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Abstract

We explore biological transport across membrane channels from a
physical point of view. The main objective is to use the tools available
to a physicist from non-equilibrium thermodynamics and apply them
to a concrete biological problem. In this case, we focus our attention
in trying to build simple physical models, yet not trivial, that match
the behavior of real channels, or ones that can be synthetically accom-
plished.

The model of a channel studied in here consists on a symmetric
sawtooth potential with multiplicative noise. The introduction of mul-
tiplicative noise into the system makes it dramatically change its be-
havior, yet it remains analytically solvable. We also present a simu-
lation framework applicable to more complex and realistic models for
channels that can be easily mapped to real experiments and does not
require cumbersome theoretical developments.
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1 Introduction

1.1 Transport across biological membranes

Any living organism divides the world into two regions: itself and the rest of
the universe, and it does so through a well defined boundary. This boundary
allows the organism to differentiate itself and have its own identity. On the
other hand, a living organism is also an open system, constantly exchanging
three magnitudes with its environment: matter, energy and information [1].
From these exchanges, clearly the most important one is matter, since it can
also act as a source of energy and information.

The most fundamental boundary found in living organisms is the cell
membrane. It could be said that the first cell came into being when a mem-
brane formed, enclosing a small volume of aqueous solution and separating
it from the rest of the universe [2]. The cell membrane consists mainly
of amiphatic lipid molecules arranged in a bilayer structure, with the polar
heads of the lipids in the exterior of both layers. The cell membrane is a flex-
ible structure, self-sealing and highly impermeable to ions, polar molecules
and large compounds. But the cell is an open system, and it needs to ex-
change matter with its surroundings through the membrane, mostly ions,
but also proteins and other substances. Since the membrane is highly im-
permeable to them, it needs of other structures to allow transport.

Transport across the membrane is done through transmembrane pro-
teins. These proteins attach to the lipid bilayer and are in contact with
both the exterior and the interior of the cell. There are mainly two classes
of proteins involved in transport: pumps and channels. Pumps involve ac-
tive transport, using an energy source to transport ions or molecules against
a free energy barrier, usually against a concentration gradient. On the other
hand, channels involve passive transport, allowing transport in the same di-
rection as the concentration gradients, in the same way free diffusion does,

Figure 1: Different examples of membrane proteins. All of these include a
β-barrel structure forming a pathway between both sides of the membrane
(Ref. [2]).
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also they do not require an energy source to facilitate transport, although
energy is needed for opening and/or closing (gating) the channel.

Channels, being passive transporters, have some key features that make
them special. While pumps can transport ions and molecules at rates ap-
proaching several thousand ions per second, channels are capable of reach-
ing speeds up to a thousand times higher, being very close to the speed of
free diffusion [3]. Yet, they are not just tubes that allow diffusion across
the membrane, they are sophisticated molecular machines that respond to
changes in their environment and undergo precisely timed conformational
changes.

Channels are also highly selective. For example, some channels allow
very effectively the flow of K+ but do not allow the flow of Na+, there
are specific channels for each susbstance that needs to cross the membrane.
Another key feature of channels is that they exist in two states, open and
closed. In the closed state, channels do not allow any substantial flow. The
transitions between the two states is regulated by external factors, in some
channels it is done by ligand-binding (ligand-gated channels) or directly by
ATP hydrolysis, while on others, this regulation is done by response to an
electric potential (voltage-gated channels).

Figure 2: Cartoon representation of a membrane channel and a pump. On
the left we can see the channel, which facilitates diffusion down the con-
centration gradient. On the right we have the pump, working against the
gradient and consuming energy in the process (Adapted from Ref. [2]).

1.2 The Biophysical approach to membrane channels

The introduction of the patch-clamp technique by Erwin Neher and Bert
Sakmann [4] in 1976 made possible the study of single channels. With this
technique one can measure the activity of a single channel. The flow of
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ions through a single channel and transitions between the open and closed
states of a channel can be monitored with a time resolution of microseconds.
Also, the channel can be studied in its native environment, even in an intact
cell. This technique, and newer ones, makes possible a quantitative analysis
of channels. From this point of view, it is also important to theoretically
describe the processes involved in the transport through channels, using
models more accurate than simple diffusion or chemical kinetics, but still
far from molecular dynamics simulations.

A good understanding of channel transport is needed from a medical
point of view. One clear example is the CFTR (Cystic fibrosis transmem-
brane conductance regulator) chloride channel, whose failure causes cystic
fibrosis [5]. Channels, which play an essential role in the nervous system,
are the main target of many toxins attacking the organism, such as poisons
and venoms, that block the channels. Also, since channels govern the fastest
processes in cellular transport, they are the favorite target in the drug re-
search industry. Creating drugs and compounds that have a high affinity
with channels can improve and speed up the process of drug delivery.

Theoretical models also play an important role on recent advances in the
design and construction of synthetic channels and nanopores [6, 7]. Iden-
tifying and isolating the key components involved in channel transport we
can, later on, produce synthetic compounds that mimic the effects of biolog-
ical channels, and also change them and make them more suitable for other
tasks. Applications in this field range from the biological level, for example,
to replace faulty channels, to the industrial level, allowing for example, to
separate substances in a solution. Properties like the high selectivity, speed,
and the fact that they can be easily controlled at will, makes them specially
interesting for the industry.

Figure 3: Example of a light-actuated synthetic channel. Exciting the chan-
nel with different wavelengths opens and closes the channel (Ref. [6]).



1.2 The Biophysical approach to membrane channels 5

Physicists have been studying the process of transport for centuries, but
molecular transport in biological systems makes it substantially different
from the rest. From a physical point of view, living organisms are systems
very far from equilibrium, continuously exchanging matter, energy and in-
formation with its surroundings. This is already a challenge from a physical
point of view, since one is used to study systems in equilibrium, or close to
it, where linear relations hold; in the biological world, as we will see in later
chapters, linear relations do not hold anymore. Also, at the molecular level,
biological systems are found in the low Reynolds regime [8]; in this regime,
friction dominates inertia, the systems are highly dissipative and noisy, and
the laws governing movement are slightly different from the macroscopic
ones.
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2 Membrane channel as a symmetric pump

2.1 Introduction

In this section we introduce our first approach to studying biological chan-
nels from a physical point of view. From a coarse-grained perspective, the
main difference between channels and pumps is the breaking of spatial sym-
metry in their effective potential. At the same time, most models of active
transport in biophysics are based on Feynman’s ratchet mechanism [9], and
we will make use of these premises to model our channel. We will apply
the framework introduced by A. Gomez-Marin and J. M. Sancho [10] for
Brownian pumps and apply it to channels.

The basis of this model is a white-noise flashing potential (symmetric
in our case). The flashing potential is modeled as a normal potential V (x),
modulated by a time dependent stochastic process (see Figure 4). Even if
this modulation is small, it introduces new features to the model that make
it behave quite different as it would do without it. Although a white-noise
stochastic modulation cannot take into account channel gating, it can be
considered as the effect of an external fluctuation (i.e. an oscillating electric
field in voltage-gated channels), as the limit of a dichotomic noise, or just
as the inherent fluctuations in the conformational structure of the chan-
nel [11]. On the other hand, the symmetry makes it behave as a passive
transport mechanism, the flux always goes against the concentration gradi-
ent, from higher to lower, being the equilibrium state the one in which the
concentrations at both sides of the potential are the same.

To study this model we start by considering a simple potential, a sym-
metric sawtooth, for which we can find an analytic solution by means of
Langevin dynamics. After a theoretical analysis, both in and out of equi-
librium, we introduce a simulation scheme based on the introduction of
reservoirs and ”natural” boundary conditions, which we can apply to more
complex potentials. Then we find the complete analytical solution for the
symmetric sawtooth plus reservoirs, and compare it with the results of the
simulation.

2.2 Theoretical analysis for a symmetric sawtooth

As stated in the introduction, biological systems (at the molecular level),
belong to the low Reynolds number regime, in which friction dominates
inertia. Given that, our starting point for the theoretical analysis will be a
general Langevin equation in the over-damped limit

γẋ = −V ′(x, t) + η(t), (1)

which describes a single particle moving through the channel, where γ is
the friction, ẋ the velocity, V (x, t) is the complete potential, and η(t) is a
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Gaussian white noise with autocorrelation < η(t)η(t′) >= 2γkBTδ(t − t′).
To introduce the flashing ratchet we take a potential of the form

V (x, t) = V (x) (1 + χ(t)) , (2)

where V (x) is a symmetric sawtooth potential, and χ(t) is the flashing part,
also a Gaussian white noise with autocorrelation <χ(t)χ(t′)>= 2Qδ(t− t′).
A scheme of the potential can be seen in Fig. 4.

x

ρ0

0 L

V (x, t)

L/2

V0

ρ1

J

Figure 4: Structure of the channel. The channel is modeled as a symmetric
flashing potential V (x, t), being ρ0 and ρ1 the particle concentrations at each
side of the channel. When the concentrations are different, there is a net
flux.

The exact form of our sawtooth potential is

VL(x) =
2V0

L
x, x ∈

(
0,
L

2

)
, (3)

VR(x) =
2V0

L
(L− x), x ∈

(
L

2
, L

)
. (4)

Using the potential from (2) the Langevin equation (1) can be expressed as

ẋ = −V ′(x)− V ′(x)χ(t) + η(t), (5)

where we have taken γ = 1 for convenience, since its only effect is a change in
the time scale1. Being χ(t) and η(t) stochastic processes, and both Gaussian
white noise, we can easily combine them, since the convolution of the two
PDF2 is still Gaussian. Taking this into account, we can further simplify
the previous expression

ẋ = −V ′(x) + g(x)ξ(t), (6)
g(x) ≡

√
kBT +QV ′(x)2, (7)

1It can be easily seen by making the substitution t′ = γ−1t in the Langevin equation
2Probability Density Function
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where ξ(t) is also a Gaussian white noise with zero mean and unit autocor-
relation strength, but now it is a multiplicative noise.

Due to the multiplicative noise χ(t) previously introduced, it is worth
saying that we are going to analyze our stochastic processes following Itô
rules. Since we have not fully explained the origin of the multiplicative
noise3, the choice might seem arbitrary, but it is more natural to work
under Itô interpretation, both from the analytical point of view, and from
the simulation, since it does not require any additional terms, like drifts.
Under Itô interpretation, the Fokker-Planck equation for the process x(t)
defined by the previous Langevin equation becomes [13]

∂P (x, t)
∂t

= − ∂

∂x

[
P (x, t)V ′(x)

]
+

∂2

∂x2

[
g2(x)P (x, t)

]
, (8)

and from the conservation of probability we also have ∂tP (x, t) = −∂xJ(x, t),
where J(x, t) is the particle flux. Forgetting about the normalization of prob-
ability and considering the global behavior of the channel as the sum of N
independent single-particle processes we can safely move from probabilities
to particle concentrations ρ(x, t),

J(x, t) = −V ′(x)ρ(x, t)− ∂

∂x

[
g2(x)ρ(x, t)

]
. (9)

We now proceed to find solutions in the steady-state, where J becomes
position independent. In this case, the last equation becomes a first order
differential equation, which has for solution,

ρ(x) = Z(x, c0, J) exp
[
−
∫ x

0
dz

(
V ′(z)
g2(z)

+ 2
g′(z)
g(z)

)]
, (10)

Z(x, c0, J) = c0 − J
∫ x

0

dz

g2(z)
exp

[∫ z

0
dy

(
V ′(y)
g2(y)

+ 2
g′(y)
g(y)

)]
(11)

where c0 and J are constants yet to be determined. c0 being the concentra-
tion at x = 0 and J the particle’s flux. This solution is quite general as long
as the function g(x) remains continuous and differentiable, when moving
through different domains special care is needed to handle the discontinu-
ities. For our symmetric sawtooth discontinuities will appear between the
channel and the reservoirs, but not inside the channel, since g(x) is continu-
ous inside the whole channel, and the concentration jumps only occur when
there’s a discontinuity in g(x).

3See for example [12] for a full discussion
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2.3 Simulation framework

Although we have been able to find a steady-state solution for the Fokker-
Planck equation, working with it, is often cumbersome, since one has to take
extra care of discontinuities and the integrals inside (10) cannot always be
solved. Based on the last Langevin equation (7) we implement a simulation
framework that makes finding solutions, for any system and potential, much
easier than using analytical expressions or solving equations (10) and (11)
numerically.

2.3.1 Algorithm

Many algorithms exist for Brownian dynamics simulations [14], but since we
are dealing with non standard equations with multiplicative noise we will
go back to the core [15] and stick with Euler’s first order. Integrating (7)
between t and t+ dt we obtain,

xi(t+ dt) = xi(t)− V ′[xi(t)]dt+ g[xi(t)]Xi(t) (12)

where Xi(t) is the numerical representation of the stochastic integral

Xi(t) =
∫ (t+dt)

t
ξ(t′)dt′ =

√
2dtαi, (13)

namely a random number with zero mean and variance 2dt, which we can
write as a function of αi, being αi random numbers from the standard normal
distribution, due to the properties of the normal distribution.

We have the algorithm ready to simulate the movement of a particle in
our system, but we still need a way to deal with the boundaries.

2.3.2 Reservoirs model

In our model for the channel we have three parameters to work with, the
concentrations at both sides of the channel and the flux (only two of them
being independent), and we need a method to introduce them in the simula-
tion. The most common method of generating Langevin trajectories between
fixed concentrations is called particle injection [16], but the method is un-
practical, since it requires the knowledge of the temporal dependence on the
particle probability distribution to avoid the generation of spurious bound-
aries, and we are interested in doing a general simulation, one that matches
possible physical experiments, not a simulation that depends on the specific
form of the distribution. Our approach to the boundary conditions is the
introduction of reservoirs (zones around the channel where particles can dif-
fuse freely), and the insertion of reflective or periodic boundaries at the end
of the reservoirs, depending the case. This method increases the simulation
time, but is applicable to more situations and is easily understood.
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In the original work of A. Gomez-Marin and J.M. Sancho [10] the in-
troduction of the reservoirs was enough to simulate all the possible cases,
equilibrium and out of equilibrium (steady) states since their potential was
asymmetric, but in our case this is only half the story. We are working with
a symmetric potential, and no matter how the reservoirs and the boundaries
are, the system will always reach the equilibrium state with zero flux. To
be able to study situations with J 6= 0 we also introduce a pumping device
to our system. In the most simple case, this is just a new zone where a con-
stant force is applied to the particles. Now our complete system is as follows:
from left to right, diffusive zone (left reservoir), pumping device, diffusive
zone, channel, diffusive zone (right reservoir), see also Fig. 5. But if the
system is closed with reflective walls, we will still be in equilibrium, detailed
balance will be satisfied. To be able to study the system in steady-states we
connect both ends of the system, as if we had periodic boundary conditions,
so particles that exit from the right enter again by the left and vice versa,
this way, due to the general asymmetry of the complete potential, a net flux
will appear in the direction of the pumping force.

Figure 5: Scheme of the whole system. A constant force is acting as a pump
in the region (0, l) and the channel of length L is found on the right. This
corresponds to the concentration profile for the system in equilibrium, J = 0
(reflective walls).

The only problem with this simulation scheme is that there is no easy way
to control the concentrations at the sides of the channel and the global flux
beforehand (the system is not linear), and to do a full comparison between



2.4 Complete analytical solution 11

theory and simulation the complete analytical solution is required.

2.4 Complete analytical solution

Given the piecewise linear form of our potential for the channel, the Fokker-
Planck equation of the whole system (channel, pump and reservoirs) is solv-
able analytically . The solution is found by solving eq. (10) for each part of
the system and applying continuity to join the parts together when possible4.
Following the notation introduced if Fig. 5 we present the final expressions
of the analytical solution,

ρ1

ρ0
=

J

ρ0

[
1
F

(
1− e−f

)
+
l1e
−f + 2l0
kBT

]
+ e−f (14)

J

ρ0
=

(
1− ρ1

ρ0

)
v

ev − 1
kBT

L
, (15)

where we have used

f ≡ Fl

kBT
(16)

v ≡ V0

g2
1

(17)

g2
1 ≡ kBT + 4Q

V 2
0

L2
. (18)

Although the last two expressions of the analytical solution5 can be com-
bined, the expression becomes quite cumbersome and hard to read. Also,
we have chosen these expressions so the first one only involves parameters of
the simulation helper (pump + reservoirs) and the second one only involves
parameters of the channel. As we can see from the two expressions, the de-
pendence between the concentrations is not linear, but it is linear between
the ratio of concentrations ρ1/ρ0 and the ”normalized’ flux J/ρ0. A single
expression for the ratio of concentrations can be obtained by redefining some
parameters

α ≡ 1
F

(
1− ef

)
− l1 + 2l0ef

kBT
(19)

β ≡ v

1− v
kBT

L
, (20)

such that the final expression now becomes

ρ1

ρ0
=

1 + αβ

ef + αβ
, (21)

4Due to the form of the function g(x) special care is needed when joining the reservoirs
with the channel, discontinuities in the concentrations will appear

5It is worth saying that these expressions are only valid in the case J 6= 0 (although
the second one is always valid). This arises from the fact that you cannot both satisfy
periodic boundary conditions and J = 0 (unless there is no pumping, F = 0).
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which is useful for studying limiting cases. For example, it is easily seen that
in the limit f → 0 (no pumping) the system reaches equilibrium, ρ1 = ρ0.

2.5 Results

Next we show the most noteworthy results available for our model, namely
the particle density function for steady states and an exploration on the
channel’s behavior based on the different parameters.

2.5.1 Equilibrium, J = 0

We start with the most simple case, the system is at equilibrium, there
is no net particle’s flux. We accomplish this by setting reflective walls at
the boundaries of the system. The results for the particle density function
along the system for a simulation can be seen in Fig. 6, both in normal and
logarithmic scales. As it is clear from the logarithmic one, the concentration
is either constant or shows an exponential behavior, and it is the same in
both sides of the channel, clearly satisfying detailed balance. The ripples
on the left reservoir are due to the simulation time being small, and that
the reservoir has almost no particles in it. It can also be seen from the
zones of free diffusion that there is no flux; which is consistent with the
common knowledge obtained from Fick’s law: a net flux in a free diffusion
zone requires a concentration gradient to exist.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
x (a.u.)

ρ

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
x (a.u.)

ρ

 

 

Figure 6: Particle density distribution for equilibrium. Image on the right
is on logarithmic scale. See text for further explanation.

2.5.2 Non-Equilibrium Steady-State, J 6= 0

Now we move to solutions involving J 6= 0 that have relaxed until they show
no time dependence. To accomplish this, we connect both ends of the system
as explained previously to introduce a net flux in the system. Now we can
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also compare the simulation results with those obtained in the theoretical
section. The histogram for the particle density of one simulation run can be
seen in Fig. 7. together with the theoretical predictions. As it can be seen
in the figure, both results match perfectly, including the discontinuity found
between the channel and the system. Also, since now there is a net flux in
the system, the zones of free diffusion show the expected linear behavior of
Fick’s law, and a careful examination shows the continuity between the two
ends of the system.

Figure 7: Particle density distribution for a steady state, J 6= 0. The thick
contour line belongs to the analytical results and the grey shade to the
histogram of one simulation run.

2.5.3 The effect of multiplicative noise

The main difference of this model with previous ones based on free diffusion
is the presence of multiplicative noise in the system. Even if the strength of
this multiplicative noise is small it has a big impact on the system’s behavior,
as can be seen in Fig. 8.

Using the analytical results, we have explored the flux dependence with
the channel’s barrier height V0 for different values of the multiplicative noise
strength Q, while keeping it small. When there is no multiplicative noise, the
flux falls exponentially to zero as V0 increases, since particles have a small
probability of crossing through the channel’s barrier with only Brownian
motion (V0 is in units of kBT ). In fact, this situation corresponds to a
typical problem of barrier crossing. On the other hand, the presence of
multiplicative noise allows particles to always be able to cross the barrier.
Also, for very high barriers, the flux becomes independent of the barrier
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Figure 8: Flux as a function of the channel’s barrier height for different
values of the multiplicative noise strength.

height, which can be easily understood with the following argument: when
the barrier is high, the only chance a particle has to cross the barrier, is to
wait until the barrier disappears (due to fluctuations of the multiplicative
noise), and the frequency of this fluctuations is independent of the barrier
height, only depends on the strength of the multiplicative noise.

Another interesting effect of the multiplicative noise is the presence of
a minimum in the normalized flux. The position of this minimum actually
belongs to the regime in which the contribution to the effective diffusion
coefficient of the thermal fluctuations and the multiplicative noise is the
same, QV ′2(x) = kBT .

2.5.4 Parameter exploration

Since we are interested in the non-equilibrium behavior of the system we
proceed to study the flux dependence as a function of the different ’tunable’
parameters of the system. To try to mimic real channels, we have to consider
that parameters like the channel’s length, and the temperature will be fixed.
Our tunable parameters will be mainly the barrier’s height and the multi-
plicative noise strength. Also, to establish a direct correspondence between
theory and simulation we will perform all our calculations using the analyti-
cal expressions previously found for the periodic system, eq. (15). Although
on a real situation we would work at fixed concentration ratio between both
ends of the channel, since the relationship between the concentration’s ratio
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and the normalized flux is linear, the behavior of the system will remain the
same.

We start by studying the normalized flux as a function of the barrier
height. This is the same plot we already showed on the study of the effect of
the multiplicative noise, but now we fix all the system parameters, including
Q. The comparison between simulation and analytical results can be seen
in Fig. 9. As we can see, the results obtained from the simulation match

0 2 4 6 8 10 12 14 16 18 20
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0.3

0.35

0.4

0.45

0.5

V
0

J/
ρ 0

 

 
Analytical
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Figure 9: Flux as a function of the channel’s barrier height. Comparison
between simulation and analytical results (Q = 0.01).

perfectly the analytical predictions. Needless to say, for the simulation the
flux has been calculated as one would do in a real experiment, measuring
the number of particles crossing a given surface perpendicular to the chan-
nel per unit time. We also tried calculating the flux by adjusting a linear
fit to the zones of free diffusion, but this result was surprisingly less accurate.

Next we proceed to study the flux as a function of the multiplicative
noise strength Q. We use the same procedure as before, but now we fix all
the parameters but Q. The results can be seen in Fig. 10.

Again, both predictions match. We can see on Fig. 10 how for Q = 0 the
flux is very small (we are working with a barrier of height V0 = 5kBT ), and
for Q 6= 0 the flux quickly grows with Q until it saturates. The saturation
can be easily explained, since for high values of the multiplicative noise the
particles can always cross the barrier, and the system mostly behaves as
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Figure 10: Flux as a function of the multiplicative noise strength. Compar-
ison between simulation and analytical results (V0 = 5kBT ).

with free diffusion, but with a different effective diffusion coefficient.

3 Conclusions

From the brief study done on this model we can already see some inter-
esting results. The most important one being the effect of multiplicative
noise in our system, how such a small noise can have a very strong effect
in the behavior of the channel. Even if this model does not take into ac-
count important aspects in passive transport like gating and selectiveness,
it captures its essence, it maintains fluxes of the same order of magnitude
as free diffusion while showing a completely different behaviour. The pres-
ence of a minimum in the normalized flux for a given barrier height is also
interesting, this minimum also corresponds to a maximum in the difference
of ratio concentrations. In fact, this is the most interesting regime, in which
the system deviates the most from pure passive transport due to diffusion.

Also important is the introduction of the simulation framework, which
allows us to explore a wide range of potentials and systems for which ana-
lytical solutions are not possible, and this framework will also be employed
in future projects.
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