupling due to gap junctions, which is also ubiquitous
in neural tissue [1]. In this work, we examine this possibility by studying the
propagation of a spike train between two neurons, coupled via both synapses
(with a delay) and gap junctions (instantaneously). Our results show that
propagation appears resonantly, only for certain values of the synaptic delay
such that the presynaptic pulse arrives at the receiving neuron at the right
time to elicit a spike in it.

2 FitzHugh-Nagumo model

A classical model for the dynamics of a cell membrane potential V is one
that considers a cell membrane as a capacitor Cm and a resistor R in parallel.

We can then establish a differential equation for the time evolution of V
as

Cm
dV

dt
= −

V − Eeq

R
+ I (1)
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where Eeq is the rest potential or Nernst equilibrium potential at which the
net cross-membrane current is zero and I is the total current. The current
across the inner and outer surfaces of the cell membrane involves mainly four
ionic species: sodium (Na+), potassium (K+), calcium (Ca2+) and chloride
(Cl−). The concentration of each ion inside the cell is different from the
concentration on the extracellular medium which is rich on Na+ and Cl−

for instance. Due to this difference in the ionic concentrations, electrochem-
ical gradients produce chemical flows through the existing channels along
the membrane, which cause changes in the membrane potential. If there are
no other additional currents then I = 0 because the concentration gradient
and the electric potential gradient are balanced and equilibrium is achieved.

However an active transport makes impossible to achieve a symmetry
between the inner and outer concentrations. The flow produced by the ionic
pumps like the Na+-K+ pump pumps out three Na+ ions for every two K+

ions pumped in. The concentration gradients are also maintained due to the
negatively charged molecules inside the cell that attract more K+ into the
cell and repel more Cl− out of the cell.

In the model of Hodgkin and Huxley (1952) the term 1/R of equation (1)
depends on the ionic flows which are in turn controlled by gating particles
(gates), see Fig. 1. These particles can open and close the channels and are
sensitive to the membrane potential. The model equation, which only takes
into account three major currents, is then:

Cm
dV

dt
= −gKn4(V − EK) − gNam

3h(V − ENa) − gL(V − EL) + I (2)

Figure 1: Equivalent circuit representation of a patch of cell membrane.
This figure is directly taken from [4].

where the subscript L corresponds to the leak current, which is carried
mostly by Cl− ions. The terms gK , gNa and gL are the maximal conduc-
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tances (inverse of the maximal resistances), for which typical values are
gK = 36mS/cm2, gNa = 120mS/cm2 and gL = 0.3mS/cm2. The variables
m and h determine the probability of the activation and inactivation, re-
spectively, of the Na+ current. The variable n determines the probability of
the activation of the K+ current. The combination of these three variables
gives the average proportion of channels in the open state. The term n4 is
then referred to the four activation gates of the voltage-gated persistent K+

current and m3h is referred to the three activation gates and one inactiva-
tion gate of voltage-gated transient Na+ current. The dynamics of these
variables are assumed to follow first order kinetics:

τw
dw

dt
= w∞(V ) − w, w = n, h, m (3)

where τw(V ) and w∞(V ) are the time constant and rate constant, respec-
tively, and are empirical functions. For a fixed potential V, the variable w

approaches the value w∞(V ) with a time constant τw(V ).
The equations (2) and (3) represent a four-dimensional dynamical sys-

tem known as the Hodking-Huxley model. The time-dependent evolution
of conductances allows a neuron to produce pulses of voltage called action

potentials or spikes. Other neuronal models have additional currents with
other activation and desactivation dynamics.

In the 1950’s FitzHugh reduced the Hodgkin-Huxley model to a two
variable model. He observed that the gating variables n and h have slow
kinetics relative to m that can be then treated as an instantaneous variable
which rapidly takes its steady-state value m∞(V ). Another important fact
is that the time constants τn(V ) and τh(V ) are very similar independently
of the potential V. Even the functions n∞(V ) and 1 − h∞(V ) are also very
similar (Fig. 2). We are then allowed to use an effective variable w for n and
1-h.

Figure 2: Steady-state (in)activation functions (left) and voltage-dependent
time constants (right) in the Hodgkin-Huxley model. This figure is directly
taken from [4].
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Once we applied these simplifications to equation (2) we get:

Cm
dV

dt
= −gK

(w

a

)4
(V − EK) − gNa(m∞(V ))3(b − w)(V − ENa) −

−gL(V − EL) + I (4)

where for generality we have written w = b − h = an. Equation (4) can be
further simplified by writing

dV

dt
=

1

τ
[F (V, w) + RI] (5)

where τ = RCm and R = g−1
L . Finally equation (3) can be rewritten for w,

leading to a single effective equation

dw

dt
=

1

τw
G(V, w) (6)

FitzHugh and Nagumo build up a system of two equations like (5) and
(6) replacing the functions F and G by

F (V, w) = V − V 3 − w (7)

G(V, w) = b + γV − w (8)

in order to reproduce qualitatively the behavior of a neuron.

2.1 Stability analysis

The FitzHugh-Nagumo equations are a model for a nonlinear dynamical
system, like neurons, which can be studied from its phase portrait. For
I = 0 we can look at different regimes by varying the parameters of the
model which in turn determine the intersection point between the nullclines
and the stability of that point.

The nullclines are the curves where dV
dt = 0 or dw

dt = 0 and it is where the
change of sign of the derivatives takes place, i.e. the functions V (t) and w(t)
go from increasing to decreasing or viceversa. The intersection between the
two nullclines corresponds to an equilibrium point (also named fixed point)
that can be stable or unstable. The stability of the equilibrium point can
be analized by looking at the behavior of a trajectory starting close to it.
In other words, we can linearize the nonlinear functions F and G near the
equilibrium (Vo, wo) building up the Jacobian matrix of the system J as

d

dt

(

V̄
w̄

)

=





1
τ ∂F/∂V 1

τ ∂F/∂w

1
τw

∂G/∂V 1
τw

∂G/∂w





(Vo,wo)

(

V̄
w̄

)

(9)
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where V̄ = V −Vo and w̄ = w−wo are the deviations from the equilibrium.
Looking at the eigenvalues and the eigenvectors of this matrix

J~v = λ~v (10)

helps us to write a general solution for the linear system in the form

(

V̄ (t)
w̄(t)

)

= c1e
λ1tv1 + c2e

λ2tv2 (11)

with

λ1,2 =
τ ±

√
τ2 − 4∆

2
(12)

where λ1 and λ2 are the eigenvalues of the eigenvectors v1 and v2, respec-
tively, c1 and c2 are constants, and τ and ∆ are the trace and the determinant
of the Jacobian matrix, respectively. Knowing the values of τ and ∆ can tell
us the nature of the eigenvalues and thus the way the trajectories behave
around the fixed point acording to equation (11) and (12). If both eigenval-
ues have negative real part the phase plane trajectory can move back to the
fixed point oscillating around it (stable, complex eigenvalues) or approach-
ing it asymptotically (asymptotically stable, real eigenvalues). If at least one
eigenvalue has positive real part small perturbations are amplified and the
system escapes the fixed point (unstable). Thus the necessary and sufficient
condition for stability is ∆ ≥ 0 and τ < 0. This allows us to classify the
equilibrium points besides their stability: if the eigenvalues are real and of
the same sign we talk about nodes, if they have opposite signs they are called
saddles, and if they are complex they are foci.

In dimentionless form our system of equations reads:

ǫ
dV

dt
= V − V 3 − w, (13)

dw

dt
= b + γV − w (14)

where ǫ = τ
τw

. Setting γ = 1.5 we get two cases, see Fig. 3, within the
excitable regime [5]: monotonic relaxation (e.g. point B, ǫ = 0.001, b = 0.6)
and damped oscillations (e.g. point A, ǫ = 0.05, b = 0.5) of membrane
potential that take the neuron to the resting state. These two types of
neurons are called nonresonant neurons and resonant neurons respectively
and their time series and phase portrait are represented in Figs. 4 and 5
respectively. In each phase portrait the nullclines and a typical trajectory
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are represented.
Tuning the parameter b changes the coordinates of the fixed point.

b = −V 3
o −

1

2
Vo (15)

For the specific value b = 5
2

(

1
3

)3/2
the equilibrium point is exactly at the

minimum of the V-nullcline. On the other hand, the parameter ǫ modi-
fies the stablity of the fixed point by changing the sign of the radicand of
equation (12).

τ =
1

ǫ

(

1 − 3V 2
o

)

− 1 (16)

∆ =
1

ǫ

(

1

2
+ 3V 2

o

)

(17)

Figure 3: Stability diagram of the FitzHugh-Nagumo model in parameter
space (ǫ,b) for constant γ = 1.5. Points A and B denote parameter sets
used to model resonant and nonresonant neurons respectively. This figure
is directly taken from [5].
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Figure 4: Phase portrait for a nonresonant neuron (left) and its potential
time evolution (right).
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Figure 5: Phase portrait for a resonant neuron (left) and its potential time
evolution (right).

In Fig. 4 we have a stable node with a trajectory that converges to the
equilibrium point and in Fig. 5 we have a stable focus having a rotation
around the equilibrium point.

2.2 Noise and spectral analysis

We can go further by considering the influence of the environment of a neu-
ron, which receives continuously multiple signals from its neighbours. We
can model this situation by adding to the equations a white Gaussian noise
term, ξ(t), with zero mean and correlation < ξ(t)ξ(t′) >= 2Dδ(t − t′). In
the absence of external current the stochastic differential equation reads

ǫ
dV

dt
= V − V 3 − w, (18)

dw

dt
= b + γV − w +

√
2Dξ(t) (19)

A neuron receives an irregular spike sequence due to the neural network
activity. This noise can induce going from the resting state to excited state.
In what follows we will focus on the resonant neuron type because we are
interested in different phenomenons related to the subthreshold oscillations,
i.e. the propagation of the spikes. In Fig. 6 we can see the bursting effect
produced by a stochastic current with amplitude D = 0.0004 where the
subthreshold oscillations are disrupted by the noise.

In the presence of noise the resonant neuron shows an irregular pattern of
spike generation that has in fact its own oscillatory frequencies. By looking
at the power spectral density of the neuron it is easy to see that there are
specific frequencies that control its behavior at different values of the noise
intensity, D. The spectra of Fig. 7 were numerically obtained from a sample
of 215 points of the time series V (t), with a sample interval 0.1 and averaged
over 120 different realizations following [5]. The spectra are not normalized.
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Figure 6: Phase portrait for a resonant neuron (left) and its potential time
evolution (right) for D=0.0004.
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Figure 7: Spectra of the stochastic FitzHugh-Nagumo model in the resonant
regime for increasing noise intensities: (a) D = 0.0004, (b) D = 0.001, (c)
D = 0.01, (d) D = 0.1.
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All the spectra of Fig. 7 show a main peak at a frequency that slightly
increases at high levels of noise. This frequency corresponds to the mean
firing frequency whih is equal to 2π/T1, where T1 is the time interval be-
tween the begining of a spike and the first maximum of the subthreshold
oscillations. The lower peak corresponds to the time interval between the
begining of a spike and the second maximum of the subthreshold oscilla-
tions and disappears at high levels of noise [Fig. 7 (d)]. Thus the difference
between both frequencies correponds to the frequency of the subthreshold
oscillations [5]. If the environment is very noisy the subthreshold activity is
significantly altered and the periodic subthreshold oscillations disappear.

3 Coupling neurons

When we study a network of neurons we must take into acount their coupling
in order to see how the information is transmitted through the network. As
mentioned above, there are regions between neurons named synapses where
the sending neuron is connected to the receiving neuron (see Fig. 8). There
exist two types of synapses: electrical and chemical.

Figure 8: Two interconnected cortical pyramidal neurons (hand drawing)
and in vitro recorded spike. Vi and Vj represent the voltage variable of the
presynaptic and postsynaptic neuron respectively. This figure is directly
taken from [4].

3.1 Electrical coupling

Electrical synapses are called gap junctions, and are connections between
the cytoplasm of two cells where different ions flow. The electrical current
produced is a way of fast transmission that changes the membrane potential
of both neurons. The electrical coupling depends on the membrane potential
difference between the two neurons:
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Ielec
i = gelec (Vi − Vj) (20)

where i = 1, 2 index the neurons and gelec is the effective conductance of the
gap junction. This term will be added to the voltage variable equation (5)
of each neuron.

3.2 Chemical coupling

The current in the presynaptic neuron leads to a release of messenger par-
ticles from the presynaptic neuron, known as neurotransmitters. The neu-
rotransmitters are molecules that bind to protein receptors found in the
postsynaptic neuron membrane. The chemical current is unidirectional and
can be modeled by the following current term [6]:

Ichem
i = gchemrj (Vi − Es) (21)

where gchem is the conductance of the synaptic channel, rj represents the
fraction of bound receptors of the postsynaptic neuron i (which depends on
the firing times of the presynaptic neuron j), and Es is fixed to a particular
value in order to make the synapse excitatory (in the FitzHugh-Nagumo
model presented up till now Es = 0). The fraction of bound receptors has
the following dynamical behavior [7]

ṙj = αCj (1 − rj) − βrj (22)

where α and β are rise and decay time constants, respectively, and

Cj = Cmaxθ
(

(T j
o − τ) + τsyn − t

)

θ
(

t − (T j
o − τ)

)

(23)

is the concentration of neurotransmitters released into the synaptic cleft.
T j

o is the time at which the presynaptic neuron j fires, whic happens when-
ever the presynaptic membrane potential exceeds a predetermined threshold
value Es. The time during which the synaptic connection is active is given
by τsyn. We add a time delay τ into the chemical current known as the
synaptic delay to model a more realistic situation in which some time is
needed for the neurotransmitter to be released, diffuse across the cleft, and
bind to the receptor. The term Ichem

i only affects the postsynaptic neuron
i and is also added to the voltage variable equation (5).

4 Modified FitzHugh-Nagumo model

The resonant neuron obtained from the previuos FitzHugh-Nagumo model
shows too weak subthreshold oscillations that quickly relax (Fig. 5). In order
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to obtain relatively strong subthreshold oscillations we modify this model
[8]. In dimenionless form, the modified model reads

ǫu̇ = u(u − a)(1 − u) − v, (24)

v̇ = g(u − b) (25)

where u is the voltage variable, and v is the recovery variable, which rep-
resents the effective membrane conductivity. The parameter ǫ is the ratio
between the characteristic times of u and v. The u-nullcline still has the
shape of a cubic function which can be obtained from the V-nullcline of
equation (7) by a linear change of variables. Equation (8) is replaced by a
monotonically increasing function,

g(x) = k1x
2 + k2

(

1 − exp

[

−
x

k2

])

(26)

where k1 and k2 control the value of dv
dt and, consequently, the time spent

by a trajectory in the domain of du
dt = 0. The w-nullcline is just the straight

line u = b. The equilibrium point is then uo = b and vo = b(b − a)(1 − b).

4.1 Stability analysis

The choice of the parameters ǫ, a and b depends on the regime considered.
As mentioned above we are looking for a neuron having both oscillatory and
excitatory properties. When the resting state undergoes a transition from
stable (eigenvalues with negative real parts, Fig. 5) to unstable focus (eigen-
values with positive real parts) giving rise to a small-amplitude limit cycle
attractor, we talk about a supercritical Andronov-Hopf bifurcation. We
then lose stability of the fixed point but gain stable oscillations. Near the
supercritical Andronov-Hopf bifurcation the FitzHugh-Nagumo model gen-
erates low amplitude quasiharmonic oscillations remaining excitable. From
the local linear analysis we can see which role the parameters play. The
mechanism followed is the same that took us to equation (11). For the sys-
tem (24), (25) we build up the determinant and the trace of the Jacobian
matrix at the fixed point:

∆ = 1/ǫ, (27)

τ =
1

ǫ
(−b3 + (1 − a) b2 − ab) (28)

Their sign depends on a and b. We will fix the parameter values ǫ = 0.005
and a = 0.9 and vary b.

There is an important feature of τ . As the equation (25) does not depend
on v, the trace of our Jacobian matrix is just ∂u̇

∂u . If the parameter b is chosen
to be equal to the value of u at the absolute minimum of the u-nullcline then
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τ = 0, which means that the eigenvalues have no real part just as in the

Andronov-Hopf bifurcation. In that case we have b = 1+a−
√

1−a+a2

3 = 0.315
and by setting b = 0.316 we get τ > 0. Now the real part of the eigenvalues
is positive and a low amplitude limit cycle (subthreshold oscillation) appears.

4.2 Time scale of subthreshold oscillations

By means of the function g(x) we are able to make the duration of spikes
shorter than the period of the subthreshold oscillations. This is the desired
case when studying the influence of subthreshold oscillations on spike gen-
eration in a neural network. In order to choose the values of k1 and k2 we
derive an approximate expression for the excitation and refractory intervals
looking at the slow motion equation of the u-nullcline v = u(u − a)(1 − u).
We will set the excitation interval as the time spent going from point A
to point B represented in Fig. 9, which can be obtained by integrating the
equation (25) between vA and vB using as a first approximation, u(t) ≈ 1.

vA = v

(

1

3

[

(1 + a) −
(

1 − a + a2
)1/2

]

)

, (29)

vB = v

(

1

3

[

(1 + a) +
(

1 − a + a2
)1/2

]

)

(30)

The same thing is done for the refractory period between point C and point
D using u(t) ≈ 0. The final results are the following expressions:

Texc =
4

(

1 − a + a2
)3/2

27g (1 − b)
, (31)

Tref = −
4

(

1 − a + a2
)3/2

27g (−b)
(32)

The duration of a spike will be Texc + Tref .

We can also get an expression for the period of the subthreshold oscillations
and numerically compare both times. We have chosen a value of b which
approaches the equilibrium point to the Andronov-Hopf bifurcation (τ = 0
and ∆ = 1/ǫ). From equation (11) we see that the solution to the linear
system

d

dt

(

ū
v̄

)

=

(

0 −1/ǫ
1 0

)(

ū
v̄

)

(33)

with λ1,2 = ±i
√

∆, is an harmonic oscillator with ω =
√

∆ = 1/
√

ǫ. The
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Figure 9: v-nullcline for a = 0.5

period of subthreshold oscillations near the bifurcation point is then Tsth ≈
2π

√
ǫ ≈ 0.44.

In what follows we choose k1 = 7.0 and k2 = 0.08 [8]. The excitation
and refractory period are then Texc ≈ Tref ≈ 0.04, what makes the duration
of a spike shorter than the period of subthreshold oscillations, Tsth. As
shown in Fig. 10, the amplitude and duration of subthreshold oscillations is
considerably increased with respect to Fig. 5. Both aspects are necessary in
order to see clearly the minima and maxima of the subthreshold potential
and to easily control the effect of these oscillations on the postsynaptic
response and the effect of the model parameters on the oscillations.
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Figure 10: Phase portrait for a neuron (left) and its membrane potential
time evolution (right) for the deterministic system of equations (24) and
(25).

14



5 Spike propagation in coupled neurons

The simplest case of neural network is the coupling between two neurons.
This is the basic unit of neural connection and can indeed clarify the role of
subthreshold oscillations in the mechanism of spike propagation. The aim
of this section is to bring insight into the modulation of information trans-
mission in neural networks.

In what follows we will work with the model presented in Sec. 4, adding
the corresponding terms for the electrical and chemical coupling introduced
in Sec. 3. The values of the coupling parameters that we will use are speci-
fied in Table 1, and an example of the dynamical behavior of C(t) and r(t)
is represented in Fig. 11. We also add an external current to the presy-
naptic voltage variable equation consisting on a train of pulses of 2 units of
amplitude with a period of 10 units of time.

Parameter Synapses

α 2.0

β 1.0

Cmax 1.0

gsyn (specified in each case)

τsyn 0.006

τ (specified in each case)

Es 0.7

Table 1: Parameter values of the cou-
pling models used in this work.

5.1 Electrical coupling: resynchronization versus damping

Synchronization of subthreshold activity takes place only via gap junctions.
Fig. 12 shows the time evolution of the membrane potential ui of the two
neurons for increasing values of the electrical coupling strenght gelec and
in the absence of chemical coupling (gchem = 0). For small enough gelec,
a spike in the presynaptic neuron (represented by a solid line in the fig-
ure) due to the external current does not excite a spike in the postsynaptic
neuron (dashed line), but perturbs sufficiently the dynamics of both neu-
rons such that synchronization of their subthreshold activity is temporarily
lost [Fig. 12(a)]. The resynchronization time decreases as gelec is increased
[Fig. 12(b)]. For larger strenghts of the electrical coupling, the subthreshold
oscillations become heavily damped [Fig. 12(c)], and eventually the postsy-
naptic neuron pulses as a response to the presynaptic one [Fig. 12(d)]. For
an intermediate level of electrical coupling [Fig. 12(b)], the resynchroniza-
tion time is relatively small, the subthreshold oscillations are not heavily
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Figure 11: Time traces for two coupled neurons in the absence of electrical
coupling and for gchem = 0.5 with τ = 5. The middle and bottom time
traces show the dynamical behavior of C and r respectively. The solid
line represents the presynaptic neuron and the dashed line the postsynaptic
neuron.
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Figure 12: Time traces for the two coupled neurons in the absence of
chemical coupling and for increasing strength of the electrical coupling: (a)
gelec = 0.001, (b) gelec = 0.005, (c) gelec = 0.01, (d) gelec = 0.1.
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damped, and the postsynaptic neuron does not pulse as a response to the
presynaptic one. We will use gelec = 0.005 in what follows.

5.2 Chemical coupling: modulating spike excitation via sub-

threshold oscillations

As mentioned above, chemical coupling is only able to propagate suprathresh-
old activity. If gchem is too high the postsynaptic neuron will fire whenever
the presynaptic neuron does, and if its too low it will never fire. In both
such cases, the subthreshold activity of the postsynaptic neuron does not
play a relevant role. For intermediate values of gchem, on the other hand,
the receiving neuron will fire depending on its state at the time at which the
input pulse from the previous neuron is received. In Fig. 13 we examined
the behavior of the neurons for different values of gchem in the absence of
electrical coupling (gelec = 0) in order to determine whether subthreshold
oscillations have an effect on the propagation of a spike. From that figure,
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Figure 13: Time traces for the two coupled neurons in the absence of
electrical coupling and for increasing strength of the chemical coupling. A
delay τ = 5 is externally added in order to clearly separate the spikes of
the two neurons. (a) gchem = 0.1, (b) gchem = 0.5, (c) gchem = 0.8, (d)
gchem = 1.0.

however, we cannot make a choice of the value of gchem. We cannot yet dis-
tinguish the reason of the success or failure of the propagation of the spike of
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the presynaptic neuron because we cannot predict if this will change when
introducing the electrical coupling or as we vary the delay. Fig. 13(a) shows
the case of a low value of gchem, for which the second neuron does not fire.
Varying the delay τ we see that the postsynaptic neuron never fires irre-
spective of the instant at which the pulse from the first neuron is received
with respect to the subthreshold oscillation state (results shown in next sub-
section in Fig. 14(a)). For higher coupling strenght gchem [Fig. 13(b), (c)
and (d)], on the other hand, the receiving neuron fires in response to the
emitting one for the case presented in the figure, while it does not fire for
other delay values (results shown in next subsection in Fig. 14(b), (c) and
(d)).

5.3 Effect of delay in synaptic transmission

As mentioned in the previous section, it turns out that gchem = 0.1 is too
small and the spike of the presynaptic neuron does not propagate for any
value of the delay [Fig. 14(a)]. For larger values of gchem, as suggested above
in the case of no electrical coupling, spike transmission depends on the delay
[Fig. 14(b), (c) and (d)]. We now whish to compare the behavior of the two
coupled neurons for different values of the delay introduced in the chemical
current, in the presence of both synaptic and electrical coupling. To that
end, we vary the delay and check the behavior of the receiving neuron for
the values of gchem chosen before.

Different results appear in the presence of the electrical current and
given gelec the postsynaptic neuron does not fire at the same values of τ
that it did in the absence of the electrical current. For gchem = 0.5 the
spike doesn’t propagate in the presence of electrical coupling [Fig. 15(a)] as
the synchronization between the two neurons is strong enough to inhibit the
excitation of the postsynaptic neuron. For gchem = 0.8 the strength of the
synchronization seems to depend on the delay introduced [Fig. 15(b)]. This
observation shows the significance of the subthreshold dynamics of the post-
synaptic neuron in propagating the signal in front of the persistent electrical
current. We finally set gchem = 1.0 and gelec = 0.005, where we can look
at different situations in a framework where subthreshold oscillations play a
role in filtering the propagation of the signal. For example, the postsynaptic
neuron can be at the maximum of its subthreshold oscillations, or at the
minimum, or somewhere in between, at the moment at which it receives an
external signal from the presynaptic neuron. We are interested on how the
subthreshold oscillations of the postsynaptic neuron can increase the proba-
bility to propagate a spike when it is excited by the presynaptic neuron. As
shown in Fig. 16, at different situations the response of the receiving neuron
is different, it can either fire or not.

The results of Fig. 16 allows us to infer a non-monotonic dependence
of the spike propagation efficiency on the timing at which the postsynaptic
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Figure 14: Time traces for the two coupled neurons in the absence of
electrical coupling and for increasing strength of the chemical coupling and
different values of τ . (a) gchem = 0.1, (b) gchem = 0.5, (c) gchem = 0.8, (d)
gchem = 1.0.
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Figure 15: Time traces for the two coupled neurons with gelec = 0.005 for
different values of the delay introduced. (a) gchem = 0.5, (b) gchem = 0.8.
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Figure 16: Time traces for the two coupled neurons with gelec = 0.005 and
gchem = 1.0 for different values of τ . (a) τ = 5.0, (b) τ = 5.25, (c) τ = 5.5,
(d) τ = 5.75.
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Figure 17: Success rate for increasing delay in the chemical synaptic cou-
pling, for gelec = 0.005 and gchem = 1.0. The bottom time trace shows the
underlying subthreshold oscillation of the postsynaptic neuron.

neuron receives the stimulus. That timing is controlled by the synaptic de-
lay in our case, with certain delay values at which propagation is optimal
and others at which is absent. In order to quantify this observation, we
vary the delay from τ = 5 to τ = 6 in units of 0.05, stimulate the presy-
naptic neuron in multiple realizations (100 in the results presented here)
by the external current mentioned before, and calculate the percentage of
successful spike transmission events for increasing delay, [9]. As shown in
Fig. 17, some delays lead to a 100% success rate, while for some others the
postsynaptic neuron never fires. The figure also includes a time trace with
the subthreshold oscillations that underlie the activity of the postsynaptic
neuron. Comparing the top plot with the bottom time trace, one can see
that the postsynaptic neuron fires when it receives the input pulse while the
value of its membrane potential is growing. This can also be seen by looking
carefully at Fig. 16.

6 Conclusions

We have seen that subthreshold oscillations play a relevant role in the propa-
gation of spikes through two neurons coupled via chemical synapses. Electri-
cal coupling via gap junctions leads to a synchronization of the background
subthreshold activity, and would thus allow to scale up the phenomenon in
a coherent manner to an array of coupled neurons, something which we are
currently investigating. In the present case, when the membrane potential of
the postsynaptic neuron is increasing the success rate of spike propagation

22



is at its maximum, and spike propagation is achieved. When the membrane
potential is decreasing, on the other hand, the success rate drops to zero
and no propagation is carried out. We expect such type of mechanism to
be of general importance, given the ubiquity of gap-junction coupling and
subthreshold activity in neural tissue. We have centered our work in the de-
terministic system even if at low values of noise intensity the subthreshold
oscillations remain periodic.
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