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Abstract 
The aim of the present paper is to identify the determinants of the geographical 
mobility of skilled individuals, such as inventors, across European regions. Their 
mobility contributes to the geographical diffusion of knowledge and reshapes the 
geography of talent. We test whether geography, amenities, job opportunities and social 
proximity between inventors’ communities, and the so-called National System of 
Innovation, drive in- and out-flows of inventors between pairs of regions. We use a 
control function approach to address the endogenous nature of social proximity, and 
zero-inflated negative binomial models to accommodate our estimations to the count 
nature of the dependent variable and the high number of zeros it contains. Our results 
highlight the importance of physical proximity in driving the mobility patterns of 
inventors. However, job opportunities, social and institutional relations, and 
technological and cultural proximity also play key roles in mediating this phenomenon.  
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1. Introduction 

 

The geographical mobility1

 

 of skilled workers has become a key issue in economics in 

recent years, attracting the attention of both academics and policymakers (Trippl, 2009; 

European Commission, 2000). Indeed, policymakers have actively endorsed the 

phenomenon: the mobility of researchers, scientists and, in general, highly skilled 

personnel has become one of the main pillars of the efforts to create the European 

Research Area (ERA) launched by the Lisbon Agenda back in 2000. Hence, in order to 

foster the establishment of the ERA, the European Commission has encouraged, among 

others,  the promotion of “greater mobility of researchers” and “improving the attraction 

of Europe for researchers from the rest of the world” (op. cit., pp. 8). The present paper 

analyses precisely this phenomenon, by measuring the mobility of inventors across 

European regions. 

The issue is important for a variety of reasons. First, human capital2

 

 endowments are 

often said to influence differentials in economic prosperity across space. Highly skilled 

workers are the engine of innovation (Dahl and Sorenson, 2010) as well as major 

sources of knowledge externalities (Lucas, 1988; Glaeser et al., 1995; Moretti, 2004). 

Second, when skilled workers move from place to place, their knowledge and skills 

move as well. “[K]nowledge always travels along with people who master it. If those 

people move away from where they originally learnt, researched, and delivered their 

inventions, knowledge will diffuse in space” (Breschi et al., 2009, pp. 367). 

In the analysis of what attracts and mobilizes talent, we find a regional focus essential. 

However, few studies have approached the issue from this angle. Here, we use a gravity 

model of immigration (applied to the subsample of knowledge workers) to test whether 

                                                 
1 The use of the term ‘mobility’ in this paper is intentional and is preferred to, for instance, ‘migration’. 
As stated in Williams et al. (2004), it is more apposite to refer to mobility when treating with knowledge 
workers. However, in this paper we occasionally use the term migration as well, to which we give the 
same meaning as mobility, though we acknowledge the differences between the two. 
2 In this paper we use the terms ‘human capital’ and ‘talent’ indistinctively and interchangeably. Some 
studies have highlighted differences between the two (Mellander and Florida, 2007), linking the latter to 
creative occupations and the former to educational attainment. In other work, however, high correlations 
are reported between the two parameters (Glaeser, 2005). In any case, our study focuses only on 
inventors, irrespective of their occupation or their educational attainment (which we assume to be high in 
both cases).  



a set of regional ‘attribute’ and ‘relational’3

 

 variables influence talent mobility across 

regions in 17 Western European countries. We aim to estimate disproportionate levels 

of high-skilled individuals’ flows, above and beyond a baseline level that would be 

expected from the spatial distribution of overall invention activity.  

We hope that the present study will provide the answers to a range of questions. Our 

starting point feeds from the migration literature and aims to assess whether the 

migration costs associated to physical distance play any significant role. We also draw 

on more recent literature and test the role of several pulling factors such as amenities, 

job opportunities, and regional economic conditions in attracting talent. Thirdly, we 

acknowledge that inventors are a highly specific type of migrant. In consequence, we 

extend the standard analytical framework to the analysis of other more meaningful 

distances across locations that may determine the spatial location choices of mobile 

knowledge workers. Among a set of relational characteristics, the main variables under 

scrutiny in this study will be (1) the spread of inventors’ social networks to distant 

inventors’ communities and (2) the influence of the National System of Innovation (i.e., 

institutional proximity) in favouring mobility within countries versus cross-country 

movements, above and beyond physical distance. We also show that, broadly speaking, 

within-firm mobility does not have a strong influence on our results. We acknowledge 

the endogenous nature of cross-regional social networks of inventors. We base our 

identification strategy on the use of geographical/spatial variables to instrument social 

proximity and 2-stage residual inclusion (2SRI) estimation procedures, and show that 

endogeneity does not pos a serious concern. We take a static comparative approach by 

estimating our models in two separate time periods, 1996-1999 and 2002-2005. As 

regards the econometrics, we rely on zero-inflated negative binomial models to test our 

hypotheses. 

 

This paper therefore contributes to the literature in four distinct ways: (1) in broad 

terms, it analyses the determinants of spatial mobility patterns of knowledge workers, 

which have not been addressed in depth before; more specifically, (2) it studies the 

                                                 
3 According to Scott (2000, pp. 2-3), “attribute data” are the data regarded as the properties, qualities or 
characteristics that belong to the individuals or, in general, to the unit of analysis considered. “Relational 
data” are the ties and connections which relate one unit of analysis to another and cannot be reduced to 
the properties of the individual agent under study. Relations, then, are not the properties of the unit, but of 
systems of units. 



influence of physical distance from former work colleagues in the destination choices of 

spatially mobile inventors; (3) it tests the role played by amenities versus job 

opportunities in attracting talent to the regions; and (4) it assesses the role played by 

more meaningful, observable linkages across distant regions. Our findings indicate the 

importance of physical separation in mediating the spatial mobility of inventors 

throughout the continent. However, institutional and social distances also play a 

significant role. These results are robust to the inclusion of other relational variables 

such as technological or cultural distances. 

 

The outline of the paper is as follows: section 2 reviews some relevant previous studies 

on the differences in regional talent endowment, inventors’ mobility, and skilled labour 

migration. Section 3 describes the empirical model and our research design, while also 

presenting the data and several estimation issues. Section 4 shows the results, and 

section 5 presents the conclusions and discusses certain limitations of our approach. 

 

2. Literature review and previous empirical findings 

 

Spatial differences in human capital endowments have been investigated in detail. The 

studies by Florida and colleagues are particularly well known. Analysing the US and 

Sweden respectively, Florida (2002a,b) and Mellander and Florida (2007) find 

significant correlations between regional talent endowments and various types of 

regional features, like social tolerance, diversity, coolness indexes, lifestyle indicators, 

and consumer amenities. Glaeser et al. (2001) argue convincingly that amenities are 

critical determinants of the spatial distribution of human capital. Shapiro (2006) notes 

that around 40% of the employment growth of college graduates is due to growth in 

quality of life. Yet, in our view, these approaches to the analysis of talent mobility have 

two main drawbacks. First, they are eminently static, i.e., they analyse stocks of talent, 

but do not explicitly consider flows of talent. Second, they rarely differentiate between 

talent created within the region and talent attracted from outside. 

 

Both the migration (Borjas, 2000; Lewer and Van der Berg, 2008) and the economic 

geography literature (Tabuchi and Thisse, 2002; Crozet, 2004) have analysed cross-

regional mobility of labour through the estimation of migration equations. Clearly, our 

approach draws on this literature, insofar as we also study the migration movements of 



individuals across locations. However, our focus on knowledge workers’ practices to 

some extent distinguishes our approach from the traditional ones. 

 

In sum, most of the related literature does not present systematic evidence of the 

determinants of the geographical mobility patterns of skilled individuals, especially with 

regard to inventors. Some studies have analysed the spatial mobility and location 

choices of recent college graduates. Faggian and McCann (2006, 2009) use structural 

equations models to explore the causes of regional human capital inflows across British 

regions. Their findings suggest that inflows of highly mobile graduates are influenced 

by the presence of universities as well as the quality of these universities, which act as a 

catalyst to enhance regional patent production – while variables such as wages, quality 

of life, and job opportunities are found to be insignificant. More recently, Venhorst et 

al. (2011) investigate the spatial mobility of graduates across Dutch regions, finding that 

the availability of large labour markets is a key factor in their location decisions. 

Gottlieb and Joseph (2006) also study the college-to-work migration patterns of US 

graduates and PhD holders. They find little evidence for amenities as spatial mobility 

drivers; employment opportunities seem to play a stronger role.  

 

To our knowledge, few studies have focused on the determinants of location choices of 

highly skilled individuals. Scott (2010) analyses what drives inflows of migrant US 

engineers into different MSAs for 13 different technological categories, and finds that 

local employment opportunities have a major impact on the destination choices of these 

skilled individuals, far above amenities or even wages. Studying Danish scientists, 

engineers and entrepreneurs, Dahl and Sorenson (2009, 2010) report that distance to 

family, friends, former classmates, and so on are stronger motivations than the influence 

of potential income in their spatial location choices. This brief collection of results 

seems at odds with the generally accepted argument that high skilled individuals are less 

affected by physical distance in their location decisions (Ackers and Gill, 2008; 

Schwartz, 1973). 

 

Briefly, a few points arise from this review. First and foremost, the main debate focuses 

on the influence of economic and job opportunities versus amenities in attracting talent, 

though no consensus has been reached so far. Second, the literature has also stressed the 

strong influence of unobservable linkages to the origin region, like family, friends, or 



colleagues. The present paper is closely related to these two branches of studies and 

contributes to this debate. However, little is known about what influences the location 

choices of highly-qualified knowledge workers from a regional perspective, since the 

impact of more meaningful linkages across locations has not been addressed. The 

present inquiry will try to fill this gap. 

 

Our focus on inventors as a proxy of talented individuals may appear controversial, 

since it could be argued that they are only a proportion of skilled labour. Indeed, their 

numbers are small, but in general they have a critical economic significance (Calmfors 

et al., 2003): they are deeply involved in the production of innovations and, as a result 

they transfer larger quantities of knowledge when they move (Breschi and Lenzi, 2010). 

Indeed, scientists and engineers are central elements of Florida’s (2004) super-core 

creative class.4

 

 

3. Research design 

 

3.1. Empirical specifications 

 

Baseline equation 

 

The hypotheses sketched above have been tested in a regional migration framework 

(Biagi et al., 2011; Faggian and Royuela, 2010; Lewer and Van der Berg, 2008; Wall, 

2001). This well-known setting is based on an individual’s utility-maximizing 

framework, where the decision to move is influenced by the comparison between 

expected utilities of the origin and destination locations. The utility of a given location i 

for the nth

V

 individual is a function of the region’s economic features, including its job 

opportunities and its supply of amenities (all these factors are included under the label 

‘ ’ in equation 1). An inventor will decide to move if and only if the expected utility 

of the destination region is greater than the expected utility of the origin region plus the 

costs of moving, both monetary and non-monetary. More formally, 

 

                                                 
4 According to Florida (2004: 8), the core of the creative class comprises those “whose economic function 
is to create ideas, new technology and/or new creative content (…) basically composed of occupations in 
science and engineering, architecture and design, education, arts, music and entertainment”. 
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As is customary in the related literature, the costs of migrating across regions, )D(c n
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are proxied by the geographical separation between i and j. It aims to take on board 

several distance-related phenomena that are difficult to measure empirically, such as the 

sunk costs of re-location and aversion to risk of unemployment, the influence of family 

and friends from the origin region or, more importantly, inventors’ preferences to re-

locate close to their former colleagues and workmates if face-to-face interactions, 

information exchange and technical help are required. Several related studies note, 

however, that knowledge workers represent a highly specific type of skilled individuals 

whose location decisions are not greatly affected by physical separation (Ackers and 

Gill, 2008; Schwartz, 1973). This issue is critical from the perspective of particular 

regions, especially in the case of peripheral lagging regions whose strategy for attaining 

a critical level of human capital endowments is decisively based on the attraction of 

talent to catch up with the technological frontier of European core regions. Thus, 

ascertaining the specific role of geographical distance to explain mobility patterns of 

inventors across Europe, above and beyond the spatial distribution of innovation and 

economic activities, is one of the main objectives of the present paper. 

 

Next, when equation (1) is met, the variable n
ijy  is set to 1, and 0 otherwise. By 

aggregating all individual decisions by pairs of regions, we end up specifying a general 

gravity model of regional immigration in the form of  
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where ijy  is the sum of individual location choices of inventors moving from region i to 

region j, and is a multiplicative function of a number of covariates. Among them we 

include a dummy controlling for contiguous regions, ijCeρ , and a constant term 

capturing the impact of all common factors affecting mobility, 0eβ . In (2), 
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designed to control for the spatial distribution of economic and innovation activities in 

both sending and receiving regions, as well as other pulling effects of the destination 

region, such as amenities (both natural and non-natural) or job opportunities. 

 

The variables chosen to control for the spatial distribution of the economic and 

innovation activities are: 

- Population (POP) in sending and receiving regions, proxying the spatial 

distribution of economic activity. 

- The number of inventors (INV) in sending and receiving regions, proxying the 

spatial distribution of innovation and innovators. 

- Origin and destination country-specific fixed effects. 

- Share of patents for seven technological sectors (SHARE.TECH), in both 

sending and receiving regions, designed to control for differences in patent 

application propensities across technological branches. 

- Distance from Brussels of the centroid of the destination region (CENTRAL_d). 

- Dummy variable valued 1 if the destination region shares a physical border with 

a foreign country, and 0 otherwise (BORDER_d). 

The effect of the number of inventors in the origin region on mobility is ambiguous. In 

principle, the larger this number, the higher the probability of observing cross-regional 

movers. However, inventors find more job opportunities in larger markets, and thus 

have less need to find them elsewhere: so the larger the number of inventors, the lower 

the probability of detecting a move. 

 

Among the variables aimed to control for specific pulling features of the destination 

region we include: 

(i) Job opportunities:  

 We use the number of inventors in the receiving region (INV_d) as a proxy for 

the size of the host labour market for inventors, and therefore as a proxy for job 

opportunities. 

 A healthy R&D environment in the destination region is expected to provide job 

and research opportunities for knowledge workers. The share of the active 

population that either successfully completed tertiary level education or are 

employed in a ‘Science and Technology’ occupation (HRST_d) is included as a 

general proxy for human capital, private R&D investment, the presence of 



universities and research centres, and the presence of technology-oriented 

venture capital firms. 

(ii) Amenities:5

 Warmer winters, proxied by the average temperature in January (TEMP), as a 

predictor of incoming flows of skilled people (Gottlieb and Joseph, 2006). 

 

 Access to coast (COAST), an important recreational amenity. It might also 

proxy for temperate weather during the whole year. 

 Regional population density (DENS). Glaeser et al. (2001) argue that low 

density areas are highly attractive to immigrants. One should expect, then, a 

negative influence of density on inventors’ inflows. However, these authors also 

acknowledge that density now has less power as an immigration predictor than 

ten or twenty years ago. In fact, it could also be argued that dense, urban areas 

may have a larger supply of producer and consumer amenities (Perugini and 

Signorelli, 2010), so a positive effect might also be observed. 

 Total regional population (POP) is included (Scott, 2010). The sign of this 

variable is ambiguous. On the one hand, it has been argued that, like density, the 

availability of cultural amenities is greater in regions containing large cities and 

metropolitan areas. Conversely, the influence is negative if inventors have a 

preference for smaller, less polluted metropolitan areas with lower crime rates. 

 

In order to consider deviations from the theory, a stochastic version of the model will be 

estimated by introducing ijε , an error term assumed to be independent of the regressors.  

 

So we have sketched a benchmark framework to define the factors that influence talent 

mobility across Europe. However, other more economically meaningful proximities 

across regions may play a role in explaining spatial mobility, above and beyond 

geographical distance -raising its point estimate if not controlled for. 

 

Social proximity, the National System of Innovation and other relational variables 

 

It is widely agreed in labour economics that social relationships are among the most 

effective ways of attaining successful recruitment (Meyer, 2001). The relationship 

                                                 
5 We basically follow Scott (2010) in our definition of amenities. 



between the employer and the future employee is set up through a third person known 

by both, acting as the intermediary. This is mutually beneficial because (1) this third 

person provides the employee with information about the job; (2) he guarantees the 

employer that the individual is suitable for the job; and, on top of this, (3) it improves 

the employer-employee match, allowing workers to self-select themselves for the most 

suitable firms (Nakajima et al., 2010). The dynamics of highly skilled mobility responds 

to the same logic (Meyer, 2001). Most positions are acquired via connections and, to 

some degree, knowledge workers make location decisions in the context of their 

professional relations and networks (Millard, 2005). To the extent that social networks 

are not necessarily spatially mediated, professional relationships between inventors may 

well cross regional boundaries. In this study we state that if two regions establish a large 

number of professional relations in the form of research collaborations, one would 

expect to see higher levels of inventor mobility between them. We label this social 

proximity. 

 

Next, as we noted in the introductory section, one of the main concerns of the European 

Commission regarding the construction of the ERA is the low level of transnational 

mobility of skilled workers between EU countries. European R&D systems, policies, 

and programmes are characterized by fragmentation between countries – a situation that 

contrasts strikingly with the US – at “a huge cost to Europeans as taxpayers, consumers, 

and citizens” (European Commission, 2007, pp. 6). Indeed, it is a frequent claim among 

scientists and technology experts that their career opportunities and cross-country 

mobility choices are limited by legal and practical barriers. Generally speaking, most 

academic positions remain reserved for national staff, which restricts talent mobility 

across different institutional settings. Overall, it is argued that the National System of 

Innovation remains the institutional framework of reference for knowledge workers 

(European Commission, 2006) and the main reference point for major research activities 

(European Commission, 2000). Here, we empirically test whether the fact that two 

regions belong to two different institutional systems, or two different countries, 

negatively affects the probability of observing movement of highly-skilled professionals 

between them. If this were the case, the Commission’s concerns would be justified, and 

new policies aimed to smooth differences across institutional frameworks would be 

required.  

 



Additional control relational variables are considered in the estimation. Specifically, 

 

(i) technological distance: included in order to test to what extent cognitive proximity 

(a shared, related, and complementary knowledge base) explains mobility across 

physically distant epistemic communities. We expect to find a negative effect of 

technological distance on mobility. 

(ii) cultural proximity: inventors may choose to re-locate in regions sharing the same 

cultural background and language as their origin-region, in order to minimize 

migration costs. A positive and significant impact is expected for this variable.  

(iii) membership to elites of research excellence: we also expect regions with above 

average efforts in research and innovation to belong to elite structures of research 

excellence (Hoekman et al., 2008) prone to exchange more talented individuals.  

 

In sum, we now let ijD  be a vector of a broader set of meaningful distances between 

pairs of regions, 
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Inter-firm vs. intra-firm spatial mobility 

 

A critical issue in our study is the role played by spatial movements of inventors within 

the same firm or group of firms. Quite often, for strategic purposes, firms have branches 

in separate locations. Individuals in firms usually obtain valuable knowledge from 

colleagues at their firm, including those in other locations. Spatial mobility of 

employees within firms’ boundaries is one of the main ways through which knowledge 

spreads. This is not a trivial issue, since, according to our definition of labour mobility, 

44.13% of the movements in the 2002-2005 period occurred within firms (8,585 

movements in absolute terms).6

                                                 
6 Figures computed using our data, as we will explain later on. 

 Clearly, this phenomenon also implies knowldge 

diffusion and changes in the spatial configuration of talent. However, its implications 

from a regional point of view may be rather different. It is therefore important to ensure 



that our main hypotheses hold when we remove movements that do not correspond to 

real labour mobility. 

 

3.2. Estimation issues 

 

A logarithmic transformation of (2) and OLS techniques would be a straightforward 

estimation method. Santos Silva and Tenreyro (2006) show, however, that this standard 

procedure in a gravity model may induce a form of heteroskedasticity of the error term 

because of the log transformation of the data, and OLS would be inconsistent. Equally, 

it could be that there are no inventors’ flows between a given pair of regions, making 

the logarithmic transformation of these observations impossible. Clearly, dropping these 

observations or adding an arbitrary constant to the dependent variable would again lead 

to inconsistent estimates (Burger et al., 2009). Santos Silva and Tenreyro (2006) suggest 

estimating the multiplicative form of the model by Poisson pseudo-maximum 

likelihood. To do so, we use the fact that the conditional expectation of ijy  in (2) can be 

written as the following exponential function 
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where ( )jkirjkikijijij d,d,A,A,C,D,1x = . Thus, count data models can be used to estimate 

(4), avoiding in this way the logarithmic transformation of (2). Additionally, the 

response variable is a discrete one with a distribution that places the probability mass at 

non-negative integer values only, with data concentrated in a few small discrete values 

skewed to the left and intrinsically heteroskedastic, with variance increasing with the 

mean (Cameron and Trivedi, 1998). Again, count data models are more suitable in this 

framework. 

 

The most basic type of count data model is derived from the Poisson distribution: it 

assumes that the probability of observing a move from region i to region j follows a 

Poisson distribution  
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with a conditional mean (µ ) of the distribution that is a function of the independent 

variables. The maximum likelihood estimator would be achieved by maximizing 
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However, the Poisson distribution assumes equidispersion; that is to say, the conditional 

variance equals the conditional mean, i.e., )'xexp()x|y(Var)x|y(E ijijijijijij β=µ== . 

But the conditional variance often exceeds the conditional mean (Burger et al., 2009; 

Long, 1997), which is a clear symptom of overdispersion. Overdispersion appears due 

to the presence of individual unobserved heterogeneity in the data generating process, 

which is not captured by the Poisson distribution. As a result, the Poisson regression 

may lead to consistent but inefficient estimates (Burger et al., 2009), with standard 

errors biased downward (Cameron and Trivedi, 1998; Long, 1997). Therefore, the 

negative binomial regression is preferred. In this model, the expected value is the same 

as in the Poisson )'xexp()x|y(E ijijij β= , but the variance is specified as a function of 

both the conditional mean and a dispersion parameter (α ). When the dispersion 

parameter, α , is zero, the negative binomial model reduces to the Poisson model. 

Therefore a likelihood ratio test on α  can be computed, where 0:H0 =α , to assess 

whether or not the negative binomial model is preferred to the Poisson estimation. 

 

Another important point should be noted at this stage. Although count data models are 

explicitly designed to deal with the presence of zeros in the dependent variable, these 

zeros may come from different data generating processes. As a consequence, our 

dependent variable may have a greater frequency of zeros than would be predicted by 

the Poisson or negative binomial models (Greene, 1994). Specific estimation techniques 

are therefore required, such as the use of zero-inflated models. In these zero-inflated 

models the population is formed by two groups (Mullhay, 1986). One individual is in 

the first group with probability ϕ , and in the second group with probability ϕ−1 . Thus, 

the estimation process includes two parts: first the probability of observing mobility 



from i to j, ϕ , is estimated by means of a probit or logit model, which is a function of 

certain characteristics – a set of covariates that predict the probability of belonging to 

the strictly-zero group; and second, the count data model is estimated for the probability 

of each count for the group that has non-zero probability. There is, therefore, an 

equation for “participation” and a model for the event count that is conditional on the 

outcome of the “participation” equation. The full model is specified: 
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Thus, the log-likelihood function to be maximized is: 
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The Vuong (Vuong, 1989) statistic can be used to assess whether the zero-inflated 

negative binomial is preferred to its non zero-inflated counterpart. In principle, there is 

no formal restriction to including the same regressors both in the binary and the 

negative binomial process, aside from possible theoretical considerations. 

 

3.3. Data, variables construction, and descriptive figures 

 

Dependent variable 

 



We estimate our models for a sample of 220 European NUTS2 regions of 17 countries7

 

  

(see Appendix 1) in two time periods – 1996-1999 and 2002-2005 – in order to study 

differences in point estimates of our parameters of interest over time. The data are 

aggregated through 4-year time windows to avoid extreme heterogeneity. The 

explanatory variables are computed for the previous time spans (1992-1995 and 1998-

2001 respectively). In doing so, we expect to lessen potential endogeneity biases caused 

by system feedbacks. In the last section of the paper, we discuss the suitability of this 

approach and possible alternative solutions. Our dependent variable is built by full-

counting the movements of inventors crossing regional borders. We therefore construct 

a mobility asymmetrical matrix of 220 rows and 220 columns for each time window, 

where each of the elements in the matrix is the number of inventors moving from region 

i to region j. If an inventor moves more than once, or if she returns to her former region, 

we compute these movements as separate and independent. Since by definition 

movements from region i to region i do not exist, we end up with a dependent variable 

reflecting flows between pairs of regions – (220)x(220-1)=48,180 observations. 

Mobility is computed through the changes observed in the region of residence reported 

by the inventor in patent documents from the European Patent Office (EPO). Of course, 

in this way we only capture mobility if the inventor applies for a patent before and after 

the move, and so we probably underestimate real mobility. We compute each movement 

between the origin and the destination patents, but only if there is a maximum time 

lapse of five years between them. 

The data needed to build the matrix are taken from the REGPAT database (OECD, 

January 2010 edition). In spite of the vast amount of information contained in patent 

documents, there is no single ID for each individual inventor. To be able to trace the 

mobility history of inventors, we need to identify them individually by their name and 

surname, as well as via other useful information contained in the patent document. The 

method chosen to identify the inventors is of the utmost importance in studies of this 

nature. Here, we follow Miguélez and Gómez-Miguélez (2010), who, in line with a 

                                                 
7 We have omitted the regions of Las Canarias, Ceuta, Melilla, Madeira, Açores, Guadeloupe, Martinique, 
Guyane and Reunion due to their distance from continental Europe. We do not expect this omission to 
alter our results significantly. 



growing number of researchers in the field, use different customary heuristics for 

singling out individual inventors using patent documents.8

 

  

For the whole 1975-2005 period, 768,810 individual inventors were identified. Table 1 

reports some notable figures. The spatial distribution of these inventors across regions is 

very uneven – the Gini coefficient, 0.71, is relatively high. Note also that of these 

unevenly distributed inventors, only 11.54% are considered mobile (i.e., they report 

more than one NUTS2 region of residence within our period).9

 

 

[Insert Table 1 about here] 

 

As for the specific case of our dependent variable, we identified 26,178 movements 

(10,813 in the first period and 15,365 in the second), which are also highly concentrated 

from a geographical perspective: 5.5% of the regions did not receive any inventors at all 

during the 2002-2005 period (9.5% for the 1996-1999 period), while 19.1% (25.5%) of 

them received only six or fewer. On the other hand, around 50% (44.5%) of the inflows 

(inventors moving into a given region) were concentrated in only 20 regions.10

 

  

On average, the distance covered by inventors’ movements reported between 2002 and 

2005 was around 397 kilometres – approximately the driving distance between Paris 

and Luxembourg. This figure is relatively low, and is around half the distance found in 

another study for the US (Breschi and Lenzi, 2010). Furthermore, 30.79% of 

movements into the regions come from their five nearest neighbours, and 44.33% from 

their ten nearest ones. Note again from Table 1 that the average distance covered by the 
                                                 
8 We are fully aware of the dangers of using patent data in economic analysis. The criticisms by Griliches 
(1991) are well known. Others have stressed that firms to a large extent build up a patent portfolio for 
strategic reasons, in order to improve their position in negotiations or their technological reputation 
(Verspagen and Schoenmakers, 2004). Likewise, it has been shown that patent data may underestimate or 
overestimate real mobility (Lenzi, 2010), and other studies have raised more general criticisms 
concerning the use of patents for regional analysis (Ter Wall and Boschma, 2009). We do not think that 
these shortfalls influence differences across regions, and so they do not pose a serious bias in our 
estimates. 
9 For comparative purposes, the results of other studies are as follows: for a group of US inventors, 
Breschi and Lissoni (2009) found that only 28.4% of all cross-firm inventors (9.2% of all inventors) are 
mobile across MSAs. Trajtenberg and Shiff (2008) find that 19.8% of software inventors from the 
USPTO report more than one geographical location, while 13.9% of Israeli inventors report more than 
one district of residence, and 6.8% of the inventors move in and/or out of the country (Op. Cit.). 
10 Noord-Brabant (NL), Île de France (FR), Koeln (DE), Surrey, East and West Sussex (UK), Oberbayern 
(DE), Karlsruhe (DE), Darmstadt (DE), Stuttgart (DE), Dusseldorf (DE), Rheinhessen-Pfalz (DE), 
Rhone-Alpes (FR), Mittelfranken (DE), Tubingen (DE), Bretagne (FR), Freiburg (DE), Berlin (DE), 
Etelae-Suomi (FI), Wien (AT), East Anglia (UK), and Hamburg (DE). 



movements computed increases by around 25 kilometres between the first and the 

second time periods. This suggests that, over time, distance is becoming less important 

as an explanation of inventors’ geographical mobility, though the econometric 

specification should shed some light on this issue.  

 

Using maps, Figure 1 depicts the patterns of innovator mobility in the two time-

windows. The lines connect the regions’ centroids when at least one inventor has moved 

from one region to another. It does not matter how many inventors have moved from i 

to j, since the thickness of the line does not take this into account. Figures 1.3 and 1.4 

take the intensity of the pairwise mobility and depict as linked only those pairs of 

regions with five total movements or more (in at least one of the directions). As can be 

seen from all pictures, most movements involve central regions, which in turn are the 

most innovative. The result of this is that the majority of movements involve relatively 

short distances. 

 

[Insert Figure 1 about here] 

 

To illustrate this point further, we plot the kernel density estimations of the distribution 

of the distance covered by inventors’ movements in the two periods (in km). The 

distribution of movements is extremely skewed to the left, i.e. the distance covered 

tends to be low. Note that, surprisingly, differences across the two periods are 

unappreciable – although probably the interval between the two periods is too short to 

reveal important changes.  

 

[Insert Figure 2 about here] 

 

In sum, physical distance seems to be pivotal in explaining the mobility patterns of 

inventors across space. However, these figures may be due to the skewed distribution of 

innovation across space. In order to explore this possibility in more detail, figure 3 

examines whether inventors move from highly productive regions (in terms of patenting 

activity) to other highly productive regions, or whether movements from low to high-

productive regions (or vice versa) dominate. For the two periods under study, the 

figures depict histograms of the number of movements as a function of the difference 

between the patent intensities of the regions involved. Although not strictly symmetrical 



(especially in the second period), these figures show that the majority of the movements 

occur between regions with similar levels of innovative activity (high-high, low-low). 

Very similar findings are reported in Azoulay et al. (2011) for US scientists.  

 

[Insert Figure 3 about here] 

 

Bearing this concentration of innovation and economic activities in mind, we wonder 

whether these figures are an artefact of this distribution or whether they truly reflect 

inventors’ preferences for short-distance movements. Therefore, our aim in the present 

paper is to determine (1) whether, after controlling for the fact that the spatial 

distribution of innovators is not random throughout space, migration costs associated to 

physical separation influence the mobility patterns of these skilled workers; and (2) 

whether other variables may explain this phenomenon, after controlling for physical 

distance as well. 

 

Explanatory variables 

 

With respect to the explanatory variables, the geographical distance between regions’ 

centroids (GeoDIST) is computed in different ways, running variants of the same model 

in order to study the robustness of the coefficients: driving distances (in kilometres) and 

driving time (in seconds), both calculated using Google Maps. Robustness checks 

include Euclidean and great circle distances as well. 

 

Institutional distance is proxied with a dummy variable valued 1 if the pair of regions do 

not belong to the same country and 0 otherwise (as in Ponds et al., 2007 and Hoekman 

et al., 2008). Social proximity is proxied using EPO co-patents across NUTS2 regions 

(REGPAT database). Thus, when one patent contains inventors who report their 

addresses in different regions, we assume that there is cross-regional collaboration. We 

‘full-count’ all the collaborations across regions, irrespective of the number of inventors 

reported in each patent. We thus obtain a socio-matrix reflecting the collaboration 

intensity between pairs of regions. We then adopt a measure suggested in Ejermo and 

Karlsson (2006) called ‘affinity’. ‘Social affinity’ between regions i and j, ijA , is the 



observed number of links between i and j, ijl , minus all the links starting from i, in , 

over the total number of regions, J . Formally, 

 

)J/n(lA iijij −= . (9) 

 

In reality, though, we choose to compute a variant of this formula  

 

iijij n/lA = . (10) 

 

in order to avoid negative values and to allow the logarithmic transformation of the 

variable. 11

 

  

The patent data from EPO needed to calculate technological distance are taken from the 

REGPAT database and assigned to each of the technological sectors using the IPC12

 

 

classification system. To proxy technological distance, we use the following index: 

ijij t1.TechDis −= , (11) 

 

where ijt  is the uncentred correlation between regional vectors of technological classes 

in the form of: 
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In (12), ihf  stands for the share of patents of one technological class h according to the 

IPC classification (out of 30 technological classes in the subdivision chosen) of region i, 

and jhf  for the share of patents of one technological class h of region j. Thus, values of 

the index close to zero indicate that two regions are technologically similar, and values 

close to unity indicate that they are technologically distant (see Jaffe, 1986).  

                                                 
11 A small constant has been added to all the explanatory variables with at least one 0 value for the same 
reason. 
12 International Patent Classification. 



 

As in Picci (2010), we calculate cultural proximity by computing an index of language 

similarity across regions. According to the author, it is reasonable to expect that people 

whose languages share common roots will also share similar cultural backgrounds. To 

compute this index, we gather data from the Ethnologue Project (www.ethnologue.com) 

in order to assign a single language to every NUTS2 region. We look at each country in 

the Ethnologue Project website and select only the languages under the heading 

“National or official languages”. Using the Project’s maps, we assign each of the 

languages under this heading to each NUTS2 of every country. Thus, for instance, 

Spanish is assigned to all NUTS2 regions of Spain, and French to all NUTS2 regions of 

France. Conversely, up to six (very similar) languages are assigned to Dutch regions. 

We then compute the language similarity index, an index based on the distance between 

branches in the classification of languages.13

 

 We sum the number of branches that 

coincide between each pair of languages and divide the result by the sum of branches of 

each of the two languages (in order to take into account the fact that the granularity of 

branches may not be the same across languages). As a result, we obtain an index 

between 0 and 1, where 0 means complete dissimilarity and 1 means that these two 

languages are almost the same in linguistic terms. For instance, the similarity index 

between Spanish and Portuguese is 0.889, and between Swedish and Danish is 0.769, 

whereas the index between Portuguese and Danish is just 0.125. 

Finally, membership to elite structures of research excellence is computed with a 

dummy variable valued 1 if the proportion of individuals in the total active population 

who successfully completed a tertiary education degree and who are currently employed 

as professionals or technicians in a ‘Science and Technology’ occupation is above the 

mean in the two regions, and 0 otherwise (Human Resources in Science and 

Technology data are retrieved from Eurostat databases). 

 

A summary of the variables included, the proxies used, and the data sources can be 

found in Appendix 2. Table 2 below also includes some descriptive statistics of the 

                                                 
13 For example, the linguistic classification of Portuguese, Swedish, and Danish, from the largest, most 
inclusive grouping to the smallest, is: Indo-European<-Italic/Romance, Italo-Western, Western, Gallo-
Iberian, Ibero-Romance, West Iberian, Portuguese-Galician (Portuguese); Indo-European, Germanic, 
North East, Scandinavian, Danish-Swedish, Swedish (Swedish); Indo-European, Germanic, North East, 
Scandinavian, Danish-Swedish, Danish-Riksmal, Danish (Danish).  

http://www.ethnologue.com/�


variables under consideration. Note that the average distance between pairs of regions, 

1,524 km, is around four times larger than the average distance covered by the 

inventors’ movements.  

 

[Insert Table 2 about here] 

 

Spatial-labour mobility 

 

Two alternative matrices for constructing spatial-labour mobility dependent variables 

are also built. Even though the identification of geographical mobility is reasonably 

easy in most of the cases, the identification of strict labour mobility may be difficult 

(see Laforgia and Lissoni, 2006). To narrow our definition of spatial labour mobility, 

we look at the patents that surround each spatial movement. Previously, we gathered 

firm and group information from the KITeS-Bocconi University databases, and matched 

them with our REGPAT datasets. If at least one firm or group of firms coincides in both 

the origin and the destination patent-region, we remove that movement from our 

dependent variable. As a result, we obtain two matrices reflecting spatial mobility 

between firms and spatial mobility between groups of firms, which can be used to build 

two additional dependent variables. Note that our definition of labour mobility is very 

strict and probably underestimates real mobility. We prefer to be, however, 

conservative; in fact, using other more relaxed definitions of spatial labour mobility the 

results (provided upon request) did not change substantially. 

 

4. Results 

 

In this section we summarize the main results obtained with the estimation of the 

models suggested in section 3. We have estimated, step by step, different models for 

each of the proxies used for physical separation (driving distance in kilometres and 

driving distance in time), and for both time spans. Both the negative binomial and the 

logit estimations were estimated. For the NB regression, since the covariates are 

expressed in logarithmic form, the estimated coefficients can be interpreted as 

elasticities (Cameron and Trivedi, 1998; Long, 1997). Thus, for instance, as shown in 

Table 3, a 1% increase in the distance between regions’ centroids would lead to a 1.45% 

decrease in the probability of observing a move from the home to the host region, 



holding all other variables constant. The interpretation of the logit coefficients is 

different: if the inventors’ (INV) coefficient is -0.39, it means that a 1% increase in the 

number of inventors in a given region leads to a 0.39% decrease in the probability of 

belonging to the “strictly zero group” (Maggioni and Uberti, 2009) – that is, the 

probability of zero bilateral mobility. For the sake of brevity, the present section shows 

only the negative binomial estimations. The remaining results are displayed in tables 

A.3.1 to A.3.4 in the Appendix 3 section, where other proxies for physical distance are 

also shown. 

 

Physical distance 

 

Columns (i) and (ii) in Table 3 present the estimation of equation (2), including distance 

as the only focal relational variable - 1996-1999 period, aside from other regional 

controls. The estimated coefficients are negative and strongly significant, irrespective of 

the proxy used. These coefficients, between -1.45 and -1.54, are larger than we initially 

expected. In reality, the elasticity is very close to what we find in similar frameworks 

for trade data (see Disdier and Head, 2008, for a meta-analysis of this topic) or co-

patenting data (Maggioni and Uberti, 2009), and considerably higher than what we find 

for citations data (Peri, 2005). Actually, these coefficients are in line with the migration 

literature (see Crozet, 2004, for an analysis at the European regional level).  

 

[Insert Table 3 about here] 

 

Columns (iii) and (iv) in Table 3 show the same estimated model, but for the period 

2002-2005. Broadly speaking, the results are maintained over time. A chi-squared test 

of individual coefficients does not reject the null hypothesis that the differences between 

the two periods are not statistically significant (test provided upon request). This seems 

to be slightly contradictory, since one would expect the importance of physical 

separation to decrease over time with the increasing use of communication technologies, 

for instance.  

 

Overall, these preliminary findings suggest that the distance from family and friends 

and, especially, from former work colleagues, is pivotal in explaining the spatial 

location choices of migrant inventors, and also that its importance does not seem to 



decrease as the economy becomes more technologically advanced and specialized 

(although, again, there is only a lapse of six years between the two periods of time 

under consideration). Bear in mind, however, that the geographical coefficient may well 

be biased upward if other more meaningful distances are not controlled for. We hope to 

shed further light on this issue in the following subsection. 

 

Social proximity, institutional distance and other relational variables 

 

Table 4 shows the estimation of the unrestricted model, which includes social proximity 

and institutional distance as well as other relational control variables. The table shows 

the results for the 1996-1999 period in the first two columns and for the 2002-2005 

period in the last two columns. Again, we only provide results using kilometres and 

time as physical separation proxies, but the results remain unchanged with other 

distance variables (see Appendix 3). From these columns we extract the following 

findings. First and foremost, our focal variables in the present inquiry, i.e., institutional 

distance and social proximity, are significant and have the expected sign (negative and 

positive respectively). These results are robust irrespective of the geographical distance 

proxy used and the time span. However, as can be seen, the importance of social 

proximity increases over time, while that of institutional distance decreases. These 

differences in point estimates over time are shown to be significant by the chi-square 

tests performed for the case of institutional distance, but not for social proximity (tests 

provided upon request). In brief, even though physical distance does not decrease in 

importance over time, the general innovation framework seems to become progressively 

more internationally based.  

 

Second, these tables show that once other proximities across regions are controlled for, 

the role conferred on physical distance decreases considerably, by more than half, 

confirming our suspicions that a sizeable bias is introduced if they are neglected. 

Certainly, geographical and other distances may partially overlap, but each feature may 

have a different, independent effect on mobility that must be isolated correctly. Finally, 

technological distance, cultural proximity, and networks of excellence are also 

significant – note, though, that belonging to elites of research excellence is only 

significant in the second period. 

 



In sum, the empirical exercise conducted so far assigns a critical role to geographical 

separation in explaining inventors’ spatial mobility and location choices. However, the 

two main variables under scrutiny in the present paper also show significant values and 

the expected signs in explaining the phenomenon under analysis.  

 

 [Insert Table 4 about here] 

 

Attribute variables: amenities versus job opportunities 

 

We also enter the ongoing debate on the importance of amenities versus job 

opportunities by including several variables that are widely used in the literature in 

order to test whether their role in attracting talent is also witnessed in this specific group 

of knowledge workers. For instance, density in the destination region (DENS_d) seems 

to have a negative influence on attracting inventors, corroborating the arguments of 

Glaeser et al. (2001). However, its point estimates are not significant in the second 

period, in line again with the thesis that this variable is less important today than it was 

a few years ago. Population in the destination region (POP_d) was also included to 

account for the supply of cultural amenities. We find large point estimates (and strongly 

significant at 1%) only in the first period, and lower coefficients (significant at 10%) in 

the second period. So the attractiveness of large metropolitan areas seems to be 

important, but it decreases over time. As regards natural amenities, warmer climates 

(TEMP_d) have only a slight influence on inventors’ location decisions in the first 

period, but a strong influence in the second. Meanwhile, access to the sea (COAST_d) 

is positively and significantly related to inflows of inventors.  

 

Among the variables designed to control for destination-region job opportunities, we 

find that the size of the inventors’ community in the destination region (INV_d) is 

positively (and strongly) correlated with our dependent variable, irrespective of the time 

span and the estimated model. Meanwhile, regional R&D efforts (HRST_d) also seem 

to matter, especially in the second period. 

 

Thus, despite the roughness of the proxies used, both amenities and job opportunities 

seem to play a certain role in attracting talent. However, the size of the destination-



region labour market for inventors has a stronger influence than other pulling factors, 

making this variable the most decisive attraction characteristic. 

 

Inter-firm spatial mobility 

 

Table 5 reproduces the estimation of columns (iii) and (iv) in table 4, but considers only 

strict labour mobility as a dependent variable. The relational variables included remain 

significant and with the expected sign – cultural proximity increases its point estimate 

and becomes significant at 5%. However, the results for the case of the attribute 

variables in the destination region are slightly ambiguous. Human Resources in Science 

and Technology in the destination region decreases its coefficient and increases its 

standard error, becoming insignificant. This is also true for Population in the destination 

region – columns (iii) and (iv). Other changes are not worth reporting  and, in general, 

the main conclusions continue to apply when strict labour mobility is considered; 

therefore, it does not have a great effect on our results. 

 

 [Insert Table 5 about here] 

 

Causality 

 

A critical concern in any empirical analysis is endogeneity, which produces biased and 

inconsistent estimates. By lagging r.h.s. variables, we can reduce the endogeneity 

problems due to simultaneity (a future event cannot ‘cause’ a past event). We believe 

that endogeneity no longer poses a serious problem for the majority of the variables 

included in the model. We acknowledge the remaining endogeneity concerns with 

respect to social proximity. Both inventors’ spatial mobility and cross-regional co-

patents are rare phenomena which depend heavily on patent data and patenting 

inventors’ practices. Thus, even if lagged r.h.s. variables are included, unobserved 

heterogeneity may introduce endogeneity problems, such as the tendency of a given 

technological sector or firm to patent above the average. If this is the case, social 

proximity would not be completely exogenous, and biased estimates would arise. 

 

We adopt several approaches to address this issue. First, we repeat estimation (iv) from 

table 4, but include several time lags of the dependent variable as additional explanatory 



variables. By doing so, we aim to tease out the effect of the main variables under 

scrutiny on the spatial mobility of inventors while controlling at the same time for 

unobserved heterogeneity across pairs of regions – unobserved historical linkages, 

common labour market institutions, and so forth. In a sense, we mean to control for the 

historical inertia of a given pair of regions to exchange inventors, as if it were a region- 

pair fixed effect.14

 

 In short, time lags account for “historical factors that cause current 

differences in the dependent variable that are difficult to account for in other ways” 

(Wooldridge, 2002, pp. 289). With this idea in mind, in the ‘unrestricted 2002-2005’ 

model we include the dependent variable lagged either one period (movements 1998-

2001), two periods (movements 1994-1997) or three periods (movements 1990-1993). 

The results of these estimations – columns (i) to (iii) in table 6 – show that the negative 

effect of institutional and, especially, physical distance is notably reduced, while the 

social proximity coefficient remains virtually unchanged. However, the three variables 

remain strongly significant. At the same time, other variables decrease their point 

estimates and become insignificant as well. Bear in mind, however, that in the presence 

of serial correlation, the lagged dependent variable induces biases in all the other 

variables toward negligible values, which depend on the level of serial correlation and 

the time elapsed between the lagged variable and the dependent variable we want to 

explain (Achen, 2001). Therefore, these estimations should be interpreted with extreme 

care. 

An alternative approach is to find suitable instruments for the social proximity variable. 

They must be (1) uncorrelated to the unobservable time-varying error term; and (2) 

sufficiently correlated to the endogenous variables that we want to instrument. In other 

words, the instrument must be completely exogenous and must be relevant. This is by 

no means a trivial task. We have a list of potential spatial/geographical candidates as 

instruments, i.e. origin- and destination-region fixed effects, as well as other variables 

such as whether the two regions belong to the same NUTS1 region, whether origin and 

destination regions host the country’s capital city, the log of the average area in squared 

kilometres of the two regions, whether they belong to contiguous countries, whether 

                                                 
14 For gravity models of trade, for instance, Eichengreen and Irwin (1998) and Anderson et al. (2004) 
argue that historical hysteresis between pairs of countries as regards bilateral trade should be accounted 
for by including time lags of the dependent variable in the r.h.s. of the equation, especially in the absence 
of fixed effects. For the case of gravity models of immigration, Anjomani and Hariri (1992), Kazakevitch 
(1996), or Fry (1999) argue that lagged migration variables in the r.h.s. of the equation may help to 
control for unobserved causes of migration.  



they belong to the core regions of Europe15

 

, and the sum of their distance to Brussels, in 

logs. 

We then apply the 2-stage residual inclusion (2SRI) estimator (Terza et al., 2008) or 

control function approach (Wooldridge, 2002). As has been shown, the 2SRI is 

consistent in non-linear models while 2-stage prediction substitution (2SPS) estimators 

are not – conversely, they are fully consistent in linear models, as in the well-known 

case of the 2-stage least squares (2SLS). The reason for this is the non-additive nature 

of either the observable or the unobservable confounders (see Terza et al., 2008). In 

practice, therefore, we regress the instruments on our social proximity variable in the 

first stage, conditional upon the other exogenous variables of the original model (except 

all the attribute variables, whose effect is picked up by the fixed effects), and recover 

the predicted residuals of this estimation, to plug them into our original model (without 

excluding the social proximity variable) - inference based on bootstrapping over all two-

step procedure, 1,000 iterations. The result of this process is shown in the last column in 

table 6. Note that the partial R2

 

 of the first stage is 0.513 and the value of the F-tests 

statistic, 23.82, is well above 10, which is usually considered a good threshold, and so 

the instruments cannot be judged as weak (see table A.3.7 in the Appendix for the 

results of the first stage OLS regression). The positive coefficient of the control term 

included tells us that the latent factor captured by the instruments is positively 

correlated with cross-regional mobility. Hence, endogeneity seems to cause a small 

upward bias in the social proximity coefficient in our previous estimates. Note, 

however, that the bias is small and the control term is not significant, so the main 

conclusions of the analysis undertaken so far hold.  

[Insert Table 6 about here] 

 

Robustness checks 

 

In this section we summarize some robustness checks performed to study the stability 

and significance of the estimated parameters, and the results encountered so far. For the 

                                                 
15 Core regions are defined as regions whose centroid lies within a pentagon formed by a straight line 
linking Milan, Munich, Hamburg, London, and Paris. 



sake of brevity, we omit the tables in the main section, but they can be found in 

Appendix 3.  

 

These tables show the estimation of our main models, including Euclidean and great 

circle distances. Unlike the tables in the main part of the text, they also include the logit 

estimations. Columns (i) and (ii) in table A.3.8. repeat the estimation but, following the 

literature on migration economics, they include the average income in the 

manufacturing sector of the destination region and the income gap between origin and 

destination regions. Despite the fact that we could not use all the regions and time spans 

due to missing data, these variables did not turn out to be significant in any of the 

estimations. This is consistent with previous findings regarding high-skilled workers. 

Scott (2010, pp. 59) argues that “engineers (may be) relatively insensitive to wage and 

salary differences across geographic space in relation to potential employment 

opportunities”. Column (iii) includes the number of citations per capita the destination 

region receives, in order to reflect the attractiveness of more productive (and thus more 

cited) regions. No notable changes are reported. Third, given the strong significance of 

the first-order contiguity variable, we include second and third-order contiguity 

variables and re-estimate the models (column (iv)). Fortunately, none of the variables 

included turns out to be significant, and the parameters for the remaining variables 

remain virtually unchanged. 

 

In columns (i) and (ii) in table A.3.9 we play around with the variables predicting the 

probability of belonging to the strictly zero group, that is, the logit estimation. Column 

(i) excludes the relational variables from the logit estimation, whilst in column (ii) we 

omit the attribute ones. As can be seen, the main results remain unchanged, with few 

exceptions. 

 

In column (iii) in Table A.3.9 we remove the ‘mass’ variables (inventors in origin and 

destination regions), remove the share of patents in each technological sector, and 

include the absolute number of inventors in the origin and destination regions split into 

seven technological sectors. For the most part, the results are maintained. Logically, 

technological distance is no longer significant. Column (iv) re-estimates the model but 

excludes from the identification process all the inventors with Soundex codes of name 

plus surname with more than 50 records (see Miguélez and Gómez-Miguélez, 2011), 



because it seems that the algorithm works better with Soundex codes with fewer 

records. Again, the main results are maintained. 

 

5. Conclusions and implications 

 

Throughout the above sections, we have tried to disentangle the effect of some key 

regional features on the spatial mobility patterns of skilled workers, i.e., inventors, 

across the European geography. With the advent of the knowledge-based economy, 

identifying territorial features that favour or hinder the attraction of talent is of the 

utmost importance. The ability to attract knowledge workers increases access to distant 

sources of knowledge; they act as ‘pipelines’ to distant pools of ideas, which are 

mastered and diffused locally through the local ‘buzz’ once they enter the region. 

Furthermore, it is widely agreed that the spatial agglomeration of human capital may 

also influence regional growth rate differentials. Consequently, the map of human 

capital is constantly reshaped by labour migration, and so it is important to investigate 

“the forces that influence the movements of people, that contribute to changes in the 

geographical distribution of human capital, and that hence might play a role in local 

economic growth” (Storper and Scott, 2009, p. 148). We consider empirical exercises 

like the present one to be of critical importance. However, little evidence on the issue is 

currently available. In this inquiry, we have tried to fill in this gap by estimating a 

gravity model to analyse the mobility patterns of inventors across European NUTS2 

regions. In the theoretical discussion we highlight a number of factors likely to affect 

inter-regional mobility, and test them in the empirical section.  

 

Our empirical analysis shows that physical separation from the inventors’ former 

workplace is a critical predictor of their spatial movements, even after controlling for 

the spatial distribution of innovation and economic activities. In fact, we expected this 

variable to play a more secondary role. However, in spite of the announcements of “the 

death of distance” (Cairncross, 1997), we find physical space to be pivotal in mediating 

inventors’ mobility across regions. These results are robust to the sample choice, 

specification, and inclusion of controls. To the extent that inventors are carriers of 

knowledge, these results may partially help to explain the well-known findings reported 

by Jaffe et al. (1993) on the localization of knowledge flows (Breschi and Lissoni, 

2009). 



 

Oher more meaningful distances are also significant predictors of inventors’ mobility 

patterns, such as social/professional connections, the institutional framework, or 

technological and cultural similarities. However, these measures do not succeed in 

explaining the role of physical distance away. 

 

We also obtained results for the role of amenities and job opportunities as talent 

attractors. Our results suggest that job opportunities have a greater influence, especially 

in the later period, though amenities also appear to play a role as well (for a recent 

discussion on the topic, see Biagi et al., 2011). We acknowledge that further research on 

this point is required. 

 

The implications of these results are not particularly encouraging. We interpret the large 

and strongly significant geography coefficient as follows: when knowledge workers 

decide to move, they place a high value on locating close to their former colleagues, 

from whom they receive constant inflows of information about job and business 

opportunities, technical solutions, and, in general, knowledge spillovers (similar 

conclusions are found in Dahl and Sorenson, 2010, p.44). Second, on the way towards 

the ERA, this paper confirms that the fragmentation of the institutional framework 

between countries impedes frictionless mobility across national borders. Despite recent 

progress – there are significant differences in parameters estimates between the first and 

second period – much work remains to be done to overcome this fragmentation, which 

remains a prevailing characteristic of the European research base. Policies aimed at 

making recruitment procedures more transparent, improving the portability of social 

security provisions across countries, and reducing differences in taxation must be 

implemented sooner rather than later. In sum, our results suggest that there is little 

scope for policy action at regional level to attract talent and to decrease technological 

gaps and income inequalities across regions unless a given region is located within a 

reasonable physical distance of ‘highly-talented’ regions. In this situation, regions 

should ideally devote greater efforts to helping their own populations to raise their level 

of human capital rather than trying to attract skilled individuals from other places, in 

order to attain a critical mass of talent within the region.  

 



One final remark is in order. In spite of the generally negative tone of the results, 

promising findings are the decreasing role of institutional distance over time, and the 

significant influence of formal and professional relationships across distant inventors’ 

communities. Thus, from a regional perspective, joining international and inter-regional 

networks of research collaboration is beneficial for two main reasons: first, because of 

the direct knowledge acquired via research collaborations, and second, because of their 

effect in smoothing out frictions that may impede the free mobility of talent across 

Europe. 
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Table 1. Descriptive figures 
Inventors identified (1975-2005) 768,810 
Share of mobile inventors (1975-2005) 11.54% (1) 
Inventors’ distribution across regions: Gini index (1975-2005) 0.71 
Movements 15,365 (10,813) 
Total number of movements 26,178 
Regions with 0 inflows 5.5% (9.5%) 
Regions with 6 or less inflows 19.1% (25.5%) 
Top 20 inflow regions 50% (44.5%) 
Movements from 5 nearest neighbours 30.79% 
Movements from 10 nearest neighbours 44.33% 
Movements from within national borders 76.18% 
Average distance covered by inventors’ movements  
            Euclidean 3.56º (3.23º) 
            Great circle 188.32 (175.29) 
            Km 397.46 (374.68) 
            Time (seconds) 14,970.35 (14,221.72) 
Notes: Values for the period 2002-2005, when applicable. In parentheses, 1996-1999. (1) Mobile inventors are those reporting more 
than one NUTS2 region of residence throughout the whole period. 

 
Figure 1. Movements connecting regions’ centroids  

1.1. Movements 1996-1999 1.2. Movements 2002-2005 

 
 

1.3. Movements 1996-1999  1.4. Movements 2002-2005

 
Notes: In figures 1.3 and 1.4, the threshold is set at five movements (in at least one of the directions). 
 



Figure 2. Distribution of the spatial extent of individual movements, in km. 
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Figure 3. Patent intensity similarity between origin and destination regions 
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Table 2. Summary statistics 
 Mean St. Dev Coef. Var. Min. Max. 

Total movements 1996-1999 0.22 2.06 9.17 0 84 
Total movements 2002-2005 0.32 5.09 15.96 0 467 
Attributional variables      
BORDER_d 0.45 0.50 1.10 0 1 
CENTRAL_d 640.32 475.46 0.74 10 2,400 
INV9295_o 648.25 1,058.10 1.63 1 9,140 
INV9801_o 1,040.30 1,629.25 1.57 1 12,766 
INV9295_d 648.25 1,058.10 1.63 1 9,140 
INV9801_d 1,040.30 1,629.25 1.57 1 12,766 
HRST9295_d 28.28 8.63 0.31 7.73 55.05 
HRST9801_d 32.50 8.07 0.25 11.88 55.30 
POP9295_o 1,718,268 1,476,858 0.86 25,025 10,800,000 
POP9801_o 1,747,665 1,500,628 0.86 25,625 11,000,000 
POP9295_d 1718268 1,476,858 0.86 25,025 10,800,000 
POP9801_d 1,747,665 1,500,628 0.86 25,625 11,000,000 
DENS9295_d 354.47 842.97 2.38 3.17 8,163.25 
DENS9801_d 359.07 857.72 2.39 3.14 8,497.49 
TEMP9295_d 36.91 6.82 0.19 16.97 56.75 
TEMP9801_d 40.83 6.47 0.16 20.66 57.38 
COAST_d 0.54 0.50 0.93 0.00 1 
Relational variables      
Contiguity 0.02 0.14 6.98 0 1 
Euclidean distance  12.62 7.46 0.59 .06 44.60 
Great circle distance  696.30 416.95 0.59 4.07 2,416.55 
Km 1,524.76 910.27 0.59 8.06 5,545 
Time 57,625.21 36,297 0.62 1,200 241,200 
Social proximity 1992-1995 0.00 0.03 6.62 0 1 
Social proximity 1998-2001 0.01 0.03 5.98 0 1 
Institutional distance 0.90 0.29 0.33 0 1 
Cultural proximity 0.38 0.30 0.78 0 1 
Tech. distance 1992-1995 0.56 0.23 0.41 0 1 
Tech. distance 1998-2001 0.51 0.22 0.43 0 1 
HRST core 1992-1995 0.26 0.44 1.70 0 1 
HRST core 1998-2001 0.21 0.41 1.92 0 1 
Notes: Data are not log transformed. See appendix 2 for the names of the variables. ‘_o’ and ‘_d’ stand for origin-region and destination-
region variables respectively. 



Table 3. Gravity model, ZINB estimations. Periods 1996-1999 & 2002-2005. 
Dependent variable: cross-regional pair-wise mobility of inventors. 
 (i) km 96_99 (ii) time 96_99 (iii) km 02_05 (iv) time 02_05 
Intercept -10.62*** -5.40** -13.21*** -6.34** 
 (2.29) (2.66) (4.39) (3.01) 
Contiguity 0.92*** 1.01*** 0.92*** 1.00*** 
 (0.09) (0.09) (0.10) (0.10) 
ln(Km) -1.40***  -1.43***  
 (0.06)  (0.06)  
ln(Time)  -1.57***  -1.58*** 
  (0.07)  (0.07) 
BORDER_d 0.11 0.08 0.21*** 0.21*** 
 (0.07) (0.07) (0.07) (0.07) 
ln(CENTRAL_d) -0.09 -0.07 0.04 0.06 
 (0.11) (0.11) (0.14) (0.13) 
ln(INV_o) 0.51*** 0.50*** 0.70*** 0.69*** 
 (0.05) (0.05) (0.04) (0.04) 
ln(INV_d) 0.48*** 0.48*** 0.67*** 0.67*** 
 (0.06) (0.06) (0.05) (0.05) 
ln(HRST_d) 0.39* 0.35* 1.15** 1.13*** 
 (0.20) (0.21) (0.48) (0.39) 
ln(POP_o) 0.27*** 0.25*** 0.01 0.00 
 (0.08) (0.08) (0.04) (0.03) 
ln(POP_d) 0.37*** 0.37*** 0.03 0.02 
 (0.09) (0.09) (0.03) (0.03) 
ln(DENS_d) -0.12*** -0.14*** -0.04 -0.06 
 (0.04) (0.04) (0.05) (0.06) 
ln(TEMP_d) 0.36 0.35 0.69 0.80 
 (0.44) (0.45) (0.62) (0.56) 
COAST_d 0.23*** 0.23*** 0.28** 0.32*** 
 (0.08) (0.08) (0.11) (0.10) 
ln(TECH.SHARES) yes (1) yes yes yes 
Country Fixed Effects yes (2) yes yes yes 
Sample size 48,180 48,180 48,180 48,180 
Nonzero observations 2,854 2,854 3,365 3,365 
Log-pseudolikelihood -10,706.02 -10,666.66 -12,846.29 -12,809.8 
LR test of α  4,509.92 4,410.46 1,400 1,300 
p-value 0.0000 0.0000 0.0000 0.0000 
Vuong statistic 12.54 12.46 10.97 10.83 
p-value 0.0000 0.0000 0.0000 0.0000 
Adjusted McFadden’s R2  0.338 0.340 0.318 0.319 
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Only the 
negative binomial estimation is shown here. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong 
statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point to the need of 
the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and 
destination-region variables, respectively. (1) Inventors are assigned to each technological sector according to the classification 
produced jointly y Fraunhofer Gesellschaft-ISI (Karlsruhe), Institut National de la Propriété Industrielle (INPI, Paris) and 
Observatoire des Sciences and des Techniques (OST, Paris). This classification aggregates all IPC codes into seven technology 
fields: 1. Electrical engineering; Electronics; 2. Instruments; 3. Chemicals; Materials; 4. Pharmaceuticals; Biotechnology; 5. 
Industrial processes; 6. Mechanical eng.; Machines; Transport; and 7. Consumer goods; Civil engineering. Inventors are assigned to 
sectors according to the majority of the IPC codes of their patent portfolio. These control variables are included in all the 
estimations unless otherwise stated. (2) The UK is treated as the reference country. 



Table 4. Gravity model, ZINB estimations. Periods 1996-1999 & 2002-2005. 
Dependent variable: cross-regional pair-wise mobility of inventors.  
 (i) km 96_99 (ii) time 96_99 (iii) km 02_05 (iv) time 02_05 
Intercept -12.80*** -9.73*** -14.34*** -11.47*** 
 (2.19) (2.21) (3.24) (3.24) 
Contiguity 0.92*** 0.99*** 0.85*** 0.90*** 
 (0.08) (0.08) (0.08) (0.08) 
ln(Km) -0.60***  -0.62***  
 (0.06)  (0.07)  
ln(Time)  -0.63***  -0.68*** 
  (0.07)  (0.08) 
Institutional distance -0.65*** -0.64*** -0.47*** -0.46*** 
 (0.11) (0.11) (0.10) (0.10) 
ln(Social Proximity) 0.12*** 0.13*** 0.16*** 0.16*** 
 (0.02) (0.02) (0.02) (0.02) 
ln(Technological Distance) -0.16** -0.16** -0.15** -0.16*** 
 (0.07) (0.07) (0.06) (0.06) 
ln(Cultural Proximity) 0.05** 0.04** 0.05* 0.05* 
 (0.02) (0.02) (0.03) (0.03) 
Research Excellence -0.03 -0.02 0.17** 0.17** 
 (0.06) (0.06) (0.07) (0.07) 
BORDER_d 0.23*** 0.23*** 0.24*** 0.23*** 
 (0.07) (0.07) (0.08) (0.08) 
ln(CENTRAL_d) -0.13 -0.14 -0.11 -0.11 
 (0.11) (0.11) (0.11) (0.11) 
ln(INV_o) 0.56*** 0.56*** 0.69*** 0.68*** 
 (0.05) (0.05) (0.04) (0.04) 
ln(INV_d) 0.41*** 0.40*** 0.55*** 0.55*** 
 (0.06) (0.06) (0.04) (0.04) 
ln(HRST_d) 0.23 0.23 0.63* 0.65* 
 (0.20) (0.20) (0.34) (0.34) 
ln(POP_o) 0.12 0.10 -0.02 -0.02 
 (0.07) (0.08) (0.03) (0.03) 
ln(POP_d) 0.24** 0.23** 0.07* 0.07* 
 (0.09) (0.09) (0.03) (0.03) 
ln(DENS_d) -0.09** -0.09** -0.06 -0.06
 

+ 
(0.04) (0.04) (0.04) (0.04) 

ln(TEMP_d) 0.70 0.69+ 1.23** + 1.25** 
 (0.43) (0.44) (0.60) (0.59) 
COAST_d 0.13* 0.13* 0.26*** 0.27*** 
 (0.08) (0.08) (0.08) (0.08) 
ln(TECH.SHARES) yes yes yes yes 
Country Fixed Effects yes (1) yes yes yes 
Sample size 48,180 48,180 48,180 48,180 
Nonzero observations 2,854 2,854 3,365 3,365 
Log-pseudolikelihood -9,917.573 -9,928.545 -11,986.95 -11,988.82 
LR test of α  3,116.03 3,128.56 1,200 1,200 
p-value 0.0000 0.0000 0.0000 0.0000 
Vuong statistic 9.31 9.35 10.72 10.70 
p-value 0.0000 0.0000 0.0000 0.0000 
Adjusted McFadden’s R2 0.385 0.385 0.362 0.362 
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Only the 
negative binomial estimation is shown here. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong 
statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point to the need of 
the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and 
destination-region variables respectively. (1) The UK is treated as the reference country. 



Table 5. Gravity model, ZINB estimations. Period 2002-2005. Dependent variable: 
cross-regional pair-wise mobility of inventors - labour mobility only. 
 (i) firm 

mobility      
km 02_05 

(ii) firm 
mobility     

time 02_05 

(iii) group 
mobility      

km 02_05 

(iv) group 
mobility 

 time 02_05 
Intercept -16.97*** -14.18*** -18.33*** -15.30*** 
 (2.63) (2.70) (3.17) (3.29) 
Contiguity 0.77*** 0.82*** 0.81*** 0.86*** 
 (0.09) (0.08) (0.09) (0.09) 
ln(Km) -0.61***  -0.61***  
 (0.08)  (0.08)  
ln(Time)  -0.67***  -0.67*** 
  (0.08)  (0.09) 
Institutional distance -0.48*** -0.47*** -0.38*** -0.37*** 
 (0.11) (0.11) (0.12) (0.12) 
ln(Social Proximity) 0.15*** 0.15*** 0.15*** 0.16*** 
 (0.02) (0.02) (0.03) (0.03) 
ln(Technological Distance) -0.17*** -0.18*** -0.20*** -0.21*** 
 (0.06) (0.06) (0.06) (0.06) 
ln(Cultural Proximity) 0.08*** 0.07*** 0.06*** 0.06** 
 (0.02) (0.02) (0.02) (0.02) 
Research Excellence 0.18** 0.18** 0.25*** 0.24*** 
 (0.08) (0.08) (0.08) (0.08) 
BORDER_d 0.32*** 0.32*** 0.32*** 0.32*** 
 (0.07) (0.07) (0.08) (0.08) 
ln(CENTRAL_d) -0.02 -0.01 -0.03 -0.03 
 (0.10) (0.11) (0.11) (0.11) 
ln(INV_o) 0.71*** 0.71*** 0.66*** 0.65*** 
 (0.04) (0.04) (0.04) (0.04) 
ln(INV_d) 0.59*** 0.58*** 0.58*** 0.58*** 
 (0.05) (0.05) (0.06) (0.06) 
ln(HRST_d) 0.56 0.59+ 0.56 + 0.59 
 (0.36) (0.36) (0.42) (0.42) 
ln(POP_o) -0.02 -0.03 -0.02 -0.02 
 (0.03) (0.03) (0.04) (0.04) 
ln(POP_d) 0.08** 0.08** 0.06 0.05 
 (0.03) (0.03) (0.04) (0.04) 
ln(DENS_d) -0.08* -0.08* -0.06 -0.06 
 (0.04) (0.05) (0.05) (0.05) 
ln(TEMP_d) 1.70*** 1.71*** 1.80*** 1.76*** 
 (0.48) (0.51) (0.58) (0.59) 
ln(COAST_d) 0.19** 0.20** 0.18* 0.20** 
 (0.08) (0.08) (0.10) (0.10) 
ln(TECH.SHARES) yes yes yes yes 
Country Fixed Effects yes (1) yes yes yes 
Sample size 48,180 48,180 48,180 48,180 
Nonzero observations 2,812 2,812 2,391 2,391 
Log-pseudolikelihood -9,930.056 -9,932.441 -8,552.124 -8,553.164 
LR test of α  6,699.87 6,670.30 5,353.87 5,323.15 
p-value 0.000 0.0000 0.0000 0.0000 
Vuong statistic 9.55 9.57 8.83 8.85 
p-value 0.000 0.0000 0.0000 0.0000 
Adjusted McFadden’s R2 0.368 0.368 0.372 0.372 
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Only the 
negative binomial estimation is shown here. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong 
statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point to the need of 
the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and 
destination-region variables, respectively. (1) The UK is treated as the reference country. 



Table 6. Gravity model, ZINB estimations. Period 2002-2005. Dependent variable: 
cross-regional pair-wise mobility of inventors - endogeneity. 
 (i) time 1st lag 

depvar 
(ii) time 2n lag 

depvar 
(iii) time 3rd 
lag depvar 

(iv) time 2SRI 

Intercept -8.25*** -8.26*** -12.18*** -12.62*** 
 (2.18) (2.34) (3.22) (4.53) 
Contiguity 0.60*** 0.52*** 0.87*** 0.94*** 
 (0.08) (0.08) (0.08) (0.15) 
Lag Dependent var. 98-01 0.05***    
 (0.01)    
Lag Dependent var. 94-97  0.07***   
  (0.01)   
Lag Dependent var. 90-93   0.00  
   (0.00)  
ln(Time) -0.38*** -0.54*** -0.68*** -0.70*** 
 (0.06) (0.08) (0.08) (0.13) 
Institutional distance -0.30*** -0.35*** -0.44*** -0.56* 
 (0.10) (0.09) (0.10) (0.31) 
ln(Social Proximity) 0.15*** 0.14*** 0.15*** 0.13* 
 (0.02) (0.02) (0.02) (0.07) 
ln(Technological Distance) -0.11* -0.10* -0.16** -0.19* 
 (0.06) (0.06) (0.06) (0.10) 
ln(Cultural Proximity) 0.02 0.01 0.04** 0.06* 
 (0.02) (0.02) (0.02) (0.03) 
Research Excellence 0.10 0.02 0.16** 0.18** 
 (0.08) (0.07) (0.07) (0.09) 
BORDER_d 0.18*** 0.13** 0.25*** 0.25*** 
 (0.06) (0.07) (0.08) (0.09) 
ln(CENTRAL_d) -0.12 -0.11 -0.10 -0.10 
 (0.10) (0.10) (0.11) (0.13) 
ln(INV_o) 0.47*** 0.50*** 0.63*** 0.69*** 
 (0.04) (0.04) (0.05) (0.11) 
ln(INV_d) 0.33*** 0.35*** 0.52*** 0.57*** 
 (0.05) (0.05) (0.05) (0.12) 
ln(HRST_d) 0.54 0.94*** 0.78** 0.72** 
 (0.37) (0.32) (0.38) (0.37) 
ln(POP_o) -0.02 -0.06* -0.03 -0.02 
 (0.03) (0.03) (0.03) (0.04) 
ln(POP_d) 0.07** 0.03 0.07* 0.07* 
 (0.03) (0.03) (0.03) (0.04) 
ln(DENS_d) -0.01 -0.06 -0.07 -0.07* 

+ 
 (0.04) (0.04) (0.04) (0.04) 
ln(TEMP_d) 0.87** 0.95** 1.39*** 1.30** 
 (0.38) (0.39) (0.49) (0.57) 
COAST_d 0.22*** 0.21*** 0.29*** 0.26*** 
 (0.07) (0.07) (0.08) (0.09) 
Control term    0.03 
    (0.08) 
ln(TECH.SHARES)  yes yes yes yes 
Country Fixed Effects yes (1) yes yes yes 
Sample size 48,180 48,180 48,180 48,180 
Nonzero observations 3,365 3,365 3,365 2,391 
Partial R2 first stage    0.513 
F-stat first stage    23.82 
Adjusted McFadden’s R2 0.384 0.379 0.365 0.362 
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Only the 
negative binomial estimation is shown here. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) 
The UK is treated as the reference country. Standard errors in (iv) are calculated via bootstrapping with 1000 iterations. 



Appendices 
Appendix 1: List of countries 
Austria (AT), Belgium (BE), Switzerland (CH), Germany (DE), Denmark (DK), Spain 
(ES), Finland (FI), France (FR), Greece (GR), Ireland (IE), Italy (IT), Luxembourg 
(LU), the Netherlands (NL), Norway (NO), Portugal (PT), Sweden (SE), United 
Kingdom (UK). 
 
Appendix 2: Variables to be included 

Variable Proxy 
Time 
span Source 

Expected 
sign 

Inventors’ flows 
Counts of flows from home to host 
region 

96-99 
02-05 

REGPAT and 
own calculations, 
and PATSTAT-
KITeS 

 

Geographical 
distance 

Euclidean distance between UTM 
regional centroids 

 GIS - 

Geographical 
distance 

Great circle distance  GIS - 

Geographical 
distance 

Driving distance in km  
Google Maps and 
SAS 

- 

Geographical 
distance 

Driving distance in time (seconds)  
Google Maps and 
SAS 

- 

Contiguity 1: contiguity; 0 otherwise  GIS - 
Institutional 
distance 

1: dif. country; 0 otherwise    - 

Social proximity iijij n/lA =  92-95 
98-01 

REGPAT and 
own calculations 

+ 

Technological 
distance ( ) 













−
∑ ∑
∑

2/12
jk

2
ik

jkik

ff

ff
1  

Average 
92-95 
98-01 

REGPAT and 
own calculations 

- 

Language 
similarity 

  
Ethnologue 
Project 

+ 

Excellence 
1: share HRST (core) of active 
population over the mean in both 
regions; 0 otherwise 

92-95 
98-01 

Eurostat + 

Inventors 
# inventors in origin and 
destination regions 

92-95 
98-01 

REGPAT and 
own calculations 

+ 

Population 
Population in origin and destination 
regions 

Average 
92-95 
98-01 

Eurostat + 

Border_d Border with a foreign country  ESPON + 

Time2Brussels_d 
Time (in seconds) from the 
regions’ centroids to Brussels 

 
Google Maps and 
SAS 

- 

HRST_d 
Human Resource in Science and 
Technology (core) over active 
population 

Average 
92-95 
98-01 

Eurostat + 

Population 
Density_d 

Population over area (km2) 
Average 

92-95 
98-01 

Eurostat ? 

Average 
temperature_d 

Average temperature in January 
(degress Fahrenheit) 

Average 
92-95 
98-01 

FOODSEC 
project, MARS 
units, EC-JRC 

+ 

Coast_d 
1: if the region has a coast; 0 
otherwise 

 ESPON + 

Notes: ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively.



Appendix 3: Complementary results and robustness checks 
Table A. 3.1. Gravity model, ZINB estimations. Periods 1996-1999. Dependent variable: cross-regional pair-wise mobility of inventors. 
 (i) Euclidean (ii) Great circle (iii) km (iv) time 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -19.33*** -0.73 -14.90*** -2.03 -10.62*** 6.62 -5.40** -5.56 
 (2.46) (6.38) (2.53) (6.04) (2.29) (6.39) (2.66) (6.39) 
Contiguity 0.92*** -1.33*** 0.88*** -1.04** 0.92*** -0.98** 1.01*** -1.01** 
 (0.10) (0.40) (0.09) (0.42) (0.09) (0.43) (0.09) (0.47) 
ln(Euclidean Distance) -1.36*** 0.94***       
 (0.07) (0.21)       
ln(Arc Distance)   -1.41*** 1.07***     
   (0.06) (0.17)     
ln(Km)     -1.40*** 1.25***   
     (0.06) (0.18)   
ln(Time)       -1.57*** 1.39*** 
       (0.07) (0.21) 
BORDER_d 0.17** 0.07 0.11 -0.19 + 0.11 -0.25 0.08 -0.20 
 (0.07) (0.18) (0.07) (0.18) (0.07) (0.18) (0.07) (0.18) 
ln(CENTRAL_d) -0.08 -0.34 -0.08 -0.96*** -0.09 -1.17*** -0.07 -1.21*** 
 (0.13) (0.35) (0.11) (0.27) (0.11) (0.26) (0.11) (0.27) 
ln(INV_o) 0.51*** -0.39*** 0.52*** -0.39** 0.51*** -0.38** 0.50*** -0.31* 
 (0.05) (0.14) (0.05) (0.17) (0.05) (0.17) (0.05) (0.18) 
ln(INV_d) 0.51*** -0.54*** 0.49*** -0.78*** 0.48*** -0.79*** 0.48*** -0.74*** 
 (0.06) (0.17) (0.06) (0.17) (0.06) (0.17) (0.06) (0.17) 
ln(HRST_d) 0.38* 0.51 0.32 0.43 0.39* 0.42 0.35* 0.47 
 (0.20) (0.61) (0.20) (0.57) (0.20) (0.63) (0.21) (0.62) 
ln(POP_o) 0.30*** -0.26 0.28*** -0.30 0.27*** -0.27 0.25*** -0.41 
 (0.08) (0.24) (0.08) (0.25) (0.08) (0.26) (0.08) (0.27) 
ln(POP_d) 0.40*** 0.15 0.39*** 0.18 0.37*** 0.20 0.37*** 0.07 
 (0.09) (0.26) (0.09) (0.27) (0.09) (0.29) (0.09) (0.29) 
ln(DENS_d) -0.08** 0.08 -0.11*** -0.03 -0.12*** 0.02 -0.14*** -0.04 
 (0.04) (0.12) (0.04) (0.12) (0.04) (0.12) (0.04) (0.12) 
ln(TEMP_d) 0.55 1.57 0.46 0.92 0.36 0.95 0.35 0.83 
 (0.46) (1.15) (0.44) (1.07) (0.44) (1.06) (0.45) (1.05) 



COAST_d 0.31*** 0.09 0.19** -0.21 0.23*** -0.34 0.23*** -0.26 
 (0.08) (0.26) (0.08) (0.25) (0.08) (0.27) (0.08) (0.28) 
ln(TECH.SHARES) yes (1) yes yes yes yes yes yes yes 
Country Fixed Effects yes (2) yes yes yes yes yes yes yes 
Sample size 48,180 48,180 48,180 48,180 48,180 48,180 48,180 48,180 
Nonzero observations 2,854 2,854 2,854 2,854 2,854 2,854 2,854 2,854 
Log-pseudolikelihood -10,715.65  -10,709.25  -10706.02  -10,666.66  
LR test 11,256.700  11,269.494  11,275.954    
p-value 0.0000  0.0000  0.0000  0.0000  
Wald test 5,600.92  5,321.96  5,524.86  4,992.81  
p-value 0.0000  0.0000  0.0000  0.0000  
LR test of α  4,528.81  4,585.39  4,509.92  4,410.46  
p-value 0.0000  0.0000  0.0000  0.0000  
Vuong statistic 12.02  12.52  12.54  12.46  
p-value 0.0000  0.0000  0.0000  0.0000  
McFadden’s R2 0.344  0.345  0.345  0.347  
Adjusted McFadden’s R2 0.337  0.337  0.338  0.340  
AIC 21,669.3  21,656.5  21,650.04  21,571.31  
Schwartz 22,714.44  22,701.64  22,695.18  22,616.46  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Only the negative binomial estimation is shown here. Overdispersion tests largely reject the 
null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point to the need of the zero-inflated models to accommodate 
our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) Inventors are assigned to each technological sector according to the classification jointly 
elaborated by Fraunhofer Gesellschaft-ISI (Karlsruhe), Institut National de la Propriété Industrielle (INPI, Paris) and Observatoire des Sciences and des Techniques (OST, Paris). This classification aggregates all IPC 
codes into seven technology fields: 1. Electrical engineering; Electronics; 2. Instruments; 3. Chemicals; Materials; 4. Pharmaceuticals; Biotechnology; 5. Industrial processes; 6. Mechanical eng.; Machines; Transport; 
and 7. Consumer goods; Civil engineering. Inventors are assigned to sectors according to the majority of the IPC codes of their patent portfolio. These control variables are included in all the estimations unless 
otherwise stated. (2) The UK is treated as the reference country. 



Table A. 3.2. Gravity model, ZINB estimations. Periods 2002-2005. Dependent variable: cross-regional pair-wise mobility of inventors. 
 (i) Euclidean (ii) Great circle (iii) km (iv) time 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -22.72*** -8.58* -13.45*** 0.62 -13.21*** -3.17 -6.34** -8.66 
 (2.42) (4.84) (3.01) (5.20) (4.39) (10.18) (3.01) (5.40) 
Contiguity 0.98*** -1.38*** 0.88*** -1.33*** 0.92*** -1.36*** 1.00*** -1.39*** 
 (0.10) (0.31) (0.10) (0.34) (0.10) (0.40) (0.10) (0.34) 
ln(Euclidean Distance) -1.31*** 1.02***       
 (0.06) (0.13)       
ln(Arc Distance)   -1.39*** 1.04***     
   (0.06) (0.16)     
ln(Km)     -1.43*** 1.05***   
     (0.06) (0.18)   
ln(Time)       -1.58*** 1.20*** 
       (0.07) (0.16) 
BORDER_d 0.29*** 0.48** 0.22*** 0.33* 0.21*** 0.33* 0.21*** 0.38** 
 (0.08) (0.19) (0.07) (0.18) (0.07) (0.18) (0.07) (0.18) 
ln(CENTRAL_d) 0.10 -0.17 0.00 -0.60** 0.04 -0.59** 0.06 -0.63** 
 (0.12) (0.26) (0.13) (0.25) (0.14) (0.26) (0.13) (0.25) 
ln(INV_o) 0.72*** -0.51*** 0.72*** -0.59*** 0.70*** -0.58*** 0.69*** -0.56*** 
 (0.04) (0.07) (0.04) (0.07) (0.04) (0.07) (0.04) (0.07) 
ln(INV_d) 0.78*** -0.33*** 0.67*** -0.59*** 0.67*** -0.58*** 0.67*** -0.58*** 
 (0.05) (0.10) (0.05) (0.10) (0.05) (0.10) (0.05) (0.11) 
ln(HRST_d) 0.89** -1.05 1.04*** -0.45 1.15** -0.28 1.13*** -0.29 
 (0.35) (0.88) (0.40) (0.71) (0.48) (0.99) (0.39) (0.70) 
ln(POP_o) -0.04 -0.03 -0.00 -0.00 0.01 -0.01 0.00 0.01 
 (0.04) (0.10) (0.04) (0.09) (0.04) (0.10) (0.03) (0.09) 
ln(POP_d) 0.09** 0.12 0.02 -0.08 0.03 -0.09 0.02 -0.09 
 (0.04) (0.08) (0.03) (0.07) (0.03) (0.07) (0.03) (0.08) 
ln(DENS_d) -0.07 -0.06 + -0.02 0.10 -0.04 0.11 -0.06 0.11 
 (0.04) (0.11) (0.05) (0.09) (0.05) (0.10) (0.06) (0.11) 
ln(TEMP_d) 1.52*** 3.53*** 0.60 0.66 0.69 1.15 0.80 1.25 
 (0.44) (1.05) (0.57) (1.10) (0.62) (1.45) (0.56) (1.07) 
COAST_d 0.37*** 0.17 0.29*** -0.02 0.28** -0.04 0.32*** 0.01 



 (0.08) (0.19) (0.10) (0.23) (0.11) (0.27) (0.10) (0.24) 
ln(TECH.SHARES) yes (1) yes yes yes yes Yes Yes yes 
Country Fixed Effects yes (2) yes yes yes yes Yes Yes yes 
Sample size 48,180 48,180 48,180 48,180 48,180 48,180 48,180 48,180 
Nonzero observations 3,365 3,365 3,365 3,365 3,365 3,365 3,365 3,365 
Log-pseudolikelihood -12,882.33  -12,881.26  -12,846.29  -12,809.8  
LR test 12,229.862  12,232.001  12,301.944  12,374.924  
p-value 0.0000  0.000  0.0000  0.0000  
Wald test 4,607.51  4,491.59  4,568.44  4,591.74  
p-value 0.0000  0.0000  0.0000  0.0000  
LR test of α  1,400  1,400  1,400  1,300  
p-value 0.0000  0.0000  0.0000  0.0000  
Vuong statistic 11.48  11.06  10.97  10.83  
p-value 0.0000  0.0000  0.0000  0.0000  
McFadden’s R2 0.322  0.322  0.324  0.326  
Adjusted McFadden’s R2 0.316  0.316  0.318  0.319  
AIC 26,002.66  26,000.52  25,930.57  25,857.6  
Schwartz 27,047.8  27,045.66  26,975.72  26,902.74  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Only the negative binomial estimation is shown here. Overdispersion tests largely reject the 
null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point to the need of the zero-inflated models to accommodate 
our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) Inventors are assigned to each technological sector according to the classification jointly 
elaborated by Fraunhofer Gesellschaft-ISI (Karlsruhe), Institut National de la Propriété Industrielle (INPI, Paris) and Observatoire des Sciences and des Techniques (OST, Paris). This classification aggregates all IPC 
codes into seven technology fields: 1. Electrical engineering; Electronics; 2. Instruments; 3. Chemicals; Materials; 4. Pharmaceuticals; Biotechnology; 5. Industrial processes; 6. Mechanical eng.; Machines; Transport; 
and 7. Consumer goods; Civil engineering. Inventors are assigned to sectors according to the majority of the IPC codes of their patent portfolio. These control variables are included in all the estimations unless 
otherwise stated. (2) The UK is treated as the reference country. 
 
 



Table A. 3.3. Gravity model, ZINB estimations. Periods 1996-1999. Dependent variable: cross-regional pair-wise mobility of inventors. 
 (i) Euclidean (ii) Great circle (iii) km (iv) time 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -14.01*** -7.78 -13.59*** -14.91** -12.80*** -14.94** -9.73*** -15.16** 
 (2.32) (7.00) (2.19) (5.85) (2.19) (5.82) (2.21) (6.10) 
Contiguity 0.94*** -0.53 0.90*** -0.75* 0.92*** -0.82** 0.99*** -0.88** 
 (0.08) (0.41) (0.08) (0.38) (0.08) (0.39) (0.08) (0.39) 
ln(Euclidean Distance) -0.54*** 0.26*       
 (0.06) (0.15)       
ln(Arc Distance)   -0.59*** 0.04     
   (0.06) (0.15)     
ln(Km)     -0.60*** 0.02   
     (0.06) (0.15)   
ln(Time)       -0.63*** 0.06 
       (0.07) (0.17) 
Institutional distance -0.61*** 4.54*** -0.66*** 4.84*** -0.65*** 4.82*** -0.64*** 5.00*** 
 (0.11) (1.33) (0.11) (0.49) (0.11) (0.49) (0.11) (0.54) 
ln(Social Proximity) 0.13*** -0.01 0.12*** -0.04* 0.12*** -0.04* 0.13*** -0.04 
 (0.01) (0.03) (0.01) (0.03) (0.02) (0.03) (0.02) (0.03) 
ln(Technological Distance) -0.05 0.93*** -0.15** 0.51** -0.16** 0.49** -0.16** 0.49** 
 (0.07) (0.23) (0.07) (0.20) (0.07) (0.20) (0.07) (0.20) 
ln(Cultural Proximity) 0.05** -0.43*** 0.05*** -0.19* 0.05** -0.20* 0.04** -0.24** 
 (0.02) (0.13) (0.02) (0.11) (0.02) (0.11) (0.02) (0.10) 
Research Excellence 0.03 0.23 -0.02 0.09 -0.03 0.08 -0.02 0.09 
 (0.06) (0.18) (0.06) (0.17) (0.06) (0.17) (0.06) (0.17) 
BORDER_d 0.29*** 0.51*** 0.24*** 0.39** 0.23*** 0.38** 0.23*** 0.41** 
 (0.07) (0.19) (0.07) (0.18) (0.07) (0.18) (0.07) (0.19) 
ln(CENTRAL_d) -0.13 0.02 -0.14 -0.02 -0.13 -0.01 -0.14 -0.04 
 (0.11) (0.24) (0.11) (0.23) (0.11) (0.23) (0.11) (0.24) 
ln(INV_o) 0.58*** -0.34** 0.57*** -0.31** 0.56*** -0.32** 0.56*** -0.31** 
 (0.05) (0.15) (0.05) (0.13) (0.05) (0.13) (0.05) (0.13) 
ln(INV_d) 0.41*** -0.65*** 0.41*** -0.71*** 0.41*** -0.70*** 0.40*** -0.73*** 
 (0.06) (0.18) (0.06) (0.16) (0.06) (0.16) (0.06) (0.17) 
ln(HRST_d) 0.30 0.76 0.22 0.54 0.23 0.54 0.23 0.58 
 (0.20) (0.54) (0.20) (0.49) (0.20) (0.49) (0.20) (0.51) 
ln(POP_o) 0.14* -0.06 0.13* -0.10 0.12 -0.09 0.10 -0.14 



 (0.07) (0.21) (0.07) (0.20) (0.07) (0.20) (0.08) (0.21) 
ln(POP_d) 0.21** 0.32 0.25*** 0.47* 0.24** 0.46* 0.23** 0.48* 
 (0.09) (0.28) (0.09) (0.26) (0.09) (0.25) (0.09) (0.26) 
ln(DENS_d) -0.04 0.12 -0.08** -0.05 -0.09** -0.06 -0.09** -0.06 
 (0.04) (0.12) (0.04) (0.10) (0.04) (0.10) (0.04) (0.11) 
ln(TEMP_d) 0.76* 1.86 0.71* 1.90* 0.70 1.93* + 0.69 1.92* + 
 (0.45) (1.35) (0.43) (1.13) (0.43) (1.12) (0.44) (1.16) 
COAST_d 0.17** -0.32 0.13* -0.46** 0.13* -0.46** 0.13* -0.51** 
 (0.08) (0.25) (0.08) (0.23) (0.08) (0.23) (0.08) (0.24) 
ln(TECH.SHARES) yes yes Yes yes yes Yes yes yes 
Country Fixed Effects yes (1) yes Yes yes yes Yes yes yes 
Sample size 48,180 48,180 48,180 48,180 48,180 48,180 48,180 48,180 
Nonzero observations 2,854 2,854 2,854 2,854 2,854 2,854 2,854 2,854 
Log-pseudolikelihood -9,920.899  -9,915.472  -9,917.573  -9,928.545  
LR test 12,846.199  12,857.054  12,852.851  12,830.908  
p-value 0.0000  0.0000  0.0000  0.0000  
Wald test 4,643.54  3,629.38  3,585.09  3,590.69  
p-value 0.0000  0.0000  0.0000  0.0000  
LR test of α  3,104.78  3,117.13  3,116.03  3,128.56  
p-value 0.0000  0.0000  0.0000  0.0000  
Vuong statistic 9.49  9.28  9.31  9.35  
p-value 0.0000  0.0000  0.0000  0.0000  
McFadden’s R2 0.393  0.393  0.393  0.393  
Adjusted McFadden’s R2 0.385  0.385  0.385  0.385  
AIC 20,,099.8  20,088.94  20,093.15  20,115.09  
Schwartz 21232.77  21,221.91  21,226.11  21,248.06  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Each of the columns includes the negative binomial estimation and the first stage of the ZINB, 
the logit model. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point 
to the need of the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) The UK is treated as the reference country. 



Table A. 3.4. Gravity model, ZINB estimations. Periods 2002-2005. Dependent variable: cross-regional pair-wise mobility of inventors. 
 (i) Euclidean (ii) Great circle (iii) km (iv) time 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -17.55*** -9.57 -14.88*** -8.25 -14.34*** -8.68 -11.47*** -8.84 
 (3.38) (9.19) (3.17) (8.68) (3.24) (9.11) (3.24) (8.86) 
Contiguity 0.92*** -1.21*** 0.84*** -1.33*** 0.85*** -1.37*** 0.90*** -1.37*** 
 (0.09) (0.38) (0.08) (0.37) (0.08) (0.38) (0.08) (0.39) 
ln(Euclidean Distance) -0.49*** 0.15       
 (0.08) (0.15)       
ln(Arc Distance)   -0.59*** -0.03     
   (0.07) (0.13)     
ln(Km)     -0.62*** -0.04   
     (0.07) (0.14)   
ln(Time)       -0.68*** -0.02 
       (0.08) (0.15) 
Institutional distance -0.49*** 4.31*** -0.48*** 4.60*** -0.47*** 4.58*** -0.46*** 4.55*** 
 (0.11) (0.38) (0.10) (0.40) (0.10) (0.40) (0.10) (0.41) 
ln(Social Proximity) 0.17*** 0.05 0.16*** 0.03 0.16*** 0.03 0.16*** 0.03 
 (0.02) (0.04) (0.02) (0.03) (0.02) (0.03) (0.02) (0.03) 
ln(Technological Distance) -0.13** 0.44*** -0.14** 0.44*** -0.15** 0.43*** -0.16*** 0.41*** 
 (0.06) (0.14) (0.06) (0.14) (0.06) (0.14) (0.06) (0.14) 
ln(Cultural Proximity) 0.06** -0.45*** 0.06** -0.45*** 0.05* -0.46*** 0.05* -0.47*** 
 (0.03) (0.11) (0.03) (0.10) (0.03) (0.10) (0.03) (0.10) 
Research Excellence 0.19*** 0.02 0.18** 0.02 0.17** 0.01 0.17** 0.01 
 (0.07) (0.16) (0.07) (0.15) (0.07) (0.16) (0.07) (0.16) 
BORDER_d 0.26*** 0.40 0.24*** 0.32 0.24*** 0.32 0.23*** 0.32 
 (0.09) (0.25) (0.08) (0.22) (0.08) (0.23) (0.08) (0.23) 
ln(CENTRAL_d) -0.15 -0.05 -0.12 -0.01 -0.11 -0.02 -0.11 -0.04 
 (0.11) (0.24) (0.11) (0.23) (0.11) (0.24) (0.11) (0.24) 
ln(INV_o) 0.70*** -0.45*** 0.70*** -0.45*** 0.69*** -0.45*** 0.68*** -0.45*** 
 (0.04) (0.08) (0.04) (0.08) (0.04) (0.08) (0.04) (0.08) 
ln(INV_d) 0.54*** -0.46*** 0.55*** -0.41*** 0.55*** -0.41*** 0.55*** -0.41*** 
 (0.05) (0.13) (0.04) (0.09) (0.04) (0.09) (0.04) (0.09) 
ln(HRST_d) 0.59* -0.04 0.61* -0.07 0.63* -0.01 0.65* 0.03 
 (0.35) (0.72) (0.34) (0.71) (0.34) (0.74) (0.34) (0.74) 
ln(POP_o) -0.03 0.07 -0.02 0.07 -0.02 0.08 -0.02 0.07 



 (0.03) (0.08) (0.03) (0.08) (0.03) (0.08) (0.03) (0.08) 
ln(POP_d) 0.07* 0.04 0.07* 0.03 0.07* 0.03 0.07* 0.03 
 (0.04) (0.08) (0.03) (0.08) (0.03) (0.08) (0.03) (0.08) 
ln(DENS_d) -0.04 -0.00 -0.04 -0.00 -0.06 -0.01 -0.06 -0.02 + 
 (0.04) (0.09) (0.04) (0.09) (0.04) (0.09) (0.04) (0.09) 
ln(TEMP_d) 1.41** 2.57 1.23** 2.09 1.23** 2.18 1.25** 2.21 
 (0.65) (1.77) (0.59) (1.63) (0.60) (1.71) (0.59) (1.68) 
COAST_d 0.24*** -0.10 0.26*** -0.03 0.26*** -0.03 0.27*** -0.01 
 (0.09) (0.23) (0.07) (0.19) (0.08) (0.19) (0.08) (0.19) 
ln(TECH.SHARES) yes yes yes yes yes Yes yes yes 
Country Fixed Effects yes (1) yes yes yes yes Yes yes yes 
Sample size 48,180 48,180 48,180 48,180 48,180 48,180 48,180 48,180 
Nonzero observations 3,365 3,365 3,365 3,365 3,365 3,365 3,365 3,365 
Log-pseudolikelihood -12,007.38  -11,993.06  -11,986.95  -11,988.82  
LR test 13,979.767  14,008.409  14,020.622  14,016.886  
p-value 0.0000  0.0000  0.0000  0.0000  
Wald test 3,296.87  3,605.62  3,620.31  3,620.92  
p-value 0.0000  0.0000  0.0000  0.0000  
LR test of α  1,200  1,200  1,200  1,200  
p-value 0.0000  0.0000  0.0000  0.0000  
Vuong statistic 10.89  10.77  10.72  10.70  
p-value 0.0000  0.0000  0.0000  0.0000  
McFadden’s R2 0.368  0.369  0.369  0.369  
Adjusted McFadden’s R2 0.361  0.362  0.362  0.362  
AIC 24,272.75  24,244.11  24,231.9  24,235.63  
Schwartz 25,405.72  25,377.08  25,364.86  25,368.6  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Each of the columns includes the negative binomial estimation and the first stage of the ZINB, 
the logit model. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point 
to the need of the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) The UK is treated as the reference 
country. 



Table A. 3.5. Gravity model, ZINB estimations. Periods 2002-2005. Dependent variable: cross-regional pair-wise mobility of inventors – 
only labour mobility. 
 (i) km firm mob. (ii) time firm mob. (iii) km group mob. (iv) time group mob. 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -16.97*** -12.38* -14.18*** -12.45* -18.33*** -16.15** -15.30*** -16.13** 
 (2.63) (7.30) (2.70) (7.52) (3.17) (7.35) (3.29) (7.52) 
Contiguity 0.77*** -1.40*** 0.82*** -1.38*** 0.81*** -1.12*** 0.86*** -1.10*** 
 (0.09) (0.42) (0.08) (0.52) (0.09) (0.36) (0.09) (0.36) 
ln(km) -0.61*** -0.04   -0.61*** 0.05   
 (0.08) (0.17)   (0.08) (0.17)   
ln(Time)   -0.67*** -0.02   -0.67*** 0.08 
   (0.08) (0.18)   (0.09) (0.19) 
Institutional distance -0.48*** 4.19*** -0.47*** 4.18*** -0.38*** 3.56*** -0.37*** 3.53*** 
 (0.11) (0.51) (0.11) (0.50) (0.12) (0.43) (0.12) (0.44) 
ln(Social Proximity) 0.15*** 0.03 0.15*** 0.03 0.15*** 0.04 0.16*** 0.04 
 (0.02) (0.03) (0.02) (0.03) (0.03) (0.04) (0.03) (0.04) 
ln(Technological Distance) -0.17*** 0.53*** -0.18*** 0.51*** -0.20*** 0.58*** -0.21*** 0.55*** 
 (0.06) (0.17) (0.06) (0.17) (0.06) (0.17) (0.06) (0.17) 
ln(Cultural Proximity) 0.08*** -0.38*** 0.07*** -0.39*** 0.06*** -0.43*** 0.06** -0.43*** 
 (0.02) (0.10) (0.02) (0.10) (0.02) (0.12) (0.02) (0.11) 
Research Excellence 0.18** 0.00 0.18** 0.01 0.25*** 0.09 0.24*** 0.09 
 (0.08) (0.18) (0.08) (0.18) (0.08) (0.19) (0.08) (0.19) 
BORDER_d 0.32*** 0.47** 0.32*** 0.47** 0.32*** 0.63*** 0.32*** 0.63*** 
 (0.07) (0.20) (0.07) (0.20) (0.08) (0.22) (0.08) (0.22) 
ln(CENTRAL_d) -0.02 -0.01 -0.01 -0.03 -0.03 0.06 -0.03 0.03 
 (0.10) (0.23) (0.11) (0.23) (0.11) (0.25) (0.11) (0.26) 
ln(INV_o) 0.71*** -0.35*** 0.71*** -0.35*** 0.66*** -0.44*** 0.65*** -0.43*** 
 (0.04) (0.08) (0.04) (0.09) (0.04) (0.09) (0.04) (0.09) 
ln(INV_d) 0.59*** -0.39*** 0.58*** -0.39*** 0.58*** -0.44*** 0.58*** -0.44*** 
 (0.05) (0.12) (0.05) (0.13) (0.06) (0.12) (0.06) (0.12) 
ln(HRST_d) 0.56 0.43 + 0.59 0.50 + 0.56 0.67 0.59 0.71 
 (0.36) (0.89) (0.36) (0.90) (0.42) (0.92) (0.42) (0.92) 
ln(POP_o) -0.02 0.03 -0.03 0.03 -0.02 0.04 -0.02 0.04 
 (0.03) (0.08) (0.03) (0.08) (0.04) (0.09) (0.04) (0.09) 
ln(POP_d) 0.08** 0.05 0.08** 0.05 0.06 -0.02 0.05 -0.02 
 (0.03) (0.08) (0.03) (0.08) (0.04) (0.08) (0.04) (0.08) 



ln(DENS_d) -0.08* -0.17 -0.08* -0.17 -0.06 -0.09 -0.06 -0.09 
 (0.04) (0.11) (0.05) (0.12) (0.05) (0.11) (0.05) (0.11) 
ln(TEMP_d) 1.70*** 3.06** 1.71*** 3.04** 1.80*** 3.92*** 1.76*** 3.78*** 
 (0.48) (1.43) (0.51) (1.42) (0.58) (1.38) (0.59) (1.39) 
COAST_d 0.19** -0.16 0.20** -0.15 0.18* -0.25 0.20** -0.23 
 (0.08) (0.24) (0.08) (0.24) (0.10) (0.26) (0.10) (0.26) 
ln(TECH.SHARES)  yes yes yes yes yes Yes yes yes 
Country Fixed Effects yes (1) yes yes yes yes Yes yes yes 
Sample size 48,180  48,180  48,180  48,180  
Nonzero observations 2,812  2,812  2,391  2,391  
Log-pseudolikelihood -9,930.056  -9,932.441  -8,552.124  -8,553.164  
LR test 11,979.563  11,974.793  10,555.194  10,553.114  
p-value 0.000  0.000  0.0000  0.0000  
Wald test 3,516.15  3,509.39  2,887.87  2,880.84  
p-value 0.000  0.000  0.0000  0.0000  
LR test of α  6,699.87  6,670.30  5,353.87  5,323.15  
p-value 0.000  0.0000  0.0000  0.0000  
Vuong statistic 9.55  9.57  8.83  8.85  
p-value 0.000  0.0000  0.0000  0.0000  
McFadden’s R2 0.376  0.376  0.382  0.382  
Adjusted McFadden’s R2 0.368  0.368  0.372  0.372  
AIC 20,118.11  20,122.88  17,362.25  17,364.33  
Schwartz 21,251.08  21,255.85  18,495.22  18,497.3  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Each of the columns includes the negative binomial estimation and the first stage of the ZINB, 
the logit model. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point 
to the need of the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) The UK is treated as the reference country. 

 



Table A.3.6. Gravity model, ZINB estimations. Periods 2002-2005. Dependent variable: cross-regional pair-wise mobility of inventors – 
endogeneity. 
 (i) time 1st lag depvar (ii) time 2n lag depvar (iii) time 3rd lag depvar (iv) time (no 

ZINB) 
(v) time 

2SRI 
 NegBin Logit NegBin Logit NegBin Logit NegBin NegBin 
Intercept -8.25*** -1.75 -8.26*** -0.10 -12.18*** -7.92 -12.62*** -11.44 
 (2.18) (4.01) (2.34) (4.48) (3.22) (6.90) (4.53) (10.72) 
Contiguity 0.60*** -0.99*** 0.52*** -1.32*** 0.87*** -0.88** 0.94*** -1.15** 
 (0.08) (0.33) (0.08) (0.40) (0.08) (0.35) (0.15) (0.49) 
Lag Dependent var. 1998-2001 0.05*** -1.37***       
 (0.01) (0.12)       
Lag Dependent var. 1994-1997   0.07*** -1.19***     
   (0.01) (0.16)     
Lag Dependent var. 1990-1993     0.00 -1.66***   
     (0.00) (0.29)   
ln(Time) -0.38*** 0.26** -0.54*** 0.07 -0.68*** -0.02 -0.70*** -0.09 
 (0.06) (0.12) (0.08) (0.14) (0.08) (0.15) (0.13) (0.20) 
Institutional distance -0.30*** 2.39*** -0.35*** 2.75*** -0.44*** 3.16*** -0.56* 3.90*** 
 (0.10) (0.26) (0.09) (0.30) (0.10) (0.36) (0.31) (1.02) 
ln(Social Proximity) 0.15*** 0.05* 0.14*** 0.02 0.15*** 0.02 0.13* -0.07 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.07) (0.13) 
ln(Technological Distance) -0.11* 0.26** -0.10* 0.35*** -0.16** 0.35** -0.19* 0.29 
 (0.06) (0.13) (0.06) (0.13) (0.06) (0.14) (0.10) (0.25) 
ln(Cultural Proximity) 0.02 -0.42*** 0.01 -0.43*** 0.04** -0.42*** 0.06* -0.42*** 
 (0.02) (0.08) (0.02) (0.09) (0.02) (0.09) (0.03) (0.12) 
Research Excellence 0.10 -0.10 0.02 -0.18 0.16** -0.04 0.18** 0.04 
 (0.08) (0.13) (0.07) (0.13) (0.07) (0.15) (0.09) (0.22) 
BORDER_d 0.18*** 0.22* 0.13** 0.13 0.25*** 0.36** 0.25*** -0.40*** 
 (0.06) (0.13) (0.07) (0.14) (0.08) (0.17) (0.09) (0.14) 
ln(CENTRAL_d) -0.12 -0.16 -0.11 -0.23 -0.10 -0.12 -0.10 -0.35** 
 (0.10) (0.18) (0.10) (0.19) (0.11) (0.23) (0.13) (0.17) 
ln(INV_o) 0.47*** -0.51*** 0.50*** -0.52*** 0.63*** -0.46*** 0.69*** 0.08 
 (0.04) (0.06) (0.04) (0.07) (0.05) (0.07) (0.11) (0.10) 
ln(INV_d) 0.33*** -0.50*** 0.35*** -0.52*** 0.52*** -0.44*** 0.57*** 0.04 
 (0.05) (0.08) (0.05) (0.09) (0.05) (0.10) (0.12) (0.09) 
ln(HRST_d) 0.54 -0.01 0.94*** 0.24 0.78** 0.40 0.72** 0.26 



 (0.37) (0.57) (0.32) (0.58) (0.38) (0.71) (0.37) (0.83) 
ln(POP_o) -0.02 -0.01 -0.06* -0.05 -0.03 0.04 -0.02 0.38* 
 (0.03) (0.07) (0.03) (0.07) (0.03) (0.08) (0.04) (0.21) 
ln(POP_d) 0.07** 0.04 0.03 -0.01 0.07* 0.03 0.07* -0.05 
 (0.03) (0.06) (0.03) (0.06) (0.03) (0.07) (0.04) (0.31) 
ln(DENS_d) -0.01 0.04 -0.06 -0.04 -0.07 -0.03 + -0.07* -0.04 
 (0.04) (0.08) (0.04) (0.08) (0.04) (0.09) (0.04) (0.08) 
ln(TEMP_d) 0.87** 1.30* 0.95** 1.51* 1.39*** 2.30** 1.30** 2.39 
 (0.38) (0.73) (0.39) (0.78) (0.49) (1.11) (0.57) (1.54) 
COAST_d 0.22*** -0.00 0.21*** -0.01 0.29*** 0.08 0.26*** -0.06 
 (0.07) (0.15) (0.07) (0.17) (0.08) (0.19) (0.09) (0.26) 
Control term       0.03 0.10 
       (0.08) (0.12) 
ln(TECH.SHARES)  yes yes yes yes yes Yes yes yes 
Country Fixed Effects yes (1) yes yes yes yes Yes yes yes 
Sample size 48,180 48,180 48,180 48,180 48,180 48,180 48,180 48,180 
Nonzero observations 3,365 3,365 3,365 3,365 3,365 3,365 3,365 3,365 
Partial R2 first stage       0.513  
F-stat first stage       23.82  
Log-pseudolikelihood -1,1566.19  -11,662.16  -11,926.66  -11,989.831 -11.988.816 
LR test 14,862.139  14,670.196  14,141.203  14,104.856 14,016.887 
p-value 0.0000  0.0000  0.0000  0.0000 0.0000 
Wald test 2,633.67  2,291.37  2,861.55  - - 
p-value 0.0000  0.0000  0.0000  - - 
LR test of α  7,500.30  9,023.60  1,200  1,400 1,400 
p-value 0.0000  0.0000  0.0000  0.0000 0.0000 
Vuong statistic 14.91  12.05  11.12  10.54 10.71 
p-value 0.0000  0.0000  0.0000  0.0000 0.0000 
McFadden’s R2 0.391  0.386  0.372  0.369 0.369 
Adjusted McFadden’s R2 0.384  0.379  0.365  0.362 0.362 
AIC 23,394.38  23,586.32  24,115.32  24,077.66 24,075.63 
Schwartz 24,544.91  24,736.86  25,265.85  24,508.02 24,505.98 
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Each of the columns includes the negative binomial estimation and the first stage of the ZINB, 
the logit model. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point 
to the need of the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) The UK is treated as the reference 
country. 
 



Table A.3.7. Endogeneity. First stage regression, OLS. Period 2002-2005. Dependent 
variable: cross-regional co-patents [ln(Social Proximity)] 

 (i) 
Intercept -3.85*** 
 (0.91) 
Contiguity 1.82*** 
 (0.11) 
ln(Time) -0.73*** 
 (0.05) 
Institutional distance -4.25*** 
 (0.07) 
ln(Technological Distance) -1.23*** 
 (0.05) 
ln(Cultural Proximity) 0.24*** 
 (0.02) 
Research Excellence 0.43*** 
 (0.05) 
Same NUTS1 -0.20 
 (0.13) 
Both regions host the country capital 0.79*** 
 (0.16) 
Both regions belong to the European CORE 0.39*** 
 (0.06) 
ln(average area both regions) 0.09 
 (0.06) 
ln(sum km to Brussels) -0.02 
 (0.11) 
The countries of both regions are contiguous 0.35*** 
 (0.04) 
Origin fixed effects  yes 
   F-test Joint significance 17.55*** 
   p-value 0.000 
Destination fixed effects yes 
   F-test Joint significance 33.02*** 
   p-value 0.000 
Observations 48,180 
Partial R-squared 0.513 
First stage F-stat 23.82 
p-value 0.000 

Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 



Table A.3.8. Gravity model, ZINB estimations. Periods 2002-2005. Dependent variable: cross-regional mobility – robustness checks. 
 (i) time + Income_d (ii) time + Income Gap (iii) time + citations_d (iv) time + 2&3 cont 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -12.37*** -12.87 -11.66*** -8.43 -11.76*** -9.01 -12.39*** -9.71 
 (3.19) (8.23) (2.94) (7.92) (3.92) (8.75) (3.33) (8.81) 
Contiguity 1st order 0.89*** -1.32*** 0.88*** -1.38*** 0.89*** -1.34** 0.96*** -1.18** 
 (0.08) (0.38) (0.08) (0.38) (0.09) (0.58) (0.14) (0.49) 
ln(Time) -0.68*** -0.03 -0.69*** -0.06 -0.69*** -0.03 -0.64*** 0.02 
 (0.08) (0.16) (0.08) (0.15) (0.09) (0.16) (0.09) (0.19) 
Institutional distance -0.44*** 4.49*** -0.42*** 4.69*** -0.44*** 4.48*** -0.47*** 4.43*** 
 (0.10) (0.41) (0.10) (0.42) (0.11) (0.44) (0.10) (0.37) 
ln(Social Proximity) 0.16*** 0.03 0.16*** 0.03 0.16*** 0.03 0.15*** 0.03 
 (0.02) (0.04) (0.02) (0.03) (0.04) (0.06) (0.02) (0.04) 
ln(Technological Distance) -0.16** 0.41*** -0.14** 0.39*** -0.15* 0.42*** -0.16*** 0.41*** 
 (0.06) (0.14) (0.06) (0.15) (0.08) (0.14) (0.06) (0.15) 
ln(Cultural Proximity) 0.05* -0.44*** 0.05** -0.47*** 0.05 -0.45*** + 0.05 -0.47*** + 
 (0.03) (0.10) (0.02) (0.10) (0.03) (0.09) (0.03) (0.09) 
Research Excellence 0.17** 0.03 0.17** 0.04 0.17** 0.01 0.18** 0.04 
 (0.07) (0.16) (0.07) (0.16) (0.07) (0.18) (0.07) (0.16) 
ln(Manuf. Income_d) -0.02 0.37       
 (0.13) (0.27)       
ln(Manuf. Income Gap)   -0.00*** -0.00***     
   (0.00) (0.00)     
ln(Citations_d per capita)     -0.05 -0.19   
     (0.15) (0.13)   
Contiguity 2nd order       0.10 -0.17 
       (0.10) (0.30) 
Contiguity 3rd order       -0.05 0.33 
       (0.08) (0.24) 
BORDER_d 0.25*** 0.38* 0.23*** 0.31 0.25*** 0.40* 0.24*** 0.35 
 (0.08) (0.21) (0.08) (0.20) (0.08) (0.21) (0.08) (0.23) 
ln(CENTRAL_d) -0.08 -0.10 -0.09 -0.01 -0.11 -0.09 -0.10 -0.03 
 (0.11) (0.23) (0.11) (0.22) (0.11) (0.23) (0.11) (0.24) 
ln(INV_o) 0.67*** -0.47*** 0.69*** -0.46*** 0.67*** -0.48*** 0.67*** -0.48*** 



 (0.05) (0.08) (0.04) (0.08) (0.14) (0.09) (0.05) (0.08) 
ln(INV_d) 0.56*** -0.73*** 0.54*** -0.41*** 0.60*** -0.22 0.55*** -0.41*** 
 (0.12) (0.22) (0.04) (0.09) (0.16) (0.17) (0.05) (0.09) 
ln(HRST_d) 0.66* 0.50 0.68** -0.15 0.60* -0.08 0.64* -0.03 
 (0.41) (0.79) (0.34) (0.73) (0.36) (0.75) (0.34) (0.73) 
ln(POP_o) -0.02 0.09 -0.02 0.10 -0.02 0.08 -0.02 0.08 
 (0.03) (0.08) (0.03) (0.08) (0.05) (0.08) (0.03) (0.08) 
ln(POP_d) 0.07** 0.05 0.05* 0.01 0.02 -0.14 0.07* 0.03 
 (0.03) (0.08) (0.03) (0.08) (0.15) (0.15) (0.03) (0.08) 
ln(DENS_d) -0.06 -0.11 -0.06 -0.01 -0.07* -0.05 -0.06 -0.01 
 (0.04) (0.10) (0.04) (0.09) (0.04) (0.10) (0.04) (0.09) 
ln(TEMP_d) 1.37** 2.66* 1.25** 2.22 1.37** 2.54 1.27** 2.29 
 (0.58) (1.51) (0.53) (1.46) (0.64) (1.77) (0.61) (1.72) 
COAST_d 0.27*** -0.09 0.27*** -0.01 0.26*** -0.07 0.28*** -0.01 
 (0.08) (0.20) (0.08) (0.20) (0.08) (0.19) (0.08) (0.20) 
ln(TECH.SHARES)  yes yes yes yes yes yes yes yes 
Country Fixed Effects  yes yes yes yes yes yes yes yes 
Sample size 47,523 47,523 46,872 46,872 48,180 48,180 48,180 48,180 
Nonzero observations 3,344 3,344 3,323 3,323 3,365 3,365 3,365 3,365 
Log-pseudolikelihood -11,883.93  -11,788.74  -11,989.65  -11,983.64  
LR test 13,920.619  13,,849.585  14,015.226  14,027.239  
p-value 0.0000  0.0000  0.0000  0.0000  
Wald test 3,351.53  3566.72  3,435.51  3,665.77  
p-value 0.0000  0.0000  0.0000  0.0000  
LR test of α  1,200  1,200  1,200  1,200  
p-value 0.0000  0.0000  0.0000  0.0000  
Vuong statistic 10.38  10.52  10.61  10.51  
p-value 0.0000  0.0000  0.0000  0.0000  
McFadden’s R2 0.369  0.370  0.369  0.369  
Adjusted McFadden’s R2 0.362  0.363  0.362  0.362  
AIC 24,029.86  23,839.49  24,241.29  24,233.28  
Schwartz 25,178.6  24,986.41  25,391.83  25,401.38  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Each of the columns includes the negative binomial estimation and the first stage of the ZINB, 
the logit model. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point 
to the need of the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) The UK is treated as the reference 
country. 



Table A.3.9. Gravity model, ZINB estimations. Periods 2002-2005. Dependent variable: cross-regional mobility – robustness checks. 
 (i) time + non-rel. (ii) time + non-attrib. (iii) time + mass 7 sectors (iv) time + Soundex with less 

than 50 records 
 NegBin Logit NegBin Logit NegBin Logit NegBin Logit 
Intercept -9.42*** -0.89 -9.57*** -22.66*** -3.96 -21.75*** -11.74*** -13.48* 
 (2.45) (12.09) (1.98) (1.10) (2.94) (7.48) (2.94) (7.13) 
Contiguity 1st order 0.95***  1.02*** -0.77** 0.92*** -1.40*** 0.86*** -1.28*** 
 (0.09)  (0.09) (0.37) (0.08) (0.43) (0.08) (0.38) 
ln(Time) -0.73***  -0.61*** 0.39*** -0.69*** 0.04 -0.70*** 0.04 
 (0.07)  (0.08) (0.12) (0.08) (0.15) (0.09) (0.16) 
Institutional distance -1.17***  -0.62*** 19.72*** -0.43*** 17.74*** -0.37*** 4.34*** 
 (0.10)  (0.10) (0.12) (0.10) (0.81) (0.12) (0.51) 
ln(Social Proximity) 0.16***  0.15*** -0.02 0.15*** 0.02 0.16*** 0.02 
 (0.01)  (0.02) (0.03) (0.02) (0.03) (0.02) (0.04) 
ln(Technological Distance) -0.17***  -0.01 0.74*** -0.05 0.37*** -0.14** 0.32** 
 (0.06)  (0.06) (0.14) (0.06) (0.14) (0.06) (0.15) 
ln(Cultural Proximity) 0.09*  0.08*** 0.07*** 0.06** -0.44*** 0.05** -0.29 
 (0.05)  (0.03) (0.03) (0.03) (0.10) (0.02) (0.22) 
Research Excellence 0.24***  0.28*** 0.05 0.19*** 0.02 0.19** 0.02 
 (0.07)  (0.08) (0.12) (0.07) (0.15) (0.08) (0.16) 
BORDER_d 0.19*** -0.07 0.17***  0.25*** 0.36* 0.17** 0.27 
 (0.07) (0.44) (0.06)  (0.08) (0.21) (0.07) (0.18) 
ln(CENTRAL_d) -0.22** -0.62 -0.11  -0.20* -0.06 -0.07 0.17 
 (0.11) (0.57) (0.09)  (0.11) (0.24) (0.11) (0.22) 
ln(INV_o) 0.75*** -0.47*** 0.77***  - - 0.66*** -0.45*** 
 (0.03) (0.14) (0.03)  - - (0.07) (0.09) 
ln(INV_d) 0.60*** -0.49*** 0.63***  - - 0.54*** -0.32*** 
 (0.04) (0.17) (0.04)  - - (0.05) (0.10) 
ln(HRST_d) 0.72** -0.26 0.73**  0.55* -0.09 0.69** 0.30 
 (0.34) (1.36) (0.32)  (0.32) (0.68) (0.34) (0.69) 
ln(POP_o) -0.04 -0.15 -0.03  -0.01 0.07 -0.02 0.03 
 (0.03) (0.18) (0.03)  (0.03) (0.07) (0.04) (0.08) 
ln(POP_d) 0.07** -0.11 0.07**  0.06** 0.02 0.06* 0.07 
 (0.03) (0.15) (0.03)  (0.03) (0.07) (0.03) (0.08) 
ln(DENS_d) -0.04 0.07 -0.06  + -0.08* -0.06 -0.08* -0.07 



 (0.05) (0.23) (0.04)  (0.04) (0.09) (0.04) (0.09) 
ln(TEMP_d) 0.88* 1.87 0.84**  0.89* 1.92 1.24** 2.56* 
 (0.46) (2.19) (0.33)  (0.55) (1.51) (0.49) (1.43) 
COAST_d 0.29*** -0.29 0.31***  0.32*** -0.05 0.27*** -0.15 
 (0.08) (0.54) (0.06)  (0.08) (0.19) (0.08) (0.20) 
ln(INV7sectors_o) no no no no yes yes no no 
ln(INV7sectors_d) no no no no yes yes no no 
ln(TECH.SHARES)  yes yes yes yes no no yes yes 
Country Fixed Effects  yes yes yes yes yes yes yes yes 
Sample size 48,180 48,180 48,180 48,180 48,180 48,180 48,180 48,180 
Nonzero observations 3,365 3,365 3,365 3,365 3,365 3,365 2,917 2,917 
Log-pseudolikelihood -12,216.83  -12,153.57  -12,014.73  -10,321.22  
LR test 13,560.866  13,687.381  13,965.064  12,375.641  
p-value 0.0000  0.0000  0.0000  0.0000  
Wald test 7,580.87  -  3,614.33  3,183.04  
p-value 0.0000  -  0.0000  0.0000  
LR test of α  1,300  1,300  1,200  7,032.68  
p-value 0.0000  0.0000  0.0000  0.0000  
Vuong statistic 6.70  7.77  10.56  9.82  
p-value 0.0000  0.0000  0.0000  0.0000  
McFadden’s R2 0.357  0.360  0.368  0.375  
Adjusted McFadden’s R2 0.350  0.356  0.361  0.367  
AIC 24,677.65  24,443.14  24,279.46  20,900.45  
Schwartz 25,749.14  25,040.36  25,377.29  22,033.42  
Notes: Robust standard errors are presented in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1, + p<0.12. Each of the columns includes the negative binomial estimation and the first stage of the ZINB, 
the logit model. Overdispersion tests largely reject the null hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of each regression. The tests performed point 
to the need of the zero-inflated models to accommodate our estimations to the excess of zeros. ‘_o’ and ‘_d’ stand for origin-region and destination-region variables, respectively. (1) The UK is treated as the reference 
country. 
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