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Abstract:We describe a microscope that can measure simultaneously all the Mueller matrix
elements of a sample with high spatial resolution. This measure is possible thanks to the dual
rotating compensator method, which analyses the variation in time of the intensity at every pixel
of the camera detector. This work reports the measurement principle, the instrumental details, the
calibration, and some applications of the microscope.

I. INTRODUCTION

The Mueller matrix is a useful mathematical tool to
characterize the optical properties of a medium at cer-
tain wavelength. A wide range of optical properties of
the material can be calculated from the Mueller matrix.
The optical characterization of materials and media with
Mueller matrices is used in many fields of science, for
example in the study biological tissues [1], for remote
sensing in the ocean [2], for polarimetry of anisotropic
chiral media [3], or in liquid crystals studies [4].

The objective of this work is to build up a microscope
that can measure the Mueller matrix of a sample with
high spatial resolution. The antecedent of this Mueller
matrix microscope (MMM) is the Polarized Light Micro-
scope (PLM). The PLM is typically used to study the lin-
ear birefringence of optically anisotropic samples and, for
example, it has a lot of applications in textile industries
(as an indicator of the stretching degree) or in geology
(for mineral identification). The Mueller Matrix Micro-
scope represents a generalization of the PLM and it can
be also used for all these applications. The main differ-
ence between both microscopes is that in PLM the results
of linear birefringence are based on the visual analysis of
the polarization colors, while in a MMM all the optical
properties (linear birefringence, lineal dichroism, circu-
lar birefringence, etc) are measured quantitatively and
simultaneously.

There are several experimental approaches to measure
a complete Mueller matrix, for example, the four pho-
toelastic modulators technique [5] or the dual rotating
compensators approach [6]. This last technique is com-
patible with the uses of a camera as a detector, because
the camera detectors (CCD or CMOS) are relatively slow
and cannot be used with photoelastic modulators (which
work in the KHz range). Camera detectors are suitable
to work with much lower frequencies than those allowed
by the dual rotating compensators approach, so this tech-
nique is suitable for imaging.

In our MMM we apply this last technique, so that po-
larization of light is modulated by two compensators that
rotate at different frequencies. The sample is placed be-
tween these two compensators, and a camera is contin-
uously collecting images while the compensators rotate.
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From the analysis of the variation of this intensity with
time, the elements of the Mueller Matrix of this sample
can be recovered.

In this article we will show the measurement princi-
ple of the Mueller Matrix Microscope, we will explain
the calibration process, and finally we will present some
examples of different measurements.

II. THEORY AND INSTRUMENTATION

A. Mathematical development

There are two ways of describing a completely polar-
ized light: with Jones vectors and Jones matrices, which
are related with amplitudes of electric fields, and with
Stokes vectors and Mueller matrices, which are associ-
ated with intensities. In our case, we have considered
this second method. The Stokes vector of light is given
by:

S =

 I
Q
U
V

 =


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xEy + ExE
∗
y〉

i〈E∗
xEy + ExE

∗
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 , (1)

where I, Q, U, V are the Stokes parameters, and Ex, Ey
are the amplitudes of electric field.

The changes of a Stokes vector by an optical system or
a medium can be given as:

Sout = MSin (2)

where M is a Mueller matrix of a medium and it expresses
how the polarization of light is modified. The Mueller
matrix is a 4x4 matrix which contains 16 real parameters
and it is written as:

M =

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 (3)

To measure the Mueller matrix of a sample with the dual
rotating compensators technique, we have to build an op-
tical train that includes two polarizers and two rotating
compensators as proposed by Azzam [7]. The intensity
measured at the detector can be found from the multi-
plication of the Mueller matrices of each element of the
optical system.

I = (1000) ·PL90 ·WP2 ·M ·WP1 ·PL0 · (1000)T (4)
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PL corresponds to the Mueller matrix of the polarizers,
where the subscript is the angle of orientation. WP in-
dicates the Mueller matrix of the compensators, and the
subscripts indicate whether it is the first or the second.

We call the polarizer and the compensator placed be-
fore the sample (PL0 and WP1) polarization state gener-
ator (PSG), whereas the compensator and the polarizer
that are placed after the sample right before detector
(WP2 and PL90) are called polarization state analyser
(PSA).

The orientation of both polarizers is arbitrary as long
as it is well known. In our case, the polarizers are crossed
to obtain more contrast during the alignment.

The Mueller matrices of our crossed polarizers are:

PL0 =

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 PL90 =

 1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 (5)

Notice that they are assumed to be ideal and do not have
any dependence.

The Mueller matrix of a compensator depends on the
retardation that it causes to polarized light, and on the
orientation of its optic axis. During the measurement,
the compensator is continuously rotating so its orienta-
tion is changing with time at a certain angular velocity.
The Mueller matrix of the compensator is given by:

WPi = R(−θi) ·

1 0 0 0
0 1 0 0
0 0 cos(δi) sin(δi)
0 0 −sin(δi) cos(δi)

 ·R(θi) (6)

R(θi) =

1 0 0 0
0 cos(2θi) sin(2θi) 0
0 −sin(2θi) cos(2θi) 0
0 0 0 1

 (7)

where δ is the retardation of the compensator, θ is the
orientation of the fast axis, and R(θ) is the rotation ma-
trix.

The parameter δ depends on the wavelength of light
used during the measurement, and its value is determined
during the calibration.

In our instrument, θi varies with time due to the ro-
tating compensator setup. The value of θi with time is
given by:

θi(t) = ωit+ φi (8)

where ω is the angular speed, which is different to
each compensator, and it can be adjusted before the
measurement with the motor controller. φ is the phase
(the orientation of the compensator at time zero).

If we multiply the matrices in Eq. (2) we will find the
intensity expression, that can be parameterized as:

I(θ1, θ2) =

4∑
i,j=1

cij(θ1, θ2)mij (9)

where mij are the Mueller matrix elements of the
sample, cij are the coefficients that parametrizes the
contribution of the device elements, and it includes all
the orientation information of the compensator.

From (9) we must determine the value of every coeffi-
cient cij . If we have calculated these coefficents we will
find:

c00 = 1

c01 = C2
2θ1 + Cδ1S

2
2θ1

c02 = C2θ1S2θ1 − Cδ1C2θ1S2θ1

c03 = Sδ1S2θ1

c10 = −(C2
2θ2 − Cδ2S

2
2θ2)

c11 = −(C2
2θ2 + Cδ2S

2
2θ2)(C2

2θ1 + Cδ11S
2
2θ1)

c12 = −(C2
2θ2 + Cδ2S

2
2θ2)(C2θ1S2θ1 − Cδ1C2θ1S2θ1)

c13 = −Sδ1S2θ1

(
C2

2θ2 + Cδ2S
2
2θ2

)
c20 = Cδ2C2θ2S2θ2 − C2θ2S2θ2

c21 = −
(
C2

2θ1 + Cδ1S
2
2θ1

)
(C2θ2S2θ2 − Cδ2C2θ2S2θ2)

c22 = − (C2θ2S2θ2 − Cδ2C2θ2S2θ2) (C2θ1S2θ1 − Cδ1C2θ1S2θ1)

c23 = −Sδ1S2θ1 (C2θ2S2θ2 − Cδ2C2θ2S2θ2)

c30 = Sδ2S2θ2

c31 = Sδ2S2θ2

(
C2

2θ1 + Cδ1S
2
2θ1

)
c32 = Sδ2S2θ2 (C2θ1S2θ1 − Cδ1C2θ1S2θ1)

c33 = Sδ2Sδ1S2θ2S2θ1

We have used a short notation, for example:
cos(2θ1) ≡ C2θ1 i sin(δ1) ≡ Sδ1

The intensity detected by the camera pixel to pixel over
time and the parameters cij are the known variables of
the system, while mij are the unknown. These equations
depend on the retardation of the compensators (δ1 and
δ2) and on the orientation (θ1 and θ2). As it is shown in
Eq. 8, θ1 and θ2 depend on the angular speed and the
phase.

B. Device

In this section we will explain the instrumental details
of our microscope, and of the computer that performs
the data acquisition.

The light travels from the bottom to the top of the
system, as shown in Fig. 1.

The light source of the microscope is a white LED
(Metaphase MP-LED-150). The PSG part is com-
posed of a polarizer (high contrast linear polarizing film)
mounted on a manual precision rotating stage (Newport
UTR80S) and a compensator mounted on a precision ro-
tation motorized stage (Newport SMC100) which rotates
with angular velocity of ω1 = 5◦/s.

The sample zone is made up of one bandpass fil-
ter (which selects the operative wavelength), the sam-
ple holder and the microscope objective (10X Mitutoyo
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Plan Apo Infinity-Corrected Long WD, or 50X Mitutoyo
Plan Apo HR Infinity-Corrected), which can easily be
replaced.

The PSA part is made up of the same elements as
PSG and its compensator rotates with angular velocity
ω2 = 25◦/s. The top of the microscope is made up of a
camera (uEye UI-3370CP) and its telecentric objective .
It is important to mention that the optical system has
been built on an antivibration table, to avoid external
vibrations.

The camera has a resolution of 752×480 (0.36 MP) and
is sensitive to all the visible range and a small part of UV.
We have chosen the LED light source because it features a
high intensity in all the camera range, so we can select the
wavelength of study using narrow interference bandpass
filters.

The camera and the two motors (controlled with
Single-Axis Controller, SMC 100) are connected to a per-
sonal computer, using the USB 2.0 bus. With a software
made by Labview 2012 we are able to move the motors,
collect all data and calculate the Mueller matrix values.

Figure 1: Schematic of the microscope.

III. MEASUREMENT PRINCIPLE AND
CALIBRATION

A. Measurement principle

The two basic parameters that control the acquisition
are the frame rate of the camera (that is always kept at
50 fps) and the number of acquired images N. We have
to adjust N to a value high enough to allow the slowest
compensator to do a complete turn (typically this means
that N is at least 3600 in our microscope).

Equation (9) expresses the intensity I(θ1, θ2) as a sum-
mation extended to all the elements of the matrix as a
multiplication of the coefficients cij(θ1, θ2) with the ele-
ments of the Mueller matrix mij . The variables θ1 and
θ2 are change over time, so the intensity changes too.

We have defined a new A vector, which includes all
the 16 elements of the Mueller matrix sample, so we can
express this equation as:

I(t) = CT (t)A (10)

where I is an scalar number, and CT is a vector that in-
cludes all the system coefficients found in the last section,
where the superscript ”T” denotes transposition.

If we take N measurements, we can include the inten-
sity analysis in time restating this equation as a multi-
plication of a matrix by a vector:

I = CTA

And now I is a vector with N elements, CT is N × 16
matrix, and A is the vector containing all the Mueller
matrix elements.

Using the algebra properties we can isolate vector A
multiplying C on each side of the equation. With the
following result:

CI = CCTA (11)

we can express A like:

A = RI where R = CT · (CCT )−1 (12)

To solve this equation we need the determinant of CCT

to be different from zero, because that warrants that this
matrix will be invertible. As the C(θ1, θ2) matrix de-
pends on the angular speed of both compensators, we
have to find a relation of angular speeds in which the
determinant of CCT takes maximum values.

Figure 2: The graphic of evaluation of the determinant of the
relation CTC as a function of ω1/ω2.
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In Fig. 2 we represent the value of the determinant
depending on the different relations of two motors ve-
locities. As we can see, there are several relations of
rotations speed that are suitable (when the determinant
takes maximum values).

In our microscope system we have chosen the relation
of 1:5 for the motors velocity. This is the reason why the
PSG motor rotates at 5◦/s and the PSA motors does it at
25◦/s. Once we have determined suitable values for the
angular speeds, the measurement can start. Every pixel
will give us a different reading of the intensity so we have
to repeat the calculation of Mueller matrix elements for
every pixel (in our case 360000 times). We will expose
the results as a 4×4 matrix of images. The value of every
Mueller matrix element is codified in a color scale.

B. Precision and errors

Before calibration, we are going to determine the pre-
cision of the angular phase due to the velocity of the
motors. This angular precision can be found by:

∆φ = ω ·∆t (13)

where ω is the angular speed, and ∆t is the inverse of
the frame rate. We obtain the following precision in the
determination of the phase.

∆φ1 = 5 · 1

50
= 0.1◦

∆φ2 = 25 · 1

50
= 0.5◦

So, the angular precision for the PSG motor that moves
ω1 = 5◦/s is 0.1◦, and for the PSA motor that moves
ω2 = 25◦/s it is 0.5◦.

In Ref.[8] we can see the propagated error associated
with each element of the Mueller matrix for small errors
in the determination of phases φ1 and φ2 and retardation
δ1 and δ2 values.

C. Calibration

In the calibration we are going to determine the values
of retardation of the compensators, δ1 and δ2, and the
offset phase φ1 and φ2.

The value of the offset phases has to be constant in
all the wavelength range, while retardation values can
change slightly depending on the wavelength of measure-
ments.

To calibrate our microscope we have taken into account
the fact that in the absence of sample the Mueller matrix
that we should measured is the identity matrix. To avoid
any distortion made by the objective we have removed it
during the calibration. To start the calibration we make
a measurement and adjust these four parameters until we
obtain the identity matrix. For every wavelength that we
want to study we have to repeat the calibration.

Filter (nm) δ2 (o) δ1 (o) φ2 offset (o) φ1 offset (o)

400 71.5 133

430 88 115

532 91.7 89 148.9 ±0.5 -103.5 ±0.1

545* 90.9 86.5

610 84.7 74.5

* means broadband

Table I: Retardance and phase parameters of the PSA and
PSG determined during calibration.

Table I shows the calibration parameters for our micro-
scope at different wavelengths. Once we have adjusted
these parameters, if we want to measure the Mueller ma-
trix of any sample we will introduce the objective. The
objectives we use are strain free but, they may still intro-
duce some minor changes in the polarization that we have
not considered in our calculation. To correct its pertur-
bations we are going to measure a ”blank measurement”
without sample, and we can extract the objective effects
as a matrix Mobj . We must always measure this matrix
whenever we replace the objective, modify the aligment
of the system or change the wavelength of measurement.

To correct the objective effect in our sample measure-
ments we are going to carry out the following calculation:

M = M−1
obj ·Msample (14)

and we are going to repeat this operation for every pixel.

IV. MEASURES

The calculus to find the optical properties from a
Mueller matrix are complex and it is explain in the
Ref.[8]. In this section we will show some of the mea-
sures made using the Mueller matrix microscope. We will
expose three examples, a measurement of linear birefrin-
gence in textile polymer, a measurement of the Mueller
matrix of a mosquito wing and a measurement of the
Mueller matrix of the benzil polycrystalline.

A. Mosquito wing

Figure 3: Mosquito wing measured at 610 nm.
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In this figure we shows the Mueller matrix of a
mosquito wing. We can see that the little feathers
of a portion of mosquito wing present high optical
anisotropies, as linear birefringence and linear dichroism.

B. Textile polyester

Figure 4: Birefringence values of textile polyester fiber
PET650, measured at 532 nm.

Figure 4 is an example of birefringence measurement
on textile polyester fiber. In this case the fiber has a value
of linear birefringence of 0.0135 radians. In the textile
industries the optical property of linear birefringence is
useful to determine the stretching of thread.

C. Benzil polycrystalline

Figure 5: Benzil polycrystalline measured at 440 nm.

Benzil is a organic compound. This measurement
corresponds to a thin polycrystalline sample grown from
the melt. We have made this measure at 440 nm because
at this wavelength there is a edge of an absorption band.
From this results we obtained a small contribution of
circular dichroism.

VI. CONCLUSIONS

1. We have built a microscope which can study
any sample that show some transparency in the
400nm-650nm range.

2. We can measure simultaneously all the optical
properties of a sample with good spatial resolution
of the microscope objective.

3. Compared to a polarized light microscope, this
microscope offers more accurate quantitative
results and keeps the same applications.

4. All the elements of the Mueller matrix can be
determined with a precision better than 0.5 %.
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