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Abstract: In this work we look for an analytical result for electrophoresis mobilities for a single
rod under an applied constant electric field. We obtained that µ = µ(κa, κL, a/L) and consequently,
we study asymptotic regimes. Finally, we tried to study a similar problem with computer simulations
using Verlet algorithm but it was impossible to achieve a correct solution.

I. INTRODUCTION

Nowadays, biological systems are increasing in impor-
tance due its direct function in industrial applications
and health care. Since its significative importance, one
can try to study the physics behind these systems. Al-
though they can be large and variable, there are always
structures that recure in it as biopolymers. Biopolymers
are a big family of polymers that have a significative
biological function. As an example of them, we can
focus on proteins but it would be also possible to focus
on DNA or RNA. Proteins are one of the key pieces in
biological systems and are rolled in almost every process
in them. Structullary, proteins are made by organic
molecules called amino acids that are connected making
a chain or in our nomenclature, a biopolymer. Although
this simple definition can let us to think that proteins
can be quite linear, in fact proteins also need to be
folded in a correct way to do a function and therefore,
many times are seen as globular molecules which interact
with the surrounding medium by electrical forces. Even
though this new conformation is very common, it is
also true that one can always unfold them with some
chemical products and thus working with them with a
quite linear form. Apart from this constructions, we
have also to consider that proteins can be the basic
elements to build bigger structures. As a result of it,
one can always imagine that it is possible to build a
new biopolymer considering now proteins as amino
acids in the previous explanation. These new structures
are also seen very frequently in nature as we can see
with microtubules and actin, which are present in every
eukaryotic cell to hold their structure and to be the
pathway to transport different elements inside the cells.
The study of these structures are not only important
for medical advances but also they can be effective for
other fields such as nanoengineering due to the analogy
that we can make with new nano polymers that we
are being able to build as carbon nanotubes which are
carbon polymers with great implications in a near future.

Related to biopolymers, there is a standard mech-
anism that has been used since many years ago to
distinguish proteins called electrophoresis, which is one
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of the simplest ways to discriminate proteins. This
technique consists in applying an electric field to a
fluid that contains proteins to distinguish them by
their mobility. The reason of this procedure is based
on the fact that, as we pointed before, proteins in a
solution have a charged interface between their surface
and the surrounding fluid. As a result of it, we can
see a movement of the protein that is opposed to the
present in the fluid but with a null neat force as we
can see in the work of M.G.L. van den Heuvel et al [1]
with microtubules. This motion is ususally referred to
as phoretic since the protein is being carried inside a fluid.

FIG. 1: Experiment done with microtubules by M.G.L. van
den Heuvel et al [1]. (a) Relaxation of 2 different microtubules
after switching of the electric field. Snapshots are shown with
0.1 s time interval. Microtubules measured at different electric
fields of (b) E=4 kV/m, (c) 8 kV/m, and (d) 50 kV/m. In all
images the electric field points upwards (microtubules move
downward).

In this work we analyse how a biopolymer responds in
a fluid medium under the action of an applied constant
electric field. As we will see, this response will depend
on the magnitude of the electrical field, the charge of the
protein and other geometrical properties. Because of its
complexity, firstly we do our analysis considering the ex-
treme condition that our protein can be characterized as
a finite solid rod. After this analysis, we tried to simu-
late this problem under more realistic conditions so we
can imagine the protein as a flexible chain that reminds
us a more similar condition to microtubules inside a real
cell.
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II. PHYSICAL THEORY

As we have explained before, we consider a solid rod
of radius a and length 2L inside a fluid. To solve this
problem we can start from Navier-Stokes equations but
before going on, we might have to have some considera-
tions about boundary conditions. Uses of electrophoresis
always take place in medium with low Reynolds and al-
ways take long time to achieve because of the slow move-
ment of the fluid. Due to this fact, we know that we are
going to work with an incompressible flow and given that
our velocity field is going to be small, we can consider the
Stokes solution for an incompressible fluid as follows in
equation (1):

−∇p+ η∆v + fext = 0

∇·v = 0 (1)

By doing a Fourier transform to (1) and solving for v
we get:

v(q) =
1

ηq2

(
1− qq

q2

)
· fext (2)

Now if we make the inverse Fourier transform of Eq. (2)
we will get the velocity field in real space[2]. Considering
that the external force is a constant electrical field E
which interacts with a charge distribution Ψ(r) then Eq.
(2) can be written as:

v(r) =

∫
dr′

8πη|r − r′|

[
1 +

(r− r′)(r− r′)

|r − r′|2

]
Ψ(r)·E (3)

Trying to solve (3) can be very complex and so we
try to get around by taking the velocity at some point
r1 = z0êz over the surface of the rod and integrating
this velocity for all points over the cylinder and in all the
space except inside the rod. By doing this, we will know
the velocity that drags our rod and hence the mobility
of the rod. Since we have a rod, we get cylindrical coor-
dinates to resolve this problem. If we integrate over the
angle direction and over all points of the rod we get a
large expression that can be expressed in terms of per-
pendicular and parallel components of E as it is shown
in Eq. (4).

v|| =

∫ ∞
0

dρ
ρ+ a

4η

∫ L

−L
dzΨ(r)

(ρ+ a)2 + 2(z − z0)2√
(ρ+ a)2 + (z − z0)2

E||

v⊥ =

∫ ∞
0

dρ
ρ+ a

8η

∫ L

−L
dzΨ(r)

3(ρ+ a)2 + 2(z − z0)2√
(ρ+ a)2 + (z − z0)2

E⊥

(4)

From Eq. (4) not only it is easy to obtain the paral-
lel and perpendicular electrophoretic mobilities µ||(⊥) =
v||(⊥)/(2πE||(⊥)) but also shows clearly that mobilities

depend on our charge distribution but are independent
of the magnitude of the electric field in the linear regime.
As we are working with biopolymers that have a surface
charge density, we can study the easiest case in which this
charge density is uniform and therefore Ψ(r) will depend
on this density. Due to the fact that the surrounding
medium has dissolved salts in it we need to add a contri-
bution from the fluid. In a first approximation, we can
consider that the charge density distribution caused by
all salts will be in equilibrium with the density of the
rod creating a diffuse layer that balances the charge of
the rod and therefore, ensures global electroneutrality.
To reach an expression for this density we can resolve
Poisson equation in cylindrical coordinates. As we are in
equilibrium, we can include this condition using Boltz-
mann statistics to calculate the charge density distribu-
tion. By combining both equations, it is possible to get
the so-called Poisson-Boltzmann equation. For a small
charge of the rod, the solution of this equation can be
written explicitly in terms of a modified Bessel function
of the second kind for an infinite cylinder [3]. In our
work, considering infinite length is a good approxima-
tion as a biopolymer can measure not only µm in length
but also nm in diameter. These sizes let us to say that
L/a→∞ so we can consider that the effects over the ex-
tremes are negligible. As a result of these considerations
we have that Ψ(r) can be described only on terms of the
cylindrical radius as seen in equation (5).

Ψ(ρ) = Ψr(ρ) + Ψdl(ρ) =

=
Q

4πLa
δ(ρ− a)− Qκ

4πLaK1(κa)
K0(κρ) (5)

Notice that with (5) we have introduce the inverse of
Debye screening length κ. Using (5) in (4) retrieves the
mobilities that we are looking for but as (5) implies a
modified Bessel function of the second kind, the intregal
is not easy and therefore, the detailed derivation of the
electrophoretic mobilities is described in the Appendix.
The main results that come out of the general derivation
correspond to the parallel and perpendicular mobilities,
which have a contribution due to the rod charge, µr, and
a contribution from the diffuse ions around the rod, µdl.
The general expression indicates that the electrophoretic
mobility sdepends on three dimensionless parameters µ =
µ(κa, κL, a/L). This dependence can be expressed as,

µ||,r = 3Q
4π2η

[
a
L −

√(
a
L

)2
+ 1 + 1

3 ln

(√
( a

L )
2
+1+1√

( a
L )

2
+1−1

)]

µ⊥,r = Q
8π2η

[
a
L −

√(
a
L

)2
+ 1 + ln

(√
( a

L )
2
+1+1√

( a
L )

2
+1−1

)]
(6)
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µ||,dl = − 3Q

16π2η

 π

2κL

[
1

κa

(
1− 2

π

1

κL

)
− K2(κL)

π

a

L
+K1(κa)L0(κa) +K0(κa)L1(κa)− 3(K1(κa)L2(κa) +K2(κa)L1(κa))

]

−2

 1

κa
+

1

3
K1(κa)

ln

√(

a
L

)2
+ 4 + 2√(

a
L

)2
+ 4− 2

 − 4√(
a
L

)2
+ 4
− 3

+
2πκa

3
√(

a
L

)2
+ 4

(
1

κa
−K0(κa)L−1(κa)− L0(κa)K−1(κa)

) 
+
K3(κa)

4

( a
L

)2
− L

2a
(2κL)−

1
2 S 1

2
, 3
2
(2κL)


µ⊥,dl = − Q

32π2η

 π

2κL

[
1

κa

(
1− 2

π

1

κL

)
− K2(κL)

π

a

L
+K1(κa)L0(κa) +K0(κa)L1(κa)− 3(K1(κa)L2(κa) +K2(κa)L1(κa))

]

−2

 1

κa
+K1(κa)

ln

√(

a
L

)2
+ 4 + 2√(

a
L

)2
+ 4− 2

 − 4√(
a
L

)2
+ 4
− 1

+
2πκa√(
a
L

)2
+ 4

(
1

κa
−K0(κa)L−1(κa)− L0(κa)K−1(κa)

) 
+
K3(κa)

4

( a
L

)2
− L

2a
(2κL)−

1
2 S 1

2
, 3
2
(2κL)


(7)

FIG. 2: Some values obtained for µ|| with a/L=0.001

FIG. 3: Some values obtained for µ⊥ with a/L=0.001

For a charged rod, L and a can be regarded as constant,
while kappa and E can be regarded as natural tuning
parameters. Accordingly, we plot some regions of both
expressions to try to visualize them in figures 2 and 3.
Now that we have a better idea, we can think about the
physical meaning of the behavior of the electrophoretic
mobility as a function of the rod asymmetry and its re-
sponse to changes in salt concentration. Both products
can be seen as double layer structures along the axis of
our cylinder or perpendicular to it. The dependence of µ
on three dimensionless parameters allows us to identify
three different regimes that characterize how the rod will
react to an applied electric field:

• κL� 1, κa� 1 or thin double layer.

• κL� 1, κa� 1 or intermediate double layer.

• κL� 1, κa� 1 or wide double layer.

Nonetheless, we expect that κL will be a more rele-
vant parameter than κa as we have a very long cylinder.
These regimes suggest that it is worth identifying the
asymptotic limiting regimes of the electrophoretic mobil-
ity asymmetry for very wide and very thin double layers.
In our work we consider these limits only to see how the
relation between components of the mobility is. If we
take any of the two first limits we obtain:

µ||

µ⊥
=

µ||r + µ||dl
µ⊥r

+ µ⊥dl

= 2 (8)

This result reminds us the one found by resolving the ra-
tio of perpendicular and tangential mobilities for a sedi-
menting uncharged rod[5] which is in line with Eq. (8).
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On the other hand, the third limit verifies:

µ||

µ⊥
=

µ||r + µ||dl
µ⊥r

+ µ⊥dl

= 6 (9)

which is not recorded in any known theory and therefore,
we have obtained a new class of mobilities. After these
results, we can see that our assumption that κL would
be more important than κa is confirmed as we can see
that κL prevails over κa due to the fact that if κL � 1
we see that there is a continuity with no consideration
of κa. In contrast to κa, variations over κL show us that
there is a great sensitivity over this parameter.

Finally, it is also interesting to see how these limits
approach to their solution. Although we wanted to show
an approximation for every limit we figure out that in the
first case there was not a correct development of Struve
function at infinity and therefore, we were not able to
show this limit. The result for the rest is shown in (10)
for κL� 1, κa� 1 and in (11) for κL� 1, κa� 1.

µ||

µ⊥
= 6

1− 2

3

2
(
ln
(
a
L

)
+ 1
)

+ πκa

(
1− 2(ln( a

L )+1)
2ln( a

L )−1

)
2ln

(
a
L

)
− 1


(10)

µ||

µ⊥
= 6

[
1− 4

3
ln
( a
L

)
κL

]
(11)

FIG. 4: Some values obtained for µ||/µ⊥ with a/L=0.001

III. COMPUTER SIMULATIONS

Once we obtained our analytical result, we tried to
simulate this problem with a flexible rod with only
performing a perpendicular constant force F⊥. For this
purpose we have simulated this problem with a flexible
chain of n elements under Verlet algorithm. Unlike
other works where the simulation has been done with

an hydrodynamic velocity given by the Oseen tensor[6]
here we present an hydrodynamic velocity given by the
solution of the electrophoresis [7]. The interest of this
change is because of the nature of the problem. With a
charged particle, it is necessary to include the fact that
our particle has a double layer around it which is not
included with only the Oseen tensor.

With this idea in mind, we have simulated a flexi-
ble chain of 30 elements with different forces under two
regimes of Debye length:

• High value (κ/L = 1000) or intermediate double
layer.

• Low value (κ/L = 0, 001) or wide double layer.

After doing the simulations we have studied the shape of
the chains and we have looked for the friction coefficient
once the chain has arrived to a steady state. Friction
coefficient has been obtained from the average velocity of
the chain printed by our code and following expression
(12).

γ =
F⊥
〈v〉

(12)

To reach these goals we were going to present two types
of graphics. On one hand we wanted to present a charac-
teristic transverse distortion A/L defined as the distance
between the uppermost and the lowermost point of the
chain along the direction of F⊥ normalized to the length
of the chain as a function of a dimensionless force defined
by:

B =
L3F⊥
k

(13)

where k is the stiffness of the chain.

On the other hand, we also wanted to present the re-
sults of the friction coefficients but normalised to its value
in the stiff limit (γ0) and as a function of B. Although
our idea was clear, we were not able to study these pa-
rameters as our system was not evolving appropriately.
We figured out this conclusion after seeing results as the
ones presented in figures (5) and (6).

IV. CONCLUSIONS

Eq. (6) and (7) show that it is possible to distinguish
charged particles with a uniform charged rod shape
with L/a→ ∞ only by its mobility due to the fact that
µ = µ(κa, κL, a/L). Furthermore, these expressions
also show that κL prevails over κa only if κL � 1. In
this limit we see that our solution approaches the same
solution as in the sedimenting uncharged rod but we
cannot confirm if this approach is due to a deep physical
behaviour since we have not compared the first terms of
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FIG. 5: Friction coefficient for large values of kappa (κ/L =
1000) as a function of B. As it can be seen, this solution shows
us that γ = 〈v〉 /F⊥ which cannot be because of Eq. (12).

FIG. 6: Friction coefficient for large values of kappa (κ/L =
1000) as a function of B. This figure differs from figure (5) in
the fact that other parameters were changed.

the development of both theories. In contrast, we can
see that when κL � 1 this approach is not equal and
both theories differ.

As a way to advance more in our research, we also
performed some simulations using Verlet algorithm. Al-
though this is a feasible way to study these movements
in a deeper way, we were not able to evolve the system
accordly as we could see with the studies performed over
the friction coefficient. However, we think that this is a
needed way to advance in our studies as it seems very
difficult to continue our research with an analytical the-
ory and therefore, it will be more studied in subsequent
works in the next months.
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APPENDIX A: DETAILS ON THE ANALYTICAL
SOLUTION

If we integrate mobilities using Eq. (4) over all points
r1 of our rod and over all the lenght of the rod we obtain:

µ|| =

∫ ∞
0

dρ
3(ρ+ a)

4πη
Ψ(ρ)

[
(ρ+ a)−

√
(ρ+ a)2 + 4L2 +

2L

3
ln

[
2L+

√
(ρ+ a)2 + 4L2

−2L+
√

(ρ+ a)2 + 4L2

]]

µ⊥ =

∫ ∞
0

dρ
ρ+ a

8πη
Ψ(ρ)

[
(ρ+ a)−

√
(ρ+ a)2 + 4L2 + 2Lln

[
2L+

√
(ρ+ a)2 + 4L2

−2L+
√

(ρ+ a)2 + 4L2

]]
(A1)

In this appendix we will focus on the solution for Ψ(ρ) =
K0(κρ) as the delta term is easy to resolve. For this
purpouse, Eq. (A1) can be divided in three sections,
one for every addend with independence of its prefactor.

Using some solutions presented in [8] and some properties
of Bessel equations, one can archieve for the first addend
a solution in terms of basically, modified Bessel functions
of second kind and Struve functions (Lν):

∫ ∞
0

dρ(ρ+ a)2K0(κρ) =
π

2

[
1

κ3
+

a

κ2
(−3K2(κa)L1(κa)− 3K1(κa)L2(κa) +K1(κa)L0(κa) +K0(κa)L1(κa))

]
(A2)

Solution of the second addend is more difficult due to the
fact that in this occasion, one can only find an integral
without a simple solution that can be expressed in terms
of x = ρ+a

a . Furthermore, with this solution we need to

introduce a new function called Lommel function (S 1
2 ,

3
2
)

which is derived from the Bessel theory[4].

−
∫ ∞
0

dρ(ρ+ a)
√

(ρ+ a)2 + 4L2K0(κρ) = −

[
(2L)3(2κL)

3
2S 1

2 ,
3
2
(2κL)− 2La2

∫ 1

0

dxx

√(xa
2L

)2
+ 1K0(κax)

]
(A3)

This integral cannot be found in [8] nor Mathematica can
resolve it but as long this integral is bounded and finite,
we can consider the limit a/L→ 0 and therefore we can

do a Taylor expansion of a/L. If we take the second order
now it is possible to solve and we can say that:

∫ 1

0

dxx

√(xa
2L

)2
+ 1K0(κax) ≈ 1

(κa)2
− K1(κa)

κa
+
( a

2L

)2( 2

(κa)4
+
K2(κa)

(κa)2
− K3(κa)

2κa

)
(A4)

Finally, the third addend is the hardest one to integrate.
As the previous integral, it cannot be found in [8] nor

Mathematica can resolve it. Using some complex vari-
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able changes, one can find that there is always a new
expression that also cannot be solved easily even if one
try to solve these expressions using complex integrals or
Taylor series. The best way to integrate it was found by

doing a change variable ξ = ρ+a
2L and then doing a Taylor

expansion in powers of series of ξ over ξ

√
ξ2+1+1√
ξ2+1−1

around

a
2L . With these changes it is possible to get:

∫ ∞
0

dρ(ρ+ a)K0(κρ)
2L

3
ln

[
2L+

√
(ρ+ a)2 + 4L2

−2L+
√

(ρ+ a)2 + 4L2

]
=

=
2aL2

3

K1(κa)

Lκ

ln

√(

a
L

)2
+ 4 + 2√(

a
L

)2
+ 4− 2

− 4√(
a
L

)2
+ 4

+
2πa

L

√(
a
L

)2
+ 4

(
1

aκ
−K0(aκ)L−1(aκ)−K−1(aκ)L0(aκ)

)
(A5)

If we now add constant prefactors and resolve Eq. (A1)
for the delta term, it is possible to obtain the result shown

in Eq. (6) for the component of constant charge in rod
and Eq. (7) for the diffuse layer, respectively.
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